WO2020189556A1 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
WO2020189556A1
WO2020189556A1 PCT/JP2020/011105 JP2020011105W WO2020189556A1 WO 2020189556 A1 WO2020189556 A1 WO 2020189556A1 JP 2020011105 W JP2020011105 W JP 2020011105W WO 2020189556 A1 WO2020189556 A1 WO 2020189556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
acid
dianhydride
compound
polyimide film
Prior art date
Application number
PCT/JP2020/011105
Other languages
French (fr)
Japanese (ja)
Inventor
麻友香 牛島
美香 松本
二郎 杉山
喬士 玉置
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021507306A priority Critical patent/JPWO2020189556A1/ja
Publication of WO2020189556A1 publication Critical patent/WO2020189556A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide film having both high surface hardness and bending resistance.
  • aromatic polyimide for example, "Kapton” manufactured by DuPont
  • aromatic polyimide is known to be a light and flexible polyimide having high heat resistance.
  • the aromatic polyimide has a brown color and cannot be used in applications that require high light transmission.
  • Patent Document 1 has a description regarding heat resistance. However, in Patent Document 1, the surface hardness and bending resistance have not been sufficiently studied.
  • Patent Document 2 shows that by introducing isocyanate as a cross-linking agent into polyimide, the downward curve becomes gentler as a thermal behavior in dynamic viscoelasticity measurement.
  • Patent Document 2 does not describe the relationship between the elastic modulus ( GN 0 ) in the rubber-like flat region and the surface hardness and bending resistance at all.
  • An object of the present invention is to provide a polyimide film having both high surface hardness and bending resistance.
  • the present inventors have found that a polyimide film having an elastic modulus ( E'RT ) at 30 ° C. or higher and an elastic modulus ( GN 0 ) in a rubber-like flat region less than a predetermined value has high surface hardness and bending resistance.
  • the present invention has been completed by finding that the characteristics are compatible with each other.
  • the gist of the present invention is as follows.
  • FIG. 1 is a chart of dynamic viscoelasticity measurement for explaining the elastic modulus ( GN 0 ) of the rubber-like flat region according to the present invention.
  • the polyimide of the present invention contains an imide ring in the main chain, and is composed of at least one selected from polyamic acid, polyamic acid ester, and polyimide.
  • the "elastic modulus” refers to the “storage elastic modulus”.
  • the polyimide film of the present invention has an elastic modulus ( E'RT ) at 30 ° C. of 3.0 ⁇ 10 9 Pa or more, and an elastic modulus ( GN 0 ) in a rubber-like flat region (hereinafter, simply “ GN 0 ”). may be referred to as.) is equal to or less than 1.5 ⁇ 10 7 Pa.
  • the polyimide film of the present invention has a high surface hardness and bending resistance because the elastic modulus ( E'RT ) at 30 ° C. is equal to or higher than a predetermined value and the elastic modulus ( GN 0 ) in the rubber-like flat region is less than a predetermined value.
  • E'RT elastic modulus
  • GN 0 elastic modulus
  • G N 0 is generally represented by the following formula.
  • ⁇ , Me, Mv, Nv, R, and T are as follows.
  • Melt density
  • Me Molecular weight between entangled points
  • Nv Molecular weight of repeating unit
  • Nv Number of bonds between entangled points
  • T Temperature R: Gas constant
  • G N 0 is also considered as an indicator of the entanglement of molecules, G N 0 and the entanglement of the molecule increases tend to go up.
  • G N 0 when an external stress is applied, it becomes difficult to disperse the force, the stress is locally applied, and the bending resistance deteriorates.
  • the more rigid the polyimide the higher the flatness of the molecular chain and the tougher it is, so that it can withstand stress, and therefore, it is easy to obtain characteristics such as improved bending resistance.
  • the elastic modulus and the like are improved by increasing the entanglement of molecules, but in a polyimide, if the structure is such that the molecules are entangled, the rigidity is lost and the performance may be deteriorated.
  • the elastic modulus ( E'RT ) at 30 ° C. is set to be as high as a predetermined value or more, and the elastic modulus ( GN 0 ) in the rubber-like flat region is designed to be low to suppress the entanglement of molecules and to make a flat surface.
  • the elastic modulus ( E'RT ) at 30 ° C. is set to be as high as a predetermined value or more
  • the elastic modulus ( GN 0 ) in the rubber-like flat region is designed to be low to suppress the entanglement of molecules and to make a flat surface.
  • E'RT elastic modulus at 30 ° C.
  • GN 0 rubber-like flat region
  • an alicyclic is attached to the tetracarboxylic acid residue constituting the polyimide.
  • the molecular structure of polyimide may be designed by introducing a structure.
  • E'RT and GN 0 can also be controlled by the film forming conditions. For example, the temperature during film formation is raised above the Tg (glass transition temperature) of polyimide to make it amorphous, and then the cooling rate is slowed down to promote molecular chain orientation, achieving both high surface hardness and bending resistance. It is also possible.
  • the elastic modulus of the polyimide film of the present invention can be measured by viscoelasticity measurement.
  • the elastic modulus ( E'RT ) of the polyimide film of the present invention at 30 ° C. is 3.0 ⁇ 10 9 Pa or more, preferably 3.5 ⁇ 10 9 Pa or more, and more preferably 4.0 ⁇ 10 9 Pa or more. ..
  • the elastic modulus ( E'RT ) of the polyimide film of the present invention at 30 ° C. is preferably 8.0 ⁇ 10 9 Pa or less, more preferably 7.5 ⁇ 10 9 Pa or less, and further preferably 7.0 ⁇ 10 It is 9 Pa or less.
  • the elastic modulus ( GN 0 ) of the polyimide film of the present invention in the rubber-like flat region is less than 1.5 ⁇ 10 7 Pa, preferably 1.2 ⁇ 10 7 Pa or less, more preferably 1.0 ⁇ 10 7 It is Pa or less, more preferably 9.0 ⁇ 10 6 Pa or less, particularly preferably 8.5 ⁇ 10 6 Pa or less, and most preferably 8.0 ⁇ 10 6 Pa or less.
  • GN 0 is less than the above upper limit, a polyimide film capable of achieving both high surface hardness and bending resistance can be obtained.
  • the elastic modulus ( GN 0 ) of the polyimide film of the present invention in the rubber-like flat region is not particularly limited as long as the rubber-like flat region is observed from the viewpoint of heat resistance, but for example, 1.0 ⁇ 10. 4 Pa or more can be mentioned.
  • the method of viscoelasticity measurement (dynamic viscoelasticity measurement) is as shown in the section of Examples described later.
  • the rubber-like flat region is observed in a temperature range exceeding the glass transition temperature (Tg) of polyimide.
  • polyimide of the present invention preferred embodiments of the polyimide constituting the polyimide film of the present invention (hereinafter, may be referred to as “polyimide of the present invention”) will be described.
  • the imidization ratio of the polyimide of the present invention is not particularly limited, but is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more.
  • the upper limit of the imidization rate is 100% or less. When the imidization ratio is in this range, dehydration due to imide ring closure during molding is reduced, and a molded product with few voids tends to be obtained, which is preferable.
  • the imidization ratio indicates the ratio of imide bonds in the main chain of polyimide, and can be determined by a conventionally known method, for example, an NMR method, an IR method, a titration method, or the like.
  • the structure of the polyimide of the present invention is not particularly limited, but has a unit derived from a tetracarboxylic dianhydride (tetracarboxylic acid residue) and a unit derived from a diamine compound and / or a diisocyanate compound (diamine residue).
  • the tetracarboxylic acid residue and diamine residue contained in the polyimide of the present invention have the elastic modulus ( E'RT ) at 30 ° C. and the elastic modulus ( GN 0 ) in the rubber-like flat region of the obtained polyimide film.
  • the type is selected and the content ratio is set so as to satisfy the conditions of.
  • the tetracarboxylic dianhydride containing the tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited.
  • the tetracarboxylic dianhydride includes an aliphatic tetracarboxylic dianhydride (the aliphatic tetracarboxylic dianhydride includes an alicyclic tetracarboxylic dianhydride and a chain aliphatic tetracarboxylic dianhydride). ), Aromatic tetracarboxylic dianhydride and the like.
  • One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
  • Chain aliphatic tetracarboxylic dianhydride examples include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride and the like. Can be mentioned.
  • aromatic tetracarboxylic acid dianhydride examples include tetracarboxylic acid dianhydride having one aromatic ring in one molecule, tetracarboxylic acid dianhydride having two or more independent aromatic rings in one molecule, and 1 Examples thereof include tetracarboxylic acid dianhydride having a condensed aromatic ring in the molecule.
  • tetracarboxylic dianhydride having one aromatic ring in one molecule or tetracarboxylic dianhydride having one aromatic ring in one molecule tends to be easy to control the viscosity at the time of production, improve solvent solubility, and improve coating flexibility.
  • a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is preferable, and a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is particularly preferable.
  • Examples of the tetracarboxylic dianhydride having one aromatic ring in one molecule include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride and the like.
  • Examples of the tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule include 1,1-bis (2,3-dicarboxyphenyl) ethanedianhydride and bis (2,3-di).
  • Examples of the tetracarboxylic dianhydride having a condensed aromatic ring in one molecule include 1,2,5,6-naphthalenedicarboxylic dianhydride, 1,4,5,8-naphthalenedicarboxylic dianhydride, 2, 3,6,7-naphthalenedicarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7 , 8-Phenyltetracarboxylic dianhydride and the like.
  • tetracarboxylic dianhydride a silicone-based tetracarboxylic dianhydride or a tetracarboxylic dianhydride containing a fluorine atom can also be used in addition to the above.
  • examples of the tetracarboxylic dianhydride containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (also known as).
  • the tetracarboxylic dianhydride containing the tetracarboxylic acid residue contained in the polyimide of the present invention may contain only one type or two or more types. Tetracarboxylic acid residues derived from aliphatic tetracarboxylic dianhydrides and / or tetracarboxylic acid residues derived from tetracarboxylic dianhydrides containing fluorine atoms in order to improve high surface hardness and bending resistance.
  • the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited, but is preferably 10 mol% or more, preferably 25 mol% or more. More preferably, 40 mol% or more is further preferable. Further, there is no upper limit of this ratio, and it may be 100 mol%.
  • the ratio of the tetracarboxylic acid residue derived from the tetracarboxylic dianhydride is equal to or higher than the above lower limit, the high surface hardness and bending resistance tend to be improved, and the solubility in a solvent tends to be high.
  • Examples of the diamine compound for inducing the diamine residue contained in the polyimide of the present invention include aromatic diamine compounds and aliphatic diamine compounds (aliphatic diamine compounds include alicyclic diamine compounds and chain aliphatic diamine compounds). Can be mentioned. One of these diamine compounds may be used alone, or two or more of these diamine compounds may be used in any ratio and combination.
  • aromatic diamine compound examples include a diamine compound having one aromatic ring in one molecule, a diamine compound having a condensed aromatic ring in one molecule, and a diamine compound having two or more independent aromatic rings in one molecule. Can be mentioned.
  • Examples of the diamine compound having one aromatic ring in one molecule include 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 4-fluoro-1,2-phenylenediamine, and the like. 4-Fluoro-1,3-phenylenediamine, 3-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,2-phenylenediamine, Examples thereof include 2-trifluoromethyl-1,4-phenylenediamine.
  • diamine compound having a condensed aromatic ring in one molecule examples include 4,4'-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, 1,5-diaminonaphthalene, and 3,7-diamino-2,8-.
  • diamine compound having a condensed aromatic ring in one molecule examples include 4,4'-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, 1,5-diaminonaphthalene, and 3,7-diamino-2,8-.
  • dimethyldibenzothiophene 5,5-dioxide examples include dimethyldibenzothiophene 5,5-dioxide.
  • Diamine compounds having two or more independent aromatic rings in one molecule include 4,4'-(biphenyl-2,5-diylbisoxy) bisaniline and 4,4'-diamino as having a biphenyl structure.
  • 1,3-bis (4-aminophenoxy) benzene bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, bis (4-) (3-Aminophenoxy) phenyl) sulfone, 1,3-bis (4-aminophenoxy) neopentane, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, N- (4-aminophenoxy) -4-aminobenzamine, bis (3-aminophenyl) sulfone, norbornandiamine, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) ) Phen) Sulfone, 4,4'-diaminodip
  • a diamine compound having a biphenyl structure or a diamine compound in which aromatic rings are linked to each other by a linker is preferable because high surface hardness and bending resistance are improved and the elastic modulus tends to be high.
  • a diamine compound having is more preferable.
  • aliphatic diamine compound examples include an alicyclic diamine compound and a chain aliphatic diamine compound.
  • Examples of the alicyclic diamine compound include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis (cyclohexylamine). Examples thereof include 4,4'-methylenebis (2-methylcyclohexylamine).
  • Examples of the chain aliphatic diamine compound include 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, and 1,5-.
  • Examples thereof include diaminopentane, 1,10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-dimethyl-2,3-butanediamine, 2-methyl-1,5-diaminopentane and the like.
  • alicyclic diamine compounds are preferable because they tend to have high surface hardness, bending resistance, and heat resistance, and are particularly 1,4-diaminocyclohexane or 1,3-bis (1,4-diaminocyclohexane). Aminomethyl) cyclohexane is preferred.
  • diisocyanate compound for inducing the diamine residue contained in the polyimide of the present invention examples include aromatic diisocyanate compounds and aliphatic diisocyanate compounds. One of these diisocyanate compounds may be used alone, or two or more of these diisocyanate compounds may be used in any ratio and combination.
  • aromatic diisocyanate compound examples include 4,4'-diisocyanato-3,3'-dimethylbiphenyl, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, and 4,4'-diisocyanato-3,3. '-Dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 4,4'-methylenediphenyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylenediisocyanate, 1,3-bis (isocyanatomethyl) ) Benzene, toluene diisocyanate and the like.
  • Examples of the aliphatic diisocyanate compound include 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, and isophorone diisocyanate.
  • the diamine compound and / or diisocyanate compound that induces the diamine residue contained in the polyimide of the present invention may be only one kind or may contain two or more kinds. High surface hardness and bending resistance are improved, and the elasticity at 30 ° C. tends to be high.
  • the polyimide of the present invention may have a structure represented by the following general formula (1).
  • the polyimide of the present invention has the structure, both high surface hardness and bending resistance can be more effectively achieved, and the solubility tends to be further improved.
  • R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
  • R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. ..
  • the aromatic ring and the heterocycle are not particularly limited, and may be a fused ring.
  • the alicyclic is not particularly limited, but is preferably a 3- to 10-membered ring.
  • the chain aliphatic group is also not particularly limited, but is preferably a linear group having 1 to 20 carbon atoms. Further, since the molecular weight can be easily controlled and the production stability is good, at least one selected from the group consisting of an aromatic ring group and a chain aliphatic group is preferable.
  • the aromatic ring group a group composed of a benzene ring, a naphthalene ring, a biphenyl ring, a biphenyl ether, a benzophenone, a phenyl sulfide, a biphenyl sulfoxide, and a biphenyl sulfone is preferable, and a group having a monocyclic ring or two aromatic rings is preferable.
  • the chain aliphatic group preferably has 1 or more and 10 or less carbon atoms. When R is these groups, the effect of the present invention tends to be particularly easily obtained.
  • aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may have substituents.
  • substituents examples include an alkyl group, an alkoxy group, an alkyl halide group, a hydroxyl group, a carboxy group and the like.
  • aromatic ring groups may be used alone or in combination.
  • heterocyclic groups may be used alone or in combination.
  • alicyclic groups may be used alone or in combination.
  • chain aliphatic groups may be used alone or in combination.
  • Specific examples of the structure represented by the general formula (1) include structures derived from the respective compounds mentioned in the reaction between the dicarboxylic acid compound and the diamine compound described later and the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. Be done.
  • the polyimide of the present invention may have only one type of the structure represented by the general formula (1), or may have a plurality of types.
  • the structure represented by the general formula (1) is preferably derived from the reaction between the dicarboxylic acid compound and the diamine compound and / or the reaction between the tetracarboxylic dianhydride and the dihydrazide compound.
  • the structure represented by the general formula (1) preferably has a structure derived from at least the reaction of the tetracarboxylic dianhydride and the dihydrazide compound.
  • Examples of the dicarboxylic acid compound that induces the structure represented by the general formula (1) include compounds such as aromatic dicarboxylic acid, heterocyclic dicarboxylic acid, alicyclic dicarboxylic acid, and chain aliphatic dicarboxylic acid.
  • the dicarboxylic acid compound can also be used as an acid halide in which a carboxyl group is halogenated, for example, an acid chloride in which a carboxyl group is chlorinated in order to improve the reactivity.
  • the structure is derived from the reaction between the dicarboxylic acid compound and the diamine compound even when a halide such as dicarboxylic acid chloride is used as the dicarboxylic acid compound.
  • the amount introduced into the polyimide having the structure represented by the general formula (1) is not particularly limited, but the concentration of the amide bond with respect to the imide ring of the main chain is preferably 1 mol% or more, more preferably 5 mol% or more, and 8 mol% or more. Is even more preferable.
  • the amount introduced into the polyimide having the structure represented by the general formula (1) is preferably 900 mol% or less, more preferably 700 mol% or less, further preferably 500 mol% or less, and particularly preferably 400 mol% or less. It is preferable that the amount of the structure represented by the general formula (1) introduced in the polyimide is within this range because the solvent solubility and the elastic modulus tend to be compatible with each other.
  • the ratio of the structure represented by the general formula (1) derived from the reaction between the dicarboxylic acid compound and the diamine compound and the structure derived from the reaction between the dihydrazide compound and the tetracarboxylic dianhydride is not particularly limited.
  • the ratio of the dihydrazide compound to the structure represented by the general formula (1), which is derived from the reaction of the dihydrazide compound and the tetracarboxylic acid dianhydride is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 25 mol% or more. , 50 mol% or more is particularly preferable.
  • the ratio of the dihydrazide compound derived from the reaction of the tetracarboxylic dianhydride there is no upper limit to the ratio of the dihydrazide compound derived from the reaction of the tetracarboxylic dianhydride, which may be 100 mol%.
  • the ratio of the dihydrazide compound derived from the reaction of the tetracarboxylic dianhydride is not more than the above lower limit value, solvent solubility and elastic modulus tend to be compatible, which is preferable.
  • the ratio of tetracarboxylic acid residue, diamine residue, dicarboxylic acid residue, and dihydrazide residue contained in the polyimide of the present invention can be determined by analyzing the composition of the raw material monomer by NMR, solid NMR, IR, or the like. Can be done. This ratio can also be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution in alkali.
  • GC gas chromatography
  • diamine compound examples include an aromatic diamine compound and an aliphatic diamine compound (the aliphatic diamine compound includes an alicyclic diamine compound and a chain aliphatic diamine compound).
  • the diamine compound may be used alone, or two or more of these diamine compounds may be used in any ratio and combination.
  • Examples of the diamine compound to be reacted with the dicarboxylic acid compound include the compounds described above in the description of the diamine residue, and the preferable range is also the same.
  • dicarboxylic acid compound examples include an aromatic dicarboxylic acid compound (including a heteroaromatic dicarboxylic acid compound), an alicyclic dicarboxylic acid compound, and a chain aliphatic dicarboxylic acid compound.
  • aromatic dicarboxylic acid compound including a heteroaromatic dicarboxylic acid compound
  • alicyclic dicarboxylic acid compound examples include a chain aliphatic dicarboxylic acid compound.
  • One of these dicarboxylic acid compounds may be used alone, or two or more of them may be used in any ratio and combination.
  • aromatic dicarboxylic acid compound examples include monocyclic isophthalic acid, terephthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, and the like; 4,4'-carbonyldibenzoic acid having two or more independent aromatic rings, 2,2'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 4- (carboxymethyl) benzoic acid, 4,4'-oxybis benzoic acid , 4,4'-sulfonyldibenzoic acid, 1,2-bis (4-carboxyphenyl) ethane, 4,4'-stylbenzicarboxylic acid, etc .; 1,4-naphthalenedicarboxylic acid having a fused ring, 2,3- Naphthalenedicarboxylic acid, etc .; 2,2'-bisinconic acid having a heterocycle
  • Examples of the alicyclic dicarboxylic acid compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid, 1,3-adamantandicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, and 1,4. -Cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid and the like can be mentioned.
  • chain aliphatic dicarboxylic acid compound examples include glutaric acid, adipic acid, azelaic acid, malonic acid, sebacic acid, succinic acid and the like.
  • dicarboxylic acid compound a monocyclic aromatic dicarboxylic acid compound, a dicarboxylic acid compound having two or more independent aromatic rings, and a chain dicarboxylic acid compound tend to have both solvent solubility and elastic modulus easily. preferable.
  • the dicarboxylic acid compound may be used as an acid chloride in order to improve the reactivity, and the preferable compound in that case is the same as the above content.
  • tetracarboxylic dianhydride examples include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides (aliphatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics. Includes tetracarboxylic dianhydride).
  • aromatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics.
  • Includes tetracarboxylic dianhydride One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
  • Examples of the tetracarboxylic dianhydride compound to be reacted with the dihydrazide compound include the compounds described above in the description of the tetracarboxylic acid residue, and the preferable range is also the same.
  • the dihydrazide compound is not particularly limited, and examples thereof include aromatic dihydrazide compounds and aliphatic dihydrazide compounds (including alicyclic dihydrazide compounds and chain aliphatic dihydrazide compounds). One of these dihydrazide compounds may be used alone, or two or more thereof may be used in any ratio and combination.
  • aromatic dihydrazide compound examples include monocyclic isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,5-dimethylterephthalic acid dihydrazide, and the like; 4,4'-carbonyl having two or more independent aromatic rings.
  • Dihydrazide benzoate 2,2'-biphenyldicarboxylic acid dihydrazide, 4,4'-biphenyldicarboxylic acid dihydrazide, 2,2-bis (4-carboxyphenyl) hexafluoropropanedihydrazide, 4- (carboxymethyl) dihydrazide benzoate , 4,4'-oxybis benzoic acid dihydrazide, 4,4'-sulfonyl dibenzoic acid dihydrazide, 1,2-bis (4-carboxyphenyl) ethanedihydrazide, 4,4'-stylbenzicarboxylic acid dihydrazide, etc .; 1,4-Naphthalenedicarboxylic acid dihydrazide, 2,3-naphthalenedicarboxylic acid dihydrazide, etc .; 2,2'-bisinconic acid dihydrazide, 2,2'-binicotinic acid dihydrazide,
  • Examples of the alicyclic dihydrazide compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid dihydrazide, 1,3-adamantandicarboxylic acid dihydrazide, cis-4-cyclohexene-1,2-dicarboxylic acid dihydrazide, and 1, , 4-Cyclohexanedicarboxylic acid dihydrazide, 1,3-cyclohexanedicarboxylic acid dihydrazide, decahydro-1,4-naphthalenedicarboxylic acid dihydrazide and the like.
  • chain aliphatic dihydrazide compound examples include adipic acid dihydrazide, azelaic acid dihydrazide, dodecanoic acid dihydrazide, malonic acid dihydrazide, sebacic acid dihydrazide, succinate dihydrazide, and oxalyl dihydrazide.
  • dihydrazide compound a monocyclic aromatic dihydrazide compound and a dihydrazide compound having two or more independent aromatic rings tend to improve the elastic modulus, and are preferable.
  • the tetracarboxylic acid residues It preferably contains an alicyclic structure. From the viewpoint of achieving both high surface hardness and bending resistance, and both rigidity and flexibility of the molecular skeleton, at least the above-mentioned aliphatic tetracarboxylic dianhydride can be used as the raw material tetracarboxylic dianhydride for polyimide. It is preferable to use an alicyclic tetracarboxylic dianhydride, and it is particularly preferable to use 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and the like.
  • the ratio of the alicyclic tetracarboxylic acid residue to the total tetracarboxylic acid residue contained in the polyimide of the present invention is usually 10 mol% or more, further 30 mol% or more, particularly 50 mol% or more, particularly 80 mol% or more. It is preferable from the viewpoint of surface hardness and bending resistance. There is no particular upper limit to this ratio, and it may be 100 mol%.
  • the molecular weight of the polyimide of the present invention is not particularly limited, but is preferably a polystyrene-equivalent number average molecular weight (Mn) of 500 or more, more preferably 1000 or more, and further preferably 1500 or more. On the other hand, this molecular weight is preferably 80,000 or less, more preferably 60,000 or less, still more preferably 40,000 or less. When the number average molecular weight (Mn) of the polyimide is in this range, the solubility, the solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
  • the polystyrene-equivalent number average molecular weight (Mn) of the polyimide of the present invention can be determined by gel permeation chromatography (GPC).
  • the mass average molecular weight (Mw) of the polyimide of the present invention is preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more.
  • the mass average molecular weight (Mw) of polyimide is preferably 300,000 or less, more preferably 200,000 or less, still more preferably 100,000 or less.
  • the mass average molecular weight (Mw) of the polyimide of the present invention can be measured by the same method as the number average molecular weight (Mn).
  • the molecular weight distribution (PDI: Mw / Mn) of the polyimide of the present invention is usually 1 or more, preferably 1,1 or more, and more preferably 1.2 or more.
  • Mw / Mn is usually 20 or less, preferably 15 or less, and more preferably 10 or less. When Mw / Mn is in this range, the uniformity and smoothness of the obtained molded product tend to be excellent.
  • the glass transition temperature (Tg) of the polyimide of the present invention is not particularly limited, but is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, still more preferably 250 ° C. or higher, particularly preferably. It is 260 ° C. or higher.
  • the glass transition temperature (Tg) of polyimide is preferably 400 ° C. or lower, more preferably 380 ° C. or lower.
  • the glass transition temperature (Tg) of polyimide corresponds to the peak temperature (Ttan ⁇ ) of ⁇ relaxation of tan ⁇ .
  • the method for producing the polyimide of the present invention is not particularly limited, and the polyimide can be produced by a conventionally known method.
  • a method for producing polyimide is a method for producing polyimide;
  • a polyimide precursor is produced from a tetracarboxylic acid dianhydride and / or a dicarboxylic acid compound, a diamine compound, a diisocyanate compound and / or a dihydrazide compound.
  • a method of imidizing this to obtain a polyimide a method of directly producing a polyimide from a tetracarboxylic acid dianhydride and / or a dicarboxylic acid compound and a diamine compound, a diisocyanate compound, and / or a dihydrazide compound.
  • the dihydrazide compound can be reacted in the same manner as the diamine compound, and the dicarboxylic acid compound can be reacted in the same manner as the tetracarboxylic dianhydride.
  • the dicarboxylic acid compound can also be used as a chain extender after producing polyimide from a tetracarboxylic dianhydride and a diamine compound, a diisocyanate compound and / or a dihydrazide compound.
  • tetracarboxylic acid dianhydride and / or dicarboxylic acid compound is referred to as “tetracarboxylic acid dianhydride, etc.”
  • tetracarboxylic acid dianhydride etc.
  • diamine compound, diisocyanate compound and dihydrazide compound one or more of diamine compounds, diisocyanate compound and dihydrazide compounds.
  • a method for producing the polyimide of the present invention by reacting a tetracarboxylic acid dianhydride or the like with a diamine compound or the like will be described with reference to "diamine compound or the like".
  • the polyimide precursor can be obtained, for example, by reacting a tetracarboxylic dianhydride or the like with a diamine compound or the like in a solvent.
  • the order of addition and the method of addition of the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited.
  • a polyimide precursor can be obtained by sequentially adding a diamine compound or the like and a tetracarboxylic dianhydride or the like to a solvent and stirring the mixture at an appropriate temperature.
  • the amount of the tetracarboxylic dianhydride or the like is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol, based on 1 mol of the diamine compound or the like. It is as follows. By setting the amount of tetracarboxylic dianhydride or the like in such a range, the yield of the obtained polyimide precursor tends to be improved.
  • the concentration of tetracarboxylic dianhydride, etc., diamine compound, etc. in the reaction solution can be appropriately set according to the reaction conditions and the viscosity of the obtained polyimide precursor.
  • the total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total amount of the reaction solution. It is preferably 50% by mass or less. If the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too low, the molecular weight tends to be extended. When the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too high, the viscosity of the reaction solution does not become too high and stirring tends to be easy.
  • the temperature at which the tetracarboxylic dianhydride and the like and the diamine compound and the like are reacted in the solvent is not particularly limited as long as the reaction proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually used. It is 120 ° C. or lower, preferably 100 ° C. or lower.
  • the reaction time is usually 1 hour or more, preferably 2 hours or more, usually 100 hours or less, preferably 42 hours or less. By carrying out under such conditions, a polyimide precursor tends to be obtained at low cost and in good yield.
  • the pressure during the reaction may be normal pressure, pressurization or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • the solvent used when reacting the tetracarboxylic dianhydride or the like with the diamine compound or the like is not particularly limited.
  • the reaction solvent include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, and fluoro.
  • Halogened hydrocarbon solvent such as benzene; Ether solvent such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene; Ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone; ethylene glycol monomethyl ether, ethylene glycol Glycol-based solvents such as monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and propylene glycol monomethyl ether acetate; amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; dimethyl Sulphonic solvents such as sulfoxide; heterocyclic solvents such as pyridine, picolin, lutidine, quinoline, isoquinoline; phenolic solvents such as phenol and cresol; lactone solvents such as
  • DMAc dimethylacetamide
  • the obtained polyimide precursor may be used as it is for the next imidization, or may be added to a poor solvent to precipitate it in a solid state before use.
  • the poor solvent to be used is not particularly limited and may be appropriately selected depending on the type of polyimide precursor.
  • the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. Above all, an alcohol solvent is preferable because a precipitate can be efficiently obtained, a boiling point is low, and drying tends to be easy.
  • One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • a polyimide can be obtained by dehydrating and cyclizing the polyimide precursor obtained by the above method or the like in the presence of a solvent. Imidization can be performed using any of the conventionally known methods. Examples of the imidization method include thermal imidization for thermal cyclization, chemical imidization for chemical cyclization, and the like. These imidization reactions may be carried out individually or in combination of two or more.
  • Examples of the solvent for heat imidizing the polyimide precursor include the same solvent used in the reaction for obtaining the polyimide precursor.
  • the solvent used for producing the polyimide precursor and the solvent used for producing the polyimide may be the same or different.
  • the water produced by imidization inhibits the ring closure reaction and may be discharged out of the system.
  • the concentration of the polyimide precursor at the time of the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By adjusting the concentration of the polyimide precursor in this range, it is possible to produce the polyimide precursor with a solution viscosity that is easy to produce and has high production efficiency.
  • the reaction temperature for imidization is not particularly limited, but is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 280 ° C. or lower, further preferably 250 ° C. or lower. .. It is preferable to carry out the reaction in this temperature range because the imidization reaction proceeds efficiently and reactions other than the imidization reaction tend to be suppressed.
  • the pressure during the reaction may be normal pressure, pressurization, or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • imidization accelerator that promotes imidization
  • a compound having a function of enhancing nucleophile and electrophile can be added.
  • the imidization accelerator include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-.
  • Tertiary amine compounds such as ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline; acetic acid, 4-hydroxyphenylacetic acid, 3-hydroxybenzoic acid, N-acetylglycine, N-benzoylglycine Carboxylic acid compounds such as 3,5-dihydroxyacetophenone, methyl 3,5-dihydroxybenzoate, pyrogallol, methyl gallate, ethyl gallate, polyvalent phenol compounds such as naphthalene-1,6-diol; 2-hydroxypyridine, 3 -Hydroxypyridine, 4-hydroxypyridine, 4-pyridinemethanol, N, N-dimethylaminopyridine, nicotine aldehyde, isonicotin aldehyde, picolin aldehyde, picolin aldehyde oxime, nicotine aldehyde oxime, isonicot
  • At least one selected from the group consisting of tertiary amine compounds, carboxylic acid compounds and heterocyclic compounds is preferable, and at least one selected from the group consisting of triethylamine, imidazole and pyridine controls the reaction rate. It is more preferable because it tends to be easy.
  • One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
  • the amount of the imidization accelerator used is usually 0.01 mol% or more, preferably 0.1 mol% or more, and further preferably 1 mol% or more, based on the carboxyl group of the polyimide precursor.
  • the amount of the imidization accelerator used is preferably 50 mol% or less, more preferably 10 mol% or less, based on the carboxyl group of the polyimide precursor.
  • the timing of adding the imidization accelerator can be appropriately adjusted, and may be before the start of heating or during heating. Further, it may be added in a plurality of times.
  • a polyimide can be obtained by chemically imidizing a polyimide precursor with a dehydration condensing agent in the presence of a solvent.
  • Examples of the solvent used for chemical imidization include the same solvents as those used for the reaction for obtaining the polyimide precursor described above.
  • dehydration condensing agent examples include N, N-2 substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride, tosyl chloride and the like.
  • acid anhydrides and halogenated compounds are preferable, and acid anhydrides are particularly preferable because the imidization reaction tends to proceed efficiently.
  • acid anhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
  • the amount of these dehydration condensing agents used is usually 0.1 mol or more, preferably 0.2 mol or more, and usually 1.6 mol or less, preferably 1.0 mol or less, with respect to 1 mol of the polyimide precursor. By setting the amount of the dehydration condensing agent used within this range, imidization can be performed efficiently.
  • the concentration of the polyimide precursor in the reaction solution during the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. .. By setting the concentration of the polyimide precursor in the range, the production efficiency can be increased, and the solution viscosity tends to be easy to produce.
  • the imidization reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 130 ° C. or lower, and more preferably 100 ° C. or lower. It is preferable to carry out the reaction in this temperature range because the imidization reaction tends to proceed efficiently. Further, it is preferable because side reactions other than the imidization reaction are suppressed.
  • the pressure during the reaction may be normal pressure, pressurization or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • an imidization accelerator such as the above-mentioned tertiary amine compound can be added in the same manner as for heat imidization.
  • Polyimide can be directly obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like by using a conventionally known method. This method involves the synthesis and imidization of the poimide precursor, and the imidization without stopping the reaction or isolating the precursor.
  • the order and method of adding the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited.
  • the tetracarboxylic dianhydride and the like and the diamine compound and the like are added in order to the solvent, and the reaction up to imidization Polyimide can be obtained by stirring at a temperature at which
  • the amount of the diamine compound or the like is usually 0.7 mol or more, preferably 0.8 mol or more, usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of the tetracarboxylic dianhydride or the like.
  • the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution can be appropriately set according to each condition and the viscosity during the polymerization.
  • the total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution is not particularly set, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40. It is mass% or less.
  • concentration in the reaction solution is in an appropriate range, the molecular weight tends to be extended and stirring tends to be easy.
  • Examples of the solvent used in this reaction include the same solvents used in the reaction for obtaining the polyimide precursor described above.
  • heat imidization and / or chemical imidization can be adopted as in the case of obtaining a polyimide from a polyimide precursor.
  • the reaction conditions for heat imidization and chemical imidization in this case are the same as described above.
  • the obtained polyimide may be used as it is, or may be added to a poor solvent to precipitate the polyimide into a solid state, and then redissolved in another solvent to be used as a polyimide composition.
  • the poor solvent at this time is not particularly limited and can be appropriately selected depending on the type of polyimide.
  • the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. .. Above all, an alcohol solvent such as isopropyl alcohol is preferable because a precipitate can be efficiently obtained, the boiling point is low, and drying tends to be easy.
  • One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • Examples of the solvent for redissolving polyimide include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl.
  • -Amid solvent such as pyrrolidone; Aproton solvent such as dimethyl sulfoxide; Glycol solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; chloroform, Examples thereof include halogen-based solvents such as methylene chloride and 1,2-dichloroethane. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • the reaction with the diamine compound or the like can be carried out by a conventionally known method.
  • a dicarboxylic acid chloride or a tetracarboxylic acid dianhydride containing a dicarboxylic acid chloride may be added to a solution in which a diamine compound or the like is mixed with a solvent, or a tetracarboxylic acid dianhydride containing a dicarboxylic acid chloride or a dicarboxylic acid chloride in the solvent.
  • a diamine compound or the like may be added to the mixed solution.
  • the temperature at which these compounds are added is not particularly limited, but is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 50 ° C. or higher, still more preferably ⁇ 30 ° C. or higher, preferably 100 ° C. or lower, and more preferably. It is 80 ° C. or lower, more preferably 50 ° C. or lower. When the temperature of addition is in this range, the reaction tends to be easily controlled, which is preferable.
  • the temperature at which the tetracarboxylic dianhydride containing the dicarboxylic acid chloride is reacted with the diamine compound or the like is not particularly limited, but is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, preferably 200 ° C. or higher. ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. or lower. It is preferable that the reaction temperature is in this range because the reaction tends to be easily controlled.
  • a catalyst When reacting a tetracarboxylic dianhydride containing a dicarboxylic acid chloride with a diamine compound or the like, a catalyst may be added.
  • the catalyst to be added is not particularly limited as long as it is conventionally known. Examples of the catalyst include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, and the like.
  • tertiary amine compounds such as N-methylpyrrolidine, N-ethylpyrrolidine, imidazole, pyridine, quinoline, and isoquinolin.
  • tertiary amine compounds such as N-methylpyrrolidine, N-ethylpyrrolidine, imidazole, pyridine, quinoline, and isoquinolin.
  • One of these may be used alone, or two or more thereof may be used in any ratio and combination.
  • the method for producing the polyimide film of the present invention is not particularly limited, and for example, it can be produced by applying a polyimide composition in which the polyimide of the present invention is dissolved in a solvent to a substrate by a casting method or the like.
  • the content of polyimide in the polyimide composition is not particularly limited, and can be appropriately adjusted according to the manufacturing process and the like.
  • the content of polyimide in the polyimide composition is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. When the polyimide content is in this range, film formation and handling in ordinary equipment are easy, which is preferable.
  • the polyimide composition may contain other components in addition to the polyimide and the solvent.
  • Other components include, for example, surfactants, antioxidants, lubricants, colorants, stabilizers, UV absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, leveling agents, defoamers, etc. Can be mentioned.
  • an inorganic filler or an organic filler such as powder, granular, plate, or fibrous may be blended as long as the object of the invention is not impaired.
  • These additive components may be added at any stage of any process for producing the polyimide precursor and / or the polyimide composition.
  • the polyimide composition contains a surfactant because the solubility of the polyimide in a solvent tends to be improved.
  • the surfactant include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant and the like.
  • the surfactant may be used alone or in combination of two or more.
  • cationic surfactant used in the present invention include amine type and quaternary ammonium salt type.
  • amine type include aliphatic amines such as polyoxyethylene alkylamines and alkylamine salts, and heterocyclic amine salts such as alkylimidazolines.
  • the quaternary ammonium salt type includes alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, polydiallyldimethylammonium salt; chlorine salt type such as alkyltrimethylammonium chloride and dialkyldimethylammonium chloride; alkyldimethylethylammonium.
  • Non-chlorine type such as ethyl sulfate; and the like.
  • anionic surfactant used in the present invention include sulfate ester type, phosphoric acid ester type, carboxylic acid type, and sulfonic acid type.
  • Specific examples of the sulfate ester type include alkyl sulfate ester, ethoxy sulfate ester, polyoxyethylene styrene phenyl sulfate ester, polyoxyethylene alkyl ether sulfate ester, long-chain alcohol sulfate ester, other sulfate esters, and salts thereof.
  • Specific examples of the phosphoric acid ester type include polyoxyethylene alkyl ether phosphoric acid esters and salts thereof.
  • carboxylic acid type examples include fatty acids, polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl ether sulfosuccinic acid, alkenyl succinic acid, polyacrylic acid, styrene-maleic acid copolymer ammonium, carboxymethyl cellulose, polyacrylic acid, and polycarboxylic acid. Acids and salts thereof may be mentioned.
  • sulfonic acid type examples include sulfonic acid, sulfosuccinic acid, alkylbenzene sulfonic acid, alkane sulfonic acid, alpha olefin sulfonic acid, phenol sulfonic acid, sodium naphthalene sulfonic acid formalin condensate, and salts thereof.
  • amphoteric surfactant used in the present invention include betaine type, amine oxide type, N-alkylamino acid type and imidazoline type.
  • betaine type include alkyl betaine, amide betaine such as aliphatic amide betaine, and the like.
  • amine oxide type include alkylamine oxides and the like.
  • N-alkyl amino acid type include N-alkyl- ⁇ -aminopropionate.
  • imidazoline type include 2-alkylimidazoline derivatives.
  • nonionic surfactant used in the present invention include ether type, ester type, ether ester type, polyhydric alcohol type, amide type, and polymer type.
  • ether type include polyoxyalkylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene alkyl amine.
  • ester type include sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, sucrose derivative, and fatty acid ester.
  • Examples of the ether ester type include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid ester, and polyoxyethylene hydrogenated castor oil ether.
  • Examples of the polyhydric alcohol type include alkyl glucosides and alkyl polyglucosides.
  • Specific examples of the amide type include alkylalkanolamides.
  • Specific examples of the polymer type include polyvinylpyrrolidone, a polyalkylene polyamine alkylene oxide adduct, and a polyalkylene polyimine alkylene oxide adduct.
  • nonionic surfactant examples include polyoxyethylene alkyl ethers such as Emargen 123P, Emargen 130K, Emargen 150, Emargen 430, Emargen 409PV, Emargen 705, Emargen 707, and Emargen 709 (manufactured by Kao); Sorbitane fatty acid esters such as (Daiichi Kogyo Seiyaku Co., Ltd.), New Coal 20, New Coal 60, and New Coal 80 (manufactured by Nippon Emulsifier); Examples thereof include sucrose fatty acid esters such as DK ester F-110 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and polyvinylpyrrolidone such as Pittscol K-30 and Pittscol K-40 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
  • polyoxyethylene alkyl ethers such as Emargen 123P, E
  • a nonionic surfactant By using a nonionic surfactant, the solubility of polyimide in a solvent tends to be improved.
  • the polyimide composition is preferable because it tends to contain a leveling agent as another component to improve the smoothness of the obtained polyimide film.
  • the leveling agent include silicone compounds and the like.
  • the silicone-based compound is not particularly limited, and for example, polyether-modified siloxane, polyether-modified polydimethylsiloxane, polyether-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, polyester-modified polydimethylsiloxane, and polyester-modified hydroxyl group.
  • Examples thereof include polydimethylsiloxane contained, polyester-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, highly polymerized silicone, amino-modified silicone, amino derivative silicone, phenyl-modified silicone, and polyether-modified silicone. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
  • the film forming method of the polyimide film using the above-mentioned polyimide composition is sometimes not limited, but examples thereof include a method of applying the polyimide composition to a substrate or the like.
  • Examples of the coating method include die coating, spin coating, dip coating, screen printing, spraying, casting method (single leaf method and continuous method), method using a coater, coating method by spraying, dipping method calendar method and the like. These methods can be appropriately selected depending on the coated area, the shape of the surface to be coated, and the like. Of these, since the uniformity of the coating film thickness is good and the surface smoothness tends to be good, it is preferable to adopt a casting method or a method using a coater, and the casting method is more preferable.
  • the method of volatilizing the solvent contained in the film formed by coating or the like there is no particular limitation on the method of volatilizing the solvent contained in the film formed by coating or the like.
  • the solvent is volatilized by heating the film formed by coating or the like.
  • the heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, and heating by contact using a hot plate / hot roll or the like.
  • the heating temperature when the solvent is volatilized a suitable temperature can be used depending on the type of solvent.
  • the heating temperature is usually above the boiling point of the solvent, preferably above the boiling point of the solvent + 50 ° C, more preferably above the boiling point of the solvent + 100 ° C, usually below the boiling point of the solvent + 200 ° C, preferably above the boiling point of the solvent + 180 ° C.
  • the boiling point of the solvent is more preferably + 150 ° C. or lower.
  • the solvent is preferably sufficiently volatilized.
  • the polyimide film of the present invention can be obtained, for example, by applying a polyimide composition containing the polyimide of the present invention and a casting solvent to a support as described above, heating the support, and peeling the film from the support.
  • the method of peeling the polyimide film from the support is not particularly limited, but a physical peeling method or a laser peeling method is preferable in that the polyimide film can be peeled off without impairing the performance of the film or the like.
  • Examples of the method of physically peeling include a method of obtaining a polyimide film by cutting off the peripheral edge of a laminate made of a polyimide film / support, a method of sucking the peripheral edge portion to obtain a polyimide film, and a method of fixing the peripheral edge and supporting a base material.
  • a method of obtaining a polyimide film by moving the film can be mentioned.
  • the thickness of the polyimide film of the present invention is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 300 ⁇ m or less, preferably 200 ⁇ m or less.
  • the thickness is 1 ⁇ m or more, the polyimide film can obtain sufficient strength and can be obtained as a self-supporting film, and the handleability tends to be improved. Further, by setting the thickness to 300 ⁇ m or less, the uniformity of the film tends to be easily ensured.
  • the tensile strength of the polyimide film of the present invention is not particularly limited, but is usually 50 MPa or more, preferably 70 MPa or more, more preferably 100 MPa or more, still more preferably 150 MPa or more in measurement at 23 ° C. and 50% humidity. It is usually 400 MPa or less, preferably 300 MPa or less.
  • the tensile elastic modulus of the polyimide film of the present invention is not particularly limited, but is usually 1500 MPa or more, preferably 1800 MPa or more, more preferably 2000 MPa or more, and particularly preferably 3000 MPa or more in measurement at 23 ° C. and 50% humidity. , Usually 20 GPa or less, preferably 10 GPa or less.
  • the tensile elongation of the polyimide film of the present invention is not particularly limited, but is usually 10% GL or more, preferably 20% GL or more, more preferably 50 GL% or more in measurement at 23 ° C. and 50% humidity. It is usually 400% GL or less, preferably 300% GL or less.
  • the pencil hardness of the polyimide film of the present invention is not particularly limited, but is preferably 2B or more, more preferably B or more, still more preferably F or more, and particularly preferably H or more.
  • Examples of the method for measuring the pencil hardness as the surface hardness include JIS K 5600-5-4.
  • the polyimide film has mechanical properties in such a range, so that the polyimide film has more excellent durability.
  • the polyimide film of the present invention can also be used as a laminate.
  • a hard coat layer having a function of imparting scratch resistance, abrasion resistance, etc., a layer having a function of imparting optical compensation, etc., an adhesive layer, and the like can be provided on the polyimide film of the present invention.
  • the same or different layers may be provided on both sides of the polyimide film of the present invention.
  • the polyimide film of the present invention has a high surface hardness, excellent bending resistance, high light transmittance, elastic modulus, flexibility, transparency, high solvent solubility, and high device applicability. It is useful as a cover film for. In this application, it can be used as a laminate having a hard coat layer on the polyimide film of the present invention.
  • the hard coat layer can be formed directly on the polyimide film or through an adhesive layer or the like.
  • the hard coat layer is not particularly limited and can be formed by using a commonly used hard coat agent.
  • the hard coating agent include curable resins such as light and heat, inorganic materials, and curable resins containing inorganic materials.
  • the forming method can be selected according to each material. Further, a defoaming agent, a leveling agent, a thickener, an antistatic agent, an antifogging agent and the like may be appropriately added to the hard coating agent, if necessary.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 50 ⁇ m or more, and more preferably 60 ⁇ m or more.
  • the thickness of the hard coat layer is preferably 200 ⁇ m or less, and preferably 180 ⁇ m or less. When the thickness of the hard coat layer is within this range, it tends to be excellent in high surface hardness and bending resistance.
  • the pencil hardness of the surface of the hard coat layer in the laminate of the present invention is not particularly limited, but is preferably B or higher, more preferably F or higher, still more preferably H or higher, and particularly preferably 2H or higher.
  • the polyimide film / hard coat layer laminate has high transparency.
  • the YI (yellowness) of the laminate of the present invention is not particularly limited, but is preferably 5 or less, more preferably 4.5 or less, still more preferably 4 or less, and particularly preferably 3.5 or less.
  • the haze of the laminate of the present invention is not particularly limited, but is preferably 3% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably less than 1%.
  • Example 1 16.7 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer.
  • Example 2 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 16.7 g, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane dianhydride 24.2 g, 4,4'-diamino-2,2'-dimethylbiphenyl 23.4 g, 3,3', 4,4'-bicyclohexanetetracarboxylic dianhydride 33.4 g, Polyethylene 2 was obtained in the same manner as in Example 1 except that 35.2 g of 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl was used. A film was formed using the obtained polyimide 2 at a drying temperature of 330 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
  • Example 3 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 30.9 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer.
  • -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 24.0 g, isophthalic acid dihydrazide 4.9 g, NMP 140 g, xylene 92.7 g were added, and the mixture was heated and stirred in an oil bath at 80 ° C. for 1 hour, and then at 200 ° C. The mixture was heated under reflux in an oil bath for 13 hours.
  • reaction solution 20 g was diluted 5-fold with DMAc, and this solution was added dropwise to 500 mL of isopropanol with stirring at room temperature. After collecting the precipitated powder by filtration, the wet cake was placed in 200 mL of isopropanol and stirred at room temperature for 30 minutes. The powder was collected by filtration and dried under reduced pressure at 80 ° C. for 30 minutes and at 150 ° C. for 30 minutes to obtain Polyimide 3. A film of the obtained polyimide 3 was formed at a drying temperature of 280 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
  • the elastic modulus ( E'RT ) at 30 ° C. is 3.0 ⁇ 10 9 Pa or more, and the elastic modulus ( GN 0 ) in the rubber-like flat region is less than 1.5 ⁇ 10 7 Pa. It can be seen that the polyimide film can achieve both high surface hardness and bending resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This polyimide film has an elastic modulus (E'RT) of 3.0×109 Pa or more at 30 °C and an elastic modulus (GN 0) of less than 1.5×107 Pa in a rubbery flat area thereof. Provided is a polyimide film having both high surface hardness and bending resistance. The elastic modulus (E'RT) at 30 °C is preferably 3.5×109 Pa or more, and more preferably 4.0×109 Pa or more. It is preferable to contain an alicyclic structure in a tetracarboxylic acid residue that constitutes a polyimide included in the polyimide film.

Description

ポリイミドフィルムPolyimide film
 本発明は、高表面硬度と耐折り曲げ性を両立するポリイミドフィルムに関する。 The present invention relates to a polyimide film having both high surface hardness and bending resistance.
 近年各種デバイス用途として、耐熱性、光透過性を有し、弾性率が高く、かつ柔軟性のある材料が求められている。 In recent years, various device applications have been demanding materials having heat resistance, light transmission, high elastic modulus, and flexibility.
 上記用途に対し、例えば、芳香族ポリイミド(例えば、DuPont社製「カプトン」)は、高い耐熱性を有し、軽く柔軟なポリイミドであることが知られている。しかしながら、芳香族ポリイミドは、褐色を呈し、高い光透過性が必要とされる用途に使用することはできなかった。 For the above applications, for example, aromatic polyimide (for example, "Kapton" manufactured by DuPont) is known to be a light and flexible polyimide having high heat resistance. However, the aromatic polyimide has a brown color and cannot be used in applications that require high light transmission.
 そこで、高い光透過性を示すポリイミドの開発が進められている(特許文献1)。特許文献1には、耐熱性に関する記載はある。しかし、特許文献1では、表面硬度や耐折り曲げ性に関する検討は十分になされていない。 Therefore, the development of polyimide showing high light transmission is underway (Patent Document 1). Patent Document 1 has a description regarding heat resistance. However, in Patent Document 1, the surface hardness and bending resistance have not been sufficiently studied.
 ポリイミドの動的粘弾性測定におけるゴム状平坦領域については、特許文献2に記載されている。特許文献2には、ポリイミドに架橋剤としてイソシアネートを導入することで、動的粘弾性測定における熱的挙動として、下降曲線の下がり方が緩やかになることが示されている。しかし、特許文献2には、ゴム状平坦領域における弾性率(G )と表面硬度や耐折り曲げ性との関係についての記載は全くなされていない。 A rubber-like flat region in the dynamic viscoelasticity measurement of polyimide is described in Patent Document 2. Patent Document 2 shows that by introducing isocyanate as a cross-linking agent into polyimide, the downward curve becomes gentler as a thermal behavior in dynamic viscoelasticity measurement. However, Patent Document 2 does not describe the relationship between the elastic modulus ( GN 0 ) in the rubber-like flat region and the surface hardness and bending resistance at all.
国際公開第2011/099518号International Publication No. 2011/099518 特開2004-339363号公報Japanese Unexamined Patent Publication No. 2004-339363
 本発明の課題は、高表面硬度及び耐折り曲げ性を両立するポリイミドフィルムを提供することにある。 An object of the present invention is to provide a polyimide film having both high surface hardness and bending resistance.
 本発明者らは、30℃における弾性率(E’RT)が所定値以上で、ゴム状平坦領域における弾性率(G )が所定値未満のポリイミドフィルムが、高表面硬度及び耐折り曲げ性を両立した特性を示すことを見出し、本発明を完成させた。 The present inventors have found that a polyimide film having an elastic modulus ( E'RT ) at 30 ° C. or higher and an elastic modulus ( GN 0 ) in a rubber-like flat region less than a predetermined value has high surface hardness and bending resistance. The present invention has been completed by finding that the characteristics are compatible with each other.
 即ち、本発明は以下を要旨とする。 That is, the gist of the present invention is as follows.
[1] 30℃での弾性率(E’RT)が3.0×10Pa以上で、ゴム状平坦領域における弾性率(G )が1.5×10Pa未満であるポリイミドフィルム。
[2] 30℃での弾性率(E’RT)が3.5×10Pa以上である、[1]に記載のポリイミドフィルム。
[3] 30℃での弾性率(E’RT)が4.0×10Pa以上である、[1]又は[2]に記載のポリイミドフィルム。
[4] 前記ポリイミドフィルムに含まれるポリイミドを構成するテトラカルボン酸残基に脂環構造を含む、[1]~[3]のいずれか1に記載のポリイミドフィルム。
[5] 前記ポリイミドフィルムの膜厚が、1μm以上300μm以下である、[1]~[4]のいずれか1に記載のポリイミドフィルム。
[6] キャスト法により得られたものである、[1]~[5]のいずれか1に記載のポリイミドフィルム。
[7] [1]~[6]のいずれか1に記載のポリイミドフィルム表面にハードコート層を有する、積層体。
[8] 前記ハードコート層の膜厚が、50μm以上200μm以下である、[7]に記載の積層体。
[1] A polyimide film having an elastic modulus ( E'RT ) at 30 ° C. of 3.0 × 10 9 Pa or more and an elastic modulus ( GN 0 ) of less than 1.5 × 10 7 Pa in a rubber-like flat region. ..
[2] elastic modulus at 30 ℃ (E 'RT) is the 3.5 × 10 9 Pa or more, a polyimide film according to [1].
[3] The polyimide film according to [1] or [2], which has an elastic modulus ( E'RT ) at 30 ° C. of 4.0 × 10 9 Pa or more.
[4] The polyimide film according to any one of [1] to [3], wherein the tetracarboxylic acid residue constituting the polyimide contained in the polyimide film contains an alicyclic structure.
[5] The polyimide film according to any one of [1] to [4], wherein the polyimide film has a film thickness of 1 μm or more and 300 μm or less.
[6] The polyimide film according to any one of [1] to [5], which is obtained by a casting method.
[7] A laminate having a hard coat layer on the surface of the polyimide film according to any one of [1] to [6].
[8] The laminate according to [7], wherein the hard coat layer has a film thickness of 50 μm or more and 200 μm or less.
 本発明によれば、高表面硬度及び耐折り曲げ性を両立するポリイミドフィルムを提供することができる。 According to the present invention, it is possible to provide a polyimide film having both high surface hardness and bending resistance.
図1は、本発明に係るゴム状平坦領域の弾性率(G )を説明する動的粘弾性測定のチャートである。FIG. 1 is a chart of dynamic viscoelasticity measurement for explaining the elastic modulus ( GN 0 ) of the rubber-like flat region according to the present invention.
 以下に、本発明の実施の形態を詳細に説明する。以下に例示するものや方法等は本発明の実施形態の一例(代表例)であり、本発明はその要旨を逸脱しない限り、これらの内容に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. The following examples and methods are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these contents as long as the gist of the present invention is not deviated.
 本発明のポリイミドとは、主鎖にイミド環が含まれるものであり、ポリアミック酸、ポリアミック酸エステル及びポリイミドから選択される少なくとも1つで構成される。 The polyimide of the present invention contains an imide ring in the main chain, and is composed of at least one selected from polyamic acid, polyamic acid ester, and polyimide.
 本発明において、「弾性率」とは「貯蔵弾性率」をさす。 In the present invention, the "elastic modulus" refers to the "storage elastic modulus".
 本発明のポリイミドフィルムは、30℃での弾性率(E’RT)が3.0×10Pa以上で、ゴム状平坦領域における弾性率(G )(以下、単に「G 」と記載する場合がある。)が1.5×10Pa未満であることを特徴とする。 The polyimide film of the present invention has an elastic modulus ( E'RT ) at 30 ° C. of 3.0 × 10 9 Pa or more, and an elastic modulus ( GN 0 ) in a rubber-like flat region (hereinafter, simply “ GN 0 ”). may be referred to as.) is equal to or less than 1.5 × 10 7 Pa.
[メカニズム]
 本発明のポリイミドフィルムが、30℃における弾性率(E’RT)が所定値以上で、ゴム状平坦領域における弾性率(G )が所定値未満であることにより、高表面硬度及び耐折り曲げ性の両立という効果を奏する理由としては、以下が挙げられる。
[mechanism]
The polyimide film of the present invention has a high surface hardness and bending resistance because the elastic modulus ( E'RT ) at 30 ° C. is equal to or higher than a predetermined value and the elastic modulus ( GN 0 ) in the rubber-like flat region is less than a predetermined value. The reasons for achieving the effect of achieving both sex are as follows.
 図1に示されるように、G は一般的に、下記式で表される。
=ρRT/Me
   =ρRT/MvNv
 ここで、ρ、Me、Mv、Nv、R、Tは以下の通りである。
 ρ:融体の密度
 Me:絡み合い点間分子量
 Mv:繰り返し単位分子量
 Nv:絡み合い点間鎖の結合数
 T:温度
 R:気体常数
 また、屈曲性の高いポリマー鎖ほどNvが小さくなることが報告されており、Meが大きくなり、G が小さくなる。
 さらに、G が多段階で観測される場合は、ゴム状平坦領域で観測される弾性率の内、最も高い値とする。
As shown in FIG. 1, G N 0 is generally represented by the following formula.
G N 0 = ρRT / Me
= ΡRT / MvNv
Here, ρ, Me, Mv, Nv, R, and T are as follows.
ρ: Melt density Me: Molecular weight between entangled points Mv: Molecular weight of repeating unit Nv: Number of bonds between entangled points T: Temperature R: Gas constant It is also reported that the higher the flexibility of the polymer chain, the smaller the Nv. As a result, Me becomes large and GN 0 becomes small.
Further, when GN 0 is observed in multiple stages, it is set to the highest value among the elastic moduli observed in the rubber-like flat region.
 G は、分子の絡み合いの指標とも考えられ、分子の絡み合いが増えるとG は上がる傾向がある。しかし、本発明者の検討により、この場合には外部からの応力がかかった場合に力を分散しにくくなり、局所的に応力がかかり、耐折り曲げ性が悪化することが判明した。
 一方で、ポリイミドは剛直であるほど、分子鎖の平面性が高くなり、強靭になるため応力に耐えられることから、耐折り曲げ性の向上といった特性が出やすい。
 一般的なポリマーでは、分子の絡み合いを増やしたほうが弾性率などが向上するが、ポリイミドにおいては分子が絡み合うような構造にすると剛直性が失われ、性能が下がる場合がある。
 本発明では、30℃における弾性率(E’RT)は所定値以上と高くした上で、ゴム状平坦領域における弾性率(G )は低く設計することで、分子の絡み合いをおさえ、平面性の高い構造として、表面に分子鎖を配列させることで高表面硬度と耐折り曲げ性の両立を図る。
G N 0 is also considered as an indicator of the entanglement of molecules, G N 0 and the entanglement of the molecule increases tend to go up. However, according to the study by the present inventor, it has been found that in this case, when an external stress is applied, it becomes difficult to disperse the force, the stress is locally applied, and the bending resistance deteriorates.
On the other hand, the more rigid the polyimide, the higher the flatness of the molecular chain and the tougher it is, so that it can withstand stress, and therefore, it is easy to obtain characteristics such as improved bending resistance.
In a general polymer, the elastic modulus and the like are improved by increasing the entanglement of molecules, but in a polyimide, if the structure is such that the molecules are entangled, the rigidity is lost and the performance may be deteriorated.
In the present invention, the elastic modulus ( E'RT ) at 30 ° C. is set to be as high as a predetermined value or more, and the elastic modulus ( GN 0 ) in the rubber-like flat region is designed to be low to suppress the entanglement of molecules and to make a flat surface. As a structure with high properties, by arranging molecular chains on the surface, both high surface hardness and bending resistance are achieved.
 本発明における30℃での弾性率(E’RT)とゴム状平坦領域における弾性率(G )とを両立するには、後述の通り、ポリイミドを構成するテトラカルボン酸残基に脂環構造を導入するなど、ポリイミドの分子構造を設計すればよい。
 また、E’RTとG は、製膜条件によっても制御することができる。例えば、製膜時の温度をポリイミドのTg(ガラス転移温度)以上に上げることでアモルファス状態とし、その後、冷却速度を遅くすることで分子鎖配向を促し、高表面硬度と耐折り曲げ性を両立することも可能である。
In order to achieve both the elastic modulus at 30 ° C. ( E'RT ) and the elastic modulus in the rubber-like flat region ( GN 0 ) in the present invention, as described later, an alicyclic is attached to the tetracarboxylic acid residue constituting the polyimide. The molecular structure of polyimide may be designed by introducing a structure.
Further, E'RT and GN 0 can also be controlled by the film forming conditions. For example, the temperature during film formation is raised above the Tg (glass transition temperature) of polyimide to make it amorphous, and then the cooling rate is slowed down to promote molecular chain orientation, achieving both high surface hardness and bending resistance. It is also possible.
[ポリイミドフィルムの弾性率]
 本発明のポリイミドフィルムの弾性率は、粘弾性測定によって測定することができる。本発明のポリイミドフィルムの30℃における弾性率(E’RT)は3.0×10Pa以上、好ましくは3.5×10Pa以上、より好ましくは4.0×10Pa以上である。
 一方、本発明のポリイミドフィルムの30℃における弾性率(E’RT)は好ましくは8.0×10Pa以下、より好ましくは7.5×10Pa以下、さらに好ましくは7.0×10Pa以下である。
 E’RTが上記範囲であることで、高表面硬度と耐折り曲げ性の両立のためにバランスのとれた物性発現が可能である。
[Elastic modulus of polyimide film]
The elastic modulus of the polyimide film of the present invention can be measured by viscoelasticity measurement. The elastic modulus ( E'RT ) of the polyimide film of the present invention at 30 ° C. is 3.0 × 10 9 Pa or more, preferably 3.5 × 10 9 Pa or more, and more preferably 4.0 × 10 9 Pa or more. ..
On the other hand, the elastic modulus ( E'RT ) of the polyimide film of the present invention at 30 ° C. is preferably 8.0 × 10 9 Pa or less, more preferably 7.5 × 10 9 Pa or less, and further preferably 7.0 × 10 It is 9 Pa or less.
When E'RT is in the above range, it is possible to develop well-balanced physical properties in order to achieve both high surface hardness and bending resistance.
 本発明のポリイミドフィルムのゴム状平坦領域における弾性率(G )は1.5×10Pa未満であり、好ましくは1.2×10Pa以下、より好ましくは1.0×10Pa以下、さらに好ましくは9.0×10Pa以下、特に好ましくは8.5×10Pa以下、最も好ましくは8.0×10Pa以下である。G が上記上限未満であることにより、高表面硬度および耐折り曲げ性を両立できるポリイミドフィルムとすることができる。
 一方、本発明のポリイミドフィルムのゴム状平坦領域における弾性率(G )は耐熱性の観点から、ゴム状平坦領域が観測されれば下限値は特に限定しないが、例えば1.0×104Pa以上が挙げられる。
The elastic modulus ( GN 0 ) of the polyimide film of the present invention in the rubber-like flat region is less than 1.5 × 10 7 Pa, preferably 1.2 × 10 7 Pa or less, more preferably 1.0 × 10 7 It is Pa or less, more preferably 9.0 × 10 6 Pa or less, particularly preferably 8.5 × 10 6 Pa or less, and most preferably 8.0 × 10 6 Pa or less. When GN 0 is less than the above upper limit, a polyimide film capable of achieving both high surface hardness and bending resistance can be obtained.
On the other hand, the elastic modulus ( GN 0 ) of the polyimide film of the present invention in the rubber-like flat region is not particularly limited as long as the rubber-like flat region is observed from the viewpoint of heat resistance, but for example, 1.0 × 10. 4 Pa or more can be mentioned.
 粘弾性測定(動的粘弾性測定)の方法は後述の実施例の項に示される通りである。ゴム状平坦領域は、ポリイミドのガラス転移温度(Tg)を超えた温度域において観測される。 The method of viscoelasticity measurement (dynamic viscoelasticity measurement) is as shown in the section of Examples described later. The rubber-like flat region is observed in a temperature range exceeding the glass transition temperature (Tg) of polyimide.
[ポリイミドフィルムを構成するポリイミド]
 以下に、本発明のポリイミドフィルムを構成するポリイミド(以下、「本発明のポリイミド」と称す場合がある。)の好ましい態様について説明する。
[Polyimide constituting polyimide film]
Hereinafter, preferred embodiments of the polyimide constituting the polyimide film of the present invention (hereinafter, may be referred to as “polyimide of the present invention”) will be described.
<ポリイミドのイミド化率>
 本発明のポリイミドのイミド化率は、特に制限されないが、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上である。イミド化率の上限は100%以下である。イミド化率がこの範囲であることで、成形時のイミド閉環による脱水が少なくなり、ボイドの少ない成形体を得ることができる傾向にあるため好ましい。
 イミド化率はポリイミドの主鎖中のイミド結合の割合を示し、従来公知の方法、例えば、NMR法、IR法、滴定法等で求めることができる。
<Imidization rate of polyimide>
The imidization ratio of the polyimide of the present invention is not particularly limited, but is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more. The upper limit of the imidization rate is 100% or less. When the imidization ratio is in this range, dehydration due to imide ring closure during molding is reduced, and a molded product with few voids tends to be obtained, which is preferable.
The imidization ratio indicates the ratio of imide bonds in the main chain of polyimide, and can be determined by a conventionally known method, for example, an NMR method, an IR method, a titration method, or the like.
<ポリイミドの構造>
 本発明のポリイミドの構造は特に制限されないが、テトラカルボン酸二無水物に由来する単位(テトラカルボン酸残基)と、ジアミン化合物及び/又はジイソシアネート化合物に由来する単位(ジアミン残基)を有する。
<Polyimide structure>
The structure of the polyimide of the present invention is not particularly limited, but has a unit derived from a tetracarboxylic dianhydride (tetracarboxylic acid residue) and a unit derived from a diamine compound and / or a diisocyanate compound (diamine residue).
 本発明のポリイミドに含まれるテトラカルボン酸残基とジアミン残基は、得られるポリイミドフィルムの30℃における弾性率(E’RT)とゴム状平坦領域での弾性率(G )が本発明の条件を満たすように、その種類を選択すると共に含有割合を設定する。 The tetracarboxylic acid residue and diamine residue contained in the polyimide of the present invention have the elastic modulus ( E'RT ) at 30 ° C. and the elastic modulus ( GN 0 ) in the rubber-like flat region of the obtained polyimide film. The type is selected and the content ratio is set so as to satisfy the conditions of.
<テトラカルボン酸二無水物に由来する単位(テトラカルボン酸残基)>
 本発明のポリイミドに含まれるテトラカルボン酸残基を誘導するテトラカルボン酸二無水物に特に制限はない。このテトラカルボン酸二無水物としては、脂肪族テトラカルボン酸二無水物(脂肪族テトラカルボン酸二無水物は脂環式テトラカルボン酸二無水物と鎖状脂肪族テトラカルボン酸二無水物を含む)、芳香族テトラカルボン酸二無水物などが挙げられる。これらのテトラカルボン酸二無水物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<Unit derived from tetracarboxylic dianhydride (tetracarboxylic acid residue)>
The tetracarboxylic dianhydride containing the tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited. The tetracarboxylic dianhydride includes an aliphatic tetracarboxylic dianhydride (the aliphatic tetracarboxylic dianhydride includes an alicyclic tetracarboxylic dianhydride and a chain aliphatic tetracarboxylic dianhydride). ), Aromatic tetracarboxylic dianhydride and the like. One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
(脂環式テトラカルボン酸二無水物)
 脂環式テトラカルボン酸二無水物としては、例えば、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物などが挙げられる。
 中でも、製造安定性が向上する傾向にあるため、5員環以上の脂環構造を有するものが好ましく、6員環以上の脂環構造を有するものがさらに好ましい。
(Alicyclic tetracarboxylic dianhydride)
Examples of the alicyclic tetracarboxylic dianhydride include 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1 , 2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, tricyclo [6.4.0.0 2, 7 ] Dodecane-1,8: 2,7-tetracarboxylic dianhydride, Bicyclo [2.2.2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 4- Examples thereof include (2,5-dioxo tetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride.
Among them, those having an alicyclic structure of 5 or more members are preferable, and those having an alicyclic structure of 6 or more members are more preferable because the production stability tends to be improved.
(鎖状脂肪族テトラカルボン酸二無水物)
 鎖状脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、meso-ブタン-1,2,3,4-テトラカルボン酸二無水物等が挙げられる。
(Chain aliphatic tetracarboxylic dianhydride)
Examples of the chain aliphatic tetracarboxylic dianhydride include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride and the like. Can be mentioned.
(芳香族テトラカルボン酸二無水物)
 芳香族テトラカルボン酸二無水物としては、1分子内に1個の芳香環を有するテトラカルボン酸二無水物、1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物及び1分子内に縮合芳香環を有するテトラカルボン酸二無水物等が挙げられる。
(Aromatic tetracarboxylic dianhydride)
Examples of the aromatic tetracarboxylic acid dianhydride include tetracarboxylic acid dianhydride having one aromatic ring in one molecule, tetracarboxylic acid dianhydride having two or more independent aromatic rings in one molecule, and 1 Examples thereof include tetracarboxylic acid dianhydride having a condensed aromatic ring in the molecule.
 これらの中でも、製造時の粘度が制御しやすく、溶媒溶解性の向上や、塗膜柔軟性が向上する傾向があるため、1分子内に1個の芳香環を有するテトラカルボン酸二無水物又は1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物が好ましく、特に1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物が好ましい。 Among these, tetracarboxylic dianhydride having one aromatic ring in one molecule or tetracarboxylic dianhydride having one aromatic ring in one molecule tends to be easy to control the viscosity at the time of production, improve solvent solubility, and improve coating flexibility. A tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is preferable, and a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is particularly preferable.
 1分子内に1個の芳香環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride having one aromatic ring in one molecule include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride and the like.
 1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物としては、例えば、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、2,2’,6,6’-ビフェニルテトラカルボン酸二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule include 1,1-bis (2,3-dicarboxyphenyl) ethanedianhydride and bis (2,3-di). Carboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4) -Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 3,3', 4 , 4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic acid dianhydride, 4,4- (p-phenylenedi) Examples thereof include oxy) diphthalic acid dianhydride, 4,4- (m-phenylenedioxy) diphthalic acid dianhydride, 2,2', 6,6'-biphenyltetracarboxylic dianhydride and the like.
 1分子内に縮合芳香環を有するテトラカルボン酸二無水物としては、1,2,5,6-ナフタレンジカルボン酸二無水物、1,4,5,8-ナフタレンジカルボン酸二無水物、2,3,6,7-ナフタレンジカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride having a condensed aromatic ring in one molecule include 1,2,5,6-naphthalenedicarboxylic dianhydride, 1,4,5,8-naphthalenedicarboxylic dianhydride, 2, 3,6,7-naphthalenedicarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7 , 8-Phenyltetracarboxylic dianhydride and the like.
(その他のテトラカルボン酸二無水物)
 テトラカルボン酸二無水物としては、上記以外にシリコーン系テトラカルボン酸二無水物やフッ素原子を含むテトラカルボン酸二無水物を用いることもできる。フッ素原子を含むテトラカルボン酸二無水物としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(別名:4,4’-(ヘキサフルオロイソプロピリデン)-ジフタル酸二無水物)、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’,5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)ジフタル酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’,5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)ジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等が挙げられる。
(Other tetracarboxylic dianhydrides)
As the tetracarboxylic dianhydride, a silicone-based tetracarboxylic dianhydride or a tetracarboxylic dianhydride containing a fluorine atom can also be used in addition to the above. Examples of the tetracarboxylic dianhydride containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (also known as). : 4,4'-(hexafluoroisopropyridene) -diphthalic dianhydride), 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane Dichloride, 2,2'-bis (trifluoromethyl) -4,4', 5,5'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluorotrimethylethylene) diphthalic acid dianhydride , 4,4'-(octafluorotetramethylene) diphthalic acid dianhydride, 2,2'-bis (trifluoromethyl) -4,4', 5,5'-biphenyltetracarboxylic dianhydride, 4, 4'-(hexafluorotrimethylethylene) diphthalic acid dianhydride, 4,4'-(octafluorotetramethylene) diphthalic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1 , 1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1 , 1,1,3,3,3-hexafluoropropanedianhydride and the like.
 本発明のポリイミドに含まれるテトラカルボン酸残基を誘導するテトラカルボン酸二無水物は、1種のみであってもよく、2種以上が含まれていてもよい。高表面硬度と耐折り曲げ性を向上させるために、脂肪族テトラカルボン酸二無水物に由来するテトラカルボン酸残基及び/又はフッ素原子を含むテトラカルボン酸二無水物に由来するテトラカルボン酸残基を含むことが好ましく、脂環式テトラカルボン酸二無水物に由来するテトラカルボン酸残基及び/又はフッ素原子を含むテトラカルボン酸二無水物に由来するテトラカルボン酸残基を含むことがより好ましい。また、上記構造であることでポリイミドの溶媒溶解性も向上する傾向にある。 The tetracarboxylic dianhydride containing the tetracarboxylic acid residue contained in the polyimide of the present invention may contain only one type or two or more types. Tetracarboxylic acid residues derived from aliphatic tetracarboxylic dianhydrides and / or tetracarboxylic acid residues derived from tetracarboxylic dianhydrides containing fluorine atoms in order to improve high surface hardness and bending resistance. It is preferable to contain a tetracarboxylic acid residue derived from an alicyclic tetracarboxylic dianhydride and / or a tetracarboxylic acid residue derived from a tetracarboxylic dianhydride containing a fluorine atom. .. Further, the above structure tends to improve the solvent solubility of the polyimide.
 本発明のポリイミドに含まれる全テトラカルボン酸残基に対する脂肪族テトラカルボン酸二無水物に由来するテトラカルボン酸残基の割合は、特に制限はないが、10mol%以上が好ましく、25mol%以上がより好ましく、40mol%以上がさらに好ましい。また、この割合の上限はなく100mol%でもよい。テトラカルボン酸二無水物に由来するテトラカルボン酸残基の割合が、上記下限以上であることで、高表面硬度と耐折り曲げ性が向上し、溶媒への溶解性が高くなる傾向にある。 The ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited, but is preferably 10 mol% or more, preferably 25 mol% or more. More preferably, 40 mol% or more is further preferable. Further, there is no upper limit of this ratio, and it may be 100 mol%. When the ratio of the tetracarboxylic acid residue derived from the tetracarboxylic dianhydride is equal to or higher than the above lower limit, the high surface hardness and bending resistance tend to be improved, and the solubility in a solvent tends to be high.
<ジアミン化合物に由来する単位>
 本発明のポリイミドに含まれるジアミン残基を誘導するジアミン化合物としては、芳香族ジアミン化合物、脂肪族ジアミン化合物(脂肪族ジアミン化合物は脂環式ジアミン化合物と鎖状脂肪族ジアミン化合物を含む。)が挙げられる。これらのジアミン化合物は1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<Unit derived from diamine compound>
Examples of the diamine compound for inducing the diamine residue contained in the polyimide of the present invention include aromatic diamine compounds and aliphatic diamine compounds (aliphatic diamine compounds include alicyclic diamine compounds and chain aliphatic diamine compounds). Can be mentioned. One of these diamine compounds may be used alone, or two or more of these diamine compounds may be used in any ratio and combination.
(芳香族ジアミン化合物)
 芳香族ジアミン化合物としては、1分子内に1個の芳香環を有するジアミン化合物、1分子内に縮合芳香環を有するジアミン化合物、1分子内に独立した2つ以上の芳香環を有するジアミン化合物が挙げられる。
(Aromatic diamine compound)
Examples of the aromatic diamine compound include a diamine compound having one aromatic ring in one molecule, a diamine compound having a condensed aromatic ring in one molecule, and a diamine compound having two or more independent aromatic rings in one molecule. Can be mentioned.
 1分子内に1個の芳香環を有するジアミン化合物としては、例えば、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、4-フルオロ-1,2-フェニレンジアミン、4-フルオロ-1,3-フェニレンジアミン、3-トリフルオロメチル-1,5-フェニレンジアミン、4-トリフルオロメチル-1,5-フェニレンジアミン、4-トリフルオロメチル-1,2-フェニレンジアミン、2-トリフルオロメチル-1,4-フェニレンジアミン等が挙げられる。 Examples of the diamine compound having one aromatic ring in one molecule include 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 4-fluoro-1,2-phenylenediamine, and the like. 4-Fluoro-1,3-phenylenediamine, 3-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,2-phenylenediamine, Examples thereof include 2-trifluoromethyl-1,4-phenylenediamine.
 1分子内に縮合芳香環を有するジアミン化合物としては、4,4’-(9-フルオレニリデン)ジアニリン、2,7-ジアミノフルオレン、1,5-ジアミノナフタレン、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン5,5-ジオキシド等が挙げられる。 Examples of the diamine compound having a condensed aromatic ring in one molecule include 4,4'-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, 1,5-diaminonaphthalene, and 3,7-diamino-2,8-. Examples thereof include dimethyldibenzothiophene 5,5-dioxide.
 1分子内に独立した2つ以上の芳香環を有するジアミン化合物としては、ビフェニル構造を有するものとして、4,4’-(ビフェニル-2,5-ジイルビスオキシ)ビスアニリン、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル(別名:3,3’-ジメチルベンジジン)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-2,2’-ジメトキシビフェニル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノ-2,2’-ジクロロビフェニル、4,4’-ジアミノ-3,3’-ジクロロビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2-メチル-2’-トリフルオロメチルビフェニル等が挙げられる。また、芳香環同士をリンカーが繋いでいるものとして、4,4-ジアミノゼンズアニリド、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、N-(4-アミノフェノキシ)-4-アミノベンズアミン、ビス(3-アミノフェニル)スルホン、ノルボルナンジアミン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、N-[4-(4-アミノフェノキシ)フェニル]-4-アミノベンズアミド、4,4-ジアミノベンズアニリド、ビス(3-アミノフェニル)スルホン等が挙げられる。また、フッ素原子を有するものとして、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-{4-アミノ-2-(トリフルオロメチル)フェノキシ}フェニル]ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジブロモフェニル}ヘキサフルオロプロパン等が挙げられる。 Diamine compounds having two or more independent aromatic rings in one molecule include 4,4'-(biphenyl-2,5-diylbisoxy) bisaniline and 4,4'-diamino as having a biphenyl structure. -3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl (also known as 3,3'-dimethylbenzidine), 4,4'-bis (4-aminophenoxy) biphenyl, 4 , 4'-diamino-2,2'-dimethoxybiphenyl, 4,4'-diamino-3,3'-dimethoxybiphenyl, 4,4'-diamino-2,2'-dichlorobiphenyl, 4,4'-diamino -3,3'-dichlorobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diamino-2-methyl-2'-trifluoromethylbiphenyl and the like. Be done. Further, assuming that the aromatic rings are linked to each other by a linker, 4,4-diaminozensanilide, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, and 1,4-bis (4-aminophenoxy) benzene are used. , 1,3-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, bis (4-) (3-Aminophenoxy) phenyl) sulfone, 1,3-bis (4-aminophenoxy) neopentane, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, N- (4-aminophenoxy) -4-aminobenzamine, bis (3-aminophenyl) sulfone, norbornandiamine, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) ) Phen) Sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, N- [4- (4-aminophenoxy) phenyl] -4-aminobenzamide, 4,4-diaminobenzanilide, Examples include bis (3-aminophenyl) sulfone. Further, as those having a fluorine atom, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2-bis [4- {4-amino-2- (trifluoromethyl) phenoxy) } Phenyl] Hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-Aminophenyl) Hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis {4- (4-aminophenoxy) -3,5-dibromophenyl} hexafluoropropane And so on.
 なかでも、高表面硬度と耐折り曲げ性が向上し、また、弾性率が高くなる傾向にあるため、ビフェニル構造を有するジアミン化合物、または芳香環同士をリンカーが繋いでいるジアミン化合物が好ましく、ビフェニル構造を有するジアミン化合物がより好ましい。 Among them, a diamine compound having a biphenyl structure or a diamine compound in which aromatic rings are linked to each other by a linker is preferable because high surface hardness and bending resistance are improved and the elastic modulus tends to be high. A diamine compound having is more preferable.
(脂肪族ジアミン化合物)
 脂肪族ジアミン化合物としては、脂環式ジアミン化合物及び鎖状脂肪族ジアミン化合物等が挙げられる。
(Aliphatic diamine compound)
Examples of the aliphatic diamine compound include an alicyclic diamine compound and a chain aliphatic diamine compound.
 脂環式ジアミン化合物としては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)等が挙げられる。 Examples of the alicyclic diamine compound include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis (cyclohexylamine). Examples thereof include 4,4'-methylenebis (2-methylcyclohexylamine).
 鎖状脂肪族ジアミン化合物としては、例えば、1,2-エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、1,5-ジアミノペンタン、1,10-ジアミノデカン、1,2-ジアミノ-2-メチルプロパン、2,3-ジメチル-2,3-ブタンジアミン、2-メチル-1,5-ジアミノペンタン等が挙げられる。 Examples of the chain aliphatic diamine compound include 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, and 1,5-. Examples thereof include diaminopentane, 1,10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-dimethyl-2,3-butanediamine, 2-methyl-1,5-diaminopentane and the like.
 これらの中でも、高表面硬度と耐折り曲げ性が向上し、また耐熱性が向上する傾向にあることから、脂環式ジアミン化合物が好ましく、特に、1,4-ジアミノシクロヘキサン又は1,3-ビス(アミノメチル)シクロヘキサンが好ましい。 Among these, alicyclic diamine compounds are preferable because they tend to have high surface hardness, bending resistance, and heat resistance, and are particularly 1,4-diaminocyclohexane or 1,3-bis (1,4-diaminocyclohexane). Aminomethyl) cyclohexane is preferred.
<ジイソシアネート化合物に由来する単位>
 本発明のポリイミドに含まれるジアミン残基を誘導するジイソシアネート化合物としては芳香族ジイソシアネート化合物、脂肪族ジイソシアネート化合物が挙げられる。これらのジイソシアネート化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<Unit derived from diisocyanate compound>
Examples of the diisocyanate compound for inducing the diamine residue contained in the polyimide of the present invention include aromatic diisocyanate compounds and aliphatic diisocyanate compounds. One of these diisocyanate compounds may be used alone, or two or more of these diisocyanate compounds may be used in any ratio and combination.
 芳香族ジイソシアネート化合物としては、例えば、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン、4,4’-ジイソシアナト-3,3’-ジメチルジフェニルメタン、1,5-ジイソシアナトナフタレン、4,4’-ジイソシアン酸メチレンジフェニル、ジイソシアン酸1,3-フェニレン、1,4-フェニレンジイソシアナート、1,3-ビス(イソシアナトメチル)ベンゼン、トルエンジイソシアネート等が挙げられる。 Examples of the aromatic diisocyanate compound include 4,4'-diisocyanato-3,3'-dimethylbiphenyl, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, and 4,4'-diisocyanato-3,3. '-Dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 4,4'-methylenediphenyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylenediisocyanate, 1,3-bis (isocyanatomethyl) ) Benzene, toluene diisocyanate and the like.
 脂肪族ジイソシアネート化合物としては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。 Examples of the aliphatic diisocyanate compound include 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, and isophorone diisocyanate.
 本発明のポリイミドに含まれるジアミン残基を誘導する、ジアミン化合物及び/又はジイソシアネート化合物は、1種のみであってもよく、2種以上が含まれてもよい。高表面硬度と耐折り曲げ性が向上し、また、30℃での弾性率が高くなる傾向にあるため、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル(別名:3,3’-ジメチルベンジジン)、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノ-2,2’-ジメチトキシビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2-メチル-2’-トリフルオロメチルビフェニルなどのビフェニル系ジアミン化合物、及び/又は、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、N-[4-(4-アミノフェノキシ)フェニル]-4-アミノベンズアミド、4,4-ジアミノベンズアニリド、ビス(3-アミノフェニル)スルホン等のスルホン系ジアミン化合物から誘導されるジアミン残基を含むことが好ましい。中でも、上記ビフェニル系ジアミン化合物から誘導されるジアミン残基を含むことがより好ましい。 The diamine compound and / or diisocyanate compound that induces the diamine residue contained in the polyimide of the present invention may be only one kind or may contain two or more kinds. High surface hardness and bending resistance are improved, and the elasticity at 30 ° C. tends to be high. Therefore, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2 , 2'-Dimethylbiphenyl (also known as 3,3'-dimethylbenzidine), 4,4'-diamino-3,3'-dimethoxybiphenyl, 4,4'-diamino-2,2'-dimethitoxybiphenyl, 4 , 4'-bis (4-aminophenoxy) biphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diamino-2-methyl-2'-trifluoromethyl Biphenyl-based diamine compounds such as biphenyl and / or bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, 4,4'-diaminodiphenyl sulfone, 3 , 3'-diaminodiphenyl sulfone, N- [4- (4-aminophenoxy) phenyl] -4-aminobenzamide, 4,4-diaminobenzanilide, bis (3-aminophenyl) sulfone and other sulfone-based diamine compounds It preferably contains an induced diamine residue. Above all, it is more preferable to contain a diamine residue derived from the above-mentioned biphenyl-based diamine compound.
<一般式(1)に示す構造>
 本発明のポリイミドは、下記一般式(1)に示す構造を有していてもよい。本発明のポリイミドが該構造を有することで、高表面硬度と耐折り曲げ性の両立をより一層効果的に図り、更に溶解性が向上できる傾向にある。
<Structure represented by general formula (1)>
The polyimide of the present invention may have a structure represented by the following general formula (1). When the polyimide of the present invention has the structure, both high surface hardness and bending resistance can be more effectively achieved, and the solubility tends to be further improved.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。*は結合手を示す。 In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
 一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。
 芳香環、複素環としては特に限定されず、縮合環であってもよい。脂環も特に限定されないが、3~10員環であることが好ましい。鎖状脂肪族基も特に限定されないが、直鎖の炭素数1以上20以下の基であることが好ましい。
 さらに、分子量制御がしやすく、製造安定性が良好であることから、芳香環基及び鎖状脂肪族基からなる群より選択された少なくとも1つであることが好ましい。これらの中でも、芳香環基としては、ベンゼン環、ナフタレン環、ビフェニル環、ビフェニルエーテル、ベンゾフェノン、フェニルスルフィド、ビフェニルスルホキシド、ビフェニルスルホンよりなる基が好ましく、また、単環または2つの芳香環を有するものが好ましい。一方、鎖状脂肪族基としては、炭素数が1以上10以下のものが好ましい。Rがこれらの基であることで、本発明の効果が特に得られやすい傾向となる。
 これらの芳香環基、複素環基、脂環基及び鎖状脂肪族基は置換基を有していてもよい。有してもよい置換基としては、アルキル基、アルコキシ基、ハロゲン化アルキル基、水酸基、カルボキシ基などが挙げられる。
In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. ..
The aromatic ring and the heterocycle are not particularly limited, and may be a fused ring. The alicyclic is not particularly limited, but is preferably a 3- to 10-membered ring. The chain aliphatic group is also not particularly limited, but is preferably a linear group having 1 to 20 carbon atoms.
Further, since the molecular weight can be easily controlled and the production stability is good, at least one selected from the group consisting of an aromatic ring group and a chain aliphatic group is preferable. Among these, as the aromatic ring group, a group composed of a benzene ring, a naphthalene ring, a biphenyl ring, a biphenyl ether, a benzophenone, a phenyl sulfide, a biphenyl sulfoxide, and a biphenyl sulfone is preferable, and a group having a monocyclic ring or two aromatic rings is preferable. Is preferable. On the other hand, the chain aliphatic group preferably has 1 or more and 10 or less carbon atoms. When R is these groups, the effect of the present invention tends to be particularly easily obtained.
These aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may have substituents. Examples of the substituent which may be possessed include an alkyl group, an alkoxy group, an alkyl halide group, a hydroxyl group, a carboxy group and the like.
 これら芳香環基、複素環基、脂環基及び鎖状脂肪族基は、単独でも組み合わせて用いてもよい。 These aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may be used alone or in combination.
 一般式(1)に示す構造の具体例としては、後述するジカルボン酸化合物とジアミン化合物との反応や、テトラカルボン酸二無水物とジヒドラジド化合物との反応で挙げた各化合物に由来する構造が挙げられる。 Specific examples of the structure represented by the general formula (1) include structures derived from the respective compounds mentioned in the reaction between the dicarboxylic acid compound and the diamine compound described later and the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. Be done.
 本発明のポリイミドは一般式(1)に示す構造の1種のみを有していてもよく、複数種を有していてもよい。
 一般式(1)に示す構造は、ジカルボン酸化合物とジアミン化合物との反応及び/又はテトラカルボン酸二無水物とジヒドラジド化合物との反応に由来するものであることが好ましい。一般式(1)に示す構造は、少なくともテトラカルボン酸二無水物とジヒドラジド化合物との反応に由来する構造を有することが好ましい。
The polyimide of the present invention may have only one type of the structure represented by the general formula (1), or may have a plurality of types.
The structure represented by the general formula (1) is preferably derived from the reaction between the dicarboxylic acid compound and the diamine compound and / or the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. The structure represented by the general formula (1) preferably has a structure derived from at least the reaction of the tetracarboxylic dianhydride and the dihydrazide compound.
 一般式(1)に示す構造を誘導するジカルボン酸化合物は、芳香族ジカルボン酸、複素環ジカルボン酸、脂環式ジカルボン酸、鎖状脂肪族ジカルボン酸等の化合物が挙げられる。ジカルボン酸化合物は、反応性向上のためにカルボキシル基をハロゲン化した酸ハライド、例えば、カルボキシル基を塩素化した酸クロライドとして用いることもできる。本発明においては、ジカルボン酸化合物としてジカルボン酸クロライド等のハライドを用いた場合でも、ジカルボン酸化合物とジアミン化合物との反応に由来する構造という。 Examples of the dicarboxylic acid compound that induces the structure represented by the general formula (1) include compounds such as aromatic dicarboxylic acid, heterocyclic dicarboxylic acid, alicyclic dicarboxylic acid, and chain aliphatic dicarboxylic acid. The dicarboxylic acid compound can also be used as an acid halide in which a carboxyl group is halogenated, for example, an acid chloride in which a carboxyl group is chlorinated in order to improve the reactivity. In the present invention, it is said that the structure is derived from the reaction between the dicarboxylic acid compound and the diamine compound even when a halide such as dicarboxylic acid chloride is used as the dicarboxylic acid compound.
 一般式(1)に示す構造のポリイミド中の導入量は特に制限はないが、主鎖のイミド環に対してアミド結合の濃度が1mol%以上が好ましく、5mol%以上がより好ましく、8mol%以上がさらに好ましい。一般式(1)に示す構造のポリイミド中の導入量は900mol%以下が好ましく、700mol%以下がより好ましく、500mol%以下がさらに好ましく、400mol%以下が特に好ましい。ポリイミド中の一般式(1)に示す構造の導入量がこの範囲にあることで、溶媒溶解性と弾性率が両立しやすい傾向にあるため好ましい。 The amount introduced into the polyimide having the structure represented by the general formula (1) is not particularly limited, but the concentration of the amide bond with respect to the imide ring of the main chain is preferably 1 mol% or more, more preferably 5 mol% or more, and 8 mol% or more. Is even more preferable. The amount introduced into the polyimide having the structure represented by the general formula (1) is preferably 900 mol% or less, more preferably 700 mol% or less, further preferably 500 mol% or less, and particularly preferably 400 mol% or less. It is preferable that the amount of the structure represented by the general formula (1) introduced in the polyimide is within this range because the solvent solubility and the elastic modulus tend to be compatible with each other.
 一般式(1)に示す構造のうちジカルボン酸化合物とジアミン化合物との反応に由来するものと、ジヒドラジド化合物とテトラカルボン酸二無水物との反応に由来するものの比率は特に制限はない。一般式(1)に示す構造に対する比率で、ジヒドラジド化合物とテトラカルボン酸二無水物との反応に由来するものの比率が、5mol%以上が好ましく、10mol%以上がより好ましく、25mol%以上がさらに好ましく、50mol%以上が特に好ましい。ジヒドラジド化合物とテトラカルボン酸二無水物との反応に由来するものの比率の上限はなく100mol%でもよい。ジヒドラジド化合物とテトラカルボン酸二無水物との反応に由来するものの比率が、上記下限値以上であることで、溶媒溶解性と弾性率が両立しやすい傾向にあるため、好ましい。 The ratio of the structure represented by the general formula (1) derived from the reaction between the dicarboxylic acid compound and the diamine compound and the structure derived from the reaction between the dihydrazide compound and the tetracarboxylic dianhydride is not particularly limited. The ratio of the dihydrazide compound to the structure represented by the general formula (1), which is derived from the reaction of the dihydrazide compound and the tetracarboxylic acid dianhydride, is preferably 5 mol% or more, more preferably 10 mol% or more, still more preferably 25 mol% or more. , 50 mol% or more is particularly preferable. There is no upper limit to the ratio of the dihydrazide compound derived from the reaction of the tetracarboxylic dianhydride, which may be 100 mol%. When the ratio of the dihydrazide compound derived from the reaction of the tetracarboxylic dianhydride is not more than the above lower limit value, solvent solubility and elastic modulus tend to be compatible, which is preferable.
 本発明のポリイミドに含まれる、テトラカルボン酸残基、ジアミン残基、ジカルボン酸残基、及びジヒドラジド残基の割合は、NMR、固体NMR、IR等によって原料モノマーの組成を解析することによって求めることができる。この割合はまた、アルカリで溶解した後にガスクロマトグラフィー(GC)、H-NMR、13C-NMR、二次元NMR、質量分析等によって求めることができる。 The ratio of tetracarboxylic acid residue, diamine residue, dicarboxylic acid residue, and dihydrazide residue contained in the polyimide of the present invention can be determined by analyzing the composition of the raw material monomer by NMR, solid NMR, IR, or the like. Can be done. This ratio can also be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution in alkali.
<<ジカルボン酸化合物とジアミン化合物との反応に由来する構造>>
(ジアミン化合物)
 ジアミン化合物としては、芳香族ジアミン化合物、脂肪族ジアミン化合物(脂肪族ジアミン化合物は脂環式ジアミン化合物と鎖状脂肪族ジアミン化合物を含む。)が挙げられる。これらのジアミン化合物は1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<< Structure derived from the reaction between the dicarboxylic acid compound and the diamine compound >>
(Diamine compound)
Examples of the diamine compound include an aromatic diamine compound and an aliphatic diamine compound (the aliphatic diamine compound includes an alicyclic diamine compound and a chain aliphatic diamine compound). One of these diamine compounds may be used alone, or two or more of these diamine compounds may be used in any ratio and combination.
 ジカルボン酸化合物と反応させるジアミン化合物としては、ジアミン残基の説明で前述した化合物が挙げられ、好ましい範囲も同一である。 Examples of the diamine compound to be reacted with the dicarboxylic acid compound include the compounds described above in the description of the diamine residue, and the preferable range is also the same.
(ジカルボン酸化合物)
 ジカルボン酸化合物としては、芳香族ジカルボン酸化合物(複素芳香族ジカルボン酸化合物を含む。)、脂環式ジカルボン酸化合物、鎖状脂肪族ジカルボン酸化合物等が挙げられる。これらのジカルボン酸化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
(Dicarboxylic acid compound)
Examples of the dicarboxylic acid compound include an aromatic dicarboxylic acid compound (including a heteroaromatic dicarboxylic acid compound), an alicyclic dicarboxylic acid compound, and a chain aliphatic dicarboxylic acid compound. One of these dicarboxylic acid compounds may be used alone, or two or more of them may be used in any ratio and combination.
 芳香族ジカルボン酸化合物としては、単環であるイソフタル酸、テレフタル酸、フタル酸、2,5-ジメチルテレフタル酸等;独立した2つ以上の芳香環を有する4,4’-カルボニル二安息香酸、2,2’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、4-(カルボキシメチル)安息香酸、4,4’-オキシビス安息香酸、4,4’-スルホニル二安息香酸、1,2-ビス(4-カルボキシフェニル)エタン、4,4’-スチルベンジカルボン酸等;縮合環を有する1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸等;複素環を有する2,2’-ビシンコニン酸、2,2’-ビニコチン酸、2,2’-ビイソニコチン酸、2,2’-ビピリジン-5,5’-ジカルボン酸、2,2’-ビピリジン-6,6’-ジカルボン酸、2,5-フランジカルボン酸等;が挙げられる。 Examples of the aromatic dicarboxylic acid compound include monocyclic isophthalic acid, terephthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, and the like; 4,4'-carbonyldibenzoic acid having two or more independent aromatic rings, 2,2'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 4- (carboxymethyl) benzoic acid, 4,4'-oxybis benzoic acid , 4,4'-sulfonyldibenzoic acid, 1,2-bis (4-carboxyphenyl) ethane, 4,4'-stylbenzicarboxylic acid, etc .; 1,4-naphthalenedicarboxylic acid having a fused ring, 2,3- Naphthalenedicarboxylic acid, etc .; 2,2'-bisinconic acid having a heterocycle, 2,2'-binicotinic acid, 2,2'-biisonicotinic acid, 2,2'-bipyridine-5,5'-dicarboxylic acid, 2, 2'-bipyridine-6,6'-dicarboxylic acid, 2,5-furandicarboxylic acid and the like;
 脂環式ジカルボン酸化合物としては、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、1,3-アダマンタンジカルボン酸、cis-4-シクロヘキセン-1,2-ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸等が挙げられる。 Examples of the alicyclic dicarboxylic acid compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid, 1,3-adamantandicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, and 1,4. -Cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-1,4-naphthalenedicarboxylic acid and the like can be mentioned.
 鎖状脂肪族ジカルボン酸化合物としては、グルタル酸、アジピン酸、アゼライン酸、マロン酸、セバシン酸、スクシン酸等が挙げられる。 Examples of the chain aliphatic dicarboxylic acid compound include glutaric acid, adipic acid, azelaic acid, malonic acid, sebacic acid, succinic acid and the like.
 ジカルボン酸化合物としては、単環の芳香族ジカルボン酸化合物、独立した2つ以上の芳香環を有するジカルボン酸化合物、鎖状ジカルボン酸化合物が、溶媒溶解性と弾性率を両立しやすい傾向にあるため好ましい。 As the dicarboxylic acid compound, a monocyclic aromatic dicarboxylic acid compound, a dicarboxylic acid compound having two or more independent aromatic rings, and a chain dicarboxylic acid compound tend to have both solvent solubility and elastic modulus easily. preferable.
 前述の通り、ジカルボン酸化合物は反応性向上のため、酸クロライドとして用いてもよく、その場合の好ましい化合物は上記の内容と同様である。 As described above, the dicarboxylic acid compound may be used as an acid chloride in order to improve the reactivity, and the preferable compound in that case is the same as the above content.
<<テトラカルボン酸二無水物とジヒドラジド化合物との反応に由来する構造>>
(テトラカルボン酸二無水物)
 テトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物(脂肪族テトラカルボン酸二無水物は脂環式テトラカルボン酸二無水物と鎖状脂肪族テトラカルボン酸二無水物を含む。)が挙げられる。これらのテトラカルボン酸二無水物は1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<< Structure derived from the reaction of tetracarboxylic dianhydride and dihydrazide compound >>
(Tetracarboxylic dianhydride)
Examples of tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides (aliphatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics. Includes tetracarboxylic dianhydride). One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
 ジヒドラジド化合物と反応させるテトラカルボン酸二無水物化合物としては、テトラカルボン酸残基の説明で前述した化合物が挙げられ、好ましい範囲も同一である。 Examples of the tetracarboxylic dianhydride compound to be reacted with the dihydrazide compound include the compounds described above in the description of the tetracarboxylic acid residue, and the preferable range is also the same.
(ジヒドラジド化合物)
 ジヒドラジド化合物に特に制限はないが、芳香族ジヒドラジド化合物、脂肪族ジヒドラジド化合物(脂環式ジヒドラジド化合物と鎖状脂肪族ジヒドラジド化合物を含む。)等が挙げられる。これらのジヒドラジド化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
(Dihydrazide compound)
The dihydrazide compound is not particularly limited, and examples thereof include aromatic dihydrazide compounds and aliphatic dihydrazide compounds (including alicyclic dihydrazide compounds and chain aliphatic dihydrazide compounds). One of these dihydrazide compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 芳香族ジヒドラジド化合物としては、単環である、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,5-ジメチルテレフタル酸ジヒドラジド等;独立した2つ以上の芳香環を有する4,4’-カルボニル二安息香酸ジヒドラジド、2,2’-ビフェニルジカルボン酸ジヒドラジド、4,4’-ビフェニルジカルボン酸ジヒドラジド、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパンジヒドラジド、4-(カルボキシメチル)安息香酸ジヒドラジド、4,4’-オキシビス安息香酸ジヒドラジド、4,4’-スルホニル二安息香酸ジヒドラジド、1,2-ビス(4-カルボキシフェニル)エタンジヒドラジド、4,4’-スチルベンジカルボン酸ジヒドラジド等;縮合環を有する1,4-ナフタレンジカルボン酸ジヒドラジド、2,3-ナフタレンジカルボン酸ジヒドラジド等;複素環を有する2,2’-ビシンコニン酸ジヒドラジド、2,2’-ビニコチン酸ジヒドラジド、2,2’-ビイソニコチン酸ジヒドラジド、2,2’-ビピリジン-5,5’-ジカルボン酸ジヒドラジド、2,2’-ビピリジン-6,6’-ジカルボン酸ジヒドラジド、2,5-フランジカルボン酸ジヒドラジド等;が挙げられる。 Examples of the aromatic dihydrazide compound include monocyclic isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,5-dimethylterephthalic acid dihydrazide, and the like; 4,4'-carbonyl having two or more independent aromatic rings. Dihydrazide benzoate, 2,2'-biphenyldicarboxylic acid dihydrazide, 4,4'-biphenyldicarboxylic acid dihydrazide, 2,2-bis (4-carboxyphenyl) hexafluoropropanedihydrazide, 4- (carboxymethyl) dihydrazide benzoate , 4,4'-oxybis benzoic acid dihydrazide, 4,4'-sulfonyl dibenzoic acid dihydrazide, 1,2-bis (4-carboxyphenyl) ethanedihydrazide, 4,4'-stylbenzicarboxylic acid dihydrazide, etc .; 1,4-Naphthalenedicarboxylic acid dihydrazide, 2,3-naphthalenedicarboxylic acid dihydrazide, etc .; 2,2'-bisinconic acid dihydrazide, 2,2'-binicotinic acid dihydrazide, 2,2'-biisonicotinic acid dihydrazide having a heterocycle , 2,2'-bipyridine-5,5'-dicarboxylic acid dihydrazide, 2,2'-bipyridine-6,6'-dicarboxylic acid dihydrazide, 2,5-furandicarboxylic acid dihydrazide and the like.
 脂環式ジヒドラジド化合物としては、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸ジヒドラジド、1,3-アダマンタンジカルボン酸ジヒドラジド、cis-4-シクロヘキセン-1,2-ジカルボン酸ジヒドラジド、1,4-シクロヘキサンジカルボン酸ジヒドラジド、1,3-シクロヘキサンジカルボン酸ジヒドラジド、デカヒドロ-1,4-ナフタレンジカルボン酸ジヒドラジド等が挙げられる。 Examples of the alicyclic dihydrazide compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid dihydrazide, 1,3-adamantandicarboxylic acid dihydrazide, cis-4-cyclohexene-1,2-dicarboxylic acid dihydrazide, and 1, , 4-Cyclohexanedicarboxylic acid dihydrazide, 1,3-cyclohexanedicarboxylic acid dihydrazide, decahydro-1,4-naphthalenedicarboxylic acid dihydrazide and the like.
 鎖状脂肪族ジヒドラジド化合部物としては、アジピン酸ジヒドラジド、アゼライン酸ジヒドラジド、ドデカンニ酸ジヒドラジド、マロン酸ジヒドラジド、セバシン酸ジヒドラジド、コハク酸ジヒドラジド、オキサリルジヒドラジド等が挙げられる。 Examples of the chain aliphatic dihydrazide compound include adipic acid dihydrazide, azelaic acid dihydrazide, dodecanoic acid dihydrazide, malonic acid dihydrazide, sebacic acid dihydrazide, succinate dihydrazide, and oxalyl dihydrazide.
 ジヒドラジド化合物としては、単環の芳香族ジヒドラジド化合物、独立した2つ以上の芳香環を有するジヒドラジド化合物が、弾性率が向上する傾向にあるため好ましい。 As the dihydrazide compound, a monocyclic aromatic dihydrazide compound and a dihydrazide compound having two or more independent aromatic rings tend to improve the elastic modulus, and are preferable.
<E’RTとG を満たすための好適設計>
 本発明のポリイミドフィルムのE’RTとG を満たすためのポリイミドのテトラカルボン酸残基とジアミン残基の好適な組み合わせ等の分子設計には特に制限はないが、テトラカルボン酸残基が脂環構造を含むことが好ましい。高表面硬度と耐折り曲げ性の両立、分子骨格の剛直性と柔軟性の両立の観点から、ポリイミドの原料テトラカルボン酸二無水物として、前述の脂肪族テトラカルボン酸二無水物を少なくとも用いることが好ましく、脂環式テトラカルボン酸二無水物を用いることがさらに好ましく、特に、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物等を用いることが好ましい。
<Suitable design to satisfy E'RT and GN 0 >
No particular limitation is imposed on the suitable combinations molecular design of such a tetracarboxylic acid residue and a diamine residue of the polyimide to meet E 'RT and G N 0 of the polyimide film of the present invention, the tetracarboxylic acid residues It preferably contains an alicyclic structure. From the viewpoint of achieving both high surface hardness and bending resistance, and both rigidity and flexibility of the molecular skeleton, at least the above-mentioned aliphatic tetracarboxylic dianhydride can be used as the raw material tetracarboxylic dianhydride for polyimide. It is preferable to use an alicyclic tetracarboxylic dianhydride, and it is particularly preferable to use 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and the like.
 本発明のポリイミドに含まれる全テトラカルボン酸残基における脂環式テトラカルボン酸残基の割合は通常10mol%以上、さらに30mol%以上、特に50mol%以上、とりわけ80mol%以上であることが、高表面硬度、耐折り曲げ性の観点から好ましい。この割合の上限は特に無く、100mol%でもよい。 The ratio of the alicyclic tetracarboxylic acid residue to the total tetracarboxylic acid residue contained in the polyimide of the present invention is usually 10 mol% or more, further 30 mol% or more, particularly 50 mol% or more, particularly 80 mol% or more. It is preferable from the viewpoint of surface hardness and bending resistance. There is no particular upper limit to this ratio, and it may be 100 mol%.
<ポリイミドの分子量>
 本発明のポリイミドの分子量は特に制限はないが、ポリスチレン換算の数平均分子量(Mn)で、好ましくは500以上、より好ましくは1000以上、さらに好ましくは1500以上である。一方、この分子量は好ましくは80000以下、より好ましくは60000以下、さらに好ましくは40000以下である。ポリイミドの数平均分子量(Mn)がこの範囲であると、溶解性、溶液粘度などが通常の設備で取り扱いしやすい範囲となるため、好ましい。
 本発明のポリイミドのポリスチレン換算の数平均分子量(Mn)は、ゲル浸透クロマトグラフィ(GPC)により求めることができる。
<Molecular weight of polyimide>
The molecular weight of the polyimide of the present invention is not particularly limited, but is preferably a polystyrene-equivalent number average molecular weight (Mn) of 500 or more, more preferably 1000 or more, and further preferably 1500 or more. On the other hand, this molecular weight is preferably 80,000 or less, more preferably 60,000 or less, still more preferably 40,000 or less. When the number average molecular weight (Mn) of the polyimide is in this range, the solubility, the solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
The polystyrene-equivalent number average molecular weight (Mn) of the polyimide of the present invention can be determined by gel permeation chromatography (GPC).
 本発明のポリイミドの質量平均分子量(Mw)は、好ましくは1000以上、より好ましくは2000以上、さらに好ましくは5000以上である。一方、ポリイミドの質量平均分子量(Mw)は好ましくは300000以下、より好ましくは200000以下、さらに好ましくは100000以下である。ポリイミドの質量平均分子量(Mw)がこの範囲であると、溶解性、溶液粘度などが通常の設備で取り扱いしやすい範囲となるため、好ましい。
 本発明のポリイミドの質量平均分子量(Mw)は、上記数平均分子量(Mn)と同様の方法で測定することができる。
The mass average molecular weight (Mw) of the polyimide of the present invention is preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more. On the other hand, the mass average molecular weight (Mw) of polyimide is preferably 300,000 or less, more preferably 200,000 or less, still more preferably 100,000 or less. When the mass average molecular weight (Mw) of the polyimide is in this range, the solubility, the solution viscosity, and the like are in the range that can be easily handled by ordinary equipment, which is preferable.
The mass average molecular weight (Mw) of the polyimide of the present invention can be measured by the same method as the number average molecular weight (Mn).
 本発明のポリイミドの分子量分布(PDI:Mw/Mn)は通常1以上、好ましくは1,1以上、より好ましくは1.2以上である。一方、Mw/Mnは通常20以下、好ましくは15以下、より好ましくは10以下である。Mw/Mnがこの範囲であることで、得られる成形体の均一性及び平滑性に優れる傾向にある。 The molecular weight distribution (PDI: Mw / Mn) of the polyimide of the present invention is usually 1 or more, preferably 1,1 or more, and more preferably 1.2 or more. On the other hand, Mw / Mn is usually 20 or less, preferably 15 or less, and more preferably 10 or less. When Mw / Mn is in this range, the uniformity and smoothness of the obtained molded product tend to be excellent.
<ポリイミドのガラス転移温度>
 本発明のポリイミドのガラス転移温度(Tg)は、特に制限はないが、好ましくは150℃以上、より好ましくは180℃以上、さらに好ましくは200℃以上、よりさらに好ましくは250℃以上、特に好ましくは260℃以上である。一方、ポリイミドのガラス転移温度(Tg)は好ましくは400℃以下、より好ましくは380℃以下である。ポリイミドのガラス転移温度(Tg)がこの範囲であることで、得られる成形体の耐熱性が向上し、また、成形温度の抑制や空気下での成形等の低負荷プロセス成形における残留溶媒が減少する傾向にある。
 ポリイミドのガラス転移温度(Tg)は、tanδのα緩和のピーク温度(Ttanδ)に該当する。
<Glass transition temperature of polyimide>
The glass transition temperature (Tg) of the polyimide of the present invention is not particularly limited, but is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, still more preferably 250 ° C. or higher, particularly preferably. It is 260 ° C. or higher. On the other hand, the glass transition temperature (Tg) of polyimide is preferably 400 ° C. or lower, more preferably 380 ° C. or lower. When the glass transition temperature (Tg) of polyimide is in this range, the heat resistance of the obtained molded product is improved, and the residual solvent in low-load process molding such as suppression of molding temperature and molding under air is reduced. Tend to do.
The glass transition temperature (Tg) of polyimide corresponds to the peak temperature (Ttanδ) of α relaxation of tanδ.
<ポリイミドの製造方法>
 本発明のポリイミドの製造方法は特に制限されず、従来既知の方法で製造することができる。例えば、テトラカルボン酸二無水物とジアミン化合物及び/又はジイソシアネート化合物からポリイミド前駆体を製造し、これをイミド化してポリイミドを得る方法;テトラカルボン酸二無水物とジアミン化合物及び/又はジイソシアネート化合物から直接ポリイミドを製造する方法;がある。
<Polyimide manufacturing method>
The method for producing the polyimide of the present invention is not particularly limited, and the polyimide can be produced by a conventionally known method. For example, a method of producing a polyimide precursor from a tetracarboxylic acid dianhydride and a diamine compound and / or a diisocyanate compound and imidizing the polyimide precursor to obtain a polyimide; directly from the tetracarboxylic acid dianhydride and a diamine compound and / or a diisocyanate compound. There is a method for producing polyimide;
 一般式(1)に示す構造を含むポリイミドを製造する方法としては、テトラカルボン酸二無水物及び/又はジカルボン酸化合物と、ジアミン化合物、ジイソシアネート化合物及び/又はジヒドラジド化合物からポリイミド前駆体を製造し、これをイミド化してポリイミドを得る方法;テトラカルボン酸二無水物及び/又はジカルボン酸化合物と、ジアミン化合物、ジイソシアネート化合物、及び/又はジヒドラジド化合物から直接ポリイミドを製造する方法;がある。 As a method for producing a polyimide containing the structure represented by the general formula (1), a polyimide precursor is produced from a tetracarboxylic acid dianhydride and / or a dicarboxylic acid compound, a diamine compound, a diisocyanate compound and / or a dihydrazide compound. There is a method of imidizing this to obtain a polyimide; a method of directly producing a polyimide from a tetracarboxylic acid dianhydride and / or a dicarboxylic acid compound and a diamine compound, a diisocyanate compound, and / or a dihydrazide compound.
 ジヒドラジド化合物はジアミン化合物と同様に、ジカルボン酸化合物はテトラカルボン酸二無水物と同様に反応させることができる。ジカルボン酸化合物は、テトラカルボン酸二無水物とジアミン化合物、ジイソシアネート化合物及び/又はジヒドラジド化合物からポリイミドを製造したあとに、鎖延長剤として用いることもできる。 The dihydrazide compound can be reacted in the same manner as the diamine compound, and the dicarboxylic acid compound can be reacted in the same manner as the tetracarboxylic dianhydride. The dicarboxylic acid compound can also be used as a chain extender after producing polyimide from a tetracarboxylic dianhydride and a diamine compound, a diisocyanate compound and / or a dihydrazide compound.
 以下、「テトラカルボン酸二無水物及び/又はジカルボン酸化合物」を「テトラカルボン酸二無水物等」と称し、「ジアミン化合物、ジイソシアネート化合物及びジヒドラジド化合物のうちの1種又は2種以上」を「ジアミン化合物等」と称して、テトラカルボン酸二無水物等とジアミン化合物等とを反応させて本発明のポリイミドを製造する方法を説明する。 Hereinafter, "tetracarboxylic acid dianhydride and / or dicarboxylic acid compound" is referred to as "tetracarboxylic acid dianhydride, etc.", and "one or more of diamine compounds, diisocyanate compounds and dihydrazide compounds" is referred to as "diamine compound, diisocyanate compound and dihydrazide compound". A method for producing the polyimide of the present invention by reacting a tetracarboxylic acid dianhydride or the like with a diamine compound or the like will be described with reference to "diamine compound or the like".
<<ポリイミド前駆体を経てポリイミドを製造する方法>>
(ポリイミド前駆体の構造)
 ポリイミド前駆体を経てポリイミドを製造する場合、ポリイミド前駆体は、例えば、テトラカルボン酸二無水物等とジアミン化合物等を溶媒中で反応させて得ることができる。
 この場合、テトラカルボン酸二無水物等とジアミン化合物等の添加順序や添加方法も特に制限されない。例えば、溶媒にジアミン化合物等とテトラカルボン酸二無水物等を順に投入し、適切な温度で撹拌することにより、ポリイミド前駆体を得ることができる。
<< Method of producing polyimide via polyimide precursor >>
(Structure of polyimide precursor)
When the polyimide is produced via the polyimide precursor, the polyimide precursor can be obtained, for example, by reacting a tetracarboxylic dianhydride or the like with a diamine compound or the like in a solvent.
In this case, the order of addition and the method of addition of the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited. For example, a polyimide precursor can be obtained by sequentially adding a diamine compound or the like and a tetracarboxylic dianhydride or the like to a solvent and stirring the mixture at an appropriate temperature.
 テトラカルボン酸二無水物等の量は、ジアミン化合物等1モルに対して、通常0.7モル以上、好ましくは0.8モル以上であり、通常1.3モル以下、好ましくは1.2モル以下である。テトラカルボン酸二無水物等の量をこのような範囲とすることで、得られるポリイミド前駆体の収率が向上する傾向にある。 The amount of the tetracarboxylic dianhydride or the like is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol, based on 1 mol of the diamine compound or the like. It is as follows. By setting the amount of tetracarboxylic dianhydride or the like in such a range, the yield of the obtained polyimide precursor tends to be improved.
 反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度は、反応条件や得られるポリイミド前駆体の粘度に応じて適宜設定できる。 The concentration of tetracarboxylic dianhydride, etc., diamine compound, etc. in the reaction solution can be appropriately set according to the reaction conditions and the viscosity of the obtained polyimide precursor.
 テトラカルボン酸二無水物等、及びジアミン化合物等の合計濃度は、特に制限はないが、反応液全量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは50質量%以下である。反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度が低すぎないことで、分子量の伸長が起こりやすい傾向にある。反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度が高すぎないことで、反応液の粘度が高くなりすぎず、撹拌が容易となる傾向にある。 The total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total amount of the reaction solution. It is preferably 50% by mass or less. If the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too low, the molecular weight tends to be extended. When the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too high, the viscosity of the reaction solution does not become too high and stirring tends to be easy.
 テトラカルボン酸二無水物等、及びジアミン化合物等を溶媒中で反応させる温度は、反応が進行する温度であれば、特に制限はないが、通常0℃以上、好ましくは20℃以上であり、通常120℃以下、好ましくは100℃以下である。
 反応時間は通常1時間以上、好ましくは2時間以上であり、通常100時間以下、好ましくは42時間以下である。
 このような条件で行うことにより、低コストで収率よくポリイミド前駆体を得ることができる傾向にある。
 反応時の圧力は、常圧、加圧及び減圧のいずれでもよい。
 反応雰囲気は空気下でも不活性雰囲気下でもよい。
The temperature at which the tetracarboxylic dianhydride and the like and the diamine compound and the like are reacted in the solvent is not particularly limited as long as the reaction proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually used. It is 120 ° C. or lower, preferably 100 ° C. or lower.
The reaction time is usually 1 hour or more, preferably 2 hours or more, usually 100 hours or less, preferably 42 hours or less.
By carrying out under such conditions, a polyimide precursor tends to be obtained at low cost and in good yield.
The pressure during the reaction may be normal pressure, pressurization or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 テトラカルボン酸二無水物等とジアミン化合物等を反応させる際に用いる溶媒は特に限定されない。反応溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、フルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン等のエーテル系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホン系溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の複素環系溶媒;フェノール、クレゾール等のフェノール系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The solvent used when reacting the tetracarboxylic dianhydride or the like with the diamine compound or the like is not particularly limited. Examples of the reaction solvent include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, and fluoro. Halogened hydrocarbon solvent such as benzene; Ether solvent such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene; Ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone; ethylene glycol monomethyl ether, ethylene glycol Glycol-based solvents such as monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and propylene glycol monomethyl ether acetate; amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; dimethyl Sulphonic solvents such as sulfoxide; heterocyclic solvents such as pyridine, picolin, lutidine, quinoline, isoquinoline; phenolic solvents such as phenol and cresol; lactone solvents such as γ-butyrolactone, γ-valerolactone and δ-valerolactone ; Etc. can be mentioned. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
 本発明においては、これらの製造溶媒のうち、特にジメチルアセトアミド(DMAc)を用いることが好ましい。 In the present invention, it is particularly preferable to use dimethylacetamide (DMAc) among these production solvents.
 得られたポリイミド前駆体はそのまま次のイミド化に供してもよく、貧溶媒中に添加することで固形状に析出させて用いてもよい。 The obtained polyimide precursor may be used as it is for the next imidization, or may be added to a poor solvent to precipitate it in a solid state before use.
 用いる貧溶媒は特に制限は無く、ポリイミド前駆体の種類によって適宜選択し得る。貧溶媒としては、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、アルコール系溶媒が効率良く析出物が得られ、沸点が低く乾燥が容易となる傾向にあるため好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The poor solvent to be used is not particularly limited and may be appropriately selected depending on the type of polyimide precursor. Examples of the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. Above all, an alcohol solvent is preferable because a precipitate can be efficiently obtained, a boiling point is low, and drying tends to be easy. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
(ポリイミド前駆体のイミド化)
 上記の方法等で得られたポリイミド前駆体を溶媒存在下で脱水環化することにより、ポリイミドを得ることができる。イミド化は従来知られている任意の方法を用いて行うことができる。イミド化の方法としては、例えば熱的に環化させる熱イミド化、化学的に環化させる化学イミド化等が挙げられる。これらのイミド化反応は単独で行っても、複数組み合わせて行ってもよい。
(Immidization of polyimide precursor)
A polyimide can be obtained by dehydrating and cyclizing the polyimide precursor obtained by the above method or the like in the presence of a solvent. Imidization can be performed using any of the conventionally known methods. Examples of the imidization method include thermal imidization for thermal cyclization, chemical imidization for chemical cyclization, and the like. These imidization reactions may be carried out individually or in combination of two or more.
<加熱イミド化>
 ポリイミド前駆体を加熱イミド化する際の溶媒は、前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。ポリイミド前駆体製造時の溶媒とポリイミド製造時の溶媒は同じものを用いても、異なるものを用いてもよい。
 イミド化によって生じた水は閉環反応を阻害するため、系外に排出してもよい。
 イミド化反応時のポリイミド前駆体の濃度は特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。ポリイミド前駆体の濃度をこの範囲で行うことによって、生産効率が高く、また製造しやすい溶液粘度で製造することができる。
<Heating imidization>
Examples of the solvent for heat imidizing the polyimide precursor include the same solvent used in the reaction for obtaining the polyimide precursor. The solvent used for producing the polyimide precursor and the solvent used for producing the polyimide may be the same or different.
The water produced by imidization inhibits the ring closure reaction and may be discharged out of the system.
The concentration of the polyimide precursor at the time of the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By adjusting the concentration of the polyimide precursor in this range, it is possible to produce the polyimide precursor with a solution viscosity that is easy to produce and has high production efficiency.
 イミド化の反応温度は特に制限されないが、通常50℃以上、好ましくは80℃以上、さらに好ましくは100℃以上であり、通常300℃以下、好ましくは280℃以下、さらに好ましくは250℃以下である。この温度範囲で反応を行うことで、イミド化反応が効率よく進行し、イミド化反応以外の反応が抑制される傾向にあるため好ましい。
 反応時の圧力は常圧、加圧、減圧のいずれでもよい。
 反応雰囲気は、空気下でも不活性雰囲気下でもよい。
The reaction temperature for imidization is not particularly limited, but is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 280 ° C. or lower, further preferably 250 ° C. or lower. .. It is preferable to carry out the reaction in this temperature range because the imidization reaction proceeds efficiently and reactions other than the imidization reaction tend to be suppressed.
The pressure during the reaction may be normal pressure, pressurization, or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 イミド化を促進するイミド化促進剤として、求核性、求電子性を高める働きをもつ化合物を加えることもできる。イミド化促進剤としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリン等の三級アミン化合物;酢酸、4-ヒドロキシフェニル酢酸、3-ヒドロキシ安息香酸、N-アセチルグリシン、N-ベンゾイルグリシン等のカルボン酸化合物;3,5-ジヒドロキシアセトフェノン、3,5-ジヒドロキシ安息香酸メチル、ピロガロール、メチルガレート、エチルガレート、ナフタレン-1,6-ジオール等の多価フェノール化合物;2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、N,N-ジメチルアミノピリジン、ニコチンアルデヒド、イソニコチンアルデヒド、ピコリンアルデヒド、ピコリンアルデヒドオキシム、ニコチンアルデヒドオキシム、イソニコチンアルデヒドオキシム、ピコリン酸エチル、ニコチン酸エチル、イソニコチン酸エチル、ニコチンアミド、イソニコチンアミド、2-ヒドロキシニコチン酸、2,2’-ジピリジル、4,4’-ジピリジル、3-メチルピリダジン、キノリン、イソキノリン、フェナントロリン、1,10-フェナントロリン、イミダゾール、ベンズイミダゾール、1,2,4-トリアゾール等の複素環化合物;等が挙げられる。 As an imidization accelerator that promotes imidization, a compound having a function of enhancing nucleophile and electrophile can be added. Examples of the imidization accelerator include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-. Tertiary amine compounds such as ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline; acetic acid, 4-hydroxyphenylacetic acid, 3-hydroxybenzoic acid, N-acetylglycine, N-benzoylglycine Carboxylic acid compounds such as 3,5-dihydroxyacetophenone, methyl 3,5-dihydroxybenzoate, pyrogallol, methyl gallate, ethyl gallate, polyvalent phenol compounds such as naphthalene-1,6-diol; 2-hydroxypyridine, 3 -Hydroxypyridine, 4-hydroxypyridine, 4-pyridinemethanol, N, N-dimethylaminopyridine, nicotine aldehyde, isonicotin aldehyde, picolin aldehyde, picolin aldehyde oxime, nicotine aldehyde oxime, isonicotin aldehyde oxime, ethyl picolinate, nicotine Ethyl Acid, Ethyl Isonicotinate, Nicotinamide, Isonicotinamide, 2-Hydroxynicotinic Acid, 2,2'-Dipyridyl, 4,4'-Dipyridyl, 3-Methylpyridazine, Kinolin, Isoquinolin, Phenantroline, 1,10- Heterocyclic compounds such as phenanthroline, imidazole, benzimidazole, 1,2,4-triazole; and the like.
 これらの中で、三級アミン化合物、カルボン酸化合物及び複素環化合物からなる群から選ばれる少なくとも1つが好ましく、さらに、トリエチルアミン、イミダゾール及びピリジンからなる群から選ばれる少なくとも1つが、反応速度を制御しやすい傾向があるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Of these, at least one selected from the group consisting of tertiary amine compounds, carboxylic acid compounds and heterocyclic compounds is preferable, and at least one selected from the group consisting of triethylamine, imidazole and pyridine controls the reaction rate. It is more preferable because it tends to be easy. One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 イミド化促進剤の使用量は、ポリイミド前駆体のカルボキシル基に対して、通常0.01mol%以上であり、0.1mol%以上が好ましく、1mol%以上が更に好ましい。イミド化促進剤の使用量は、ポリイミド前駆体のカルボキシル基に対して、50mol%以下が好ましく、10mol%以下がより好ましい。イミド化促進剤の使用量が上記範囲にあることにより、イミド化反応が効率よく進行する傾向にある。
 イミド化促進剤を添加するタイミングは、適宜調整することができ、加熱開始前でもよく、加熱中でもよい。また複数回に分けて添加してもよい。
The amount of the imidization accelerator used is usually 0.01 mol% or more, preferably 0.1 mol% or more, and further preferably 1 mol% or more, based on the carboxyl group of the polyimide precursor. The amount of the imidization accelerator used is preferably 50 mol% or less, more preferably 10 mol% or less, based on the carboxyl group of the polyimide precursor. When the amount of the imidization accelerator used is within the above range, the imidization reaction tends to proceed efficiently.
The timing of adding the imidization accelerator can be appropriately adjusted, and may be before the start of heating or during heating. Further, it may be added in a plurality of times.
<化学イミド化>
 ポリイミド前駆体を溶媒存在下で、脱水縮合剤を用いて化学的にイミド化することにより、ポリイミドを得ることができる。
<Chemical imidization>
A polyimide can be obtained by chemically imidizing a polyimide precursor with a dehydration condensing agent in the presence of a solvent.
 化学イミド化の際に使用する溶媒としては前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。 Examples of the solvent used for chemical imidization include the same solvents as those used for the reaction for obtaining the polyimide precursor described above.
 脱水縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド、N,N-ジフェニルカルボジイミド等のN,N-2置換カルボジイミド;無水酢酸、無水トリフルオロ酢酸等の酸無水物;塩化チオニル、塩化トシル等の塩化物;アセチルクロライド、アセチルブロマイド、プロピオニルアイオダイド、アセチルフルオライド、プロピオニルクロライド、プロピオニルブロマイド、プロピオニルアイオダイド、プロピオニルフルオライド、イソブチリルクロライド、イソブチリルブロマイド、イソブチリルアイオダイド、イソブチリルフルオライド、n-ブチリルクロライド、n-ブチリルブロマイド、n-ブチリルアイオダイド、n-ブチリルフルオライド、モノ-,ジ-,トリ-クロロアセチルクロライド、モノ-,ジ-,トリ-ブロモアセチルクロライド、モノ-,ジ-,トリ-アイオドアセチルクロライド、モノ-,ジ-,トリ-フルオロアセチルクロライド、無水クロロ酢酸、フェニルホスフォニックジクロライド、チオニルクロライド、チオニルブロマイド、チオニルアイオダイド、チオニルフルオライド等のハロゲン化化合物;三塩化リン、亜リン酸トリフェニル、ジエチルリン酸シアニド等のリン化合物;等が挙げられる。 Examples of the dehydration condensing agent include N, N-2 substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride, tosyl chloride and the like. Chloride; acetyl chloride, acetyl bromide, propionyl iodide, acetyl fluoride, propionyl chloride, propionyl bromide, propionyl iodide, propionyl fluoride, isobutyryl chloride, isobutyryl bromide, isobutyryl iodide, isobuchi Lilfluoride, n-butyryl chloride, n-butyryl bromide, n-butyryl iodide, n-butyryl fluoride, mono-, di-, tri-chloroacetyl chloride, mono-, di-, tri- Bromoacetyl chloride, mono-, di-, tri-iodoacetyl chloride, mono-, di-, tri-fluoroacetyl chloride, chloroacetic anhydride, phenylphosphonic dichloride, thionyl chloride, thionyl bromide, thionyliodide, thionylfluo Halogen compounds such as rides; phosphorus compounds such as phosphorus trichloride, triphenyl phosphite, and diethyl phosphate cyanide; and the like.
 これらの中で、酸無水物及びハロゲン化化合物が好ましく、特に、酸無水物が、イミド化反応が効率よく進行する傾向にあるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Among these, acid anhydrides and halogenated compounds are preferable, and acid anhydrides are particularly preferable because the imidization reaction tends to proceed efficiently. One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 これらの脱水縮合剤の使用量は、ポリイミド前駆体1molに対して、通常0.1mol以上、好ましくは0.2mol以上であり、通常1.6mol以下、好ましくは1.0mol以下である。脱水縮合剤の使用量をこの範囲とすることで、効率的にイミド化することができる。 The amount of these dehydration condensing agents used is usually 0.1 mol or more, preferably 0.2 mol or more, and usually 1.6 mol or less, preferably 1.0 mol or less, with respect to 1 mol of the polyimide precursor. By setting the amount of the dehydration condensing agent used within this range, imidization can be performed efficiently.
 イミド化反応時の反応液中のポリイミド前駆体の濃度に特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。ポリイミド前駆体の濃度を範囲とすることで、生産効率を高くすることができ、また製造しやすい溶液粘度で製造することができる傾向にある。 The concentration of the polyimide precursor in the reaction solution during the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. .. By setting the concentration of the polyimide precursor in the range, the production efficiency can be increased, and the solution viscosity tends to be easy to produce.
 イミド化反応温度は特に制限されないが、通常0℃以上、好ましくは10℃以上、さらに好ましくは20℃以上である。また、通常150℃以下、好ましくは130℃以下、さらに好ましくは100℃以下である。この温度範囲で反応を行うことで、イミド化反応が効率よく進行する傾向にあるため好ましい。さらに、イミド化反応以外の副反応が抑制されるため好ましい。
 反応時の圧力は常圧、加圧又は減圧のいずれでもよい。
 反応雰囲気は、空気下でも不活性雰囲気下でもよい。
The imidization reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 130 ° C. or lower, and more preferably 100 ° C. or lower. It is preferable to carry out the reaction in this temperature range because the imidization reaction tends to proceed efficiently. Further, it is preferable because side reactions other than the imidization reaction are suppressed.
The pressure during the reaction may be normal pressure, pressurization or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 イミド化を促進する触媒として、前記の三級アミン化合物等のイミド化促進剤を加熱イミド化と同様に加えることもできる。 As a catalyst for promoting imidization, an imidization accelerator such as the above-mentioned tertiary amine compound can be added in the same manner as for heat imidization.
<<テトラカルボン酸二無水物等とジアミン化合物等からポリイミドを製造する方法>>
 テトラカルボン酸二無水物等とジアミン化合物等から、従来既知の方法を用いて、直接ポリイミドを得ることができる。この方法はポイミド前駆体の合成からイミド化を、反応の停止や前駆体の単離を経ることなく、イミド化までを行うものである。
<< Method of producing polyimide from tetracarboxylic dianhydride, etc. and diamine compound, etc. >>
Polyimide can be directly obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like by using a conventionally known method. This method involves the synthesis and imidization of the poimide precursor, and the imidization without stopping the reaction or isolating the precursor.
 テトラカルボン酸二無水物等とジアミン化合物等の添加順序や添加方法には特に限定はないが、例えば、溶媒にテトラカルボン酸二無水物等とジアミン化合物等を順に投入し、イミド化までの反応が進行する温度で撹拌することでポリイミドが得られる。 The order and method of adding the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited. For example, the tetracarboxylic dianhydride and the like and the diamine compound and the like are added in order to the solvent, and the reaction up to imidization Polyimide can be obtained by stirring at a temperature at which
 ジアミン化合物等の量は、テトラカルボン酸二無水物等1molに対して、通常0.7mol以上、好ましくは0.8mol以上であり、通常1.3mol以下、好ましくは1.2mol以下である。ジアミン化合物等の量をこのような範囲とすることにより、得られるポリイミドの収率が向上する傾向にある。 The amount of the diamine compound or the like is usually 0.7 mol or more, preferably 0.8 mol or more, usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of the tetracarboxylic dianhydride or the like. By setting the amount of the diamine compound or the like in such a range, the yield of the obtained polyimide tends to be improved.
 反応液中のテトラカルボン酸二無水物等とジアミン化合物等の濃度は、各々の条件や重合中の粘度に応じて適宜設定できる。
 反応液中のテトラカルボン酸二無水物等とジアミン化合物等の合計濃度は、特段の設定ないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。反応液中の濃度が適当な範囲であることで、分子量の伸長が起こりやすくなり、また、撹拌も容易となる傾向にある。
The concentrations of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution can be appropriately set according to each condition and the viscosity during the polymerization.
The total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution is not particularly set, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40. It is mass% or less. When the concentration in the reaction solution is in an appropriate range, the molecular weight tends to be extended and stirring tends to be easy.
 この反応で用いる溶媒としては、前記のポリイミド前駆体を得る反応時に使用する溶媒と同様のものが挙げられる。 Examples of the solvent used in this reaction include the same solvents used in the reaction for obtaining the polyimide precursor described above.
 テトラカルボン酸二無水物等とジアミン化合物等からポリイミドを得る場合も、ポリイミド前駆体からポリイミドを得る場合と同様に、加熱イミド化及び/又は化学イミド化を採用することができる。この場合の加熱イミド化や化学イミド化の反応条件等は、前記と同様である。 When the polyimide is obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like, heat imidization and / or chemical imidization can be adopted as in the case of obtaining a polyimide from a polyimide precursor. The reaction conditions for heat imidization and chemical imidization in this case are the same as described above.
 得られたポリイミドは、そのまま用いてもよく、貧溶媒中に添加することでポリイミドを固体状に析出させた後に、他の溶媒に再溶解させてポリイミド組成物として用いることもできる。 The obtained polyimide may be used as it is, or may be added to a poor solvent to precipitate the polyimide into a solid state, and then redissolved in another solvent to be used as a polyimide composition.
 この時の貧溶媒は特に制限はなく、ポリイミドの種類によって適宜選択しうる。貧溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物が得られ、沸点が低く乾燥が容易となる傾向にあるため好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The poor solvent at this time is not particularly limited and can be appropriately selected depending on the type of polyimide. Examples of the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. .. Above all, an alcohol solvent such as isopropyl alcohol is preferable because a precipitate can be efficiently obtained, the boiling point is low, and drying tends to be easy. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
 ポリイミドを再溶解させる溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;クロロホルム、塩化メチレン、1,2-ジクロロエタンなどのハロゲン系溶媒等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Examples of the solvent for redissolving polyimide include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl. -Amid solvent such as pyrrolidone; Aproton solvent such as dimethyl sulfoxide; Glycol solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; chloroform, Examples thereof include halogen-based solvents such as methylene chloride and 1,2-dichloroethane. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
<<ジカルボン酸クロライドを用いる場合>>
 ジカルボン酸化合物としてジカルボン酸クロライドを用いて、一般式(1)に示す構造を有する本発明のポリイミドを製造する場合、ジアミン化合物等との反応は従来既知の方法で行うことができる。たとえば溶媒にジアミン化合物等を混合した溶液に、ジカルボン酸クロライド或いはジカルボン酸クロライドを含むテトラカルボン酸二無水物を添加してもよく、溶媒にジカルボン酸クロライド或いはジカルボン酸クロライドを含むテトラカルボン酸二無水物を混合した溶液に、ジアミン化合物等を添加してもよい。
<< When using dicarboxylic acid chloride >>
When the polyimide of the present invention having the structure represented by the general formula (1) is produced by using dicarboxylic acid chloride as the dicarboxylic acid compound, the reaction with the diamine compound or the like can be carried out by a conventionally known method. For example, a dicarboxylic acid chloride or a tetracarboxylic acid dianhydride containing a dicarboxylic acid chloride may be added to a solution in which a diamine compound or the like is mixed with a solvent, or a tetracarboxylic acid dianhydride containing a dicarboxylic acid chloride or a dicarboxylic acid chloride in the solvent. A diamine compound or the like may be added to the mixed solution.
 これらの化合物を添加する際の温度は特に制限はないが、好ましくは-80℃以上、より好ましくは-50℃以上、さらに好ましくは-30℃以上であり、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは50℃以下である。添加する温度がこの範囲であることで、反応制御がしやすくなる傾向にあるため、好ましい。 The temperature at which these compounds are added is not particularly limited, but is preferably −80 ° C. or higher, more preferably −50 ° C. or higher, still more preferably −30 ° C. or higher, preferably 100 ° C. or lower, and more preferably. It is 80 ° C. or lower, more preferably 50 ° C. or lower. When the temperature of addition is in this range, the reaction tends to be easily controlled, which is preferable.
 ジカルボン酸クロライドを含むテトラカルボン酸二無水物とジアミン化合物等を反応させる温度は特に制限はないが、好ましくは0℃以上、より好ましくは5℃以上、さらに好ましくは10℃以上であり、好ましく200℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下である。反応温度がこの範囲であることで、反応制御がしやすくなる傾向にあるため好ましい。 The temperature at which the tetracarboxylic dianhydride containing the dicarboxylic acid chloride is reacted with the diamine compound or the like is not particularly limited, but is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher, preferably 200 ° C. or higher. ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. or lower. It is preferable that the reaction temperature is in this range because the reaction tends to be easily controlled.
 ジカルボン酸クロライドを含むテトラカルボン酸二無水物とジアミン化合物等を反応させる際、触媒を添加してもよい。
 添加する触媒は、従来既知のものであれば特に制限はない。触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリン等の三級アミン化合物が挙げられる。これらは、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
When reacting a tetracarboxylic dianhydride containing a dicarboxylic acid chloride with a diamine compound or the like, a catalyst may be added.
The catalyst to be added is not particularly limited as long as it is conventionally known. Examples of the catalyst include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, and the like. Examples thereof include tertiary amine compounds such as N-methylpyrrolidine, N-ethylpyrrolidine, imidazole, pyridine, quinoline, and isoquinolin. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
[ポリイミドフィルムの製造方法]
 本発明のポリイミドフィルムの製造方法は特に制限はないが、例えば、本発明のポリイミドを溶媒に溶解させたポリイミド組成物をキャスト法等により基板に塗布成膜することにより製造することができる。
[Manufacturing method of polyimide film]
The method for producing the polyimide film of the present invention is not particularly limited, and for example, it can be produced by applying a polyimide composition in which the polyimide of the present invention is dissolved in a solvent to a substrate by a casting method or the like.
 ポリイミド組成物中のポリイミドの含有量は特に限定されず、製造プロセス等に応じて適宜調整することができる。ポリイミド組成物中のポリイミドの含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、また、70質量%以下が好ましく、60質量%以下がより好ましい。ポリイミドの含有量がこの範囲であることで、通常の設備での成膜、取り扱いが容易となるため好ましい。 The content of polyimide in the polyimide composition is not particularly limited, and can be appropriately adjusted according to the manufacturing process and the like. The content of polyimide in the polyimide composition is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. When the polyimide content is in this range, film formation and handling in ordinary equipment are easy, which is preferable.
 ポリイミド組成物には、ポリイミド及び溶媒以外にもその他の成分を含んでいてもよい。
 その他の成分としては、例えば、界面活性剤、酸化防止剤、潤滑剤、着色剤、安定剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤、レベリング剤、消泡剤等が挙げられる。その他必要に応じて、発明の目的を損なわない範囲で、粉末状、粒状、板状、繊維状等の、無機系充填剤又は有機系充填剤を配合してもよい。
 これらの添加成分は、ポリイミド前駆体及び/又はポリイミド組成物を製造するどの工程のどの段階で添加してもよい。
The polyimide composition may contain other components in addition to the polyimide and the solvent.
Other components include, for example, surfactants, antioxidants, lubricants, colorants, stabilizers, UV absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, leveling agents, defoamers, etc. Can be mentioned. In addition, if necessary, an inorganic filler or an organic filler such as powder, granular, plate, or fibrous may be blended as long as the object of the invention is not impaired.
These additive components may be added at any stage of any process for producing the polyimide precursor and / or the polyimide composition.
 これらの成分の中で、ポリイミド組成物は界面活性剤を含むことが、ポリイミドの溶媒への溶解性が向上する傾向にあるため好ましい。
 界面活性剤にはカチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤、及びノニオン性界面活性剤等が挙げられる。界面活性剤は1種類でも、複数を組み合わせて用いてもよい。
Among these components, it is preferable that the polyimide composition contains a surfactant because the solubility of the polyimide in a solvent tends to be improved.
Examples of the surfactant include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant and the like. The surfactant may be used alone or in combination of two or more.
 本発明に用いられるカチオン性界面活性剤として具体的に、アミン型、第4級アンモニウム塩型等が挙げられる。
 アミン型としては、ポリオキシエチレンアルキルアミンやアルキルアミン塩等の脂肪族アミン、アルキルイミダゾリンなどの複素環アミン塩などが挙げられる。
 第4級アンモニウム塩型としては、アルキルトリメチルアンモニウム塩やジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、ポリジアリルジメチルアンモニウム塩;アルキルトリメチルアンモニウムクロライドやジアルキルジメチルアンモニウムクロライドなどの塩素塩型;アルキルジメチルエチルアンモニウムエチルサルフェートなどの非塩素型;などが挙げられる。
Specific examples of the cationic surfactant used in the present invention include amine type and quaternary ammonium salt type.
Examples of the amine type include aliphatic amines such as polyoxyethylene alkylamines and alkylamine salts, and heterocyclic amine salts such as alkylimidazolines.
The quaternary ammonium salt type includes alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, polydiallyldimethylammonium salt; chlorine salt type such as alkyltrimethylammonium chloride and dialkyldimethylammonium chloride; alkyldimethylethylammonium. Non-chlorine type such as ethyl sulfate; and the like.
 本発明に用いられるアニオン性界面活性剤として具体的に、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型等が挙げられる。
 硫酸エステル型としては具体的に、アルキル硫酸エステル、エトキシ硫酸エステル、ポリオキシエチレンスチレン化フェニル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、長鎖アルコール硫酸エステル、その他の硫酸エステル、及びこれらの塩等が挙げられる。
 リン酸エステル型としては具体的に、ポリオキシエチレンアルキルエーテルリン酸エステル、及びこれらの塩などが挙げられる。
 カルボン酸型としては具体的に、脂肪酸、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキルエーテルスルホコハク酸、アルケニルコハク酸、ポリアクリル酸、スチレン-マレイン酸コポリマーアンモニウム、カルボキシメチルセルロース、ポリアクリル酸、ポリカルボン酸、及びこれらの塩などが挙げられる。
 スルホン酸型としては具体的に、スルホン酸、スルホコハク酸、アルキルベンゼンスルホン酸、アルカンスルホン酸、アルファオレフィンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸ナトリウムホルマリン縮合物、及びこれらの塩などが挙げられる。
Specific examples of the anionic surfactant used in the present invention include sulfate ester type, phosphoric acid ester type, carboxylic acid type, and sulfonic acid type.
Specific examples of the sulfate ester type include alkyl sulfate ester, ethoxy sulfate ester, polyoxyethylene styrene phenyl sulfate ester, polyoxyethylene alkyl ether sulfate ester, long-chain alcohol sulfate ester, other sulfate esters, and salts thereof. Can be mentioned.
Specific examples of the phosphoric acid ester type include polyoxyethylene alkyl ether phosphoric acid esters and salts thereof.
Specific examples of the carboxylic acid type include fatty acids, polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl ether sulfosuccinic acid, alkenyl succinic acid, polyacrylic acid, styrene-maleic acid copolymer ammonium, carboxymethyl cellulose, polyacrylic acid, and polycarboxylic acid. Acids and salts thereof may be mentioned.
Specific examples of the sulfonic acid type include sulfonic acid, sulfosuccinic acid, alkylbenzene sulfonic acid, alkane sulfonic acid, alpha olefin sulfonic acid, phenol sulfonic acid, sodium naphthalene sulfonic acid formalin condensate, and salts thereof.
 本発明に用いられる両性界面活性剤としては、具体的にはベタイン型、アミンオキサイド型、N-アルキルアミノ酸型、イミダゾリン型等が挙げられる。
 ベタイン型としては具体的に、アルキルベタイン、脂肪族アミドベタインなどのアミドベタインなどが挙げられる。
 アミンオキサイド型としては具体的に、アルキルアミンオキサイド等が挙げられる。
 N-アルキルアミノ酸型としては、具体的にN-アルキル-β-アミノプロピオン酸塩などが挙げられる。
 イミダゾリン型としては、具体的に2-アルキルイミダゾリン誘導体などが挙げられる。
Specific examples of the amphoteric surfactant used in the present invention include betaine type, amine oxide type, N-alkylamino acid type and imidazoline type.
Specific examples of the betaine type include alkyl betaine, amide betaine such as aliphatic amide betaine, and the like.
Specific examples of the amine oxide type include alkylamine oxides and the like.
Specific examples of the N-alkyl amino acid type include N-alkyl-β-aminopropionate.
Specific examples of the imidazoline type include 2-alkylimidazoline derivatives.
 本発明に用いられるノニオン性界面活性剤としては、具体的には、エーテル型、エステル型、エーテル・エステル型、多価アルコール型、アミド型、高分子型等が挙げられる。
 エーテル型としては具体的にはポリオキシアルキレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンアルキルアミンなどが挙げられる。
 エステル型としては、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ショ糖誘導体、脂肪酸エステル等が挙げられる。
 エーテル・エステル型としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油エーテルなどが挙げられる。
 多価アルコール型としては、アルキルグルコシド、アルキルポリグルコシドなどが挙げられる。
 アミド型としては具体的にはアルキルアルカノールアミドなどが挙げられる。
 高分子型としては、具体的に、ポリビニルピロリドン、ポリアルキレンポリアミンアルキレンオキシド付加物、ポリアルキレンポリイミンアルキレンオキシド付加物などが挙げられる。
Specific examples of the nonionic surfactant used in the present invention include ether type, ester type, ether ester type, polyhydric alcohol type, amide type, and polymer type.
Specific examples of the ether type include polyoxyalkylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene alkyl amine.
Examples of the ester type include sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, sucrose derivative, and fatty acid ester.
Examples of the ether ester type include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid ester, and polyoxyethylene hydrogenated castor oil ether.
Examples of the polyhydric alcohol type include alkyl glucosides and alkyl polyglucosides.
Specific examples of the amide type include alkylalkanolamides.
Specific examples of the polymer type include polyvinylpyrrolidone, a polyalkylene polyamine alkylene oxide adduct, and a polyalkylene polyimine alkylene oxide adduct.
 ノニオン性界面活性剤の具体例としては、エマルゲン123P、エマルゲン130K、エマルゲン150、エマルゲン430、エマルゲン409PV、エマルゲン705、エマルゲン707、エマルゲン709(花王社製)などのポリオキシエチレンアルキルエーテル;ソルゲン40(第一工業製薬社製)やニューコール20、ニューコール60、ニューコール80(日本乳化剤社製)などのソルビタン脂肪酸エステル;モノペットSB(第一工業製薬社製)などのショ糖安息香酸エステル;DKエステルF-110(第一工業製薬社製)などのショ糖脂肪酸エステル;ピッツコールK-30、ピッツコールK-40(第一工業製薬社製)などのポリビニルピロリドン;が挙げられる。 Specific examples of the nonionic surfactant include polyoxyethylene alkyl ethers such as Emargen 123P, Emargen 130K, Emargen 150, Emargen 430, Emargen 409PV, Emargen 705, Emargen 707, and Emargen 709 (manufactured by Kao); Sorbitane fatty acid esters such as (Daiichi Kogyo Seiyaku Co., Ltd.), New Coal 20, New Coal 60, and New Coal 80 (manufactured by Nippon Emulsifier); Examples thereof include sucrose fatty acid esters such as DK ester F-110 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and polyvinylpyrrolidone such as Pittscol K-30 and Pittscol K-40 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
 上記の中でも、ノニオン性界面活性剤を用いることが好ましい。ノニオン性界面活性剤を用いることで、ポリイミドの溶媒への溶解性が向上する傾向にある。 Among the above, it is preferable to use a nonionic surfactant. By using a nonionic surfactant, the solubility of polyimide in a solvent tends to be improved.
 ポリイミド組成物は、その他の成分として、レベリング剤を含むことが得られるポリイミドフィルムの平滑性が向上する傾向となるため好ましい。
 レベリング剤としては、例えばシリコーン系化合物等が挙げられる。シリコーン系化合物は特に限定はないが、例えば、ポリエーテル変性シロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン、ポリエステル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、高重合シリコーン、アミノ変性シリコーン、アミノ誘導体シリコーン、フェニル変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
The polyimide composition is preferable because it tends to contain a leveling agent as another component to improve the smoothness of the obtained polyimide film.
Examples of the leveling agent include silicone compounds and the like. The silicone-based compound is not particularly limited, and for example, polyether-modified siloxane, polyether-modified polydimethylsiloxane, polyether-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, polyester-modified polydimethylsiloxane, and polyester-modified hydroxyl group. Examples thereof include polydimethylsiloxane contained, polyester-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, highly polymerized silicone, amino-modified silicone, amino derivative silicone, phenyl-modified silicone, and polyether-modified silicone. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
 上記のポリイミド組成物を用いたポリイミドフィルムの成膜方法は時に制限はないが、ポリイミド組成物を基材等に塗布する方法等が挙げられる。 The film forming method of the polyimide film using the above-mentioned polyimide composition is sometimes not limited, but examples thereof include a method of applying the polyimide composition to a substrate or the like.
 塗布する方法としては、ダイコーティング、スピンコーティング、ディップコーティング、スクリーン印刷、スプレー、キャスト法(枚葉法及び連続法)、コーターを用いる方法、吹付による塗布方法、浸漬法カレンダー法等が挙げられる。これらの方法は塗布面積及び被塗布面の形状などに応じて適宜選択することができる。
 これらのうち、塗布膜厚の均一性が良好であり、表面平滑性が良好になる傾向があるため、キャスト法、コーターを用いる方法を採用することが好ましく、キャスト法がより好ましい。
Examples of the coating method include die coating, spin coating, dip coating, screen printing, spraying, casting method (single leaf method and continuous method), method using a coater, coating method by spraying, dipping method calendar method and the like. These methods can be appropriately selected depending on the coated area, the shape of the surface to be coated, and the like.
Of these, since the uniformity of the coating film thickness is good and the surface smoothness tends to be good, it is preferable to adopt a casting method or a method using a coater, and the casting method is more preferable.
 塗布等で形成した膜に含まれる溶媒を揮発させる方法も特に制限はない。通常は、塗布等で形成した膜を加熱することにより、溶媒を揮発させる。加熱方法は特に制限されず、例えば、熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱、及び熱板・ホットロール等を用いた接触による加熱等が挙げられる。 There is no particular limitation on the method of volatilizing the solvent contained in the film formed by coating or the like. Usually, the solvent is volatilized by heating the film formed by coating or the like. The heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, and heating by contact using a hot plate / hot roll or the like.
 溶媒を揮発させる場合の加熱温度は、溶媒の種類に応じて好適な温度を用いることができる。加熱温度は、溶媒の沸点に対して通常沸点以上、好ましくは溶媒の沸点+50℃以上、さらに好ましくは溶媒の沸点+100℃以上であり、通常溶媒の沸点+200℃以下、好ましくは溶媒の沸点+180℃以下、さらに好ましくは溶媒の沸点+150℃以下である。加熱温度が上記範囲である場合、溶媒が十分に揮発される点で好ましい。 As the heating temperature when the solvent is volatilized, a suitable temperature can be used depending on the type of solvent. The heating temperature is usually above the boiling point of the solvent, preferably above the boiling point of the solvent + 50 ° C, more preferably above the boiling point of the solvent + 100 ° C, usually below the boiling point of the solvent + 200 ° C, preferably above the boiling point of the solvent + 180 ° C. Hereinafter, the boiling point of the solvent is more preferably + 150 ° C. or lower. When the heating temperature is in the above range, the solvent is preferably sufficiently volatilized.
 本発明のポリイミドフィルムは、例えば、支持体に、上述したように、本発明のポリイミドとキャスト溶媒を含むポリイミド組成物を塗布後、加熱し、該支持体からフィルムを剥離することにより得られる。 The polyimide film of the present invention can be obtained, for example, by applying a polyimide composition containing the polyimide of the present invention and a casting solvent to a support as described above, heating the support, and peeling the film from the support.
 支持体からポリイミドフィルムを剥離する方法は特に制限はないが、フィルムなどの性能を損なうことなく剥離できるという点で、物理的に剥離する方法、レーザーによって剥離する方法が好ましい。 The method of peeling the polyimide film from the support is not particularly limited, but a physical peeling method or a laser peeling method is preferable in that the polyimide film can be peeled off without impairing the performance of the film or the like.
 物理的に剥離する方法とは、例えば、ポリイミドフィルム/支持体からなる積層体の周縁を切離してポリイミドフィルムを得る方法、周縁部を吸引してポリイミドフィルムを得る方法、周縁を固定し支持基材を移動させてポリイミドフィルムを得る方法などが挙げられる。 Examples of the method of physically peeling include a method of obtaining a polyimide film by cutting off the peripheral edge of a laminate made of a polyimide film / support, a method of sucking the peripheral edge portion to obtain a polyimide film, and a method of fixing the peripheral edge and supporting a base material. A method of obtaining a polyimide film by moving the film can be mentioned.
[ポリイミドフィルムの厚さ]
 本発明のポリイミドフィルムの厚さは、通常1μm以上、好ましくは2μm以上であり、通常300μm以下、好ましくは200μm以下である。厚さが1μm以上であることにより、ポリイミドフィルムが十分な強度を得られ自立フィルムとして得られ、ハンドリング性が向上する傾向にある。また、厚さを300μm以下にすることによりフィルムの均一性が担保しやすい傾向にある。
[Thickness of polyimide film]
The thickness of the polyimide film of the present invention is usually 1 μm or more, preferably 2 μm or more, and usually 300 μm or less, preferably 200 μm or less. When the thickness is 1 μm or more, the polyimide film can obtain sufficient strength and can be obtained as a self-supporting film, and the handleability tends to be improved. Further, by setting the thickness to 300 μm or less, the uniformity of the film tends to be easily ensured.
[ポリイミドフィルムの機械的特性]
 本発明のポリイミドフィルムに求められる性能は用途に依存するが、以下のような機械的特性を有することが好ましい。
[Mechanical properties of polyimide film]
The performance required for the polyimide film of the present invention depends on the application, but it is preferable to have the following mechanical properties.
 本発明のポリイミドフィルムの引張強度は、特に制限はないが、23℃、50%湿度下の測定において、通常50MPa以上、好ましくは70MPa以上、より好ましくは100MPa以上、さらに好ましくは150MPa以上であり、通常400MPa以下、好ましくは300MPa以下である。 The tensile strength of the polyimide film of the present invention is not particularly limited, but is usually 50 MPa or more, preferably 70 MPa or more, more preferably 100 MPa or more, still more preferably 150 MPa or more in measurement at 23 ° C. and 50% humidity. It is usually 400 MPa or less, preferably 300 MPa or less.
 本発明のポリイミドフィルムの引張弾性率は、特に制限はないが、23℃、50%湿度下の測定において、通常1500MPa以上、好ましくは1800MPa以上、さらに好ましくは2000MPa以上、特に好ましくは3000MPa以上であり、通常20GPa以下、好ましくは10GPa以下である。 The tensile elastic modulus of the polyimide film of the present invention is not particularly limited, but is usually 1500 MPa or more, preferably 1800 MPa or more, more preferably 2000 MPa or more, and particularly preferably 3000 MPa or more in measurement at 23 ° C. and 50% humidity. , Usually 20 GPa or less, preferably 10 GPa or less.
 本発明のポリイミドフィルムの引張伸度は、特に制限はないが、23℃、50%湿度下の測定において、通常10%GL以上、好ましくは20%GL以上、より好ましくは50GL%以上であり、通常400%GL以下、好ましくは300%GL以下である。 The tensile elongation of the polyimide film of the present invention is not particularly limited, but is usually 10% GL or more, preferably 20% GL or more, more preferably 50 GL% or more in measurement at 23 ° C. and 50% humidity. It is usually 400% GL or less, preferably 300% GL or less.
本発明のポリイミドフィルムの鉛筆硬度は、特に限定されないが、好ましく2B以上、より好ましくはB以上、さらに好ましくはF以上、特に好ましくはH以上である。
 表面硬度としての鉛筆硬度の測定方法はJIS K 5600-5-4等が挙げられる。
The pencil hardness of the polyimide film of the present invention is not particularly limited, but is preferably 2B or more, more preferably B or more, still more preferably F or more, and particularly preferably H or more.
Examples of the method for measuring the pencil hardness as the surface hardness include JIS K 5600-5-4.
 ポリイミドフィルムがこのような範囲の機械的特性を有することにより、より耐久性に優れたポリイミドフィルムとなり、好ましい。 It is preferable that the polyimide film has mechanical properties in such a range, so that the polyimide film has more excellent durability.
 [積層体]
 本発明のポリイミドフィルムは、積層体としても用いることができる。例えば、本発明のポリイミドフィルム上に、耐傷性、耐摩耗性等を付与する機能を有するハードコート層、光学補償等を付与する機能を有する層、接着層などを設けることができる。本発明のポリイミドフィルムの両面に同一又は異なる層を設けてもよい。
[Laminate]
The polyimide film of the present invention can also be used as a laminate. For example, on the polyimide film of the present invention, a hard coat layer having a function of imparting scratch resistance, abrasion resistance, etc., a layer having a function of imparting optical compensation, etc., an adhesive layer, and the like can be provided. The same or different layers may be provided on both sides of the polyimide film of the present invention.
 本発明のポリイミドフィルムは、高表面硬度で耐折り曲げ性に優れ、光透過性及び弾性率、柔軟性、透明性が高く、溶媒溶解性が高く、さらにデバイス適用性が高いことから、特にディスプレイ等のカバーフィルムとして有用である。この用途において、本発明のポリイミドフィルム上にハードコート層を有する積層体として用いることができる。 The polyimide film of the present invention has a high surface hardness, excellent bending resistance, high light transmittance, elastic modulus, flexibility, transparency, high solvent solubility, and high device applicability. It is useful as a cover film for. In this application, it can be used as a laminate having a hard coat layer on the polyimide film of the present invention.
 ハードコート層は、ポリイミドフィルム上に直接、または、接着層などを介して形成することができる。
 ハードコート層は特に限定されず、通常用いられるハードコート剤を用いて形成することができる。ハードコート剤としては、光、熱等の硬化性樹脂、無機材料、無機材料を含む硬化性樹脂等が挙げられる。その形成方法は、それぞれの材料に合わせて選択することができる。また、ハードコート剤には、必要に応じて、消泡剤、レベリング剤、増粘剤、帯電防止剤、防曇剤等を適宜添加してもよい。
The hard coat layer can be formed directly on the polyimide film or through an adhesive layer or the like.
The hard coat layer is not particularly limited and can be formed by using a commonly used hard coat agent. Examples of the hard coating agent include curable resins such as light and heat, inorganic materials, and curable resins containing inorganic materials. The forming method can be selected according to each material. Further, a defoaming agent, a leveling agent, a thickener, an antistatic agent, an antifogging agent and the like may be appropriately added to the hard coating agent, if necessary.
 ハードコート層の厚さは、特に限定されないが、50μm以上であることが好ましく、60μm以上であることがより好ましい。ハードコート層の厚さは、200μm以下であることが好ましく、180μm以下であることが好ましい。ハードコート層の厚さがこの範囲であることで、高表面硬度、耐屈曲性に優れる傾向にある。 The thickness of the hard coat layer is not particularly limited, but is preferably 50 μm or more, and more preferably 60 μm or more. The thickness of the hard coat layer is preferably 200 μm or less, and preferably 180 μm or less. When the thickness of the hard coat layer is within this range, it tends to be excellent in high surface hardness and bending resistance.
 本発明の積層体におけるハードコート層表面の鉛筆硬度は、特に限定されないが、好ましくB以上、より好ましくはF以上、さらに好ましくはH以上、特に好ましくは2H以上である。 The pencil hardness of the surface of the hard coat layer in the laminate of the present invention is not particularly limited, but is preferably B or higher, more preferably F or higher, still more preferably H or higher, and particularly preferably 2H or higher.
 特にディスプレイ用途などの積層体を光が透過する用途に使用する場合、ポリイミドフィルム/ハードコート層積層体は透明性が高い方が望ましい。本発明の積層体のYI(黄色度)は、特に限定されないが、好ましくは5以下、より好ましくは4.5以下、さらに好ましくは4以下、特に好ましくは3.5以下である。 Especially when the laminate is used for light transmission such as display applications, it is desirable that the polyimide film / hard coat layer laminate has high transparency. The YI (yellowness) of the laminate of the present invention is not particularly limited, but is preferably 5 or less, more preferably 4.5 or less, still more preferably 4 or less, and particularly preferably 3.5 or less.
 本発明の積層体のヘイズは、特に限定されないが、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、特に好ましくは1%未満である。 The haze of the laminate of the present invention is not particularly limited, but is preferably 3% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably less than 1%.
 以下に実施例により本発明をさらに詳細に説明する。以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り、以下の実施例に限定されるものではない。 The present invention will be described in more detail below by way of examples. The following examples are shown for explaining the present invention in detail, and the present invention is not limited to the following examples unless contrary to the gist thereof.
[フィルム成形]
 ポリイミドをN,N-ジメチルアセトアミドに20質量%濃度となるように溶解させた溶液を、ソーダガラス基板に、500μmのアプリケーターを用いて塗布し、330℃又は280℃で30分乾燥させた。その後ガラス基板から剥離して厚さ50μmのポリイミドフィルムを得た。
[Film molding]
A solution prepared by dissolving polyimide in N, N-dimethylacetamide at a concentration of 20% by mass was applied to a soda glass substrate using a 500 μm applicator, and dried at 330 ° C. or 280 ° C. for 30 minutes. Then, it was peeled off from the glass substrate to obtain a polyimide film having a thickness of 50 μm.
[30℃における弾性率(E’RT)およびゴム状平坦領域の弾性率(G )]
 動的粘弾性分析装置(日立ハイテクサイエンス社製SII6100)を用いて、サンプルサイズ幅10mm、長さ20mm、周波数10Hz、昇温速度5℃/minで室温~480℃の温度範囲で測定した。温度に対して貯蔵弾性率をプロットした曲線の30℃の時の値を30℃における弾性率(E’RT)として求めた。
 また、Tgを超えた温度域における弾性率(E’)の平坦領域の弾性率(E’)の値をゴム状平坦領域の弾性率(G )として求めた。
[Elastic modulus at 30 ° C. ( E'RT ) and elastic modulus of rubber-like flat region ( GN 0 )]
Using a dynamic viscoelastic analyzer (SII6100 manufactured by Hitachi High-Tech Science Co., Ltd.), the sample size was measured in a temperature range of room temperature to 480 ° C. with a sample size width of 10 mm, a length of 20 mm, a frequency of 10 Hz, and a heating rate of 5 ° C./min. The value of the curve plotting the storage elastic modulus with respect to temperature at 30 ° C. was determined as the elastic modulus ( E'RT ) at 30 ° C.
Further, the value of the elastic modulus (E') in the flat region of the elastic modulus (E') in the temperature range exceeding Tg was determined as the elastic modulus ( GN 0 ) in the rubber-like flat region.
[耐折り曲げ性]
 MIT試験器を用いて、幅15mm、長さ110mmのポリイミドフィルムを、折り曲げ半径0.38mm、175回/minの速度で折り曲げ、試験片が破断するまでの往復折り曲げ回数として評価した。
[Bending resistance]
Using a MIT tester, a polyimide film having a width of 15 mm and a length of 110 mm was bent at a bending radius of 0.38 mm and a speed of 175 times / min, and evaluated as the number of reciprocating bends until the test piece broke.
[表面硬度]
 JIS K 5600-5-4に準拠し、750g荷重条件で、鉛筆硬度試験機(安田精機社製)にて、鉛筆硬度を測定し、表面硬度を評価した。
[surface hardness]
In accordance with JIS K 5600-5-4, the pencil hardness was measured with a pencil hardness tester (manufactured by Yasuda Seiki Co., Ltd.) under a load condition of 750 g, and the surface hardness was evaluated.
[実施例1]
 窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器、及び攪拌機を備えた4つ口フラスコに、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物16.7g、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物24.2g、4,4’-ジアミノ-2,2’-ジメチルビフェニル23.4g、N-メチル-2-ピロリドン(NMP)193g、トルエン38.5gを加え、180℃のオイルバス中で20時間加熱還流した。得られた反応液のうち100gをN,N-ジメチルアセトアミド(DMAc)で7倍希釈し、この液を室温にて撹拌しながらイソプロパノール3Lに滴下した。析出した固体をろ別回収し、ウェットケーキを得た。このウェットケーキを500mLセパラブルフラスコに入れ、イソプロパノール1Lを加え、60℃のオイルバス中で撹拌した後、ろ別回収し、150℃で減圧乾燥することで、ポリイミド1を得た。
 得られたポリイミド1を乾燥温度330℃でフィルムを成形した。得られたポリイミドフィルムについて、動的粘弾性分析、耐折り曲げ性及び表面硬度の評価を行った。結果を表1に示す。
[Example 1]
16.7 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 2,2-Bis (3,4-dicarboxyphenyl) -1,1,1,1,3,3,3-hexafluoropropane dianhydride 24.2 g, 4,4'-diamino-2,2'-dimethyl 23.4 g of biphenyl, 193 g of N-methyl-2-pyrrolidone (NMP), and 38.5 g of toluene were added, and the mixture was heated under reflux in an oil bath at 180 ° C. for 20 hours. 100 g of the obtained reaction solution was diluted 7-fold with N, N-dimethylacetamide (DMAc), and this solution was added dropwise to 3 L of isopropanol with stirring at room temperature. The precipitated solid was collected by filtration to obtain a wet cake. This wet cake was placed in a 500 mL separable flask, 1 L of isopropanol was added, the mixture was stirred in an oil bath at 60 ° C., collected by filtration, and dried under reduced pressure at 150 ° C. to obtain Polyimide 1.
A film was formed from the obtained polyimide 1 at a drying temperature of 330 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
[実施例2]
 3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物16.7g、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物24.2g、4,4’-ジアミノ-2,2’-ジメチルビフェニル23.4gを、3,3’,4,4’-ビシクロヘキサンテトラカルボン酸二無水物33.4g、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル35.2gとしたこと以外は実施例1と同様にしてポリイミド2を得た。
 得られたポリイミド2を用いて乾燥温度330℃でフィルムを成形した。得られたポリイミドフィルムについて動的粘弾性分析、耐折り曲げ性及び表面硬度の評価を行った。結果を表1に示す。
[Example 2]
3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 16.7 g, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane dianhydride 24.2 g, 4,4'-diamino-2,2'-dimethylbiphenyl 23.4 g, 3,3', 4,4'-bicyclohexanetetracarboxylic dianhydride 33.4 g, Polyethylene 2 was obtained in the same manner as in Example 1 except that 35.2 g of 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl was used.
A film was formed using the obtained polyimide 2 at a drying temperature of 330 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
[実施例3]
 窒素ガス導入管、冷却器、ディーンスターク凝集器、及び撹拌機を備えた4つ口フラスコに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物30.9g、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル24.0g、イソフタル酸ジヒドラジド4.9g、NMP140g、キシレン92.7gを加え、80℃のオイルバスで1時間加熱撹拌後、200℃のオイルバスで13時間加熱還流した。得られた反応液のうち、20gをDMAcで5倍希釈し、この液を室温にて撹拌しながらイソプロパノール500mLに滴下した。析出した紛体をろ別回収し後、ウェットケーキをイソプロパノール200mLに入れ室温で30分撹拌した。この紛体をろ別回収後、80℃で30分、150℃で30分減圧乾燥し、ポリイミド3を得た。
 得られたポリイミド3を乾燥温度280℃でフィルムを成形した。得られたポリイミドフィルムについて動的粘弾性分析、耐折り曲げ性及び表面硬度の評価を行った。結果を表1に示す。
[Example 3]
3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 30.9 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer. -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 24.0 g, isophthalic acid dihydrazide 4.9 g, NMP 140 g, xylene 92.7 g were added, and the mixture was heated and stirred in an oil bath at 80 ° C. for 1 hour, and then at 200 ° C. The mixture was heated under reflux in an oil bath for 13 hours. Of the obtained reaction solution, 20 g was diluted 5-fold with DMAc, and this solution was added dropwise to 500 mL of isopropanol with stirring at room temperature. After collecting the precipitated powder by filtration, the wet cake was placed in 200 mL of isopropanol and stirred at room temperature for 30 minutes. The powder was collected by filtration and dried under reduced pressure at 80 ° C. for 30 minutes and at 150 ° C. for 30 minutes to obtain Polyimide 3.
A film of the obtained polyimide 3 was formed at a drying temperature of 280 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
[比較例1]
 3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物16.7g、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物24.2g、4,4’-ジアミノ-2,2’-ジメチルビフェニル23.4gを、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物48.4g、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル35.2gとしたこと以外は実施例1と同様にしてポリイミド4を得た。
 得られたポリイミド4を用いて乾燥温度330℃でフィルムを成形した。得られたポリイミドフィルムについて動的粘弾性分析と耐折り曲げ性の評価を行った。結果を表1に示す。
[Comparative Example 1]
3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 16.7 g, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexa 24.2 g of fluoropropanedianhydride, 4,4'-diamino-2,2'-dimethylbiphenyl 23.4 g, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3 , 3,3-Hexafluoropropane dianhydride 48.4 g, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl 35.2 g, the same polyimide as in Example 1. I got 4.
A film was formed using the obtained polyimide 4 at a drying temperature of 330 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis and bending resistance evaluation. The results are shown in Table 1.
[比較例2]
 3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物16.7g、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物24.2gを、ベンゼン-1,2,4,5-テトラカルボン酸無水物23.5gとしたこと以外は実施例1と同様にしてポリイミド5を得た。
 得られたポリイミド5を用いて乾燥温度330℃でフィルムを成形した。得られたポリイミドフィルムについて動的粘弾性分析、耐折り曲げ性及び表面硬度の評価を行った。結果を表1に示す。
[Comparative Example 2]
3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 16.7 g, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexa Polyethylene 5 was obtained in the same manner as in Example 1 except that 24.2 g of fluoropropane dianhydride was changed to 23.5 g of benzene-1,2,4,5-tetracarboxylic dianhydride.
A film was formed using the obtained polyimide 5 at a drying temperature of 330 ° C. The obtained polyimide film was subjected to dynamic viscoelasticity analysis, bending resistance and surface hardness evaluation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、30℃の弾性率(E’RT)が3.0×10Pa以上でゴム状平坦領域での弾性率(G )が1.5×10Pa未満の本発明のポリイミドフィルムは、高表面硬度および耐折り曲げ性の両立が可能であることが分かる。 From Table 1, the elastic modulus ( E'RT ) at 30 ° C. is 3.0 × 10 9 Pa or more, and the elastic modulus ( GN 0 ) in the rubber-like flat region is less than 1.5 × 10 7 Pa. It can be seen that the polyimide film can achieve both high surface hardness and bending resistance.
 これに対して、比較例1のポリイミドフィルムは、30℃の弾性率(E’RT)が3.0×10Pa以上であっても、ゴム状平坦領域での弾性率(G )が1.5×10Paであり耐折り曲げ性に劣ることが分かる。
 比較例2は、明確なG が観測できず、耐折り曲げ性に劣っており、鉛筆硬度も低く、高表面硬度と耐折り曲げ性の両立が困難な結果となった。
In contrast, the polyimide film of Comparative Example 1, even the elastic modulus of 30 ℃ (E 'RT) is 3.0 × 10 9 Pa or more, the elastic modulus of a rubber-like plateau region (G N 0) There inferior in bending resistance was 1.5 × 10 7 Pa.
In Comparative Example 2, no clear GN 0 could be observed, the bending resistance was inferior, the pencil hardness was low, and it was difficult to achieve both high surface hardness and bending resistance.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月19日付で出願された日本特許出願2019-051100及び2019年8月26日付で出願された日本特許出願2019-153990に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application 2019-051100 filed on March 19, 2019 and Japanese Patent Application 2019-153990 filed on August 26, 2019, which are incorporated by reference in their entirety. ..

Claims (8)

  1.  30℃での弾性率(E’RT)が3.0×10Pa以上で、ゴム状平坦領域における弾性率(G )が1.5×10Pa未満であるポリイミドフィルム。 Polyimide film 30 elastic modulus at ℃ (E 'RT) is 3.0 × 10 9 Pa or more, the elastic modulus in the rubber-like flat regions (G N 0) is less than 1.5 × 10 7 Pa.
  2.  30℃での弾性率(E’RT)が3.5×10Pa以上である、請求項1に記載のポリイミドフィルム。 The polyimide film according to claim 1, wherein the elastic modulus ( E'RT ) at 30 ° C. is 3.5 × 10 9 Pa or more.
  3.  30℃での弾性率(E’RT)が4.0×10Pa以上である、請求項1又は2に記載のポリイミドフィルム。 Is the elastic modulus at 30 ℃ (E 'RT) is 4.0 × 10 9 Pa or more, a polyimide film according to claim 1 or 2.
  4.  前記ポリイミドフィルムに含まれるポリイミドを構成するテトラカルボン酸残基に脂環構造を含む、請求項1乃至3のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 3, wherein the tetracarboxylic acid residue constituting the polyimide contained in the polyimide film contains an alicyclic structure.
  5.  前記ポリイミドフィルムの膜厚が、1μm以上300μm以下である、請求項1乃至4のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 4, wherein the polyimide film has a film thickness of 1 μm or more and 300 μm or less.
  6.  キャスト法により得られたものである、 請求項1乃至5のいずれか1項に記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 5, which is obtained by a casting method.
  7.  請求項1乃至6のいずれか1項に記載のポリイミドフィルム表面にハードコート層を有する、積層体。 A laminate having a hard coat layer on the surface of the polyimide film according to any one of claims 1 to 6.
  8.  前記ハードコート層の膜厚が、50μm以上200μm以下である、請求項7に記載の積層体。 The laminate according to claim 7, wherein the hard coat layer has a film thickness of 50 μm or more and 200 μm or less.
PCT/JP2020/011105 2019-03-19 2020-03-13 Polyimide film WO2020189556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507306A JPWO2020189556A1 (en) 2019-03-19 2020-03-13

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019051100 2019-03-19
JP2019-051100 2019-03-19
JP2019-153990 2019-08-26
JP2019153990 2019-08-26

Publications (1)

Publication Number Publication Date
WO2020189556A1 true WO2020189556A1 (en) 2020-09-24

Family

ID=72521046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011105 WO2020189556A1 (en) 2019-03-19 2020-03-13 Polyimide film

Country Status (3)

Country Link
JP (1) JPWO2020189556A1 (en)
TW (1) TW202039636A (en)
WO (1) WO2020189556A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561100A (en) 2020-11-27 2022-05-31 臻鼎科技股份有限公司 Transparent polyimide solution, preparation method thereof, transparent polyimide film and application thereof
TWI749914B (en) * 2020-11-27 2021-12-11 臻鼎科技股份有限公司 Transparent polyimide solution, method for manufacturing the transparent polyimide solution, transparent polyimide film and its application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107429A1 (en) * 2008-02-25 2009-09-03 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor composition, polyimide film and transparent flexible film
JP2013082774A (en) * 2011-10-06 2013-05-09 Kaneka Corp Transparent polyimide film and production process thereof
JP2014100702A (en) * 2012-10-25 2014-06-05 Mitsubishi Chemicals Corp Method for manufacturing laminate, laminate, device laminate, and device film
JP2016027130A (en) * 2014-06-26 2016-02-18 三菱化学株式会社 Polyimide precursor composition
JP2016037048A (en) * 2014-08-06 2016-03-22 三菱化学株式会社 Glass film laminate
JP2017177479A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminate
JP2018016787A (en) * 2016-07-15 2018-02-01 三菱ケミカル株式会社 Polyimide composition, polyimide film and polyimide laminate obtained from polyimide composition, and method for producing polyimide laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107429A1 (en) * 2008-02-25 2009-09-03 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor composition, polyimide film and transparent flexible film
JP2013082774A (en) * 2011-10-06 2013-05-09 Kaneka Corp Transparent polyimide film and production process thereof
JP2014100702A (en) * 2012-10-25 2014-06-05 Mitsubishi Chemicals Corp Method for manufacturing laminate, laminate, device laminate, and device film
JP2016027130A (en) * 2014-06-26 2016-02-18 三菱化学株式会社 Polyimide precursor composition
JP2016037048A (en) * 2014-08-06 2016-03-22 三菱化学株式会社 Glass film laminate
JP2017177479A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminate
JP2018016787A (en) * 2016-07-15 2018-02-01 三菱ケミカル株式会社 Polyimide composition, polyimide film and polyimide laminate obtained from polyimide composition, and method for producing polyimide laminate

Also Published As

Publication number Publication date
TW202039636A (en) 2020-11-01
JPWO2020189556A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5888472B2 (en) Composition containing polyimide precursor and / or polyimide, and polyimide film
JP7392660B2 (en) Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
WO2020189556A1 (en) Polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
TW202014448A (en) Polyimide resin, polyimide varnish, and polyimide film
TWI787499B (en) Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7247604B2 (en) Resin composition for insulating coating material and insulating coating material
WO2020189557A1 (en) Polyimide film
JP2020158744A (en) Polyimide and polyimide film
JPWO2019163830A1 (en) Polyimide resin, polyimide varnish and polyimide film
TW202319447A (en) Resin composition, molded article, and film
WO2020189555A1 (en) Polyimide
JP2018016787A (en) Polyimide composition, polyimide film and polyimide laminate obtained from polyimide composition, and method for producing polyimide laminate
TW202248292A (en) Polyimide precursor composition
TWI774848B (en) Polyimide resin, polyimide varnish and polyimide film
JP6841048B2 (en) Polyimide
JP7000682B2 (en) Polyimide
JP2020152892A (en) Polyimide
JP2018115246A (en) Polyimide
TWI804604B (en) Polyimide resin, polyimide varnish and polyimide film
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin
TW202330710A (en) Resin composition, molded body and film
TW202336092A (en) Film, production method therefor, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773434

Country of ref document: EP

Kind code of ref document: A1