WO2020189924A1 - 발광 소자 용매, 광 분해성 증점제, 발광 소자 잉크 및 표시 장치의 제조 방법 - Google Patents
발광 소자 용매, 광 분해성 증점제, 발광 소자 잉크 및 표시 장치의 제조 방법 Download PDFInfo
- Publication number
- WO2020189924A1 WO2020189924A1 PCT/KR2020/003010 KR2020003010W WO2020189924A1 WO 2020189924 A1 WO2020189924 A1 WO 2020189924A1 KR 2020003010 W KR2020003010 W KR 2020003010W WO 2020189924 A1 WO2020189924 A1 WO 2020189924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- group
- functional group
- solvent
- photodegradable
- Prior art date
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 346
- 239000002562 thickening agent Substances 0.000 title claims abstract description 138
- 238000000034 method Methods 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 64
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 230000001678 irradiating effect Effects 0.000 claims abstract description 17
- 238000005507 spraying Methods 0.000 claims abstract description 13
- 125000000524 functional group Chemical group 0.000 claims description 320
- 239000004065 semiconductor Substances 0.000 claims description 178
- 239000000126 substance Substances 0.000 claims description 134
- 230000005684 electric field Effects 0.000 claims description 63
- 230000008569 process Effects 0.000 claims description 62
- 239000012634 fragment Substances 0.000 claims description 47
- 229910052739 hydrogen Inorganic materials 0.000 claims description 41
- 239000001257 hydrogen Substances 0.000 claims description 41
- 150000001875 compounds Chemical class 0.000 claims description 21
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 20
- 125000006729 (C2-C5) alkenyl group Chemical group 0.000 claims description 19
- 125000003277 amino group Chemical group 0.000 claims description 16
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 16
- 125000001033 ether group Chemical group 0.000 claims description 16
- 230000001154 acute effect Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 12
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims description 12
- 125000006730 (C2-C5) alkynyl group Chemical group 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 125000005641 methacryl group Chemical group 0.000 claims description 10
- -1 Acryl Chemical group 0.000 claims description 7
- 125000005865 C2-C10alkynyl group Chemical group 0.000 claims description 6
- 239000013256 coordination polymer Substances 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 5
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical class O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 125000005587 carbonate group Chemical group 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 5
- 125000004185 ester group Chemical group 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 238000006303 photolysis reaction Methods 0.000 claims description 4
- 230000036961 partial effect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 465
- 239000000976 ink Substances 0.000 description 149
- 239000000463 material Substances 0.000 description 43
- 238000010586 diagram Methods 0.000 description 25
- 239000011149 active material Substances 0.000 description 18
- 238000007641 inkjet printing Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000011229 interlayer Substances 0.000 description 14
- 229910052814 silicon oxide Inorganic materials 0.000 description 14
- 230000000903 blocking effect Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 0 CCC1C=C*(C)C1 Chemical compound CCC1C=C*(C)C1 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 239000011810 insulating material Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 239000004642 Polyimide Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910002704 AlGaN Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000007106 1,2-cycloaddition reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004720 dielectrophoresis Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000004260 weight control Methods 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 101100309451 Arabidopsis thaliana SAD2 gene Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- IMMKYCILXUEWSS-UHFFFAOYSA-N [Sn]=O.[Zn].[In].[In] Chemical compound [Sn]=O.[Zn].[In].[In] IMMKYCILXUEWSS-UHFFFAOYSA-N 0.000 description 1
- 125000002009 alkene group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006352 cycloaddition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- CZRKJHRIILZWRC-UHFFFAOYSA-N methyl acetate;propane-1,2-diol Chemical compound COC(C)=O.CC(O)CO CZRKJHRIILZWRC-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/50—Sympathetic, colour changing or similar inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/38—Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
- H10K71/441—Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
Definitions
- the present invention relates to a light-emitting element solvent, a photodegradable thickener, a light-emitting element ink, and a method of manufacturing a display device.
- OLED organic light emitting display
- LCD liquid crystal display
- a device that displays an image of a display device includes a display panel such as an organic light emitting display panel or a liquid crystal display panel.
- the light emitting display panel may include a light emitting device.
- a light emitting diode LED
- OLED organic light emitting diode
- an inorganic material as a fluorescent material Inorganic light emitting diodes.
- An inorganic light emitting diode using an inorganic semiconductor as a fluorescent material has an advantage of having durability even in a high temperature environment, and having high efficiency of blue light compared to an organic light emitting diode.
- a transfer method using a dielectrophoresis (DEP) method has been developed. Accordingly, research on inorganic light emitting diodes having superior durability and efficiency compared to organic light emitting diodes is ongoing.
- a display device including an inorganic light emitting diode may be manufactured through an inkjet printing process in which light emitting elements having a small size are dispersed in ink and sprayed onto an electrode.
- the light-emitting device may be made of materials having a high specific gravity including semiconductor layers, and the sedimentation speed of the light-emitting devices and the likelihood of ejection through a nozzle may be determined according to the viscosity of the ink.
- the ink when the viscosity of the ink is low, the ink may be smoothly discharged through the nozzle, but the sedimentation speed of the light emitting elements dispersed in the ink may be high.
- the viscosity of the ink when the viscosity of the ink is high, the sedimentation speed of the light emitting elements may be slowed, but ejection through the nozzle may be impossible.
- the ink sprayed on the electrode must be removed from the solvent other than the light emitting element, but if the viscosity of the ink is high, there is a problem that the solvent is not removed smoothly.
- An object to be solved by the present invention is to provide a light emitting device solvent including a photodegradable functional group in which at least one chemical bond is decomposed by irradiated light, and a light emitting device ink comprising the same.
- the problem to be solved by the present invention is to provide a photodegradable thickener in which molecular chains are decomposed when light is irradiated.
- the present invention provides a method of manufacturing a display device using the light emitting element solvent and light emitting element ink including the light emitting element dispersed therein.
- an object to be solved by the present invention is to provide a light-emitting element ink including the photodegradable thickener and a light-emitting element, and a method of manufacturing a display device using the same.
- a method of manufacturing a display device for solving the above problem is a device ink including a first element solvent and a light emitting element dispersed in the first element solvent on a target substrate on which a first electrode and a second electrode are formed. Spraying, irradiating light to the first device solvent to form a second device solvent in which at least a portion of the first device solvent is decomposed, and forming the light emitting device on the first electrode and the second electrode. Landing and removing the second element solvent.
- the first device solvent comprises a photodegradable functional group in which at least one chemical bond is decomposed by irradiated light, and a first functional group and a second functional group bonded to the photodegradable functional group and represented by the following chemical structural formula 1, It may be at least any one of the compounds represented by the chemical structural formulas 2 to 5.
- n is an integer of 1 to 5, but the sum of the n value of the first functional group and the n value of the second functional group has a range of 2 to 6, and R 5 is C1 -C5 alkyl group, C2-C5 alkenyl group, C2-C5 alkynyl group, C1-C5 alkyl ether group and C2-C5 alkenyl ether group.
- doedoe represented by the formula 1 is 2 To 6, wherein R 3 and R 4 are each independently a C1-C10 alkyl group, a C2-C10 alkenyl group, a C2-C10 alkynyl group, a C1-C10 alkyl ether group, and a C2-C10 alkenyl group. It is one of the kenyl ether groups.
- the photo-decomposable functional group forms at least one photo-decomposable fragment in which at least some bonds are decomposed by the irradiated light, and the second device solvent comprises the photo-decomposable fragment.
- the photo-decomposable functional group forms at least one photo-decomposable fragment in which at least some bonds are decomposed by the irradiated light, and the second device solvent comprises the photo-decomposable fragment.
- At least one of the first functional group and the second functional group may be bonded to the photolytic fragment.
- the molecular weight of the second device solvent may be 50% or less of the molecular weight of the first device solvent.
- the first device solvent may have a viscosity in the range of 7cp to 15cp, and the second device solvent may have a viscosity of 5cp or less.
- the landing of the light emitting device may include forming an electric field on the solvent of the second device, and aligning the orientation direction of the light emitting device by the electric field.
- the light-emitting element has a shape extending in one direction, and an acute angle formed by the one direction in which the light-emitting element is extended and the direction in which the first electrode and the second electrode are extended may have a range of 88° to 90°. have.
- a light emitting device solvent is a light emitting device solvent that disperses a semiconductor crystal, and the light emitting device solvent is a photodegradable functional group in which at least one chemical bond is decomposed by irradiated light, and the light It includes different first and second functional groups bonded to the decomposable functional group, and is represented by the following Structural Formula 1, wherein the photodegradable functional group forms at least one photodegradable fragment in which the chemical bond is decomposed by the light.
- P is a photodegradable functional group
- X1 is a first functional group
- X2 is a second functional group.
- the first functional group and the second functional group are represented by Chemical Structural Formula 1, and the light emitting device solvent may be any one of compounds represented by Chemical Structural Formulas 2 to 5.
- the solvent for the light-emitting device may be a compound represented by Chemical Structural Formula 6 below.
- the light-emitting device solvent may form a first device solvent represented by Structural Formula 1, and the first device solvent may form a second device solvent including the photolysis fragment when the light is irradiated.
- At least one of the first functional group and the second functional group may be bonded to the photolytic fragment.
- the molecular weight of the second device solvent may be 50% or less of the molecular weight of the first device solvent.
- the first device solvent may have a viscosity in the range of 7cp to 15cp, and the second device solvent may have a viscosity of 5cp or less.
- the light emitting device ink includes a light emitting device including a semiconductor crystal and an insulating film surrounding an outer circumferential surface of the semiconductor crystal, and a light emitting device solvent in which at least one light emitting device is dispersed, the The light emitting device solvent includes a photodegradable functional group in which at least one chemical bond is decomposed by irradiated light, and a first functional group and a second functional group bonded to the photodegradable functional group and represented by Chemical Structural Formula 1, and the chemical structural formula It is any one of the compounds represented by 2-5.
- the light emitting device solvent may be a compound represented by Chemical Structural Formula 6.
- the photodegradable functional group of the light emitting device solvent forms at least one photodegradable fragment in which the chemical bond is decomposed by the light, and the photodegradable fragment comprises at least one of the first functional group and the second functional group. Can be.
- the chemical bonds of the photodegradable functional group are decomposed by the irradiated light, so that the viscosity may decrease.
- the semiconductor crystal is a first semiconductor layer doped with a first conductivity type, a second semiconductor layer doped with a second conductivity type having a polarity different from that of the first conductivity type, and between the first semiconductor layer and the second semiconductor layer It may include an active layer formed on.
- a method of manufacturing a display device includes the steps of preparing a light emitting element ink including a solvent, a plurality of light emitting elements dispersed in the solvent, and a photodegradable thickener, a first electrode and a second electrode And spraying the light-emitting element ink onto the formed target substrate, irradiating light to the light-emitting element ink, and mounting the light-emitting element on the first electrode and the second electrode.
- the photodegradable thickener includes a third functional group including a functional group capable of forming a hydrogen bond, and a photodegradable functional group that is bonded to the third functional group and decomposed by irradiation light, and any of the following structural formulas 2 to 5 It can be expressed as one.
- the'HP1'and'HP2' are a third functional group
- the'HP1' is an amine group (-NH-), an amino group (-CONH-), a urea group (-NHCONH-), and urethane Group (-NHCOO-)
- 'HP2' is a hydroxyl group (-OH) or an amine group (-NH2)
- the'CP' is a photodegradable functional group
- R 6 is a C1-C5 alkyl group, C2 -C5 alkenyl group, C2-C5 alkynyl group, C1-C5 alkyl ether group and C2-C5 alkenyl ether group
- R 7 is an acrylic group (Acryl), methacryl group (Methacryl) , An ester group (Ester), a carbonate group (Carbonate), and m is an integer of 1 to 3, and l is an integer of 10 to 100.
- the photodegradable thickener may be represented by any one of the following chemical structural formulas 7 to 11.
- l is an integer of 10 to 100.
- the photodegradable thickener may form a network structure by forming hydrogen bonds between the first functional groups and molecules.
- the light emitting device ink may have a viscosity in the range of 30 cP to 70 cP in a state in which shear stress is not applied.
- the photodegradable thickener may decompose hydrogen bonds of the third functional group.
- the light-emitting device ink may have a viscosity in the range of 5 cP to 15 cP in a state in which shear stress is not applied.
- the photodegradable thickener When the photodegradable thickener is irradiated with the light, the photodegradable functional group may be decomposed to form a plurality of fragment molecules.
- the step of seating the light emitting device includes forming an electric field on the first electrode and the second electrode, aligning the orientation direction of the light emitting device by the electric field, and removing the solvent and the fragment molecules It may include.
- the step of removing the solvent and the fragment molecules may be performed through a heat treatment process of 200°C to 400°C.
- the light-emitting element has a shape extending in one direction, and an acute angle formed by the one direction in which the light-emitting element is extended and the direction in which the first electrode and the second electrode are extended may have a range of 88° to 90°. have.
- the light emitting device ink is a light emitting device including a solvent, a light emitting device dispersed in the solvent, a plurality of semiconductor layers and an insulating film partially surrounding outer surfaces of the semiconductor layers, and dispersed in the solvent.
- the photodegradable thickener comprises a third functional group including a functional group capable of forming a hydrogen bond and a photodegradable functional group in which the bond is decomposed by irradiated light by being combined with the third functional group, It is represented by any one of the above structural formulas 2 to 5.
- the photodegradable functional group may include any one of a cyclobutyl group, a maleic imide dimer, an acrylate dimer, or a carbonyl group.
- the photodegradable thickener may be represented by any one of Chemical Structural Formulas 7 to 11.
- the photodegradable thickener may form a network structure by forming hydrogen bonds between molecules of the third functional group.
- the light emitting device ink may have a viscosity in the range of 30 cP to 70 cP in a state in which shear stress is not applied.
- the photodegradable thickener may decompose hydrogen bonds between molecules of the third functional group.
- the light emitting device ink may have a viscosity in the range of 5 cPP to 15 cP in a state in which shear stress is applied.
- the semiconductor layer of the light emitting device includes a first semiconductor layer, a second semiconductor layer, and an active layer disposed between the first semiconductor layer and the second semiconductor layer, and the insulating film is disposed to surround at least an outer surface of the active layer. Can be.
- the photodegradable thickener according to an embodiment for solving the above problem is a third functional group including a functional group capable of forming a hydrogen bond and a photodegradable functional group in which the bond is decomposed by irradiated light by being combined with the third functional group. It includes, and is represented by any one of Structural Formulas 2 to 5.
- the solvent of the light-emitting device may include a photodegradable functional group and a first functional group and a second functional group bonded thereto, and a chemical bond of the photodegradable functional group is partially decomposed by irradiated light to lower the viscosity. Accordingly, the light-emitting element included in the light-emitting element ink can be dispersed in the light-emitting element solvent having a lower viscosity.
- the method of manufacturing a display device improves the alignment of the light-emitting elements disposed on the electrode by performing a process of aligning the light-emitting elements while the viscosity is lowered using a light-emitting element solvent in which the light-emitting elements are dispersed.
- Display devices can be manufactured.
- the photodegradable thickener may include a functional group capable of forming a hydrogen bond, and a photodegradable functional group in which the bond is decomposed by irradiation with light.
- the photodegradable thickener may have a high viscosity due to hydrogen bonding by the polymerizable group when the flow is stopped. However, when shear stress is applied to the photodegradable thickener, the hydrogen bond may not be formed and may have a low viscosity.
- the light-emitting device ink includes a solvent, a light-emitting device, and the photodegradable thickener, and when the ink does not flow, the solvent has a high viscosity due to the photodegradable thickener, and the light-emitting device can maintain a dispersed state for a long time.
- the viscosity of the solvent decreases as the shear stress is applied to the solvent and the photodegradable thickener, and the light emitting element may be discharged from the nozzle while being dispersed in the solvent.
- the bonding of the photodegradable functional group may be decomposed in the thickener, and the ink may be easily removed at a certain temperature due to a low viscosity.
- a display device including a light-emitting element may be manufactured through an inkjet printing method using a light-emitting element ink including a light-emitting element and a photodegradable thickener.
- FIG. 1 is a plan view of a display device according to an exemplary embodiment.
- FIG. 2 is a plan view illustrating one pixel of a display device according to an exemplary embodiment.
- FIG. 3 is a cross-sectional view taken along lines IIIa-IIIa', IIIb-IIIb', and IIIc-IIIc' of FIG. 2.
- FIG. 4 is a cross-sectional view illustrating a part of a display device according to another exemplary embodiment.
- FIG. 5 is a schematic diagram of a light emitting device according to an embodiment.
- 6 and 7 are schematic diagrams of a light emitting device according to another embodiment.
- FIG. 8 is a schematic diagram showing a device ink according to an embodiment.
- FIG. 11 is a flowchart illustrating a method of manufacturing a display device according to an exemplary embodiment.
- FIGS. 12 and 13 are cross-sectional views illustrating a part of a method of manufacturing a display device according to an exemplary embodiment.
- 14 to 16 are schematic diagrams illustrating that a light emitting device dispersed in a device solvent according to an exemplary embodiment is disposed on an electrode.
- 17 is a plan view illustrating a state in which a device solvent is removed according to an exemplary embodiment.
- FIG. 18 is a cross-sectional view illustrating a state in which a device solvent is removed according to an exemplary embodiment.
- 19 is a schematic diagram illustrating a step of forming a second device solvent according to an exemplary embodiment.
- 20 to 22 are schematic diagrams illustrating that a light emitting device dispersed in a device solvent is disposed on an electrode according to an exemplary embodiment.
- FIG. 23 is a cross-sectional view illustrating a step of removing a solvent for a second device according to an exemplary embodiment.
- 24 is a plan view showing the arrangement of light-emitting elements according to an exemplary embodiment.
- 25 is a schematic diagram of a light emitting device ink according to an embodiment.
- 26 is a schematic diagram showing the arrangement of photodegradable thickeners in a state in which shear stress is not applied to the light emitting device ink according to an exemplary embodiment.
- FIG. 27 is a schematic diagram showing the arrangement of photodegradable thickeners in a state in which shear stress is applied to the light emitting device ink according to an exemplary embodiment.
- FIG. 28 is a schematic diagram showing a photodegradable thickener when light is irradiated to a light emitting device ink according to an embodiment.
- 29 is a flowchart illustrating a method of manufacturing a display device according to an exemplary embodiment.
- 30 to 32 are cross-sectional views illustrating one step in a manufacturing process of a display device according to an exemplary embodiment.
- 33 to 35 are schematic diagrams illustrating a process of disposing a light emitting element on an electrode during a manufacturing process of a display device.
- 36 to 38 are schematic diagrams illustrating a process of disposing a light emitting device on an electrode during a manufacturing process of a display device according to an exemplary embodiment.
- 39 is a cross-sectional view illustrating a part of a method of manufacturing a display device according to an exemplary embodiment.
- FIG. 1 is a plan view of a display device according to an exemplary embodiment.
- the display device 10 displays a moving image or a still image.
- the display device 10 may refer to all electronic devices that provide a display screen. For example, televisions, notebooks, monitors, billboards, Internet of Things, mobile phones, smart phones, tablet PCs (Personal Computers), electronic watches, smart watches, watch phones, head mounted displays, mobile communication terminals, which provide display screens, An electronic notebook, an electronic book, a portable multimedia player (PMP), a navigation device, a game machine, a digital camera, a camcorder, and the like may be included in the display device 10.
- PMP portable multimedia player
- the display device 10 includes a display panel that provides a display screen.
- the display panel include an inorganic light emitting diode display panel, an organic light emitting display panel, a quantum dot light emitting display panel, a plasma display panel, and a field emission display panel.
- a display panel a case in which an inorganic light emitting diode display panel is applied is exemplified, but is not limited thereto, and if the same technical idea is applicable, it may be applied to other display panels.
- the shape of the display device 10 may be variously modified.
- the display device 10 may have a shape such as a long horizontal rectangle, a long vertical rectangle, a square, a square with a round corner (vertex), other polygons, and circles.
- the shape of the display area DPA of the display device 10 may also be similar to the overall shape of the display device 10. In FIG. 1, a display device 10 and a display area DPA having an elongated rectangular shape are illustrated.
- the display device 10 may include a display area DPA and a non-display area NDA.
- the display area DPA is an area in which a screen can be displayed
- the non-display area NDA is an area in which the screen is not displayed.
- the display area DPA may be referred to as an active area
- the non-display area NDA may be referred to as an inactive area.
- the display area DPA may generally occupy the center of the display device 10.
- the display area DPA may include a plurality of pixels PX.
- the plurality of pixels PX may be arranged in a matrix direction.
- the shape of each pixel PX may be a rectangle or a square in a plane, but is not limited thereto, and each side may be a rhombus shape inclined with respect to one direction.
- Each pixel PX may be alternately arranged in a stripe type or a pentile type.
- each of the pixels PX may include one or more light-emitting elements 30 that emit light of a specific wavelength band to display a specific color.
- a non-display area NDA may be disposed around the display area DPA.
- the non-display area NDA may completely or partially surround the display area DPA.
- the display area DPA has a rectangular shape, and the non-display area NDA may be disposed to be adjacent to four sides of the display area DPA.
- the non-display area NDA may form a bezel of the display device 10. Wires or circuit drivers included in the display device 10 may be disposed in each non-display area NDA, or external devices may be mounted.
- FIG. 2 is a plan view illustrating one pixel of a display device according to an exemplary embodiment.
- 3 is a cross-sectional view taken along lines IIIa-IIIa', IIIb-IIIb', and IIIc-IIIc' of FIG. 2.
- each of the plurality of pixels PX may include a plurality of sub-pixels PXn and n are an integer of 1 to 3.
- one pixel PX may include a first sub-pixel PX1, a second sub-pixel PX2, and a third sub-pixel PX3.
- the first sub-pixel PX1 emits light of a first color
- the second sub-pixel PX2 emits light of a second color
- the third sub-pixel PX3 emits light of a third color.
- the first color may be blue
- the second color may be green
- the third color may be red.
- each sub-pixel PXn may emit light of the same color.
- FIG. 2 illustrates that the pixel PX includes three sub-pixels PXn, the present invention is not limited thereto, and the pixel PX may include a larger number of sub-pixels PXn.
- Each of the sub-pixels PXn of the display device 10 may include an area defined as a light emitting area EMA.
- the first sub-pixel PX1 is the first emission area EMA1
- the second sub-pixel PX2 is the second emission area EMA2
- the third sub-pixel PX3 is the third emission area EMA2.
- the light-emitting area EMA may be defined as an area in which the light-emitting element 30 included in the display device 10 is disposed and light of a specific wavelength band is emitted.
- the light emitting device 30 includes an active layer ('36' in FIG. 5), and the active layer 36 may emit light of a specific wavelength band without direction.
- the light-emitting area EMA may include a region in which the light-emitting element 30 is disposed, and may include a region adjacent to the light-emitting element 30 and to which light emitted from the light-emitting element 30 is emitted.
- the light emitting area EMA may also include an area in which light emitted from the light emitting element 30 is reflected or refracted by another member to be emitted.
- the plurality of light-emitting devices 30 may be disposed in each sub-pixel PXn, and may form a light-emitting area EMA including an area in which they are disposed and an area adjacent thereto.
- each of the sub-pixels PXn of the display device 10 may include a non-emission area defined as an area other than the emission area EMA.
- the non-emission area may be a region in which the light-emitting element 30 is not disposed and light emitted from the light-emitting element 30 does not reach and thus does not emit light.
- FIG. 3 illustrates only a cross section of the first sub-pixel PX1 of FIG. 2, but the same may be applied to the other pixel PX or the sub-pixel PXn.
- FIG. 3 is a cross-sectional view illustrating one end and the other end of the light emitting device 30 disposed in the first sub-pixel PX1 of FIG. 2.
- the display device 10 may include a first substrate 11 and a circuit element layer and a display element layer disposed on the first substrate 11.
- a semiconductor layer, a plurality of conductive layers, and a plurality of insulating layers are disposed on the first substrate 11, and these can constitute a circuit element layer and a display element layer, respectively.
- the plurality of conductive layers are disposed under the first planarization layer 19 to form a first gate conductive layer, a second gate conductive layer, a first data conductive layer, a second data conductive layer, and a first Electrodes 21 and 22 and contact electrodes 26 are disposed on the planarization layer 19 and constitute the display device layer.
- the plurality of insulating layers include the buffer layer 12, the first gate insulating layer 13, the first protective layer 15, the first interlayer insulating layer 17, the second interlayer insulating layer 18, and the first planarization layer ( 19), a first insulating layer 51, a second insulating layer 52, a third insulating layer 53, a fourth insulating layer 54, and the like.
- the first substrate 11 may be an insulating substrate.
- the first substrate 11 may be made of an insulating material such as glass, quartz, or polymer resin.
- the first substrate 11 may be a rigid substrate, but may be a flexible substrate capable of bending, folding, rolling, or the like.
- the light blocking layers BML1 and BML2 may be disposed on the first substrate 11.
- the light blocking layers BML1 and BML2 may include a first light blocking layer BML1 and a second light blocking layer BML2.
- the first light blocking layer BML1 and the second light blocking layer BML2 overlap at least with the first active material layer DT_ACT of the driving transistor DT and the second active material layer ST_ACT of the switching transistor ST, respectively. Is placed.
- the light blocking layers BML1 and BML2 may include a material that blocks light, and may prevent light from entering the first and second active material layers DT_ACT and ST_ACT.
- the first and second light blocking layers BML1 and BML2 may be formed of an opaque metallic material that blocks light transmission.
- the present invention is not limited thereto, and in some cases, the light blocking layers BML1 and BML2 may be omitted or may be formed only under the first active material layer DT_ACT.
- the buffer layer 12 may be entirely disposed on the first substrate 11 including the light blocking layers BML1 and BML2.
- the buffer layer 12 is formed on the first substrate 11 to protect the transistors DT and ST of the pixel PX from moisture penetrating through the first substrate 11 vulnerable to moisture permeation, and has a surface planarization function. Can be done.
- the buffer layer 12 may be formed of a plurality of inorganic layers that are alternately stacked.
- the buffer layer 12 may be formed as a multilayer in which inorganic layers including at least one of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON) are alternately stacked.
- the semiconductor layer is disposed on the buffer layer 12.
- the semiconductor layer may include a first active material layer DT_ACT of the driving transistor DT and a second active material layer ST_ACT of the switching transistor ST. These may be disposed to partially overlap the gate electrodes DT_G and ST_G of the first gate conductive layer described later.
- the semiconductor layer may include polycrystalline silicon, single crystal silicon, oxide semiconductor, or the like. Polycrystalline silicon may be formed by crystallizing amorphous silicon.
- the first active material layer DT_ACT may include a first doped region DT_ACTa, a second doped region DT_ACTb, and a first channel region DT_ACTc.
- the first channel region DT_ACTc may be disposed between the first doped region DT_ACTa and the second doped region DT_ACTb.
- the second active material layer ST_ACT may include a third doped region ST_ACTa, a fourth doped region ST_ACTb, and a second channel region ST_ACTc.
- the second channel region ST_ACTc may be disposed between the third doped region ST_ACTa and the fourth doped region ST_ACTb.
- the first doped region DT_ACTa, the second doped region DT_ACTb, the third doped region ST_ACTa, and the fourth doped region ST_ACTb are formed of the first active material layer DT_ACT and the second active material layer ST_ACT. Some regions may be regions doped with impurities.
- the first active material layer DT_ACT and the second active material layer ST_ACT may include an oxide semiconductor.
- the doped regions of the first active material layer DT_ACT and the second active material layer ST_ACT may be conductive regions, respectively.
- the oxide semiconductor may be an oxide semiconductor containing indium (In).
- the oxide semiconductor is Indium-Tin Oxide (ITO), Indium-Zinc Oxide (IZO), Indium-Gallium Oxide (IGO), Indium- Indium-Zinc-Tin Oxide (IZTO), Indium-Gallium-Tin Oxide (IGTO), Indium-Gallium-Zinc-Tin Oxide, IGZTO), etc.
- ITO Indium-Tin Oxide
- IZO Indium-Zinc Oxide
- IGO Indium-Gallium Oxide
- IZTO Indium-Indium-Zinc-Tin Oxide
- IGTO Indium-Gallium-Zinc-Tin Oxide
- the first gate insulating layer 13 is disposed on the semiconductor layer and the buffer layer 12.
- the first gate insulating layer 13 may include a semiconductor layer and may be disposed on the buffer layer 12.
- the first gate insulating layer 13 may function as a gate insulating layer of the driving transistor DT and the switching transistor ST.
- the first gate insulating layer 13 may be formed of an inorganic layer including an inorganic material such as silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON), or may be formed in a stacked structure.
- the first gate conductive layer is disposed on the first gate insulating layer 13.
- the first gate conductive layer may include a first gate electrode DT_G of the driving transistor DT and a second gate electrode ST_G of the switching transistor ST.
- the first gate electrode DT_G is disposed to overlap the first channel region DT_ACTc of the first active material layer DT_ACT in the thickness direction
- the second gate electrode ST_G is formed of the second active material layer ST_ACT. It may be disposed to overlap the second channel region ST_ACTc in the thickness direction.
- the first gate conductive layer is any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu), or It may be formed of a single layer or multiple layers made of an alloy of. However, it is not limited thereto.
- the first protective layer 15 is disposed on the first gate conductive layer.
- the first passivation layer 15 may be disposed to cover the first gate conductive layer to protect it.
- the first protective layer 15 may be formed of an inorganic layer including an inorganic material such as silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON), or may be formed in a stacked structure.
- the second gate conductive layer is disposed on the first protective layer 15.
- the second gate conductive layer may include a first capacitive electrode CE1 of a storage capacitor disposed so that at least a partial region overlaps the first gate electrode DT_G in the thickness direction.
- the first capacitive electrode CE1 overlaps the first gate electrode DT_G in the thickness direction with the first passivation layer 15 therebetween, and a storage capacitor may be formed therebetween.
- the second gate conductive layer is any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu), or It may be formed of a single layer or multiple layers made of an alloy of. However, it is not limited thereto.
- the first interlayer insulating layer 17 is disposed on the second gate conductive layer.
- the first interlayer insulating layer 17 may function as an insulating layer between the second gate conductive layer and other layers disposed thereon.
- the first interlayer insulating layer 17 may be formed of an inorganic layer including an inorganic material such as silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON), or may be formed in a stacked structure.
- the first data conductive layer is disposed on the first interlayer insulating layer 17.
- the first gate conductive layer includes a first source/drain electrode DT_SD1 and a second source/drain electrode DT_SD2 of the driving transistor DT, and a first source/drain electrode ST_SD1 and a second of the switching transistor ST.
- a source/drain electrode ST_SD2 may be included.
- the first source/drain electrode DT_SD1 and the second source/drain electrode DT_SD2 of the driving transistor DT are formed through a contact hole penetrating the first interlayer insulating layer 17 and the first gate insulating layer 13.
- the first doped region DT_ACTa and the second doped region DT_ACTb of the first active material layer DT_ACT may contact each other.
- the first source/drain electrodes ST_SD1 and the second source/drain electrodes ST_SD2 of the switching transistor ST are formed through a contact hole penetrating the first interlayer insulating layer 17 and the first gate insulating layer 13.
- the third doped region ST_ACTa and the fourth doped region ST_ACTb of the second active material layer ST_ACT may contact each other.
- first source/drain electrode DT_SD1 of the driving transistor DT and the first source/drain electrode ST_SD1 of the switching transistor ST are respectively connected to the first light blocking layer BML1 and the first light blocking layer BML1 through another contact hole. It may be electrically connected to the second light blocking layer BML2.
- the other electrode is drained. It may be an electrode.
- the present invention is not limited thereto, and when one of the first source/drain electrodes DT_SD1 and ST_SD1 and the second source/drain electrodes DT_SD2 and ST_SD2 is a drain electrode, the other electrode may be a source electrode.
- the first data conductive layer is any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu), or It may be formed of a single layer or multiple layers made of an alloy of. However, it is not limited thereto.
- the second interlayer insulating layer 18 may be disposed on the first data conductive layer.
- the second interlayer insulating layer 18 covers the first data conductive layer and is entirely disposed on the first interlayer insulating layer 17, and may function to protect the first data conductive layer.
- the second interlayer insulating layer 18 may be formed of an inorganic layer including an inorganic material such as silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON), or may be formed in a stacked structure.
- the second data conductive layer is disposed on the second interlayer insulating layer 18.
- the second data conductive layer may include a first voltage line VL1, a second voltage line VL2, and a first conductive pattern CDP.
- the first voltage line VL1 is applied with a high potential voltage (or the first power voltage VDD) supplied to the driving transistor DT, and the second voltage line VL2 is applied to the second electrode 22.
- a low potential voltage (or a second power voltage, VSS) may be applied.
- the first power voltage may be transmitted to the first electrode 21 through the driving transistor DT, and the second power voltage may be a second electrode connected to the second voltage line VL2 through a contact hole. It can be passed on to (22).
- the second voltage line VL2 may be applied with an alignment signal necessary for aligning the light emitting elements 30 during the manufacturing process of the display device 10.
- the first conductive pattern CDP may be electrically connected to the first source/drain electrode DT_SD1 of the driving transistor DT through a contact hole formed in the second interlayer insulating layer 18.
- the first conductive pattern CDP also contacts the first electrode 21 to be described later, and the driving transistor DT applies the first power voltage VDD applied from the first voltage line VL1 to the first conductive pattern CDP.
- the second data conductive layer includes one second voltage line VL2 and one first voltage line VL1, but is not limited thereto.
- the second data conductive layer may include a larger number of first voltage wires VL1 and second voltage wires VL2.
- the second data conductive layer is any one of molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), titanium (Ti), nickel (Ni), neodymium (Nd), and copper (Cu), or It may be formed of a single layer or multiple layers made of an alloy of. However, it is not limited thereto.
- the first planarization layer 19 is disposed on the second data conductive layer.
- the first planarization layer 19 may include an organic insulating material, for example, an organic material such as polyimide (PI), and may perform a surface planarization function.
- PI polyimide
- first planarization layer 19 On the first planarization layer 19, internal banks 41 and 42, a plurality of electrodes 21 and 22, an external bank 45, a plurality of contact electrodes 26, and a light emitting element 30 are disposed. In addition, a plurality of insulating layers 51, 52, 53, and 54 may be further disposed on the first planarization layer 19.
- the inner banks 41 and 42 may be directly disposed on the first planarization layer 19.
- the internal banks 41 and 42 may include a first internal bank 41 and a second internal bank 42 disposed adjacent to the center of each sub-pixel PXn.
- the first internal bank 41 and the second internal bank 42 may be disposed to face each other in a first direction DR1.
- the inner banks 41 and 42 are disposed so as to be spaced apart from each other, thereby forming a region in which the light emitting element 30 is disposed therebetween.
- the first internal bank 41 and the second internal bank 42 extend in the second direction DR2, but do not extend to the neighboring sub-pixel PXn in the second direction DR2. PXn) can be spaced apart at the boundary between them and terminated.
- the first internal bank 41 and the second internal bank 42 are disposed for each sub-pixel PXn to form a pattern on the front surface of the display device 10.
- FIG. 3 only one first internal bank 41 and one second internal bank 42 are illustrated, but the present invention is not limited thereto.
- a larger number of internal banks 41 and 42 may be further disposed depending on the number of electrodes 21 and 22 to be described later.
- the first internal bank 41 and the second internal bank 42 may have a structure in which at least a part of the first internal bank 41 and the second internal bank 42 protrude from the top surface of the first planarization layer 19.
- the protruding portions of the first inner bank 41 and the second inner bank 42 may have inclined sides, and light emitted from the light emitting device 30 may have inclined sides of the inner banks 41 and 42. Can proceed towards.
- the electrodes 21 and 22 disposed on the inner banks 41 and 42 may include a material having high reflectivity, and the light emitted from the light emitting element 30 is the inner banks 41 and 42 It may be reflected from the electrodes 21 and 22 disposed on the side of the first planarization layer 19 to be emitted in the upper direction of the first planarization layer 19. That is, the inner banks 41 and 42 may provide a region in which the light-emitting element 30 is disposed and at the same time perform a function of a reflective partition wall for reflecting light emitted from the light-emitting element 30 upward.
- the internal banks 41 and 42 may include an organic insulating material such as polyimide (PI), but are not limited thereto.
- the plurality of electrodes 21 and 22 are disposed on the inner banks 41 and 42 and the first planarization layer 19.
- the plurality of electrodes 21 and 22 may be electrically connected to the light emitting devices 30, and a predetermined voltage may be applied so that the light emitting device 30 emits light of a specific wavelength range.
- at least a portion of each of the electrodes 21 and 22 may be utilized to form an electric field in the sub-pixel PXn to align the light-emitting element 30.
- the plurality of electrodes 21 and 22 may include a first electrode 21 disposed on the first inner bank 41 and a second electrode 22 disposed on the second inner bank 42.
- the first electrode 21 and the second electrode 22 extend in the first direction DR1 and disposed in the first direction DR1 in the electrode stem portions 21S and 22S and the electrode stem portions 21S and 22S, respectively. It may include at least one electrode branch 21B and 22B extending and branching in the second direction DR2, which is a direction crossing the.
- the first electrode 21 is branched from the first electrode stem portion 21S and the first electrode stem portion 21S extending in the first direction DR1 and extending in the second direction DR2. It may include a first electrode branch portion 21B.
- Both ends of the first electrode stem 21S are spaced apart and terminated between the sub-pixels PXn, but the first electrode stems of the adjacent sub-pixels in the same row (eg, adjacent in the first direction DR1) It can lie on substantially the same straight line as (21S). Since both ends of the first electrode stem portions 21S disposed in each sub-pixel PXn are spaced apart from each other, different electric signals may be applied to each of the first electrode branch portions 21B, and the first electrode branch portions ( 21B) can each be driven separately.
- the first electrode 21 contacts the first conductive pattern CDP through the first contact hole CT1 penetrating the first planarization layer 19, and the first source/drain of the driving transistor DT through the first contact hole CT1. It may be electrically connected to the electrode DT_SD1.
- the first electrode branch 21B is branched from at least a portion of the first electrode stem 21S and is disposed to extend in the second direction DR2, and is disposed to face the first electrode stem 21S. It can be terminated in a state spaced apart from the electrode stem part 22S.
- the second electrode 22 extends in the first direction DR1 and is spaced apart from the first electrode stem portion 21S and the second direction DR2 to face the second electrode stem portion 22S and the second electrode stem portion.
- the second electrode branch 22B branched at 22S and extending in the second direction DR2 may be included.
- the second electrode stem 22S may extend in the first direction DR1 and may be disposed beyond a boundary with another adjacent sub-pixel PXn.
- the second electrode stem 22S crossing the plurality of sub-pixels PXn may be connected to an outer portion of the display area DPA or a portion extending in one direction from the non-display area NDA.
- the second electrode 22 may contact the second voltage line VL2 through the second contact hole CT2 penetrating the first planarization layer 19.
- the second electrodes 22 of the sub-pixel PXn adjacent in the first direction DR1 are connected to one second electrode stem 22S to form a second contact hole CT2. Through it, it may be electrically connected to the second voltage line VL2.
- the present invention is not limited thereto, and in some cases, the second contact hole CT2 may also be formed for each sub-pixel PXn.
- the second electrode branch portion 22B may be spaced apart from and faced with the first electrode branch portion 21B, and may be terminated while being spaced apart from the first electrode stem portion 21S.
- the second electrode branch 22B may be connected to the second electrode stem 22S, and an end portion in an extended direction may be disposed in the sub-pixel PXn in a state spaced apart from the first electrode stem 21S. .
- first electrode branch portions 21B and one second electrode branch portion 22B are arranged for each sub-pixel PXn, but the present invention is not limited thereto.
- the number of the first electrode branch portions 21B and the second electrode branch portions 22B disposed for each sub-pixel PXn may be larger.
- the first electrode 21 and the second electrode 22 disposed in each sub-pixel PXn may not necessarily have a shape extending in one direction, and the first electrode 21 and the second electrode 22 ) Can be arranged in various structures.
- the first electrode 21 and the second electrode 22 may have a partially curved or bent shape, and one electrode may be disposed to surround the other electrode.
- the first electrode 21 and the second electrode 22 are at least partially spaced apart from each other to face each other, so that if a region in which the light emitting element 30 is to be disposed is formed therebetween, the structure or shape in which they are disposed is not particularly limited. .
- the first electrode 21 and the second electrode 22 are disposed on the first inner bank 41 and the second inner bank 42, respectively, and they may face each other apart.
- each of the electrode branches 21B and 22B is disposed on the first inner bank 41 and the second inner bank 42, and at least a portion of the first electrode 21 and the second electrode 22 It may be disposed directly on the planarization layer 19.
- At least one end of the plurality of light emitting devices 30 disposed between the first and second internal banks 41 and 42 may be electrically connected to the first electrode 21 and the second electrode 22. .
- each of the electrodes 21 and 22 may include a transparent conductive material.
- each of the electrodes 21 and 22 may include a material such as Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and Indium Tin-Zinc Oxide (ITZO), but is not limited thereto.
- each of the electrodes 21 and 22 may include a conductive material having high reflectivity.
- each of the electrodes 21 and 22 may include a metal such as silver (Ag), copper (Cu), or aluminum (Al) as a material having a high reflectance. In this case, light incident on each of the electrodes 21 and 22 may be reflected to be emitted upward of each sub-pixel PXn.
- the electrodes 21 and 22 may have a structure in which one or more layers of a transparent conductive material and a metal layer having a high reflectivity are stacked, respectively, or may be formed as a single layer including them.
- each of the electrodes 21 and 22 has a stacked structure of ITO/silver (Ag)/ITO/IZO, or an alloy containing aluminum (Al), nickel (Ni), lanthanum (La), etc. Can be However, it is not limited thereto.
- the plurality of electrodes 21 and 22 may be electrically connected to the light-emitting elements 30 and may receive a predetermined voltage so that the light-emitting elements 30 emit light.
- the plurality of electrodes 21 and 22 are electrically connected to the light emitting element 30 through a contact electrode 26 to be described later, and an electric signal applied to the electrodes 21 and 22 is transmitted to the contact electrode 26. ) Through the light emitting device 30.
- the first electrode 21 may be a pixel electrode separated for each sub-pixel PXn, and the second electrode 22 may be a common electrode connected in common along each sub-pixel PXn.
- One of the first electrode 21 and the second electrode 22 may be an anode electrode of the light emitting device 30, and the other may be a cathode electrode of the light emitting device 30.
- the present invention is not limited thereto, and vice versa.
- each of the electrodes 21 and 22 may be used to form an electric field in the sub-pixel PXn to align the light emitting device 30.
- the light-emitting element 30 applies an alignment signal to the first electrode 21 and the second electrode 22 to form an electric field between the first electrode 21 and the second electrode 22. It may be disposed between (21) and the second electrode (22).
- the light-emitting element 30 is sprayed onto the first electrode 21 and the second electrode 22 in a state dispersed in ink through an inkjet printing process, and between the first electrode 21 and the second electrode 22
- the alignment signal may be applied to the light emitting device 30 to be aligned between them through a method of applying a dieletrophoretic force to the light emitting device 30.
- the first insulating layer 51 is disposed on the first planarization layer 19, the first electrode 21 and the second electrode 22.
- the first insulating layer 51 is disposed to partially cover the first electrode 21 and the second electrode 22.
- the first insulating layer 51 is disposed so as to cover most of the upper surfaces of the first electrode 21 and the second electrode 22, but may expose a part of the first electrode 21 and the second electrode 22.
- the first insulating layer 51 includes a portion of the upper surfaces of the first electrode 21 and the second electrode 22, for example, the upper surface of the first electrode branch 21B disposed on the first internal bank 41 and the second electrode. 2 It may be disposed so that a part of the top surface of the second electrode branch 22B disposed on the inner bank 42 is exposed.
- the first insulating layer 51 is substantially entirely formed on the first planarization layer 19 and may include an opening partially exposing the first electrode 21 and the second electrode 22.
- the first insulating layer 51 may have a step difference between the first electrode 21 and the second electrode 22 so that a portion of the upper surface thereof is depressed.
- the first insulating layer 51 includes an inorganic insulating material, and the first insulating layer 51 disposed to cover the first electrode 21 and the second electrode 22 is disposed below. A part of the upper surface may be depressed by the step of the member.
- the light emitting device 30 disposed on the first insulating layer 51 between the first electrode 21 and the second electrode 22 may form an empty space between the recessed upper surfaces of the first insulating layer 51. I can.
- the light-emitting device 30 may be disposed to be partially spaced apart from the top surface of the first insulating layer 51, and a material forming the second insulating layer 52 to be described later may be filled in the space. However, it is not limited thereto.
- the first insulating layer 51 may form a flat top surface such that the light emitting device 30 is disposed.
- the first insulating layer 51 may protect the first electrode 21 and the second electrode 22 and insulate them from each other. In addition, it is possible to prevent the light emitting device 30 disposed on the first insulating layer 51 from being damaged by direct contact with other members.
- the shape and structure of the first insulating layer 51 are not limited thereto.
- the outer bank 45 may be disposed on the first insulating layer 51.
- the outer bank 45 includes an area in which the inner banks 41 and 42 and the electrodes 21 and 22 are disposed on the first insulating layer 51 and includes a region in which the light emitting element 30 is disposed. It may surround and may be disposed at a boundary between the sub-pixels PXn.
- the outer bank 45 may be disposed to have a shape extending in the first direction DR1 and the second direction DR2 to form a lattice pattern over the entire surface of the display area DPA.
- the height of the outer bank 45 may be greater than the height of the inner banks 41 and 42. Unlike the inner banks 41 and 42, the outer bank 45 separates the neighboring sub-pixels PXn and at the same time, as described later, is used for disposing the light emitting element 30 during the manufacturing process of the display device 10. In the inkjet printing process, a function of preventing ink from overflowing to the adjacent sub-pixel PXn may be performed.
- the external bank 45 may separate the different light emitting devices 30 from different sub-pixels PXn so that the dispersed inks are not mixed with each other.
- the outer bank 45 may include polyimide (PI) like the inner banks 41 and 42, but is not limited thereto.
- the light-emitting element 30 may be disposed between the electrodes 21 and 22.
- the light emitting device 30 may be disposed between the respective electrode branches 21B and 22B.
- the plurality of light emitting devices 30 are disposed to be spaced apart from each other and may be aligned substantially parallel to each other.
- the interval at which the light-emitting elements 30 are separated is not particularly limited.
- a plurality of light-emitting elements 30 may be arranged adjacent to each other to form a group, and the plurality of light-emitting elements 30 may be grouped with a certain distance apart, or may be disposed with a non-uniform density.
- the light-emitting element 30 has a shape extending in one direction, and the direction in which the electrodes 21 and 22 are extended and the direction in which the light-emitting element 30 is extended may be substantially vertical. have.
- the present invention is not limited thereto, and the light emitting device 30 may be disposed at an angle without being perpendicular to the direction in which the electrodes 21 and 22 extend.
- the light-emitting device 30 may include an active layer 36 including different materials to emit light of different wavelength bands to the outside.
- the display device 10 may include light-emitting elements 30 that emit light of different wavelength bands.
- the light emitting element 30 of the first sub-pixel PX1 includes an active layer 36 that emits light of a first color having a first wavelength in a center wavelength band
- the second sub-pixel PX2 The light-emitting element 30 includes an active layer 36 that emits light of a second color having a second wavelength in a center wavelength band
- the light-emitting device 30 of the third sub-pixel PX3 has a third center wavelength band. It may include an active layer 36 that emits light of a third color having a wavelength.
- light of a first color, a second color, and a third color may be emitted from the first sub-pixel PX1, the second sub-pixel PX2, and the third sub-pixel PX3, respectively.
- light of the first color is blue light having a center wavelength band ranging from 450 nm to 495 nm
- light of the second color is green light having a center wavelength band ranging from 495 nm to 570 nm
- light of a third color Silver may be red light having a central wavelength band ranging from 620 nm to 752 nm.
- each of the first sub-pixel PX1, the second sub-pixel PX2, and the third sub-pixel PX3 may include the same type of light-emitting device 30 to emit light of substantially the same color. have.
- the light emitting device 30 may be disposed on the first insulating layer 51 between the internal banks 41 and 42 or between the electrodes 21 and 22.
- the light emitting device 30 may be disposed on the first insulating layer 51 disposed between the inner banks 41 and 42.
- the light emitting device 30 may be disposed so that a partial region overlaps each of the electrodes 21 and 22 in the thickness direction.
- One end of the light-emitting device 30 overlaps the first electrode 21 in the thickness direction and is placed on the first electrode 21, and the other end overlaps the second electrode 22 in the thickness direction to form a second electrode. (22) can be placed on top.
- each sub-pixel PXn are regions other than the region formed between the internal banks 41 and 42, for example, each It may be disposed in a region other than between the electrode branches 21B and 22B, or between the inner banks 41 and 42 and the outer bank 45.
- the light emitting device 30 may have a shape extending in one direction and a structure in which a plurality of semiconductor layers are sequentially disposed in one direction.
- the light emitting element 30 of the display device 10 is disposed so that one extended direction is parallel to the first planarization layer 19, and a plurality of semiconductor layers included in the light emitting element 30 are the first planarization layer 19 It may be sequentially arranged along a direction parallel to the upper surface of the.
- a plurality of layers may be disposed in a direction perpendicular to the first planarization layer 19.
- one end of the light emitting device 30 may contact the first contact electrode 26a, and the other end may contact the second contact electrode 26b.
- an insulating film ('38' in FIG. 5) is not formed on an extended end surface of the light emitting device 30 and a part of the semiconductor layer is exposed, the exposed semiconductor layer is The first contact electrode 26a and the second contact electrode 26b may be in contact.
- the insulating layer 38 is removed, and the insulating layer 38 is removed, so that both end sides of the semiconductor layers may be partially exposed.
- the second insulating layer 52 may be partially disposed on the light emitting device 30 disposed between the first electrode 21 and the second electrode 22.
- the second insulating layer 52 may be disposed to partially surround the outer surface of the light emitting device 30.
- a portion of the second insulating layer 52 disposed on the light emitting element 30 may have a shape extending in the second direction DR2 between the first electrode 21 and the second electrode 22 on a plane.
- the second insulating layer 52 may form a stripe-type or island-type pattern in each sub-pixel PXn.
- the second insulating layer 52 is disposed on the light emitting device 30, and one end and the other end of the light emitting device 30 may be exposed. The exposed end of the light emitting device 30 may contact the contact electrode 26 to be described later.
- the shape of the second insulating layer 52 may be formed by a patterning process using a material forming the second insulating layer 52 using a conventional mask process.
- the mask for forming the second insulating layer 52 has a width narrower than the length of the light emitting element 30, and the material forming the second insulating layer 52 is patterned to expose both ends of the light emitting element 30. I can. However, it is not limited thereto.
- the second insulating layer 52 may protect the light emitting device 30 and at the same time perform a function of fixing the light emitting device 30 in a manufacturing process of the display device 10.
- some of the materials of the second insulating layer 52 may be disposed between the lower surface of the light emitting device 30 and the first insulating layer 51.
- the second insulating layer 52 may be formed to fill the space between the first insulating layer 51 and the light emitting element 30 formed during the manufacturing process of the display device 10. Accordingly, the second insulating layer 52 is disposed to surround the outer surface of the light-emitting element 30 to protect the light-emitting element 30 and at the same time fix the light-emitting element 30 during the manufacturing process of the display device 10. have.
- the plurality of contact electrodes 26 are disposed on the first electrode 21, the second electrode 22 and the second insulating layer 52.
- the third insulating layer 53 may be disposed on any one of the contact electrodes 26.
- the plurality of contact electrodes 26 may have a shape extending in one direction.
- the plurality of contact electrodes 26 may contact the light emitting element 30 and the electrodes 21 and 22, respectively, and the light emitting elements 30 may be connected to the first electrode 21 and the second electrode through the contact electrode 26. Electrical signals may be received from the electrode 22.
- the contact electrode 26 may include a first contact electrode 26a and a second contact electrode 26b.
- the first contact electrode 26a and the second contact electrode 26b may be disposed on the first electrode 21 and the second electrode 22, respectively.
- Each of the first contact electrode 26a and the second contact electrode 26b may have a shape extending in the second direction DR2.
- the first contact electrode 26a and the second contact electrode 26b may be spaced apart from each other in the first direction DR1, and they form a stripe pattern in the light emitting area EMA of each sub-pixel PXn. can do.
- the widths of the first contact electrode 26a and the second contact electrode 26b measured in one direction are the widths of the first electrode 21 and the second electrode 22 measured in the one direction, respectively.
- the first contact electrode 26a and the second contact electrode 26b are in contact with one end and the other end of the light emitting element 30, respectively, and both sides of the first electrode 21 and the second electrode 22 Can be arranged to cover.
- at least a portion of each of the first and second contact electrodes 26a and 26b may also be disposed on the first insulating layer 51.
- at least a portion of the first and second contact electrodes 26a and 26b may be disposed on the second insulating layer 52.
- the first contact electrode 26a is directly disposed on the second insulating layer 52, and the second contact electrode 26b is directly disposed on the third insulating layer 53 disposed on the first contact electrode 26a. It is disposed and may overlap the second insulating layer 52. However, the present invention is not limited thereto, and the third insulating layer 53 is omitted so that the second contact electrode 26b may also be directly disposed on the second insulating layer 52.
- the first contact electrode 26a and the second contact electrode 26b are formed with the first electrode 21 and the second electrode. It is possible to contact the exposed upper surface of the electrode 22.
- the first contact electrode 26a contacts a portion of the first electrode 21 located on the first internal bank 41
- the second contact electrode 26b is the second electrode 22. 2 It is possible to contact a portion located on the inner bank 42.
- the present invention is not limited thereto, and in some cases, the widths of the first and second contact electrodes 26a and 26b are smaller than those of the first electrode 21 and the second electrode 22 to be exposed on the upper surface. It may be arranged to cover only a part.
- the semiconductor layer is exposed on both end surfaces of the light emitting device 30 in an extended direction, and the first and second contact electrodes 26a and 26b are end surfaces exposed to the semiconductor layer. It can contact the light emitting device 30 at. However, it is not limited thereto. In some cases, the semiconductor layers of the light emitting device 30 may be exposed from the side surfaces of both ends, and each of the contact electrodes 26 may contact the exposed semiconductor layer. One end of the light-emitting element 30 is electrically connected to the first electrode 21 through the first contact electrode 26a, and the other end is electrically connected to the second electrode 22 through the second contact electrode 26b. Can be connected to.
- first contact electrodes 26a and one second contact electrode 26b are disposed in one sub-pixel PXn, but the present invention is not limited thereto.
- the number of the first and second contact electrodes 26a and 26b may vary depending on the number of the first electrode branches 21B and the second electrode branches 22B disposed in each sub-pixel PXn. have.
- the contact electrode 26 may include a conductive material.
- it may include ITO, IZO, ITZO, aluminum (Al), and the like.
- the contact electrode 26 may include a transparent conductive material, and light emitted from the light emitting device 30 may pass through the contact electrode 26 and travel toward the electrodes 21 and 22.
- Each of the electrodes 21 and 22 contains a material having a high reflectivity, and the electrodes 21 and 22 placed on the inclined sides of the inner banks 41 and 42 direct incident light to the top of the first substrate 11. Can be reflected. However, it is not limited thereto.
- the third insulating layer 53 is disposed on the first contact electrode 26a.
- the third insulating layer 53 may electrically insulate the first contact electrode 26a and the second contact electrode 26b from each other.
- the third insulating layer 53 is disposed to cover the first contact electrode 26a, but is not disposed on the other end of the light emitting device 30 so that the light emitting device 30 can contact the second contact electrode 26b. May not.
- the third insulating layer 53 may partially contact the first contact electrode 26a and the second insulating layer 52 on the upper surface of the second insulating layer 52.
- a side surface of the third insulating layer 53 in a direction in which the second electrode 22 is disposed may be aligned with one side surface of the second insulating layer 52.
- the third insulating layer 53 may be disposed on a non-emission area, for example, on the first insulating layer 51 disposed on the first planarization layer 19. However, it is not limited thereto.
- the fourth insulating layer 54 may be entirely disposed on the first substrate 11.
- the fourth insulating layer 54 may function to protect the external environment of members disposed on the first substrate 11.
- first insulating layer 51, second insulating layer 52, third insulating layer 53, and fourth insulating layer 54 may include an inorganic insulating material or an organic insulating material.
- first insulating layer 51, the second insulating layer 52, the third insulating layer 53, and the fourth insulating layer 54 are silicon oxide (SiOx), silicon nitride (SiNx), Inorganic insulating materials such as silicon oxynitride (SiOxNy), aluminum oxide (Al2O3), and aluminum nitride (AlN) may be included.
- organic insulating materials such as acrylic resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, unsaturated polyester resin, polyphenylene resin, polyphenylene sulfide resin, benzocyclobutene, cardo resin, siloxane resin , Silsesquioxane resin, polymethyl methacrylate, polycarbonate, polymethyl methacrylate-polycarbonate synthetic resin, etc. may be included. However, it is not limited thereto.
- FIG. 4 is a cross-sectional view illustrating a part of a display device according to another exemplary embodiment.
- the third insulating layer 53 may be omitted.
- the second contact electrode 26b may be directly disposed on the second insulating layer 52, and the first contact electrode 26a and the second contact electrode 26b are spaced apart from each other on the second insulating layer 52. Can be placed.
- the embodiment of FIG. 4 is the same as the embodiment of FIG. 3 except that the third insulating layer 53 is omitted. Hereinafter, redundant descriptions will be omitted.
- the light emitting device 30 may be a light emitting diode (Light Emitting diode), specifically, the light emitting device 30 has a size of a micrometer (Micro-meter) or a nanometer (Nano-meter) unit, It may be made of inorganic light emitting diode. Inorganic light emitting diodes may be aligned between the two electrodes that form a polarity when an electric field is formed in a specific direction between two electrodes facing each other.
- FIG. 5 is a schematic diagram of a light emitting device according to an embodiment.
- the light emitting device 30 may have a shape extending in one direction.
- the light-emitting element 30 may have a shape such as a rod, a wire, or a tube.
- the light emitting device 30 may be cylindrical or rod-shaped.
- the shape of the light-emitting element 30 is not limited thereto, and has a shape of a polygonal column such as a regular cube, a rectangular parallelepiped, or a hexagonal column, or extends in one direction but has a partially inclined outer surface. 30) can take various forms.
- the light-emitting device 30 may include a semiconductor layer doped with an arbitrary conductivity type (eg, p-type or n-type) impurity.
- the semiconductor layer may emit light in a specific wavelength range by transmitting an electric signal applied from an external power source.
- a plurality of semiconductors included in the light emitting device 30 may have a structure that is sequentially disposed or stacked along the one direction.
- the light emitting device 30 may include a first semiconductor layer 31, a second semiconductor layer 32, an active layer 36, an electrode layer 37, and an insulating layer 38.
- 5 illustrates a state in which the insulating film 38 is partially removed to expose the plurality of semiconductor layers 31, 32, and 36 in order to visually show the components of the light emitting device 30.
- the insulating layer 38 may be disposed to surround the outer surfaces of the plurality of semiconductor layers 31, 32, and 36.
- the first semiconductor layer 31 may be an n-type semiconductor.
- the first semiconductor layer 31 when the light emitting device 30 emits light in a blue wavelength band, the first semiconductor layer 31 is AlxGayIn1-x-yN (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ It may include a semiconductor material having the formula 1).
- it may be any one or more of n-type doped AlGaInN, GaN, AlGaN, InGaN, AlN, and InN.
- the first semiconductor layer 31 may be doped with an n-type dopant.
- the n-type dopant may be Si, Ge, Sn, or the like.
- the first semiconductor layer 31 may be n-GaN doped with n-type Si.
- the length of the first semiconductor layer 31 may have a range of 1.5 ⁇ m to 5 ⁇ m, but is not limited thereto.
- the second semiconductor layer 32 is disposed on the active layer 36 to be described later.
- the second semiconductor layer 32 may be a p-type semiconductor.
- the second semiconductor layer 32 is AlxGayIn1-x-yN (0 ⁇
- a semiconductor material having a formula of x ⁇ 1,0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1) may be included.
- it may be any one or more of AlGaInN, GaN, AlGaN, InGaN, AlN, and InN doped with p-type.
- the second semiconductor layer 32 may be doped with a p-type dopant.
- the p-type dopant may be Mg, Zn, Ca, Se, Ba, or the like.
- the second semiconductor layer 32 may be p-GaN doped with p-type Mg.
- the length of the second semiconductor layer 32 may range from 0.05 ⁇ m to 0.10 ⁇ m, but is not limited thereto.
- the first semiconductor layer 31 and the second semiconductor layer 32 are configured as one layer, but the present invention is not limited thereto. According to some embodiments, depending on the material of the active layer 36, the first semiconductor layer 31 and the second semiconductor layer 32 may have a higher number of layers, such as a clad layer or a tensile strain barrier reducing (TSBR). It may further include a layer.
- TSBR tensile strain barrier reducing
- the active layer 36 is disposed between the first semiconductor layer 31 and the second semiconductor layer 32.
- the active layer 36 may include a material having a single or multiple quantum well structure.
- the active layer 36 may include a material having a multiple quantum well structure, a plurality of quantum layers and well layers may be alternately stacked with each other.
- the active layer 36 may emit light by combining an electron-hole pair according to an electric signal applied through the first and second semiconductor layers 31 and 32.
- the active layer 36 may include a material such as AlGaN or AlGaInN.
- the active layer 36 when the active layer 36 has a multi-quantum well structure in which quantum layers and well layers are alternately stacked, the quantum layer may include a material such as AlGaN or AlGaInN, and the well layer may include a material such as GaN or AlInN.
- the active layer 36 includes AlGaInN as a quantum layer and AlInN as a well layer, and the active layer 36 may emit blue light having a center wavelength band ranging from 450 nm to 495 nm. .
- the active layer 36 may have a structure in which a semiconductor material having a large band gap energy and a semiconductor material having a small band gap energy are alternately stacked with each other, or the wavelength band of the emitted light.
- Other Group 3 to 5 semiconductor materials may be included according to the present invention.
- the light emitted by the active layer 36 is not limited to light in the blue wavelength band, and in some cases, light in the red and green wavelength bands may be emitted.
- the length of the active layer 36 may have a range of 0.05 ⁇ m to 0.10 ⁇ m, but is not limited thereto.
- the light emitted from the active layer 36 may be emitted not only to the outer surface of the light emitting device 30 in the longitudinal direction, but also to both side surfaces.
- the light emitted from the active layer 36 is not limited in directionality in one direction.
- the electrode layer 37 may be an ohmic contact electrode. However, the present invention is not limited thereto, and may be a Schottky contact electrode.
- the light emitting device 30 may include at least one electrode layer 37. 5 illustrates that the light emitting device 30 includes one electrode layer 37, but is not limited thereto. In some cases, the light emitting device 30 may include or be omitted in a larger number of electrode layers 37. The description of the light-emitting element 30 to be described later may be equally applied even if the number of electrode layers 37 is changed or other structures are further included.
- the electrode layer 37 may reduce resistance between the light emitting element 30 and the electrode or contact electrode when the light emitting element 30 is electrically connected to an electrode or a contact electrode in the display device 10 according to an exemplary embodiment.
- the electrode layer 37 may include a conductive metal.
- the electrode layer 37 is aluminum (Al), titanium (Ti), indium (In), gold (Au), silver (Ag), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ITZO ( Indium Tin-Zinc Oxide) may contain at least any one.
- the electrode layer 37 may include a semiconductor material doped with n-type or p-type.
- the electrode layer 37 may include the same material or may include different materials.
- the length of the electrode layer 37 may have a range of 0.05 ⁇ m to 0.10 ⁇ m, but is not limited thereto.
- the insulating film 38 is disposed to surround the outer surfaces of the plurality of semiconductor layers and electrode layers described above.
- the insulating layer 38 may be disposed so as to surround at least an outer surface of the active layer 36 and may extend in one direction in which the light emitting element 30 extends.
- the insulating layer 38 may perform a function of protecting the members.
- the insulating layer 38 may be formed to surround side surfaces of the members, and both ends of the light emitting device 30 in the longitudinal direction may be exposed.
- the insulating layer 38 is formed to extend in the longitudinal direction of the light emitting element 30 to cover from the first semiconductor layer 31 to the side surface of the electrode layer 37, but is not limited thereto.
- the insulating layer 38 may cover only the outer surface of some of the semiconductor layers including the active layer 36 or may cover only a part of the outer surface of the electrode layer 37 to partially expose the outer surface of each electrode layer 37.
- the insulating layer 38 may be formed to have a rounded top surface in cross section in a region adjacent to at least one end of the light emitting device 30.
- the thickness of the insulating layer 38 may have a range of 10 nm to 1.0 ⁇ m, but is not limited thereto. Preferably, the thickness of the insulating layer 38 may be about 40 nm.
- the insulating layer 38 is a material having insulating properties, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), aluminum nitride (AlN), It may contain aluminum oxide (Al2O3), and the like. Accordingly, it is possible to prevent an electrical short that may occur when the active layer 36 directly contacts an electrode through which an electrical signal is transmitted to the light emitting device 30. In addition, since the insulating film 38 includes the active layer 36 and protects the outer surface of the light emitting element 30, it is possible to prevent a decrease in luminous efficiency.
- the outer surface of the insulating layer 38 may be surface-treated.
- the light-emitting elements 30 may be sprayed onto the electrode in a state dispersed in a predetermined ink to be aligned.
- the surface of the insulating film 38 may be hydrophobic or hydrophilic.
- the light emitting device 30 may have a length h of 1 ⁇ m to 10 ⁇ m or 2 ⁇ m to 6 ⁇ m, and preferably 3 ⁇ m to 5 ⁇ m.
- the diameter of the light emitting device 30 may be in the range of 30 nm to 700 nm, and the aspect ratio of the light emitting device 30 may be 1.2 to 100.
- the present invention is not limited thereto, and the plurality of light emitting devices 30 included in the display device 10 may have different diameters according to a composition difference of the active layer 36.
- the diameter of the light emitting device 30 may have a range of about 500 nm.
- the shape and material of the light emitting element 30 are not limited to FIG. 5.
- the light-emitting device 30 may include a larger number of layers or may have other shapes.
- 6 and 7 are schematic diagrams of a light emitting device according to another embodiment.
- a light emitting device 30 ′ includes a third semiconductor layer 33 ′ and an active layer 36 disposed between the first semiconductor layer 31 ′ and the active layer 36 ′. ') and the second semiconductor layer 32' may further include a fourth semiconductor layer 34' and a fifth semiconductor layer 35'.
- the light emitting device 30' of FIG. 6 a plurality of semiconductor layers 33', 34', 35' and electrode layers 37a', 37b' are further disposed, and the active layer 36' contains other elements.
- the active layer 36 includes nitrogen (N) to emit blue or green light.
- the light emitting device 30 ′ of FIG. 6 may be a semiconductor in which the active layer 36 ′ and other semiconductor layers each contain at least phosphorus (P). That is, the light emitting device 30 ′ according to the exemplary embodiment may emit red light having a center wavelength band ranging from 620 nm to 750 nm.
- the central wavelength band of red light is not limited to the above-described range, and it should be understood to include all wavelength ranges that can be recognized as red in the art.
- the first semiconductor layer 31 ′ is an n-type semiconductor layer made of a semiconductor material having a formula of InxAlyGa1-x-yP (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1). Can include.
- the first semiconductor layer 31 ′ may be any one or more of n-type doped InAlGaP, GaP, AlGaP, InGaP, AlP, and InP.
- the first semiconductor layer 31 ′ may be n-AlGaInP doped with n-type Si.
- the second semiconductor layer 32 ′ is a p-type semiconductor layer and may include a semiconductor material having a formula of InxAlyGa1-x-yP (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1). have.
- the second semiconductor layer 32 ′ may be any one or more of p-type doped InAlGaP, GaP, AlGaNP, InGaP, AlP, and InP.
- the second semiconductor layer 32 ′ may be p-GaP doped with p-type Mg.
- the active layer 36 ′ may be disposed between the first semiconductor layer 31 ′ and the second semiconductor layer 32 ′.
- the active layer 36 ′ may include a material having a single or multiple quantum well structure to emit light of a specific wavelength band.
- the quantum layer may include AlGaP or AlInGaP
- the well layer may include a material such as GaP or AlInP.
- the active layer 36 ′ may emit red light having a center wavelength band of 620 nm to 750 nm including AlGaInP as a quantum layer and AlInP as a well layer.
- the light emitting device 30 ′ of FIG. 6 may include a clad layer disposed adjacent to the active layer 36 ′. As shown in the drawing, the third semiconductor layer 33 ′ and the fourth semiconductor layer 33 ′ disposed between the first semiconductor layer 31 ′ and the second semiconductor layer 32 ′ above and below the active layer 36 ′. 34') may be a clad layer.
- the third semiconductor layer 33 ′ may be disposed between the first semiconductor layer 31 ′ and the active layer 36 ′.
- the third semiconductor layer 33 ′ may be an n-type semiconductor.
- the third semiconductor layer 33 ′ is InxAlyGa1-x-yP (0 ⁇ x ⁇ 1,0 It may include a semiconductor material having a formula of ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
- the first semiconductor layer 31 ′ may be n-AlGaInP
- the third semiconductor layer 33 ′ may be n-AlInP.
- the fourth semiconductor layer 34 ′ may be disposed between the active layer 36 ′ and the second semiconductor layer 32 ′.
- the fourth semiconductor layer 34 ′ may be an n-type semiconductor.
- the fourth semiconductor layer 34 ′ is InxAlyGa1-x-yP (0 ⁇ x ⁇ 1,0 It may include a semiconductor material having a formula of ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
- the second semiconductor layer 32 ′ may be p-GaP
- the fourth semiconductor layer 34 ′ may be p-AlInP.
- the fifth semiconductor layer 35 ′ may be disposed between the fourth semiconductor layer 34 ′ and the second semiconductor layer 32 ′.
- the fifth semiconductor layer 35 ′ may be a semiconductor doped in a p-type, such as the second semiconductor layer 32 ′ and the fourth semiconductor layer 34 ′.
- the fifth semiconductor layer 35 ′ may perform a function of reducing a difference in a lattice constant between the fourth semiconductor layer 34 ′ and the second semiconductor layer 32 ′. That is, the fifth semiconductor layer 35 ′ may be a tensile strain barrier reducing (TSBR) layer.
- the fifth semiconductor layer 35 ′ may include p-GaInP, p-AlInP, p-AlGaInP, etc., but is not limited thereto.
- the lengths of the third semiconductor layer 33 ′, the fourth semiconductor layer 34 ′ and the fifth semiconductor layer 35 ′ may range from 0.08 ⁇ m to 0.25 ⁇ m, but are not limited thereto.
- the first electrode layer 37a' and the second electrode layer 37b' may be disposed on the first semiconductor layer 31' and the second semiconductor layer 32', respectively.
- the first electrode layer 37a' may be disposed on the lower surface of the first semiconductor layer 31', and the second electrode layer 37b' may be disposed on the upper surface of the second semiconductor layer 32'.
- the present invention is not limited thereto, and at least one of the first electrode layer 37a' and the second electrode layer 37b' may be omitted.
- the first electrode layer 37a' is not disposed on the lower surface of the first semiconductor layer 31', and one second electrode layer 37b' is formed on the upper surface of the second semiconductor layer 32'. ) May be placed.
- the light-emitting element 30" may have a shape extending in one direction, but may have a partially inclined side surface. That is, the light-emitting element 30" according to an embodiment may have a shape that extends in one direction. It may have a partially conical shape.
- the light emitting device 30" may be formed such that a plurality of layers are not stacked in one direction, and each layer surrounds an outer surface of any other layer.
- the light emitting device 30" has at least a partial region extending in one direction.
- the semiconductor core may include a semiconductor core and an insulating layer 38" formed to surround the semiconductor core.
- the semiconductor core includes a first semiconductor layer 31", an active layer 36", a second semiconductor layer 32", and an electrode layer 37". ) Can be included.
- the first semiconductor layer 31" may extend in one direction and have both ends thereof inclined toward the center.
- the first semiconductor layer 31" includes a rod-shaped or cylindrical body portion, and upper and lower portions of the body portion. Each side may have a shape in which ends of an inclined shape are formed.
- the upper end of the main body may have a steeper slope than the lower end.
- the active layer 36" is disposed to surround the outer surface of the body portion of the first semiconductor layer 31".
- the active layer 36" may have an annular shape extending in one direction.
- the active layer 36" may not be formed on the upper and lower ends of the first semiconductor layer 31". However, this is limited thereto. No.
- the light emitted from the active layer 36" may be emitted not only to both ends of the light emitting device 30" in the longitudinal direction, but also to both sides of the light emitting device 30". In comparison, the light emitting device 30" of FIG. 7 has a wide area of the active layer 36", so that a larger amount of light can be emitted.
- the second semiconductor layer 32" is disposed to surround the outer surface of the active layer 36" and the upper end of the first semiconductor layer 31".
- the second semiconductor layer 32" has an annular shape extending in one direction. It may include an upper end portion formed such that the body portion and side surfaces are inclined. That is, the second semiconductor layer 32" may directly contact the parallel side surface of the active layer 36" and the inclined upper end of the first semiconductor layer 31".
- the second semiconductor layer 32" Silver is not formed on the lower end of the first semiconductor layer 31".
- the electrode layer 37" is disposed to surround the outer surface of the second semiconductor layer 32".
- the shape of the electrode layer 37" may be substantially the same as the second semiconductor layer 32".
- the electrode layer 37" may be in full contact with the outer surface of the second semiconductor layer 32".
- the insulating film 38" may be disposed to surround the outer surfaces of the electrode layer 37" and the first semiconductor layer 31".
- the insulating film 38" includes the electrode layer 37" and includes a first semiconductor layer ( 31") and the exposed lower end of the active layer 36" and the second semiconductor layer 32".
- the light emitting device 30 is sprayed onto the electrodes 21 and 22 in a state dispersed in the device solvent ('100' in FIG. 8), and an alignment signal is applied to the electrodes 21 and 22. It may be disposed between the electrodes 21 and 22 through a process.
- the light emitting device 30 may be prepared in a dispersed state in the solvent 100 and sprayed on each of the electrodes 21 and 22 through an inkjet printing process. Subsequently, when an alignment signal is applied to each of the electrodes 21 and 22, an electric field is formed therebetween, and the light emitting element 30 may receive a dielectrophoretic force due to the electric field.
- the light emitting device 30 to which the dielectrophoretic force is transmitted may be disposed between the first electrode 21 and the second electrode 22 while the orientation direction and position are changed.
- FIG. 8 is a schematic diagram showing a device ink according to an embodiment.
- the light emitting device ink 1000 includes a light emitting device 30 and a device solvent 100.
- the light-emitting device 30 may be the light-emitting device 30 of FIGS. 5 to 7 described above, and the light-emitting device 30 of FIG. 5 is shown in the drawing.
- the plurality of light emitting devices 30 may be prepared in a dispersed state on the device solvent 100. The detailed description of the light emitting device 30 is the same as described above.
- the light emitting device 30 has a relatively large specific gravity including a semiconductor crystal.
- the device solvent 100 may include a material having a high viscosity so that the light emitting device 30 can be dispersed.
- the light-emitting element ink 1000 may be sprayed onto the electrodes 21 and 22 through an inkjet printing device, and the element solvent 100 may have a viscosity capable of maintaining the state in which the light-emitting element 30 is dispersed for a certain time. have.
- the device solvent 100 may have a viscosity ranging from 7cp to 15cp. However, it is not limited thereto.
- the device solvent 100 may include an organic solvent or an inorganic solvent, and may be removed in a subsequent process as described later, and may include a material that does not damage semiconductor crystals of the light emitting device 30.
- the element solvent 100 in which the light-emitting element 30 is dispersed may be removed by heating or performing a subsequent treatment process when the light-emitting element 30 is disposed on the electrodes 21 and 22.
- the device solvent 100 may have a high viscosity so that the light emitting device 30 having a relatively large specific gravity can be maintained in a dispersed state.
- the device solvent 100 includes a compound having a high molecular weight, and accordingly, the device solvent 100 may not be completely removed and may remain as a foreign material on the electrodes 21 and 22 or the light emitting device 30.
- the dielectrophoretic force applied by the electric field is not sufficient, so that the light emitting device 30 is not smoothly aligned on the electrodes 21 and 22 or removes it. In the process, the alignment state of the light emitting device 30 may be changed.
- the device solvent 100 may include a photodegradable functional group 150 in which at least one chemical bond is decomposed when light is irradiated.
- the molecular weight and viscosity of the device solvent 100 may vary depending on the state of the photodegradable functional group 150 or whether a bond is formed. That is, the device solvent 100 forms the first device solvent 101 having a large molecular weight and viscosity in a state in which the photodegradable functional group 150 is not decomposed, and the photodegradable functional group 150 is decomposed to form the molecular weight. It is possible to form the second device solvent 102 having a low viscosity and viscosity.
- FIG. 9 is a photodegradable functional group 150 of the device solvent 100 is not decomposed to form a first device solvent 101
- FIG. 10 is a second device solvent due to decomposition of chemical bonds of the photodegradable functional group 150 (102) was formed.
- the'device solvent 100' refers to a solvent in which the light emitting device 30 can be dispersed, or a medium thereof, and the'device solvent molecule 100'' is a chemistry constituting the device solvent 100 It can be understood to refer to a molecule.
- the'device solvent 100' may form a'first device solvent 101' or a'second device solvent 102' depending on the state of the'device solvent molecule 100'.
- the first device solvent 101 is composed of'first device solvent molecules 101'
- the second device solvent 102 is composed of'second device solvent molecules 102'.
- the device solvent 100 of FIG. 8 is a first device solvent 101 composed of the first device solvent molecules 101 ′ of FIG. 9, and the second device solvent molecule 102 ′ of FIG. 10 is a second device It is possible to constitute the solvent 102. However, these terms may not necessarily be separated and used. In some cases, the'device solvent 100' and the'device solvent molecule 101' may be used interchangeably, but may mean substantially the same thing.
- the device solvent molecules 100 ′ of the device solvent 100 will be described in detail.
- the device solvent molecule 100 ′ may include a photodegradable functional group 150, a first functional group 110, and a second functional group 120.
- the first functional groups 110 and X1 and the second functional groups 120 and X2 may be functional groups having a molecular weight of a certain level or higher so that the light emitting device 30 can be dispersed.
- the type and structure of the first functional group 110 and the second functional group 120 are not particularly limited as long as they do not react with the light emitting device 30 and can be dispersed and can be removed in a subsequent process.
- the first functional group 110 and the second functional group 120 may be a non-polar functional group having a carbon chain or a polar functional group including an oxygen (O) or nitrogen (N) atom in the carbon chain. It is not limited thereto.
- the first functional group 110 and the second functional group 120 may include a functional group having the same structure.
- the first functional group 110 and the second functional group 120 may have substantially the same molecular structure including a functional group in which units of the same structure are repeatedly bonded.
- the present invention is not limited thereto, and the number of repeated units of the first functional group 110 and the second functional group 120 may be different, and may have opposite polarities in some cases. A detailed description of this will be described later.
- the photodegradable functional group 150 includes a first photodegradable functional group 151 in which the bond is not decomposed and a second photodegradable functional group 152 which is a photodegradable fragment formed by decomposing a chemical bond of the first photodegradable functional group 151.
- a first photo-decomposable functional group 151 is shown, and in FIG. 10 a second photo-decomposable functional group 152 is shown.
- the first photodegradable functional group 151 may absorb the irradiated light so that some chemical bonds are decomposed and the second photodegradable functional group 152 may be formed.
- the photodegradable functional group 150 may have a structure in which the strength of bonding is relatively weak. In order to form an energetically stable structure by absorbing energy of irradiated light, some bonds may be decomposed in the photodegradable functional group 150.
- the photodegradable functional group 150 may form a photodegradable fragment having a small molecular weight when the bond is decomposed. That is, the first photodegradable functional group 151 absorbs light and the bond is decomposed, thereby forming the second photodegradable functional group 152.
- the first device solvent molecules 101 ′ may form a plurality of second device solvent molecules 102 ′ having the same structure depending on the structure of the photodegradable functional group 150 and the position of the bond to be decomposed. However, the present invention is not limited thereto, and in some cases, second device solvent molecules 102 ′ having different structures may be formed according to the structure of the first device solvent molecules 101 ′.
- the first functional group 110 and the second functional group 120 are included in one molecule in the first device solvent molecule 101 ′, but when the bond of the first photodegradable functional group 151 is decomposed, a second device different from each other Each may be contained within the solvent molecules 102'.
- the first functional group 110 and the second functional group 120 coupled to the photodegradable functional group 150 may be coupled at opposite positions to each other based on the photodecomposition of the photodegradable functional group 150. That is, the first functional group 110 and the second functional group 120 may be bonded to the second photodegradable functional group 152 from which the bond is decomposed to form different second device solvent molecules 102 ′.
- the second device solvent molecule 102 ′ including the photodegradable fragment may include at least one of the first functional group 110 and the second functional group 120. However, it is not limited thereto.
- the second device solvent 102 having a low viscosity may be formed.
- the viscosity of the first device solvent 101 may range from 7cp to 15cp, and the viscosity of the second device solvent 102 may range from 5cp or less. That is, the first device solvent molecule 101 ′ may have a higher molecular weight than the second device solvent molecule 102 ′.
- the device solvent 100 is the first device solvent 101 having a high viscosity including the first device solvent molecules 101 ′
- the light emitting device 30 A relatively weak dielectrophoretic force may be applied so that the electrodes 21 and 22 may not be accurately aligned.
- the first device solvent 101 may not be completely removed and may remain as a foreign material.
- a method of manufacturing the display device 10 includes forming a second device solvent 102 having a low viscosity by irradiating light to the first device solvent 101.
- the device solvent 100 includes a photodegradable functional group 150 in which a bond is decomposed by irradiated light, and the molecular weight and viscosity may be reduced by the light.
- the second device solvent molecule 102 ′ has a structure having a relatively low molecular weight, and the second device solvent 102 thus formed may have a low viscosity.
- the second element solvent 102 including molecules having a relatively low molecular weight, is easily removed in a low-temperature heat treatment process in a subsequent process to prevent changes in the alignment of the light-emitting elements 30 disposed on the electrodes 21 and 22. Can be minimized. That is, the device solvent 100 maintains a state in which the light emitting device 30 is dispersed and has a viscosity at a level that can be sprayed from a nozzle, but the viscosity of the device solvent 100 may decrease in a subsequent process. A more detailed description will be provided later.
- the device solvent molecule 100 ′ may have a structure of Structural Formula 1 below.
- P is a photodegradable functional group 150
- X1 is a first functional group 110
- X2 is a second functional group 120
- the device solvent molecule 100 ′ of the device solvent 100 includes a photodegradable functional group 150, P, and is at least bonded to the photodegradable functional group 150, P. It may include one functional group, for example, the first functional groups 110 and X1 and the second functional groups 120 and X2.
- the photodegradable functional groups 150 and P may include one functional group, for example, the first functional groups 110 and X1 and the second functional groups 120 and X2.
- at least one photodegradable fragment or second photodegradable functional group 152 is formed, and each of the second photodegradable functional groups 152 is a first functional group 110 , X1) or a second functional group (120, X2) may be combined.
- the device solvent molecule 100 ′ may form a device solvent molecule having a small molecular weight and a low viscosity, that is, a second device solvent molecule 102 ′ by decomposition of the photodegradable functional groups 150 and P.
- the photodegradable functional group 150 may be any one of a cyclobutyl group, a maleic imide dimer, an acrylate dimer, or a carbonyl group. I can. However, it is not limited thereto.
- the above-described functional groups may be bonded to the photo-decomposable functional group 150 is decomposed by irradiated light to form a photo-decomposable fragment as shown in Chemical Reaction Formulas 1 to 4 below. That is, the first photodegradable functional group 151 absorbs light and the bond is decomposed, thereby forming the second photodegradable functional group 152.
- the device solvent molecules 100 ′, or the first device solvent molecules 101 ′ having a large molecular weight and viscosity may form a second device solvent molecule 102 ′ having a small molecular weight and viscosity.
- each carbon (C) of the cyclobutyl group by light irradiation is reverse cycloaddition reaction (retro It can be separated into two alkene molecules through -[2+2]cycloaddition). Accordingly, the first photodegradable functional group 151 is separated into two second photodegradable functional groups 152 having a small molecular weight, such as two alkene molecules, and the molecular weight and viscosity may be lowered.
- the photodegradable functional group 150 when the photodegradable functional group 150 is decomposed as shown in Chemical Reaction Formulas 1 to 4, the first functional group 110 and the second functional group 120 are bonded to different second photodegradable functional groups 152.
- the second device solvent molecules 102 ′ formed as light is irradiated may have only one of the first functional group 110 and the second functional group 120 bonded to each other, and may have a low molecular weight and viscosity.
- the chemical reaction formulas 2 to 4 can also be understood in the same way, a detailed description will be omitted.
- the first functional group 110 and the second functional group 120 may be a compound represented by Chemical Structural Formula 1 below.
- n is an integer of 1 to 5
- R 5 is a C1-C5 alkyl group, a C2-C5 alkenyl group, a C2-C5 alkynyl group, a C1-C5 alkyl ether group, and a C2- It is any one of C5 alkenyl ether groups.
- the first functional group 110 and the second functional group 120 may include at least one ethylene glycol (-OCH 2 CH 2 O-) unit as shown in Chemical Structural Formula 1 above.
- the first functional group 110 and the second functional group 120 may be bonded to the photodegradable functional group 150 to have a molecular weight and viscosity sufficient for the device solvent 100 to disperse the light emitting device 30.
- the n value of the first and second functional groups 110 and 120 refers to the number of repeating units of the ethylene glycol unit, and the value is not particularly limited, but may have an integer of 1 to 5.
- the value of n (n1) of the first functional group 110 and the second functional group may have a range of 2 to 6. That is, the number of ethylene glycol units included in the first functional group 110 and the second functional group 120 in one device solvent molecule 100 ′ may range from 2 to 6.
- the first element solvent molecule 101' When the sum (n1+n2) of the n value (n1) of the first functional group 110 and the n value (n2) of the second functional group 120 is 2 or less, the first element solvent molecule 101' is sufficient The dispersion state of the light emitting device 30 may not be maintained because it does not have a molecular weight and viscosity of the level.
- the photodegradable functional group 150 is decomposed and formed.
- the molecular weight and viscosity of the second device solvent molecule 102 ′ have a large value, and the dielectrophoretic reactivity of the light emitting device 30 may be reduced.
- the device solvent molecule 100 ′ may be any one of compounds represented by Chemical Structural Formulas 2 to 5 below.
- R 1 and R 2 are doedoe represented by the formula 1, wherein in the formula one of the R 1 in the n value (n1) and the formula 1 R 2 n values (n2 The sum of) has a range of 2 to 6, and R 3 and R 4 are each independently a C1-C10 alkyl group, a C2-C10 alkenyl group, a C2-C10 alkynyl group, a C1-C10 alkyl ether group, and It is any one of C2-C10 alkenyl ether groups.
- the device solvent 100 includes a functional group capable of decomposing a bond by light irradiation, and each includes at least one functional group represented by Chemical Structural Formula 1.
- R 1 and R 2 may include a compound represented by Chemical Structural Formula 1, and R 1 and R 2 are each a first functional group 110 of the device solvent molecule 100 ′ and It may be a second functional group 120.
- R 1 and R 2 that is, the description of the first functional group 110 and the second functional group 120 is the same as described above.
- R 3 and R 4 may be appropriately selected functional groups such that the device solvent 100 has a molecular weight sufficient to disperse the light emitting device 30.
- R 3 and R 4 are each independently a C1-C10 alkyl group, a C2-C10 alkenyl group, a C2-C10 alkynyl group, a C1-C10 alkyl ether group, and a C2-C10 alkenyl ether group. It can be either. However, it is not limited thereto.
- a functional group capable of decomposing a bond by light irradiation includes a cyclobutyl group
- the first functional group 110 and the second functional group 120 are ethylene glycol ( Ethylenegylcol, -OCH 2 CH 2 O-) unit may include a repeated functional group.
- a cyclobutyl group may be decomposed into two alkene molecules by retro-[2+2]cycloaddition by irradiation with light.
- the two alkene molecules thus formed each contain functional groups in which ethylene glycol (Ethylenegylcol, -OCH 2 CH 2 O-) units are repeated. That is, the first photodegradable functional group 151 of the first device solvent molecule 101 ′ is a cyclobutyl group, and the second photodegradable functional group 152 formed by decomposition by light irradiation is an alkene group (alkene). ) Can be.
- the first functional group 110 and the second functional group 120 each contain an ethylene glycol (Ethylenegylcol, -OCH 2 CH 2 O-) unit, and in the first device solvent molecule 101 ′, one cyclobutyl group (cyclobutyl ), but may be bonded to different alkenes in the second device solvent molecule 102'.
- the second device solvent molecule 102 ′ is a compound having a molecular weight smaller than that of the first device solvent molecule 101 ′, and thus has a low viscosity, so that dielectrophoretic reactivity of the dispersed light emitting device 30 may be increased.
- the second device solvent molecules 102 ′ can be easily volatilized and removed at a relatively low temperature in a subsequent process.
- the device solvent molecule 100 ′ may include a compound represented by Chemical Structural Formula 6 below.
- the device solvent molecule (100') has a photodegradable functional group (150) of 1,1,3,3-tetramethyl-cyclobutyl group (1,1,3,3-tetramethly-cyclobutyl), and the first and second functional groups
- Chemical Structural Formula 1 (110, 120) is n is 2 and R 5 is a methyl group (methyl, -CH3), which may be represented by Chemical Structural Formula 6.
- the compound represented by Chemical Structural Formula 6 has a viscosity in the range of 9cp to 11cp, so that the light-emitting element 30 can be maintained in a dispersed state. Further, by having a viscosity in the above range, the device ink 1000 may be sprayed onto the electrodes 21 and 22 through the nozzles of the inkjet printing apparatus.
- the photodegradable functional group 150 may be decomposed through the reaction of Chemical Reaction Formula 5 below.
- alkene in the compound represented by Chemical Structural Formula 6, two alkenes were subjected to retro-[2+2]cycloaddition reaction of cyclobutyl group by light (hv) irradiation.
- (alkene) Can be decomposed into molecules.
- Each of the two alkene molecules contains an ethylene glycol unit, which is hydrolyzed (H 3 O + ) to diethylene glycol monomethyl alcohol (CH 3 OCH 2 CH 2 OCH 2 ). CH 2 OH) and isobutyl aldehyde (Isobutyl aldehyde, (CH 3 ) 2 CHO).
- the device solvent molecule 100' includes the first device solvent molecule 101' represented by Chemical Structural Formula 6, and the first device solvent molecule 101' is decomposed by the first photodegradable functional group 151 Second element solvent molecule (102) represented by diethylene glycol monomethyl alcohol (CH 3 OCH 2 CH 2 OCH 2 CH 2 OH) and isobutyl aldehyde ((CH 3 ) 2 CHO). ') can be created.
- Second element solvent molecule (102) represented by diethylene glycol monomethyl alcohol (CH 3 OCH 2 CH 2 OCH 2 CH 2 OH) and isobutyl aldehyde ((CH 3 ) 2 CHO). ') can be created.
- the first device solvent molecule 101 ′ represented by Chemical Structural Formula 6 has a relatively high molecular weight and viscosity.
- the second element solvent molecule 102 ′ generated by decomposition of the cyclobutyl group has a low molecular weight and viscosity, so that the light emitting element 30 has increased dielectrophoretic reactivity, and the second element solvent 102 is easily removed in a subsequent process. Can be.
- the device solvent 100 has a molecular weight of 300 g/mol or more and 800 g/mol or less
- the first device solvent is the first device solvent molecule 101 ′ before the photodegradable functional group 150 is decomposed.
- 101) may have a boiling point in the range of 350°C to 400°C and a viscosity in the range of 7cp to 15cp.
- the second device solvent molecule 102 ′, in which the bond of the photodegradable functional group 150 is partially decomposed, has a molecular weight of 50% or less of the first device solvent molecule 101 ′, and the second device solvent 102 has a boiling point. It may have a range of 50° C. to 200° C. and a viscosity of 5 cps or less.
- the first device solvent 101 may maintain the dispersed state of the light emitting device 30 having a greater specific gravity for a predetermined time.
- the molecular weight of the first element solvent molecule 101 ′ is 300 g/mol or less, after the light emitting element ink 1000 is manufactured, the dispersion state of the light emitting element 30 cannot be maintained and the light emitting element ink 1000 is used in an inkjet printing device. It can be sprayed with non-uniform dispersion through the nozzle of.
- the second device solvent molecule 102 ′ formed by decomposing the photodegradable functional group 150 by light irradiation is also large. Due to the molecular weight and viscosity, the dielectrophoretic reactivity of the light-emitting device 30 may be reduced.
- the first device solvent molecule 101 ′ has a molecular weight within the above range
- the second device solvent molecule 102 ′ formed by decomposing the photodegradable functional group 150 has a low molecular weight and viscosity.
- FIG. 11 is a flowchart illustrating a method of manufacturing a display device according to an exemplary embodiment.
- a method of manufacturing the display device 10 includes preparing a target substrate SUB and a first electrode 21 and a second electrode 22 disposed on the target substrate SUB.
- the light emitting device ink 1000 including the first device solvent 100 in which the light emitting device 30 is dispersed is sprayed on the electrode 21 and the second electrode 22, and is included in the first device solvent 100 And removing at least one chemical bond formed therein to form a second device solvent 102 and mounting the light emitting device 30 on the first electrode 21 and the second electrode 22.
- a method of manufacturing the display device 10 includes a first element solvent 101 and a first element solvent on a target substrate SUB on which the first electrode 21 and the second electrode 22 are formed.
- the display device 10 may be manufactured by spraying the light-emitting element ink 1000 using an inkjet printing device and disposing the light-emitting element 30 on the electrodes 21 and 22.
- the device solvent 100 in which the light emitting device 30 is dispersed may include a first device solvent 101 having a viscosity capable of maintaining a dispersed state.
- the method of manufacturing the display device 10 according to an exemplary embodiment in order to improve the alignment of the light-emitting element 30 is It may include the step of forming the second device solvent 102 by irradiation.
- FIGS. 12 and 13 are cross-sectional views illustrating a part of a method of manufacturing a display device according to an exemplary embodiment.
- a target substrate SUB on which the first electrode 21 and the second electrode 22 are formed is prepared (S100).
- S100 a target substrate SUB on which the first electrode 21 and the second electrode 22 are formed.
- the display device 10 is not limited thereto, and as described above, the display device 10 may include more members such as inner banks 41 and 42, outer banks 45, and contact electrodes 26. have.
- the light emitting element ink 1000 including the light emitting element 30 is sprayed on the first electrode 21 and the second electrode 22.
- the light emitting device ink 1000 includes the device solvent 100, and the light emitting device 30 may be dispersed in the device solvent 100.
- the light emitting device ink 1000 may be provided in a solution or colloid state.
- the element solvent 100 of the barogang element ink 1000 sprayed on the electrodes 21 and 22 is a first element solvent 101 containing the first photodegradable functional group 151 in which the bond is not decomposed as described above. ) Can be.
- the first element solvent 101 has a relatively large molecular weight and viscosity, maintains the light emitting element 30 in a dispersed state, and can be sprayed onto the electrodes 21 and 22.
- the light emitting device 30 is mounted between the first electrode 21 and the second electrode 22 (S200).
- the step of seating the light-emitting element 30 (S200) is a step of applying an electric signal to the first electrode 21 and the second electrode 22 to form an electric field (EL) in the light-emitting element ink 1000, the electric field
- the light emitting device 30 may receive a dielectrophoretic force (F) and may include a step of disposing on the electrodes 21 and 22.
- an electric field EL may be formed in the light emitting device ink 1000 sprayed on the electrodes 21 and 22.
- the electric field EL may apply a dielectrophoretic force to the light-emitting element 30, and the light-emitting element 30 to which the dielectrophoretic force was applied is disposed on the first electrode 21 and the second electrode 22. I can.
- the first device solvent 101 has a high viscosity including the first device solvent molecules 101 ′ having a large molecular weight.
- the light emitting device 30 is subjected to a dielectrophoretic force F1 of a weak intensity in the first device solvent 101 having a high viscosity, and may be disposed on the electrodes 21 and 22 with a non-uniform degree of alignment.
- 14 to 16 are schematic diagrams illustrating that a light emitting device dispersed in a device solvent according to an exemplary embodiment is disposed on an electrode.
- the first element solvent 101 and the light emitting element 30 are sprayed onto the electrodes 21 and 22, and when AC power is applied through the electrodes 21 and 22, the electric field (EL) is formed.
- the light-emitting element 30 is applied with a dielectrophoretic force F1 by the electric field EL, and the light-emitting element 30 can move toward the electrodes 21 and 22 from the initial dispersed position (dotted line in FIG. 12). have.
- the light-emitting element 30 may receive a resistive force by the first element solvent 101 having a high viscosity, and thus a dielectrophoretic force F1 having a relatively weak strength may be applied.
- an electric field EL may be formed on the first element solvent 101.
- the light emitting element 30 may be aligned with the electrodes 21 and 22 by applying a dielectrophoretic force F1 by an electric field EL.
- the first device solvent 101 may include the first device solvent molecules 101 ′ having a relatively large molecular weight and may have a high viscosity.
- the light-emitting element 30 receives a resistive force by the first element solvent 101 having a high viscosity, and a weak dielectrophoretic force F1 is applied.
- some of the light emitting devices 30 may not be disposed on the electrodes 21 and 22. Further, even if both ends of the light-emitting element 30 are disposed on the electrodes 21 and 22, the direction in which the light-emitting elements 30 extend and the acute angle formed by the electrodes 21 and 22 may not be constant.
- the dielectrophoretic force F1 applied by the electric field EL may not have sufficient intensity so that the light emitting devices 30 dispersed on the first device solvent 101 having a large viscosity are oriented in a uniform alignment.
- the orientation or alignment of the light emitting element 30 is changed by the first element solvent 101 having a high viscosity, or the first element solvent (101) may not be completely removed.
- 17 is a plan view illustrating a state in which a device solvent is removed according to an exemplary embodiment.
- 18 is a cross-sectional view illustrating a state in which a device solvent is removed according to an exemplary embodiment.
- the light emitting devices 30 landed on the electrodes 21 and 22 on the first device solvent 101 have a dynamic fluid force Fa in one direction as the first device solvent 101 is removed.
- the first device solvent 101 having a high viscosity is volatilized and removed, and a strong dynamic fluid force Fa can be applied to the light emitting device 30, and the light emitting device 30 is at the initial alignment position (dotted line in FIG. 17). Part) and the alignment may change.
- the acute angle ⁇ i' formed by one extending direction and a direction perpendicular to the extending direction of the electrodes 21 and 22 is a large value.
- Can have The acute angle ⁇ i ′ may be 20° or more, and accordingly, an acute angle formed by one direction in which the light emitting element 30 extends and the direction in which the electrodes 21 and 22 extend may be 80° or less.
- the first device solvent 101 includes the first device solvent molecules 101 ′ having a high molecular weight, and some residues may remain even when a process of volatilizing and removing them is performed. The residue may become an impurity in the display device 10 and cause a contact failure with the light emitting element 30 in a subsequent process of forming the contact electrode 26.
- the first element solvent 101 is irradiated with light (UV). Forming a second device solvent 102.
- the first device solvent 101 is irradiated with the light (UV) to decompose the chemical bond of the first photodegradable functional group 151 to form a photodegradable fragment, that is, the second photodegradable functional group 152.
- the first device solvent molecule 101 ′ forms a second device solvent molecule 102 ′ including a second photodegradable functional group 152 and a first functional group 110 or a second functional group 120 bonded thereto. can do.
- the second device solvent molecules 102 ′ may form the second device solvent 102 having a smaller molecular weight and a lower viscosity than the first device solvent molecules 101 ′.
- the light-emitting element 30 is dispersed in the second element solvent 102 having a small viscosity, and the orientation direction is aligned on the electrodes 21 and 22 by applying a strong dielectric electrophoresis force F2 by an electric field EL. Can be.
- 19 is a schematic diagram illustrating a step of forming a second device solvent according to an exemplary embodiment.
- a second device solvent 102 is formed by irradiating light (UV) onto the first device solvent 101.
- the first device solvent 101 includes the first photodegradable functional group 151, and the bond is decomposed by the irradiated light (UV) to form a photodegradable fragment or the second photodegradable functional group 152.
- the first device solvent molecules 101 ′ may form the second device solvent molecules 102 ′ having a small molecular weight. Accordingly, the light-emitting element 30 can be dispersed in the second element solvent 102 having a relatively low viscosity, and the resistivity by the solvent is reduced, so that a strong dielectric force (F2) is applied by the electric field (EL). Can be.
- 20 to 22 are schematic diagrams illustrating that a light emitting device dispersed in a device solvent is disposed on an electrode according to an exemplary embodiment.
- the dielectrophoretic force F2 applied to the light emitting device 30 by the electric field EL may have a strong intensity.
- Both ends of the light-emitting device 30 may be moved toward the electrodes 21 and 22 from the initially sprayed position (dotted portion in FIG. 19), and each of the light-emitting devices 30 may be oriented with a relatively uniform alignment. As shown in the drawing, most of the light-emitting elements 30 may have both ends disposed on the electrodes 21 and 22, and in particular, the direction in which the light-emitting elements 30 extend and the electrodes 21 and 22 The acute angle to be achieved can be constant.
- a method of manufacturing the display device 10 according to an exemplary embodiment includes forming the second element solvent 102 by irradiating light (UV) onto the first element solvent 101, and the light emitting element 30 It can be aligned on the second device solvent 102 having a low viscosity. That is, it is possible to manufacture the display device 10 with improved dielectrophoretic reactivity of the light emitting element 30 and improved alignment.
- UV light
- the device solvent 100 that is, the second device solvent 102 is removed.
- 23 is a cross-sectional view illustrating a step of removing a solvent for a second device according to an exemplary embodiment.
- 24 is a plan view showing the arrangement of light-emitting elements according to an exemplary embodiment.
- the device solvent 100 may be removed by performing a conventional method.
- the second device solvent 102 includes a compound having a smaller molecular weight than the first device solvent 101 and has a low viscosity, and may be removed by volatilization at a relatively low temperature.
- the second element solvent 102 may be removed through a method such as heat treatment or infrared irradiation.
- the light-emitting device 30 may be oriented with a relatively uniform alignment by applying a strong dielectrophoretic force F2 on the second device solvent 102 having a low viscosity. Also, even if the second element solvent 102 is volatilized and removed, a weak dynamic fluid force may be applied to the aligned light emitting elements 30. Accordingly, in the light emitting element 30 finally landed on the electrodes 21 and 22, the acute angle ⁇ i formed by one extended direction and a direction perpendicular to the extended direction of the electrodes 21 and 22 is very small.
- the acute angle ⁇ i may be 5° or more, and accordingly, an acute angle formed by one direction in which the light emitting element 30 is extended and the direction in which the electrodes 21 and 22 are extended may be 85° or more.
- an acute angle formed by one direction in which the light emitting element 30 is extended and the direction in which the electrodes 21 and 22 are extended may be 88° or more and 90° or less.
- the display device 10 including the light emitting element 30 may be manufactured through the above process.
- the manufacturing method of the display device 10 is not limited thereto, and as described above, the display device 10 may include a greater number of members and perform more processes. Detailed description will be omitted.
- the light emitting device 30 is sprayed onto the electrodes 21 and 22 in a state dispersed in the device solvent ('100' in FIG. 8), and applies an alignment signal to the electrodes 21 and 22. It may be disposed between the electrodes 21 and 22 through a process.
- the light emitting device 30 may be made of materials having a greater specific gravity than the device solvent 100 including a plurality of semiconductor layers.
- the light emitting device 30 may be gradually precipitated after maintaining the dispersed state in the device solvent 100 for a predetermined period of time. In order to prevent this, when the light emitting device 30 is dispersed for a long time by adjusting the viscosity of the device solvent 100, it may not be possible to discharge through the nozzle in the inkjet printing process.
- the light emitting device ink ('1001' in FIG. 25) according to an embodiment can adjust the viscosity of the light emitting device ink 1001.
- the light-emitting device ink 1001 may include a photodegradable thickener ('500' in FIG. 25).
- the light-emitting device ink 1001 has a high viscosity in a state stored in a container including the photodegradable thickener 500 or in a state in which shear stress is not applied, and the light-emitting device 30 is dispersed for a long time. I can.
- the light-emitting element ink 1001 has a low viscosity and can be smoothly discharged from the nozzle in a state in which shear stress is applied in the inkjet printing process.
- 25 is a schematic diagram of a light emitting device ink according to an embodiment.
- a light emitting device ink 1001 includes a device solvent 103, a light emitting device 30, and a photodegradable thickener 500.
- the description of the light-emitting device 30 is the same as described above, and hereinafter, the device solvent 103 and the photodegradable thickener 500 will be described in detail.
- the device solvent 103 may store the light emitting device 30 in a dispersed state, and may include a material that does not react with the light emitting device 30.
- the element solvent 103 may include a material having a viscosity sufficient to be discharged through a nozzle of an inkjet printing apparatus.
- the device solvent 103 described in the following embodiments may be different from the device solvent 100 described above with reference to FIGS. 8 to 24.
- the device solvent 103 may be an organic solvent such as acetone, water, alcohol, toluene, propylene glycol (PG), or propylene glycol methyl acetate (PGMA), but is not limited thereto.
- the photodegradable thickener 500 may be dispersed in the device solvent 103 together with the light emitting device 30.
- the light-emitting element ink 1001 may have a high viscosity in order to maintain the dispersed state of the light-emitting element 30 when stored in a container, and may have a low viscosity when discharged through a nozzle.
- the photodegradable thickener 500 may form intramolecular hydrogen bonding.
- the photodegradable thickener 500 may include a functional group capable of forming hydrogen bonds, and the light emitting device ink 1001 is applied to hydrogen bonds between molecules formed by the photodegradable thickener 500 in a state where no shear stress is applied. It can have a high viscosity.
- the light-emitting device 30 may maintain a dispersed state for a long time in the light-emitting device ink 1001 having a high viscosity.
- the light emitting device ink 1001 while the light emitting device ink 1001 is discharged through a nozzle or flows in an inkjet head of an inkjet printing apparatus, a shear stress may be applied to the device solvent 103.
- the shear stress may have a stronger strength than the intermolecular hydrogen bonds of the photodegradable thickener 500, and the hydrogen bonds may be broken. Accordingly, the light emitting device ink 1001 may have a low viscosity and may be smoothly discharged through a nozzle.
- the light emitting element 30 is disposed between the electrodes 21 and 22, heat or light is irradiated to the light emitting element ink 1001 to A process of removing the degradable thickener 500 may be performed.
- the light emitting device ink 1001 sprayed on the electrodes 21 and 22 may be in a state in which shear stress is not applied, and the light emitting device ink 1001 has a high viscosity due to hydrogen bonding between molecules of the photodegradable thickener 500 Can have Accordingly, the device solvent 103 and the photodegradable thickener 500 may not be removed smoothly and may remain as foreign substances on the electrodes 21 and 22 or the light emitting device 30.
- the intensity of the dielectrophoretic force acting on the light-emitting device 30 by the electric field formed on the electrodes 21 and 22 may not be sufficient.
- high-temperature heat treatment may be required to remove the device solvent 103 and the photodegradable thickener 500 having a high viscosity, and as they are removed, the attraction due to the flow of the fluid, or the photodegradable thickener 500 and the light emitting device ( 30) The initial alignment state of the light emitting device 30 may be changed by the attractive force between them.
- the photodegradable thickener 500 may include a functional group capable of forming hydrogen bonds between molecules, and a photodegradable functional group capable of decomposing the bonds by light irradiation. After the light emitting device 30 is disposed between the electrodes 21 and 22, or when light is irradiated to the light emitting device ink 1001 while an electric field is generated, the photodegradable functional group of the photodegradable thickener 500 is broken and the molecular weight It can be broken down into these small units.
- the light emitting device ink 1001 may have a low viscosity even in a state where shear stress is not applied due to decomposition of the photodegradable thickener 500. Accordingly, the light emitting devices 30 can be smoothly aligned by the electric field formed on the electrodes 21 and 22, and the device solvent 103 and the photodegradable thickener 500 can be completely removed even at a relatively low temperature. .
- the photodegradable thickener 500 may include a first functional group capable of forming hydrogen bonds between molecules and a photodegradable functional group capable of decomposing intramolecular bonds by light irradiation.
- the photodegradable thickener 500 may be a polymer formed by polymerization of a monomer including a first functional group and a photodegradable functional group, and the photodegradable thickener 500 may be represented by Structural Formula 2 below.
- 'HP1' is a third functional group
- 'CP' is a photodegradable functional group
- m is an integer of 1 to 3
- l is an integer of 10 to 100.
- the photodegradable thickener 500 may have a chain structure in which the third functional group and the photodegradable functional group are repeated as it has the structure of Structural Formula 2 above.
- the third functional group may include a functional group capable of forming hydrogen bonds between molecules.
- the third functional group may include a hydroxyl group (-OH) or an amine group (-NH 2 ).
- the photodegradable thickener 500 may include a third functional group to form hydrogen bonds between molecules.
- the photodegradable thickeners 500 dispersed in the device solvent 103 may form a network structure between polymer chains. As the photodegradable thickeners 500 form a network structure, the light emitting device ink 1001 may have a high viscosity.
- the third functional group may be a polymerizable group capable of forming a polymer chain while forming a hydrogen bond.
- the third functional group may be any one of an amine group (-NH-), an amino group (-CONH-), a urea group (-NHCONH-), and a urethane group (-NHCOO-).
- the third functional group is a functional group capable of polymerization and may form a main chain of a polymer chain, and at the same time, may form an intramolecular hydrogen bond.
- the photodegradable thickener 500 may form a network structure through intramolecular hydrogen bonding between the main chains of the polymer chain.
- the photodegradable functional group may be directly bonded to the third functional group.
- the present invention is not limited thereto, and when the photodegradable thickener 500 further includes other functional groups, at least one functional group may be further coupled between the third functional group and the photodegradable functional group.
- the photodegradable functional group may include a functional group capable of decomposing a bond by light irradiation.
- the photodegradable thickener 500 partially binds photodegradable functional groups by light irradiation after the light emitting device 30 is disposed between the electrodes 21 and 22 or while an electric field is generated on the electrodes 21 and 22. Can be decomposed. Accordingly, the photodegradable thickener 500 may be decomposed into a plurality of fragments having a small molecular weight, and may have a low viscosity even in a state in which shear stress is not applied to the light emitting device ink 1001.
- the photodegradable functional group may include any one of a cyclobutyl group, a maleic imide dimer, an acrylate dimer, or a carbonyl group. have.
- the above-described functional groups may be bonded to be decomposed by irradiated light as in Chemical Reaction Formulas 1 to 4 to form fragments having a small molecular weight.
- the structure of the photodegradable thickener 500 is not limited to the above Structural Formula 2.
- the photodegradable thickener 500 may further include a functional group for controlling molecular weight and a polymerizable group for forming a polymer chain.
- the photodegradable thickener 500 may be a polymer formed by polymerization of a monomer containing another functional group or a polymerizable group in addition to the third functional group and the photodegradable functional group, and the photodegradable thickener 500 is represented by the following structural formulas 3 to 5 Can be expressed.
- 'HP1' and 'HP2' is first and third functional groups
- 'CP' is a light-decomposable functional group
- the 'R 6' is a functional group for molecular weight control
- the 'R 7' is a polymerizable group
- M is an integer of 1 to 3
- l is an integer of 10 to 100.
- the photodegradable thickener 500 may have a chain structure in which monomers including a plurality of functional groups, photodegradable functional groups, and polymerizable groups are repeated, as shown in Structural Formulas 3 to 5.
- the photodegradable thickener 500 may further include a functional group R 6 capable of controlling the viscosity of the light emitting device ink 1001 through molecular weight control.
- R 6 may be any one of a C1-C5 alkyl group, a C2-C5 alkenyl group, a C2-C5 alkynyl group, a C1-C5 alkyl ether group, and a C2-C5 alkenyl ether group. have.
- the third functional group may include a functional group capable of polymerization reaction while being capable of forming a hydrogen bond as described above.
- the third functional group can be directly bonded to each other with R6, and the photodegradable functional group can be directly bonded to the third functional group. However, it is not limited thereto, and the photodegradable functional group may be directly bonded to R6.
- the photodegradable thickener 500 can control the molecular weight by adjusting the number of carbon atoms, n and l.
- the third functional group may not necessarily be a functional group capable of polymerization reaction.
- the photodegradable thickener 500 may include only a functional group capable of forming a hydrogen bond, and a polymerizable group R7 capable of a polymerization reaction, as shown in Structural Formulas 4 and 5 above.
- the third functional group'HP2' is a hydroxyl group (-OH) or an amine group (-NH 2 ), and R 7 is an acrylic group (Acryl), a methacryl group (Methacryl), and an ester group ( Ester), carbonate group (Carbonate) may be any one of. However, it is not limited thereto.
- the photodegradable thickener 500 forms a polymer chain through a polymerization reaction of the polymerizable group R 7 , and the third functional group may be bonded to the polymerizable group.
- a polymerizable group and a photodegradable functional group may form a main chain of a polymer chain, and a third functional group may form a side chain.
- the photodegradable thickener 500 may form a network structure by hydrogen bonding between molecules between side chains of a polymer chain.
- the photodegradable thickener 500 may be represented by the following chemical formulas 7 to 11.
- l is an integer of 10 to 100.
- the chemical structural formulas 7 to 11 each include a first functional group capable of forming a hydrogen bond between molecules and a photodegradable functional group capable of decomposing the bond by light irradiation.
- the photodegradable thickener 500 may include a functional group capable of controlling a molecular weight and a polymerizable group capable of a polymerization reaction.
- 26 is a schematic diagram showing the arrangement of photodegradable thickeners in a state in which shear stress is not applied to the light emitting device ink according to an exemplary embodiment.
- 27 is a schematic diagram showing the arrangement of photodegradable thickeners in a state in which shear stress is applied to the light emitting device ink according to an exemplary embodiment.
- the photodegradable thickener 500 is an amide group (Amide, -CONH-) capable of polymerization reaction while the third functional group can form a hydrogen bond, and the photodegradable functional group includes a cyclobutyl group (Cyclobutyl), and the molecular weight control is performed.
- a functional group for an ethylene group (-CH 2 CH 2 -) may be included.
- the photodegradable thickener 500 may form a three-dimensional network structure by forming hydrogen bonds between the third functional groups in a state in which shear stress is not applied in the light emitting device ink 1001.
- the photodegradable thickeners 500 may form a network structure, the light emitting device ink 1001 may have a high viscosity.
- the light emitting device ink 1001 may have a viscosity in a range of 30 cP to 70 cP in a state in which shear stress is not applied.
- l may be appropriately adjusted according to the viscosity range required for the light emitting device ink 1000.
- the light-emitting device ink 1001 may contain the photodegradable thickener 500 and maintain the light-emitting device 30 in a dispersed state for a long time while stored in a container.
- the photodegradable thickener 500 may not form a network structure when the light emitting device ink 1001 is ejected through the nozzle of the inkjet printing apparatus or when shear stress is applied.
- shear stress due to the flow of the fluid may be applied.
- the shear stress may have a stronger intensity than the hydrogen bonds between molecules formed by the photodegradable thickeners 500, and the photodegradable thickeners 500 may maintain a separately dispersed state without forming a three-dimensional structure. Accordingly, the light-emitting element ink 1001 may have a low viscosity and may be smoothly discharged through a nozzle.
- the light emitting device ink 1001 may have a viscosity of 5 cP to 15 cP, or 7 cP to 13 cP, preferably within a range of 10 cP in a state in which shear stress is applied.
- the present invention is not limited thereto, and the viscosity of the light emitting device ink 1001 may be variously changed within a range that can be discharged from the nozzle of the inkjet head.
- the molecular weight of the photodegradable thickener 500 and the length of the polymer chain may vary according to the n value of Chemical Structural Formula 2, and the viscosity of the light emitting device ink 1001 may be adjusted within a desired range.
- FIG. 28 is a schematic diagram showing a photodegradable thickener when light is irradiated to a light emitting device ink according to an embodiment.
- the photodegradable thickener 500 may form a plurality of fragment molecules 500 ′ having a small molecular weight as the photodegradable functional group is decomposed.
- Chemical Structural Formula 8 may be separated into a plurality of fragments when light is irradiated as shown in Chemical Reaction Formula 6 below.
- the photodegradable functional group may remain as functional group fragments ('CP1' and'CP2' in FIG. 28) in each of the plurality of fragment molecules 500' as the bond is decomposed.
- the polymer chain of the photodegradable thickener 500 is decomposed, and even if a shear stress is not applied, a network structure between the photodegradable thickeners 500 is not formed, and the light emitting device ink 1001 is It can have a low viscosity.
- the light-emitting element ink 1001 has a low viscosity after being sprayed on the electrodes 21 and 22, the light-emitting element 30 can be smoothly aligned and disposed on the electrodes 21 and 22 by the dielectrophoretic force. .
- the initial alignment position of the light emitting device 30 does not change, and even at a relatively low temperature, the device solvent 103 and the photodegradable thickener 500 are completely Can be removed.
- the light emitting device ink 1001 may include a photodegradable thickener 500 and may have a viscosity change during a manufacturing process of the display device 10.
- the light-emitting element ink 1001 for each storage step of the light-emitting device ink 1001, the discharge step through the nozzle of the inkjet head, the alignment step of the light-emitting device 30, and the removal step of the device solvent 103 and the photodegradable thickener 500 May have a suitable viscosity.
- the storage step of the light-emitting device ink 1001 as it has a high viscosity, precipitation of the light-emitting device 30 can be prevented, and a discharge step through a nozzle, alignment of the light-emitting device 30, and the device solvent 103
- the removal step of since it has a low viscosity, the inkjet printing process and the alignment process of the light emitting device 30 may be smoothly performed.
- the light-emitting devices 30 may have a high degree of alignment between the electrodes 21 and 22, and product reliability of the display device 10 is improved. Can be improved.
- the photodegradable thickener 500 may include a third functional group and a photodegradable functional group, and the molecular structure in the device solvent 103 may change according to application of shear stress or irradiation with light.
- the light emitting device ink 1001 may have a suitable viscosity according to the manufacturing process of the display device 10 as it includes the photodegradable thickener 500 in addition to the solvent 100 and the light emitting device 30.
- 29 is a flowchart illustrating a method of manufacturing a display device according to an exemplary embodiment.
- a method of manufacturing the display device 10 includes preparing a light emitting device ink 1000 including a solvent 100, a light emitting device 30, and a photodegradable thickener 500. Step (S101), preparing a target substrate on which the electrodes 21 and 22 are formed, and spraying the light emitting device ink 1001 onto the electrodes 21 and 22 (S201), and applying light to the light emitting device ink 1001 Irradiation and mounting the light emitting device 30 on the first electrode 21 and the second electrode 22 (S301) may be included.
- the light emitting device ink 1001 may have a low viscosity by applying shear stress in the step of spraying onto the electrodes 21 and 22, and a smooth discharge process may be performed. However, the light emitting device ink 1001 sprayed on the electrodes 21 and 22 may have a high viscosity of the ink because the photodegradable thickeners 500 form a three-dimensional network structure in a state in which shear stress is not applied.
- the light-emitting element ink 1001 is irradiated with light in the process of mounting the light-emitting element 30 on the electrodes 21 and 22 to provide a photodegradable thickener 500. It may include the step of decomposing into a plurality of fragment molecules 500'.
- a step of irradiating light may be performed so that the light emitting element ink 1001 has a low viscosity. Accordingly, the light emitting device 30 can be smoothly aligned between the electrodes 21 and 22, and the device solvent 103 and the photodegradable thickener 500 can be completely removed in a subsequent process.
- 30 to 32 are cross-sectional views illustrating one step in a manufacturing process of a display device according to an exemplary embodiment.
- the arranged target substrate SUB is prepared.
- the drawing shows that a pair of electrodes are disposed on the target substrate SUB, a larger number of electrode pairs may be disposed on the target substrate SUB.
- the target substrate SUB may include a plurality of circuit elements disposed thereon in addition to the first substrate 11 of the display device 10 described above. Hereinafter, these will be omitted for convenience of description.
- the light emitting device ink 1001 may include a device solvent 103, a light emitting device 30 dispersed therein, and a photodegradable thickener 500.
- the light emitting device ink 1001 stored in the container may be in a state in which no fluid flows and shear stress is not applied.
- the photodegradable thickener 500 may form a three-dimensional network structure in the device solvent 103 by the first functional group forming hydrogen bonds between molecules.
- the light emitting device ink 1001 may have a high viscosity, for example, in the range of 30 cp to 70 cp, and the light emitting device 30 may be maintained in a dispersed state for a long time.
- the light emitting device ink 1001 is sprayed onto the first electrode 21 and the second electrode 22 on the target substrate SUB.
- the light emitting device ink 1001 may be sprayed onto the electrodes 21 and 22 through a printing process using an inkjet printing device.
- the light-emitting element ink 1001 may be sprayed through a nozzle of an inkjet head included in the inkjet printing apparatus.
- the light emitting device ink 1001 may flow along an internal flow path provided in the inkjet head and may be discharged onto the target substrate SUB through a nozzle.
- the light emitting device ink 1001 flowing along the inner flow path may be in a state in which a fluid flows and shear stress is applied.
- the third functional group of the photodegradable thickener 500 is prevented from forming hydrogen bonds between molecules.
- the photodegradable thickener 500 may exist in a state in which each chain is dispersed in the device solvent 103 without forming a three-dimensional network structure, and the light emitting device ink 1001 has a low viscosity, for example 5cp to 15cp. , Or may have a viscosity in the range of about 10 cp.
- the light emitting device ink 1001 having a viscosity within the above range may be smoothly discharged from the nozzle of the inkjet head, and a nozzle clogging phenomenon due to viscosity of the solution may be prevented.
- the light emitting device ink 1001 may be mounted on the electrodes 21 and 22 disposed on the target substrate SUB. Meanwhile, the light-emitting element 30 may have a shape extending in one direction, and the direction extended in the light-emitting element ink 1001 may be dispersed in a state having a random orientation direction.
- the light emitting devices 30 dispersed in the device solvent 103 may receive a dielectrophoretic force by the electric field EL, and may be disposed on the electrodes 21 and 22 while changing the orientation direction and position.
- the light-emitting device ink 1001 sprayed on the target substrate SUB is in a state in which no flow of fluid is applied and no shear stress is applied, and the photodegradable thickener 500 forms hydrogen bonds between molecules and has a three-dimensional network structure. Can be formed.
- the light-emitting device ink 1001 may have a high viscosity, and the light-emitting device 30 may not be disposed at a desired position on the electrodes 21 and 22 even when subjected to a dielectrophoretic force by an electric field EL.
- 33 to 35 are schematic diagrams illustrating a process of disposing a light emitting element on an electrode during a manufacturing process of a display device. 35 are diagrams illustrating removal of the device solvent 103 and the photodegradable thickener 500 after the light emitting device 30 is disposed on the electrodes 21 and 22.
- the light emitting device 30 when the photodegradable thickener 500 generates an electric field EL on the target substrate SUB in a state in which the 3D network structure is formed, the light emitting device 30 is subjected to dielectrophoresis.
- the force (F1) can be transmitted.
- the electric field EL generated on the target substrate SUB is generated parallel to the top surface of the target substrate SUB
- the light emitting device 30 extends in parallel to the target substrate SUB. It may be arranged so as to be disposed on the first electrode 21 and the second electrode 22.
- the light-emitting element 30 may move toward the electrodes 21 and 22 from the initially dispersed position (dotted portion in FIG. 34) by the dielectrophoretic force F1.
- the light-emitting element 30 may receive a resistance force directed in a direction opposite to the dielectrophoretic force F1 in the light-emitting element ink 1001 having a high viscosity, and is not seated at a desired position on the electrodes 21 and 22. May not.
- the dielectrophoretic force F1 applied to the light-emitting element 30 may not be sufficient for both ends of the light-emitting element 30 to be disposed on the first electrode 21 and the second electrode 22, and the light-emitting element Reference numeral 30 may be disposed in a state in which the extension direction is inclined to the extension direction of the electrodes 21 and 22.
- the orientation direction or alignment state of the light emitting device 30 changes due to the viscosity of the light emitting device ink 1001 or the device solvent 103 May not be completely removed.
- the attractive force due to the flow of the fluid or the photodegradable thickener may be changed by the attractive force between the 500 and the light-emitting element 30 ('Fa' in FIG. 35). Accordingly, as described above, the light emitting device 30 finally disposed on the electrodes 21 and 22 has an acute angle ⁇ i formed by one extending direction and a direction perpendicular to the extending direction of the electrodes 21 and 22. ') can have a large value.
- the device solvent 103 and the photodegradable thickener 500 may not be completely removed, and may remain as foreign substances in a subsequent process. Foreign substances remaining on the electrodes 21 and 22 and the light emitting device 30 may cause a contact failure with the light emitting device 30 in a subsequent process of forming the contact electrode 26.
- a high-temperature heat treatment process is performed to completely remove them, the light-emitting element 30 and circuit elements included in the target substrate SUB may be damaged.
- the method of manufacturing the display device 10 includes disposing the light emitting element 30 on the electrodes 21 and 22, or irradiating light to the light emitting element ink 1001 in a subsequent step. It may include.
- the photodegradable thickener 500 may decompose the photodegradable functional group to form a plurality of fragment molecules 500'.
- the light emitting device ink 1001 may have a low viscosity without the photodegradable thickener 500 forming a three-dimensional network structure even in a state in which shear stress is not applied.
- the light-emitting element 30 can receive a dielectrophoretic force sufficient to be disposed on the electrodes 21 and 22 at a desired position, and the element solvent 103 and the light through a heat treatment process at a relatively low temperature in the subsequent process.
- the degradable thickener 500 can be completely removed.
- 36 to 38 are schematic diagrams illustrating a process of disposing a light emitting device on an electrode during a manufacturing process of a display device according to an exemplary embodiment.
- 36 illustrates a step of irradiating light to the light emitting device ink 1001
- FIGS. 37 and 38 illustrate a step of disposing the light emitting device 30 by generating an electric field on the target substrate SUB.
- the manufacturing process of the display device 10 may include irradiating light (hv) to the light emitting device ink 1001 sprayed on the target substrate SUB. have.
- the photodegradable thickener 500 may decompose the photodegradable functional groups to form a plurality of fragment molecules 500'.
- the fragment molecules 500 ′ may have a molecular weight smaller than that of the photodegradable thickener 500, and the light emitting device ink 1001 may have a low viscosity even if hydrogen bonds are formed between molecules.
- the light emitting device 30 may be disposed on the electrodes 21 and 22 in a state dispersed in the light emitting device ink 1001 having a low viscosity. have.
- the light emitting element 30 is disposed on the electrodes 21 and 22 by generating an electric field EL on the target substrate SUB.
- the light-emitting element ink 1001 has a low viscosity
- the light-emitting element 30 may receive a sufficient dielectrophoretic force F2 to be disposed at a desired position.
- Both ends of the light-emitting element 30 may be disposed on the first electrode 21 and the second electrode 22, respectively, while changing the position and orientation direction from the initially dispersed position (dotted portion in FIG. 38 ).
- the plurality of light emitting devices 30 may be disposed on each of the electrodes 21 and 22 with a relatively uniform degree of alignment.
- The'alignment degree' of the light-emitting elements 30 may mean a deviation between the alignment direction and the seated position of the light-emitting elements 30 aligned on the target substrate SUB. For example, if the deviation of the orientation direction and the seated position of the light emitting elements 30 is large, the degree of alignment of the light emitting elements 30 is low, and the deviation of the orientation direction and seated position of the light emitting elements 30 When is small, it may be understood that the alignment of the light emitting devices 30 is high or improved.
- the device solvent 103 and the photodegradable thickener 500 of the light emitting device ink 1001, or a plurality of fragment molecules 500' are removed.
- the process of removing the device solvent 103 and the photodegradable thickener 500, or the plurality of fragment molecules 500 ′ may be performed through a conventional heat treatment process.
- the photodegradable thickener 500 may form a plurality of fragment molecules 500' having a small molecular weight as the bonds of the photodegradable functional groups are decomposed, and may be completely removed even through a heat treatment process at a relatively low temperature.
- the heat treatment process may be performed in a temperature range of 200°C to 400°C, or 300°C.
- the device solvent 103, the photodegradable thickener 500, and a plurality of fragment molecules 500' can be completely removed while preventing damage to the light emitting device 30 and circuit devices. I can.
- the light emitting device 30 may be disposed on the electrodes 21 and 22 with a high degree of alignment while being dispersed in the light emitting device ink 1001 having a low viscosity.
- the light-emitting device ink 1001 even if the device solvent 103, the photodegradable thickener 500, and the fragment molecules 500' are removed through a heat treatment process, the light-emitting device 30 may maintain an initial alignment state. Accordingly, as described above, the light emitting device 30 finally disposed on the electrodes 21 and 22 has an acute angle ⁇ i formed by one extending direction and a direction perpendicular to the extending direction of the electrodes 21 and 22. ) Can have very small values.
- the display device 10 may be manufactured by forming a plurality of insulating layers and a contact electrode 26 on the light emitting element 30 and the electrodes 21 and 22.
- the display device 10 including the light emitting element 30 may be manufactured through the above process.
- the display device 10 in which the light-emitting element 30 is disposed on the electrodes 21 and 22 using a light-emitting element ink 1001 including a light-emitting element 30 and a photodegradable thickener 500 ) Can be manufactured.
- the manufacturing process of the display device 10 may include a process of spraying the light emitting device ink 1001 on the target substrate SUB and irradiating light thereto.
- the light emitting device ink 1001 may have a viscosity required for each process, and the light emitting device 30 may be disposed on the electrodes 21 and 22 with a high degree of alignment.
- the display device 10 including the light emitting device 30 may be manufactured with improved product reliability.
- 39 is a cross-sectional view illustrating a part of a method of manufacturing a display device according to an exemplary embodiment.
- the step of seating 30) on the electrodes 21 and 22 may be performed simultaneously in one process.
- an alignment signal may be applied through the electrodes 21 and 22 while irradiating light (UV) to the light emitting device ink 1001 sprayed on the electrodes 21 and 22. Accordingly, as the photodegradable thickener 500 is decomposed into a plurality of fragment molecules 500', the viscosity of the light emitting device ink 1001 may be lowered. At the same time, by applying an alignment signal to the electrodes 21 and 22 to generate an electric field EL, the light-emitting element 30 can be mounted on the electrodes 21 and 22. The process time can be shortened by performing a process of mounting the light-emitting element 30 during the process of irradiating the light-emitting element ink 1001 with light (UV).
- a process of removing the device solvent 103 and the photodegradable thickener 500 may be continuously performed.
- the step of decomposing the photodegradable thickener 500 is performed as a heat treatment process, an alignment signal is applied to the electrodes 21 and 22 within one heat treatment process, so that the light emitting device 30 is connected to the electrodes 21 and 22. You can settle on it. Accordingly, the efficiency in the manufacturing process of the display device 10 may be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
발광 소자 용매, 광 분해성 증점제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법이 제공된다. 표시 장치의 제조 방법은 제1 전극 및 제2 전극이 형성된 대상 기판 상에 제1 소자 용매 및 상기 제1 소자 용매 내에 분산된 발광 소자를 포함하는 소자 잉크를 분사하는 단계, 상기 제1 소자 용매에 광을 조사하여 상기 제1 소자 용매의 적어도 일부 결합이 분해된 제2 소자 용매를 형성하고, 상기 제1 전극 및 상기 제2 전극 상에 상기 발광 소자를 안착하는 단계 및 상기 제2 소자 용매를 제거하는 단계를 포함한다.
Description
본 발명은 발광 소자 용매, 광 분해성 증점제, 발광 소자 잉크 및 표시 장치의 제조 방법에 관한 것이다.
표시 장치는 멀티미디어의 발달과 함께 그 중요성이 증대되고 있다. 이에 부응하여 유기발광 표시 장치(Organic Light Emitting Display, OLED), 액정 표시 장치(Liquid Crystal Display, LCD) 등과 같은 여러 종류의 표시 장치가 사용되고 있다.
표시 장치의 화상을 표시하는 장치로서 유기 발광 표시 패널이나 액정 표시 패널과 같은 표시 패널을 포함한다. 그 중, 발광 표시 패널로써, 발광 소자를 포함할 수 있는데, 예를 들어 발광 다이오드(Light Emitting Diode, LED)의 경우, 유기물을 형광 물질로 이용하는 유기 발광 다이오드(OLED), 무기물을 형광물질로 이용하는 무기 발광 다이오드 등이 있다.
형광물질로 무기물 반도체를 이용하는 무기 발광 다이오드는 고온의 환경에서도 내구성을 가지며, 유기 발광 다이오드에 비해 청색 광의 효율이 높은 장점이 있다. 또한, 기존의 무기 발광 다이오드 소자의 한계로 지적되었던 제조 공정에 있어서도, 유전영동(Dielectrophoresis, DEP)법을 이용한 전사방법이 개발되었다. 이에 유기 발광 다이오드에 비해 내구성 및 효율이 우수한 무기 발광 다이오드에 대한 연구가 지속되고 있다.
무기 발광 다이오드를 포함하는 표시 장치는 작은 크기를 갖는 발광 소자들을 잉크에 분산시키고, 이를 전극 상에 분사하는 잉크젯 프린팅(Inkjet printing) 공정을 통해 제조될 수 있다. 발광 소자는 반도체층들을 포함하여 비중이 큰 물질들로 이루어질 수 있는데, 잉크의 점도에 따라 발광 소자들의 침강 속도 및 노즐을 통한 토출 가능성 등이 결정될 수 있다.
예를 들어, 잉크의 점도가 낮을 경우 잉크는 노즐을 통해 원활하게 토출될 수 있으나, 잉크 내 분산된 발광 소자들의 침강 속도가 빠를 수 있다. 반면에 잉크의 점도가 높을 경우, 발광 소자들의 침강 속도를 늦출 수 있으나 노즐을 통한 토출이 불가능할 수 있다. 나아가, 전극 상에 분사된 잉크는 발광 소자를 제외한 용매가 제거되어야 하는데, 잉크의 점도가 높으면 용매가 원활하게 제거되지 않는 문제가 있다.
본 발명이 해결하고자 하는 과제는 조사되는 광에 의해 적어도 하나의 화학결합이 분해되는 광 분해성 작용기를 포함하는 발광 소자 용매 및 이를 포함하는 발광 소자 잉크를 제공하는 것이다.
본 발명이 해결하고자 하는 과제는 광이 조사되면 분자 사슬이 분해되는 광 분해성 증점제를 제공하는 것이다.
또한, 본 발명은 상기 발광 소자 용매와, 이에 분산된 발광 소자를 포함하는 발광 소자 잉크를 이용한 표시 장치의 제조 방법을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 과제는 상기 광 분해성 증점제와 발광 소자를 포함하여 점도가 조절되는 발광 소자 잉크, 및 이를 이용한 표시 장치의 제조 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 일 실시예에 따른 표시 장치의 제조 방법은 제1 전극 및 제2 전극이 형성된 대상 기판 상에 제1 소자 용매 및 상기 제1 소자 용매 내에 분산된 발광 소자를 포함하는 소자 잉크를 분사하는 단계, 상기 제1 소자 용매에 광을 조사하여 상기 제1 소자 용매의 적어도 일부 결합이 분해된 제2 소자 용매를 형성하고, 상기 제1 전극 및 상기 제2 전극 상에 상기 발광 소자를 랜딩하는 단계 및 상기 제2 소자 용매를 제거하는 단계를 포함한다.
상기 제1 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기 및 상기 광 분해성 작용기에 결합되고 하기 화학 구조식 1로 표현되는 제1 작용기 및 제2 작용기를 포함하고, 하기의 화학 구조식 2 내지 5로 표현되는 화합물 중 적어도 어느 하나일 수 있다.
[화학 구조식 1]
(상기 화학 구조식 1에서, 상기 n은 1 내지 5의 정수이되, 상기 제1 작용기의 상기 n값과 상기 제2 작용기의 상기 n 값의 합은 2 내지 6의 범위를 갖고, 상기 R
5는 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이다.)
[화학 구조식 2]
[화학 구조식 3]
[화학 구조식 4]
[화학 구조식 5]
(상기 화학 구조식 2 내지 5에서, 상기 R
1 및 R
2는 상기 화학 구조식 1로 표현되되, 상기 R
1의 상기 화학 구조식 1에서 n값과 R
2의 상기 화학 구조식 1에서 n값의 합은 2 내지 6의 범위를 갖고, 상기 R
3 및 R
4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나이다.)
상기 제2 소자 용매를 형성하는 단계에서, 상기 광 분해성 작용기는 상기 조사되는 광에 의해 적어도 일부의 결합이 분해된 적어도 하나의 광 분해 단편을 형성하고, 상기 제2 소자 용매는 상기 광 분해 단편을 포함할 수 있다.
상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합될 수 있다.
상기 제2 소자 용매의 분자량은 상기 제1 소자 용매의 분자량의 50% 이하일 수 있다.
상기 제1 소자 용매는 점도가 7cp 내지 15cp의 범위를 갖고, 상기 제2 소자 용매는 점도가 5cp이하일 수 있다.
상기 발광 소자를 랜딩하는 단계는 상기 제2 소자 용매 상에 전계를 형성하는 단계 및 상기 전계에 의해 상기 발광 소자의 배향 방향이 정렬되는 단계를 포함할 수 있다.
상기 발광 소자는 일 방향으로 연장된 형상을 갖고, 상기 발광 소자가 연장된 상기 일 방향과 상기 제1 전극 및 상기 제2 전극이 연장된 방향이 이루는 예각은 88° 내지 90°의 범위를 가질 수 있다.
상기 과제를 해결하기 위한 일 실시예에 따른 발광 소자 용매는 반도체 결정을 분산시키는 발광 소자 용매로서, 상기 발광 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기 및 상기 광 분해성 작용기에 결합된 서로 다른 제1 작용기 및 제2 작용기를 포함하고, 하기 구조식 1로 표시되며, 상기 광 분해성 작용기는 상기 광에 의해 상기 화학결합이 분해된 적어도 하나의 광 분해 단편을 형성한다.
[구조식 1]
X1-P-X2
(상기 구조식 1에서, 상기 P는 광 분해성 작용기이고, 상기 X1은 제1 작용기이며, 상기 X2는 제2 작용기이다.)
상기 제1 작용기 및 상기 제2 작용기는 상기 화학 구조식 1로 표현되고, 상기 발광 소자 용매는 상기 화학 구조식 2 내지 5로 표현되는 화합물 중 어느 하나일 수 있다.
상기 발광 소자 용매는 하기 화학 구조식 6으로 표현되는 화합물일 수 있다.
[화학 구조식 6]
상기 발광 소자 용매는 상기 구조식 1로 표시되는 제1 소자 용매를 형성하고, 상기 제1 소자 용매는 상기 광이 조사되는 경우 상기 광 분해 단편을 포함하는 제2 소자 용매를 형성할 수 있다.
상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합될 수 있다.
상기 제2 소자 용매의 분자량은 상기 제1 소자 용매의 분자량의 50% 이하일 수 있다.
상기 제1 소자 용매는 점도가 7cp 내지 15cp의 범위를 갖고, 상기 제2 소자 용매는 점도가 5cp이하일 수 있다.
상기 과제를 해결하기 위한 일 실시예에 따른 발광 소자 잉크는 반도체 결정 및 상기 반도체 결정의 외주면을 둘러싸는 절연막을 포함하는 발광 소자 및 적어도 하나의 상기 발광 소자가 분산된 발광 소자 용매를 포함하고, 상기 발광 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기 및 상기 광 분해성 작용기에 결합되고 상기 화학 구조식 1로 표현되는 제1 작용기 및 제2 작용기를 포함하고, 상기 화학 구조식 2 내지 5로 표현되는 화합물 중 어느 하나이다.
상기 발광 소자 용매는 상기 화학 구조식 6으로 표현되는 화합물일 수 있다.
상기 발광 소자 용매의 상기 광 분해성 작용기는 상기 광에 의해 상기 화학결합이 분해된 적어도 하나의 광 분해 단편을 형성하고, 상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합될 수 있다.
상기 발광 소자 용매는 상기 조사되는 광에 의해 상기 광 분해성 작용기의 상기 화학결합이 분해되어 점도가 감소할 수 있다.
상기 반도체 결정은 제1 도전형으로 도핑된 제1 반도체층, 상기 제1 도전형과 다른 극성을 갖는 제2 도전형으로 도핑된 제2 반도체층 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 형성되는 활성층을 포함할 수 있다.
상기 과제를 해결하기 위한 일 실시예에 따른 표시 장치의 제조 방법은 용매, 상기 용매 내에 분산된 복수의 발광 소자 및 광 분해성 증점제를 포함하는 발광 소자 잉크를 준비하는 단계, 제1 전극 및 제2 전극이 형성된 대상 기판 상에 상기 발광 소자 잉크를 분사하는 단계 및 상기 발광 소자 잉크에 광을 조사하고 상기 제1 전극 및 상기 제2 전극 상에 상기 발광 소자를 안착시키는 단계를 포함한다.
상기 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기 및 상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며, 하기 구조식 2 내지 5 중 어느 하나로 표현될 수 있다.
[구조식 2]
[구조식 3]
[구조식 4]
[구조식 5]
상기 구조식 2 내지 5에서, 상기 'HP1' 및 'HP2'는 제3 작용기이고, 상기 'HP1'은 아민기(-NH-), 아미노기(-CONH-), 우레아기(-NHCONH-), 우레탄기(-NHCOO-) 중 어느 하나이고, 'HP2'는 수산화기(-OH) 또는 아민기(-NH2)이고, 상기 'CP'는 광 분해성 작용기이며, 상기 R
6은 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이고, 상기 R
7는 아크릴기(Acryl), 메타크릴기(Methacryl), 에스터기(Ester), 카보네이트기(Carbonate) 중 어느 하나이고, 상기 m은 1 내지 3의 정수이고, 상기 l은 10 내지 100의 정수이다.
상기 광 분해성 증점제는 하기 화학 구조식 7 내지 11 중 어느 하나로 표현될 수 있다.
[화학 구조식 7]
[화학 구조식 8]
[화학 구조식 9]
[화학 구조식 10]
[화학 구조식 11]
상기 화학 구조식 7 내지 11에서, 상기 l은 10 내지 100의 정수이다.
상기 발광 소자 잉크를 준비하는 단계에서, 상기 광 분해성 증점제는 상기 제1 작용기가 분자 간 수소 결합을 형성하여 망상 구조를 형성할 수 있다.
상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 30cP 내지 70cP의 범위를 가질 수 있다.
상기 발광 소자 잉크를 분사하는 단계에서, 상기 광 분해성 증점제는 상기 제3 작용기의 수소 결합이 분해될 수 있다.
상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 5cP 내지 15cP의 범위를 가질 수 있다.
상기 광 분해성 증점제는 상기 광이 조사되면 상기 광 분해성 작용기가 분해되어 복수의 단편 분자들을 형성할 수 있다.
상기 발광 소자를 안착시키는 단계는 상기 제1 전극과 상기 제2 전극 상에 전계를 형성하는 단계, 상기 전계에 의해 상기 발광 소자의 배향 방향이 정렬되는 단계 및 상기 용매 및 상기 단편 분자들을 제거하는 단계를 포함할 수 있다.
상기 용매 및 상기 단편 분자를 제거하는 단계는 200℃ 내지 400℃의 열처리 공정을 통해 수행될 수 있다.
상기 발광 소자는 일 방향으로 연장된 형상을 갖고, 상기 발광 소자가 연장된 상기 일 방향과 상기 제1 전극 및 상기 제2 전극이 연장된 방향이 이루는 예각은 88° 내지 90°의 범위를 가질 수 있다.
상기 과제를 해결하기 위한 일 실시예에 따른 발광 소자 잉크는 용매, 상기 용매 내에 분산되고, 복수의 반도체층 및 상기 반도체층들의 외면을 부분적으로 둘러싸는 절연막을 포함하는 발광 소자 및 상기 용매 내에 분산된 광 분해성 증점제를 포함하고, 상기 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기 및 상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며, 상기 구조식 2 내지 5 중 어느 하나로 표현된다.
상기 광 분해성 작용기는 사이클로뷰틸기(cyclobutyl), 말레익 이미드 다이머기(maleic imide dimer), 아크릴레이트 다이머기(acrylate dimer) 또는 카보닐기(carbonyl) 중 어느 하나를 포함할 수 있다.
상기 광 분해성 증점제는 상기 화학 구조식 7 내지 11 중 어느 하나로 표현될 수 있다.
전단응력이 인가되지 않는 상태에서, 상기 광 분해성 증점제는 상기 제3 작용기가 분자 간 수소 결합을 형성하여 망상 구조를 형성할 수 있다.
상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 30cP 내지 70cP의 범위를 가질 수 있다.
전단응력이 인가된 상태에서, 상기 광 분해성 증점제는 상기 제3 작용기의 분자 간 수소 결합이 분해될 수 있다.
상기 발광 소자 잉크는 전단 응력이 인가되는 상태에서 점도가 5cpP 내지 15cP의 범위를 가질 수 있다.
상기 발광 소자의 상기 반도체층은 제1 반도체층, 제2 반도체층 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치된 활성층을 포함하고, 상기 절연막은 적어도 상기 활성층의 외면을 둘러싸도록 배치될 수 있다.
상기 과제를 해결하기 위한 일 실시예에 따른 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기 및 상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며, 상기 구조식 2 내지 5 중 어느 하나로 표현된다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
일 실시예에 따른 발광 소자 용매는 광 분해성 작용기 및 이에 결합된 제1 작용기와 제2 작용기를 포함하여, 조사되는 광에 의해 광 분해성 작용기의 화학결합이 부분적으로 분해되어 점도가 낮아질 수 있다. 이에 따라 발광 소자 잉크에 포함된 발광 소자는 점도가 낮아진 발광 소자 용매 내에 분산될 수 있다.
또한 일 실시예에 따른 표시 장치의 제조 방법은 발광 소자가 분산된 발광 소자 용매를 이용하여, 점도가 낮아진 상태에서 발광 소자를 정렬하는 공정을 수행함으로써 전극 상에 배치된 발광 소자의 정렬도가 개선된 표시 장치를 제조할 수 있다.
일 실시예에 따른 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기와, 광 조사에 의해 결합이 분해되는 광 분해성 작용기를 포함할 수 있다. 광 분해성 증점제는 유동이 정지된 상태에서는 상기 중합성기에 의한 수소 결합에 의해 높은 점도를 가질 수 있다. 다만, 광 분해성 증점제에 전단 응력이 인가되면, 상기 수소 결합이 형성되지 않고 낮은 점도를 가질 수 있다.
일 실시예에 따른 발광 소자 잉크는 용매, 발광 소자 및 상기 광 분해성 증점제를 포함하여 잉크가 유동이 없을 때에는 광 분해성 증점제에 의해 상기 용매가 높은 점도를 갖고 발광 소자는 분산 상태를 장시간 유지할 수 있다. 반면, 잉크가 노즐을 통해 토출될 때에는 용매 및 광 분해성 증점제에 전단 응력이 인가됨에 따라 용매는 점도가 낮아지고, 발광 소자는 용매 내에 분산된 상태에서 노즐로부터 토출될 수 있다. 또한, 대상 기판 상에 분사된 잉크에 광이 조사되면 상기 증점제는 광 분해성 작용기의 결합이 분해될 수 있고, 잉크는 점도가 낮아져 일정 온도에서 쉽게 제거될 수 있다.
이에 따라, 일 실시예에 따르면, 발광 소자 및 광 분해성 증점제를 포함하는 발광 소자 잉크를 이용하여, 잉크젯 프린팅 공법을 통해 발광 소자를 포함하는 표시 장치를 제조할 수 있다.
실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 표시 장치의 평면도이다.
도 2는 일 실시예에 따른 표시 장치의 일 화소를 나타내는 평면도이다.
도 3은 도 2의 Ⅲa-Ⅲa'선, Ⅲb-Ⅲb'선 및 Ⅲc-Ⅲc'선을 따라 자른 단면도이다.
도 4는 다른 실시예에 따른 표시 장치의 일부를 나타내는 단면도이다.
도 5는 일 실시예에 따른 발광 소자의 개략도이다.
도 6 및 도 7은 다른 실시예에 따른 발광 소자의 개략도이다.
도 8은 일 실시예에 따른 소자 잉크를 나타내는 개략도이다.
도 9 및 도 10은 도 8의 A 부분의 확대도이다.
도 11은 일 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다.
도 12 및 도 13은 일 실시예에 따른 표시 장치의 제조 방법 중 일부를 나타내는 단면도들이다.
도 14 내지 도 16은 일 실시예에 따른 소자 용매 내에 분산된 발광 소자가 전극 상에 배치되는 것을 도시하는 개략도들이다.
도 17은 일 실시예에 따른 소자 용매가 제거된 상태를 도시하는 평면도이다.
도 18은 일 실시예에 따른 소자 용매가 제거된 상태를 도시하는 단면도이다.
도 19는 일 실시예에 따른 제2 소자 용매를 형성하는 단계를 나타내는 개략도이다.
도 20 내지 도 22는 일 실시예에 따른 소자 용매 내에 분산된 발광 소자가 전극 상에 배치되는 것을 도시하는 개략도들이다.
도 23은 일 실시예에 따른 제2 소자 용매를 제거하는 단계를 나타내는 단면도이다.
도 24는 일 실시예에 따른 발광 소자가 정렬된 것을 나타내는 평면도이다.
도 25는 일 실시예에 따른 발광 소자 잉크의 개략도이다.
도 26은 일 실시예에 따른 발광 소자 잉크에 전단 응력이 인가되지 않은 상태에서 광 분해성 증점제들의 배치를 나타내는 개략도이다.
도 27은 일 실시예에 따른 발광 소자 잉크에 전단 응력이 인가된 상태에서 광 분해성 증점제들이 배치를 나타내는 개략도이다.
도 28은 일 실시예에 따른 발광 소자 잉크에 광이 조사될 때 광 분해성 증점제를 나타내는 개략도이다.
도 29는 일 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다.
도 30 내지 도 32는 일 실시예에 따른 표시 장치의 제조 공정 중 일 단계를 나타내는 단면도들이다.
도 33 내지 도 35는 표시 장치의 제조 공정 중 발광 소자를 전극 상에 배치하는 공정을 나타내는 개략도들이다.
도 36 내지 38은 일 실시예에 따른 표시 장치의 제조 공정 중 발광 소자를 전극 상에 배치하는 공정을 나타내는 개략도들이다.
도 39는 일 실시예에 따른 표시 장치의 제조 방법 중 일부를 나타내는 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
소자(elements) 또는 층이 다른 소자 또는 층의 "상(on)"으로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
이하, 첨부된 도면을 참고로 하여 실시예들에 대해 설명한다.
도 1은 일 실시예에 따른 표시 장치의 평면도이다.
도 1을 참조하면, 표시 장치(10)는 동영상이나 정지영상을 표시한다. 표시 장치(10)는 표시 화면을 제공하는 모든 전자 장치를 지칭할 수 있다. 예를 들어, 표시 화면을 제공하는 텔레비전, 노트북, 모니터, 광고판, 사물 인터넷, 모바일 폰, 스마트 폰, 태블릿 PC(Personal Computer), 전자 시계, 스마트 워치, 워치 폰, 헤드 마운트 디스플레이, 이동 통신 단말기, 전자 수첩, 전자 책, PMP(Portable Multimedia Player), 내비게이션, 게임기, 디지털 카메라, 캠코더 등이 표시 장치(10)에 포함될 수 있다.
표시 장치(10)는 표시 화면을 제공하는 표시 패널을 포함한다. 표시 패널의 예로는 무기 발광 다이오드 표시 패널, 유기발광 표시 패널, 양자점 발광 표시 패널, 플라즈마 표시 패널, 전계방출 표시 패널 등을 들 수 있다. 이하에서는 표시 패널의 일 예로서, 무기 발광 다이오드 표시 패널이 적용된 경우를 예시하지만, 그에 제한되는 것은 아니며, 동일한 기술적 사상이 적용 가능하다면 다른 표시 패널에도 적용될 수 있다.
표시 장치(10)의 형상은 다양하게 변형될 수 있다. 예를 들어, 표시 장치(10)는 가로가 긴 직사각형, 세로가 긴 직사각형, 정사각형, 코너부(꼭지점)가 둥근 사각형, 기타 다각형, 원형 등의 형상을 가질 수 있다. 표시 장치(10)의 표시 영역(DPA)의 형상 또한 표시 장치(10)의 전반적인 형상과 유사할 수 있다. 도 1에서는 가로가 긴 직사각형 형상의 표시 장치(10) 및 표시 영역(DPA)이 예시되어 있다.
표시 장치(10)는 표시 영역(DPA)과 비표시 영역(NDA)을 포함할 수 있다. 표시 영역(DPA)은 화면이 표시될 수 있는 영역이고, 비표시 영역(NDA)은 화면이 표시되지 않는 영역이다. 표시 영역(DPA)은 활성 영역으로, 비표시 영역(NDA)은 비활성 영역으로도 지칭될 수 있다. 표시 영역(DPA)은 대체로 표시 장치(10)의 중앙을 차지할 수 있다.
표시 영역(DPA)은 복수의 화소(PX)를 포함할 수 있다. 복수의 화소(PX)는 행렬 방향으로 배열될 수 있다. 각 화소(PX)의 형상은 평면상 직사각형 또는 정사각형일 수 있지만, 이에 제한되는 것은 아니고 각 변이 일 방향에 대해 기울어진 마름모 형상일 수도 있다. 각 화소(PX)는 스트라이프(Stripe) 타입 또는 펜타일(Pentile) 타입으로 교대 배열될 수 있다. 또한, 화소(PX)들 각각은 특정 파장대의 광을 방출하는 발광 소자(30)를 하나 이상 포함하여 특정 색을 표시할 수 있다.
표시 영역(DPA)의 주변에는 비표시 영역(NDA)이 배치될 수 있다. 비표시 영역(NDA)은 표시 영역(DPA)을 전부 또는 부분적으로 둘러쌀 수 있다. 표시 영역(DPA)은 직사각형 형상이고, 비표시 영역(NDA)은 표시 영역(DPA)의 4변에 인접하도록 배치될 수 있다. 비표시 영역(NDA)은 표시 장치(10)의 베젤을 구성할 수 있다. 각 비표시 영역(NDA)들에는 표시 장치(10)에 포함되는 배선들 또는 회로 구동부들이 배치되거나, 외부 장치들이 실장될 수 있다.
도 2는 일 실시예에 따른 표시 장치의 일 화소를 나타내는 평면도이다. 도 3은 도 2의 Ⅲa-Ⅲa'선, Ⅲb-Ⅲb'선 및 Ⅲc-Ⅲc'선을 따라 자른 단면도이다.
도 2를 참조하면, 복수의 화소(PX)들 각각은 복수의 서브 화소(PXn, n은 1 내지 3의 정수)를 포함할 수 있다. 예를 들어, 하나의 화소(PX)는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 색의 광을 발광하고, 제2 서브 화소(PX2)는 제2 색의 광을 발광하며, 제3 서브 화소(PX3)는 제3 색의 광을 발광할 수 있다. 제1 색은 청색, 제2 색은 녹색, 제3 색은 적색일 수 있다. 다만, 이에 제한되지 않고, 각 서브 화소(PXn)들은 동일한 색의 광을 발광할 수도 있다. 또한, 도 2에서는 화소(PX)가 3개의 서브 화소(PXn)들을 포함하는 것을 예시하였으나, 이에 제한되지 않고, 화소(PX)는 더 많은 수의 서브 화소(PXn)들을 포함할 수 있다.
표시 장치(10)의 각 서브 화소(PXn)들은 발광 영역(EMA)으로 정의되는 영역을 포함할 수 있다. 제1 서브 화소(PX1)는 제1 발광 영역(EMA1)을, 제2 서브 화소(PX2)는 제2 발광 영역(EMA2)을, 제3 서브 화소(PX3)는 제3 발광 영역(EMA2)을 포함할 수 있다. 발광 영역(EMA)은 표시 장치(10)에 포함되는 발광 소자(30)가 배치되어 특정 파장대의 광이 출사되는 영역으로 정의될 수 있다. 발광 소자(30)는 활성층(도 5의 '36')을 포함하고, 활성층(36)은 특정 파장대의 광을 방향성 없이 방출할 수 있다. 발광 소자(30)의 활성층(36)에서 방출된 광들은 발광 소자(30)의 양 측면 방향으로 방출될 수 있다. 발광 영역(EMA)은 발광 소자(30)가 배치된 영역을 포함하여, 발광 소자(30)와 인접한 영역으로 발광 소자(30)에서 방출된 광들이 출사되는 영역을 포함할 수 있다.
이에 제한되지 않고, 발광 영역(EMA)은 발광 소자(30)에서 방출된 광이 다른 부재에 의해 반사되거나 굴절되어 출사되는 영역도 포함할 수 있다. 복수의 발광 소자(30)들은 각 서브 화소(PXn)에 배치되고, 이들이 배치된 영역과 이에 인접한 영역을 포함하여 발광 영역(EMA)을 형성할 수 있다.
도면에 도시되지 않았으나, 표시 장치(10)의 각 서브 화소(PXn)들은 발광 영역(EMA) 이외의 영역으로 정의된 비발광 영역을 포함할 수 있다. 비발광 영역은 발광 소자(30)가 배치되지 않고, 발광 소자(30)에서 방출된 광들이 도달하지 않아 광이 출사되지 않는 영역일 수 있다.
도 3은 도 2의 제1 서브 화소(PX1)의 단면만을 도시하고 있으나, 다른 화소(PX) 또는 서브 화소(PXn)의 경우에도 동일하게 적용될 수 있다. 도 3은 도 2의 제1 서브 화소(PX1)에 배치된 발광 소자(30)의 일 단부와 타 단부를 가로지르는 단면을 도시하고 있다.
도 2에 결부하여 도 3을 참조하면, 표시 장치(10)는 제1 기판(11), 및 제1 기판(11) 상에 배치되는 회로 소자층과 표시 소자층을 포함할 수 있다. 제1 기판(11) 상에는 반도체층, 복수의 도전층, 및 복수의 절연층이 배치되고, 이들은 각각 회로 소자층과 표시 소자층을 구성할 수 있다. 복수의 도전층은 제1 평탄화층(19)의 하부에 배치되어 회로소자층을 구성하는 제1 게이트 도전층, 제2 게이트 도전층, 제1 데이터 도전층, 제2 데이터 도전층과, 제1 평탄화층(19) 상에 배치되어 표시소자층을 구성하는 전극(21, 22) 및 접촉 전극(26)들을 포함할 수 있다. 복수의 절연층은 버퍼층(12), 제1 게이트 절연층(13), 제1 보호층(15), 제1 층간 절연층(17), 제2 층간 절연층(18), 제1 평탄화층(19), 제1 절연층(51), 제2 절연층(52), 제3 절연층(53) 및 제4 절연층(54) 등을 포함할 수 있다.
구체적으로, 제1 기판(11)은 절연 기판일 수 있다. 제1 기판(11)은 유리, 석영, 또는 고분자 수지 등의 절연 물질로 이루어질 수 있다. 또한, 제1 기판(11)은 리지드(Rigid) 기판일 수 있지만, 벤딩(bending), 폴딩(folding), 롤링(rolling) 등이 가능한 플렉시블(flexible) 기판일 수도 있다.
차광층(BML1, BML2)은 제1 기판(11) 상에 배치될 수 있다. 차광층(BML1, BML2)은 제1 차광층(BML1) 및 제2 차광층(BML2)을 포함할 수 있다. 제1 차광층(BML1)과 제2 차광층(BML2)은 적어도 각각 구동 트랜지스터(DT)의 제1 활성물질층(DT_ACT) 및 스위칭 트랜지스터(ST)의 제2 활성물질층(ST_ACT)과 중첩하도록 배치된다. 차광층(BML1, BML2)은 광을 차단하는 재료를 포함하여, 제1 및 제2 활성물질층(DT_ACT, ST_ACT)에 광이 입사되는 것을 방지할 수 있다. 일 예로, 제1 및 제2 차광층(BML1, BML2)은 광의 투과를 차단하는 불투명한 금속 물질로 형성될 수 있다. 다만, 이에 제한되지 않으며 경우에 따라서 차광층(BML1, BML2)은 생략되거나, 제1 활성물질층(DT_ACT)의 하부에만 형성될 수도 있다.
버퍼층(12)은 차광층(BML1, BML2)을 포함하여 제1 기판(11) 상에 전면적으로 배치될 수 있다. 버퍼층(12)은 투습에 취약한 제1 기판(11)을 통해 침투하는 수분으로부터 화소(PX)의 트랜지스터(DT, ST)들을 보호하기 위해 제1 기판(11) 상에 형성되며, 표면 평탄화 기능을 수행할 수 있다. 버퍼층(12)은 교번하여 적층된 복수의 무기층들로 이루어질 수 있다. 예를 들어, 버퍼층(12)은 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON) 중 적어도 어느 하나를 포함하는 무기층이 교번하여 적층된 다중층으로 형성될 수 있다.
반도체층은 버퍼층(12) 상에 배치된다. 반도체층은 구동 트랜지스터(DT)의 제1 활성물질층(DT_ACT)과 스위칭 트랜지스터(ST)의 제2 활성물질층(ST_ACT)을 포함할 수 있다. 이들은 후술하는 제1 게이트 도전층의 게이트 전극(DT_G, ST_G)등과 부분적으로 중첩하도록 배치될 수 있다.
예시적인 실시예에서, 반도체층은 다결정 실리콘, 단결정 실리콘, 산화물 반도체 등을 포함할 수 있다. 다결정 실리콘은 비정질 실리콘을 결정화하여 형성될 수 있다. 반도체층이 다결정 실리콘을 포함하는 경우, 제1 활성물질층(DT_ACT)은 제1 도핑 영역(DT_ACTa), 제2 도핑 영역(DT_ACTb) 및 제1 채널 영역(DT_ACTc)을 포함할 수 있다. 제1 채널 영역(DT_ACTc)은 제1 도핑 영역(DT_ACTa)과 제2 도핑 영역(DT_ACTb) 사이에 배치될 수 있다. 제2 활성물질층(ST_ACT)은 제3 도핑 영역(ST_ACTa), 제4 도핑 영역(ST_ACTb) 및 제2 채널 영역(ST_ACTc)을 포함할 수 있다. 제2 채널 영역(ST_ACTc)은 제3 도핑 영역(ST_ACTa)과 제4 도핑 영역(ST_ACTb) 사이에 배치될 수 있다. 제1 도핑 영역(DT_ACTa), 제2 도핑 영역(DT_ACTb), 제3 도핑 영역(ST_ACTa) 및 제4 도핑 영역(ST_ACTb)은 제1 활성물질층(DT_ACT) 및 제2 활성물질층(ST_ACT)의 일부 영역이 불순물로 도핑된 영역일 수 있다.
다른 예시적인 실시예에서, 제1 활성물질층(DT_ACT) 및 제2 활성물질층(ST_ACT)은 산화물 반도체를 포함할 수도 있다. 이 경우, 제1 활성물질층(DT_ACT)과 제2 활성물질층(ST_ACT)의 도핑 영역은 각각 도체화 영역일 수 있다. 상기 산화물 반도체는 인듐(In)을 함유하는 산화물 반도체일 수 있다. 몇몇 실시예에서, 상기 산화물 반도체는 인듐-주석 산화물(Indium-Tin Oxide, ITO), 인듐-아연 산화물(Indium-Zinc Oxide, IZO), 인듐-갈륨 산화물(Indium-Gallium Oxide, IGO), 인듐-아연-주석 산화물(Indium-Zinc-Tin Oxide, IZTO), 인듐-갈륨-주석 산화물(Indium-Gallium-Tin Oxide, IGTO), 인듐-갈륨-아연-주석 산화물(Indium-Gallium-Zinc-Tin Oxide, IGZTO) 등일 수 있다. 다만, 이에 제한되지 않는다.
제1 게이트 절연층(13)은 반도체층 및 버퍼층(12)상에 배치된다. 제1 게이트 절연층(13)은 반도체층을 포함하여, 버퍼층(12) 상에 배치될 수 있다. 제1 게이트 절연층(13)은 구동 트랜지스터(DT) 및 스위칭 트랜지스터(ST)의 게이트 절연막으로 기능할 수 있다. 제1 게이트 절연층(13)은 무기물, 예컨대 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON)을 포함하는 무기층으로 이루어지거나, 이들이 적층된 구조로 형성될 수 있다.
제1 게이트 도전층은 제1 게이트 절연층(13) 상에 배치된다. 제1 게이트 도전층은 구동 트랜지스터(DT)의 제1 게이트 전극(DT_G)과 스위칭 트랜지스터(ST)의 제2 게이트 전극(ST_G)을 포함할 수 있다. 제1 게이트 전극(DT_G)은 제1 활성물질층(DT_ACT)의 제1 채널 영역(DT_ACTc)과 두께 방향으로 중첩하도록 배치되고, 제2 게이트 전극(ST_G)은 제2 활성물질층(ST_ACT)의 제2 채널 영역(ST_ACTc)과 두께 방향으로 중첩하도록 배치될 수 있다.
제1 게이트 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 보호층(15)은 제1 게이트 도전층 상에 배치된다. 제1 보호층(15)은 제1 게이트 도전층을 덮도록 배치되어 이를 보호하는 기능을 수행할 수 있다. 제1 보호층(15)은 무기물, 예컨대 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON)을 포함하는 무기층으로 이루어지거나, 이들이 적층된 구조로 형성될 수 있다.
제2 게이트 도전층은 제1 보호층(15) 상에 배치된다. 제2 게이트 도전층은 적어도 일부 영역이 제1 게이트 전극(DT_G)과 두께 방향으로 중첩하도록 배치된 스토리지 커패시터(Storage capacitor)의 제1 용량 전극(CE1)을 포함할 수 있다. 제1 용량 전극(CE1)은 제1 보호층(15)을 사이에 두고 제1 게이트 전극(DT_G)과 두께 방향으로 중첩하고, 이들 사이에는 스토리지 커패시터가 형성될 수 있다. 제2 게이트 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 층간 절연층(17)은 제2 게이트 도전층 상에 배치된다. 제1 층간 절연층(17)은 제2 게이트 도전층과 그 위에 배치되는 다른 층들 사이에서 절연막의 기능을 수행할 수 있다. 제1 층간 절연층(17)은 무기물, 예컨대 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON)을 포함하는 무기층으로 이루어지거나, 이들이 적층된 구조로 형성될 수 있다.
제1 데이터 도전층은 제1 층간 절연층(17) 상에 배치된다. 제1 게이트 도전층은 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 제2 소스/드레인 전극(DT_SD2), 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)과 제2 소스/드레인 전극(ST_SD2)을 포함할 수 있다.
구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 제2 소스/드레인 전극(DT_SD2)은 제1 층간 절연층(17)과 제1 게이트 절연층(13)을 관통하는 컨택홀을 통해 제1 활성물질층(DT_ACT)의 제1 도핑 영역(DT_ACTa) 및 제2 도핑 영역(DT_ACTb)과 각각 접촉될 수 있다. 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)과 제2 소스/드레인 전극(ST_SD2)은 제1 층간 절연층(17)과 제1 게이트 절연층(13)을 관통하는 컨택홀을 통해 제2 활성물질층(ST_ACT)의 제3 도핑 영역(ST_ACTa) 및 제4 도핑 영역(ST_ACTb)과 각각 접촉될 수 있다. 또한, 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(ST_SD1)은 또 다른 컨택홀을 통해 각각 제1 차광층(BML1) 및 제2 차광층(BML2)과 전기적으로 연결될 수 있다. 한편, 구동 트랜지스터(DT)와 스위칭 트랜지스터(ST)의 제1 소스/드레인 전극(DT_SD1, ST_SD1) 및 제2 소스/드레인 전극(DT_SD2, ST_SD2)은 어느 한 전극이 소스 전극인 경우 다른 전극은 드레인 전극일 수 있다. 다만 이에 제한되지 않고, 제1 소스/드레인 전극(DT_SD1, ST_SD1) 및 제2 소스/드레인 전극(DT_SD2, ST_SD2)은 어느 한 전극이 드레인 전극인 경우 다른 전극은 소스 전극일 수 있다.
제1 데이터 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제2 층간 절연층(18)은 제1 데이터 도전층 상에 배치될 수 있다. 제2 층간 절연층(18)은 제1 데이터 도전층을 덮으며 제1 층간 절연층(17) 상에 전면적으로 배치되고, 제1 데이터 도전층을 보호하는 기능을 수행할 수 있다. 제2 층간 절연층(18)은 무기물, 예컨대 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiON)을 포함하는 무기층으로 이루어지거나, 이들이 적층된 구조로 형성될 수 있다.
제2 데이터 도전층은 제2 층간 절연층(18) 상에 배치된다. 제2 데이터 도전층은 제1 전압 배선(VL1), 제2 전압 배선(VL2), 및 제1 도전 패턴(CDP)을 포함할 수 있다. 제1 전압 배선(VL1)은 구동 트랜지스터(DT)에 공급되는 고전위 전압(또는, 제1 전원 전압, VDD)이 인가되고, 제2 전압 배선(VL2)은 제2 전극(22)에 공급되는 저전위 전압(또는, 제2 전원 전압, VSS)이 인가될 수 있다. 후술할 바와 같이, 제1 전원 전압은 구동 트랜지스터(DT)를 통해 제1 전극(21)으로 전달될 수 있고, 제2 전원 전압은 컨택홀을 통해 제2 전압 배선(VL2)과 연결된 제2 전극(22)으로 전달될 수 있다. 제2 전압 배선(VL2)은 표시 장치(10)의 제조 공정 중, 발광 소자(30)를 정렬시키기 데에 필요한 정렬 신호가 인가될 수도 있다.
제1 도전 패턴(CDP)은 제2 층간 절연층(18)에 형성된 컨택홀을 통해 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 전기적으로 연결될 수 있다. 제1 도전 패턴(CDP)은 후술하는 제1 전극(21)과도 접촉하며, 구동 트랜지스터(DT)는 제1 전압 배선(VL1)으로부터 인가되는 제1 전원 전압(VDD)을 제1 도전 패턴(CDP)을 통해 제1 전극(21)으로 전달할 수 있다. 한편, 도면에서는 제2 데이터 도전층이 하나의 제2 전압 배선(VL2)과 하나의 제1 전압 배선(VL1)을 포함하는 것이 도시되어 있으나, 이에 제한되지 않는다. 제2 데이터 도전층은 더 많은 수의 제1 전압 배선(VL1)과 제2 전압 배선(VL2)을 포함할 수 있다.
제2 데이터 도전층은 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어진 단일층 또는 다중층으로 형성될 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 평탄화층(19)은 제2 데이터 도전층 상에 배치된다. 제1 평탄화층(19)은 유기 절연 물질, 예를 들어 폴리이미드(Polyimide, PI)와 같은 유기 물질을 포함하여, 표면 평탄화 기능을 수행할 수 있다.
제1 평탄화층(19) 상에는 내부 뱅크(41, 42), 복수의 전극(21, 22), 외부 뱅크(45), 복수의 접촉 전극(26), 및 발광 소자(30)가 배치된다. 또한, 제1 평탄화층(19) 상에는 복수의 절연층(51, 52, 53, 54)들이 더 배치될 수 있다.
내부 뱅크(41, 42)는 제1 평탄화층(19) 상에 직접 배치될 수 있다. 내부 뱅크(41, 42)는 각 서브 화소(PXn)의 중심부에 인접하여 배치된 제1 내부 뱅크(41)와 제2 내부 뱅크(42)를 포함할 수 있다.
제1 내부 뱅크(41)와 제2 내부 뱅크(42)는 제1 방향(DR1)으로 서로 이격 대향하도록 배치될 수 있다. 내부 뱅크(41, 42)는 서로 이격 대향하도록 배치됨으로써 이들 사이에 발광 소자(30)가 배치되는 영역을 형성할 수 있다. 또한, 제1 내부 뱅크(41)와 제2 내부 뱅크(42)는 제2 방향(DR2)으로 연장되되, 제2 방향(DR2)으로 이웃하는 다른 서브 화소(PXn)로 연장되지 않도록 서브 화소(PXn)들 간의 경계에서 이격되어 종지할 수 있다. 이에 따라 제1 내부 뱅크(41)와 제2 내부 뱅크(42)는 각 서브 화소(PXn) 마다 배치되어 표시 장치(10)의 전면에 있어 패턴을 이룰 수 있다. 도 3에서는 하나의 제1 내부 뱅크(41)와 하나의 제2 내부 뱅크(42)만 도시하고 있으나, 이에 제한되지 않는다. 후술하는 전극(21, 22)의 수에 따라 더 많은 수의 내부 뱅크(41, 42)들이 더 배치될 수도 있다.
제1 내부 뱅크(41)와 제2 내부 뱅크(42)는 제1 평탄화층(19)의 상면을 기준으로 적어도 일부가 돌출된 구조를 가질 수 있다. 제1 내부 뱅크(41)와 제2 내부 뱅크(42)의 돌출된 부분은 경사진 측면을 가질 수 있고, 발광 소자(30)에서 방출된 광은 내부 뱅크(41, 42)의 경사진 측면을 향해 진행될 수 있다. 후술할 바와 같이, 내부 뱅크(41, 42) 상에 배치되는 전극(21, 22)들은 반사율이 높은 재료를 포함할 수 있고, 발광 소자(30)에서 방출된 광은 내부 뱅크(41, 42)의 측면에 배치된 전극(21, 22)에서 반사되어 제1 평탄화층(19)의 상부 방향으로 출사될 수 있다. 즉, 내부 뱅크(41, 42)는 발광 소자(30)가 배치되는 영역을 제공함과 동시에 발광 소자(30)에서 방출된 광을 상부 방향으로 반사시키는 반사격벽의 기능을 수행할 수도 있다. 예시적인 실시예에서 내부 뱅크(41, 42)들은 폴리이미드(Polyimide, PI)와 같은 유기 절연 물질을 포함할 수 있으나, 이에 제한되지 않는다.
복수의 전극(21, 22)은 내부 뱅크(41, 42)와 제1 평탄화층(19) 상에 배치된다. 복수의 전극(21, 22)은 발광 소자(30)들과 전기적으로 연결되고, 발광 소자(30)가 특정 파장대의 광을 방출하도록 소정의 전압이 인가될 수 있다. 또한, 각 전극(21, 22)의 적어도 일부는 발광 소자(30)를 정렬하기 위해 서브 화소(PXn) 내에 전기장을 형성하는 데에 활용될 수 있다.
복수의 전극(21, 22)은 제1 내부 뱅크(41) 상에 배치된 제1 전극(21)과 제2 내부 뱅크(42) 상에 배치된 제2 전극(22)을 포함할 수 있다.
제1 전극(21)과 제2 전극(22)은 각각 제1 방향(DR1)으로 연장되어 배치되는 전극 줄기부(21S, 22S)와 전극 줄기부(21S, 22S)에서 제1 방향(DR1)과 교차하는 방향인 제2 방향(DR2)으로 연장되어 분지되는 적어도 하나의 전극 가지부(21B, 22B)를 포함할 수 있다.
제1 전극(21)은 제1 방향(DR1)으로 연장되어 배치되는 제1 전극 줄기부(21S)와 제1 전극 줄기부(21S)에서 분지되어 제2 방향(DR2)으로 연장된 적어도 하나의 제1 전극 가지부(21B)를 포함할 수 있다.
제1 전극 줄기부(21S)는 양 단이 각 서브 화소(PXn) 사이에서 이격되어 종지하되, 동일 행(예컨대, 제1 방향(DR1)으로 인접한)에서 이웃하는 서브 화소의 제1 전극 줄기부(21S)와 실질적으로 동일 직선 상에 놓일 수 있다. 각 서브 화소(PXn)에 배치되는 제1 전극 줄기부(21S)들은 양 단이 상호 이격됨으로써 각 제1 전극 가지부(21B)에 서로 다른 전기 신호를 인가할 수 있고, 제1 전극 가지부(21B)는 각각 별개로 구동될 수 있다. 제1 전극(21)은 제1 평탄화층(19)을 관통하는 제1 컨택홀(CT1)을 통해 제1 도전 패턴(CDP)과 접촉하고, 이를 통해 구동 트랜지스터(DT)의 제1 소스/드레인 전극(DT_SD1)과 전기적으로 연결될 수 있다.
제1 전극 가지부(21B)는 제1 전극 줄기부(21S)의 적어도 일부에서 분지되고 제2 방향(DR2)으로 연장되어 배치되되, 제1 전극 줄기부(21S)와 대향하여 배치된 제2 전극 줄기부(22S)와 이격된 상태에서 종지할 수 있다.
제2 전극(22)은 제1 방향(DR1)으로 연장되어 제1 전극 줄기부(21S)와 제2 방향(DR2)으로 이격되어 대향하는 제2 전극 줄기부(22S)와 제2 전극 줄기부(22S)에서 분지되고 제2 방향(DR2)으로 연장된 제2 전극 가지부(22B)를 포함할 수 있다.
제2 전극 줄기부(22S)는 제1 방향(DR1)으로 연장되어 인접한 다른 서브 화소(PXn)와의 경계를 넘어 배치될 수 있다. 복수의 서브 화소(PXn)를 가로지르는 제2 전극 줄기부(22S)는 표시 영역(DPA)의 외곽부, 또는 비표시 영역(NDA)에서 일 방향으로 연장된 부분과 연결될 수 있다. 제2 전극(22)은 제1 평탄화층(19)을 관통하는 제2 컨택홀(CT2)을 통해 제2 전압 배선(VL2)과 접촉할 수 있다. 도면에 도시된 바와 같이, 제1 방향(DR1)으로 이웃하는 서브 화소(PXn)의 제2 전극(22)들은 하나의 제2 전극 줄기부(22S)와 연결되어 제2 컨택홀(CT2)을 통해 제2 전압 배선(VL2)과 전기적으로 연결될 수 있다. 다만, 이에 제한되지 않으며, 경우에 따라서는 제2 컨택홀(CT2)의 경우에도 각 서브 화소(PXn) 마다 형성될 수 있다.
제2 전극 가지부(22B)는 제1 전극 가지부(21B)와 이격되어 대향하고, 제1 전극 줄기부(21S)와 이격된 상태에서 종지될 수 있다. 제2 전극 가지부(22B)는 제2 전극 줄기부(22S)와 연결되고, 연장된 방향의 단부는 제1 전극 줄기부(21S)와 이격된 상태로 서브 화소(PXn) 내에 배치될 수 있다.
한편, 도면에서는 각 서브 화소(PXn)마다 두개의 제1 전극 가지부(21B)와 하나의 제2 전극 가지부(22B)가 배치된 것이 도시되어 있으나, 이에 제한되지 않는다. 몇몇 실시예에서 각 서브 화소(PXn)마다 배치되는 제1 전극 가지부(21B)와 제2 전극 가지부(22B)의 수는 더 많을 수 있다. 또한, 각 서브 화소(PXn)에 배치된 제1 전극(21)과 제2 전극(22)은 반드시 일 방향으로 연장된 형상을 갖지 않을 수 있으며, 제1 전극(21)과 제2 전극(22)은 다양한 구조로 배치될 수 있다. 예를 들어, 제1 전극(21)과 제2 전극(22)은 부분적으로 곡률지거나, 절곡된 형상을 가질 수 있고, 어느 한 전극이 다른 전극을 둘러싸도록 배치될 수도 있다. 제1 전극(21)과 제2 전극(22)은 적어도 일부 영역이 서로 이격되어 대향함으로써, 그 사이에 발광 소자(30)가 배치될 영역이 형성된다면 이들이 배치되는 구조나 형상은 특별히 제한되지 않는다.
제1 전극(21)과 제2 전극(22)은 각각 제1 내부 뱅크(41)와 제2 내부 뱅크(42) 상에 배치되고, 이들은 서로 이격 대향할 수 있다. 제1 전극(21)과 제2 전극(22)은 각 전극 가지부(21B, 22B)들이 제1 내부 뱅크(41) 및 제2 내부 뱅크(42) 상에 배치되되, 적어도 일부 영역은 제1 평탄화층(19) 상에 직접 배치될 수 있다. 제1 내부 뱅크(41)와 제2 내부 뱅크(42) 사이에 배치된 복수의 발광 소자(30)들은 적어도 일 단부가 제1 전극(21) 및 제2 전극(22)과 전기적으로 연결될 수 있다.
각 전극(21, 22)은 투명성 전도성 물질을 포함할 수 있다. 일 예로, 각 전극(21, 22)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ITZO(Indium Tin-Zinc Oxide) 등과 같은 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. 몇몇 실시예에서, 각 전극(21, 22)은 반사율이 높은 전도성 물질을 포함할 수 있다. 예를 들어, 각 전극(21, 22)은 반사율이 높은 물질로 은(Ag), 구리(Cu), 알루미늄(Al) 등과 같은 금속을 포함할 수 있다. 이 경우, 각 전극(21, 22)으로 입사되는 광을 반사시켜 각 서브 화소(PXn)의 상부 방향으로 출사시킬 수도 있다.
또한, 전극(21, 22)은 투명성 전도성 물질과 반사율이 높은 금속층이 각각 한층 이상 적층된 구조를 이루거나, 이들을 포함하여 하나의 층으로 형성될 수도 있다. 예시적인 실시예에서, 각 전극(21, 22)은 ITO/은(Ag)/ITO/IZO의 적층구조를 갖거나, 알루미늄(Al), 니켈(Ni), 란타늄(La) 등을 포함하는 합금일 수 있다. 다만, 이에 제한되는 것은 아니다.
복수의 전극(21, 22)들은 발광 소자(30)들과 전기적으로 연결되고, 발광 소자(30)가 광을 방출하도록 소정의 전압을 인가 받을 수 있다. 예를 들어, 복수의 전극(21, 22)들은 후술하는 접촉 전극(26)을 통해 발광 소자(30)와 전기적으로 연결되고, 전극(21, 22)들로 인가된 전기 신호를 접촉 전극(26)을 통해 발광 소자(30)에 전달할 수 있다.
예시적인 실시예에서, 제1 전극(21)은 각 서브 화소(PXn) 마다 분리된 화소 전극이고, 제2 전극(22)은 각 서브 화소(PXn)를 따라 공통으로 연결된 공통 전극일 수 있다. 제1 전극(21)과 제2 전극(22) 중 어느 하나는 발광 소자(30)의 애노드(Anode) 전극이고, 다른 하나는 발광 소자(30)의 캐소드(Cathode) 전극일 수 있다. 다만, 이에 제한되지 않으며 그 반대의 경우일 수도 있다.
또한, 각 전극(21, 22)은 발광 소자(30)를 정렬하기 위해 서브 화소(PXn) 내에 전기장을 형성하는 데에 활용될 수도 있다. 발광 소자(30)는 제1 전극(21)과 제2 전극(22)에 정렬 신호를 인가하여 제1 전극(21)과 제2 전극(22) 사이에 전기장을 형성하는 공정을 통해 제1 전극(21)과 제2 전극(22) 사이에 배치될 수 있다. 발광 소자(30)는 잉크젯 프린팅 공정을 통해 잉크에 분산된 상태로 제1 전극(21)과 제2 전극(22) 상에 분사되고, 제1 전극(21)과 제2 전극(22) 사이에 정렬 신호를 인가하여 발광 소자(30)에 유전영동힘(Dieletrophoretic Force)을 인가하는 방법을 통해 이들 사이에 정렬될 수 있다.
제1 절연층(51)은 제1 평탄화층(19), 제1 전극(21) 및 제2 전극(22) 상에 배치된다. 제1 절연층(51)은 제1 전극(21) 및 제2 전극(22)을 부분적으로 덮도록 배치된다. 제1 절연층(51)은 제1 전극(21)과 제2 전극(22)의 상면을 대부분 덮도록 배치되되, 제1 전극(21)과 제2 전극(22)의 일부를 노출시킬 수 있다. 제1 절연층(51)은 제1 전극(21)과 제2 전극(22)의 상면 중 일부, 예컨대 제1 내부 뱅크(41) 상에 배치된 제1 전극 가지부(21B)의 상면과 제2 내부 뱅크(42) 상에 배치된 제2 전극 가지부(22B)의 상면 중 일부가 노출되도록 배치될 수 있다. 제1 절연층(51)은 실질적으로 제1 평탄화층(19) 상에 전면적으로 형성되되, 제1 전극(21)과 제2 전극(22)을 부분적으로 노출하는 개구부를 포함할 수 있다.
예시적인 실시예에서, 제1 절연층(51)은 제1 전극(21)과 제2 전극(22) 사이에서 상면의 일부가 함몰되도록 단차가 형성될 수 있다. 몇몇 실시예에서, 제1 절연층(51)은 무기물 절연성 물질을 포함하고, 제1 전극(21)과 제2 전극(22)을 덮도록 배치된 제1 절연층(51)은 하부에 배치되는 부재의 단차에 의해 상면의 일부가 함몰될 수 있다. 제1 전극(21)과 제2 전극(22) 사이에서 제1 절연층(51) 상에 배치되는 발광 소자(30)는 제1 절연층(51)의 함몰된 상면 사이에서 빈 공간을 형성할 수 있다. 발광 소자(30)는 제1 절연층(51)의 상면과 부분적으로 이격된 상태로 배치될 수 있고, 후술하는 제2 절연층(52)을 이루는 재료가 상기 공간에 채워질 수도 있다. 다만, 이에 제한되지 않는다. 제1 절연층(51)은 발광 소자(30)가 배치되도록 평탄한 상면을 형성할 수 있다.
제1 절연층(51)은 제1 전극(21)과 제2 전극(22)을 보호함과 동시에 이들을 상호 절연시킬 수 있다. 또한, 제1 절연층(51) 상에 배치되는 발광 소자(30)가 다른 부재들과 직접 접촉하여 손상되는 것을 방지할 수도 있다. 다만, 제1 절연층(51)의 형상 및 구조는 이에 제한되지 않는다.
외부 뱅크(45)는 제1 절연층(51) 상에 배치될 수 있다. 몇몇 실시예에서, 외부 뱅크(45)는 제1 절연층(51) 상에서 내부 뱅크(41, 42) 및 전극(21, 22)들이 배치된 영역을 포함하여 발광 소자(30)가 배치된 영역을 둘러싸며 각 서브 화소(PXn)들 간의 경계에 배치될 수 있다. 외부 뱅크(45)는 제1 방향(DR1) 및 제2 방향(DR2)으로 연장된 형상을 갖도록 배치되어 표시 영역(DPA) 전면에 걸쳐 격자형 패턴을 형성할 수 있다.
일 실시예에 따르면, 외부 뱅크(45)의 높이는 내부 뱅크(41, 42)의 높이보다 클 수 있다. 내부 뱅크(41, 42)와 달리, 외부 뱅크(45)는 이웃하는 서브 화소(PXn)들을 구분함과 동시에 후술할 바와 같이 표시 장치(10)의 제조 공정 중 발광 소자(30)를 배치하기 위한 잉크젯 프린팅 공정에서 잉크가 인접한 서브 화소(PXn)로 넘치는 것을 방지하는 기능을 수행할 수 있다. 외부 뱅크(45)는 서로 다른 서브 화소(PXn)마다 다른 발광 소자(30)들이 분산된 잉크가 서로 혼합되지 않도록 이들을 분리시킬 수 있다. 외부 뱅크(45)는 내부 뱅크(41, 42)와 같이 폴리이미드(Polyimide, PI)를 포함할 수 있으나, 다만, 이에 제한되는 것은 아니다.
발광 소자(30)는 각 전극(21, 22) 사이에 배치될 수 있다. 예시적으로, 발광 소자(30)는 각 전극 가지부(21B, 22B) 사이에 배치될 수 있다. 복수의 발광 소자(30)들은 서로 이격되어 배치되며 실질적으로 상호 평행하게 정렬될 수 있다. 발광 소자(30)들이 이격되는 간격은 특별히 제한되지 않는다. 경우에 따라서 복수의 발광 소자(30)들이 인접하게 배치되어 무리를 이루고, 다른 복수의 발광 소자(30)들은 일정 간격 이격된 상태로 무리를 이룰 수도 있으며, 불균일한 밀집도를 갖고 배치될 수도 있다. 또한, 예시적인 실시예에서 발광 소자(30)는 일 방향으로 연장된 형상을 가지며, 각 전극(21, 22)들이 연장된 방향과 발광 소자(30)가 연장된 방향은 실질적으로 수직을 이룰 수 있다. 다만, 이에 제한되지 않으며, 발광 소자(30)는 각 전극(21, 22)들이 연장된 방향에 수직하지 않고 비스듬히 배치될 수도 있다.
일 실시예에 따른 발광 소자(30)는 서로 다른 물질을 포함하는 활성층(36)을 포함하여 서로 다른 파장대의 광을 외부로 방출할 수 있다. 표시 장치(10)는 서로 다른 파장대의 광을 방출하는 발광 소자(30)들을 포함할 수 있다. 예를 들어, 제1 서브 화소(PX1)의 발광 소자(30)는 중심 파장대역이 제1 파장인 제1 색의 광을 방출하는 활성층(36)을 포함하고, 제2 서브 화소(PX2)의 발광 소자(30)는 중심 파장대역이 제2 파장인 제2 색의 광을 방출하는 활성층(36)을 포함하고, 제3 서브 화소(PX3)의 발광 소자(30)는 중심 파장대역이 제3 파장인 제3 색의 광을 방출하는 활성층(36)을 포함할 수 있다.
이에 따라 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에서는 각각 제1 색, 제2 색 및 제3 색의 광이 출사될 수 있다. 몇몇 실시예에서, 제1 색의 광은 중심 파장대역이 450nm 내지 495nm의 범위를 갖는 청색광이고, 제2 색의 광은 중심 파장대역이 495nm 내지 570nm의 범위를 갖는 녹색광이고, 제3 색의 광은 중심 파장대역이 620nm 내지 752nm의 범위를 갖는 적색광 일 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 동일한 종류의 발광 소자(30)를 포함하여 실질적으로 동일한 색의 광을 방출할 수도 있다.
발광 소자(30)는 내부 뱅크(41, 42)들 사이 또는 각 전극(21, 22) 사이에서 제1 절연층(51) 상에 배치될 수 있다. 예를 들어, 발광 소자(30)는 내부 뱅크(41, 42) 사이에 배치된 제1 절연층(51) 상에 배치될 수 있다. 이와 동시에 발광 소자(30)는 일부 영역이 각 전극(21, 22)과 두께 방향으로 중첩하도록 배치될 수 있다. 발광 소자(30)의 일 단부는 제1 전극(21)과 두께 방향으로 중첩하여 제1 전극(21) 상에 놓이고, 타 단부는 제2 전극(22)과 두께 방향으로 중첩하여 제2 전극(22) 상에 놓일 수 있다. 다만, 이에 제한되지 않으며, 도면에 도시되지 않았으나 각 서브 화소(PXn) 내에 배치된 발광 소자(30)들 중 적어도 일부는 내부 뱅크(41, 42) 사이에 형성된 영역 이외의 영역, 예를 들어각 전극 가지부(21B, 22B) 사이 이외의 영역, 또는 내부 뱅크(41, 42)와 외부 뱅크(45) 사이에 배치될 수도 있다.
발광 소자(30)는 제1 기판(11) 또는 제1 평탄화층(19)의 상면에 수직한 방향으로 복수의 층들이 배치될 수 있다. 일 실시예에 따르면, 발광 소자(30)는 일 방향으로 연장된 형상을 갖고 복수의 반도체층들이 일 방향으로 순차적으로 배치된 구조를 가질 수 있다. 표시 장치(10)의 발광 소자(30)는 연장된 일 방향이 제1 평탄화층(19)과 평행하도록 배치되고, 발광 소자(30)에 포함된 복수의 반도체층들은 제1 평탄화층(19)의 상면과 평행한 방향을 따라 순차적으로 배치될 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서는 발광 소자(30)가 다른 구조를 갖는 경우, 복수의 층들은 제1 평탄화층(19)에 수직한 방향으로 배치될 수도 있다.
또한, 발광 소자(30)의 일 단부는 제1 접촉 전극(26a)과 접촉하고, 타 단부는 제2 접촉 전극(26b)과 접촉할 수 있다. 일 실시예에 따르면, 발광 소자(30)는 연장된 일 방향측 단부면에는 절연막(도 5의 '38')이 형성되지 않고 반도체층 일부가 노출되기 때문에, 상기 노출된 반도체층은 후술하는 제1 접촉 전극(26a) 및 제2 접촉 전극(26b)과 접촉할 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서 발광 소자(30)는 절연막(38) 중 적어도 일부 영역이 제거되고, 절연막(38)이 제거되어 반도체층들의 양 단부 측면이 부분적으로 노출될 수 있다.
제2 절연층(52)은 제1 전극(21)과 제2 전극(22) 사이에 배치된 발광 소자(30) 상에 부분적으로 배치될 수 있다. 제2 절연층(52)은 발광 소자(30)의 외면을 부분적으로 감싸도록 배치될 수 있다. 제2 절연층(52) 중 발광 소자(30) 상에 배치된 부분은 평면상 제1 전극(21)과 제2 전극(22) 사이에서 제2 방향(DR2)으로 연장된 형상을 가질 수 있다. 일 예로, 제2 절연층(52)은 각 서브 화소(PXn) 내에서 스트라이프(Stripe)형 또는 아일랜드(Island)형 패턴을 형성할 수 있다.
제2 절연층(52)은 발광 소자(30) 상에 배치되되, 발광 소자(30)의 일 단부 및 타 단부를 노출할 수 있다. 발광 소자(30)의 노출된 단부는 후술하는 접촉 전극(26)과 접촉할 수 있다. 이러한 제2 절연층(52)의 형상은 통상적인 마스크 공정을 이용하여 제2 절연층(52)을 이루는 재료를 이용한 패터닝 공정으로 형성된 것일 수 있다. 제2 절연층(52)을 형성하기 위한 마스크는 발광 소자(30)의 길이보다 좁은 폭을 갖고, 제2 절연층(52)을 이루는 재료가 패터닝되어 발광 소자(30)의 양 단부가 노출될 수 있다. 다만, 이에 제한되는 것은 아니다.
제2 절연층(52)은 발광 소자(30)를 보호함과 동시에 표시 장치(10)의 제조 공정에서 발광 소자(30)를 고정시키는 기능을 수행할 수도 있다. 또한, 예시적인 실시예에서, 제2 절연층(52)의 재료 중 일부는 발광 소자(30)의 하면과 제1 절연층(51) 사이에 배치될 수도 있다. 상술한 바와 같이 제2 절연층(52)은 표시 장치(10)의 제조 공정 중에 형성된 제1 절연층(51)과 발광 소자(30) 사이의 공간을 채우도록 형성될 수도 있다. 이에 따라 제2 절연층(52)은 발광 소자(30)의 외면을 감싸도록 배치되어 발광 소자(30)를 보호함과 동시에 표시 장치(10)의 제조 공정 중 발광 소자(30)를 고정시킬 수도 있다.
복수의 접촉 전극(26)들은 제1 전극(21), 제2 전극(22) 및 제2 절연층(52) 상에 배치된다. 또한, 제3 절연층(53)은 어느 한 접촉 전극(26) 상에 배치될 수 있다.
복수의 접촉 전극(26)들은 일 방향으로 연장된 형상을 가질 수 있다. 복수의 접촉 전극(26)들은 각각 발광 소자(30) 및 전극(21, 22)들과 접촉할 수 있고, 발광 소자(30)들은 접촉 전극(26)을 통해 제1 전극(21)과 제2 전극(22)으로부터 전기 신호를 전달 받을 수 있다.
접촉 전극(26)은 제1 접촉 전극(26a) 및 제2 접촉 전극(26b)을 포함할 수 있다. 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 각각 제1 전극(21)과 제2 전극(22) 상에 배치될 수 있다. 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 각각 제2 방향(DR2)으로 연장된 형상을 가질 수 있다. 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 서로 제1 방향(DR1)으로 이격 대향할 수 있으며, 이들은 각 서브 화소(PXn)의 발광 영역(EMA) 내에서 스트라이프형 패턴을 형성할 수 있다.
몇몇 실시예에서, 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 일 방향으로 측정된 폭이 각각 제1 전극(21)과 제2 전극(22)의 상기 일 방향으로 측정된 폭과 같거나 더 클 수 있다. 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 각각 발광 소자(30)의 일 단부 및 타 단부와 접촉함과 동시에, 제1 전극(21)과 제2 전극(22)의 양 측면을 덮도록 배치될 수 있다. 또한, 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 각각 적어도 일부 영역이 제1 절연층(51) 상에도 배치될 수 있다. 또한, 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 적어도 일부분이 제2 절연층(52) 상에 배치될 수 있다. 제1 접촉 전극(26a)은 제2 절연층(52) 상에 직접 배치되고, 제2 접촉 전극(26b)은 제1 접촉 전극(26a) 상에 배치되는 제3 절연층(53) 상에 직접 배치되며 제2 절연층(52)과 중첩할 수 있다. 다만, 이에 제한되지 않고, 제3 절연층(53)은 생략되어 제2 접촉 전극(26b)도 제2 절연층(52) 상에 직접 배치될 수 있다.
상술한 바와 같이, 제1 전극(21)과 제2 전극(22)은 상면 일부가 노출되고, 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 제1 전극(21)과 제2 전극(22)의 노출된 상면과 접촉할 수 있다. 예를 들어, 제1 접촉 전극(26a)은 제1 전극(21) 중 제1 내부 뱅크(41) 상에 위치한 부분과 접촉하고, 제2 접촉 전극(26b)은 제2 전극(22) 중 제2 내부 뱅크(42) 상에 위치한 부분과 접촉할 수 있다. 다만, 이에 제한되지 않고, 경우에 따라서 제1 접촉 전극(26a) 및 제2 접촉 전극(26b)은 그 폭이 제1 전극(21)과 제2 전극(22)보다 작게 형성되어 상면의 노출된 부분만을 덮도록 배치될 수도 있다.
일 실시예에 따르면, 발광 소자(30)는 연장된 방향의 양 단부면에는 반도체층이 노출되고, 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 상기 반도체층이 노출된 단부면에서 발광 소자(30)와 접촉할 수 있다. 다만, 이에 제한되지 않는다. 경우에 따라서 발광 소자(30)는 양 단부의 측면에서 반도체층들이 노출될 수 있고, 각 접촉 전극(26)들은 상기 노출된 반도체층과 접촉할 수 있다. 발광 소자(30)의 일 단부는 제1 접촉 전극(26a)을 통해 제1 전극(21)과 전기적으로 연결되고, 타 단부는 제2 접촉 전극(26b)을 통해 제2 전극(22)과 전기적으로 연결될 수 있다.
도면에서는 하나의 서브 화소(PXn)에 2개의 제1 접촉 전극(26a)과 하나의 제2 접촉 전극(26b)이 배치된 것이 도시되어 있으나, 이에 제한되지 않는다. 제1 접촉 전극(26a)과 제2 접촉 전극(26b)의 개수는 각 서브 화소(PXn)에 배치된 제1 전극 가지부(21B)와 제2 전극 가지부(22B)의 수에 따라 달라질 수 있다.
접촉 전극(26)은 전도성 물질을 포함할 수 있다. 예를 들어, ITO, IZO, ITZO, 알루미늄(Al) 등을 포함할 수 있다. 일 예로, 접촉 전극(26)은 투명성 전도성 물질을 포함하고, 발광 소자(30)에서 방출된 광은 접촉 전극(26)을 투과하여 전극(21, 22)들을 향해 진행할 수 있다. 각 전극(21, 22)은 반사율이 높은 재료를 포함하고, 내부 뱅크(41, 42)의 경사진 측면 상에 놓인 전극(21, 22)은 입사되는 광을 제1 기판(11)의 상부 방향으로 반사시킬 수 있다. 다만, 이에 제한되는 것은 아니다.
제3 절연층(53)은 제1 접촉 전극(26a) 상에 배치된다. 제3 절연층(53)은 제1 접촉 전극(26a)과 제2 접촉 전극(26b)을 전기적으로 상호 절연시킬 수 있다. 제3 절연층(53)은 제1 접촉 전극(26a)을 덮도록 배치되되, 발광 소자(30)가 제2 접촉 전극(26b)과 접촉할 수 있도록 발광 소자(30)의 타 단부 상에는 배치되지 않을 수 있다. 제3 절연층(53)은 제2 절연층(52)의 상면에서 제1 접촉 전극(26a) 및 제2 절연층(52)과 부분적으로 접촉할 수 있다. 제3 절연층(53)의 제2 전극(22)이 배치된 방향의 측면은 제2 절연층(52)의 일 측면과 정렬될 수 있다. 또한, 제3 절연층(53)은 비발광 영역, 예컨대 제1 평탄화층(19) 상에 배치된 제1 절연층(51) 상에도 배치될 수 있다. 다만, 이에 제한되는 것은 아니다.
제4 절연층(54)은 제1 기판(11) 상에 전면적으로 배치될 수 있다. 제4 절연층(54)은 제1 기판(11) 상에 배치된 부재들 외부 환경에 대하여 보호하는 기능을 할 수 있다.
상술한 제1 절연층(51), 제2 절연층(52), 제3 절연층(53) 및 제4 절연층(54) 각각은 무기물 절연성 물질 또는 유기물 절연성 물질을 포함할 수 있다. 예시적인 실시예에서, 제1 절연층(51), 제2 절연층(52), 제3 절연층(53) 및 제4 절연층(54)은 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiOxNy), 산화 알루미늄(Al2O3), 질화 알루미늄(AlN)등과 같은 무기물 절연성 물질을 포함할 수 있다. 또는, 이들은 유기물 절연성 물질로써, 아크릴 수지, 에폭시 수지, 페놀 수지, 폴리아마이드 수지, 폴리이미드 수지, 불포화 폴리에스테르 수지, 폴리페닐렌 수지, 폴리페닐렌설파이드 수지, 벤조사이클로부텐, 카도 수지, 실록산 수지, 실세스퀴옥산 수지, 폴리메틸메타크릴레이트, 폴리카보네이트, 폴리메틸메타크릴레이트-폴리카보네이트 합성수지 등을 포함할 수 있다. 다만, 이에 제한되는 것은 아니다.
도 4는 다른 실시예에 따른 표시 장치의 일부를 나타내는 단면도이다.
도 4를 참조하면, 일 실시예에 따른 표시 장치(10)는 제3 절연층(53)이 생략될 수 있다. 제2 접촉 전극(26b)은 제2 절연층(52) 상에 직접 배치될 수 있고, 제2 절연층(52) 상에서 제1 접촉 전극(26a)과 제2 접촉 전극(26b)은 서로 이격되도록 배치될 수 있다. 도 4의 실시예는 제3 절연층(53)이 생략된 점을 제외하고는 도 3의 실시예와 동일하다. 이하, 중복되는 설명은 생략하기로 한다.
한편, 발광 소자(30)는 발광 다이오드(Light Emitting diode)일 수 있으며, 구체적으로 발광 소자(30)는 마이크로 미터(Micro-meter) 또는 나노 미터(Nano-meter) 단위의 크기를 가지고, 무기물로 이루어진 무기 발광 다이오드일 수 있다. 무기 발광 다이오드는 서로 대향하는 두 전극들 사이에 특정 방향으로 전계를 형성하면 극성이 형성되는 상기 두 전극 사이에 정렬될 수 있다.
도 5는 일 실시예에 따른 발광 소자의 개략도이다.
도 5를 참조하면, 일 실시예에 따른 발광 소자(30)는 일 방향으로 연장된 형상을 가질 수 있다. 발광 소자(30)는 로드(Rod), 와이어(Wire), 튜브(Tube) 등의 형상을 가질 수 있다. 예시적인 실시예에서, 발광 소자(30)는 원통형 또는 로드형일 수 있다. 다만, 발광 소자(30)의 형태가 이에 제한되는 것은 아니며, 정육면체, 직육면체, 육각기둥형 등 다각기둥의 형상을 갖거나, 일 방향으로 연장되되 외면이 부분적으로 경사진 형상을 갖는 등 발광 소자(30)는 다양한 형태를 가질 수 있다.
발광 소자(30)는 임의의 도전형(예컨대, p형 또는 n형) 불순물로 도핑된 반도체층을 포함할 수 있다. 반도체층은 외부의 전원으로부터 인가되는 전기 신호가 전달되어 특정 파장대의 광을 방출할 수 있다. 발광 소자(30)에 포함되는 복수의 반도체들은 상기 일 방향을 따라 순차적으로 배치되거나 적층된 구조를 가질 수 있다.
발광 소자(30)는 제1 반도체층(31), 제2 반도체층(32), 활성층(36), 전극층(37) 및 절연막(38)을 포함할 수 있다. 도 5는 발광 소자(30)의 각 구성들을 시각적으로 도시하기 위해 절연막(38)이 일부분 제거되어 복수의 반도체층(31, 32, 36)이 노출된 상태를 도시하고 있다. 다만, 후술할 바와 같이, 절연막(38)은 복수의 반도체층(31, 32, 36)의 외면을 둘러싸도록 배치될 수 있다.
구체적으로, 제1 반도체층(31)은 n형 반도체일 수 있다. 일 예로, 발광 소자(30)가 청색 파장대의 광을 방출하는 경우, 제1 반도체층(31)은 AlxGayIn1-x-yN(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, n형으로 도핑된 AlGaInN, GaN, AlGaN, InGaN, AlN 및 InN 중에서 어느 하나 이상일 수 있다. 제1 반도체층(31)은 n형 도펀트가 도핑될 수 있으며, 일 예로 n형 도펀트는 Si, Ge, Sn 등일 수 있다. 예시적인 실시예에서, 제1 반도체층(31)은 n형 Si로 도핑된 n-GaN일 수 있다. 제1 반도체층(31)의 길이는 1.5㎛ 내지 5㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
제2 반도체층(32)은 후술하는 활성층(36) 상에 배치된다. 제2 반도체층(32)은 p형 반도체일 수 있으며 일 예로, 발광 소자(30)가 청색 또는 녹색 파장대의 광을 방출하는 경우, 제2 반도체층(32)은 AlxGayIn1-x-yN(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, p형으로 도핑된 AlGaInN, GaN, AlGaN, InGaN, AlN 및 InN 중에서 어느 하나 이상일 수 있다. 제2 반도체층(32)은 p형 도펀트가 도핑될 수 있으며, 일 예로 p형 도펀트는 Mg, Zn, Ca, Se, Ba 등일 수 있다. 예시적인 실시예에서, 제2 반도체층(32)은 p형 Mg로 도핑된 p-GaN일 수 있다. 제2 반도체층(32)의 길이는 0.05㎛ 내지 0.10㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
한편, 도면에서는 제1 반도체층(31)과 제2 반도체층(32)이 하나의 층으로 구성된 것을 도시하고 있으나, 이에 제한되는 것은 아니다. 몇몇 실시예에 따르면 활성층(36)의 물질에 따라 제1 반도체층(31)과 제2 반도체층(32)은 더 많은 수의 층, 예컨대 클래드층(Clad layer) 또는 TSBR(Tensile strain barrier reducing)층을 더 포함할 수도 있다.
활성층(36)은 제1 반도체층(31)과 제2 반도체층(32) 사이에 배치된다. 활성층(36)은 단일 또는 다중 양자 우물 구조의 물질을 포함할 수 있다. 활성층(36)이 다중 양자 우물 구조의 물질을 포함하는 경우, 양자층(Quantum layer)과 우물층(Well layer)이 서로 교번적으로 복수 개 적층된 구조일 수도 있다. 활성층(36)은 제1 반도체층(31) 및 제2 반도체층(32)을 통해 인가되는 전기 신호에 따라 전자-정공 쌍의 결합에 의해 광을 발광할 수 있다. 일 예로, 활성층(36)이 청색 파장대의 광을 방출하는 경우, AlGaN, AlGaInN 등의 물질을 포함할 수 있다. 특히, 활성층(36)이 다중 양자 우물 구조로 양자층과 우물층이 교번적으로 적층된 구조인 경우, 양자층은 AlGaN 또는 AlGaInN, 우물층은 GaN 또는 AlInN 등과 같은 물질을 포함할 수 있다. 예시적인 실시예에서, 활성층(36)은 양자층으로 AlGaInN를, 우물층으로 AlInN를 포함하여 활성층(36)은 중심 파장대역이 450nm 내지 495nm의 범위를 갖는 청색(Blue)광을 방출할 수 있다.
다만, 이에 제한되는 것은 아니며, 활성층(36)은 밴드갭(Band gap) 에너지가 큰 종류의 반도체 물질과 밴드갭 에너지가 작은 반도체 물질들이 서로 교번적으로 적층된 구조일 수도 있고, 발광하는 광의 파장대에 따라 다른 3족 내지 5족 반도체 물질들을 포함할 수도 있다. 활성층(36)이 방출하는 광은 청색 파장대의 광으로 제한되지 않고, 경우에 따라 적색, 녹색 파장대의 광을 방출할 수도 있다. 활성층(36)의 길이는 0.05㎛ 내지 0.10㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
한편, 활성층(36)에서 방출되는 광은 발광 소자(30)의 길이방향 외부면뿐만 아니라, 양 측면으로 방출될 수 있다. 활성층(36)에서 방출되는 광은 하나의 방향으로 방향성이 제한되지 않는다.
전극층(37)은 오믹(Ohmic) 접촉 전극일 수 있다. 다만, 이에 제한되지 않고, 쇼트키(Schottky) 접촉 전극일 수도 있다. 발광 소자(30)는 적어도 하나의 전극층(37)을 포함할 수 있다. 도 5에서는 발광 소자(30)가 하나의 전극층(37)을 포함하는 것을 도시하고 있으나, 이에 제한되지 않는다. 경우에 따라서 발광 소자(30)는 더 많은 수의 전극층(37)을 포함하거나, 생략될 수도 있다. 후술하는 발광 소자(30)에 대한 설명은 전극층(37)의 수가 달라지거나 다른 구조를 더 포함하더라도 동일하게 적용될 수 있다.
전극층(37)은 일 실시예에 따른 표시 장치(10)에서 발광 소자(30)가 전극 또는 접촉 전극과 전기적으로 연결될 때, 발광 소자(30)와 전극 또는 접촉 전극 사이의 저항을 감소시킬 수 있다. 전극층(37)은 전도성이 있는 금속을 포함할 수 있다. 예를 들어, 전극층(37)은 알루미늄(Al), 티타늄(Ti), 인듐(In), 금(Au), 은(Ag), ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 및 ITZO(Indium Tin-Zinc Oxide) 중에서 적어도 어느 하나를 포함할 수 있다. 또한 전극층(37)은 n형 또는 p형으로 도핑된 반도체 물질을 포함할 수도 있다. 전극층(37)은 동일한 물질을 포함할 수 있고, 서로 다른 물질을 포함할 수도 있다. 전극층(37)의 길이는 0.05㎛ 내지 0.10㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
절연막(38)은 상술한 복수의 반도체층 및 전극층들의 외면을 둘러싸도록 배치된다. 예시적인 실시예에서, 절연막(38)은 적어도 활성층(36)의 외면을 둘러싸도록 배치되고, 발광 소자(30)가 연장된 일 방향으로 연장될 수 있다. 절연막(38)은 상기 부재들을 보호하는 기능을 수행할 수 있다. 일 예로, 절연막(38)은 상기 부재들의 측면부를 둘러싸도록 형성되되, 발광 소자(30)의 길이방향의 양 단부는 노출되도록 형성될 수 있다.
도면에서는 절연막(38)이 발광 소자(30)의 길이방향으로 연장되어 제1 반도체층(31)으로부터 전극층(37)의 측면까지 커버하도록 형성된 것을 도시하고 있으나, 이에 제한되지 않는다. 절연막(38)은 활성층(36)을 포함하여 일부의 반도체층의 외면만을 커버하거나, 전극층(37) 외면의 일부만 커버하여 각 전극층(37)의 외면이 부분적으로 노출될 수도 있다. 또한, 절연막(38)은 발광 소자(30)의 적어도 일 단부와 인접한 영역에서 단면상 상면이 라운드지게 형성될 수도 있다.
절연막(38)의 두께는 10nm 내지 1.0㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는 절연막(38)의 두께는 40nm 내외일 수 있다.
절연막(38)은 절연특성을 가진 물질들, 예를 들어, 실리콘 산화물(Silicon oxide, SiOx), 실리콘 질화물(Silicon nitride, SiNx), 산질화 실리콘(SiOxNy), 질화알루미늄(Aluminum nitride, AlN), 산화알루미늄(Aluminum oxide, Al2O3) 등을 포함할 수 있다. 이에 따라 활성층(36)이 발광 소자(30)에 전기 신호가 전달되는 전극과 직접 접촉하는 경우 발생할 수 있는 전기적 단락을 방지할 수 있다. 또한, 절연막(38)은 활성층(36)을 포함하여 발광 소자(30)의 외면을 보호하기 때문에, 발광 효율의 저하를 방지할 수 있다.
또한, 몇몇 실시예에서, 절연막(38)은 외면이 표면처리될 수 있다. 발광 소자(30)는 표시 장치(10)의 제조 시, 소정의 잉크 내에서 분산된 상태로 전극 상에 분사되어 정렬될 수 있다. 여기서, 발광 소자(30)가 잉크 내에서 인접한 다른 발광 소자(30)와 응집되지 않고 분산된 상태를 유지하기 위해, 절연막(38)은 표면이 소수성 또는 친수성 처리될 수 있다.
발광 소자(30)는 길이(h)가 1㎛ 내지 10㎛ 또는 2㎛ 내지 6㎛의 범위를 가질 수 있으며, 바람직하게는 3㎛ 내지 5㎛의 길이를 가질 수 있다. 또한, 발광 소자(30)의 직경은 30nm 내지 700nm의 범위를 갖고, 발광 소자(30)의 종횡비(Aspect ratio)는 1.2 내지 100일 수 있다. 다만, 이에 제한되지 않고, 표시 장치(10)에 포함되는 복수의 발광 소자(30)들은 활성층(36)의 조성 차이에 따라 서로 다른 직경을 가질 수도 있다. 바람직하게는 발광 소자(30)의 직경은 500nm 내외의 범위를 가질 수 있다.
한편, 발광 소자(30)는 그 형상 및 재료가 도 5에 제한되지 않는다. 몇몇 실시예에서, 발광 소자(30)는 더 많은 수의 층들을 포함하거나, 다른 형상을 가질 수도 있다.
도 6 및 도 7은 다른 실시예에 따른 발광 소자의 개략도이다.
먼저, 도 6을 참조하면, 일 실시예에 따른 발광 소자(30')는 제1 반도체층(31')과 활성층(36') 사이에 배치된 제3 반도체층(33'), 활성층(36')과 제2 반도체층(32') 사이에 배치된 제4 반도체층(34') 및 제5 반도체층(35')을 더 포함할 수 있다. 도 6의 발광 소자(30')는 복수의 반도체층(33', 34', 35') 및 전극층(37a', 37b')이 더 배치되고, 활성층(36')이 다른 원소를 함유하는 점에서 도 5의 실시예와 차이가 있다. 이하에서는 중복되는 설명은 생략하고 차이점을 중심으로 서술하기로 한다.
상술한 바와 같이, 도 5의 발광 소자(30)는 활성층(36)이 질소(N)를 포함하여 청색(Blue) 또는 녹색(Green)의 광을 방출할 수 있다. 반면에, 도 6의 발광 소자(30')는 활성층(36') 및 다른 반도체층들이 각각 적어도 인(P)을 포함하는 반도체일 수 있다. 즉, 일 실시예에 따른 발광 소자(30')는 중심 파장 대역이 620nm 내지 750nm의 범위를 갖는 적색(Red)의 광을 방출할 수 있다. 다만, 적색광의 중심 파장대역이 상술한 범위에 제한되는 것은 아니며, 본 기술분야에서 적색으로 인식될 수 있는 파장 범위를 모두 포함하는 것으로 이해되어야 한다.
구체적으로, 제1 반도체층(31')은 n형 반도체층으로 InxAlyGa1-x-yP(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, 제1 반도체층(31')은 n형으로 도핑된 InAlGaP, GaP, AlGaP, InGaP, AlP 및 InP 중에서 어느 하나 이상일 수 있다. 예시적인 실시예에서, 제1 반도체층(31')은 n형 Si로 도핑된 n-AlGaInP일 수 있다.
제2 반도체층(32')은 p형 반도체층으로 InxAlyGa1-x-yP(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예를 들어, 제2 반도체층(32')은 p형으로 도핑된 InAlGaP, GaP, AlGaNP, InGaP, AlP 및 InP 중에서 어느 하나 이상일 수 있다. 예시적인 실시예에서, 제2 반도체층(32')은 p형 Mg로 도핑된 p-GaP일 수 있다.
활성층(36')은 제1 반도체층(31')과 제2 반도체층(32') 사이에 배치될 수 있다. 활성층(36')은 단일 또는 다중 양자 우물 구조의 물질을 포함하여 특정 파장대의 광을 방출할 수 있다. 활성층(36')이 다중 양자 우물 구조로 양자층과 우물층이 교번적으로 적층된 구조인 경우, 양자층은 AlGaP 또는 AlInGaP, 우물층은 GaP 또는 AlInP 등과 같은 물질을 포함할 수 있다. 예시적인 실시예에서, 활성층(36')은 양자층으로 AlGaInP를, 우물층으로 AlInP를 포함하여 620nm 내지 750nm의 중심 파장대역을 갖는 적색광을 방출할 수 있다.
도 6의 발광 소자(30')는 활성층(36')과 인접하여 배치되는 클래드층(Clad layer)을 포함할 수 있다. 도면에 도시된 바와 같이, 활성층(36')의 상하에서 제1 반도체층(31') 및 제2 반도체층(32') 사이에 배치된 제3 반도체층(33')과 제4 반도체층(34')은 클래드층일 수 있다.
제3 반도체층(33')은 제1 반도체층(31')과 활성층(36') 사이에 배치될 수 있다. 제3 반도체층(33')은 제1 반도체층(31')과 같이 n형 반도체일 수 있으며, 일 예로 제3 반도체층(33')은 InxAlyGa1-x-yP(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예시적인 실시예에서, 제1 반도체층(31')은 n-AlGaInP이고, 제3 반도체층(33')은 n-AlInP일 수 있다. 다만, 이에 제한되는 것은 아니다.
제4 반도체층(34')은 활성층(36')과 제2 반도체층(32') 사이에 배치될 수 있다. 제4 반도체층(34')은 제2 반도체층(32')과 같이 n형 반도체일 수 있으며, 일 예로 제4 반도체층(34')은 InxAlyGa1-x-yP(0≤x≤1,0≤y≤1, 0≤x+y≤1)의 화학식을 갖는 반도체 재료를 포함할 수 있다. 예시적인 실시예에서, 제2 반도체층(32')은 p-GaP이고, 제4 반도체층(34')은 p-AlInP 일 수 있다.
제5 반도체층(35')은 제4 반도체층(34')과 제2 반도체층(32') 사이에 배치될 수 있다. 제5 반도체층(35')은 제2 반도체층(32') 및 제4 반도체층(34')과 같이 p형으로 도핑된 반도체일 수 있다. 몇몇 실시예에서, 제5 반도체층(35')은 제4 반도체층(34')과 제2 반도체층(32') 사이의 격자 상수(Lattice constant) 차이를 줄여주는 기능을 수행할 수 있다. 즉, 제5 반도체층(35')은 TSBR(Tensile strain barrier reducing)층일 수 있다. 일 예로, 제5 반도체층(35')은 p-GaInP, p-AlInP, p-AlGaInP 등을 포함할 수 있으나, 이에 제한되지 않는다. 또한, 제3 반도체층(33'), 제4 반도체층(34') 및 제5 반도체층(35')의 길이는 0.08㎛ 내지 0.25㎛의 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
제1 전극층(37a')과 제2 전극층(37b')은 각각 제1 반도체층(31') 및 제2 반도체층(32') 상에 배치될 수 있다. 제1 전극층(37a')은 제1 반도체층(31')의 하면에 배치되고, 제2 전극층(37b')은 제2 반도체층(32')의 상면에 배치될 수 있다. 다만, 이에 제한되지 않고, 제1 전극층(37a') 및 제2 전극층(37b') 중 적어도 어느 하나는 생략될 수 있다. 예를 들어 발광 소자(30')는 제1 반도체층(31') 하면에 제1 전극층(37a')이 배치되지 않고, 제2 반도체층(32') 상면에 하나의 제2 전극층(37b')만이 배치될 수도 있다.
이어, 도 7을 참조하면, 발광 소자(30")는 일 방향으로 연장된 형상을 갖되, 부분적으로 측면이 경사진 형상을 가질 수 있다. 즉, 일 실시예에 따른 발광 소자(30")는 부분적으로 원추형의 형상을 가질 수 있다.
발광 소자(30")는 복수의 층들이 일 방향으로 적층되지 않고, 각 층들이 어느 다른 층의 외면을 둘러싸도록 형성될 수 있다. 발광 소자(30")는 적어도 일부 영역이 일 방향으로 연장된 반도체 코어와 이를 둘러싸도록 형성된 절연막(38")을 포함할 수 있다. 상기 반도체 코어는 제1 반도체층(31"), 활성층(36"), 제2 반도체층(32") 및 전극층(37")을 포함할 수 있다.
제1 반도체층(31")은 일 방향으로 연장되고 양 단부가 중심부를 향해 경사지게 형성될 수 있다. 제1 반도체층(31")은 로드형 또는 원통형의 본체부와, 상기 본체부의 상부 및 하부에 각각 측면이 경사진 형상의 단부들이 형성된 형상일 수 있다. 상기 본체부의 상단부는 하단부에 비해 더 가파른 경사를 가질 수 있다.
활성층(36")은 제1 반도체층(31")의 상기 본체부의 외면을 둘러싸도록 배치된다. 활성층(36")은 일 방향으로 연장된 고리형의 형상을 가질 수 있다. 활성층(36")은 제1 반도체층(31")의 상단부 및 하단부 상에는 형성되지 않을 수 있다. 다만, 이에 제한되는 것은 아니다. 활성층(36")에서 방출되는 광은 발광 소자(30")의 길이방향의 양 단부뿐만 아니라, 길이방향을 기준으로 양 측면으로 방출될 수 있다. 도 5의 발광 소자(30)에 비해 도 7의 발광 소자(30")는 활성층(36")의 면적이 넓어 더 많은 양의 광을 방출할 수 있다.
제2 반도체층(32")은 활성층(36")의 외면과 제1 반도체층(31")의 상단부를 둘러싸도록 배치된다. 제2 반도체층(32")은 일 방향으로 연장된 고리형의 본체부와 측면이 경사지도록 형성된 상단부를 포함할 수 있다. 즉, 제2 반도체층(32")은 활성층(36")의 평행한 측면과 제1 반도체층(31")의 경사진 상단부에 직접 접촉할 수 있다. 다만, 제2 반도체층(32")은 제1 반도체층(31")의 하단부에는 형성되지 않는다.
전극층(37")은 제2 반도체층(32")의 외면을 둘러싸도록 배치된다. 전극층(37")의 형상은 실질적으로 제2 반도체층(32")과 동일할 수 있다. 전극층(37")은 제2 반도체층(32")의 외면에 전면적으로 접촉할 수 있다.
절연막(38")은 전극층(37") 및 제1 반도체층(31")의 외면을 둘러싸도록 배치될 수 있다. 절연막(38")은 전극층(37")을 포함하여, 제1 반도체층(31")의 하단부 및 활성층(36")과 제2 반도체층(32")의 노출된 하단부와 직접 접촉할 수 있다.
한편, 상술한 바와 같이, 발광 소자(30)는 소자 용매(도 8의 '100')에 분산된 상태로 전극(21, 22) 상에 분사되고, 전극(21, 22)에 정렬 신호를 인가하는 공정을 통해 전극(21, 22) 사이에 배치될 수 있다. 몇몇 실시예에서, 발광 소자(30)는 용매(100) 내에 분산된 상태로 준비되고, 잉크젯 프린팅(Inkjet printing) 공정을 통해 각 전극(21, 22) 상에 분사될 수 있다. 이어 각 전극(21, 22)에 정렬 신호가 인가되면 이들 사이에는 전계가 형성되고, 발광 소자(30)는 상기 전계에 의한 유전영동힘(Dielectrophoretic Force)을 전달받을 수 있다. 유전영동힘이 전달된 발광 소자(30)는 배향 방향 및 위치가 변하면서 제1 전극(21)과 제2 전극(22) 사이에 배치될 수 있다.
도 8은 일 실시예에 따른 소자 잉크를 나타내는 개략도이다.
도 8을 참조하면, 발광 소자 잉크(1000)는 발광 소자(30) 및 소자 용매(100)를 포함한다. 발광 소자(30)는 상술한 도 5 내지 도 7의 발광 소자(30)일 수 있으며, 도면에서는 도 5의 발광 소자(30)가 도시되어 있다. 복수의 발광 소자(30)들은 소자 용매(100) 상에 분산된 상태로 준비될 수 있다. 발광 소자(30)에 대한 자세한 설명은 상술한 바와 동일하다.
발광 소자(30)는 반도체 결정을 포함하여 비교적 큰 비중을 갖는다. 일 실시예에 따른 소자 용매(100)는 발광 소자(30)가 분산될 수 있도록 점도가 큰 물질을 포함할 수 있다. 발광 소자 잉크(1000)는 잉크젯 프린팅 장치를 통해 전극(21, 22) 상에 분사될 수 있고, 소자 용매(100)는 발광 소자(30)가 분산된 상태를 일정 시간 유지할 수 있는 점도를 가질 수 있다. 예시적인 실시예에서, 소자 용매(100)는 점도가 7cp 내지 15cp의 범위를 가질 수 있다. 다만, 이에 제한되는 것은 아니다. 소자 용매(100)는 유기 용매 또는 무기 용매를 포함할 수 있으며, 후술하는 바와 같이 후속 공정에서 제거될 수 있고 발광 소자(30)의 반도체 결정을 손상시키지 않는 물질을 포함할 수 있다.
발광 소자(30)가 분산된 소자 용매(100)는 발광 소자(30)가 전극(21, 22)에 배치되면 가열 또는 후속처리 공정을 수행하여 제거될 수 있다. 여기서, 소자 용매(100)는 비교적 비중이 큰 발광 소자(30)가 분산된 상태를 유지할 수 있도록 큰 값의 점도를 가질 수 있다. 이러한 소자 용매(100)는 분자량이 큰 화합물을 포함하고, 이에 따라 소자 용매(100)는 완전히 제거되지 않고 전극(21, 22) 또는 발광 소자(30) 상에 이물질로 남을 수 있다. 또한, 소자 용매(100)가 일정 수준 이상의 점도를 갖는 경우, 전계에 의해 인가되는 유전영동힘이 충분하지 않아 발광 소자(30)가 전극(21, 22) 상에 원활하게 정렬되지 않거나 이를 제거하는 공정에서 발광 소자(30)의 정렬 상태가 변할 수 있다.
일 실시예에 따르면, 소자 용매(100)는 광이 조사되면 적어도 하나의 화학결합이 분해되는 광 분해성 작용기(150)를 포함할 수 있다. 소자 용매(100)는 광 분해성 작용기(150)의 상태, 또는 결합 형성 여부에 따라 분자량 및 점도가 변할 수 있다. 즉, 소자 용매(100)는 광 분해성 작용기(150)의 결합이 분해되지 않은 상태에서 분자량 및 점도가 큰 제1 소자 용매(101)를 형성하고, 광 분해성 작용기(150)의 결합이 분해되어 분자량과 점도가 낮은 제2 소자 용매(102)를 형성할 수 있다.
도 9 및 도 10은 도 8의 A 부분의 확대도이다.
도 9는 소자 용매(100)의 광 분해성 작용기(150)가 분해되지 않고 제1 소자 용매(101)를 형성한 것이고, 도 10은 광 분해성 작용기(150)의 화학결합이 분해되어 제2 소자 용매(102)를 형성한 것이다.
본 명세서에서, '소자 용매(100)'는 발광 소자(30)가 분산될 수 있는 용매, 또는 그 매질을 의미하는 것이고, '소자 용매 분자(100')'는 소자 용매(100)를 이루는 화학 분자를 지칭하는 것으로 이해될 수 있다. 후술할 바와 같이, '소자 용매(100)'는 '소자 용매 분자(100')'의 상태에 따라 '제1 소자 용매(101)'또는 '제2 소자 용매(102)'를 형성할 수 있고, 제1 소자 용매(101)는 '제1 소자 용매 분자(101')'를, 제2 소자 용매(102)는 '제2 소자 용매 분자(102')'로 이루어진 것으로 이해될 수 있다.
즉, 도 8의 소자 용매(100)는 도 9의 제1 소자 용매 분자(101')로 이루어진 제1 소자 용매(101)이고, 도 10의 제2 소자 용매 분자(102')는 제2 소자 용매(102)를 구성할 수 있다. 다만, 반드시 이들의 용어가 구분되어서 사용되지 않을 수 있으며, 경우에 따라서 '소자 용매(100)'와 '소자 용매 분자(101')는 혼용되어 사용되되 실질적으로 동일한 것을 의미할 수 있다. 이하에서는 소자 용매(100)의 소자 용매 분자(100')에 대하여 자세히 설명하도록 한다.
도 9 및 도 10을 참조하면, 소자 용매 분자(100')는 광 분해성 작용기(150), 제1 작용기(110) 및 제2 작용기(120)를 포함할 수 있다.
제1 작용기(110, X1)와 제2 작용기(120, X2)는 발광 소자(30)가 분산될 수 있도록 일정 수준 이상의 분자량을 갖는 작용기일 수 있다. 제1 작용기(110)와 제2 작용기(120)는 발광 소자(30)와 반응하지 않고, 이를 분산시킬 수 있으며 후속 공정에서 제거될 수 있으면 그 종류 및 구조는 특별히 제한되지 않는다. 일 예로, 제1 작용기(110)와 제2 작용기(120)는 탄소사슬을 갖는 비극성 작용기이거나, 탄소 사슬에 산소(O) 또는 질소(N) 원자를 포함하는 극성 작용기일 수 있다. 이에 제한되는 것은 아니다.
일 실시예에서, 제1 작용기(110)와 제2 작용기(120)는 동일한 구조의 작용기를 포함할 수 있다. 제1 작용기(110)와 제2 작용기(120)는 동일한 구조의 단위체가 반복되어 결합된 작용기를 포함하여 실질적으로 동일한 분자구조를 가질 수 있다. 다만, 이에 제한되지 않고, 제1 작용기(110)와 제2 작용기(120)는 상기 단위체가 반복된 수가 다를 수 있고, 경우에 따라서는 서로 반대의 극성을 가질 수도 있다. 이에 대한 구체적인 설명은 후술하기로 한다.
광 분해성 작용기(150, P)는 제1 작용기(110) 및 제2 작용기(120)가 결합되고, 조사되는 광에 의해 적어도 하나의 결합이 분해되어 적어도 하나의 광 분해 단편을 형성할 수 있다. 광 분해성 작용기(150)는 결합이 분해되지 않은 제1 광 분해성 작용기(151) 및 제1 광 분해성 작용기(151)의 화학결합이 분해되어 형성되는 광 분해 단편인 제2 광 분해성 작용기(152)를 포함할 수 있다. 도 9에서는 제1 광 분해성 작용기(151)가, 도 10에서는 제2 광 분해성 작용기(152)가 도시된 것이다. 제1 광 분해성 작용기(151)는 조사되는 광을 흡수하여 일부 화학 결합이 분해되고 제2 광 분해성 작용기(152)를 형성할 수 있다.
광 분해성 작용기(150)는 결합의 세기가 비교적 약한 구조를 가질 수 있다. 광 분해성 작용기(150)는 조사되는 광의 에너지를 흡수하여 에너지적으로 안정적인 구조를 형성하기 위해, 일부 결합이 분해될 수 있다. 여기서, 광 분해성 작용기(150)는 결합이 분해되면 분자량이 작은 광 분해 단편을 형성할 수 있다. 즉, 제1 광 분해성 작용기(151)는 광을 흡수하여 결합이 분해됨으로써 제2 광 분해성 작용기(152)를 형성할 수 있다. 광 분해성 작용기(150)의 구조, 분해되는 결합의 위치 등에 따라 제1 소자 용매 분자(101')는 동일한 구조를 갖는 복수의 제2 소자 용매 분자(102')를 형성할 수 있다. 다만, 이에 제한되지 않으며, 경우에 따라서는 제1 소자 용매 분자(101')의 구조에 따라 다른 구조를 갖는 제2 소자 용매 분자(102')들을 형성할 수도 있다.
제1 작용기(110)와 제2 작용기(120)는 제1 소자 용매 분자(101')에서는 하나의 분자 내에 포함되나, 제1 광 분해성 작용기(151)의 결합이 분해되는 경우 서로 다른 제2 소자 용매 분자(102') 내에 각각 포함될 수 있다. 광 분해성 작용기(150)에 결합된 제1 작용기(110) 및 제2 작용기(120)는 광 분해성 작용기(150)의 광 분해되는 결합을 기준으로 서로 반대의 위치에서 결합될 수 있다. 즉, 제1 작용기(110)와 제2 작용기(120)는 결합이 분해된 제2 광 분해성 작용기(152)에 각각 결합되어 서로 다른 제2 소자 용매 분자(102')를 구성할 수 있다. 예시적인 실시예에서, 광 분해 단편을 포함하는 제2 소자 용매 분자(102')는 제1 작용기(110) 및 제2 작용기(120) 중 적어도 어느 하나를 포함할 수 있다. 다만, 이에 제한되는 것은 아니다.
제1 소자 용매(101)는 광이 조사됨에 따라 점도가 낮은 제2 소자 용매(102)를 형성할 수 있다. 예시적인 실시예에서, 제1 소자 용매(101)의 점도는 7cp 내지 15cp의 범위를 갖고, 제2 소자 용매(102)의 점도는 5cp 이하의 범위를 가질 수 있다. 즉, 제1 소자 용매 분자(101')는 제2 소자 용매 분자(102')보다 분자량이 클 수 있다.
상술한 바와 같이, 표시 장치(10)의 제조 시, 발광 소자 잉크(1000)를 분사하고 발광 소자(30)를 전극(21, 22) 상에 정렬한 뒤, 소자 용매(100)를 제거하는 단계를 수행할 수 있다. 여기서, 소자 용매(100)가 제1 소자 용매 분자(101')를 포함하여 점도가 큰 제1 소자 용매(101)인 경우, 발광 소자 잉크(1000)에 전계를 형성하면 발광 소자(30)에 비교적 약한 유전영동힘이 인가되어 전극(21, 22) 상에 정확히 정렬되지 않을 수 있다. 또한, 소자 용매(100)를 제거하는 단계에서 제1 소자 용매(101)가 완전히 제거되지 않고 이물질로 남을 수 있다.
일 실시예에 따르면, 표시 장치(10)의 제조 방법은 제1 소자 용매(101)에 광을 조사하여 점도가 낮은 제2 소자 용매(102)를 형성하는 단계를 포함한다. 일 실시예에 따른 소자 용매(100)는 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기(150)를 포함하여, 상기 광에 의해 분자량 및 점도가 감소할 수 있다.
전극(21, 22) 상에 분사된 소자 용매(100), 즉 제1 소자 용매(101)에 광을 조사하여, 제1 소자 용매 분자(101')를 부분적으로 분해하여 제2 소자 용매 분자(102')를 형성한다. 제2 소자 용매 분자(102')는 비교적 분자량이 낮은 구조를 갖고, 이에 따라 형성된 제2 소자 용매(102)는 낮은 점도를 가질 수 있다. 제2 소자 용매(102)를 형성한 뒤에 발광 소자 잉크(1000)에 전계를 형성하는 경우, 발광 소자(30)에 강한 유동영동힘이 전달되어 전극(21, 22) 상에 높은 정렬도를 갖고 배치될 수 있다. 또한, 제2 소자 용매(102)는 비교적 분자량이 낮은 분자를 포함하여 후속 공정에 저온의 열처리 공정에서 쉽게 제거되어 전극(21, 22) 상에 배치된 발광 소자(30)의 정렬 상태의 변화를 최소화할 수 있다. 즉, 소자 용매(100)는 발광 소자(30)가 분산된 상태를 유지하며 노즐에서 분사될 수 있는 수준의 점도를 갖되, 후속 공정에서 소자 용매(100)의 점도가 감소할 수 있다. 보다 자세한 설명은 후술하기로 한다.
한편, 일 실시예에 따른 소자 용매 분자(100')는 하기의 구조식 1의 구조를 가질 수 있다.
[구조식 1]
X1-P-X2
(여기서, P는 광 분해성 작용기(150)이고, X1은 제1 작용기(110), X2는 제2 작용기(120)이다.)
상기 구조식 1을 참조하면, 일 실시예에 따른 소자 용매(100)의 소자 용매 분자(100')는 광 분해성 작용기(150, P)를 포함하고, 광 분해성 작용기(150, P)에 결합된 적어도 하나의 작용기, 예컨대 제1 작용기(110, X1)와 제2 작용기(120, X2)를 포함할 수 있다. 광 분해성 작용기(150, P)의 일부 결합이 분해되는 경우, 광 분해 단편, 또는 제2 광 분해성 작용기(152)가 하나 이상 형성되고 각각의 제2 광 분해성 작용기(152)는 제1 작용기(110, X1) 또는 제2 작용기(120, X2)가 결합될 수 있다. 소자 용매 분자(100')는 광 분해성 작용기(150, P)의 분해에 의해 분자량이 작고 점도가 낮은 소자 용매 분자, 즉 제2 소자 용매 분자(102')를 형성할 수 있다.
예시적인 실시예에서, 광 분해성 작용기(150)는 사이클로뷰틸기(cyclobutyl), 말레익 이미드 다이머기(maleic imide dimer), 아크릴레이트 다이머기(acrylate dimer) 또는 카보닐기(carbonyl) 중 어느 하나일 수 있다. 다만, 이에 제한되는 것은 아니다.
상술한 작용기들은 하기의 화학 반응식 1 내지 4와 같이, 광 분해성 작용기(150)는 조사되는 광에 의해 결합이 분해되어 광 분해 단편을 형성할 수 있다. 즉, 제1 광 분해성 작용기(151)는 광을 흡수하여 결합이 분해됨으로써 제2 광 분해성 작용기(152)를 형성한다. 소자 용매 분자(100'), 또는 분자량 및 점도가 큰 제1 소자 용매 분자(101')는 분자량 및 점도가 작은 제2 소자 용매 분자(102')를 형성할 수 있다.
[화학 반응식 1]
[화학 반응식 2]
[화학 반응식 3]
[화학 반응식 4]
예를 들어, 상기 화학 반응식 1과 같이, 광 분해성 작용기(150)가 사이클로뷰틸기(cyclobutyl)를 포함하는 경우, 광 조사에 의해 사이클로뷰틸기의 각 탄소(C)들은 역고리화첨가반응(retro-[2+2]cycloaddition)을 통해 2개의 알켄(alkene)분자로 분리될 수 있다. 이에 따라, 제1 광 분해성 작용기(151)는 분자량이 작은 2개의 제2 광 분해성 작용기(152, 예컨대 2개의 알켄(alkene)분자)으로 분리되고, 분자량 및 점도가 낮아질 수 있다. 특히, 광 분해성 작용기(150)가 상기 화학 반응식 1 내지 4와 같이 분해되는 경우, 제1 작용기(110) 및 제2 작용기(120)는 서로 다른 제2 광 분해성 작용기(152)에 결합된다. 광이 조사됨에 따라 형성되는 제2 소자 용매 분자(102')는 제1 작용기(110)와 제2 작용기(120) 중 어느 하나만이 결합되고, 낮은 분자량과 점도를 가질 수 있다. 상기 화학 반응식 2 내지 4의 경우도 동일하게 이해될 수 있으므로, 자세한 설명은 생략한다.
한편, 예시적인 실시예에서, 제1 작용기(110)와 제2 작용기(120)는 하기의 화학 구조식 1로 표현되는 화합물일 수 있다.
[화학 구조식 1]
상기 화학 구조식 1에서, 상기 n은 1 내지 5의 정수이고, 상기 R
5는 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이다.
제1 작용기(110)와 제2 작용기(120)는 상기 화학 구조식 1과 같이 에틸렌글리콜(Ethylene glycol, -OCH
2CH
2O-) 단위체를 적어도 하나 포함할 수 있다. 제1 작용기(110) 및 제2 작용기(120)는 광 분해성 작용기(150)에 결합되어 소자 용매(100)가 발광 소자(30)를 분산시킬 수 있을 정도의 분자량 및 점도를 가질 수 있다. 제1 및 제2 작용기(110, 120)의 상기 n 값은 에틸렌글리콜 단위체의 반복단위 수를 의미하며, 그 값은 특별히 제한되지 않으나 1 내지 5의 정수를 가질 수 있다.
다만, 소자 용매 분자(100'), 특히 광 분해성 작용기(150)가 분해되지 않은 제1 소자 용매 분자(101') 내에서 제1 작용기(110)의 n의 값(n1)과 제2 작용기(120)의 n의 값(n2)의 합(n1+n2)은 2 내지 6의 범위를 가질 수 있다. 즉, 하나의 소자 용매 분자(100') 내에서, 제1 작용기(110) 및 제2 작용기(120)에 포함된 에틸렌글리콜 단위체의 수는 2 내지 6의 범위를 가질 수 있다. 제1 작용기(110)의 n의 값(n1)과 제2 작용기(120)의 n의 값(n2)의 합(n1+n2)이 2 이하인 경우, 제1 소자 용매 분자(101')가 충분한 수준의 분자량과 점도를 갖지 못해 발광 소자(30)의 분산상태가 유지되지 않을 수 있다. 제1 작용기(110)의 n의 값(n1)과 제2 작용기(120)의 n의 값(n2)의 합(n1+n2)이 6 보다 클 경우, 광 분해성 작용기(150)가 분해되어 형성된 제2 소자 용매 분자(102')의 분자량과 점도가 큰 값을 갖고, 발광 소자(30)의 유전영동 반응성이 저하될 수 있다.
예시적인 실시예에서, 소자 용매 분자(100')는 하기의 화학 구조식 2 내지 5로 표현되는 화합물 중 어느 하나일 수 있다.
[화학 구조식 2]
[화학 구조식 3]
[화학 구조식 4]
[화학 구조식 5]
상기 화학 구조식 2 내지 5에서, 상기 R
1 및 R
2는 상기 화학 구조식 1로 표현되되, 상기 R
1의 상기 화학 구조식 1에서 n값(n1)과 R
2의 상기 화학 구조식 1에서 n값(n2)의 합은 2 내지 6의 범위를 갖고, 상기 R
3 및 R
4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나이다.
상기 화학 구조식 2 내지 5를 참조하면, 소자 용매(100)는 광 조사에 의해 결합이 분해될 수 있는 작용기를 포함하고, 각각 상기 화학 구조식 1로 표현되는 작용기를 적어도 하나 포함한다. 상기 화학 구조식 2 내지 5에서 상기 R
1 및 R
2는 상기 화학 구조식 1로 표현되는 화합물을 포함할 수 있으며, R
1 및 R
2는 각각 소자 용매 분자(100')의 제1 작용기(110) 및 제2 작용기(120)일 수 있다. R
1 및 R
2, 즉 제1 작용기(110)와 제2 작용기(120)에 대한 설명은 상술한 바와 동일하다.
상기 R
3 및 R
4는 소자 용매(100)가 발광 소자(30)를 분산시키기에 충분한 분자량을 갖도록 적절하게 선택된 작용기일 수 있다. 일 예로, 상기 R
3 및 R
4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나일 수 있다. 다만 이에 제한되는 것은 아니다.
예컨대, 상기 화학 구조식 2의 화합물의 경우, 광 조사에 의해 결합이 분해될 수 있는 작용기로 사이클로뷰틸기(cyclobutyl)를 포함하고, 제1 작용기(110) 및 제2 작용기(120)는 에틸렌글리콜(Ethylenegylcol, -OCH
2CH
2O-) 단위체가 반복된 작용기를 포함할 수 있다.
상기 화학 구조식 1은 광 조사에 의해 사이클로뷰틸기(cyclobutyl)가 역고리화첨가반응(retro-[2+2]cycloaddition)에 의해 두개의 알켄(alkene)분자로 분해될 수 있다. 이에 따라 형성되는 두 알켄분자는 각각 에틸렌글리콜(Ethylenegylcol, -OCH
2CH
2O-) 단위체가 반복된 작용기를 포함한다. 즉, 제1 소자 용매 분자(101')의 제1 광 분해성 작용기(151)는 사이클류뷰틸기(cyclobutyl)이고, 광 조사에 의해 분해되어 형성되는 제2 광 분해성 작용기(152)는 알켄기(alkene)일 수 있다. 제1 작용기(110)와 제2 작용기(120)는 각각 에틸렌글리콜(Ethylenegylcol, -OCH
2CH
2O-) 단위체를 포함하고, 제1 소자 용매 분자(101')에서는 하나의 사이클로뷰틸기(cyclobutyl)에 결합되되, 제2 소자 용매 분자(102')에서는 서로 다른 알켄기(alkene)에 결합될 수 있다. 제2 소자 용매 분자(102')는 제1 소자 용매 분자(101')보다 작은 분자량을 갖는 화합물이고, 이에 따라 점도가 낮아 분산된 발광 소자(30)의 유전영동 반응성이 증가할 수 있다. 또한, 제2 소자 용매 분자(102')는 후속 공정에서 비교적 낮은 온도에서 쉽게 휘발되어 제거될 수 있다.
예시적인 실시예에서, 소자 용매 분자(100')는 하기 화학 구조식 6으로 표현되는 화합물을 포함할 수 있다.
[화학 구조식 6]
소자 용매 분자(100')는 광 분해성 작용기(150)가 1,1,3,3-테트라메틸-사이클로뷰틸기(1,1,3,3-tetramethly-cyclobutyl)이고, 제1 및 제2 작용기(110, 120)가 상기 화학 구조식 1에서 n이 2이고 R
5가 메틸기(methyl, -CH3)으로, 상기 화학 구조식 6으로 표현될 수 있다. 상기 화학 구조식 6으로 표현되는 화합물은 점도가 9cp 내지 11cp의 범위를 가짐으로써 발광 소자(30)가 분산된 상태를 유지할 수 있다. 또한, 상기 범위의 점도를 가짐으로써, 소자 잉크(1000)는 잉크젯 프린팅 장치의 노즐을 통해 전극(21, 22) 상에 분사될 수 있다.
소자 용매 분자(100')가 상기 화학 구조식 6으로 표현되는 화합물일 경우, 하기 화학 반응식 5의 반응을 통해 광 분해성 작용기(150)가 분해될 수 있다.
[화학 반응식 5]
상기 화학 반응식 5를 참조하면, 상기 화학 구조식 6으로 표현되는 화합물은 광(hv) 조사에 의해 사이클로뷰틸기(cyclobutyl)가 역고리화첨가반응(retro-[2+2]cycloaddition)하여 두개의 알켄(alkene)분자로 분해될 수 있다. 두개의 알켄(alkene) 분자는 각각 에틸렌글리콜(ethylene glycol) 단위체를 포함하고, 이는 가수분해(H
3O
+)되어 디에틸렌글리콜모노메틸알코올(Diethylene glycol monomethyl alcohol, CH
3OCH
2CH
2OCH
2CH
2OH)과 이소뷰틸알데히드(Isobutyl aldehyde, (CH
3)
2CHO)로 분해될 수 있다. 즉, 소자 용매 분자(100')는 상기 화학 구조식 6으로 표현되는 제1 소자 용매 분자(101')를 포함하고, 제1 소자 용매 분자(101')는 제1 광 분해성 작용기(151)가 분해되어 디에틸렌글리콜모노메틸알코올(Diethylene glycol monomethyl alcohol, CH
3OCH
2CH
2OCH
2CH
2OH)과 이소뷰틸알데히드(Isobutyl aldehyde, (CH
3)
2CHO)로 표현되는 제2 소자 용매 분자(102')를 생성할 수 있다.
상기 화학 구조식 6으로 표현되는 제1 소자 용매 분자(101')는 비교적 분자량과 점도가 크다. 사이클로뷰틸기가 분해되어 생성된 제2 소자 용매 분자(102')는 분자량 및 점도가 낮음으로써, 발광 소자(30)는 유전영동 반응성이 증가하고, 후속 공정에서 제2 소자 용매(102)는 쉽게 제거될 수 있다.
한편, 예시적인 실시예에서 소자 용매(100)는 광 분해성 작용기(150)가 분해되기 전의 제1 소자 용매 분자(101')는 분자량이 300g/mol 이상 800g/mol 이하이고, 제1 소자 용매(101)는 끓는점이 350℃ 내지 400℃의 범위를 갖고 점도가 7cp 내지 15cp의 범위를 가질 수 있다. 광 분해성 작용기(150)의 결합이 부분적으로 분해된 제2 소자 용매 분자(102')는 분자량이 제1 소자 용매 분자(101')의 50 % 이하이고, 제2 소자 용매(102)는 끓는점이 50℃ 내지 200℃의 범위를 갖고 점도가 5cp 이하의 범위를 가질 수 있다.
제1 소자 용매(101)는 제1 소자 용매 분자(101')의 분자량이 클수록 비중이 큰 발광 소자(30)를 일정 시간동안 분산상태를 유지할 수 있다. 제1 소자 용매 분자(101')의 분자량이 300g/mol 이하일 경우, 발광 소자 잉크(1000)의 제조 후, 발광 소자(30)의 분산상태를 유지하지 못하여 발광 소자 잉크(1000)가 잉크젯 프린팅 장치의 노즐을 통해 불균일한 분산도로 분사될 수 있다. 또한, 제1 소자 용매 분자(101')의 분자량이 800g/mol 이상으로 큰 값을 가지는 경우, 광 조사에 의해 광 분해성 작용기(150)가 분해되어 형성된 제2 소자 용매 분자(102')도 큰 분자량 및 점도를 갖게 되어 발광 소자(30)의 유전영동 반응성이 저하될 수 있다.
반면에, 일 실시예에 따른 제1 소자 용매 분자(101')는 상기 범위 내의 분자량을 갖고, 광 분해성 작용기(150)가 분해되어 형성되는 제2 소자 용매 분자(102')는 낮은 분자량 및 점도를 가질 수 있다.
이하에서는 일 실시예에 따른 표시 장치(10)의 제조 방법에 대하여 설명하도록 한다.
도 11은 일 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다.
도 11을 참조하면, 표시 장치(10)의 제조 방법은 대상 기판(SUB) 및 대상 기판(SUB) 상에 배치된 제1 전극(21) 및 제2 전극(22)을 준비하는 단계, 제1 전극(21) 및 제2 전극(22) 상에 발광 소자(30)가 분산된 제1 소자 용매(100)를 포함하는 발광 소자 잉크(1000)를 분사하고, 제1 소자 용매(100)에 포함된 적어도 하나의 화학결합을 제거하여 제2 소자 용매(102)를 형성하는 단계 및 발광 소자(30)를 제1 전극(21)과 제2 전극(22) 상에 안착하는 단계를 포함한다.
일 실시예에 따른 표시 장치(10)의 제조 방법은, 제1 전극(21) 및 제2 전극(22)이 형성된 대상 기판(SUB) 상에 제1 소자 용매(101) 및 제1 소자 용매(101) 내에 분산된 발광 소자(30)를 포함하는 발광 소자 잉크(1000)를 분사하는 단계(S100), 제1 소자 용매(101)에 광(UV)을 조사하여 제1 소자 용매(101)의 적어도 일부 결합이 분해된 제2 소자 용매(102)를 형성하고, 제1 전극(21) 및 제2 전극(22) 상에 발광 소자(30)를 안착하는 단계(S200) 및 제2 소자 용매(102)를 제거하는 단계(S300)를 포함할 수 있다.
상술한 바와 같이, 표시 장치(10)는 잉크젯 프린팅 장치를 이용하여 발광 소자 잉크(1000)를 분사하고, 전극(21, 22) 상에 발광 소자(30)를 배치함으로써 제조될 수 있다. 여기서, 발광 소자(30)가 분산된 소자 용매(100)는 분산 상태를 유지할 수 있는 점도를 갖는 제1 소자 용매(101)를 포함할 수 있다. 다만, 발광 소자(30)가 안착하는 단계(S200)에서, 발광 소자(30)의 정렬도 개선을 위해 일 실시예에 따른 표시 장치(10)의 제조 방법은 제1 소자 용매(101)에 광을 조사하여 제2 소자 용매(102)를 형성하는 단계를 포함할 수 있다. 제1 소자 용매(101)보다 낮은 점도를 갖는 제2 소자 용매(102)를 형성하여 발광 소자(30)의 유전영동 반응성을 개선하고, 제2 소자 용매(102)를 제거하는 단계에서 발생하는 발광 소자(30)의 정렬 상태 변화를 최소화할 수 있다.
이하에서는 도 12 내지 도 23을 참조하여 일 실시예에 따른 표시 장치의 제조 방법에 대하여 자세하게 설명하도록 한다.
도 12 및 도 13은 일 실시예에 따른 표시 장치의 제조 방법 중 일부를 나타내는 단면도들이다.
먼저, 도 12에 도시된 바와 같이 제1 전극(21) 및 제2 전극(22)이 형성된 대상 기판(SUB)을 준비(S100)한다. 이하의 도면에서는 설명의 편의를 위해 대상 기판(SUB) 상에 배치되는 전극(21, 22) 및 발광 소자(30)만을 도시하기로 한다. 다만, 표시 장치(10)가 이에 제한되는 것은 아니며 상술한 바와 같이 표시 장치(10)는 내부 뱅크(41, 42)와 외부 뱅크(45), 접촉 전극(26) 등 더 많은 부재들을 포함할 수 있다.
다음으로, 도 13에 도시된 바와 같이, 제1 전극(21)과 제2 전극(22) 상에 발광 소자(30)를 포함하는 발광 소자 잉크(1000)를 분사한다. 발광 소자 잉크(1000)는 소자 용매(100)를 포함하며, 발광 소자(30)는 소자 용매(100) 내에 분산될 수 있다. 예시적인 실시예에서, 발광 소자 잉크(1000)는 용액 또는 콜로이드(colloid) 상태로 제공될 수 있다. 전극(21, 22) 상에 분사되는 바로강 소자 잉크(1000)의 소자 용매(100)는 상술한 바와 같이 결합이 분해되지 않은 제1 광 분해성 작용기(151)를 포함하는 제1 소자 용매(101)일 수 있다. 제1 소자 용매(101)는 비교적 분자량과 점도가 크고, 발광 소자(30)가 분산된 상태를 유지하며 전극(21, 22) 상에 분사될 수 있다.
다음으로 발광 소자(30)를 제1 전극(21)과 제2 전극(22) 사이에 안착(S200)한다. 발광 소자(30)를 안착하는 단계(S200)는 제1 전극(21)과 제2 전극(22)에 전기신호를 인가하여 발광 소자 잉크(1000)에 전계(EL)를 형성하는 단계, 상기 전계에 의해 발광 소자(30)가 유전영동힘(Dielectrophoretic force, F)을 전달받아 전극(21, 22) 상에 배치되는 단계를 포함할 수 있다.
도면에 도시된 바와 같이, 전극(21, 22)에 교류 전원을 인가하면, 전극(21, 22) 상에 분사된 발광 소자 잉크(1000)에 전계(EL)가 형성될 수 있다. 전계(EL)는 발광 소자(30)에 유전영동힘을 인가할 수 있고, 상기 유전영동힘을 인가받은 발광 소자(30)는 제1 전극(21)과 제2 전극(22) 상에 배치될 수 있다.
다만, 제1 소자 용매(101)는 분자량이 큰 제1 소자 용매 분자(101')를 포함하여 점도가 큰 값을 갖는다. 발광 소자(30)는 점도가 큰 제1 소자 용매(101) 내에서 약한 세기의 유전영동힘(F1)을 받게 되고, 전극(21, 22) 상에서 불균일한 정렬도를 갖고 배치될 수 있다.
도 14 내지 도 16은 일 실시예에 따른 소자 용매 내에 분산된 발광 소자가 전극 상에 배치되는 것을 도시하는 개략도들이다.
도 14 및 도 15에 도시된 바와 같이, 전극(21, 22) 상에 제1 소자 용매(101) 및 발광 소자(30)가 분사되고, 전극(21, 22)을 통해 교류 전원이 인가되면 전계(EL)가 형성된다. 발광 소자(30)는 전계(EL)에 의해 유전영동힘(F1)을 인가받고, 발광 소자(30)는 초기 분산된 위치(도 12의 점선 부분)으로부터 전극(21, 22)을 향해 이동할 수 있다. 다만, 발광 소자(30)는 점도가 큰 제1 소자 용매(101)에 의해 저항력을 받아 세기가 비교적 약한 유전영동힘(F1)이 인가될 수 있다.
도 16을 참조하면, 제1 전극(21)과 제2 전극(22)에 인가된 교류 전원에 의해, 제1 소자 용매(101) 상에 전계(EL)가 형성될 수 있다. 발광 소자(30)는 전계(EL)에 의해 유전영동힘(F1)이 인가되어 전극(21, 22)을 향해 배향 방향이 정렬될 수 있다. 상술한 바와 같이, 제1 소자 용매(101)는 비교적 분자량이 큰 제1 소자 용매 분자(101')를 포함하여 큰 값의 점도를 가질 수 있다. 발광 소자(30)는 점도가 큰 제1 소자 용매(101)에 의해 저항력을 받아 약한 세기의 유전영동힘(F1)이 인가된다.
도면에 도시된 바와 같이, 일부의 발광 소자(30)는 전극(21, 22) 상에 배치되지 않을 수 있다. 또한, 발광 소자(30)는 양 단부가 전극(21, 22) 상에 배치되더라도, 각각의 발광 소자(30)들이 연장된 방향과 전극(21, 22)이 이루는 예각은 일정하지 않을 수 있다. 전계(EL)에 의해 인가되는 유전영동힘(F1)은 큰 점도를 갖는 제1 소자 용매(101) 상에 분산된 발광 소자(30)들이 균일한 정렬도로 배향되도록 충분한 세기를 갖지 않을 수 있다.
또한, 후속 공정에서 제1 소자 용매(101)를 직접 휘발시켜 제거하는 경우, 점도가 큰 제1 소자 용매(101)에 의해 발광 소자(30)의 배향, 또는 정렬 상태가 변하거나 제1 소자 용매(101)가 완전히 제거되지 않을 수도 있다.
도 17은 일 실시예에 따른 소자 용매가 제거된 상태를 도시하는 평면도이다. 도 18은 일 실시예에 따른 소자 용매가 제거된 상태를 도시하는 단면도이다.
도 17을 참조하면, 제1 소자 용매(101) 상에서 전극(21, 22) 상에 랜딩된 발광 소자(30)들은 제1 소자 용매(101)가 제거됨에 따라 일 방향으로 동유체력(Fa)이 인가될 수 있다. 점도가 큰 제1 소자 용매(101)는 휘발되어 제거되면서 발광 소자(30)에 강한 세기의 동유체력(Fa)을 인가할 수 있고, 발광 소자(30)는 초기의 정렬 위치(도 17의 점선 부분)으로부터 이탈하여 정렬 상태가 변할 수 있다. 이에 따라, 최종적으로 전극(21, 22) 상에 랜딩된 발광 소자(30)는 연장된 일 방향과 전극(21, 22)이 연장된 방향에 수직한 방향이 이루는 예각(Θi')은 큰 값을 가질 수 있다. 상기 예각(Θi')은 20° 이상일 수 있으며, 이에 따라 발광 소자(30)가 연장된 일 방향과 전극(21, 22)이 연장된 방향이 이루는 예각은 80° 이하일 수 있다.
도 18을 참조하면, 제1 소자 용매(101)는 분자량이 큰 제1 소자 용매 분자(101')를 포함하여, 이를 휘발시켜 제거하는 공정을 수행하더라도 일부 잔유물이 남아있을 수 있다. 상기 잔유물은 표시 장치(10) 내에서 불순물이 되어 접촉 전극(26)을 형성하는 후속 공정에서 발광 소자(30)와의 접촉 불량을 발생할 수 있다.
반면에, 일 실시예에 따른 표시 장치(10)의 제조 방법은, 발광 소자(30)를 안착하는 단계(S200)를 수행하기 전에, 제1 소자 용매(101)에 광(UV)을 조사하여 제2 소자 용매(102)를 형성하는 단계를 포함한다. 제1 소자 용매(101)는 상기 광(UV)이 조사되어 제1 광 분해성 작용기(151)의 화학결합이 분해되어 광 분해 단편, 즉 제2 광 분해성 작용기(152)를 형성한다. 제1 소자 용매 분자(101')는 제2 광 분해성 작용기(152)와, 이에 결합된 제1 작용기(110) 또는 제2 작용기(120)를 포함하는 제2 소자 용매 분자(102')를 형성할 수 있다. 제2 소자 용매 분자(102')는 제1 소자 용매 분자(101')에 비해 분자량이 작고, 점도가 작은 제2 소자 용매(102)를 형성할 수 있다. 발광 소자(30)는 점도가 작은 제2 소자 용매(102) 내에 분산되어, 전계(EL)에 의해 강한 세기의 유전영동힘(F2)을 인가받아 전극(21, 22) 상에 배향 방향이 정렬될 수 있다.
도 19는 일 실시예에 따른 제2 소자 용매를 형성하는 단계를 나타내는 개략도이다.
도 19를 참조하면, 제1 소자 용매(101)에 광(UV)을 조사하여 제2 소자 용매(102)를 형성한다. 제1 소자 용매(101)는 제1 광 분해성 작용기(151)를 포함하여, 상기 조사된 광(UV)에 의해 결합이 분해되어 광 분해 단편, 또는 제2 광 분해성 작용기(152)를 형성할 수 있다. 제1 소자 용매 분자(101')는 분자량이 작은 제2 소자 용매 분자(102')를 형성할 수 있다. 이에 따라 발광 소자(30)는 비교적 점도가 낮은 제2 소자 용매(102) 상에 분산될 수 있고, 용매에 의한 저항력이 작아짐으로써 전계(EL)에 의해 강한 세기의 유전영동힘(F2)이 인가될 수 있다.
도 20 내지 도 22는 일 실시예에 따른 소자 용매 내에 분산된 발광 소자가 전극 상에 배치되는 것을 도시하는 개략도들이다.
도 20 내지 도 22를 참조하면, 제2 소자 용매(102)는 낮은 점도를 가짐으로써, 전계(EL)에 의해 발광 소자(30)에 인가되는 유전영동힘(F2)은 강한 세기를 가질 수 있다. 발광 소자(30)는 초기 분사된 위치(도 19의 점선 부분)로부터 양 단부가 전극(21, 22)을 향해 이동할 수 있고, 각 발광 소자(30)들은 비교적 균일한 정렬도로 배향될 수 있다. 도면에 도시된 바와 같이, 대부분의 발광 소자(30)들은 양 단부가 전극(21, 22) 상에 배치될 수 있고, 특히, 발광 소자(30)가 연장된 방향과 전극(21, 22)이 이루는 예각은 일정할 수 있다. 일 실시예에 따른 표시 장치(10)의 제조 방법은 제1 소자 용매(101)에 광(UV)을 조사하여 제2 소자 용매(102)를 형성하는 단계를 포함하고, 발광 소자(30)를 점도가 낮은 제2 소자 용매(102) 상에서 정렬시킬 수 있다. 즉, 발광 소자(30)의 유전영동 반응성을 향상시키고, 정렬도가 개선된 표시 장치(10)를 제조할 수 있다.
마지막으로, 전극(21, 22) 상에 발광 소자(30)가 정렬되면, 소자 용매(100), 즉 제2 소자 용매(102)를 제거한다.
도 23은 일 실시예에 따른 제2 소자 용매를 제거하는 단계를 나타내는 단면도이다. 도 24는 일 실시예에 따른 발광 소자가 정렬된 것을 나타내는 평면도이다.
도 23 및 도 24를 참조하면 소자 용매(100)는 통상적인 방법을 수행하여 제거될 수 있다. 제2 소자 용매(102)는 제1 소자 용매(101)에 비해 분자량이 작은 화합물을 포함하여 낮은 점도를 갖고, 비교적 저온에서 휘발되어 제거될 수 있다. 일 예로 제2 소자 용매(102)는 열처리, 적외선 조사 등의 방법을 통해 제거될 수 있다.
발광 소자(30)는 점도가 낮은 제2 소자 용매(102) 상에서 강한 세기의 유전영동힘(F2)을 인가받아 비교적 균일한 정렬도로 배향될 수 있다. 또한, 제2 소자 용매(102)는 휘발되어 제거되더라도 정렬된 발광 소자(30)에 약한 세기의 동유체력을 인가할 수 있다. 이에 따라, 최종적으로 전극(21, 22) 상에 랜딩된 발광 소자(30)는 연장된 일 방향과 전극(21, 22)이 연장된 방향에 수직한 방향이 이루는 예각(Θi)은 매우 작은 값을 가질 수 있다. 상기 예각(Θi)은 5° 이상일 수 있으며, 이에 따라 발광 소자(30)가 연장된 일 방향과 전극(21, 22)이 연장된 방향이 이루는 예각은 85° 이상일 수 있다. 일 예로, 발광 소자(30) 가 연장된 일 방향과 전극(21, 22)이 연장된 방향이 이루는 예각은 88° 이상 90°이하일 수 있다. 다만 이에 제한되는 것은 아니다.
이상의 공정을 통해 발광 소자(30)를 포함하는 표시 장치(10)를 제조할 수 있다. 다만, 표시 장치(10)의 제조 방법이 이에 제한되는 것은 아니며, 상술한 바와 같이 표시 장치(10)는 더 많은 수의 부재들을 포함하여 더 많은 공정이 수행될 수 있다. 자세한 설명은 생략하기로 한다.
한편 상술한 바와 같이, 발광 소자(30)는 소자 용매(도 8의 '100')에 분산된 상태로 전극(21, 22) 상에 분사되고, 전극(21, 22)에 정렬 신호를 인가하는 공정을 통해 전극(21, 22) 사이에 배치될 수 있다.
다만, 발광 소자(30)는 복수의 반도체층들을 포함하여 소자 용매(100)보다 비중이 큰 물질들로 이루어질 수 있다. 발광 소자(30)는 소자 용매(100) 내에서 일정 시간 동안 분산된 상태를 유지하다가 점차 침전될 수 있다. 이를 방지하기 위해 소자 용매(100)의 점도를 조절하여 발광 소자(30)를 장시간 분산시킬 경우, 잉크젯 프린팅 공정에서 노즐을 통한 토출이 불가능할 수도 있다. 일 실시예에 따른 발광 소자 잉크(도 25의 '1001')는 소자 용매(103), 소자 용매(103)에 분산된 발광 소자(30)에 더하여, 발광 소자 잉크(1001)의 점도 조절이 가능한 광 분해성 증점제(도 25의 '500')를 포함할 수 있다. 발광 소자 잉크(1001)는 광 분해성 증점제(500)를 포함하여 용기 내에 보관된 상태, 또는 전단 응력(Shear stress)가 인가되지 않는 상태에서는 높은 점도를 갖고, 발광 소자(30)는 장시간 동안 분산될 수 있다. 또한, 발광 소자 잉크(1001)는 잉크젯 프린팅 공정에서 전단 응력이 인가되는 상태에서는 낮은 점도를 갖고 노즐에서 원활하게 토출될 수 있다.
도 25는 일 실시예에 따른 발광 소자 잉크의 개략도이다.
도 25를 참조하면, 일 실시예에 따른 발광 소자 잉크(1001)는 소자 용매(103), 발광 소자(30) 및 광 분해성 증점제(500)를 포함한다. 발광 소자(30)에 대한 설명은 상술한 바와 동일한 바, 이하에서는 소자 용매(103)와 광 분해성 증점제(500)에 대하여 자세히 설명하기로 한다.
소자 용매(103)는 발광 소자(30)를 분산된 상태로 보관할 수 있으며 발광 소자(30)와 반응하지 않는 물질을 포함할 수 있다. 소자 용매(103)는 잉크젯 프린팅 장치의 노즐을 통해 토출될 수 있을 정도의 점도를 갖는 물질을 포함할 수 있다. 이하의 실시예에서 서술되는 소자 용매(103)는 도 8 내지 도 24를 참조하여 상술한 소자 용매(100)와는 다를 수 있다. 일 예로, 소자 용매(103)는 아세톤, 물, 알코올, 톨루엔, 프로필렌글리콜(Propylene glycol, PG) 또는 프로필렌글리콜메틸아세테이트(Propylene glycol methyl acetate, PGMA) 등의 유기 용매일 수 있으나 이에 제한되지 않는다.
광 분해성 증점제(500)는 발광 소자(30)와 함께 소자 용매(103) 내에 분산될 수 있다. 상술한 바와 같이, 발광 소자 잉크(1001)는 용기 내에 보관된 상태에서는 발광 소자(30)의 분산 상태를 유지하기 위해 큰 점도를 가질 수 있고, 노즐을 통해 토출될 때는 낮은 점도를 가질 수 있다. 일 실시예에 따르면, 광 분해성 증점제(500)는 분자 간 수소 결합(Intramolecular hydrogen bonding)을 형성할 수 있다. 광 분해성 증점제(500)는 수소 결합을 형성할 수 있는 작용기를 포함할 수 있고, 발광 소자 잉크(1001)는 전단 응력이 인가되지 않는 상태에서 광 분해성 증점제(500)가 형성하는 분자 간 수소 결합에 의해 높은 점도를 가질 수 있다. 발광 소자(30)는 높은 점도를 갖는 발광 소자 잉크(1001) 내에서 장시간 동안 분산된 상태를 유지할 수 있다.
반면, 발광 소자 잉크(1001)가 노즐을 통해 토출되거나 잉크젯 프린팅 장치의 잉크젯 헤드(Inkjet head) 내에서 흐르는 동안에는 소자 용매(103)에 전단 응력이 가해질 수 있다. 상기 전단 응력은 광 분해성 증점제(500)의 분자 간 수소 결합보다 강한 세기를 가질 수 있고 상기 수소 결합은 깨질 수 있다. 이에 따라 발광 소자 잉크(1001)는 낮은 점도를 가질 수 있고, 노즐을 통해 원활하게 토출될 수 있다.
다만, 표시 장치(10)의 제조 공정 중, 발광 소자(30)가 전극(21, 22) 사이에 배치된 후에는 발광 소자 잉크(1001)에 열 또는 광을 조사하여 소자 용매(103) 및 광 분해성 증점제(500)를 제거하는 공정이 수행될 수 있다. 전극(21, 22) 상에 분사된 발광 소자 잉크(1001)는 전단 응력이 인가되지 않는 상태일 수 있고, 발광 소자 잉크(1001)는 광 분해성 증점제(500)의 분자 간 수소 결합에 의해 높은 점도를 가질 수 있다. 이에 따라 소자 용매(103)와 광 분해성 증점제(500)는 원활하게 제거되지 않고 전극(21, 22) 또는 발광 소자(30) 상에 이물질로 남을 수 있다. 또한 발광 소자 잉크(1001)가 높은 점도를 가짐에 따라 전극(21, 22) 상에 형성된 전계에 의해 발광 소자(30)에 작용하는 유전영동힘의 세기가 충분하지 않을 수 있다. 나아가, 점도가 큰 소자 용매(103) 및 광 분해성 증점제(500)를 제거하기 위해 고온의 열처리가 필요할 수 있고, 이들이 제거되면서 유체의 유동에 의한 인력, 또는 광 분해성 증점제(500)와 발광 소자(30) 사이의 인력에 의해 발광 소자(30)의 최초 정렬 상태가 변할 수 있다.
일 실시예에 따른 광 분해성 증점제(500)는 분자 간 수소 결합을 형성할 수 있는 작용기와, 광 조사에 의해 결합이 분해되는 광 분해성 작용기를 포함할 수 있다. 발광 소자(30)가 전극(21, 22) 사이에 배치된 후, 또는 전계가 생성된 동안 발광 소자 잉크(1001)에 광이 조사되면 광 분해성 증점제(500)의 광 분해성 작용기는 결합이 깨지면서 분자량이 작은 단위체들로 분해될 수 있다. 발광 소자 잉크(1001)는 광 분해성 증점제(500)의 분해에 의해 전단 응력이 인가되지 않는 상태에서도 낮은 점도를 가질 수 있다. 이에 따라, 전극(21, 22) 상에 형성된 전계에 의해 발광 소자(30)들이 원활하게 정렬될 수 있고, 소자 용매(103) 및 광 분해성 증점제(500)는 비교적 저온에서도 완전하게 제거될 수 있다.
일 실시예에 따른 광 분해성 증점제(500)는 분자 간 수소 결합을 형성할 수 있는 제1 작용기 및 광 조사에 의해 분자 내 결합이 분해될 수 있는 광 분해성 작용기를 포함할 수 있다. 몇몇 실시예에서, 광 분해성 증점제(500)는 제1 작용기 및 광 분해성 작용기를 포함하는 단량체가 중합되어 형성된 고분자일 수 있고, 광 분해성 증점제(500)는 하기 구조식 2로 표현될 수 있다.
[구조식 2]
상기 구조식 2에서, 'HP1'는 제3 작용기이고, 'CP'는 광 분해성 작용기이며, 상기 m은 1 내지 3의 정수이고, 상기 l은 10 내지 100의 정수이다. 광 분해성 증점제(500)는 상기 구조식 2의 구조를 가짐에 따라, 제3 작용기 및 광 분해성 작용기가 반복된 사슬 구조를 가질 수 있다.
제3 작용기는 분자 간 수소 결합을 형성할 수 있는 작용기를 포함할 수 있다. 예를 들어, 제3 작용기는 수산화기(-OH) 또는 아민기(-NH
2)를 포함할 수 있다. 광 분해성 증점제(500)는 제3 작용기를 포함하여 분자 간 수소 결합을 형성할 수 있다. 소자 용매(103) 내에 분산된 광 분해성 증점제(500)들은 고분자 사슬 간 망상 구조(Network structure)를 형성할 수 있다. 광 분해성 증점제(500)들이 망상 구조를 형성함에 따라 발광 소자 잉크(1001)는 높은 점도를 가질 수 있다.
또한, 몇몇 실시예에서, 제3 작용기는 수소 결합을 형성함과 동시에 고분자 사슬을 형성할 수 있는 중합성기일 수 있다. 예를 들어, 제3 작용기는 아민기(-NH-), 아미노기(-CONH-), 우레아기(-NHCONH-), 우레탄기(-NHCOO-) 중 어느 하나일 수 있다. 제3 작용기는 중합 반응이 가능한 작용기로써 고분자 사슬의 주쇄를 형성할 수 있고, 이와 동시에 분자 내 수소 결합을 형성할 수도 있다. 광 분해성 증점제(500)는 고분자 사슬의 주쇄 간 분자 내 수소 결합을 통해 망상 구조를 형성할 수 있다.
상기 구조식 2와 같이 제3 작용기가 중합 반응이 가능한 작용기일 경우, 광 분해성 작용기는 제3 작용기와 직접 결합될 수 있다. 다만, 이에 제한되지 않고, 광 분해성 증점제(500)가 다른 작용기들을 더 포함하는 경우 제3 작용기와 광 분해성 작용기 사이에는 적어도 하나의 작용기가 더 결합될 수 있다.
광 분해성 작용기는 광 조사에 의해 결합이 분해될 수 있는 작용기를 포함할 수 있다. 광 분해성 증점제(500)는 발광 소자(30)가 전극(21, 22) 사이에 배치된 이후, 또는 전극(21, 22) 상에 전계가 생성되는 동안 광 조사에 의해 광 분해성 작용기의 결합이 일부 분해될 수 있다. 이에 따라 광 분해성 증점제(500)는 분자량이 작은 복수의 단편으로 분해될 수 있고, 발광 소자 잉크(1001)에 전단 응력이 인가되지 않는 상태에서도 낮은 점도를 가질 수 있다.
예시적인 실시예에서, 광 분해성 작용기는 사이클로뷰틸기(cyclobutyl), 말레익 이미드 다이머기(maleic imide dimer), 아크릴레이트 다이머기(acrylate dimer) 또는 카보닐기(carbonyl) 중 어느 하나를 포함할 수 있다. 상술한 작용기들은 상기의 화학 반응식 1 내지 4와 같이 조사되는 광에 의해 결합이 분해되어 분자량이 작은 단편을 형성할 수 있다.
한편, 광 분해성 증점제(500)의 구조는 상기 구조식 2에 제한되지 않는다. 광 분해성 증점제(500)는 분자량 조절을 위한 작용기와, 고분자 사슬을 형성하기 위한 중합성기를 더 포함할 수 있다. 이 경우, 광 분해성 증점제(500)는 제3 작용기 및 광 분해성 작용기에 더하여 다른 작용기 또는 중합성기를 포함하는 단량체가 중합되어 형성된 고분자일 수 있고, 광 분해성 증점제(500)는 하기 구조식 3 내지 5로 표현될 수 있다.
[구조식 3]
[구조식 4]
[구조식 5]
상기 구조식 3 내지 5에서 'HP1' 및 'HP2'는 제3 작용기이고, 'CP'는 광 분해성 작용기이고, 상기 'R
6'은 분자량 조절을 위한 작용기이고, 상기 'R
7'은 중합성기이다. 상기 m은 1 내지 3의 정수이고, 상기 l은 10 내지 100의 정수이다. 광 분해성 증점제(500)는 상기 구조식 3 내지 5와 같이 복수의 작용기와 광 분해성 작용기, 및 중합성기를 포함하는 단량체가 반복된 사슬 구조를 가질 수 있다.
상기 구조식 3과 같이, 광 분해성 증점제(500)는 분자량 조절을 통해 발광 소자 잉크(1001)의 점도를 조절할 수 있는 작용기 R
6을 더 포함할 수 있다. 몇몇 실시예에서, 상기 R
6은 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나일 수 있다. 제3 작용기는 상술한 바와 같이 수소 결합을 형성할 수 있으면서 중합 반응이 가능한 작용기를 포함할 수 있다. 제3 작용기는 R6과 서로 직접 결합될 수 있고, 광 분해성 작용기는 제3 작용기와 직접 결합될 수 있다. 다만, 이에 제한되지 않으며 광 분해성 작용기는 상기 R6과 직접 결합될 수도 있다. 광 분해성 증점제(500)는 탄소수, n 및 l을 조절하여 분자량의 제어가 가능하다.
한편, 제3 작용기는 반드시 중합 반응이 가능한 작용기가 아닐 수도 있다. 광 분해성 증점제(500)는 상기 구조식 4 및 5와 같이 제3 작용기는 수소 결합을 형성할 수 있는 작용기만을 포함하고, 중합 반응이 가능한 중합성기 R7을 포함할 수도 있다. 예시적인 실시예에서, 제3 작용기인 'HP2'는 수산화기(-OH), 또는 아민기(-NH
2)이고, 상기 R
7은 아크릴기(Acryl), 메타크릴기(Methacryl), 에스터기(Ester), 카보네이트기(Carbonate) 등 중 어느 하나일 수 있다. 다만, 이에 제한되지 않는다.
광 분해성 증점제(500)는 중합성기 R
7의 중합 반응을 통해 고분자 사슬을 형성하고, 제3 작용기는 중합성기에 결합될 수 있다. 광 분해성 증점제(500)는 중합성기 및 광 분해성 작용기가 고분자 사슬의 주쇄를 형성하고, 제3 작용기가 측쇄를 형성할 수도 있다. 광 분해성 증점제(500)는 고분자 사슬의 측쇄들 간의 분자 간 수소 결합에 의해 망상 구조를 형성할 수 있다.
몇몇 실시예에서, 광 분해성 증점제(500)는 하기 화학 구조식 7 내지 11로 표현될 수 있다.
[화학 구조식 7]
[화학 구조식 8]
[화학 구조식 9]
[화학 구조식 10]
[화학 구조식 11]
상기 화학 구조식 7 내지 11에서, 상기 l은 10 내지 100의 정수이다.
상기 화학 구조식 7 내지 11은 각각 분자 간 수소 결합을 형성할 수 있는 제1 작용기와 광 조사에 의해 결합이 분해될 수 있는 광 분해성 작용기를 포함한다. 또한, 광 분해성 증점제(500)는 분자량 조절이 가능한 작용기와 중합 반응이 가능한 중합성기를 포함할 수도 있다.
도 26은 일 실시예에 따른 발광 소자 잉크에 전단 응력이 인가되지 않은 상태에서 광 분해성 증점제들의 배치를 나타내는 개략도이다. 도 27은 일 실시예에 따른 발광 소자 잉크에 전단 응력이 인가된 상태에서 광 분해성 증점제들이 배치를 나타내는 개략도이다.
도 26 및 도 27을 참조하여 광 분해성 증점제(500)가 상기 화학 구조식 8인 경우를 예시하여 설명하기로 한다. 광 분해성 증점제(500)는 제3 작용기가 수소 결합을 형성할 수 있으면서 중합 반응이 가능한 아마이드기(Amide, -CONH-)이고, 광 분해성 작용기는 사이클로뷰틸기(Cyclobutyl)를 포함하며, 분자량 조절을 위한 작용기로 에틸렌기(-CH
2CH
2-)를 포함할 수 있다.
광 분해성 증점제(500)는 발광 소자 잉크(1001) 내에서 전단 응력이 인가되지 않는 상태에서, 제3 작용기들이 분자 간 수소 결합 형성하여 3차원 망상 구조를 형성할 수 있다. 광 분해성 증점제(500)들이 망상 구조를 형성함에 따라 발광 소자 잉크(1001)는 높은 점도를 가질 수 있다.
일 예로, 발광 소자 잉크(1001)는 전단 응력이 인가되지 않는 상태에서 점도가 30cP 내지 70cP의 범위를 가질 수 있다. 다만, 이에 제한되지 않는다. 상기 화학 구조식 8에서 상기 l은 발광 소자 잉크(1000)에 요구되는 점도 범위에 따라 적절하게 조절될 수 있다. 상기 l이 커질수록 광 분해성 증점제(500)의 분자량, 고분자 사슬의 길이, 및 이들이 형성하는 망상 구조가 커지게 되고, 발광 소자 잉크(1001)는 더 큰 점도를 가질 수 있다. 발광 소자 잉크(1001)는 광 분해성 증점제(500)를 포함하여 용기에 보관된 상태에서 발광 소자(30)를 장시간 분산된 상태로 유지할 수 있다.
반면, 발광 소자 잉크(1001)가 잉크젯 프린팅 장치의 노즐을 통해 토출될 때, 또는 전단 응력이 인가되는 상태에서 광 분해성 증점제(500)는 망상 구조를 형성하지 않을 수 있다. 발광 소자 잉크(1001)가 잉크젯 프린팅 장치의 잉크젯 헤드에서 흐르거나 노즐에서 토출될 때 유체의 흐름에 의한 전단 응력이 인가될 수 있다. 상기 전단 응력은 광 분해성 증점제(500)들이 형성하는 분자 간 수소 결합보다 강한 세기를 가질 수 있고, 광 분해성 증점제(500)들은 3차원 구조를 형성하지 않고 개별적으로 분산된 상태를 유지할 수 있다. 이에 따라, 발광 소자 잉크(1001)는 낮은 점도를 가질 수 있고, 노즐을 통하여 원활하게 토출될 수 있다.
일 실시예에 따르면, 발광 소자 잉크(1001)는 전단 응력이 인가되는 상태에서 점도가 5 cP 내지 15cP, 또는 7cP 내지 13cP, 바람직하게는 10 cP 내외의 범위를 가질 수 있다. 다만, 이에 제한되지 않으며 발광 소자 잉크(1001)의 점도는 잉크젯 헤드의 노즐에서 토출될 수 있는 범위 내에서 다양하게 변형될 수 있다. 상술한 바와 같이, 상기 화학 구조식 2의 n값에 따라 광 분해성 증점제(500)의 분자량 및 고분자 사슬의 길이가 달라질 수 있고 발광 소자 잉크(1001)의 점도는 원하는 범위 내로 조절될 수 있다.
도 28은 일 실시예에 따른 발광 소자 잉크에 광이 조사될 때 광 분해성 증점제를 나타내는 개략도이다.
도 28을 참조하면, 광 분해성 증점제(500)는 광 분해성 작용기가 분해됨에 따라 분자량이 작은 복수의 단편 분자(500')들을 형성할 수 있다. 화학 구조식 8은 하기 화학 반응식 6과 같이 광이 조사되면 복수의 단편으로 분리될 수 있다.
[화학 반응식 6]
광 분해성 작용기는 결합이 분해되면서 복수의 단편 분자(500')들에 각각 작용기 단편(도 28의 'CP1', 'CP2')으로 남을 수 잇다. 발광 소자 잉크(1001)는 광이 조사되면 광 분해성 증점제(500)의 고분자 사슬이 분해되면서 전단 응력이 인가되지 않더라도 광 분해성 증점제(500)들 간의 망상 구조가 형성되지 않고 발광 소자 잉크(1001)는 낮은 점도를 가질 수 있다. 발광 소자 잉크(1001)가 전극(21, 22) 상에 분사된 후에 낮은 점도를 가짐에 따라 발광 소자(30)는 유전영동힘에 의하여 전극(21, 22) 상에서 원활하게 정렬 및 배치될 수 있다. 또한, 소자 용매(103) 및 광 분해성 증점제(500)를 제거하는 공정에서도 발광 소자(30)의 최초 정렬 위치가 변하지 않고, 비교적 저온에서도 소자 용매(103)와 광 분해성 증점제(500)가 완전하게 제거될 수 있다.
일 실시예에 따르면, 발광 소자 잉크(1001)는 광 분해성 증점제(500)를 포함하여 표시 장치(10)의 제조 공정 중 점도가 변할 수 있다. 발광 소자 잉크(1001)의 보관 단계, 잉크젯 헤드의 노즐을 통한 토출 단계, 발광 소자(30)의 정렬 단계 및 소자 용매(103)와 광 분해성 증점제(500)의 제거 단계마다 발광 소자 잉크(1001)는 적합한 점도를 가질 수 있다. 특히, 발광 소자 잉크(1001)의 보관 단계에서는 높은 점도를 가짐에 따라 발광 소자(30)의 침전을 방지할 수 있고, 노즐을 통한 토출 단계, 발광 소자(30)의 정렬 및 소자 용매(103)의 제거 단계에서는 낮은 점도를 가짐에 따라 잉크젯 프린팅 공정 및 발광 소자(30)의 정렬 공정이 원활하게 수행될 수 있다. 나아가, 발광 소자(30)를 포함하는 표시 장치(10)의 제조 공정에서 발광 소자(30)들이 전극(21, 22) 사이에서 높은 정렬도를 가질 수 있고, 표시 장치(10)의 제품 신뢰도를 향상시킬 수 있다.
일 실시예에 따른 광 분해성 증점제(500)는 제3 작용기와 광 분해성 작용기를 포함하여 전단 응력의 인가, 또는 광 조사에 따라 소자 용매(103) 내에서의 분자 구조가 변할 수 있다. 발광 소자 잉크(1001)는 용매(100) 및 발광 소자(30)에 더하여 광 분해성 증점제(500)를 포함함에 따라 표시 장치(10)의 제조 공정에 따라 적합한 점도를 가질 수 있다.
이하에서는 일 실시예에 따른 표시 장치(10)의 제조 방법에 대하여 설명하기로 한다.
도 29는 일 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다.
도 29를 참조하면, 일 실시예에 따른 표시 장치(10)의 제조 방법은 용매(100), 발광 소자(30), 및 광 분해성 증점제(500)를 포함하는 발광 소자 잉크(1000)를 준비하는 단계(S101), 전극(21, 22)이 형성된 대상 기판을 준비하고, 전극(21, 22) 상에 발광 소자 잉크(1001)를 분사하는 단계(S201) 및 발광 소자 잉크(1001)에 광을 조사하고, 제1 전극(21) 및 제2 전극(22) 상에 발광 소자(30)를 안착시키는 단계(S301)를 포함할 수 있다.
발광 소자 잉크(1001)는 전극(21, 22) 상에 분사되는 단계에서는 전단 응력이 인가되어 낮은 점도를 가질 수 있고, 원활한 토출 공정이 수행될 수 있다. 다만, 전극(21, 22) 상에 분사된 발광 소자 잉크(1001)는 전단 응력이 인가되지 않은 상태로, 광 분해성 증점제(500)들이 3차원 망상 구조를 형성하여 잉크의 점도가 높을 수 있다.
일 실시예에 따르면, 표시 장치(10)의 제조 공정은 발광 소자(30)를 전극(21, 22) 상에 안착시키는 공정에서 발광 소자 잉크(1001)에 광을 조사하여 광 분해성 증점제(500)를 복수의 단편 분자(500')로 분해하는 단계를 포함할 수 있다. 발광 소자(30)가 전극(21, 22) 상에 안착될 때, 발광 소자 잉크(1001)가 낮은 점도를 가질 수 있도록 광을 조사하는 단계가 수행될 수 있다. 이에 따라 발광 소자(30)를 전극(21, 22) 사이에 원활하게 정렬시킬 수 있고, 후속 공정에서 소자 용매(103) 및 광 분해성 증점제(500)를 완전하게 제거할 수 있다.
도 30 내지 도 32는 일 실시예에 따른 표시 장치의 제조 공정 중 일 단계를 나타내는 단면도들이다.
먼저, 도 30을 참조하면, 발광 소자(30), 소자 용매(103) 및 광 분해성 증점제(500)를 포함하는 발광 소자 잉크(1001)와 제1 전극(21) 및 제2 전극(22)이 배치된 대상 기판(SUB)을 준비한다. 도면에서는 대상 기판(SUB) 상에 한 쌍의 전극이 배치된 것을 도시하고 있으나, 대상 기판(SUB) 상에는 더 많은 수의 전극 쌍이 배치될 수 있다. 한편, 대상 기판(SUB)은 상술한 표시 장치(10)의 제1 기판(11)에 더하여 그 상부에 배치되는 복수의 회로소자들을 포함할 수 있다. 이하에서는 설명의 편의를 위해 이들은 생략하여 도시하기로 한다.
발광 소자 잉크(1001)는 소자 용매(103), 이에 분산된 발광 소자(30) 및 광 분해성 증점제(500)를 포함할 수 있다. 용기에 보관된 상태의 발광 소자 잉크(1001)는 유체의 흐름이 없는 상태로, 전단 응력이 인가되지 않는 상태일 수 있다. 광 분해성 증점제(500)는 제1 작용기가 분자 간 수소 결합을 형성하여 소자 용매(103) 내에서 3차원 망상 구조를 형성할 수 있다. 발광 소자 잉크(1001)는 높은 점도, 예를 들어 30cp 내지 70cp의 범위를 가질 수 있고, 발광 소자(30)를 장시간 분산된 상태로 유지할 수 있다.
이어, 도 31 및 도 32를 참조하면, 대상 기판(SUB) 상의 제1 전극(21) 및 제2 전극(22) 상에 발광 소자 잉크(1001)를 분사한다. 예시적인 실시예에서, 발광 소자 잉크(1001)는 잉크젯 프린팅 장치를 이용한 프린팅 공정을 통해 전극(21, 22) 상에 분사될 수 있다. 발광 소자 잉크(1001)는 잉크젯 프린팅 장치에 포함된 잉크젯 헤드의 노즐을 통해 분사될 수 있다. 발광 소자 잉크(1001)는 잉크젯 헤드 내에 구비된 내부 유로를 따라 흐르다가 노즐을 통해 대상 기판(SUB) 상에 토출될 수 있다.
상기 내부 유로를 따라 흐르는 발광 소자 잉크(1001)는 유체의 흐름이 있는 상태로, 전단 응력이 인가되는 상태일 수 있다. 상기 전단 응력이 인가된 발광 소자 잉크(1001)는 광 분해성 증점제(500)의 제3 작용기가 분자 간 수소 결합을 형성하지 못하게 된다. 광 분해성 증점제(500)는 3차원 망상 구조를 형성하지 않고 각각의 사슬이 소자 용매(103) 내에서 분산된 상태로 존재할 수 있고, 발광 소자 잉크(1001)는 낮은 점도, 예를 들어 5cp 내지 15cp, 또는 10 cp 내외의 범위의 점도를 가질 수 있다. 상기 범위 내의 점도를 갖는 발광 소자 잉크(1001)는 잉크젯 헤드의 노즐에서 원활하게 토출될 수 있고, 용액의 점성에 의한 노즐 막힘 현상이 방지될 수 있다.
도 32에 도시된 바와 같이, 발광 소자 잉크(1001)는 대상 기판(SUB) 상에 배치된 전극(21, 22) 상에 안착될 수 있다. 한편, 발광 소자(30)는 일 방향으로 연장된 형상을 가질 수 있고, 발광 소자 잉크(1001) 내에서 연장된 방향이 무작위의 배향 방향을 가진 상태로 분산될 수 있다.
발광 소자(30)를 포함하는 발광 소자 잉크(1001)가 대상 기판(SUB) 상에 분사되면, 전극(21, 22)에 정렬 신호를 인가하여 대상 기판(SUB) 상에 전계(EL)를 생성한다. 소자 용매(103) 내에 분산된 발광 소자(30)들은 전계(EL)에 의해 유전영동힘을 받을 수 있고, 배향 방향 및 위치가 변하면서 전극(21, 22) 상에 배치될 수 있다.
다만, 대상 기판(SUB) 상에 분사된 발광 소자 잉크(1001)는 유체의 흐름이 없어 전단 응력이 인가되지 않는 상태이고, 광 분해성 증점제(500)는 분자 간 수소 결합을 형성하며 3차원 망상 구조를 형성할 수 있다. 발광 소자 잉크(1001)는 높은 점도를 가질 수 있고, 발광 소자(30)는 전계(EL)에 의한 유전영동힘을 받더라도 전극(21, 22) 상에 원하는 위치에 배치되지 않을 수 있다.
도 33 내지 도 35는 표시 장치의 제조 공정 중 발광 소자를 전극 상에 배치하는 공정을 나타내는 개략도들이다. 도 35는 발광 소자(30)를 전극(21, 22) 상에 배치한 뒤, 소자 용매(103)와 광 분해성 증점제(500)를 제거하는 것을 나타내는 도면들이다.
먼저, 도 33 및 도 34를 참조하면, 광 분해성 증점제(500)가 3차원 망상 구조를 형성한 상태에서 대상 기판(SUB) 상에 전계(EL)를 생성하면, 발광 소자(30)는 유전영동힘(F1)을 전달 받을 수 있다. 몇몇 실시예에서, 대상 기판(SUB) 상에 생성되는 전계(EL)가 대상 기판(SUB)의 상면에 평행하게 생성되는 경우, 발광 소자(30)는 연장된 방향이 대상 기판(SUB)에 평행하도록 정렬되어 제1 전극(21)과 제2 전극(22) 상에 배치될 수 있다. 발광 소자(30)는 유전영동힘(F1)에 의해 초기 분산된 위치(도 34의 점선 부분)로부터 전극(21, 22)을 향해 이동할 수 있다. 다만, 발광 소자(30)는 높은 점도를 갖는 발광 소자 잉크(1001) 내에서 유전영동힘(F1)에 반대 방향으로 향하는 저항력을 받을 수 있고, 전극(21, 22) 상에 원하는 위치에 안착되지 않을 수 있다. 발광 소자(30)에 인가된 유전영동힘(F1)은 발광 소자(30)의 양 단부가 제1 전극(21) 및 제2 전극(22) 상에 배치되기에는 충분하지 않을 수 있고, 발광 소자(30)는 연장 방향이 전극(21, 22)의 연장 방향에 기울어진 상태로 배치될 수도 있다.
또한, 후속 공정에서 소자 용매(103)와 광 분해성 증점제(500)를 제거하더라도, 발광 소자 잉크(1001)의 점도에 의해 발광 소자(30)의 배향 방향 또는 정렬 상태가 변하거나 소자 용매(103)가 완전히 제거되지 않을 수도 있다.
도 35를 참조하면, 발광 소자(30)를 전극(21, 22) 상에 배치한 뒤 소자 용매(103)와 광 분해성 증점제(500)를 제거하면, 유체의 유동에 의한 인력, 또는 광 분해성 증점제(500)와 발광 소자(30) 사이의 인력(도 35의 'Fa')에 의해 발광 소자(30)의 최초 정렬 상태(도 35의 점선 부분)가 변할 수 있다. 이에 따라, 상술한 바와 같이, 최종적으로 전극(21, 22) 상에 배치된 발광 소자(30)는 연장된 일 방향과 전극(21, 22)이 연장된 방향에 수직한 방향이 이루는 예각(Θi')은 큰 값을 가질 수 있다.
또한, 높은 점도를 갖는 발광 소자 잉크(1001)는 소자 용매(103)와 광 분해성 증점제(500)가 완전히 제거되지 않을 수 있고, 후속 공정에서 이물질로 남을 수 있다. 전극(21, 22) 및 발광 소자(30) 상에 남은 이물질들은 접촉 전극(26)을 형성하는 후속 공정에서 발광 소자(30)와의 접촉 불량을 유발할 수 있다. 이들을 완전히 제거하기 위해 고온의 열처리 공정을 수행할 경우, 발광 소자(30) 및 대상 기판(SUB)에 포함된 회로소자들이 손상될 수 있다.
일 실시예에 따른 표시 장치(10)의 제조 방법은 발광 소자(30)를 전극(21, 22) 상에 배치하는 단계, 또는 그 이후의 단계에서 발광 소자 잉크(1001)에 광을 조사하는 단계를 포함할 수 있다. 발광 소자 잉크(1001)에 광을 조사하면 광 분해성 증점제(500)는 광 분해성 작용기가 분해되어 복수의 단편 분자(500')들을 형성할 수 있다. 발광 소자 잉크(1001)는 전단 응력이 인가되지 않는 상태에서도 광 분해성 증점제(500)가 3차원 망상 구조를 형성하지 못하고 낮은 점도를 가질 수 있다. 이에 따라 발광 소자(30)는 전극(21, 22) 상에 원하는 위치에 배치될 수 있을 정도의 유전영동힘을 받을 수 있고, 이후 공정에서 비교적 저온의 열처리 공정을 통해 소자 용매(103)와 광 분해성 증점제(500)를 완전하게 제거할 수 있다.
도 36 내지 38은 일 실시예에 따른 표시 장치의 제조 공정 중 발광 소자를 전극 상에 배치하는 공정을 나타내는 개략도들이다. 도 36은 발광 소자 잉크(1001)에 광을 조사하는 단계를, 도 37 및 도 38은 대상 기판(SUB) 상에 전계를 생성하여 발광 소자(30)를 배치하는 단계를 도시하고 있다.
먼저, 도 36을 참조하면, 일 실시예에 따른 표시 장치(10)의 제조 공정은 대상 기판(SUB) 상에 분사된 발광 소자 잉크(1001)에 광(hv)을 조사하는 단계를 포함할 수 있다. 발광 소자 잉크(1001)에 광(hv)이 조사되면 광 분해성 증점제(500)는 광 분해성 작용기의 결합이 분해되어 복수의 단편 분자(500')들을 형성할 수 있다. 단편 분자(500')들은 광 분해성 증점제(500)보다 작은 분자량을 가질 수 있고, 분자 간 수소 결합을 형성하더라도 발광 소자 잉크(1001)는 낮은 점도를 가질 수 있다. 후속 공정에서 대상 기판(SUB) 상에 전계(EL)가 생성되면, 발광 소자(30)는 낮은 점도를 갖는 발광 소자 잉크(1001)에 분산된 상태에서 전극(21, 22) 상에 배치될 수 있다.
이어, 도 37 및 도 38을 참조하면, 대상 기판(SUB) 상에 전계(EL)를 생성하여 발광 소자(30)를 전극(21, 22) 상에 배치시킨다. 발광 소자 잉크(1001)가 낮은 점도를 가짐에 따라 발광 소자(30)는 원하는 위치에 배치될 수 있도록 충분한 유전영동힘(F2)을 전달 받을 수 있다. 발광 소자(30)는 초기 분산된 위치(도 38의 점선부분)로부터 위치와 배향 방향이 변하면서 양 단부가 각각 제1 전극(21) 및 제2 전극(22) 상에 배치될 수 있다. 복수의 발광 소자(30)들은 각 전극(21, 22) 상에서 비교적 균일한 정렬도를 갖고 배치될 수 있다. 발광 소자(30)들이 갖는 '정렬도'는 대상 기판(SUB) 상에서 정렬된 발광 소자(30)들의 배향 방향 및 안착된 위치의 편차를 의미하는 것일 수 있다. 예를 들어, 발광 소자(30)들의 배향 방향 및 안착된 위치 등의 편차가 클 경우, 발광 소자(30)들의 정렬도가 낮은 것이고, 발광 소자(30)들의 배향 방향 및 안착된 위치 등의 편차가 작을 경우, 발광 소자(30)들의 정렬도가 높거나 개선된 것으로 이해될 수 있다.
이어, 발광 소자 잉크(1001)의 소자 용매(103)와 광 분해성 증점제(500), 또는 복수의 단편 분자(500')들을 제거한다.
상술한 바와 같이, 소자 용매(103) 및 광 분해성 증점제(500), 또는 복수의 단편 분자(500')를 제거하는 공정은 통상적인 열처리 공정을 통해 수행될 수 있다. 광 분해성 증점제(500)는 광 분해성 작용기의 결합이 분해됨에 따라 분자량이 작은 복수의 단편 분자(500')를 형성할 수 있고, 비교적 저온의 열처리 공정을 통해서도 완전하게 제거될 수 있다. 예시적인 실시예에서 상기 열처리 공정은 200℃ 내지 400℃, 또는 300℃ 내외의 온도 범위에서 수행될 수 있다. 상기 범위 내에서 열처리 공정을 수행할 경우, 발광 소자(30) 및 회로소자들의 손상을 방지하면서 소자 용매(103)와 광 분해성 증점제(500) 및 복수의 단편 분자(500')들을 완전하게 제거할 수 있다.
발광 소자(30)는 낮은 점도를 갖는 발광 소자 잉크(1001) 내에 분산된 상태에서 전극(21, 22) 상에 높은 정렬도로 배치될 수 있다. 발광 소자 잉크(1001)는 열처리 공정을 통해 소자 용매(103)와 광 분해성 증점제(500) 및 단편 분자(500')가 제거되더라도 발광 소자(30)는 최초의 정렬 상태를 유지할 수 있다. 이에 따라, 상술한 바와 같이, 최종적으로 전극(21, 22) 상에 배치된 발광 소자(30)는 연장된 일 방향과 전극(21, 22)이 연장된 방향에 수직한 방향이 이루는 예각(Θi)은 매우 작은 값을 가질 수 있다.
다음으로, 발광 소자(30)와 전극(21, 22) 상에 복수의 절연층들, 및 접촉 전극(26)을 형성하여 표시 장치(10)를 제조할 수 있다. 이상의 공정을 통해 발광 소자(30)를 포함하는 표시 장치(10)를 제조할 수 있다. 일 실시예에 따르면, 발광 소자(30)와 광 분해성 증점제(500)를 포함하는 발광 소자 잉크(1001)를 이용하여 전극(21, 22) 상에 발광 소자(30)가 배치된 표시 장치(10)를 제조할 수 있다. 표시 장치(10)의 제조 공정은 대상 기판(SUB) 상에 발광 소자 잉크(1001)를 분사하고, 이에 광을 조사하는 공정을 포함할 수 있다. 발광 소자 잉크(1001)는 각 공정에 따라 필요한 점도를 가질 수 있고, 발광 소자(30)는 전극(21, 22) 상에 높은 정렬도로 배치될 수 있다. 일 실시예에 따른 표시 장치(10)의 제조 공정은 발광 소자(30)를 포함하여 제품 신뢰도가 향상된 표시 장치(10)를 제조할 수 있다.
도 39는 일 실시예에 따른 표시 장치의 제조 방법 중 일부를 나타내는 단면도이다.
상술한 바와 같이, 발광 소자 잉크(1001)에 광(UV)을 조사하여 광 분해성 증점제(500)를 복수의 단편 분자(500')들로 분해하는 단계와 전계(EL)를 생성하여 발광 소자(30)를 전극(21, 22) 상에 안착시키는 단계는 하나의 공정에서 동시에 수행될 수 있다.
도 39를 참조하면, 전극(21, 22) 상에 분사된 발광 소자 잉크(1001)에 광(UV)을 조사함과 동시에 전극(21, 22)을 통해 정렬 신호를 인가할 수 있다. 이에 따라 광 분해성 증점제(500)는 복수의 단편 분자(500')들로 분해되면서 발광 소자 잉크(1001)는 점도가 낮아질 수 있다. 이와 동시에 전극(21, 22)에 정렬 신호를 인가하여 전계(EL)를 생성함으로써 발광 소자(30)를 전극(21, 22) 상에 안착시킬 수 있다. 발광 소자 잉크(1001)에 광(UV)을 조사하는 공정 중에 발광 소자(30)를 안착시키는 공정을 수행함으로써 공정 시간을 단축시킬 수 있다.
또한, 도면으로 도시하지 않았으나, 발광 소자(30)를 안착시킨 후, 소자 용매(103)와 광 분해성 증점제(500)를 제거하는 공정을 연속적으로 수행할 수도 있다. 특히, 광 분해성 증점제(500)를 분해하는 단계를 열처리 공정으로 수행할 경우, 하나의 열처리 공정 내에서 전극(21, 22)에 정렬 신호를 인가하여 발광 소자(30)를 전극(21, 22) 상에 안착시킬 수 있다. 이에 따라 표시 장치(10)의 제조 공정 상의 효율을 향상시킬 수도 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (42)
- 제1 전극 및 제2 전극이 형성된 대상 기판 상에 제1 소자 용매 및 상기 제1 소자 용매 내에 분산된 발광 소자를 포함하는 소자 잉크를 분사하는 단계;상기 제1 소자 용매에 광을 조사하여 상기 제1 소자 용매의 적어도 일부 결합이 분해된 제2 소자 용매를 형성하고, 상기 제1 전극 및 상기 제2 전극 상에 상기 발광 소자를 안착하는 단계; 및상기 제2 소자 용매를 제거하는 단계를 포함하는 표시 장치의 제조방법.
- 제1 항에 있어서,상기 제1 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기; 및상기 광 분해성 작용기에 결합되고 하기 화학 구조식 1로 표현되는 제1 작용기 및 제2 작용기를 포함하고,하기의 화학 구조식 2 내지 5로 표현되는 화합물 중 적어도 어느 하나인 표시 장치의 제조방법.[화학 구조식 1](상기 화학 구조식 1에서,상기 n은 1 내지 5의 정수이되, 상기 제1 작용기의 상기 n값과 상기 제2 작용기의 상기 n 값의 합은 2 내지 6의 범위를 갖고,상기 R 5는 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이다.)[화학 구조식 2][화학 구조식 3][화학 구조식 4][화학 구조식 5](상기 화학 구조식 2 내지 5에서,상기 R 1 및 R 2는 상기 화학 구조식 1로 표현되되, 상기 R 1의 상기 화학 구조식 1에서 n값과 R 2의 상기 화학 구조식 1에서 n값의 합은 2 내지 6의 범위를 갖고,상기 R 3 및 R 4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나이다.)
- 제2 항에 있어서,상기 제2 소자 용매를 형성하는 단계에서,상기 광 분해성 작용기는 상기 조사되는 광에 의해 적어도 일부의 결합이 분해된 적어도 하나의 광 분해 단편을 형성하고,상기 제2 소자 용매는 상기 광 분해 단편을 포함하는 표시 장치의 제조방법.
- 제3 항에 있어서,상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합된 표시 장치의 제조 방법.
- 제3 항에 있어서,상기 제2 소자 용매의 분자량은 상기 제1 소자 용매의 분자량의 50% 이하인 표시 장치의 제조방법.
- 제5 항에 있어서,상기 제1 소자 용매는 점도가 7cp 내지 15cp의 범위를 갖고,상기 제2 소자 용매는 점도가 5cp이하인 표시 장치의 제조방법.
- 제1 항에 있어서,상기 발광 소자를 랜딩하는 단계는 상기 제2 소자 용매 상에 전계를 형성하는 단계; 및상기 전계에 의해 상기 발광 소자의 배향 방향이 정렬되는 단계를 포함하는 표시 장치의 제조방법.
- 제7 항에 있어서,상기 발광 소자는 일 방향으로 연장된 형상을 갖고,상기 발광 소자가 연장된 상기 일 방향과 상기 제1 전극 및 상기 제2 전극이 연장된 방향에 수직한 방향이 이루는 예각은 88° 내지 90°의 범위를 갖는 표시 장치의 제조방법.
- 반도체 결정을 분산시키는 발광 소자 용매로서,상기 발광 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기; 및상기 광 분해성 작용기에 결합된 서로 다른 제1 작용기 및 제2 작용기를 포함하고,하기 구조식 1로 표시되며,상기 광 분해성 작용기는 상기 광에 의해 상기 화학결합이 분해된 적어도하나의 광 분해 단편을 형성하는 발광 소자 용매.[구조식 1]X1-P-X2(상기 구조식 1에서, 상기 P는 광 분해성 작용기이고, 상기 X1은 제1 작용기이며, 상기 X2는 제2 작용기이다.)
- 제9 항에 있어서,상기 제1 작용기 및 상기 제2 작용기는 하기 화학 구조식 1로 표현되고,상기 발광 소자 용매는 하기 화학 구조식 2 내지 5로 표현되는 화합물 중 어느 하나인 발광 소자 용매.[화학 구조식 1](상기 화학 구조식 1에서,상기 n은 1 내지 5의 정수이되, 상기 제1 작용기의 상기 n값과 상기 제2 작용기의 상기 n 값의 합은 2 내지 6의 범위를 갖고,상기 R 5는 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이다.)[화학 구조식 2][화학 구조식 3][화학 구조식 4][화학 구조식 5](상기 화학 구조식 2 내지 5에서,상기 R 1 및 R 2는 상기 화학 구조식 1로 표현되되, 상기 R 1의 상기 화학 구조식 1에서 n값과 R 2의 상기 화학 구조식 1에서 n값의 합은 2 내지 6의 범위를 갖고,상기 R 3 및 R 4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나이다.)
- 제9 항에 있어서,상기 발광 소자 용매는 상기 구조식 1로 표시되는 제1 소자 용매를 형성하고,상기 제1 소자 용매는 상기 광이 조사되는 경우 상기 광 분해 단편을 포함하는 제2 소자 용매를 형성하는 발광 소자 용매.
- 제12 항에 있어서,상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합된 발광 소자 용매.
- 제12 항에 있어서,상기 제2 소자 용매의 분자량은 상기 제1 소자 용매의 분자량의 50% 이하인 발광 소자 용매.
- 제14 항에 있어서,상기 제1 소자 용매는 점도가 7cp 내지 15cp의 범위를 갖고,상기 제2 소자 용매는 점도가 5cp이하인 발광 소자 용매.
- 반도체 결정 및 상기 반도체 결정의 외주면을 둘러싸는 절연막을 포함하는 발광 소자; 및적어도 하나의 상기 발광 소자가 분산된 발광 소자 용매를 포함하고,상기 발광 소자 용매는 조사되는 광에 의해 적어도 어느 하나의 화학결합이 분해되는 광 분해성 작용기; 및상기 광 분해성 작용기에 결합되고 하기 화학 구조식 1로 표현되는 제1 작용기 및 제2 작용기를 포함하고,하기의 화학 구조식 2 내지 5로 표현되는 화합물 중 어느 하나인 발광 소자 잉크.[화학 구조식 1](상기 화학 구조식 1에서,상기 n은 1 내지 5의 정수이되, 상기 제1 작용기의 상기 n값과 상기 제2 작용기의 상기 n 값의 합은 2 내지 6의 범위를 갖고,상기 R 5는 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이다.)[화학 구조식 2][화학 구조식 3][화학 구조식 4][화학 구조식 5](상기 화학 구조식 2 내지 5에서,상기 R 1 및 R 2는 상기 화학 구조식 1로 표현되되, 상기 R 1의 상기 화학 구조식 1에서 n값과 R 2의 상기 화학 구조식 1에서 n값의 합은 2 내지 6의 범위를 갖고,상기 R 3 및 R 4는 각각 독립적으로 C1-C10의 알킬기, C2-C10의 알케닐기, C2-C10의 알카이닐기, C1-C10의 알킬에터기 및 C2-C10의 알케닐에터기 중 어느 하나이다.)
- 제16 항에 있어서,상기 발광 소자 용매의 상기 광 분해성 작용기는 상기 광에 의해 상기 화학결합이 분해된 적어도 하나의 광 분해 단편을 형성하고,상기 광 분해 단편은 상기 제1 작용기 및 상기 제2 작용기 중 적어도 어느 하나가 결합된 발광 소자 잉크.
- 제18 항에 있어서,상기 발광 소자 용매는 상기 조사되는 광에 의해 상기 광 분해성 작용기의 상기 화학결합이 분해되어 점도가 감소하는 발광 소자 잉크.
- 제19 항에 있어서,상기 반도체 결정은 제1 도전형으로 도핑된 제1 반도체층;상기 제1 도전형과 다른 극성을 갖는 제2 도전형으로 도핑된 제2 반도체층; 및상기 제1 반도체층과 상기 제2 반도체층 사이에 형성되는 활성층을 포함하는 발광 소자 잉크.
- 용매, 상기 용매 내에 분산된 복수의 발광 소자 및 광 분해성 증점제를 포함하는 발광 소자 잉크를 준비하는 단계;제1 전극 및 제2 전극이 형성된 대상 기판 상에 상기 발광 소자 잉크를 분사하는 단계; 및상기 발광 소자 잉크에 광을 조사하고 상기 제1 전극 및 상기 제2 전극 상에 상기 발광 소자를 안착시키는 단계를 포함하는 표시 장치의 제조방법.
- 제21 항에 있어서,상기 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기; 및 상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며, 하기 구조식 2 내지 5 중 어느 하나로 표현되는 표시 장치의 제조방법.[구조식 2][구조식 3][구조식 4][구조식 5]상기 구조식 2 내지 5에서, 상기 'HP1' 및 'HP2'는 제3 작용기이고, 상기 'HP1'은 아민기(-NH-), 아미노기(-CONH-), 우레아기(-NHCONH-), 우레탄기(-NHCOO-) 중 어느 하나이고, 'HP2'는 수산화기(-OH) 또는 아민기(-NH2)이고,상기 'CP'는 광 분해성 작용기이며,상기 R 6은 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이고,상기 R 7는아크릴기(Acryl), 메타크릴기(Methacryl), 에스터기(Ester), 카보네이트기(Carbonate) 중 어느 하나이고,상기 m은 1 내지 3의 정수이고,상기 l은 10 내지 100의 정수이다.
- 제22 항에 있어서,상기 발광 소자 잉크를 준비하는 단계에서, 상기 광 분해성 증점제는 상기 제3 작용기가 분자 간 수소 결합을 형성하여 망상 구조를 형성하는 표시 장치의 제조방법.
- 제24 항에 있어서,상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 30cP 내지 70cP의 범위를 갖는 표시 장치의 제조방법.
- 제22 항에 있어서,상기 발광 소자 잉크를 분사하는 단계에서, 상기 광 분해성 증점제는 상기 제3 작용기의 수소 결합이 분해되는 표시 장치의 제조방법.
- 제26 항에 있어서,상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 5cP 내지 15cP의 범위를 갖는 표시 장치의 제조방법.
- 제22 항에 있어서,상기 광 분해성 증점제는 상기 광이 조사되면 상기 광 분해성 작용기가 분해되어 복수의 단편 분자들을 형성하는 표시 장치의 제조방법.
- 제28 항에 있어서,상기 발광 소자를 안착시키는 단계는 상기 제1 전극과 상기 제2 전극 상에 전계를 형성하는 단계;상기 전계에 의해 상기 발광 소자의 배향 방향이 정렬되는 단계; 및상기 용매 및 상기 단편 분자들을 제거하는 단계를 포함하는 표시 장치의 제조방법.
- 제29 항에 있어서,상기 용매 및 상기 단편 분자를 제거하는 단계는 200℃ 내지 400℃의 열처리 공정을 통해 수행되는 표시 장치의 제조방법.
- 제28 항에 있어서,상기 발광 소자는 일 방향으로 연장된 형상을 갖고,상기 발광 소자가 연장된 상기 일 방향과 상기 제1 전극 및 상기 제2 전극이 연장된 방향이 이루는 예각은 88° 내지 90°의 범위를 갖는 표시 장치의 제조방법.
- 용매;상기 용매 내에 분산되고, 복수의 반도체층 및 상기 반도체층들의 외면을 부분적으로 둘러싸는 절연막을 포함하는 발광 소자; 및상기 용매 내에 분산된 광 분해성 증점제를 포함하고,상기 광 분해성 증점제는 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기 및 상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며,하기 구조식 2 내지 5 중 어느 하나로 표현되는 발광 소자 잉크.[구조식 2][구조식 3][구조식 4][구조식 5]상기 구조식 2 내지 5에서, 상기 'HP1' 및 'HP2'는 제3 작용기이고, 상기 'HP1'은 아민기(-NH-), 아미노기(-CONH-), 우레아기(-NHCONH-), 우레탄기(-NHCOO-) 중 어느 하나이고, 'HP2'는 수산화기(-OH) 또는 아민기(-NH2)이고,상기 'CP'는 광 분해성 작용기이며,상기 R 6은 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이고,상기 R 7는아크릴기(Acryl), 메타크릴기(Methacryl), 에스터기(Ester), 카보네이트기(Carbonate) 중 어느 하나이고,상기 m은 1 내지 3의 정수이고,상기 l은 10 내지 100의 정수이다.
- 제32 항에 있어서,상기 광 분해성 작용기는 사이클로뷰틸기(cyclobutyl), 말레익 이미드 다이머기(maleic imide dimer), 아크릴레이트 다이머기(acrylate dimer) 또는 카보닐기(carbonyl) 중 어느 하나를 포함하는 발광 소자 잉크.
- 제32 항에 있어서,전단응력이 인가되지 않는 상태에서, 상기 광 분해성 증점제는 상기 제3 작용기가 분자 간 수소 결합을 형성하여 망상 구조를 형성하는 발광 소자 잉크.
- 제35 항에 있어서,상기 발광 소자 잉크는 전단 응력이 인가되지 않는 상태에서 점도가 30cP 내지 70cP의 범위를 갖는 발광 소자 잉크.
- 제32 항에 있어서,전단응력이 인가된 상태에서, 상기 광 분해성 증점제는 상기 제3 작용기의 분자 간 수소 결합이 분해되는 발광 소자 잉크.
- 제37 항에 있어서,상기 발광 소자 잉크는 전단 응력이 인가되는 상태에서 점도가 5cpP 내지 15cP의 범위를 갖는 발광 소자 잉크.
- 제32 항에 있어서,상기 발광 소자의 상기 반도체층은 제1 반도체층, 제2 반도체층 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치된 활성층을 포함하고,상기 절연막은 적어도 상기 활성층의 외면을 둘러싸도록 배치된 발광 소자 잉크.
- 수소 결합을 형성할 수 있는 작용기를 포함하는 제3 작용기; 및상기 제3 작용기와 결합되어 조사되는 광에 의해 결합이 분해되는 광 분해성 작용기를 포함하며, 하기 구조식 2 내지 5 중 어느 하나로 표현되는 광 분해성 증점제.[구조식 2][구조식 3][구조식 4][구조식 5]상기 구조식 2 내지 5에서, 상기 'HP1' 및 'HP2'는 제3 작용기이고, 상기 'HP1'은 아민기(-NH-), 아미노기(-CONH-), 우레아기(-NHCONH-), 우레탄기(-NHCOO-) 중 어느 하나이고, 'HP2'는 수산화기(-OH) 또는 아민기(-NH2)이고,상기 'CP'는 광 분해성 작용기이며,상기 R 6은 C1-C5의 알킬기, C2-C5의 알케닐기, C2-C5의 알카이닐기, C1-C5의 알킬에터기 및 C2-C5의 알케닐에터기 중 어느 하나이고,상기 R 7는아크릴기(Acryl), 메타크릴기(Methacryl), 에스터기(Ester), 카보네이트기(Carbonate) 중 어느 하나이고,상기 m은 1 내지 3의 정수이고,상기 l은 10 내지 100의 정수이다.
- 제40 항에 있어서,상기 광 분해성 작용기는 광 분해성 작용기는 사이클로뷰틸기(cyclobutyl), 말레익 이미드 다이머기(maleic imide dimer), 아크릴레이트 다이머기(acrylate dimer) 또는 카보닐기(carbonyl) 중 어느 하나를 포함하는 광 분해성 증점제.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/593,438 US20220204796A1 (en) | 2019-03-18 | 2020-03-03 | Light-emitting element solvent, photodegradable thickener, light-emitting element ink, and method for manufacturing display device |
EP20773528.3A EP3944324A4 (en) | 2019-03-18 | 2020-03-03 | ELECTROLUMINESCENT ELEMENT SOLVENT, PHOTODEGRADABLE THICKENER, ELECTROLUMINESCENT ELEMENT INK AND METHOD OF MAKING DISPLAY DEVICE |
CN202080022254.7A CN113597678A (zh) | 2019-03-18 | 2020-03-03 | 发光元件溶剂、可光降解增稠剂、发光元件墨及用于制造显示装置的方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190030502A KR20200111312A (ko) | 2019-03-18 | 2019-03-18 | 발광 소자 용매, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법 |
KR10-2019-0030502 | 2019-03-18 | ||
KR10-2020-0009463 | 2020-01-23 | ||
KR1020200009463A KR20210095776A (ko) | 2020-01-23 | 2020-01-23 | 광 분해성 증점제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020189924A1 true WO2020189924A1 (ko) | 2020-09-24 |
Family
ID=72520412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/003010 WO2020189924A1 (ko) | 2019-03-18 | 2020-03-03 | 발광 소자 용매, 광 분해성 증점제, 발광 소자 잉크 및 표시 장치의 제조 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220204796A1 (ko) |
EP (1) | EP3944324A4 (ko) |
CN (1) | CN113597678A (ko) |
WO (1) | WO2020189924A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3901228A1 (en) * | 2020-04-22 | 2021-10-27 | Samsung Display Co., Ltd. | Light emitting element ink and method of manufacturing display device |
EP3950858A1 (en) * | 2020-08-03 | 2022-02-09 | Samsung Display Co., Ltd. | Light emitting element ink and method of manufacturing display device |
EP3982430A1 (en) * | 2020-10-08 | 2022-04-13 | Samsung Display Co., Ltd. | Display device |
EP4075502A1 (en) * | 2021-04-15 | 2022-10-19 | Samsung Display Co., Ltd. | Pixel and display device including the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102666905B1 (ko) | 2018-10-30 | 2024-05-17 | 삼성디스플레이 주식회사 | 발광 소자 분산제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060130388A (ko) * | 2005-06-14 | 2006-12-19 | 엘지.필립스 엘시디 주식회사 | 액정표시소자의 제조방법 |
KR20070072296A (ko) * | 2005-12-30 | 2007-07-04 | 삼성전자주식회사 | 표시장치 및 그 제조방법과 표시장치 제조용 잉크 조성물 |
KR20110056383A (ko) * | 2008-09-12 | 2011-05-27 | 스미또모 가가꾸 가부시키가이샤 | 유기 전계 발광 소자 제조용의 잉크, 유기 전계 발광 소자의 제조 방법 및 표시 장치 |
KR20130044116A (ko) * | 2010-07-01 | 2013-05-02 | 파나소닉 주식회사 | 유기 발광 소자용 잉크, 유기 발광 소자의 제조 방법, 유기 표시 패널, 유기 표시 장치, 유기 발광 장치, 잉크, 기능층의 형성 방법, 및 유기 발광 소자 |
KR20180024308A (ko) * | 2016-08-29 | 2018-03-08 | 엘지디스플레이 주식회사 | 기판, 이를 포함하는 액정표시장치 및 그 제조방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4200810B2 (ja) * | 2002-05-17 | 2008-12-24 | セイコーエプソン株式会社 | ディスプレー製造装置、及び、ディスプレー製造方法 |
-
2020
- 2020-03-03 EP EP20773528.3A patent/EP3944324A4/en active Pending
- 2020-03-03 CN CN202080022254.7A patent/CN113597678A/zh active Pending
- 2020-03-03 US US17/593,438 patent/US20220204796A1/en active Pending
- 2020-03-03 WO PCT/KR2020/003010 patent/WO2020189924A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060130388A (ko) * | 2005-06-14 | 2006-12-19 | 엘지.필립스 엘시디 주식회사 | 액정표시소자의 제조방법 |
KR20070072296A (ko) * | 2005-12-30 | 2007-07-04 | 삼성전자주식회사 | 표시장치 및 그 제조방법과 표시장치 제조용 잉크 조성물 |
KR20110056383A (ko) * | 2008-09-12 | 2011-05-27 | 스미또모 가가꾸 가부시키가이샤 | 유기 전계 발광 소자 제조용의 잉크, 유기 전계 발광 소자의 제조 방법 및 표시 장치 |
KR20130044116A (ko) * | 2010-07-01 | 2013-05-02 | 파나소닉 주식회사 | 유기 발광 소자용 잉크, 유기 발광 소자의 제조 방법, 유기 표시 패널, 유기 표시 장치, 유기 발광 장치, 잉크, 기능층의 형성 방법, 및 유기 발광 소자 |
KR20180024308A (ko) * | 2016-08-29 | 2018-03-08 | 엘지디스플레이 주식회사 | 기판, 이를 포함하는 액정표시장치 및 그 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3944324A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3901228A1 (en) * | 2020-04-22 | 2021-10-27 | Samsung Display Co., Ltd. | Light emitting element ink and method of manufacturing display device |
US11787964B2 (en) | 2020-04-22 | 2023-10-17 | Samsung Display Co., Ltd. | Light emitting element ink and method of manufacturing display device |
EP3950858A1 (en) * | 2020-08-03 | 2022-02-09 | Samsung Display Co., Ltd. | Light emitting element ink and method of manufacturing display device |
EP3982430A1 (en) * | 2020-10-08 | 2022-04-13 | Samsung Display Co., Ltd. | Display device |
EP4075502A1 (en) * | 2021-04-15 | 2022-10-19 | Samsung Display Co., Ltd. | Pixel and display device including the same |
Also Published As
Publication number | Publication date |
---|---|
US20220204796A1 (en) | 2022-06-30 |
EP3944324A4 (en) | 2022-11-23 |
EP3944324A1 (en) | 2022-01-26 |
CN113597678A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020189924A1 (ko) | 발광 소자 용매, 광 분해성 증점제, 발광 소자 잉크 및 표시 장치의 제조 방법 | |
WO2019208880A1 (ko) | 발광 장치, 이를 구비한 표시 장치, 및 그의 제조 방법 | |
WO2020213832A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2020080624A1 (ko) | 표시 장치 | |
WO2021149863A1 (ko) | 표시 장치 | |
WO2020111417A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2022108157A1 (ko) | 표시 장치 | |
WO2020040368A1 (ko) | 발광 소자, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법 | |
WO2021162180A1 (ko) | 표시 장치 | |
WO2020091174A1 (ko) | 발광 소자 분산제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법 | |
WO2022065873A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2023277504A1 (ko) | 화소 및 이를 구비한 표시 장치 | |
WO2021215692A1 (ko) | 잉크젯 프린팅 장치 및 이를 이용한 쌍극성 소자의 프린팅 방법 | |
WO2022059984A1 (ko) | 표시 장치 | |
WO2021215833A1 (ko) | 화소, 이를 구비한 표시 장치, 및 그의 제조 방법 | |
WO2021118081A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2020166853A1 (ko) | 발광 소자 용매, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법 | |
WO2022220558A1 (ko) | 반도체 발광소자를 포함하는 디스플레이 장치 | |
WO2019083338A1 (ko) | 산화물 반도체 박막 트랜지스터 및 그 제조방법 | |
WO2022164168A1 (ko) | 발광 소자, 발광 소자를 포함하는 발광 소자 유닛, 및 표시 장치 | |
WO2022086021A1 (ko) | 표시 장치 | |
WO2021020714A1 (ko) | 쌍극자 정렬 장치, 쌍극자 정렬 방법 및 표시 장치의 제조 방법 | |
WO2021010627A1 (ko) | 화소, 이를 구비한 표시 장치 및 그의 제조 방법 | |
WO2023211102A1 (ko) | 표시 장치 | |
WO2022211546A1 (ko) | 반도체 발광소자를 포함하는 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20773528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020773528 Country of ref document: EP Effective date: 20211018 |