WO2020191797A1 - 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法 - Google Patents

一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法 Download PDF

Info

Publication number
WO2020191797A1
WO2020191797A1 PCT/CN2019/081160 CN2019081160W WO2020191797A1 WO 2020191797 A1 WO2020191797 A1 WO 2020191797A1 CN 2019081160 W CN2019081160 W CN 2019081160W WO 2020191797 A1 WO2020191797 A1 WO 2020191797A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dna1
visual detection
hybrid film
bpqds
Prior art date
Application number
PCT/CN2019/081160
Other languages
English (en)
French (fr)
Inventor
金辉
桂日军
孙玉娇
姜晓文
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Priority to US17/044,495 priority Critical patent/US11041857B2/en
Publication of WO2020191797A1 publication Critical patent/WO2020191797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites

Definitions

  • the invention belongs to the technical field of preparation of flexible hybrid membrane materials and visual detection probes, and in particular relates to a method for preparing an up-conversion luminescent flexible hybrid membrane for the visual detection of tumor markers.
  • the prepared flexible hybrid membrane can be used for Up-conversion luminescence visual detection of tumor markers in biological fluid samples.
  • tumor marker detection technology mainly includes two categories: immunoassay and biosensor.
  • Immunoassay involves enzyme-linked immunocatalytic reaction, which has problems such as high detection cost, complicated operation, and specific dye labeling.
  • researchers have developed different types of optical and electrochemical biosensors, but the development of simple, rapid and efficient methods for detecting tumor markers in clinical practice is still an important research topic.
  • the invention utilizes the unique advantages of up-conversion luminescence in the visible region in nano-biological analysis, uses near-infrared light to excite quantum dots to generate up-conversion luminescence in the visible region, realizes the visual detection of the target based on the color gradient of the up-conversion luminescence, and constructs a new type of up-conversion luminescence.
  • the conversion luminescent flexible hybrid film realizes simple, accurate, fast, highly sensitive, quantitative and visual detection of tumor markers.
  • the tumor marker detection method of the present invention has broad application prospects in key technical fields such as early accurate tumor diagnosis, biological imaging, and medical device development.
  • Zhang Qunshe et al. disclosed a method for preparing crystalline silicon containing up-conversion luminescent quantum dots (invention patent publication number CN102832267A); Li Jiasu et al. embedded up-conversion luminescent nanoparticles doped with rare earth ions into polystyrene fibers to prepare composite fiber mesh Thin film (Invention Patent Publication No. CN105063889A); Deng Shengsong et al. designed a white luminescent upconversion nanoparticle and a test strip for simultaneous multi-component tumor marker detection (Invention Patent Publication No. CN107748147A); Jin et al.
  • Quantum dots construct flexible hybrid membranes, which are used in domestic and foreign literature and patent reports for the visual detection of tumor markers.
  • the present invention designs a new type of metal ion-doped black phosphorous quantum dot up-conversion luminescence probe, which is combined with a flexible substrate to construct a flexible hybrid film, a small amount of biological fluid sample is dropped on the surface of the hybrid film, and it is excited by near-infrared light.
  • the upconversion luminescence intensity of the visible area of the probe triggered by the tumor marker in the sample changes regularly to realize the visual detection of the tumor marker.
  • the method for preparing an up-conversion luminescent flexible hybrid film for the visual detection of tumor markers includes the following steps:
  • the electron acceptor molecule enters the mSiO 2 pore to complete the loading of the acceptor molecule, and the specific aptamer single-stranded DNA2 and DNA1 base complementary pairing form a double helix structure, encapsulate the acceptor molecule, and obtain the nano hybrid carrier probe M -BPQDs/mSiO 2 @DNA1-DNA2@Receptor.
  • the DNA1 (HS-DNA1-COOH) terminal -SH on the probe is bonded to the AuNPs on the film through Au-S bonds, and the film and the probe are connected together to form a flexible hybrid film.
  • the biological fluid sample contains tumor markers, it is dropped on the hybrid film, and the upconversion luminescence color change of the infiltrating hybrid film is observed under near-infrared light excitation to realize the visual detection of tumor markers.
  • the metal ions mentioned in step (1) are Ag + , Mn 2+ , Co 2+ , Ni 2+, etc., and M-BPQDs are 1 to 5 nm;
  • the thickness of the surface mSiO 2 in step (2) is 50-200nm;
  • the receptor described in step (3) is 5-fluorouracil, dopamine, rutin, quercetin, etc.
  • DNA2 is a single-stranded DNA of markers such as carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen, prostate specific antigen, etc.
  • the thickness of PMMA is 50-100 nm
  • the thickness of PI is 1-2 ⁇ m
  • the thickness of AuNPs is 10-100 nm
  • the peak wavelength of the up-conversion luminescence emission described in step (5) is 500-600 nm, and the concentration of tumor marker is 1 nM-1 mM.
  • DNA2 is a single-stranded aptamer of a specific tumor marker.
  • the biofluid sample contains the marker
  • the sample is added dropwise to the surface of the hybrid membrane, and the marker specifically binds to DNA2 to make DNA2 competitively break away from DNA1. It causes the release of receptors in the carrier pores, and the receptors are far away from M-BPQDs, and the light-induced electron transfer is inhibited.
  • the up-conversion luminescence of M-BPQDs in the visible region gradually recovers with the increase of the concentration of the marker, achieving the purpose of visual detection of the up-conversion luminescence of the marker.
  • Figure 1 Schematic diagram of the preparation process and principle of metal ion doped black phosphorus quantum dots M-BPQDs;
  • Figure 2 The preparation process of the up-conversion luminescent flexible hybrid film based on M-BPQDs and the schematic diagram of its use in the visual detection of tumor markers.
  • the present invention relates to a method for preparing an up-conversion luminescent flexible hybrid film for visual detection of tumor markers.
  • the preparation process and detection principle are shown in Figures 1 and 2, and the specific preparation steps are as follows:
  • 5-Fluorouracil 5FU enters the mSiO 2 pore to complete the receptor molecule loading, adding specific aptamer single-stranded DNA2 and DNA1 due to base complementary pairing to form a double helix structure encapsulation Receptor molecules, prepared nano hybrid carrier probe Ag-BPQDs/mSiO 2 @DNA1-DNA2@5FU.
  • polymethyl methacrylate PMMA as a layered substrate ⁇ 80nm, a layer of ⁇ 1.6 ⁇ m polyimide PI is adhered on the surface, and the PMAA-PI film is fixed by the electrode clamp and immersed in the electrolyte.
  • the KCl saturated calomel electrode is used as the reference electrode, the platinum wire electrode is the auxiliary electrode, and the PMAA-PI film is the working electrode.
  • 10mM HAuCl 4 is added to the electrolyte, cyclic voltammetry scans 50 times, and electrochemical reduction deposition is performed on the surface of the film
  • the layer thickness of AuNPs of gold nanoparticles is ⁇ 50nm, and PMMA-PI-AuNPs composite film is finally prepared.
  • the DNA1 (HS-DNA1-COOH) tail-SH on the probe is bonded to the AuNPs on the film through Au-S bonds, and the film and the probe are connected together to construct a flexible hybrid film.
  • the human serum sample contains carcinoembryonic antigen
  • add a small amount of sample to the hybrid membrane and observe the intensity of the orange-red upconversion luminescence in the visible region of the infiltrating hybrid membrane under the excitation of 800nm and 5mW near infrared light.
  • orange-red upconversion luminescence The intensity changes, as the concentration of alpha-fetoprotein in the sample increases from 10 nM to 100 ⁇ M, the orange-red upconversion luminescence of Ni-BPQDs gradually increases, realizing the visual detection of the up-conversion luminescence of the tumor marker alpha-fetoprotein in human urine samples.
  • Co-BPQDs/mSiO 2 -NH 2 in accordance with Method to grow 150nm thick mSiO 2 on the surface of Co-BPQDs, and then carry out -NH 2 functional modification to prepare Co-BPQDs/mSiO 2 -NH 2 , and then pass the carboxy-amine with single-stranded DNA1 (HS-DNA1-COOH) Coupling and binding to prepare Co-BPQDs/mSiO 2 @DNA1.
  • Rutin LU enters the mSiO 2 pores to complete the receptor molecule loading.
  • orange-red upconversion luminescence As the concentration of prostate-specific antigen in the sample increases from 10nM to 1mM, the orange-red upconversion luminescence of Co-BPQDs gradually increases, realizing the visualization of the upconversion luminescence of the tumor marker prostate-specific antigen in human urine samples Detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于柔性杂化膜材料和可视化检测探针的制备技术领域,具体涉及一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法。采用超声和溶剂热制备金属离子掺杂黑磷量子点M-BPQDs,在其表面生长介孔SiO 2和氨基化改性,连接羧基化单链DNA1,受体分子进入孔内,单链DNA2适体与DNA1因碱基互补结合封装受体于孔内,制得M-BPQDs探针。DNA1终端-SH与聚异丁烯酸甲酯-聚酰亚胺-金纳米粒层层组装复合薄膜以Au-S键结合,连接薄膜与探针构筑柔性杂化膜。与现有技术相比,本发明柔性杂化膜的制备简单,成本低,灵敏度高,当含有肿瘤标志物的生物流体样品滴加到杂化膜上,在近红外光激发下构建上转换发光强度与标志物浓度之间的联系,实现标志物可视化检测。

Description

一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法 技术领域:
本发明属于柔性杂化膜材料和可视化检测探针的制备技术领域,具体涉及一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其制备的柔性杂化膜可用于生物流体样品中肿瘤标志物的上转换发光可视化检测。
背景技术:
近年来,量子点的上转换发光引起了广泛的研究兴趣。量子点具有较高的双光子吸收能力,表现出强烈的反斯托克斯发射,即上转换发光或双光子荧光。在生物和医学应用领域,量子点的上转换发光具有显著优于其常规下转换荧光的特点。上转换发光的激发波长(如近红外光,其能量低但穿透力强)大于其发射波长(如可见光,其能量高但穿透力弱),故可避免生物自体荧光和背景荧光的干扰,提高了上转换发光检测和成像分析的敏感度与分辨率。量子点的上转换发光在细胞与活体的深组织成像、生化分析、光动力学治疗及能量转换等领域展现出广阔的应用前景。尤其在生物医学领域,量子点的上转换发光将会逐步取代常规下转换荧光,发展为更高效的光致发光分析方法。
当前,肿瘤标志物检测技术主要包括两大类:即免疫分析和生物传感器。免疫分析涉及酶联免疫催化反应,其存在检测成本高,操作复杂,特定染料标记等问题。近年来,科研人员发展了不同类型的光学和电化学生物传感器,但在临床实践中发展简单、快速和高效检测肿瘤标志物的方法仍然是一项重要的研究课题。本发明利用可见区上转换发光在纳米生物分析中独特的优势,采用近红外光激发量子点产生可见区上转换发光,基于上转换发光颜色渐变来实现对目标物的可视化检测,构建新型的上转换发光柔性杂化膜,实现对肿瘤标志物的简单、精准、快速、高灵敏、定量和可视化检测。本发明的肿瘤标志物检测方法在肿瘤早期精准诊断、生物成像、医疗器械开发等关键技术领域具备广阔的应用前景。
张群社等公开了一种含有上转换发光量子点的晶体硅的制备方法(发明专利公开号CN102832267A);李佳苏等将稀土离子掺杂的上转换发光纳米粒嵌入聚苯乙烯 纤维中制备复合纤维网毡薄膜(发明专利公开号CN105063889A);邓胜松等设计了一种白色发光的上转换纳米颗粒及其同时多组分肿瘤标志物检测的试纸条(发明专利公开号CN107748147A);Jin等报道了基于量子点的上转换发光探针用于生物流体中多巴胺的检测(Hui Jin,Rijun Gui,Zonghua Wang,et al.Two-photon excited quantum dots with compact surface coatings of polymer ligands used as an upconversion luminescent probe for dopamine detection in biological fluids.Analyst 2015,140,2037);Jin等制备了基于双量子点的探针用于比率上转换发光检测一氧化氮(Hui Jin,Rijun Gui,Jie Sun,et al.Ratiometric two-photon excited photoluminescence of quantum dots triggered by near-infrared-light for real-time detection of nitric oxide release in situ.Anal.Chim.Acta 2016,922,48)。
尽管先前研究涉及了量子点和稀土离子掺杂纳米粒的上转换发光探针用于化学和生物检测,涉及基于稀土离子掺杂纳米粒构建上转换发光薄膜,截至目前,尚未有基于上转换发光量子点构建柔性杂化膜,用于肿瘤标志物可视化检测的国内外文献和专利的报道。本发明设计了新型金属离子掺杂黑磷量子点的上转换发光探针,将其与柔性基底结合以构筑柔性杂化膜,微量滴加生物流体样品于杂化膜表面,在近红外光激发下,样品中肿瘤标志物引发探针的可见区上转换发光强度有规律变化,实现对肿瘤标志物的可视化检测。
发明内容:
本发明的目的在于克服上述现有技术存在的缺陷,设计一种方法简单、成本低、灵敏度高的用于肿瘤标志物可视化检测的上转换发光柔性杂化膜。
为实现上述目的,本发明涉及的一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法包括以下步骤:
1.一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,该方法具体包括以下步骤:
(1)将块状黑磷晶体研磨成粉末,加入溶解了金属盐的极性溶剂中,采用探头和浴池超声剥离出黑磷纳米片,加入硫醇配体,通过超声辅助溶剂热制备金属离子掺杂的黑磷量子点M-BPQDs。
(2)依据
Figure PCTCN2019081160-appb-000001
法在M-BPQDs表面生长介孔二氧化硅mSiO 2,然后进行-NH 2功能化改性制得M-BPQDs/mSiO 2-NH 2,再与单链DNA1(HS-DNA1-COOH)通过羧-胺偶联反应结合,制备M-BPQDs/mSiO 2@DNA1。
(3)电子受体分子进入mSiO 2孔道内完成受体分子负载,添加特异性适体单链DNA2与DNA1碱基互补配对形成双螺旋结构,封装受体分子,得到纳米杂化物载体探针M-BPQDs/mSiO 2@DNA1-DNA2@受体。
(4)以聚异丁烯酸甲酯PMMA为层状基底,表面黏合一层聚酰亚胺PI,电极夹固定PMAA-PI薄膜浸没在电解液中。以KCl饱和甘汞电极为参比,铂丝电极为辅助,PMAA-PI薄膜为工作电极,在电解液中加入HAuCl 4,循环伏安扫描,在薄膜表面电化学还原生成金纳米颗粒AuNPs制得PMMA-PI-AuNPs复合薄膜。
(5)探针上DNA1(HS-DNA1-COOH)末端-SH与薄膜上AuNPs通过Au-S键结合,将薄膜与探针连接在一起构筑成柔性杂化膜。当生物流体样品中含有肿瘤标志物时,将其滴加至该杂化膜上,在近红外光激发下观察浸润杂化膜的上转换发光颜色变化,实现对肿瘤标志物的可视化检测。
步骤(1)中所述的金属离子为Ag +,Mn 2+,Co 2+,Ni 2+等,M-BPQDs为1~5nm;
步骤(2)中所述的表面mSiO 2厚度为50~200nm;
步骤(3)中所述的受体为5-氟尿嘧啶、多巴胺、芦丁、槲皮素等,DNA2是癌胚抗原、甲胎蛋白、糖类抗原、前列腺特异性抗原等标志物的单链DNA适体;
步骤(4)中所述的PMMA厚度为50~100nm,PI厚度为1~2μm,AuNPs厚度为10~100nm;
步骤(5)中所述的上转换发光发射峰波长为500~600nm,肿瘤标志物浓度为1nM~1mM。
本发明以硫醇为稳定剂,超声和溶剂热法制备了新型金属离子掺杂黑磷量子点M-BPQDs,在其表面生长介孔SiO 2和氨基化改性,链接一端羧基化的单链DNA1,受体分子进入孔道,单链DNA2与DNA1因碱基互补配对结合封装受体于孔道内,制得基于M-BPQDs的纳米载体探针。DNA1另一端-SH与聚异丁烯酸甲酯-聚酰亚胺-金纳米颗粒层层组装的PMMA-PI-AuNPs复合薄膜上AuNPs通过Au-S键结合,使薄膜与探针连接在一起构筑成柔性杂化膜。DNA2是特定肿瘤标志物的单链适体, 当生物流体样品中含该标志物时,将样品微量滴加到杂化膜表面,标志物与DNA2特异性结合使DNA2竞争性地挣脱开DNA1,引起载体孔道内受体释放,受体远离M-BPQDs,其光诱导的电子转移受抑制。在近红外光激发下,M-BPQDs可见区上转换发光随着标志物浓度的增大而逐渐恢复,实现对该标志物的上转换发光可视化检测之目的。
附图说明:
图1.金属离子掺杂黑磷量子点M-BPQDs的制备过程及原理示意图;
图2.基于M-BPQDs的上转换发光柔性杂化膜的制备过程及其用于肿瘤标志物可视化检测的原理示意图。
具体实施方式:
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1:
本发明涉及的一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其制备过程与检测原理如图1和2所示,具体制备步骤如下:
将块状的黑磷晶体研磨成粉末,加入溶解了硝酸银的N-甲基吡咯烷酮NMP中,采用探头和浴池超声剥离出黑磷纳米片,加入巯基丙酸配体,通过超声辅助溶剂热制备平均尺寸为2nm的Ag-BPQDs。依据
Figure PCTCN2019081160-appb-000002
法在Ag-BPQDs表面生长50nm厚度的mSiO 2,然后进行-NH 2功能化改性制得Ag-BPQDs/mSiO 2-NH 2,再与单链DNA1(HS-DNA1-COOH)通过羧-胺偶联结合,制备Ag-BPQDs/mSiO 2@DNA1。5-氟尿嘧啶5FU进入mSiO 2孔道内,完成受体分子负载,添加特异性适体单链DNA2与DNA1因碱基互补配对形成双螺旋结构封装受体分子,制得纳米杂化物载体探针Ag-BPQDs/mSiO 2@DNA1-DNA2@5FU。以聚异丁烯酸甲酯PMMA为层状基底~80nm,表面黏合一层~1.6μm聚酰亚胺PI,电极夹固定PMAA-PI薄膜浸没在电解液中。以KCl饱和甘汞电极为参比电极,铂丝电极为辅助电极,PMAA-PI薄膜为工作电极,在电解液中加入10mM的HAuCl 4,循环伏安扫描50圈,在薄膜表面电化学还原沉积金纳米颗粒AuNPs其层厚度~50nm,最终制得PMMA-PI-AuNPs复合薄 膜。探针上DNA1(HS-DNA1-COOH)尾端-SH与薄膜上AuNPs通过Au-S键结合,将薄膜与探针连接在一起构筑成柔性杂化膜。当人血清样品中含癌胚抗原时,将微量样品滴加至该杂化膜上,在800nm和5mW近红外光激发下,观察浸润杂化膜的可见区~550nm橘红色上转换发光的强弱变化,随着样品中癌胚抗原浓度从10nM增大至10μM,Ag-BPQDs橘红色上转换发光逐渐增强,实现对人血清样品肿瘤标志物癌胚抗原的上转换发光可视化检测。
实施例2:
将块状的黑磷晶体研磨成粉末,加入溶解了硝酸镍的N-甲基吡咯烷酮NMP中,采用探头和浴池超声剥离出黑磷纳米片,加入巯基丙酸配体,通过超声辅助溶剂热制备平均尺寸为3nm的Ni-BPQDs。依据
Figure PCTCN2019081160-appb-000003
法在Ni-BPQDs表面生长100nm厚度的mSiO 2,然后进行-NH 2功能化改性制得Ni-BPQDs/mSiO 2-NH 2,再与单链DNA1(HS-DNA1-COOH)通过羧-胺偶联结合,制备Ni-BPQDs/mSiO 2@DNA1。多巴胺DA进入mSiO 2孔道内,完成受体分子负载,添加特异性适体单链DNA2与DNA1因碱基互补配对形成双螺旋结构封装受体分子,制得纳米杂化物载体探针Ni-BPQDs/mSiO 2@DNA1-DNA2@DA。以聚异丁烯酸甲酯PMMA为层状基底~50nm,表面黏合一层~1.5μm聚酰亚胺PI,电极夹固定PMAA-PI薄膜浸没在电解液中。以KCl饱和甘汞电极为参比电极,铂丝电极为辅助电极,PMAA-PI薄膜为工作电极,在电解液中加入10mM的HAuCl 4,循环伏安扫描50圈,在薄膜表面电化学还原沉积金纳米颗粒AuNPs其层厚度~40nm,最终制得PMMA-PI-AuNPs复合薄膜。探针上DNA1(HS-DNA1-COOH)尾端-SH与薄膜上AuNPs通过Au-S键结合,将薄膜与探针连接在一起构筑成柔性杂化膜。当人尿液样品中含甲胎蛋白时,将微量样品滴加至该杂化膜上,在800nm和5mW近红外光激发下,观察浸润杂化膜的可见区~540nm橘红色上转换发光的强弱变化,随着样品中甲胎蛋白浓度从10nM增大至100μM,Ni-BPQDs橘红色上转换发光逐渐增强,实现对人尿液样品肿瘤标志物甲胎蛋白的上转换发光可视化检测。
实施例3:
将块状的黑磷晶体研磨成粉末,加入溶解了硝酸钴的N-甲基吡咯烷酮NMP中,采用探头和浴池超声剥离出黑磷纳米片,加入巯基丙酸配体,通过超声辅助溶剂热 制备平均尺寸为5nm的Co-BPQDs。依据
Figure PCTCN2019081160-appb-000004
法在Co-BPQDs表面生长150nm厚度的mSiO 2,然后进行-NH 2功能化改性制得Co-BPQDs/mSiO 2-NH 2,再与单链DNA1(HS-DNA1-COOH)通过羧-胺偶联结合,制备Co-BPQDs/mSiO 2@DNA1。芦丁LU进入mSiO 2孔道内,完成受体分子负载,添加特异性适体单链DNA2与DNA1因碱基互补配对形成双螺旋结构,以执行受体分子封装,制得纳米杂化物载体探针Ni-BPQDs/mSiO 2@DNA1-DNA2@LU。以聚异丁烯酸甲酯PMMA为层状基底~60nm,表面黏合一层~1.8μm聚酰亚胺PI,电极夹固定PMAA-PI薄膜浸没在电解液中。以KCl饱和甘汞电极为参比电极,铂丝电极为辅助电极,PMAA-PI薄膜为工作电极,在电解液中加入10mM的HAuCl 4,循环伏安扫描50圈,在薄膜表面电化学还原沉积金纳米颗粒AuNPs其层厚度~20nm,最终制得PMMA-PI-AuNPs复合薄膜。探针上DNA1(HS-DNA1-COOH)尾端-SH与薄膜上AuNPs通过Au-S键结合,将薄膜与探针连接在一起构筑成柔性杂化膜。当人尿液样品中含前列腺特异性抗原时,将微量样品滴加至该杂化膜上,在800nm和5mW近红外光激发下,观察浸润杂化膜的可见区~575nm橘红色上转换发光的强弱变化,随着样品中前列腺特异性抗原浓度从10nM增大至1mM,Co-BPQDs橘红色上转换发光逐渐增强,实现对人尿液样品肿瘤标志物前列腺特异性抗原的上转换发光可视化检测。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,该方法具体包括以下步骤:
    (1)将块状黑磷晶体研磨成粉末,加入溶解了金属盐的极性溶剂中,采用探头和浴池超声剥离出黑磷纳米片,加入硫醇配体,通过超声辅助溶剂热制备金属离子掺杂的黑磷量子点M-BPQDs;
    (2)依据
    Figure PCTCN2019081160-appb-100001
    法在M-BPQDs表面生长介孔二氧化硅mSiO 2,然后进行-NH 2功能化改性制得M-BPQDs/mSiO 2-NH 2,再与单链DNA1(HS-DNA1-COOH)通过羧-胺偶联反应结合,制备M-BPQDs/mSiO 2@DNA1;
    (3)电子受体分子进入mSiO 2孔道内完成受体分子负载,添加特异性适体单链DNA2与DNA1碱基互补配对形成双螺旋结构,封装受体分子,得到纳米杂化物载体探针M-BPQDs/mSiO 2@DNA1-DNA2@受体;
    (4)以聚异丁烯酸甲酯PMMA为层状基底,表面黏合一层聚酰亚胺PI,电极夹固定PMAA-PI薄膜浸没在电解液中,以KCl饱和甘汞电极为参比,铂丝电极为辅助,PMAA-PI薄膜为工作电极,在电解液中加入HAuCl 4,循环伏安扫描,在薄膜表面电化学还原生成金纳米颗粒AuNPs制得PMMA-PI-AuNPs复合薄膜;
    (5)探针上DNA1(HS-DNA1-COOH)末端-SH与薄膜上AuNPs通过Au-S键结合,将薄膜与探针连接在一起构筑成柔性杂化膜。当生物流体样品中含有肿瘤标志物时,将其滴加至该杂化膜上,在近红外光激发下观察浸润杂化膜的上转换发光颜色变化,实现对肿瘤标志物的可视化检测。
  2. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,步骤(1)中所述的金属离子为Ag +,Mn 2+,Co 2+,Ni 2+等,M-BPQDs为1~5nm。
  3. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,步骤(2)中所述的表面mSiO 2厚度为50~200nm。
  4. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,步骤(3)中所述的受体为5-氟尿嘧啶、多巴胺、芦丁、槲皮素等,DNA2是癌胚抗原、甲胎蛋白、糖类抗原、前列腺特异性抗原等标志物的单链DNA适体。
  5. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,步骤(4)中所述的PMMA厚度为50~100nm,PI厚度为1~2μm,AuNPs厚度为10~100nm。
  6. 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法,其特征在于,步骤(5)中所述的上转换发光发射峰波长为500~600nm,肿瘤标志物浓度为1nM~1mM。
PCT/CN2019/081160 2019-03-25 2019-04-03 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法 WO2020191797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,495 US11041857B2 (en) 2019-03-25 2019-04-03 Method for preparing upconversion-luminescence flexible hybrid membrane for visual detection of tumor marker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910226383.7 2019-03-25
CN201910226383.7A CN109724949B (zh) 2019-03-25 2019-03-25 一种用于肿瘤标志物可视化检测的柔性杂化膜的制备方法

Publications (1)

Publication Number Publication Date
WO2020191797A1 true WO2020191797A1 (zh) 2020-10-01

Family

ID=66302781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081160 WO2020191797A1 (zh) 2019-03-25 2019-04-03 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法

Country Status (3)

Country Link
US (1) US11041857B2 (zh)
CN (1) CN109724949B (zh)
WO (1) WO2020191797A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846026B (zh) * 2019-12-02 2020-05-19 青岛大学 基于锌掺杂黑磷量子点的谷胱甘肽荧光纳米探针制备方法
CN111426833B (zh) * 2020-04-07 2021-04-23 青岛大学 可视化检测肿瘤外泌体的纳米杂化物探针的制备方法
CN111334284A (zh) * 2020-04-08 2020-06-26 青岛大学 高稳定性强荧光发射的铁离子配位黑磷量子点的制备方法
CN112034172A (zh) * 2020-08-24 2020-12-04 军事科学院军事医学研究院环境医学与作业医学研究所 一种用于诺氟沙星快速检测的黑磷比色/光热双模式可视化免疫层析检测方法
CN114479985A (zh) * 2022-01-27 2022-05-13 西安建筑科技大学 一种包覆黑磷量子点的复合材料及其制备方法和应用
CN115353873B (zh) * 2022-08-18 2024-06-21 徐州工业职业技术学院 一种基于量子点调控上转换发光的荧光探针的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267566C (zh) * 2003-04-16 2006-08-02 三星电子株式会社 具有多层膜结构的dna芯片
US20080085088A1 (en) * 2006-05-19 2008-04-10 University Of Washington Multiple quantum dot waveguides
CN101812528A (zh) * 2010-04-26 2010-08-25 湖南大学 开关式核酸适体探针及其在肿瘤活细胞及活体检测中的应用
CN105572092A (zh) * 2016-01-26 2016-05-11 曲阜师范大学 一种SiO2/GQDs–DNA–Au NPs纳米复合材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832267B (zh) 2012-09-06 2014-11-26 西安隆基硅材料股份有限公司 含有上转换发光量子点的晶体硅及其制备方法
CN105063889B (zh) * 2015-07-17 2017-09-12 大连民族大学 一种柔性超疏水上转换发光薄膜及制备方法
CN107043093B (zh) * 2017-04-21 2019-02-26 北京工业大学 一种黑磷纳米颗粒表面包裹介孔二氧化硅的方法
CN107748147B (zh) * 2017-10-09 2020-10-23 合肥工业大学 一种白色发光的上转换纳米颗粒及基于其的同时实现多组分肿瘤标志物检测的试纸条
CN108535481A (zh) * 2018-03-09 2018-09-14 云南大学 一种基于液晶的可视化检测肿瘤标志物的检测试剂盒
CN109432422B (zh) * 2018-11-13 2021-08-17 福建医科大学孟超肝胆医院(福州市传染病医院) 黑磷量子点/铂杂化介孔二氧化硅纳米颗粒及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267566C (zh) * 2003-04-16 2006-08-02 三星电子株式会社 具有多层膜结构的dna芯片
US20080085088A1 (en) * 2006-05-19 2008-04-10 University Of Washington Multiple quantum dot waveguides
CN101812528A (zh) * 2010-04-26 2010-08-25 湖南大学 开关式核酸适体探针及其在肿瘤活细胞及活体检测中的应用
CN105572092A (zh) * 2016-01-26 2016-05-11 曲阜师范大学 一种SiO2/GQDs–DNA–Au NPs纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
US20210041433A1 (en) 2021-02-11
US11041857B2 (en) 2021-06-22
CN109724949B (zh) 2019-07-23
CN109724949A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020191797A1 (zh) 一种用于肿瘤标志物可视化检测的上转换发光柔性杂化膜的制备方法
Syedmoradi et al. Point-of-care cancer diagnostic devices: From academic research to clinical translation
Wang et al. Nitrogen-doped graphene quantum dots@ SiO2 nanoparticles as electrochemiluminescence and fluorescence signal indicators for magnetically controlled aptasensor with dual detection channels
Zou et al. A hybrid ratiometric probe for glucose detection based on synchronous responses to fluorescence quenching and resonance light scattering enhancement of boronic acid functionalized carbon dots
Jiang et al. Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection
Shang et al. Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions
Qin et al. Triethanolamine-modified gold nanoparticles synthesized by a one-pot method and their application in electrochemiluminescent immunoassy
Zhang et al. Detection of α-fetoprotein with an ultrasensitive electrochemiluminescence paper device based on green-luminescent nitrogen-doped graphene quantum dots
Liu et al. A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection
Nasrollahpour et al. Ultrasensitive bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform
Ming et al. based microfluidic aptasensors
Wang et al. Signal-on electrochemiluminescence of self-ordered molybdenum oxynitride nanotube arrays for label-free cytosensing
Peng et al. Fluorescent-magnetic-catalytic nanospheres for dual-modality detection of H9N2 avian influenza virus
Han et al. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of Nuclear Matrix Protein 22
Li et al. Nanomaterial based analytical methods for breast cancer biomarker detection
Gao et al. Triple-helix molecular switch electrochemiluminescence nanoamplifier based on a S-doped Lu2O3/Ag2S pair for sensitive microRNA detection
CN109884029B (zh) 银/石墨烯量子点纳米酶、sers检测试剂盒及应用
Özyurt et al. Biosensing strategies for diagnosis of prostate specific antigen
Benoit et al. Electrogenerated chemiluminescence of semiconductor nanoparticles and their applications in biosensors
Li et al. Opal photonic crystal-enhanced upconversion turn-off fluorescent immunoassay for salivary CEA with oral cancer
Xie et al. Polyacrylamide gel-contained zinc finger peptide as the “lock” and zinc ions as the “key” for construction of ultrasensitive prostate-specific antigen SERS immunosensor
Lv et al. Ratiometric electrochemiluminescence lab-on-paper device for DNA methylation determination based on highly conductive copper paper electrode
Yang et al. Advances in electrochemiluminescence for single-cell analysis
Liu et al. Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection
Zhou et al. Silica Nanochannels as Nanoreactors for the Confined Synthesis of Ag NPs to Boost Electrochemical Stripping Chemiluminescence of the Luminol-O2 System for the Sensitive Aptasensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921655

Country of ref document: EP

Kind code of ref document: A1