WO2020189555A1 - Polyimide - Google Patents

Polyimide Download PDF

Info

Publication number
WO2020189555A1
WO2020189555A1 PCT/JP2020/011104 JP2020011104W WO2020189555A1 WO 2020189555 A1 WO2020189555 A1 WO 2020189555A1 JP 2020011104 W JP2020011104 W JP 2020011104W WO 2020189555 A1 WO2020189555 A1 WO 2020189555A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
solvent
dianhydride
group
film
Prior art date
Application number
PCT/JP2020/011104
Other languages
French (fr)
Japanese (ja)
Inventor
美香 松本
二郎 杉山
淳 遠田
喬士 玉置
麻友香 牛島
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021507305A priority Critical patent/JPWO2020189555A1/ja
Publication of WO2020189555A1 publication Critical patent/WO2020189555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
  • aromatic polyimide for example, "Kapton” manufactured by DuPont
  • aromatic polyimide is known to be a light and flexible polyimide having high heat resistance.
  • the aromatic polyimide has a brown color and cannot be used in applications that require high light transmission.
  • Patent Document 1 Although there is a description regarding heat resistance, studies on elastic modulus and flexibility have not been sufficiently conducted.
  • Polyimide is known as a heat-resistant polymer material.
  • many polyimides are insoluble and insoluble, and because of their heat resistance, the molding temperature is high, heating for a long time is required, and the process load is large. That is, if the molding temperature is lowered or the molding time is shortened while maintaining the heat resistance of the resin, the residual solvent increases and the mechanical properties deteriorate.
  • Tg glass transition temperature
  • Patent Document 2 proposes a heat-crosslinkable polyimide in which a heat-crosslinkable reactive group is contained at the end of the polyimide as a structure having excellent heat resistance.
  • Patent Document 3 proposes a terminally modified imide oligomer for lowering the melting temperature.
  • Patent Document 4 proposes a polyimide for liquid crystal orientation using a photosensitive diamine having an amide group.
  • An object of the present invention is to provide a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
  • the present inventor has found that a polyimide containing a specific structure can solve the above-mentioned problems, and has completed the present invention.
  • the present invention has the following gist.
  • R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
  • R of the general formula (1) is at least one selected from the group consisting of a divalent aromatic ring group and a chain aliphatic group. ..
  • the composition. [9] A film obtained from the composition according to [8]. [10] The film according to [9], wherein the film thickness is 1 ⁇ m or more and 300 ⁇ m or less. [11] The film according to [9] or [10], wherein the film is obtained by a casting method. [12] A laminate having a hard coat layer on the film according to any one of [9] to [11]. [13] The laminate according to [12], wherein the hard coat layer has a film thickness of 50 ⁇ m or more and 200 ⁇ m or less.
  • the present invention it is possible to provide a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
  • the polyimide of the present invention contains an imide ring in the main chain, and is composed of at least one selected from polyamic acid, polyamic acid ester, and polyimide.
  • room temperature means 25 ° C. unless otherwise specified.
  • the "elastic modulus” refers to the “storage elastic modulus”.
  • the polyimide of the present invention is a polyimide having a unit derived from a tetracarboxylic dianhydride and a unit derived from a diamine compound, has a structure represented by the following general formula (1), and has a chlorine content in 1 g of the polyimide. It is characterized in that it is 50 ⁇ g or less.
  • R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
  • the amount of chlorine in 1 g of polyimide is 50 ⁇ g or less, the device applicability can be made excellent. Specifically, in the manufacturing process of a device or the like to which this polyimide is applied, contamination of the manufacturing line due to elution and volatilization of chlorine can be suppressed. Further, when chlorine is eluted and volatilized from the polyimide, it is possible to suppress corrosion of other members and layers constituting the device and adverse effects on electrical characteristics such as insulation. Further, when the amount of chlorine in 1 g of polyimide is 50 ⁇ g or less, it is possible to suppress a decrease in transparency (YI value) of polyimide.
  • the structure represented by the general formula (1) is derived from the reaction between the dicarboxylic acid compound and the diamine compound and / or the reaction between the tetracarboxylic dianhydride and the dihydrazide compound.
  • the dicarboxylic acid compound include compounds such as aromatic dicarboxylic acid, heterocyclic dicarboxylic acid, alicyclic dicarboxylic acid, and chain aliphatic dicarboxylic acid.
  • the dicarboxylic acid compound can also be used as an acid halide in which a carboxyl group is halogenated in order to improve reactivity, for example, an acid chloride in which a carboxyl group is chlorinated.
  • the dicarboxylic acid chloride is used as the dicarboxylic acid compound. Even when a halide such as the above is used, it is said to be a structure derived from the reaction between the dicarboxylic acid compound and the diamine compound.
  • the amount of chlorine in 1 g of the polyimide of the present invention is 50 ⁇ g or less, preferably 40 ⁇ g or less, more preferably 30 ⁇ g or less, still more preferably 20 ⁇ g or less.
  • the lower limit of the amount of chlorine is not particularly limited and may be 0 ⁇ g.
  • the amount of chlorine is not more than the above upper limit, it is possible to suppress an adverse effect at the time of manufacturing a device to which this polyimide is applied and a device. Further, when the amount of chlorine is not more than the above upper limit, it is possible to suppress a decrease in the transparency (YI value) of the polyimide.
  • the method for reducing the amount of chlorine in 1 g of the polyimide of the present invention to 50 ⁇ g or less is not particularly limited, but a method for obtaining a polyimide by reacting a tetracarboxylic dianhydride with a dihydrazide compound; a chlorine-based solvent or the like used in the production of the polyimide is used. Methods of avoiding the use of solvents; methods of avoiding the use of glassware during polyimide production; methods of performing pure water cleaning; and combinations of these methods can be mentioned.
  • a method for obtaining the polyimide of the present invention it is preferable to use a method for obtaining a polyimide by reacting a tetracarboxylic dianhydride with a dihydrazide compound.
  • the structure of the polyimide of the present invention is not particularly limited as long as it has the structure represented by the general formula (1), but may be expressed as a unit derived from tetracarboxylic dianhydride (hereinafter, referred to as a tetracarboxylic acid residue). ) And a unit derived from a diamine compound (hereinafter, may be referred to as a diamine residue).
  • the tetracarboxylic dianhydride that induces the tetracarboxylic acid residue contained in the polyimide of the present invention is an aliphatic tetracarboxylic dianhydride (the aliphatic tetracarboxylic dianhydride is an alicyclic tetracarboxylic dianhydride).
  • the aliphatic tetracarboxylic dianhydride is an alicyclic tetracarboxylic dianhydride.
  • tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
  • the tetracarboxylic acid residue contained in the polyimide of the present invention preferably has an aliphatic skeleton because it can further suppress the formation of a charge transfer complex and enhance light transmission and solvent solubility.
  • Aliphatic tetracarboxylic dianhydride examples include an alicyclic tetracarboxylic dianhydride and a chain aliphatic tetracarboxylic dianhydride.
  • Chain aliphatic tetracarboxylic dianhydride examples include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride and the like. Can be mentioned.
  • the polyimide of the present invention preferably has a tetracarboxylic acid residue derived from the alicyclic tetracarboxylic dianhydride, and among them, 3,3', 4, Tetracarboxylic acid residue derived from 4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride It is more preferable to have a group, and it is further preferable to have a tetracarboxylic acid residue derived from 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride.
  • Aromatic Tetracarboxylic Acid Dianhydride examples include tetracarboxylic acid dianhydride having one aromatic ring in one molecule, tetracarboxylic acid dianhydride having two or more independent aromatic rings in one molecule, and 1 Examples thereof include tetracarboxylic acid dianhydride having a condensed aromatic ring in the molecule.
  • tetracarboxylic dianhydride having one aromatic ring in one molecule or tetracarboxylic dianhydride having one aromatic ring in one molecule tends to be easy to control the viscosity at the time of production, improve solvent solubility, and improve coating flexibility.
  • a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is preferable, and a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is particularly preferable.
  • Tetracarboxylic dianhydride having one aromatic ring in one molecule examples include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride and the like.
  • Tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule examples include 1,1-bis (2,3-dicarboxyphenyl) ethanedianhydride and bis (2,3-di).
  • Carboxyphenyl) methane dianhydride bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4) -Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3- Dicarboxyphenyl) ether dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 4,4'- Oxydiphthalic dianhydride, 4,4- (p-phenylenedioxy) diphthalic dianhydride, 4,4- (m-phenylenedioxy) diphthalic dianhydride, 2,2', 6,
  • Tetracarboxylic dianhydride having a condensed aromatic ring in one molecule examples include 1,2,5,6-naphthalenedicarboxylic dianhydride, 1,4,5,8-naphthalenedicarboxylic dianhydride, 2, 3,6,7-naphthalenedicarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7 , 8-Phenyltetracarboxylic dianhydride and the like.
  • tetracarboxylic dianhydride in addition to the above, a silicone-based tetracarboxylic dianhydride or a tetracarboxylic dianhydride containing a fluorine atom can also be used.
  • tetracarboxylic dianhydride containing a fluorine atom examples include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (also known as).
  • the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited, but is preferably 10 mol% or more, more preferably 25 mol% or more.
  • 40 mol% or more is further preferable, 50 mol% or more is further preferable, 60 mol% or more is particularly preferable, and 65 mol% or more is most preferable.
  • the upper limit of the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited and may be 100 mol%.
  • the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic dianhydride is at least the above lower limit value, the solubility in a solvent tends to be high.
  • the diamine residue contained in the polyimide of the present invention is not particularly limited.
  • Examples of the compound for inducing the diamine residue contained in the polyimide of the present invention include aromatic diamine compounds and aliphatic diamine compounds (aliphatic diamine compounds include alicyclic diamine compounds and chain aliphatic diamine compounds). Diamine compounds can be mentioned.
  • the diamine residue can also be derived from a diisocyanate compound, a dihydrazide compound, or the like.
  • the compound for inducing these diamine residues one kind may be used alone, or two or more kinds may be used in any ratio and combination.
  • Aromatic diamine compound examples include a diamine compound having one aromatic ring in one molecule, a diamine compound having a condensed aromatic ring in one molecule, and a diamine compound having two or more independent aromatic rings in one molecule. Can be mentioned.
  • diamine compound having one aromatic ring in one molecule examples include 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 4-fluoro-1,2-phenylenediamine, and the like.
  • diamine compound having a condensed aromatic ring in one molecule examples include 4,4'-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, 1,5-diaminonaphthalene, and 3,7-diamino-2,8-. Examples thereof include dimethyldibenzothiophene 5,5-dioxide.
  • Diamine compounds having two or more independent aromatic rings in one molecule include 4,4'-(biphenyl-2,5-diylbisoxy) bisaniline and 4,4'-diamino as having a biphenyl structure.
  • Those having a fluorine atom include 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2-bis [4- ⁇ 4-amino-2- (trifluoromethyl) phenoxy ⁇ phenyl.
  • a diamine compound having a biphenyl structure or a diamine compound in which aromatic rings are linked to each other by a linker is preferable, and a diamine compound having a biphenyl structure is more preferable.
  • Aliphatic diamine compound examples include an alicyclic diamine compound and a chain aliphatic diamine compound.
  • alpha-1-bis (aminomethyl) cyclohexane 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis (cyclohexylamine).
  • 4,4'-methylenebis (2-methylcyclohexylamine) 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis (cyclohexylamine). Examples thereof include 4,4'-methylenebis (2-methylcyclohexylamine).
  • Chain aliphatic diamine compound examples include 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, and 1,5-. Examples thereof include diaminopentane, 1,10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-dimethyl-2,3-butanediamine, 2-methyl-1,5-diaminopentane and the like.
  • Diisocyanate compound A structure derived from a diisocyanate compound can also be used as the diamine residue.
  • the diisocyanate compound include aromatic diisocyanate compounds and aliphatic diisocyanate compounds. One of these diisocyanate compounds may be used alone, or two or more of these diisocyanate compounds may be used in any ratio and combination.
  • aromatic diisocyanate compound examples include 4,4'-diisocyanato-3,3'-dimethylbiphenyl, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, and 4,4'-diisocyanato-3,3. '-Dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 4,4'-methylenediphenyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylenediisocyanate, 1,3-bis (isocyanatomethyl) ) Benzene, toluene diisocyanate and the like.
  • aliphatic diisocyanate compound examples include 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, and isophorone diisocyanate.
  • Dihydrazide compound Examples of the dihydrazide compound include dihydrazide compounds exemplified in the structure represented by the general formula (1) described later.
  • the diamine compound, diisocyanate compound, etc. that induce the diamine residue contained in the polyimide of the present invention may be only one type or may contain two or more types, but the heat resistance of the obtained polyimide is increased. Because of the tendency, aromatic diamine compounds are preferable, and diamine compounds having a fused aromatic ring in one molecule and diamine compounds having two or more independent aromatic rings in one molecule are more preferable.
  • the ratio of the diamine residue derived from the aromatic diamine compound to the total diamine residue contained in the polyimide of the present invention is not particularly limited, but is usually preferably 10 mol% or more, more preferably 20 mol% or more, and 40 mol% or more. More preferred. There is no upper limit to the ratio of the diamine residue derived from the aromatic diamine compound to the total diamine residue contained in the polyimide of the present invention, and it may be 100 mol%. When the ratio of the diamine residue derived from the aromatic diamine compound is at least the above lower limit value, the heat resistance is increased and the production is facilitated, which is preferable.
  • R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. ..
  • the aromatic ring and the heterocycle are not particularly limited, and may be a fused ring.
  • the alicyclic is not particularly limited, but is preferably a 3- to 10-membered ring.
  • the chain aliphatic group is also not particularly limited, but is preferably a linear group having 1 to 20 carbon atoms.
  • These aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may have substituents. Examples of the substituent which may be possessed include an alkyl group, an alkoxy group, an alkyl halide group, a hydroxyl group, a carboxy group and the like.
  • aromatic ring groups may be used alone or in combination.
  • heterocyclic groups may be used alone or in combination.
  • alicyclic groups may be used alone or in combination.
  • chain aliphatic groups may be used alone or in combination.
  • R is at least one selected from the group consisting of an aromatic ring group and a chain aliphatic group because the molecular weight can be easily controlled and the production stability is good.
  • the aromatic ring group a group composed of a benzene ring, a naphthalene ring, a biphenyl ring, a biphenyl ether, a benzophenone, a phenyl sulfide, a biphenyl sulfoxide, and a biphenyl sulfone is preferable, and a group having a monocyclic ring or two aromatic rings is preferable.
  • the chain aliphatic group preferably has 1 or more and 10 or less carbon atoms. When R is these groups, the effect of the present invention tends to be particularly easily obtained.
  • Specific examples of the structure represented by the general formula (1) include structures derived from each of the compounds listed in the reaction of tetracarboxylic dianhydride and dihydrazide compound, which will be described later.
  • the polyimide of the present invention may have only one type of the structure represented by the general formula (1) or may have a plurality of types, but at least for the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. It preferably has a derived structure.
  • the amount introduced into the polyimide having the structure represented by the general formula (1) is not particularly limited, but the concentration of the amide bond with respect to the imide ring of the main chain is preferably 1 mol% or more, more preferably 5 mol% or more. 8 mol% or more is more preferable.
  • the amount introduced into the polyimide having the structure represented by the general formula (1) is preferably 900 mol% or less, more preferably 700 mol% or less, further preferably 500 mol% or less, and particularly preferably 400 mol% or less. It is preferable that the amount of the structure represented by the general formula (1) introduced in the polyimide is within this range because the solvent solubility and the elastic modulus tend to be compatible with each other.
  • the ratio of tetracarboxylic acid residue, diamine residue, dicarboxylic acid residue, and dihydrazide residue contained in the polyimide of the present invention can be determined by analyzing the composition of the raw material monomer by NMR, solid NMR, IR, or the like. Can be done. The proportion of these residues can be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution in alkali.
  • GC gas chromatography
  • the method for obtaining the structure represented by the general formula (1) in the polyimide of the present invention is not particularly limited, and examples thereof include a method obtained by reacting a tetracarboxylic dianhydride with a dihydrazide compound.
  • tetracarboxylic dianhydride examples include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides (aliphatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics. Includes tetracarboxylic dianhydride).
  • aromatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics.
  • Includes tetracarboxylic dianhydride One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
  • Examples of the tetracarboxylic dianhydride compound to be reacted with the dihydrazide compound include the compounds described above in the description of the tetracarboxylic acid residue, and the preferable range is also the same.
  • the dihydrazide compound is not particularly limited, and examples thereof include aromatic dihydrazide compounds and aliphatic dihydrazide compounds (including alicyclic dihydrazide compounds and chain aliphatic dihydrazide compounds). One of these dihydrazide compounds may be used alone, or two or more thereof may be used in any ratio and combination.
  • aromatic dihydrazide compound examples include monocyclic isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,5-dimethylterephthalic acid dihydrazide, and the like; 4,4'-carbonyl having two or more independent aromatic rings.
  • Dihydrazide benzoate 2,2'-biphenyldicarboxylic acid dihydrazide, 4,4'-biphenyldicarboxylic acid dihydrazide, 2,2-bis (4-carboxyphenyl) hexafluoropropanedihydrazide, 4- (carboxymethyl) dihydrazide benzoate , 4,4'-oxybis benzoic acid dihydrazide, 4,4'-sulfonyl dibenzoic acid dihydrazide, 1,2-bis (4-carboxyphenyl) ethanedihydrazide, 4,4'-stylbenzicarboxylic acid dihydrazide, etc .; 1,4-Naphthalenedicarboxylic acid dihydrazide, 2,3-naphthalenedicarboxylic acid dihydrazide, etc .; 2,2'-bisinconic acid dihydrazide, 2,2'-binicotinic acid dihydrazide,
  • Examples of the alicyclic dihydrazide compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid dihydrazide, 1,3-adamantandicarboxylic acid dihydrazide, cis-4-cyclohexene-1,2-dicarboxylic acid dihydrazide, and 1, , 4-Cyclohexanedicarboxylic acid dihydrazide, 1,3-cyclohexanedicarboxylic acid dihydrazide, decahydro-1,4-naphthalenedicarboxylic acid dihydrazide and the like.
  • chain aliphatic dihydrazide compound examples include adipic acid dihydrazide, azelaic acid dihydrazide, dodecanoic acid dihydrazide, malonic acid dihydrazide, sebacic acid dihydrazide, succinate dihydrazide, and oxalyl dihydrazide.
  • dihydrazide compound a monocyclic aromatic dihydrazide compound and a dihydrazide compound having two or more independent aromatic rings tend to improve the elastic modulus, and are preferable.
  • the elastic modulus of the polyimide of the present invention can be measured by viscoelasticity measurement.
  • the elastic modulus of the polyimide of the present invention is not particularly limited, but the elastic modulus at 25 ° C. is preferably 4 GPa or more, more preferably 4.5 GPa or more, still more preferably 4.8 GPa or more, and particularly preferably. It is 5 GPa or more.
  • the elastic modulus of the polyimide of the present invention at 25 ° C. is preferably 10 GPa or less, more preferably 9 GPa or less, and further preferably 8 GPa or less. When the elastic modulus at 25 ° C. is in this range, the abrasion resistance of the polyimide is maintained, which is preferable.
  • a polyimide having an elastic modulus in the above range can be realized, for example, by introducing the structure represented by the general formula (1) into the polyimide at a predetermined ratio, introducing a crosslinked structure into the polyimide, or the like.
  • the molecular weight of the polyimide of the present invention is not particularly limited, but is preferably a polystyrene-equivalent number average molecular weight (Mn) of 500 or more, more preferably 1000 or more, and further preferably 1500 or more. On the other hand, this molecular weight is preferably 80,000 or less, more preferably 60,000 or less, still more preferably 40,000 or less. When the number average molecular weight (Mn) of the polyimide is in this range, solvent solubility, solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
  • the polystyrene-equivalent number average molecular weight (Mn) of the polyimide of the present invention can be determined by gel permeation chromatography (GPC).
  • the mass average molecular weight (Mw) of the polyimide of the present invention is preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more. On the other hand, this molecular weight is preferably 300,000 or less, more preferably 200,000 or less, still more preferably 100,000 or less. When the mass average molecular weight (Mw) of the polyimide is in this range, the solvent solubility, solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
  • the mass average molecular weight (Mw) of the polyimide of the present invention can be measured by the same method as the number average molecular weight (Mn).
  • the molecular weight distribution (PDI: Mw / Mn) of the polyimide of the present invention is usually 1 or more, preferably 1,1 or more, and more preferably 1.2 or more.
  • Mw / Mn is usually 20 or less, preferably 15 or less, and more preferably 10 or less. When Mw / Mn is in this range, the uniformity and smoothness of the obtained molded product tend to be excellent.
  • the glass transition temperature (Tg) of the polyimide of the present invention is not particularly limited, but is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, still more preferably 260 ° C. or higher, particularly preferably. It is 270 ° C. or higher, most preferably 280 ° C. or higher.
  • the glass transition temperature (Tg) of polyimide is preferably 400 ° C. or lower, more preferably 380 ° C. or lower.
  • the glass transition temperature (Tg) of polyimide corresponds to the peak temperature (Ttan ⁇ ) of ⁇ relaxation of tan ⁇ .
  • the method for producing the polyimide of the present invention is not particularly limited, and the polyimide can be produced by a conventionally known method.
  • / or a method of directly producing a polyimide from a dicarboxylic acid compound and a diamine compound, a diisocyanate compound, and / or a dihydrazide compound are examples of directly producing a polyimide from a dicarboxylic acid compound and a diamine compound, a diisocyanate compound, and / or a dihydrazide compound;
  • a diisocyanate compound may be used instead of the diamine compound, or the diamine compound and the diamine compound may be used in combination.
  • the dihydrazide compound can be reacted in the same manner as the diamine compound, and the dicarboxylic acid compound can be reacted in the same manner as the tetracarboxylic dianhydride.
  • the dicarboxylic acid compound can also be used as a chain extender after producing polyimide from a tetracarboxylic dianhydride and a diamine compound, a diisocyanate compound and / or a dihydrazide compound.
  • tetracarboxylic acid dianhydride and / or dicarboxylic acid compound is referred to as “tetracarboxylic acid dianhydride, etc.”
  • tetracarboxylic acid dianhydride etc.
  • diamine compound, diisocyanate compound and dihydrazide compound one or more of diamine compounds, diisocyanate compound and dihydrazide compounds.
  • a method for producing the polyimide of the present invention by reacting a tetracarboxylic acid dianhydride or the like with a diamine compound or the like will be described with reference to "diamine compound or the like".
  • the polyimide precursor can be obtained, for example, by reacting a tetracarboxylic dianhydride or the like with a diamine compound or the like in a solvent.
  • the order of addition and the method of addition of the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited.
  • a polyimide precursor can be obtained by sequentially adding a diamine compound or the like and a tetracarboxylic dianhydride or the like to a solvent and stirring the mixture at an appropriate temperature.
  • the amount of the tetracarboxylic dianhydride or the like is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol, based on 1 mol of the diamine compound or the like. It is as follows. By setting the amount of tetracarboxylic dianhydride or the like in such a range, the yield of the obtained polyimide precursor tends to be improved.
  • the concentration of tetracarboxylic dianhydride, etc., diamine compound, etc. in the reaction solution can be appropriately set according to the reaction conditions and the viscosity of the obtained polyimide precursor.
  • the total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total amount of the reaction solution. It is preferably 50% by mass or less. If the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too low, the molecular weight tends to be extended. When the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too high, the viscosity of the reaction solution does not become too high and stirring tends to be easy.
  • the temperature at which the tetracarboxylic dianhydride and the like and the diamine compound and the like are reacted in the solvent is not particularly limited as long as the reaction proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually used. It is 120 ° C. or lower, preferably 100 ° C. or lower.
  • the reaction time is usually 1 hour or more, preferably 2 hours or more, usually 100 hours or less, preferably 42 hours or less. By carrying out under such conditions, a polyimide precursor tends to be obtained at low cost and in good yield.
  • the pressure during the reaction may be normal pressure, pressurization or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • the solvent used when reacting the tetracarboxylic dianhydride or the like with the diamine compound or the like is not particularly limited.
  • the reaction solvent include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, and fluoro.
  • Halogened hydrocarbon solvent such as benzene; Ether solvent such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene; Ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone; ethylene glycol monomethyl ether, ethylene glycol Glycol-based solvents such as monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and propylene glycol monomethyl ether acetate; amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; dimethyl Sulphonic solvents such as sulfoxide; heterocyclic solvents such as pyridine, picolin, lutidine, quinoline, isoquinoline; phenolic solvents such as phenol and cresol; lactone solvents such as
  • the obtained polyimide precursor may be used as it is for the next imidization, or may be added to a poor solvent to precipitate it in a solid state before use.
  • the poor solvent to be used is not particularly limited and may be appropriately selected depending on the type of polyimide precursor.
  • the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. Above all, an alcohol solvent is preferable because a precipitate can be efficiently obtained, a boiling point is low, and drying tends to be easy.
  • One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • a polyimide can be obtained by dehydrating and cyclizing the polyimide precursor obtained by the above method or the like in the presence of a solvent. Imidization can be performed using any of the conventionally known methods. Examples of the imidization method include thermal imidization for thermal cyclization, chemical imidization for chemical cyclization, and the like. These imidization reactions may be carried out individually or in combination of two or more.
  • Examples of the solvent for heat imidizing the polyimide precursor include the same solvent used in the reaction for obtaining the polyimide precursor.
  • the solvent used for producing the polyimide precursor and the solvent used for producing the polyimide may be the same or different.
  • the water produced by imidization inhibits the ring closure reaction and may be discharged out of the system.
  • the concentration of the polyimide precursor at the time of the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By adjusting the concentration of the polyimide precursor in this range, it is possible to produce the polyimide precursor with a solution viscosity that is easy to produce and has high production efficiency.
  • the reaction temperature for imidization is not particularly limited, but is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 280 ° C. or lower, further preferably 250 ° C. or lower. .. It is preferable to carry out the reaction in this temperature range because the imidization reaction proceeds efficiently and reactions other than the imidization reaction tend to be suppressed.
  • the pressure during the reaction may be normal pressure, pressurization, or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • imidization accelerator that promotes imidization
  • a compound having a function of enhancing nucleophile and electrophile can be added.
  • the imidization accelerator include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-.
  • Tertiary amine compounds such as ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline; acetic acid, 4-hydroxyphenylacetic acid, 3-hydroxybenzoic acid, N-acetylglycine, N-benzoylglycine Carboxylic acid compounds such as 3,5-dihydroxyacetophenone, methyl 3,5-dihydroxybenzoate, pyrogallol, methyl gallate, ethyl gallate, polyvalent phenol compounds such as naphthalene-1,6-diol; 2-hydroxypyridine, 3 -Hydroxypyridine, 4-hydroxypyridine, 4-pyridinemethanol, N, N-dimethylaminopyridine, nicotine aldehyde, isonicotin aldehyde, picolin aldehyde, picolin aldehyde oxime, nicotine aldehyde oxime, isonicot
  • At least one selected from the group consisting of tertiary amine compounds, carboxylic acid compounds and heterocyclic compounds is preferable, and at least one selected from the group consisting of triethylamine, imidazole and pyridine controls the reaction rate. It is more preferable because it tends to be easy.
  • One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
  • the amount of the imidization accelerator used is usually 0.01 mol% or more, preferably 0.1 mol% or more, and further preferably 1 mol% or more, based on the carboxyl group of the polyimide precursor.
  • the amount of the imidization accelerator used is preferably 50 mol% or less, more preferably 10 mol% or less, based on the carboxyl group of the polyimide precursor.
  • the timing of adding the imidization accelerator can be appropriately adjusted, and may be before the start of heating or during heating. Further, it may be added in a plurality of times.
  • a polyimide can be obtained by chemically imidizing a polyimide precursor with a dehydration condensing agent in the presence of a solvent.
  • Examples of the solvent used for chemical imidization include the same solvents as those used for the reaction for obtaining the polyimide precursor described above.
  • dehydration condensing agent examples include N, N-2 substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride, tosyl chloride and the like.
  • acid anhydrides and halogenated compounds are preferable, and acid anhydrides are more preferable because the amount of chlorine is reduced and the imidization reaction tends to proceed efficiently.
  • acid anhydrides and halogenated compounds are preferable, and acid anhydrides are more preferable because the amount of chlorine is reduced and the imidization reaction tends to proceed efficiently.
  • One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
  • the amount of these dehydration condensing agents used is usually 0.1 mol or more, preferably 0.2 mol or more, and usually 1.6 mol or less, preferably 1.0 mol or less, with respect to 1 mol of the polyimide precursor. By setting the amount of the dehydration condensing agent used within this range, imidization can be performed efficiently.
  • the concentration of the polyimide precursor in the reaction solution during the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. .. By setting the concentration of the polyimide precursor in the range, the production efficiency can be increased, and the solution viscosity tends to be easy to produce.
  • the imidization reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 130 ° C. or lower, and more preferably 100 ° C. or lower. It is preferable to carry out the reaction in this temperature range because the imidization reaction tends to proceed efficiently. Further, it is preferable because side reactions other than the imidization reaction are suppressed.
  • the pressure during the reaction may be normal pressure, pressurization or depressurization.
  • the reaction atmosphere may be under air or under an inert atmosphere.
  • an imidization accelerator such as the above-mentioned tertiary amine compound can be added in the same manner as for heat imidization.
  • Polyimide can be directly obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like by using a conventionally known method. This method involves the synthesis and imidization of the poimide precursor, and the imidization without stopping the reaction or isolating the precursor.
  • the order and method of adding the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited.
  • the tetracarboxylic dianhydride and the like and the diamine compound and the like are added in order to the solvent, and the reaction up to imidization Polyimide can be obtained by stirring at a temperature at which
  • the amount of the diamine compound or the like is usually 0.7 mol or more, preferably 0.8 mol or more, usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of the tetracarboxylic dianhydride or the like.
  • the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution can be appropriately set according to each condition and the viscosity during the polymerization.
  • the total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution is not particularly set, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40. It is mass% or less.
  • concentration in the reaction solution is in an appropriate range, the molecular weight tends to be extended and stirring tends to be easy.
  • Examples of the solvent used in this reaction include the same solvents used in the reaction for obtaining the polyimide precursor described above.
  • heat imidization and / or chemical imidization can be adopted as in the case of obtaining a polyimide from a polyimide precursor.
  • the reaction conditions for heat imidization and chemical imidization in this case are the same as described above.
  • the obtained polyimide may be used as it is, or may be added to a poor solvent to precipitate the polyimide into a solid state, and then redissolved in another solvent to be used as a polyimide composition.
  • the poor solvent at this time is not particularly limited and can be appropriately selected depending on the type of polyimide.
  • the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. .. Above all, an alcohol solvent such as isopropyl alcohol is preferable because a precipitate can be efficiently obtained, the boiling point is low, and drying tends to be easy.
  • One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • Examples of the solvent for redissolving polyimide include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl.
  • -Amid solvent such as pyrrolidone; Aproton solvent such as dimethyl sulfoxide; Glycol solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; chloroform, Examples thereof include halogen-based solvents such as methylene chloride and 1,2-dichloroethane. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • the tensile strength of the polyimide of the present invention is not particularly limited, but is usually 50 MPa or more, preferably 70 MPa or more, more preferably 100 MPa or more, still more preferably 150 MPa or more in measurement at 23 ° C. and 50% humidity.
  • the tensile strength of the polyimide of the present invention is preferably 400 MPa or less, more preferably 300 MPa or less.
  • the tensile elastic modulus of the polyimide of the present invention is not particularly limited, but is usually 1500 MPa or more, preferably 1800 MPa or more, more preferably 2000 MPa or more, and particularly preferably 3000 MPa or more in measurement at 23 ° C. and 50% humidity.
  • the tensile elastic modulus of the polyimide of the present invention is preferably 20 GPa or less, more preferably 10 GPa or less.
  • the tensile elongation of the polyimide of the present invention is not particularly limited, but is usually 10% GL or more, preferably 20% GL or more, and more preferably 50 GL% or more in the measurement at 23 ° C. and 50% humidity.
  • the tensile elongation of the polyimide of the present invention is preferably 400% GL or less, more preferably 300% GL or less.
  • the polyimide has mechanical properties in such a range, so that a molded product having higher durability can be obtained.
  • the solvent solubility of the polyimide of the present invention is not particularly limited, but it is preferably dissolved in an aprotic polar solvent at room temperature (25 ° C.) in an amount of 5% by mass or more, and this solubility is more preferably 10% by mass.
  • the above is more preferably 15% by mass or more, and most preferably 20% by mass or more.
  • there is no upper limit to the solubility and it is preferable that the solubility is high, but it is usually 80% by mass or less. When the solvent solubility is in this range, the manufacturability is improved and the process compatibility such as coating is improved, which is preferable.
  • examples of the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyl lactone and the like.
  • One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
  • a film (polyimide film) can be produced using the polyimide of the present invention.
  • the production method is not particularly limited, and for example, it can be produced by applying a polyimide composition in which the polyimide of the present invention is dissolved in a solvent to a substrate by a casting method or the like.
  • the content of polyimide in the polyimide composition is not particularly limited, and can be appropriately adjusted according to the production process and the like.
  • the content of polyimide in the polyimide composition is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. When the polyimide content is in this range, film formation and handling in ordinary equipment are easy, which is preferable.
  • the polyimide composition of the present invention contains a solvent.
  • the solvent used in the polyimide composition of the present invention is not particularly limited, but the absolute value of the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is preferably 2 or more.
  • the polyimide molecules When a film is formed using a polyimide composition, the polyimide molecules interact with each other, and when the polyimide molecules are stacked and oriented, the obtained polyimide film has high performance, high elastic modulus, and excellent bending resistance. There is a tendency.
  • the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is within a specific range, the polyimide molecules are dried while being oriented during film formation, and a polyimide film having good elastic modulus and bending resistance can be obtained. Tends to be possible.
  • the absolute value of the difference between the solubility parameters (hereinafter, may be referred to as SP value) is more preferably 2.1 or more, and further preferably 2.5 or more. Further, the absolute value of the difference between the SP values is preferably 10 or less, and more preferably 8 or less.
  • SP value The absolute value of the difference between the solubility parameters
  • the absolute value of the difference in SP value is equal to or more than the above lower limit value, the solubility in a solvent does not become excessive, the stacking and compounding of polyimide molecules proceed during the film formation of the polyimide film, and the elastic modulus and bending resistance are excellent. There is a tendency to obtain a polyimide film.
  • the absolute value of the difference between the SP values is not more than the above upper limit value, the solubility of the polyimide in the solvent is improved, and the uniformity of the obtained film, the surface smoothness, and the like tend to be excellent.
  • the solubility parameter is Hansen's solubility parameter (HSP), which is an index showing the solubility of a substance in another substance.
  • the SP value is a three-dimensional space obtained by dividing the solubility parameter introduced by Hildebrand into three components of the dispersion term ⁇ D, the polarity term ⁇ P, and the hydrogen bond term ⁇ H.
  • the dispersion term ⁇ D indicates the effect due to the dispersion force
  • the polar term ⁇ P indicates the effect due to the dipole force
  • the hydrogen bond term ⁇ H indicates the effect due to the hydrogen bond force.
  • ⁇ D Energy derived from intermolecular dispersion force
  • ⁇ P Energy derived from intermolecular polar force
  • ⁇ H Energy derived from intermolecular hydrogen bonding force (Here, each unit is MPa 0. It is 5. ). Definitions and calculations of SP values are described in the literature below. Charles M. Hansen, Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007).
  • the dispersion term reflects the van der Waals force
  • the polarity term reflects the dipole moment
  • the hydrogen bond term reflects the action of water, alcohol, etc.
  • the SP value [ ⁇ D, ⁇ P, ⁇ H] can be easily estimated from its chemical structure by using, for example, the computer software Hansen Solubility Parameter in Practice (HSPiP). Specifically, it is obtained from the chemical structure by the Y-MB method implemented in HSPiP. When the chemical structure is unknown, it can be obtained by the sphere method implemented in HSPiP from the results of dissolution tests using a plurality of solvents.
  • HSPiP Hansen Solubility Parameter in Practice
  • Absolute value of the difference between the SP value for example, the SP value of solute (SP value based on the repeating unit of the polyimide in the present invention) ( ⁇ D 1, ⁇ P 1, ⁇ H 1) and then, the SP value of the solvent ([delta] D 2, [delta] P When 2 , ⁇ H 2 ), it can be calculated by the following formula.
  • SP value of the absolute value of the difference ⁇ ( ⁇ D 1 - ⁇ D 2) 2 + ( ⁇ P 1 - ⁇ P 2) 2 + ( ⁇ H 1 - ⁇ H 2) 2 ⁇ 0.5
  • the SP value based on the repeating unit of polyimide is the SP value of the structure in which the raw material monomer of polyimide is reacted one molecule at a time, and when the polyimide contains two or more kinds of repeating units, each repetition is performed. It is calculated proportionally from the content ratio of the unit.
  • the SP value of the mixed solvent can be obtained by proportional calculation from the SP value of each solvent and the usage ratio thereof.
  • the solvent various solvents can be mentioned as described later, but from the viewpoint of lowering the drying temperature at the time of film formation, a solvent having a low boiling point is preferable, and methylene chloride (SP value 19.8) is particularly preferable. Therefore, in the polyimide of the present invention, it is preferable that the SP value based on the repeating unit satisfies the above relationship with respect to the SP value of methylene chloride. That is, the polyimide of the present invention is usually 21.8 or more, preferably 21.9 or more, more preferably 22 when the value of (SP value based on the repeating unit of polyimide)-(SP value of methylene chloride) is positive.
  • It is 0.3 or more, preferably 29.8 or less, and more preferably 27.8 or less. When this value is negative, it is usually 17.8 or less, preferably 17.7 or less, more preferably 17.3 or less, 9.8 or more, and more preferably 11.8 or more.
  • the polyimide of the present invention preferably has a certain degree of solubility in the production solvent, that is, the SP value is close to each other.
  • the production solvent is obtained from the SP value based on the repeating unit of the polyimide of the present invention.
  • the value obtained by subtracting the SP value of is preferably ⁇ 3.0 or higher, particularly ⁇ 1.0 or higher, particularly 0.0 or higher, and 5.0 or lower, particularly 4.0 or lower, particularly 3.0 or lower. Is preferable.
  • the SP value based on the repeating unit of the polyimide of the present invention is preferably 20 or more, particularly 21 or more, particularly 23 or more, and 28 or less, particularly 27 or less, particularly 26 or less.
  • the polyimide composition may contain other components in addition to the polyimide and the solvent.
  • Other components include, for example, surfactants, antioxidants, lubricants, colorants, stabilizers, UV absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, leveling agents, defoamers, etc. Can be mentioned.
  • an inorganic filler or an organic filler such as powder, granular, plate, or fibrous may be blended as long as the object of the invention is not impaired.
  • These additive components may be added at any stage of any process for producing the polyimide precursor and / or the polyimide composition.
  • the polyimide composition of the present invention may contain a surfactant.
  • a surfactant tends to improve the solubility of polyimide in a solvent.
  • the surfactant include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant and the like.
  • the surfactant may be used alone or in combination of two or more.
  • cationic surfactant used in the present invention include amine type and quaternary ammonium salt type.
  • amine type include aliphatic amines such as polyoxyethylene alkylamines and alkylamine salts, and heterocyclic amine salts such as alkylimidazolines.
  • the quaternary ammonium salt type includes alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, polydiallyldimethylammonium salt; chlorine salt type such as alkyltrimethylammonium chloride and dialkyldimethylammonium chloride; alkyldimethylethylammonium.
  • Non-chlorine type such as ethyl sulfate; and the like.
  • anionic surfactant used in the present invention include sulfate ester type, phosphoric acid ester type, carboxylic acid type, and sulfonic acid type.
  • Specific examples of the sulfate ester type include alkyl sulfate ester, ethoxy sulfate ester, polyoxyethylene styrene phenyl sulfate ester, polyoxyethylene alkyl ether sulfate ester, long-chain alcohol sulfate ester, other sulfate esters, and salts thereof.
  • Specific examples of the phosphoric acid ester type include polyoxyethylene alkyl ether phosphoric acid esters and salts thereof.
  • carboxylic acid type examples include fatty acids, polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl ether sulfosuccinic acid, alkenyl succinic acid, polyacrylic acid, styrene-maleic acid copolymer ammonium, carboxymethyl cellulose, polyacrylic acid, and polycarboxylic acid. Acids and salts thereof may be mentioned.
  • sulfonic acid type examples include sulfonic acid, sulfosuccinic acid, alkylbenzene sulfonic acid, alkane sulfonic acid, alpha olefin sulfonic acid, phenol sulfonic acid, sodium naphthalene sulfonic acid formalin condensate, and salts thereof.
  • amphoteric surfactant used in the present invention include betaine type, amine oxide type, N-alkylamino acid type and imidazoline type.
  • betaine type include alkyl betaine, amide betaine such as aliphatic amide betaine, and the like.
  • amine oxide type include alkylamine oxides and the like.
  • N-alkyl amino acid type include N-alkyl- ⁇ -aminopropionate.
  • imidazoline type include 2-alkylimidazoline derivatives.
  • nonionic surfactant used in the present invention include ether type, ester type, ether ester type, polyhydric alcohol type, amide type, and polymer type.
  • ether type include polyoxyalkylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene alkyl amine.
  • ester type include sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, sucrose derivative, and fatty acid ester.
  • Examples of the ether ester type include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid ester, and polyoxyethylene hydrogenated castor oil ether.
  • Examples of the polyhydric alcohol type include alkyl glucosides and alkyl polyglucosides.
  • Specific examples of the amide type include alkylalkanolamides.
  • Specific examples of the polymer type include polyvinylpyrrolidone, a polyalkylene polyamine alkylene oxide adduct, and a polyalkylene polyimine alkylene oxide adduct.
  • nonionic surfactant examples include polyoxyethylene alkyl ethers such as Emargen 123P, Emargen 130K, Emargen 150, Emargen 430, Emargen 409PV, Emargen 705, Emargen 707, and Emargen 709 (manufactured by Kao); Sorbitane fatty acid esters such as (Daiichi Kogyo Seiyaku Co., Ltd.), New Coal 20, New Coal 60, and New Coal 80 (manufactured by Nippon Emulsifier); Examples thereof include sucrose fatty acid esters such as DK ester F-110 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and polyvinylpyrrolidone such as Pittscol K-30 and Pittscol K-40 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
  • polyoxyethylene alkyl ethers such as Emargen 123P, E
  • a nonionic surfactant By using a nonionic surfactant, the solubility of polyimide in a solvent tends to be improved.
  • the polyimide composition of the present invention may contain a leveling agent.
  • the inclusion of the leveling agent tends to improve the smoothness of the obtained polyimide film.
  • the leveling agent include silicone compounds and the like.
  • the silicone-based compound is not particularly limited, and for example, polyether-modified siloxane, polyether-modified polydimethylsiloxane, polyether-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, polyester-modified polydimethylsiloxane, and polyester-modified hydroxyl group.
  • Examples thereof include polydimethylsiloxane contained, polyester-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, highly polymerized silicone, amino-modified silicone, amino derivative silicone, phenyl-modified silicone, and polyether-modified silicone. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
  • the film forming method of the polyimide film using the above-mentioned polyimide composition is sometimes not limited, and examples thereof include a method of applying the polyimide composition to a substrate or the like.
  • Examples of the coating method include die coating, spin coating, dip coating, screen printing, spraying, casting method (single leaf method and continuous method), method using a coater, coating method by spraying, dipping method, calendar method and the like. .. These methods can be appropriately selected depending on the coated area, the shape of the surface to be coated, and the like. Of these, since the uniformity of the coating film thickness is good and the surface smoothness tends to be good, it is preferable to adopt a casting method or a method using a coater, and it is more preferable to use the casting method.
  • the method of volatilizing the solvent contained in the film formed by coating or the like there is no particular limitation on the method of volatilizing the solvent contained in the film formed by coating or the like.
  • the solvent is volatilized by heating the film formed by coating or the like.
  • the heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, and heating by contact using a hot plate / hot roll or the like.
  • the heating temperature when the solvent is volatilized a suitable temperature can be used depending on the type of solvent.
  • the heating temperature is usually above the boiling point of the solvent, preferably above the boiling point of the solvent + 50 ° C, more preferably above the boiling point of the solvent + 100 ° C, usually below the boiling point of the solvent + 200 ° C, preferably above the boiling point of the solvent + 180 ° C.
  • the boiling point of the solvent is more preferably + 150 ° C. or lower.
  • the solvent is preferably sufficiently volatilized.
  • the polyimide film of the present invention can be obtained, for example, by applying a polyimide composition containing the polyimide of the present invention and a casting solvent to a support as described above, heating the support, and peeling the film from the support.
  • the method of peeling the polyimide film from the support is not particularly limited, but a physical peeling method or a laser peeling method is preferable in that the polyimide film can be peeled off without impairing the performance of the film or the like.
  • Examples of the method of physically peeling include a method of obtaining a polyimide film by cutting off the peripheral edge of a laminate made of a polyimide film / support, a method of sucking the peripheral edge portion to obtain a polyimide film, and a method of fixing the peripheral edge and supporting a base material.
  • a method of obtaining a polyimide film by moving the film can be mentioned.
  • the thickness of the polyimide film of the present invention thus obtained is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 300 ⁇ m or less, preferably 200 ⁇ m or less.
  • the thickness is 1 ⁇ m or more, the polyimide film can obtain sufficient strength and can be obtained as a self-supporting film, and the handleability tends to be improved. Further, by setting the thickness to 300 ⁇ m or less, the uniformity of the film tends to be easily ensured.
  • the polyimide film of the present invention can also be used as a laminate.
  • a hard coat layer having a function of imparting scratch resistance, abrasion resistance, etc., a layer having a function of imparting optical compensation, etc., an adhesive layer, and the like can be provided on the polyimide film of the present invention.
  • the same or different layers may be provided on both sides of the polyimide film of the present invention.
  • the polyimide film of the present invention has a high surface hardness, excellent bending resistance, high light transmittance, elastic modulus, flexibility, transparency, high solvent solubility, and high device applicability. It is useful as a cover film for. In this application, it can be used as a laminate having a hard coat layer on the polyimide film of the present invention.
  • the hard coat layer can be formed directly on the polyimide film or through an adhesive layer or the like.
  • the hard coat layer is not particularly limited and can be formed by using a commonly used hard coat agent.
  • the hard coating agent include curable resins such as light and heat, inorganic materials, and curable resins containing inorganic materials.
  • the forming method can be selected according to each material. Further, a defoaming agent, a leveling agent, a thickener, an antistatic agent, an antifogging agent and the like may be appropriately added to the hard coating agent, if necessary.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 50 ⁇ m or more, and more preferably 60 ⁇ m or more.
  • the thickness of the hard coat layer is preferably 200 ⁇ m or less, and preferably 180 ⁇ m or less. When the thickness of the hard coat layer is within this range, it tends to be excellent in high surface hardness and bending resistance.
  • the pencil hardness of the surface of the hard coat layer in the laminate of the present invention is not particularly limited, but is preferably B or higher, more preferably F or higher, still more preferably H or higher, and particularly preferably 2H or higher.
  • the polyimide film / hard coat layer laminate has high transparency.
  • the YI (yellowness) of the laminate of the present invention is not particularly limited, but is preferably 3 or less, more preferably 2.8 or less, and further preferably 2 or less.
  • the haze of the laminate of the present invention is not particularly limited, but is preferably 3% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably less than 1%.
  • DMS Dynamic Viscoelasticity Measurement
  • Example 1 34.0 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 40.43 g of 4,4'-diamino-2,2'-dimethylbiphenyl, 2.7 g of terephthalic acid dihydrazide, 171 g of NMP, and 26 g of toluene were added, and the mixture was heated under reflux in an oil bath at 190 ° C. for 13 hours. Of the obtained reaction solution, 20 g was diluted 5-fold with DMAc.
  • Example 2 340 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 1, 14.6 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and 8. terephthalic acid dihydrazide.
  • Polyimide 2 was obtained in the same manner as in Example 1 except that 0 g, NMP was changed to 170 g, and toluene was changed to 30 g. The obtained polyimide 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Example 1 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride to 37.1 g, 4,4'-diamino-2,2'-dimethylbiphenyl to 19.1 g, terephthalic acid Polyimide 3 was obtained in the same manner as in Example 1 except that dihydrazide was changed to 5.8 g of isophthalic acid dihydrazide, NMP was changed to 186 g, and toluene was changed to 37.2 g. The obtained polyimide 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 3,3', 4,4'-biscyclohexanetetracarboxylic acid dianhydride 25.5 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer.
  • -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 13.2 g, isophthalic acid dihydrazide 8.0 g, NMP 109 g, xylene 72.4 g were added, heated and stirred in an oil bath at 80 ° C for 1 hour, and then 200 ° C. The mixture was heated under reflux for 13 hours in the oil bath of.
  • Polyimide 4 was obtained from the obtained reaction solution in the same manner as in Example 1. The obtained polyimide 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 30.9 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and 24.0 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl of Example 4.
  • Polyimide 5 was obtained in the same manner as in Example 4 except that isophthalic acid dihydrazide was changed to 4.9 g of terephthalic acid dihydrazide, NMP was changed to 140 g, and xylene was changed to 92.7 g.
  • the obtained polyimide 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 36.6 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 19.1 g of 4,4'-diamino-2,2'-dimethylbiphenyl, 5.8 g of terephthalic acid dihydrazide, 246 g of NMP, and 49.2 g of toluene were added, and the mixture was heated under reflux in an oil bath at 190 ° C. for 13 hours.
  • Example 7 34.0 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 6, 20.43 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and dihydrazide terephthalate.
  • Polyimide 7 was obtained in the same manner as in Example 6 except that 2.7 g, NMP was changed to 171 g, and toluene was changed to 26 g.
  • the SP value of the obtained polyimide 7 was calculated to be 26.4. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 6.6, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 3.4.
  • a film was formed using the obtained polyimide 7, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
  • Example 8 340 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 6, 14.6 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and 8. terephthalic acid dihydrazide.
  • Polyimide 8 was obtained in the same manner as in Example 6 except that 0 g, NMP was changed to 170 g, and toluene was changed to 30 g.
  • the SP value of the obtained polyimide 8 was calculated to be 28.3. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 8.5, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 5.3.
  • a film was formed using the obtained polyimide 8, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
  • Example 9 Example 6 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride to 37.1 g, 4,4'-diamino-2,2'-dimethylbiphenyl to 19.1 g, terephthalic acid Polyimide 9 was obtained in the same manner as in Example 6 except that dihydrazide was changed to 5.8 g of isophthalic acid dihydrazide, NMP was changed to 186 g, and toluene was changed to 37.2 g. The SP value of the obtained polyimide 9 was calculated to be 27.2.
  • Example 10 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 25.5 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer.
  • -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 13.2 g, isophthalic acid dihydrazide 8.0 g, NMP 109 g, xylene 72.4 g were added, and the mixture was heated and stirred in an oil bath at 80 ° C. for 1 hour, and then heated to 200 ° C. The mixture was heated under reflux in an oil bath for 13 hours.
  • the obtained reaction solution was used in the same manner as in Example 5 to obtain Polyimide 10.
  • the SP value of the obtained polyimide 10 was calculated to be 28.2. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 8.4, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 5.2.
  • a film was formed using the obtained polyimide 10, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
  • Example 11 30.9 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and 24.0 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl of Example 8.
  • Polyimide 11 was obtained in the same manner as in Example 10 except that isophthalic acid dihydrazide was changed to 4.9 g of terephthalic acid dihydrazide, NMP was changed to 140 g, and xylene was changed to 92.7 g.
  • the SP value of the obtained polyimide 11 was calculated to be 26.0.
  • Example 1 In Example 1, 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride was added to 42.5 g, and 4,4'-diamino-2,2'-dimethylbiphenyl was added to 2,2'-bis. (Trifluoromethyl) -4,4'-diaminobiphenyl 33.6 g, terephthalic acid dihydrazide to 4,4'-diaminobenzanilide 8.0 g, NMP to 252 g, toluene to 50.4 g Polyimide 12 was obtained in the same manner as in Example 1. The obtained polyimide 12 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 In Example 1, 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride was added to 31.8 g, and 4,4'-diamino-2,2'-dimethylbiphenyl was added to 2,2'-bis.
  • HBPDA 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride m-TB: 4,4'-diamino-2,2'-dimethylbiphenyl 6F-m-TB: 2,2'-bis (Trifluoromethyl) -4,4'-diaminobiphenyl
  • TPDH terephthalic acid dihydrazide
  • TPC terephthalic acid chloride
  • IPDH isophthalic acid dihydrazide
  • ODBC 4,4'-oxybis (benzoyl) chloride
  • BPDA 3,3', 4,4 '-Biphenyltetracarboxylic dianhydride
  • DABA 4,4'-diaminobenzanilide
  • the structure (1) ratio in Table 1 is a value obtained by calculation from the usage ratio of the raw material compound used, but it is considered that the difference from the analysis value by the above-mentioned analysis method is small.
  • the polyimide of the present invention has high light transmittance, elastic modulus, flexibility, transparency, and high solvent solubility.
  • Comparative Example 1 had a low elastic modulus
  • Comparative Example 2 had difficulty in film formation.
  • Comparative Examples 3 and 4 have a large amount of chlorine, low device applicability, and Y. I. The value is high.
  • the polyimide film using the polyimide having a specific SP value has a high elastic modulus and excellent bending resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A polyimide which comprises a unit derived from a tetracarboxylic dianhydride and a unit derived from a diamine compound and has a structure represented by general formula (1) and in which the chlorine content is 50 μg or less per gram of the polyimide. Thus, provided is a polyimide which has a high light permeability, high modulus of elasticity, high flexibility, high transparency and high solubility in a solvent and is highly applicable to devices. In general formula (1), R represents at least one group selected from the group consisting of a divalent aromatic cyclic group, a divalent heterocyclic group, a divalent alicyclic group and a divalent aliphatic chain group, each optionally having a substituent. * represents a bond.

Description

ポリイミドPolyimide
 本発明は、光透過性、弾性率、柔軟性、透明性、及び溶媒溶解性が高く、デバイス適用性に優れたポリイミドに関する。 The present invention relates to a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
 近年各種デバイス用途として、耐熱性、光透過性を有し、弾性率が高く、かつ柔軟性のある材料が求められている。 In recent years, various device applications have been demanding materials having heat resistance, light transmission, high elastic modulus, and flexibility.
 上記用途に対し、例えば、芳香族ポリイミド(例えば、DuPont社製「カプトン」)は、高い耐熱性を有し、軽く柔軟なポリイミドであることが知られている。しかしながら、芳香族ポリイミドは、褐色を呈し、高い光透過性が必要とされる用途に使用することはできなかった。 For the above applications, for example, aromatic polyimide (for example, "Kapton" manufactured by DuPont) is known to be a light and flexible polyimide having high heat resistance. However, the aromatic polyimide has a brown color and cannot be used in applications that require high light transmission.
 そこで、高い光透過性を示すポリイミドの開発が進められている(特許文献1)。しかし特許文献1では、耐熱性に関する記載はあるものの、弾性率や柔軟性に関する検討は十分にされていない。 Therefore, the development of polyimide showing high light transmission is underway (Patent Document 1). However, in Patent Document 1, although there is a description regarding heat resistance, studies on elastic modulus and flexibility have not been sufficiently conducted.
 ポリイミドは耐熱性高分子材料として知られている。しかし、ポリイミドは、不溶、不融なものが多く、またその耐熱性ゆえ成形温度が高く、長時間の加熱が必要となり、プロセス負荷が大きい。即ち、樹脂の耐熱性を維持したまま成形温度を下げたり、成形時間を短くしたりすると、残留溶媒の増大や、機械物性の低下が起こる。 Polyimide is known as a heat-resistant polymer material. However, many polyimides are insoluble and insoluble, and because of their heat resistance, the molding temperature is high, heating for a long time is required, and the process load is large. That is, if the molding temperature is lowered or the molding time is shortened while maintaining the heat resistance of the resin, the residual solvent increases and the mechanical properties deteriorate.
 ポリイミドのガラス転移温度(Tg)を低下させることで、成形温度を低下させることが可能であるが、Tgの低下で耐熱性やその他の物性が低下する傾向がある。そこで一般的に、成形時のTgを下げ、さらに架橋させることで成形後のTgを上げることが提唱されている。 It is possible to lower the molding temperature by lowering the glass transition temperature (Tg) of polyimide, but the lowering of Tg tends to lower the heat resistance and other physical properties. Therefore, it is generally proposed to lower the Tg at the time of molding and further increase the Tg after molding by cross-linking.
 特許文献2には、耐熱性に優れる構造として、ポリイミドの末端に熱架橋性の反応基を含有させた熱架橋性ポリイミドが提案されている。
 特許文献3には、溶融温度を下げるための末端変性イミドオリゴマーが提案されている。
 特許文献4には、アミド基を有する感光性ジアミンを用いた液晶配向用ポリイミドが提案されている。
Patent Document 2 proposes a heat-crosslinkable polyimide in which a heat-crosslinkable reactive group is contained at the end of the polyimide as a structure having excellent heat resistance.
Patent Document 3 proposes a terminally modified imide oligomer for lowering the melting temperature.
Patent Document 4 proposes a polyimide for liquid crystal orientation using a photosensitive diamine having an amide group.
国際公開第2011/099518号International Publication No. 2011/099518 特開2000-281784号公報Japanese Unexamined Patent Publication No. 2000-281784 特開平6-32854号公報Japanese Unexamined Patent Publication No. 6-32854 特開2019-49700号公報JP-A-2019-49700
 特許文献2,3で提示される構造では、熱架橋性や末端変性を導入することで柔軟性が損なわれる。
 特許文献4に示されるポリイミドにおいて、ジアミン化合物内にアミド基を有していても、弾性率向上への寄与は少ない。
In the structures presented in Patent Documents 2 and 3, flexibility is impaired by introducing thermal crosslinkability and terminal modification.
In the polyimide shown in Patent Document 4, even if the diamine compound has an amide group, the contribution to the improvement of the elastic modulus is small.
 本発明の課題は、光透過性、弾性率、柔軟性、透明性、及び溶媒溶解性が高く、デバイス適用性に優れたポリイミドを提供することにある。 An object of the present invention is to provide a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
 本発明者は、特定の構造を含むポリイミドが上記課題を解決しうることを見出し、本発明を完成させた。 The present inventor has found that a polyimide containing a specific structure can solve the above-mentioned problems, and has completed the present invention.
 即ち、本発明は以下の要旨とする。 That is, the present invention has the following gist.
[1] テトラカルボン酸二無水物に由来する単位及びジアミン化合物に由来する単位を有するポリイミドであって、下記一般式(1)に示す構造を有し、ポリイミド1g中の塩素量が50μg以下である、ポリイミド。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。*は結合手を示す。
[2] 前記テトラカルボン酸二無水物に由来する単位として、脂肪族骨格を有する、[1]に記載のポリイミド。
[3] 前記一般式(1)のRが、2価の、芳香環基及び鎖状脂肪族基からなる群より選択される少なくとも1つである、[1]又は[2]に記載のポリイミド。
[4] 前記一般式(1)に示す構造が、少なくともテトラカルボン酸二無水物とジヒドラジド化合物との反応で得られる構造を含む、[1]~[3]のいずれかに記載のポリイミド。
[5] 25℃における弾性率が4GPa以上である、[1]~[4]のいずれかに記載のポリイミド。
[6] 非プロトン性極性溶媒に25℃で5質量%以上80質量%以下溶解する、[1]~[5]のいずれかに記載のポリイミド。
[7] ガラス転移温度が150℃以上である、[1]~[6]のいずれかに記載のポリイミド。
[8] [1]~[7]のいずれかに記載のポリイミド及び溶媒を含む組成物であって、該溶媒の溶解度パラメータと該ポリイミドの繰返し単位に基づく溶解度パラメータの差の絶対値が2以上である、組成物。
[9] [8]に記載の組成物より得られたフィルム。
[10] 前記フィルムの膜厚が、1μm以上300μm以下である、[9]に記載のフィルム。
[11] 前記フィルムが、キャスト法により得られたものである、[9]又は[10]に記載のフィルム。
[12] [9]~[11]のいずれかに記載のフィルム上にハードコート層を有する、積層体。
[13] 前記ハードコート層の膜厚が、50μm以上200μm以下である、[12]に記載の積層体。
[1] A polyimide having a unit derived from a tetracarboxylic dianhydride and a unit derived from a diamine compound, having a structure represented by the following general formula (1), and having a chlorine content of 50 μg or less in 1 g of the polyimide. There is polyimide.
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
[2] The polyimide according to [1], which has an aliphatic skeleton as a unit derived from the tetracarboxylic dianhydride.
[3] The polyimide according to [1] or [2], wherein R of the general formula (1) is at least one selected from the group consisting of a divalent aromatic ring group and a chain aliphatic group. ..
[4] The polyimide according to any one of [1] to [3], wherein the structure represented by the general formula (1) includes at least a structure obtained by a reaction of a tetracarboxylic dianhydride and a dihydrazide compound.
[5] The polyimide according to any one of [1] to [4], which has an elastic modulus at 25 ° C. of 4 GPa or more.
[6] The polyimide according to any one of [1] to [5], which is dissolved in an aprotic polar solvent at 25 ° C. in an amount of 5% by mass or more and 80% by mass or less.
[7] The polyimide according to any one of [1] to [6], wherein the glass transition temperature is 150 ° C. or higher.
[8] A composition containing the polyimide and the solvent according to any one of [1] to [7], wherein the absolute value of the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is 2 or more. The composition.
[9] A film obtained from the composition according to [8].
[10] The film according to [9], wherein the film thickness is 1 μm or more and 300 μm or less.
[11] The film according to [9] or [10], wherein the film is obtained by a casting method.
[12] A laminate having a hard coat layer on the film according to any one of [9] to [11].
[13] The laminate according to [12], wherein the hard coat layer has a film thickness of 50 μm or more and 200 μm or less.
 本発明によれば、光透過性、弾性率、柔軟性、透明性、及び溶媒溶解性が高く、デバイス適用性に優れたポリイミドを提供することができる。 According to the present invention, it is possible to provide a polyimide having high light transmittance, elastic modulus, flexibility, transparency, and solvent solubility, and excellent device applicability.
 以下に、本発明の実施の形態を詳細に説明する。以下に例示するものや方法等は本発明の実施形態の一例(代表例)であり、本発明はその要旨を逸脱しない限り、これらの内容に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. The following examples and methods are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these contents as long as the gist of the present invention is not deviated.
 本発明のポリイミドとは、主鎖にイミド環が含まれるものであり、ポリアミック酸、ポリアミック酸エステル及びポリイミドから選択される少なくとも1つで構成される。 The polyimide of the present invention contains an imide ring in the main chain, and is composed of at least one selected from polyamic acid, polyamic acid ester, and polyimide.
 本発明において、室温とは、特段の記載がない限り25℃を示す。また、本発明において、「弾性率」とは「貯蔵弾性率」をさす。 In the present invention, room temperature means 25 ° C. unless otherwise specified. Further, in the present invention, the "elastic modulus" refers to the "storage elastic modulus".
 本発明のポリイミドは、テトラカルボン酸二無水物に由来する単位及びジアミン化合物に由来する単位を有するポリイミドであって、下記一般式(1)に示す構造を有し、ポリイミド1g中の塩素量が50μg以下であることを特徴とする。 The polyimide of the present invention is a polyimide having a unit derived from a tetracarboxylic dianhydride and a unit derived from a diamine compound, has a structure represented by the following general formula (1), and has a chlorine content in 1 g of the polyimide. It is characterized in that it is 50 μg or less.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。*は結合手を示す。 In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
[メカニズム]
 本発明のポリイミドが、光透過性、弾性率、柔軟性、透明性、及び溶媒溶解性が高く、さらにデバイス適用性に優れるという効果を奏する理由については、以下が挙げられる。
[mechanism]
The reasons why the polyimide of the present invention has high light transmittance, elastic modulus, flexibility, transparency, solvent solubility, and excellent device applicability can be mentioned as follows.
 ポリイミドに一般式(1)で示される構造を導入することで、電荷移動錯体ではない水素結合性架橋構造が有機基Rの両側に形成されることで、分子鎖配向を低減し、透明性や柔軟性を損なわずに弾性率を高めることができる。また、該水素結合性架橋構造が有機基Rの両側に形成されることで、ポリイミド分子の平面性が低下し、溶媒溶解性を向上することができる。 By introducing the structure represented by the general formula (1) into polyimide, hydrogen-bonding crosslinked structures that are not charge transfer complexes are formed on both sides of the organic group R, thereby reducing the molecular chain orientation and improving transparency. The elastic modulus can be increased without impairing the flexibility. Further, by forming the hydrogen-bonding crosslinked structure on both sides of the organic group R, the flatness of the polyimide molecule can be lowered and the solvent solubility can be improved.
 また、ポリイミド1g中の塩素量が50μg以下であることで、デバイス適用性に優れたものとすることができる。
 具体的には、本ポリイミドを適用するデバイス等の製造プロセスにおいて、塩素の溶出・揮発による製造ラインの汚染を抑制することができる。また、ポリイミドから塩素が溶出・揮発することによって、デバイスを構成する他の部材、層等への腐食や絶縁性等への電気特性への悪影響を抑制することができる。さらに、ポリイミド1g中の塩素量が50μg以下であることで、ポリイミドの透明性(Y.I.値)の低下を抑制することができる。
Further, when the amount of chlorine in 1 g of polyimide is 50 μg or less, the device applicability can be made excellent.
Specifically, in the manufacturing process of a device or the like to which this polyimide is applied, contamination of the manufacturing line due to elution and volatilization of chlorine can be suppressed. Further, when chlorine is eluted and volatilized from the polyimide, it is possible to suppress corrosion of other members and layers constituting the device and adverse effects on electrical characteristics such as insulation. Further, when the amount of chlorine in 1 g of polyimide is 50 μg or less, it is possible to suppress a decrease in transparency (YI value) of polyimide.
 一般式(1)に示す構造は、ジカルボン酸化合物とジアミン化合物との反応及び/又はテトラカルボン酸二無水物とジヒドラジド化合物との反応に由来するものである。前記ジカルボン酸化合物は、芳香族ジカルボン酸、複素環ジカルボン酸、脂環式ジカルボン酸、鎖状脂肪族ジカルボン酸等の化合物が挙げられる。なお、ジカルボン酸化合物は、反応性向上のためにカルボキシル基をハロゲン化した酸ハライド、例えば、カルボキシル基を塩素化した酸クロライドとして用いることもでき、本発明においては、ジカルボン酸化合物としてジカルボン酸クロライド等のハライドを用いた場合でも、ジカルボン酸化合物とジアミン化合物との反応に由来する構造という。 The structure represented by the general formula (1) is derived from the reaction between the dicarboxylic acid compound and the diamine compound and / or the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. Examples of the dicarboxylic acid compound include compounds such as aromatic dicarboxylic acid, heterocyclic dicarboxylic acid, alicyclic dicarboxylic acid, and chain aliphatic dicarboxylic acid. The dicarboxylic acid compound can also be used as an acid halide in which a carboxyl group is halogenated in order to improve reactivity, for example, an acid chloride in which a carboxyl group is chlorinated. In the present invention, the dicarboxylic acid chloride is used as the dicarboxylic acid compound. Even when a halide such as the above is used, it is said to be a structure derived from the reaction between the dicarboxylic acid compound and the diamine compound.
[ポリイミド1g中の塩素量]
本発明のポリイミド1g中の塩素量は50μg以下であり、好ましくは40μg以下、より好ましくは30μg以下、さらに好ましくは20μg以下である。塩素量の下限は特に限定されず0μgでもよい。塩素量が上記上限以下であることで、本ポリイミドを適用するデバイス及びデバイス製造時の悪影響を抑制することができる。また、塩素量が上記上限以下であることで、ポリイミドの透明性(Y.I.値)の低下を抑制することができる。
[Amount of chlorine in 1 g of polyimide]
The amount of chlorine in 1 g of the polyimide of the present invention is 50 μg or less, preferably 40 μg or less, more preferably 30 μg or less, still more preferably 20 μg or less. The lower limit of the amount of chlorine is not particularly limited and may be 0 μg. When the amount of chlorine is not more than the above upper limit, it is possible to suppress an adverse effect at the time of manufacturing a device to which this polyimide is applied and a device. Further, when the amount of chlorine is not more than the above upper limit, it is possible to suppress a decrease in the transparency (YI value) of the polyimide.
 本発明のポリイミド1g中の塩素量を50μg以下とする方法は特に限定されないが、テトラカルボン酸二無水物とジヒドラジド化合物とを反応させてポリイミドを得る方法;ポリイミド製造時に用いる溶媒等に、塩素系溶媒の使用を避ける方法;ポリイミド製造時にガラス器具の使用を避ける方法;純水洗浄を行う方法;及びこれらの方法の組み合わせが挙げられる。 The method for reducing the amount of chlorine in 1 g of the polyimide of the present invention to 50 μg or less is not particularly limited, but a method for obtaining a polyimide by reacting a tetracarboxylic dianhydride with a dihydrazide compound; a chlorine-based solvent or the like used in the production of the polyimide is used. Methods of avoiding the use of solvents; methods of avoiding the use of glassware during polyimide production; methods of performing pure water cleaning; and combinations of these methods can be mentioned.
 特に、本発明のポリイミドを得る方法として、テトラカルボン酸二無水物とジヒドラジド化合物との反応によりポリイミドを得る方法を用いることが好ましい。 In particular, as a method for obtaining the polyimide of the present invention, it is preferable to use a method for obtaining a polyimide by reacting a tetracarboxylic dianhydride with a dihydrazide compound.
 一般式(1)に示す構造を有するポリイミドを得る方法として、カルボキシル基を塩素化した酸クロライドを用いる方法等もあるが、この方法であるとポリイミド1g中の塩素量が高くなる傾向にある。 As a method for obtaining a polyimide having a structure represented by the general formula (1), there is also a method using an acid chloride in which a carboxyl group is chlorinated, but this method tends to increase the amount of chlorine in 1 g of polyimide.
[ポリイミドの構造]
 本発明のポリイミドの構造は、一般式(1)に示す構造を有していれば特に限定されないが、テトラカルボン酸二無水物に由来する単位(以下、テトラカルボン酸残基と表すことがある。)及びジアミン化合物に由来する単位(以下、ジアミン残基と表すことがある。)を有する。
[Polyimide structure]
The structure of the polyimide of the present invention is not particularly limited as long as it has the structure represented by the general formula (1), but may be expressed as a unit derived from tetracarboxylic dianhydride (hereinafter, referred to as a tetracarboxylic acid residue). ) And a unit derived from a diamine compound (hereinafter, may be referred to as a diamine residue).
<テトラカルボン酸二無水物に由来する単位(テトラカルボン酸残基)>
 本発明のポリイミドに含まれるテトラカルボン酸残基を誘導するテトラカルボン酸二無水物としては、脂肪族テトラカルボン酸二無水物(脂肪族テトラカルボン酸二無水物は、脂環式テトラカルボン酸二無水物と鎖状脂肪族テトラカルボン酸二無水物を含む。)、芳香族テトラカルボン酸二無水物等が挙げられる。これらのテトラカルボン酸二無水物は、1種を単独で用いても、2種以上を任意の比率及び組み合わせで用いてもよい。
 本発明のポリイミドに含まれるテトラカルボン酸残基は、より電荷移動錯体の形成を抑制し、光透過性及び溶媒溶解性を高めることができることから、脂肪族骨格を有することが好ましい。
<Unit derived from tetracarboxylic dianhydride (tetracarboxylic acid residue)>
The tetracarboxylic dianhydride that induces the tetracarboxylic acid residue contained in the polyimide of the present invention is an aliphatic tetracarboxylic dianhydride (the aliphatic tetracarboxylic dianhydride is an alicyclic tetracarboxylic dianhydride). Includes anhydrides and chain aliphatic tetracarboxylic dianhydrides), aromatic tetracarboxylic dianhydrides and the like. One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
The tetracarboxylic acid residue contained in the polyimide of the present invention preferably has an aliphatic skeleton because it can further suppress the formation of a charge transfer complex and enhance light transmission and solvent solubility.
<<脂肪族テトラカルボン酸二無水物>>
 脂肪族テトラカルボン酸二無水物としては、脂環式テトラカルボン酸二無水物及び鎖状脂肪族テトラカルボン酸二無水物が挙げられる。
<< Aliphatic tetracarboxylic dianhydride >>
Examples of the aliphatic tetracarboxylic dianhydride include an alicyclic tetracarboxylic dianhydride and a chain aliphatic tetracarboxylic dianhydride.
(脂環式テトラカルボン酸二無水物)
 脂環式テトラカルボン酸二無水物としては、例えば、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物などが挙げられる。
(Alicyclic tetracarboxylic dianhydride)
Examples of the alicyclic tetracarboxylic dianhydride include 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1 , 2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, tricyclo [6.4.0.0 2, 7 ] Dodecane-1,8: 2,7-tetracarboxylic dianhydride, Bicyclo [2.2.2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 4- Examples thereof include (2,5-dioxo tetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride.
(鎖状脂肪族テトラカルボン酸二無水物)
 鎖状脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、meso-ブタン-1,2,3,4-テトラカルボン酸二無水物等が挙げられる。
(Chain aliphatic tetracarboxylic dianhydride)
Examples of the chain aliphatic tetracarboxylic dianhydride include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, meso-butane-1,2,3,4-tetracarboxylic dianhydride and the like. Can be mentioned.
 本発明のポリイミドは、脂肪族テトラカルボン酸二無水物のなかでも、脂環式テトラカルボン酸二無水物に由来するテトラカルボン酸残基を有することが好ましく、なかでも3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物に由来するテトラカルボン酸残基を有することがより好ましく、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物に由来するテトラカルボン酸残基を有することがさらに好ましい。 Among the aliphatic tetracarboxylic dianhydrides, the polyimide of the present invention preferably has a tetracarboxylic acid residue derived from the alicyclic tetracarboxylic dianhydride, and among them, 3,3', 4, Tetracarboxylic acid residue derived from 4'-biscyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride It is more preferable to have a group, and it is further preferable to have a tetracarboxylic acid residue derived from 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride.
<<芳香族テトラカルボン酸二無水物>>
 芳香族テトラカルボン酸二無水物としては、1分子内に1個の芳香環を有するテトラカルボン酸二無水物、1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物、1分子内に縮合芳香環を有するテトラカルボン酸二無水物等が挙げられる。
<< Aromatic Tetracarboxylic Acid Dianhydride >>
Examples of the aromatic tetracarboxylic acid dianhydride include tetracarboxylic acid dianhydride having one aromatic ring in one molecule, tetracarboxylic acid dianhydride having two or more independent aromatic rings in one molecule, and 1 Examples thereof include tetracarboxylic acid dianhydride having a condensed aromatic ring in the molecule.
 これらの中でも、製造時の粘度が制御しやすく、溶媒溶解性の向上や、塗膜柔軟性が向上する傾向があるため、1分子内に1個の芳香環を有するテトラカルボン酸二無水物又は1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物が好ましく、特に1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物が好ましい。 Among these, tetracarboxylic dianhydride having one aromatic ring in one molecule or tetracarboxylic dianhydride having one aromatic ring in one molecule tends to be easy to control the viscosity at the time of production, improve solvent solubility, and improve coating flexibility. A tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is preferable, and a tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule is particularly preferable.
(1分子内に1個の芳香環を有するテトラカルボン酸二無水物)
 1分子内に1個の芳香環を有するテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物等が挙げられる。
(Tetracarboxylic dianhydride having one aromatic ring in one molecule)
Examples of the tetracarboxylic dianhydride having one aromatic ring in one molecule include pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride and the like.
(1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物)
 1分子内に独立した2以上の芳香環を有するテトラカルボン酸二無水物としては、例えば、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、2,2’,6,6’-ビフェニルテトラカルボン酸二無水物等が挙げられる。
(Tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule)
Examples of the tetracarboxylic dianhydride having two or more independent aromatic rings in one molecule include 1,1-bis (2,3-dicarboxyphenyl) ethanedianhydride and bis (2,3-di). Carboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4) -Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3- Dicarboxyphenyl) ether dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 4,4'- Oxydiphthalic dianhydride, 4,4- (p-phenylenedioxy) diphthalic dianhydride, 4,4- (m-phenylenedioxy) diphthalic dianhydride, 2,2', 6,6'- Examples thereof include biphenyltetracarboxylic dianhydride.
(1分子内に縮合芳香環を有するテトラカルボン酸二無水物)
 1分子内に縮合芳香環を有するテトラカルボン酸二無水物としては、1,2,5,6-ナフタレンジカルボン酸二無水物、1,4,5,8-ナフタレンジカルボン酸二無水物、2,3,6,7-ナフタレンジカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。
(Tetracarboxylic dianhydride having a condensed aromatic ring in one molecule)
Examples of the tetracarboxylic dianhydride having a condensed aromatic ring in one molecule include 1,2,5,6-naphthalenedicarboxylic dianhydride, 1,4,5,8-naphthalenedicarboxylic dianhydride, 2, 3,6,7-naphthalenedicarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7 , 8-Phenyltetracarboxylic dianhydride and the like.
<<その他のテトラカルボン酸二無水物>>
 テトラカルボン酸二無水物としては、上記以外に、シリコーン系テトラカルボン酸二無水物やフッ素原子を含むテトラカルボン酸二無水物を用いることもできる。フッ素原子を含むテトラカルボン酸二無水物としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(別名:4,4’-(ヘキサフルオロイソプロピリデン)-ジフタル酸二無水物)、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’,5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)ジフタル酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’,5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)ジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等が挙げられる。
<< Other tetracarboxylic dianhydrides >>
As the tetracarboxylic dianhydride, in addition to the above, a silicone-based tetracarboxylic dianhydride or a tetracarboxylic dianhydride containing a fluorine atom can also be used. Examples of the tetracarboxylic dianhydride containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (also known as). : 4,4'-(hexafluoroisopropyridene) -diphthalic dianhydride), 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane Dichloride, 2,2'-bis (trifluoromethyl) -4,4', 5,5'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluorotrimethylethylene) diphthalic acid dianhydride , 4,4'-(octafluorotetramethylene) diphthalic acid dianhydride, 2,2'-bis (trifluoromethyl) -4,4', 5,5'-biphenyltetracarboxylic dianhydride, 4, 4'-(hexafluorotrimethylethylene) diphthalic acid dianhydride, 4,4'-(octafluorotetramethylene) diphthalic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1 , 1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,1,3,3,3-hexafluoropropanedianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1 , 1,1,3,3,3-hexafluoropropanedianhydride and the like.
 本発明のポリイミドに含まれる全テトラカルボン酸残基に対する脂肪族テトラカルボン酸二無水物に由来するテトラカルボン酸残基の割合は特に制限はないが、10mol%以上が好ましく、25mol%以上がより好ましく、40mol%以上がさらに好ましく、50mol%以上がよりさらに好ましく、60mol%以上が特に好ましく、65mol%以上が最も好ましい。本発明のポリイミドに含まれる全テトラカルボン酸残基に対する脂肪族テトラカルボン酸二無水物に由来するテトラカルボン酸残基の割合の上限には特に制限はなく100mol%でもよい。脂肪族テトラカルボン酸二無水物に由来するテトラカルボン酸残基の割合が上記下限値以上であることで、溶媒への溶解性が高くなる傾向にある。 The ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited, but is preferably 10 mol% or more, more preferably 25 mol% or more. Preferably, 40 mol% or more is further preferable, 50 mol% or more is further preferable, 60 mol% or more is particularly preferable, and 65 mol% or more is most preferable. The upper limit of the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic acid dianhydride to the total tetracarboxylic acid residue contained in the polyimide of the present invention is not particularly limited and may be 100 mol%. When the ratio of the tetracarboxylic acid residue derived from the aliphatic tetracarboxylic dianhydride is at least the above lower limit value, the solubility in a solvent tends to be high.
<ジアミン化合物に由来する単位(ジアミン残基)>
本発明のポリイミドに含まれるジアミン残基は、特に限定されない。本発明のポリイミドに含まれるジアミン残基を誘導する化合物としては、芳香族ジアミン化合物、脂肪族ジアミン化合物(脂肪族ジアミン化合物は脂環式ジアミン化合物と鎖状脂肪族ジアミン化合物を含む。)等のジアミン化合物が挙げられる。ジアミン残基は、ジイソシアネート化合物、ジヒドラジド化合物等から誘導することもできる。これらのジアミン残基を誘導する化合物は1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<Unit derived from diamine compound (diamine residue)>
The diamine residue contained in the polyimide of the present invention is not particularly limited. Examples of the compound for inducing the diamine residue contained in the polyimide of the present invention include aromatic diamine compounds and aliphatic diamine compounds (aliphatic diamine compounds include alicyclic diamine compounds and chain aliphatic diamine compounds). Diamine compounds can be mentioned. The diamine residue can also be derived from a diisocyanate compound, a dihydrazide compound, or the like. As the compound for inducing these diamine residues, one kind may be used alone, or two or more kinds may be used in any ratio and combination.
<<芳香族ジアミン化合物>>
 芳香族ジアミン化合物としては、1分子内に1個の芳香環を有するジアミン化合物、1分子内に縮合芳香環を有するジアミン化合物、1分子内に独立した2つ以上の芳香環を有するジアミン化合物が挙げられる。
<< Aromatic diamine compound >>
Examples of the aromatic diamine compound include a diamine compound having one aromatic ring in one molecule, a diamine compound having a condensed aromatic ring in one molecule, and a diamine compound having two or more independent aromatic rings in one molecule. Can be mentioned.
(1分子内に1個の芳香環を有するジアミン化合物)
 1分子内に1個の芳香環を有するジアミン化合物としては、例えば、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、4-フルオロ-1,2-フェニレンジアミン、4-フルオロ-1,3-フェニレンジアミン、3-トリフルオロメチル-1,5-フェニレンジアミン、4-トリフルオロメチル-1,5-フェニレンジアミン、4-トリフルオロメチル-1,2-フェニレンジアミン、2-トリフルオロメチル-1,4-フェニレンジアミン、2,5-ジメチル-1,4-フェニレンジアミン等が挙げられる。
(Diamine compound having one aromatic ring in one molecule)
Examples of the diamine compound having one aromatic ring in one molecule include 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, 4-fluoro-1,2-phenylenediamine, and the like. 4-Fluoro-1,3-phenylenediamine, 3-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,5-phenylenediamine, 4-trifluoromethyl-1,2-phenylenediamine, Examples thereof include 2-trifluoromethyl-1,4-phenylenediamine and 2,5-dimethyl-1,4-phenylenediamine.
(1分子内に縮合芳香環を有するジアミン化合物)
 1分子内に縮合芳香環を有するジアミン化合物としては、4,4’-(9-フルオレニリデン)ジアニリン、2,7-ジアミノフルオレン、1,5-ジアミノナフタレン、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン5,5-ジオキシド等が挙げられる。
(Diamine compound having a condensed aromatic ring in one molecule)
Examples of the diamine compound having a condensed aromatic ring in one molecule include 4,4'-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, 1,5-diaminonaphthalene, and 3,7-diamino-2,8-. Examples thereof include dimethyldibenzothiophene 5,5-dioxide.
(1分子内に独立した2つ以上の芳香環を有するジアミン化合物)
 1分子内に独立した2つ以上の芳香環を有するジアミン化合物としては、ビフェニル構造を有するものとして、4,4’-(ビフェニル-2,5-ジイルビスオキシ)ビスアニリン、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル(別名:3,3’-ジメチルベンジジン又はm-トリジン)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-2,2’-ジメトキシビフェニル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノ-2,2’-ジクロロビフェニル、4,4’-ジアミノ-3,3’-ジクロロビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2-メチル-2’-トリフルオロメチルビフェニル等が挙げられる。芳香環同士をリンカーが繋いでいるものとして、4,4-ジアミノゼンズアニリド、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、N-(4-アミノフェノキシ)-4-アミノベンズアミン、ビス(3-アミノフェニル)スルホン、ノルボルナンジアミン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、N-[4-(4-アミノフェノキシ)フェニル]-4-アミノベンズアミド、4,4-ジアミノベンズアニリド、ビス(3-アミノフェニル)スルホン等が挙げられる。フッ素原子を有するものとして、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-{4-アミノ-2-(トリフルオロメチル)フェノキシ}フェニル]ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジブロモフェニル}ヘキサフルオロプロパン等が挙げられる。
(Diamine compound having two or more independent aromatic rings in one molecule)
Diamine compounds having two or more independent aromatic rings in one molecule include 4,4'-(biphenyl-2,5-diylbisoxy) bisaniline and 4,4'-diamino as having a biphenyl structure. -3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl (also known as 3,3'-dimethylbenzidine or m-trizine), 4,4'-bis (4-aminophenoxy) ) Biphenyl, 4,4'-diamino-2,2'-dimethoxybiphenyl, 4,4'-diamino-3,3'-dimethoxybiphenyl, 4,4'-diamino-2,2'-dichlorobiphenyl, 4, 4'-diamino-3,3'-dichlorobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diamino-2-methyl-2'-trifluoromethyl Examples include biphenyl. Assuming that the aromatic rings are linked by a linker, 4,4-diaminozensanilide, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1 , 3-bis (4-aminophenoxy) benzene, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, bis (4- (3) -Aminophenoxy) phenyl) sulfone, 1,3-bis (4-aminophenoxy) neopentane, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, N- (4-Aminophenoxy) -4-aminobenzamine, bis (3-aminophenyl) sulfone, norbornandiamine, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl ) Sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, N- [4- (4-aminophenoxy) phenyl] -4-aminobenzamide, 4,4-diaminobenzanilide, bis ( 3-Aminophenyl) sulfone and the like. Those having a fluorine atom include 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane and 2,2-bis [4- {4-amino-2- (trifluoromethyl) phenoxy} phenyl. ] Hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4) -Aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis {4- (4-aminophenoxy) -3,5-dibromophenyl} hexafluoropropane, etc. Can be mentioned.
 なかでも、弾性率が高くなる傾向にあるため、ビフェニル構造を有するジアミン化合物、又は芳香環同士をリンカーが繋いでいるジアミン化合物が好ましく、ビフェニル構造を有するジアミン化合物がより好ましい。 Among them, since the elastic modulus tends to be high, a diamine compound having a biphenyl structure or a diamine compound in which aromatic rings are linked to each other by a linker is preferable, and a diamine compound having a biphenyl structure is more preferable.
<<脂肪族ジアミン化合物>>
 脂肪族ジアミン化合物としては、脂環式ジアミン化合物及び鎖状脂肪族ジアミン化合物等が挙げられる。
<< Aliphatic diamine compound >>
Examples of the aliphatic diamine compound include an alicyclic diamine compound and a chain aliphatic diamine compound.
(脂環式ジアミン化合物)
 脂環式ジアミン化合物としては、例えば、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)等が挙げられる。
(Alicyclic diamine compound)
Examples of the alicyclic diamine compound include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis (cyclohexylamine). Examples thereof include 4,4'-methylenebis (2-methylcyclohexylamine).
(鎖状脂肪族ジアミン化合物)
 鎖状脂肪族ジアミン化合物としては、例えば、1,2-エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、1,5-ジアミノペンタン、1,10-ジアミノデカン、1,2-ジアミノ-2-メチルプロパン、2,3-ジメチル-2,3-ブタンジアミン、2-メチル-1,5-ジアミノペンタン等が挙げられる。
(Chain aliphatic diamine compound)
Examples of the chain aliphatic diamine compound include 1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylenediamine, and 1,5-. Examples thereof include diaminopentane, 1,10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-dimethyl-2,3-butanediamine, 2-methyl-1,5-diaminopentane and the like.
<<ジイソシアネート化合物>>
 ジアミン残基として、ジイソシアネート化合物由来の構造を用いることもできる。ジイソシアネート化合物としては、芳香族ジイソシアネート化合物、脂肪族ジイソシアネート化合物が挙げられる。これらのジイソシアネート化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<< Diisocyanate compound >>
A structure derived from a diisocyanate compound can also be used as the diamine residue. Examples of the diisocyanate compound include aromatic diisocyanate compounds and aliphatic diisocyanate compounds. One of these diisocyanate compounds may be used alone, or two or more of these diisocyanate compounds may be used in any ratio and combination.
(芳香族ジイソシアネート化合物)
 芳香族ジイソシアネート化合物としては、例えば、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン、4,4’-ジイソシアナト-3,3’-ジメチルジフェニルメタン、1,5-ジイソシアナトナフタレン、4,4’-ジイソシアン酸メチレンジフェニル、ジイソシアン酸1,3-フェニレン、1,4-フェニレンジイソシアナート、1,3-ビス(イソシアナトメチル)ベンゼン、トルエンジイソシアネート等が挙げられる。
(Aromatic diisocyanate compound)
Examples of the aromatic diisocyanate compound include 4,4'-diisocyanato-3,3'-dimethylbiphenyl, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, and 4,4'-diisocyanato-3,3. '-Dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 4,4'-methylenediphenyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylenediisocyanate, 1,3-bis (isocyanatomethyl) ) Benzene, toluene diisocyanate and the like.
(脂肪族ジイソシアネート化合物)
 脂肪族ジイソシアネート化合物としては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。
(Aliphatic diisocyanate compound)
Examples of the aliphatic diisocyanate compound include 1,3-bis (isocyanatomethyl) cyclohexane, hexamethylene diisocyanate, and isophorone diisocyanate.
<<ジヒドラジド化合物>>
 ジヒドラジド化合物としては、後述する一般式(1)に示す構造において例示したジヒドラジド化合物が挙げられる。
<< Dihydrazide compound >>
Examples of the dihydrazide compound include dihydrazide compounds exemplified in the structure represented by the general formula (1) described later.
 本発明のポリイミドに含まれるジアミン残基を誘導するジアミン化合物、ジイソシアネート化合物等は、1種のみであってもよく、2種以上が含まれてもよいが、得られるポリイミドの耐熱性が高くなる傾向にあるため、芳香族ジアミン化合物が好ましく、1分子内に縮合芳香環を有するジアミン化合物、1分子内に独立した2つ以上の芳香環を有するジアミン化合物がより好ましい。 The diamine compound, diisocyanate compound, etc. that induce the diamine residue contained in the polyimide of the present invention may be only one type or may contain two or more types, but the heat resistance of the obtained polyimide is increased. Because of the tendency, aromatic diamine compounds are preferable, and diamine compounds having a fused aromatic ring in one molecule and diamine compounds having two or more independent aromatic rings in one molecule are more preferable.
 本発明のポリイミドに含まれる全ジアミン残基に対する芳香族ジアミン化合物に由来するジアミン残基の割合は、特に制限はないが、通常10mol%以上が好ましく、20mol%以上がより好ましく、40mol%以上がさらに好ましい。本発明のポリイミドに含まれる全ジアミン残基に対する芳香族ジアミン化合物に由来するジアミン残基の割合の上限はなく100mol%でもよい。芳香族ジアミン化合物に由来するジアミン残基の割合が、上記下限値以上であることで、耐熱性が高くなり、また製造が容易となることから好ましい。 The ratio of the diamine residue derived from the aromatic diamine compound to the total diamine residue contained in the polyimide of the present invention is not particularly limited, but is usually preferably 10 mol% or more, more preferably 20 mol% or more, and 40 mol% or more. More preferred. There is no upper limit to the ratio of the diamine residue derived from the aromatic diamine compound to the total diamine residue contained in the polyimide of the present invention, and it may be 100 mol%. When the ratio of the diamine residue derived from the aromatic diamine compound is at least the above lower limit value, the heat resistance is increased and the production is facilitated, which is preferable.
[一般式(1)に示す構造]
 一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。
[Structure represented by general formula (1)]
In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. ..
 芳香環、複素環としては特に限定されず、縮合環であってもよい。脂環も特に限定されないが、3~10員環であることが好ましい。鎖状脂肪族基も特に限定されないが、直鎖の炭素数1以上20以下の基であることが好ましい。
 これらの芳香環基、複素環基、脂環基及び鎖状脂肪族基は置換基を有していてもよい。有してもよい置換基としては、アルキル基、アルコキシ基、ハロゲン化アルキル基、水酸基、カルボキシ基などが挙げられる。
The aromatic ring and the heterocycle are not particularly limited, and may be a fused ring. The alicyclic is not particularly limited, but is preferably a 3- to 10-membered ring. The chain aliphatic group is also not particularly limited, but is preferably a linear group having 1 to 20 carbon atoms.
These aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may have substituents. Examples of the substituent which may be possessed include an alkyl group, an alkoxy group, an alkyl halide group, a hydroxyl group, a carboxy group and the like.
 これら芳香環基、複素環基、脂環基及び鎖状脂肪族基は、単独でも組み合わせて用いてもよい。 These aromatic ring groups, heterocyclic groups, alicyclic groups and chain aliphatic groups may be used alone or in combination.
 Rは、分子量制御がしやすく、製造安定性が良好であることから、芳香環基及び鎖状脂肪族基からなる群より選択された少なくとも1つであることが好ましい。これらの中でも、芳香環基としては、ベンゼン環、ナフタレン環、ビフェニル環、ビフェニルエーテル、ベンゾフェノン、フェニルスルフィド、ビフェニルスルホキシド、ビフェニルスルホンよりなる基が好ましく、また、単環または2つの芳香環を有するものが好ましい。一方、鎖状脂肪族基としては、炭素数が1以上10以下のものが好ましい。Rがこれらの基であることで、本発明の効果が特に得られやすい傾向となる。 It is preferable that R is at least one selected from the group consisting of an aromatic ring group and a chain aliphatic group because the molecular weight can be easily controlled and the production stability is good. Among these, as the aromatic ring group, a group composed of a benzene ring, a naphthalene ring, a biphenyl ring, a biphenyl ether, a benzophenone, a phenyl sulfide, a biphenyl sulfoxide, and a biphenyl sulfone is preferable, and a group having a monocyclic ring or two aromatic rings is preferable. Is preferable. On the other hand, the chain aliphatic group preferably has 1 or more and 10 or less carbon atoms. When R is these groups, the effect of the present invention tends to be particularly easily obtained.
 一般式(1)に示す構造の具体例としては、後述するテトラカルボン酸二無水物とジヒドラジド化合物との反応で挙げた各化合物に由来する構造が挙げられる。 Specific examples of the structure represented by the general formula (1) include structures derived from each of the compounds listed in the reaction of tetracarboxylic dianhydride and dihydrazide compound, which will be described later.
 本発明のポリイミドは一般式(1)に示す構造の1種のみを有していてもよく、複数種を有していてもよいが、少なくともテトラカルボン酸二無水物とジヒドラジド化合物との反応に由来する構造を有することが好ましい。 The polyimide of the present invention may have only one type of the structure represented by the general formula (1) or may have a plurality of types, but at least for the reaction between the tetracarboxylic dianhydride and the dihydrazide compound. It preferably has a derived structure.
 一般式(1)に示す構造のポリイミド中の導入量は特に制限はないが、主鎖のイミド環に対してアミド結合の濃度が1mol%以上であることが好ましく、5mol%以上がより好ましく、8mol%以上がさらに好ましい。一般式(1)に示す構造のポリイミド中の導入量は900mol%以下が好ましく、700mol%以下がより好ましく、500mol%以下がさらに好ましく、400mol%以下が特に好ましい。ポリイミド中の一般式(1)に示す構造の導入量がこの範囲にあることで、溶媒溶解性と弾性率が両立しやすい傾向にあるため好ましい。 The amount introduced into the polyimide having the structure represented by the general formula (1) is not particularly limited, but the concentration of the amide bond with respect to the imide ring of the main chain is preferably 1 mol% or more, more preferably 5 mol% or more. 8 mol% or more is more preferable. The amount introduced into the polyimide having the structure represented by the general formula (1) is preferably 900 mol% or less, more preferably 700 mol% or less, further preferably 500 mol% or less, and particularly preferably 400 mol% or less. It is preferable that the amount of the structure represented by the general formula (1) introduced in the polyimide is within this range because the solvent solubility and the elastic modulus tend to be compatible with each other.
 本発明のポリイミドに含まれる、テトラカルボン酸残基、ジアミン残基、ジカルボン酸残基、及びジヒドラジド残基の割合は、NMR、固体NMR、IR等によって原料モノマーの組成を解析することによって求めることができる。これらの残基の割合は、アルカリで溶解した後にガスクロマトグラフィー(GC)、H-NMR、13C-NMR、二次元NMR、質量分析等によって求めることができる。 The ratio of tetracarboxylic acid residue, diamine residue, dicarboxylic acid residue, and dihydrazide residue contained in the polyimide of the present invention can be determined by analyzing the composition of the raw material monomer by NMR, solid NMR, IR, or the like. Can be done. The proportion of these residues can be determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution in alkali.
 本発明のポリイミド中の一般式(1)に示す構造を得る方法は特に限定されないが、テトラカルボン酸二無水物とジヒドラジド化合物との反応に由来して得る方法が挙げられる。 The method for obtaining the structure represented by the general formula (1) in the polyimide of the present invention is not particularly limited, and examples thereof include a method obtained by reacting a tetracarboxylic dianhydride with a dihydrazide compound.
<<テトラカルボン酸二無水物とジヒドラジド化合物との反応に由来する構造>>
(テトラカルボン酸二無水物)
 テトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物(脂肪族テトラカルボン酸二無水物は脂環式テトラカルボン酸二無水物と鎖状脂肪族テトラカルボン酸二無水物を含む。)が挙げられる。これらのテトラカルボン酸二無水物は1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<< Structure derived from the reaction of tetracarboxylic dianhydride and dihydrazide compound >>
(Tetracarboxylic dianhydride)
Examples of tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides (aliphatic tetracarboxylic dianhydrides are alicyclic tetracarboxylic dianhydrides and chain aliphatics. Includes tetracarboxylic dianhydride). One of these tetracarboxylic dianhydrides may be used alone, or two or more thereof may be used in any ratio and combination.
 ジヒドラジド化合物と反応させるテトラカルボン酸二無水物化合物としては、テトラカルボン酸残基の説明で前述した化合物が挙げられ、好ましい範囲も同一である。 Examples of the tetracarboxylic dianhydride compound to be reacted with the dihydrazide compound include the compounds described above in the description of the tetracarboxylic acid residue, and the preferable range is also the same.
(ジヒドラジド化合物)
 ジヒドラジド化合物に特に制限はないが、芳香族ジヒドラジド化合物、脂肪族ジヒドラジド化合物(脂環式ジヒドラジド化合物と鎖状脂肪族ジヒドラジド化合物を含む。)等が挙げられる。これらのジヒドラジド化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
(Dihydrazide compound)
The dihydrazide compound is not particularly limited, and examples thereof include aromatic dihydrazide compounds and aliphatic dihydrazide compounds (including alicyclic dihydrazide compounds and chain aliphatic dihydrazide compounds). One of these dihydrazide compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 芳香族ジヒドラジド化合物としては、単環である、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,5-ジメチルテレフタル酸ジヒドラジド等;独立した2つ以上の芳香環を有する4,4’-カルボニル二安息香酸ジヒドラジド、2,2’-ビフェニルジカルボン酸ジヒドラジド、4,4’-ビフェニルジカルボン酸ジヒドラジド、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパンジヒドラジド、4-(カルボキシメチル)安息香酸ジヒドラジド、4,4’-オキシビス安息香酸ジヒドラジド、4,4’-スルホニル二安息香酸ジヒドラジド、1,2-ビス(4-カルボキシフェニル)エタンジヒドラジド、4,4’-スチルベンジカルボン酸ジヒドラジド等;縮合環を有する1,4-ナフタレンジカルボン酸ジヒドラジド、2,3-ナフタレンジカルボン酸ジヒドラジド等;複素環を有する2,2’-ビシンコニン酸ジヒドラジド、2,2’-ビニコチン酸ジヒドラジド、2,2’-ビイソニコチン酸ジヒドラジド、2,2’-ビピリジン-5,5’-ジカルボン酸ジヒドラジド、2,2’-ビピリジン-6,6’-ジカルボン酸ジヒドラジド、2,5-フランジカルボン酸ジヒドラジド等;が挙げられる。 Examples of the aromatic dihydrazide compound include monocyclic isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,5-dimethylterephthalic acid dihydrazide, and the like; 4,4'-carbonyl having two or more independent aromatic rings. Dihydrazide benzoate, 2,2'-biphenyldicarboxylic acid dihydrazide, 4,4'-biphenyldicarboxylic acid dihydrazide, 2,2-bis (4-carboxyphenyl) hexafluoropropanedihydrazide, 4- (carboxymethyl) dihydrazide benzoate , 4,4'-oxybis benzoic acid dihydrazide, 4,4'-sulfonyl dibenzoic acid dihydrazide, 1,2-bis (4-carboxyphenyl) ethanedihydrazide, 4,4'-stylbenzicarboxylic acid dihydrazide, etc .; 1,4-Naphthalenedicarboxylic acid dihydrazide, 2,3-naphthalenedicarboxylic acid dihydrazide, etc .; 2,2'-bisinconic acid dihydrazide, 2,2'-binicotinic acid dihydrazide, 2,2'-biisonicotinic acid dihydrazide having a heterocycle , 2,2'-bipyridine-5,5'-dicarboxylic acid dihydrazide, 2,2'-bipyridine-6,6'-dicarboxylic acid dihydrazide, 2,5-furandicarboxylic acid dihydrazide and the like.
 脂環式ジヒドラジド化合物としては、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸ジヒドラジド、1,3-アダマンタンジカルボン酸ジヒドラジド、cis-4-シクロヘキセン-1,2-ジカルボン酸ジヒドラジド、1,4-シクロヘキサンジカルボン酸ジヒドラジド、1,3-シクロヘキサンジカルボン酸ジヒドラジド、デカヒドロ-1,4-ナフタレンジカルボン酸ジヒドラジド等が挙げられる。 Examples of the alicyclic dihydrazide compound include bicyclo [2.2.2] octane-1,4-dicarboxylic acid dihydrazide, 1,3-adamantandicarboxylic acid dihydrazide, cis-4-cyclohexene-1,2-dicarboxylic acid dihydrazide, and 1, , 4-Cyclohexanedicarboxylic acid dihydrazide, 1,3-cyclohexanedicarboxylic acid dihydrazide, decahydro-1,4-naphthalenedicarboxylic acid dihydrazide and the like.
 鎖状脂肪族ジヒドラジド化合部物としては、アジピン酸ジヒドラジド、アゼライン酸ジヒドラジド、ドデカンニ酸ジヒドラジド、マロン酸ジヒドラジド、セバシン酸ジヒドラジド、コハク酸ジヒドラジド、オキサリルジヒドラジド等が挙げられる。 Examples of the chain aliphatic dihydrazide compound include adipic acid dihydrazide, azelaic acid dihydrazide, dodecanoic acid dihydrazide, malonic acid dihydrazide, sebacic acid dihydrazide, succinate dihydrazide, and oxalyl dihydrazide.
 ジヒドラジド化合物としては、単環の芳香族ジヒドラジド化合物、独立した2つ以上の芳香環を有するジヒドラジド化合物が、弾性率が向上する傾向にあるため好ましい。 As the dihydrazide compound, a monocyclic aromatic dihydrazide compound and a dihydrazide compound having two or more independent aromatic rings tend to improve the elastic modulus, and are preferable.
[ポリイミドの弾性率]
 本発明のポリイミドの弾性率は、粘弾性測定によって測定することがでる。本発明のポリイミドの弾性率は、特に限定されないが、25℃における弾性率が好ましくは4GPa以上であり、より好ましくは4.5GPa以上であり、さらに好ましくは4.8GPa以上であり、特に好ましくは5GPa以上である。一方、本発明のポリイミドの25℃における弾性率は好ましくは10GPa以下であり、より好ましくは9GPa以下であり、さらに好ましくは8GPa以下である。25℃における弾性率がこの範囲であることで、ポリイミドの耐摩耗性が維持されるため好ましい。
[Elastic modulus of polyimide]
The elastic modulus of the polyimide of the present invention can be measured by viscoelasticity measurement. The elastic modulus of the polyimide of the present invention is not particularly limited, but the elastic modulus at 25 ° C. is preferably 4 GPa or more, more preferably 4.5 GPa or more, still more preferably 4.8 GPa or more, and particularly preferably. It is 5 GPa or more. On the other hand, the elastic modulus of the polyimide of the present invention at 25 ° C. is preferably 10 GPa or less, more preferably 9 GPa or less, and further preferably 8 GPa or less. When the elastic modulus at 25 ° C. is in this range, the abrasion resistance of the polyimide is maintained, which is preferable.
 弾性率が上記範囲であるポリイミドは、例えば、前記一般式(1)に示す構造を所定の割合でポリイミドに導入すること、架橋構造をポリイミドに導入すること等により実現することができる。 A polyimide having an elastic modulus in the above range can be realized, for example, by introducing the structure represented by the general formula (1) into the polyimide at a predetermined ratio, introducing a crosslinked structure into the polyimide, or the like.
[ポリイミドの分子量]
 本発明のポリイミドの分子量は特に制限はないが、ポリスチレン換算の数平均分子量(Mn)で、好ましくは500以上、より好ましくは1000以上、さらに好ましくは1500以上である。一方、この分子量は好ましくは80000以下、より好ましくは60000以下、さらに好ましくは40000以下である。ポリイミドの数平均分子量(Mn)がこの範囲であると、溶媒溶解性、溶液粘度などが通常の設備で取り扱いしやすい範囲となるため、好ましい。
 本発明のポリイミドのポリスチレン換算の数平均分子量(Mn)は、ゲル浸透クロマトグラフィ(GPC)により求めることができる。
[Molecular weight of polyimide]
The molecular weight of the polyimide of the present invention is not particularly limited, but is preferably a polystyrene-equivalent number average molecular weight (Mn) of 500 or more, more preferably 1000 or more, and further preferably 1500 or more. On the other hand, this molecular weight is preferably 80,000 or less, more preferably 60,000 or less, still more preferably 40,000 or less. When the number average molecular weight (Mn) of the polyimide is in this range, solvent solubility, solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
The polystyrene-equivalent number average molecular weight (Mn) of the polyimide of the present invention can be determined by gel permeation chromatography (GPC).
 本発明のポリイミドの質量平均分子量(Mw)は、好ましくは1000以上、より好ましくは2000以上、さらに好ましくは5000以上である。一方、この分子量は好ましくは300000以下、より好ましくは200000以下、さらに好ましくは100000以下である。ポリイミドの質量平均分子量(Mw)がこの範囲であると、溶媒溶解性、溶液粘度などが通常の設備で取り扱いしやすい範囲となるため、好ましい。
 本発明のポリイミドの質量平均分子量(Mw)は、上記数平均分子量(Mn)と同様の方法で測定することができる。
The mass average molecular weight (Mw) of the polyimide of the present invention is preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more. On the other hand, this molecular weight is preferably 300,000 or less, more preferably 200,000 or less, still more preferably 100,000 or less. When the mass average molecular weight (Mw) of the polyimide is in this range, the solvent solubility, solution viscosity, and the like are in a range that can be easily handled by ordinary equipment, which is preferable.
The mass average molecular weight (Mw) of the polyimide of the present invention can be measured by the same method as the number average molecular weight (Mn).
 本発明のポリイミドの分子量分布(PDI:Mw/Mn)は通常1以上、好ましくは1,1以上、より好ましくは1.2以上である。一方、Mw/Mnは通常20以下、好ましくは15以下、より好ましくは10以下である。Mw/Mnがこの範囲であることで、得られる成形体の均一性及び平滑性に優れる傾向にある。 The molecular weight distribution (PDI: Mw / Mn) of the polyimide of the present invention is usually 1 or more, preferably 1,1 or more, and more preferably 1.2 or more. On the other hand, Mw / Mn is usually 20 or less, preferably 15 or less, and more preferably 10 or less. When Mw / Mn is in this range, the uniformity and smoothness of the obtained molded product tend to be excellent.
[ポリイミドのガラス転移温度]
 本発明のポリイミドのガラス転移温度(Tg)は、特に制限はないが、好ましくは150℃以上、より好ましくは180℃以上、さらに好ましくは200℃以上、よりさらに好ましくは260℃以上、特に好ましくは270℃以上、最も好ましくは280℃以上である。一方、ポリイミドのガラス転移温度(Tg)は好ましくは400℃以下、より好ましくは380℃以下である。ポリイミドのガラス転移温度(Tg)がこの範囲であることで、得られる成形体の耐熱性が向上し、また、成形温度の抑制や空気下での成形等の低負荷プロセス成形における残留溶媒が減少する傾向にある。
 ポリイミドのガラス転移温度(Tg)は、tanδのα緩和のピーク温度(Ttanδ)に該当する。
[Glass transition temperature of polyimide]
The glass transition temperature (Tg) of the polyimide of the present invention is not particularly limited, but is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, still more preferably 260 ° C. or higher, particularly preferably. It is 270 ° C. or higher, most preferably 280 ° C. or higher. On the other hand, the glass transition temperature (Tg) of polyimide is preferably 400 ° C. or lower, more preferably 380 ° C. or lower. When the glass transition temperature (Tg) of polyimide is in this range, the heat resistance of the obtained molded product is improved, and the residual solvent in low-load process molding such as suppression of molding temperature and molding under air is reduced. Tend to do.
The glass transition temperature (Tg) of polyimide corresponds to the peak temperature (Ttanδ) of α relaxation of tanδ.
[ポリイミドの製造方法]
 本発明のポリイミドの製造方法は特に制限されず、従来既知の方法で製造することができる。例えば、テトラカルボン酸二無水物及び/又はジカルボン酸化合物と、ジアミン化合物、ジイソシアネート化合物及び/又はジヒドラジド化合物からポリイミド前駆体を製造し、これをイミド化してポリイミドを得る方法;テトラカルボン酸二無水物及び/又はジカルボン酸化合物と、ジアミン化合物、ジイソシアネート化合物、及び/又はジヒドラジド化合物から直接ポリイミドを製造する方法;がある。
[Polyimide manufacturing method]
The method for producing the polyimide of the present invention is not particularly limited, and the polyimide can be produced by a conventionally known method. For example, a method of producing a polyimide precursor from a tetracarboxylic acid dianhydride and / or a dicarboxylic acid compound and a diamine compound, a diisocyanate compound and / or a dihydrazide compound, and imidizing the polyimide precursor to obtain a polyimide; tetracarboxylic acid dianhydride. And / or a method of directly producing a polyimide from a dicarboxylic acid compound and a diamine compound, a diisocyanate compound, and / or a dihydrazide compound;
 テトラカルボン酸二無水物とジアミン化合物とを用いる通常のポリイミドの製造方法において、ジアミン化合物の代りにジイソシアネート化合物を用いてもよく、ジアミン化合物とジイソシアネート化合物とを併用してもよい。
 ジヒドラジド化合物はジアミン化合物と同様に、ジカルボン酸化合物はテトラカルボン酸二無水物と同様に反応させることができる。ジカルボン酸化合物は、テトラカルボン酸二無水物とジアミン化合物、ジイソシアネート化合物及び/又はジヒドラジド化合物からポリイミドを製造したあとに、鎖延長剤として用いることもできる。
In a usual method for producing a polyimide using a tetracarboxylic dianhydride and a diamine compound, a diisocyanate compound may be used instead of the diamine compound, or the diamine compound and the diamine compound may be used in combination.
The dihydrazide compound can be reacted in the same manner as the diamine compound, and the dicarboxylic acid compound can be reacted in the same manner as the tetracarboxylic dianhydride. The dicarboxylic acid compound can also be used as a chain extender after producing polyimide from a tetracarboxylic dianhydride and a diamine compound, a diisocyanate compound and / or a dihydrazide compound.
 以下、「テトラカルボン酸二無水物及び/又はジカルボン酸化合物」を「テトラカルボン酸二無水物等」と称し、「ジアミン化合物、ジイソシアネート化合物及びジヒドラジド化合物のうちの1種又は2種以上」を「ジアミン化合物等」と称して、テトラカルボン酸二無水物等とジアミン化合物等とを反応させて本発明のポリイミドを製造する方法を説明する。 Hereinafter, "tetracarboxylic acid dianhydride and / or dicarboxylic acid compound" is referred to as "tetracarboxylic acid dianhydride, etc.", and "one or more of diamine compounds, diisocyanate compounds and dihydrazide compounds" is referred to as "diamine compound, diisocyanate compound and dihydrazide compound". A method for producing the polyimide of the present invention by reacting a tetracarboxylic acid dianhydride or the like with a diamine compound or the like will be described with reference to "diamine compound or the like".
<<ポリイミド前駆体を経てポリイミドを製造する方法>>
(ポリイミド前駆体の構造)
 ポリイミド前駆体を経てポリイミドを製造する場合、ポリイミド前駆体は、例えば、テトラカルボン酸二無水物等とジアミン化合物等を溶媒中で反応させて得ることができる。
 この場合、テトラカルボン酸二無水物等とジアミン化合物等の添加順序や添加方法も特に制限されない。例えば、溶媒にジアミン化合物等とテトラカルボン酸二無水物等を順に投入し、適切な温度で撹拌することにより、ポリイミド前駆体を得ることができる。
<< Method of producing polyimide via polyimide precursor >>
(Structure of polyimide precursor)
When the polyimide is produced via the polyimide precursor, the polyimide precursor can be obtained, for example, by reacting a tetracarboxylic dianhydride or the like with a diamine compound or the like in a solvent.
In this case, the order of addition and the method of addition of the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited. For example, a polyimide precursor can be obtained by sequentially adding a diamine compound or the like and a tetracarboxylic dianhydride or the like to a solvent and stirring the mixture at an appropriate temperature.
 テトラカルボン酸二無水物等の量は、ジアミン化合物等1モルに対して、通常0.7モル以上、好ましくは0.8モル以上であり、通常1.3モル以下、好ましくは1.2モル以下である。テトラカルボン酸二無水物等の量をこのような範囲とすることで、得られるポリイミド前駆体の収率が向上する傾向にある。 The amount of the tetracarboxylic dianhydride or the like is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol, based on 1 mol of the diamine compound or the like. It is as follows. By setting the amount of tetracarboxylic dianhydride or the like in such a range, the yield of the obtained polyimide precursor tends to be improved.
 反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度は、反応条件や得られるポリイミド前駆体の粘度に応じて適宜設定できる。 The concentration of tetracarboxylic dianhydride, etc., diamine compound, etc. in the reaction solution can be appropriately set according to the reaction conditions and the viscosity of the obtained polyimide precursor.
 テトラカルボン酸二無水物等、及びジアミン化合物等の合計濃度は、特に制限はないが、反応液全量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは50質量%以下である。反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度が低すぎないことで、分子量の伸長が起こりやすい傾向にある。反応液中のテトラカルボン酸二無水物等、及びジアミン化合物等の濃度が高すぎないことで、反応液の粘度が高くなりすぎず、撹拌が容易となる傾向にある。 The total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total amount of the reaction solution. It is preferably 50% by mass or less. If the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too low, the molecular weight tends to be extended. When the concentrations of the tetracarboxylic dianhydride and the like and the diamine compound in the reaction solution are not too high, the viscosity of the reaction solution does not become too high and stirring tends to be easy.
 テトラカルボン酸二無水物等、及びジアミン化合物等を溶媒中で反応させる温度は、反応が進行する温度であれば、特に制限はないが、通常0℃以上、好ましくは20℃以上であり、通常120℃以下、好ましくは100℃以下である。
 反応時間は通常1時間以上、好ましくは2時間以上であり、通常100時間以下、好ましくは42時間以下である。
 このような条件で行うことにより、低コストで収率よくポリイミド前駆体を得ることができる傾向にある。
 反応時の圧力は、常圧、加圧及び減圧のいずれでもよい。
 反応雰囲気は空気下でも不活性雰囲気下でもよい。
The temperature at which the tetracarboxylic dianhydride and the like and the diamine compound and the like are reacted in the solvent is not particularly limited as long as the reaction proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually used. It is 120 ° C. or lower, preferably 100 ° C. or lower.
The reaction time is usually 1 hour or more, preferably 2 hours or more, usually 100 hours or less, preferably 42 hours or less.
By carrying out under such conditions, a polyimide precursor tends to be obtained at low cost and in good yield.
The pressure during the reaction may be normal pressure, pressurization or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 テトラカルボン酸二無水物等とジアミン化合物等を反応させる際に用いる溶媒は特に限定されない。反応溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、フルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン等のエーテル系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホン系溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の複素環系溶媒;フェノール、クレゾール等のフェノール系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The solvent used when reacting the tetracarboxylic dianhydride or the like with the diamine compound or the like is not particularly limited. Examples of the reaction solvent include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, and fluoro. Halogened hydrocarbon solvent such as benzene; Ether solvent such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene; Ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone; ethylene glycol monomethyl ether, ethylene glycol Glycol-based solvents such as monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and propylene glycol monomethyl ether acetate; amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; dimethyl Sulphonic solvents such as sulfoxide; heterocyclic solvents such as pyridine, picolin, lutidine, quinoline, isoquinoline; phenolic solvents such as phenol and cresol; lactone solvents such as γ-butyrolactone, γ-valerolactone and δ-valerolactone ; Etc. can be mentioned. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
 これらの溶媒のうち、好ましい溶媒については後述する。 Of these solvents, the preferred solvent will be described later.
 得られたポリイミド前駆体はそのまま次のイミド化に供してもよく、貧溶媒中に添加することで固形状に析出させて用いてもよい。 The obtained polyimide precursor may be used as it is for the next imidization, or may be added to a poor solvent to precipitate it in a solid state before use.
 用いる貧溶媒は特に制限は無く、ポリイミド前駆体の種類によって適宜選択し得る。貧溶媒としては、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、アルコール系溶媒が効率良く析出物が得られ、沸点が低く乾燥が容易となる傾向にあるため好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The poor solvent to be used is not particularly limited and may be appropriately selected depending on the type of polyimide precursor. Examples of the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. Above all, an alcohol solvent is preferable because a precipitate can be efficiently obtained, a boiling point is low, and drying tends to be easy. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
(ポリイミド前駆体のイミド化)
 上記の方法等で得られたポリイミド前駆体を溶媒存在下で脱水環化することにより、ポリイミドを得ることができる。イミド化は従来知られている任意の方法を用いて行うことができる。イミド化の方法としては、例えば熱的に環化させる熱イミド化、化学的に環化させる化学イミド化等が挙げられる。これらのイミド化反応は単独で行っても、複数組み合わせて行ってもよい。
(Immidization of polyimide precursor)
A polyimide can be obtained by dehydrating and cyclizing the polyimide precursor obtained by the above method or the like in the presence of a solvent. Imidization can be performed using any of the conventionally known methods. Examples of the imidization method include thermal imidization for thermal cyclization, chemical imidization for chemical cyclization, and the like. These imidization reactions may be carried out individually or in combination of two or more.
<加熱イミド化>
 ポリイミド前駆体を加熱イミド化する際の溶媒は、前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。ポリイミド前駆体製造時の溶媒とポリイミド製造時の溶媒は同じものを用いても、異なるものを用いてもよい。
 イミド化によって生じた水は閉環反応を阻害するため、系外に排出してもよい。
 イミド化反応時のポリイミド前駆体の濃度は特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。ポリイミド前駆体の濃度をこの範囲で行うことによって、生産効率が高く、また製造しやすい溶液粘度で製造することができる。
<Heating imidization>
Examples of the solvent for heat imidizing the polyimide precursor include the same solvent used in the reaction for obtaining the polyimide precursor. The solvent used for producing the polyimide precursor and the solvent used for producing the polyimide may be the same or different.
The water produced by imidization inhibits the ring closure reaction and may be discharged out of the system.
The concentration of the polyimide precursor at the time of the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By adjusting the concentration of the polyimide precursor in this range, it is possible to produce the polyimide precursor with a solution viscosity that is easy to produce and has high production efficiency.
 イミド化の反応温度は特に制限されないが、通常50℃以上、好ましくは80℃以上、さらに好ましくは100℃以上であり、通常300℃以下、好ましくは280℃以下、さらに好ましくは250℃以下である。この温度範囲で反応を行うことで、イミド化反応が効率よく進行し、イミド化反応以外の反応が抑制される傾向にあるため好ましい。
 反応時の圧力は常圧、加圧、減圧のいずれでもよい。
 反応雰囲気は、空気下でも不活性雰囲気下でもよい。
The reaction temperature for imidization is not particularly limited, but is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 280 ° C. or lower, further preferably 250 ° C. or lower. .. It is preferable to carry out the reaction in this temperature range because the imidization reaction proceeds efficiently and reactions other than the imidization reaction tend to be suppressed.
The pressure during the reaction may be normal pressure, pressurization, or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 イミド化を促進するイミド化促進剤として、求核性、求電子性を高める働きをもつ化合物を加えることもできる。イミド化促進剤としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリン等の三級アミン化合物;酢酸、4-ヒドロキシフェニル酢酸、3-ヒドロキシ安息香酸、N-アセチルグリシン、N-ベンゾイルグリシン等のカルボン酸化合物;3,5-ジヒドロキシアセトフェノン、3,5-ジヒドロキシ安息香酸メチル、ピロガロール、メチルガレート、エチルガレート、ナフタレン-1,6-ジオール等の多価フェノール化合物;2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、N,N-ジメチルアミノピリジン、ニコチンアルデヒド、イソニコチンアルデヒド、ピコリンアルデヒド、ピコリンアルデヒドオキシム、ニコチンアルデヒドオキシム、イソニコチンアルデヒドオキシム、ピコリン酸エチル、ニコチン酸エチル、イソニコチン酸エチル、ニコチンアミド、イソニコチンアミド、2-ヒドロキシニコチン酸、2,2’-ジピリジル、4,4’-ジピリジル、3-メチルピリダジン、キノリン、イソキノリン、フェナントロリン、1,10-フェナントロリン、イミダゾール、ベンズイミダゾール、1,2,4-トリアゾール等の複素環化合物;等が挙げられる。 As an imidization accelerator that promotes imidization, a compound having a function of enhancing nucleophile and electrophile can be added. Examples of the imidization accelerator include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-. Tertiary amine compounds such as ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline; acetic acid, 4-hydroxyphenylacetic acid, 3-hydroxybenzoic acid, N-acetylglycine, N-benzoylglycine Carboxylic acid compounds such as 3,5-dihydroxyacetophenone, methyl 3,5-dihydroxybenzoate, pyrogallol, methyl gallate, ethyl gallate, polyvalent phenol compounds such as naphthalene-1,6-diol; 2-hydroxypyridine, 3 -Hydroxypyridine, 4-hydroxypyridine, 4-pyridinemethanol, N, N-dimethylaminopyridine, nicotine aldehyde, isonicotin aldehyde, picolin aldehyde, picolin aldehyde oxime, nicotine aldehyde oxime, isonicotin aldehyde oxime, ethyl picolinate, nicotine Ethyl Acid, Ethyl Isonicotinate, Nicotinamide, Isonicotinamide, 2-Hydroxynicotinic Acid, 2,2'-Dipyridyl, 4,4'-Dipyridyl, 3-Methylpyridazine, Kinolin, Isoquinolin, Phenantroline, 1,10- Heterocyclic compounds such as phenanthroline, imidazole, benzimidazole, 1,2,4-triazole; and the like.
 これらの中で、三級アミン化合物、カルボン酸化合物及び複素環化合物からなる群から選ばれる少なくとも1つが好ましく、さらに、トリエチルアミン、イミダゾール及びピリジンからなる群から選ばれる少なくとも1つが、反応速度を制御しやすい傾向があるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Of these, at least one selected from the group consisting of tertiary amine compounds, carboxylic acid compounds and heterocyclic compounds is preferable, and at least one selected from the group consisting of triethylamine, imidazole and pyridine controls the reaction rate. It is more preferable because it tends to be easy. One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 イミド化促進剤の使用量は、ポリイミド前駆体のカルボキシル基に対して、通常0.01mol%以上であり、0.1mol%以上が好ましく、1mol%以上が更に好ましい。イミド化促進剤の使用量は、ポリイミド前駆体のカルボキシル基に対して、50mol%以下が好ましく、10mol%以下がより好ましい。イミド化促進剤の使用量が上記範囲にあることにより、イミド化反応が効率よく進行する傾向にある。
 イミド化促進剤を添加するタイミングは、適宜調整することができ、加熱開始前でもよく、加熱中でもよい。また複数回に分けて添加してもよい。
The amount of the imidization accelerator used is usually 0.01 mol% or more, preferably 0.1 mol% or more, and further preferably 1 mol% or more, based on the carboxyl group of the polyimide precursor. The amount of the imidization accelerator used is preferably 50 mol% or less, more preferably 10 mol% or less, based on the carboxyl group of the polyimide precursor. When the amount of the imidization accelerator used is within the above range, the imidization reaction tends to proceed efficiently.
The timing of adding the imidization accelerator can be appropriately adjusted, and may be before the start of heating or during heating. Further, it may be added in a plurality of times.
<化学イミド化>
 ポリイミド前駆体を溶媒存在下で、脱水縮合剤を用いて化学的にイミド化することにより、ポリイミドを得ることができる。
<Chemical imidization>
A polyimide can be obtained by chemically imidizing a polyimide precursor with a dehydration condensing agent in the presence of a solvent.
 化学イミド化の際に使用する溶媒としては前記のポリイミド前駆体を得る反応時に使用した溶媒と同様のものが挙げられる。 Examples of the solvent used for chemical imidization include the same solvents as those used for the reaction for obtaining the polyimide precursor described above.
 脱水縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド、N,N-ジフェニルカルボジイミド等のN,N-2置換カルボジイミド;無水酢酸、無水トリフルオロ酢酸等の酸無水物;塩化チオニル、塩化トシル等の塩化物;アセチルクロライド、アセチルブロマイド、プロピオニルアイオダイド、アセチルフルオライド、プロピオニルクロライド、プロピオニルブロマイド、プロピオニルアイオダイド、プロピオニルフルオライド、イソブチリルクロライド、イソブチリルブロマイド、イソブチリルアイオダイド、イソブチリルフルオライド、n-ブチリルクロライド、n-ブチリルブロマイド、n-ブチリルアイオダイド、n-ブチリルフルオライド、モノ-,ジ-,トリ-クロロアセチルクロライド、モノ-,ジ-,トリ-ブロモアセチルクロライド、モノ-,ジ-,トリ-アイオドアセチルクロライド、モノ-,ジ-,トリ-フルオロアセチルクロライド、無水クロロ酢酸、フェニルホスフォニックジクロライド、チオニルクロライド、チオニルブロマイド、チオニルアイオダイド、チオニルフルオライド等のハロゲン化化合物;三塩化リン、亜リン酸トリフェニル、ジエチルリン酸シアニド等のリン化合物;等が挙げられる。 Examples of the dehydration condensing agent include N, N-2 substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride, tosyl chloride and the like. Chloride; acetyl chloride, acetyl bromide, propionyl iodide, acetyl fluoride, propionyl chloride, propionyl bromide, propionyl iodide, propionyl fluoride, isobutyryl chloride, isobutyryl bromide, isobutyryl iodide, isobuchi Lilfluoride, n-butyryl chloride, n-butyryl bromide, n-butyryl iodide, n-butyryl fluoride, mono-, di-, tri-chloroacetyl chloride, mono-, di-, tri- Bromoacetyl chloride, mono-, di-, tri-iodoacetyl chloride, mono-, di-, tri-fluoroacetyl chloride, chloroacetic anhydride, phenylphosphonic dichloride, thionyl chloride, thionyl bromide, thionyliodide, thionylfluo Halogen compounds such as rides; phosphorus compounds such as phosphorus trichloride, triphenyl phosphite, and diethyl phosphate cyanide; and the like.
 これらの中で、酸無水物及びハロゲン化化合物が好ましく、特に、酸無水物が、塩素量低下のため、またイミド化反応が効率よく進行する傾向にあるためより好ましい。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Among these, acid anhydrides and halogenated compounds are preferable, and acid anhydrides are more preferable because the amount of chlorine is reduced and the imidization reaction tends to proceed efficiently. One of these compounds may be used alone, or two or more thereof may be used in any ratio and combination.
 これらの脱水縮合剤の使用量は、ポリイミド前駆体1molに対して、通常0.1mol以上、好ましくは0.2mol以上であり、通常1.6mol以下、好ましくは1.0mol以下である。脱水縮合剤の使用量をこの範囲とすることで、効率的にイミド化することができる。 The amount of these dehydration condensing agents used is usually 0.1 mol or more, preferably 0.2 mol or more, and usually 1.6 mol or less, preferably 1.0 mol or less, with respect to 1 mol of the polyimide precursor. By setting the amount of the dehydration condensing agent used within this range, imidization can be performed efficiently.
 イミド化反応時の反応液中のポリイミド前駆体の濃度に特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。ポリイミド前駆体の濃度を範囲とすることで、生産効率を高くすることができ、また製造しやすい溶液粘度で製造することができる傾向にある。 The concentration of the polyimide precursor in the reaction solution during the imidization reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. .. By setting the concentration of the polyimide precursor in the range, the production efficiency can be increased, and the solution viscosity tends to be easy to produce.
 イミド化反応温度は特に制限されないが、通常0℃以上、好ましくは10℃以上、さらに好ましくは20℃以上である。また、通常150℃以下、好ましくは130℃以下、さらに好ましくは100℃以下である。この温度範囲で反応を行うことで、イミド化反応が効率よく進行する傾向にあるため好ましい。さらに、イミド化反応以外の副反応が抑制されるため好ましい。
 反応時の圧力は常圧、加圧又は減圧のいずれでもよい。
 反応雰囲気は、空気下でも不活性雰囲気下でもよい。
The imidization reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. Further, it is usually 150 ° C. or lower, preferably 130 ° C. or lower, and more preferably 100 ° C. or lower. It is preferable to carry out the reaction in this temperature range because the imidization reaction tends to proceed efficiently. Further, it is preferable because side reactions other than the imidization reaction are suppressed.
The pressure during the reaction may be normal pressure, pressurization or depressurization.
The reaction atmosphere may be under air or under an inert atmosphere.
 イミド化を促進する触媒として、前記の三級アミン化合物等のイミド化促進剤を加熱イミド化と同様に加えることもできる。 As a catalyst for promoting imidization, an imidization accelerator such as the above-mentioned tertiary amine compound can be added in the same manner as for heat imidization.
<<テトラカルボン酸二無水物等とジアミン化合物等からポリイミドを製造する方法>>
 テトラカルボン酸二無水物等とジアミン化合物等から、従来既知の方法を用いて、直接ポリイミドを得ることができる。この方法はポイミド前駆体の合成からイミド化を、反応の停止や前駆体の単離を経ることなく、イミド化までを行うものである。
<< Method of producing polyimide from tetracarboxylic dianhydride, etc. and diamine compound, etc. >>
Polyimide can be directly obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like by using a conventionally known method. This method involves the synthesis and imidization of the poimide precursor, and the imidization without stopping the reaction or isolating the precursor.
 テトラカルボン酸二無水物等とジアミン化合物等の添加順序や添加方法には特に限定はないが、例えば、溶媒にテトラカルボン酸二無水物等とジアミン化合物等を順に投入し、イミド化までの反応が進行する温度で撹拌することでポリイミドが得られる。 The order and method of adding the tetracarboxylic dianhydride and the like and the diamine compound and the like are not particularly limited. For example, the tetracarboxylic dianhydride and the like and the diamine compound and the like are added in order to the solvent, and the reaction up to imidization Polyimide can be obtained by stirring at a temperature at which
 ジアミン化合物等の量は、テトラカルボン酸二無水物等1molに対して、通常0.7mol以上、好ましくは0.8mol以上であり、通常1.3mol以下、好ましくは1.2mol以下である。ジアミン化合物等の量をこのような範囲とすることにより、得られるポリイミドの収率が向上する傾向にある。 The amount of the diamine compound or the like is usually 0.7 mol or more, preferably 0.8 mol or more, usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of the tetracarboxylic dianhydride or the like. By setting the amount of the diamine compound or the like in such a range, the yield of the obtained polyimide tends to be improved.
 反応液中のテトラカルボン酸二無水物等とジアミン化合物等の濃度は、各々の条件や重合中の粘度に応じて適宜設定できる。
 反応液中のテトラカルボン酸二無水物等とジアミン化合物等の合計濃度は、特段の設定ないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。反応液中の濃度が適当な範囲であることで、分子量の伸長が起こりやすくなり、また、撹拌も容易となる傾向にある。
The concentrations of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution can be appropriately set according to each condition and the viscosity during the polymerization.
The total concentration of the tetracarboxylic dianhydride and the like and the diamine compound and the like in the reaction solution is not particularly set, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40. It is mass% or less. When the concentration in the reaction solution is in an appropriate range, the molecular weight tends to be extended and stirring tends to be easy.
 この反応で用いる溶媒としては、前記のポリイミド前駆体を得る反応時に使用する溶媒と同様のものが挙げられる。 Examples of the solvent used in this reaction include the same solvents used in the reaction for obtaining the polyimide precursor described above.
 テトラカルボン酸二無水物等とジアミン化合物等からポリイミドを得る場合も、ポリイミド前駆体からポリイミドを得る場合と同様に、加熱イミド化及び/又は化学イミド化を採用することができる。この場合の加熱イミド化や化学イミド化の反応条件等は、前記と同様である。 When the polyimide is obtained from a tetracarboxylic dianhydride or the like and a diamine compound or the like, heat imidization and / or chemical imidization can be adopted as in the case of obtaining a polyimide from a polyimide precursor. The reaction conditions for heat imidization and chemical imidization in this case are the same as described above.
 得られたポリイミドは、そのまま用いてもよく、貧溶媒中に添加することでポリイミドを固体状に析出させた後に、他の溶媒に再溶解させてポリイミド組成物として用いることもできる。 The obtained polyimide may be used as it is, or may be added to a poor solvent to precipitate the polyimide into a solid state, and then redissolved in another solvent to be used as a polyimide composition.
 この時の貧溶媒は特に制限はなく、ポリイミドの種類によって適宜選択しうる。貧溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物が得られ、沸点が低く乾燥が容易となる傾向にあるため好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The poor solvent at this time is not particularly limited and can be appropriately selected depending on the type of polyimide. Examples of the poor solvent include ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; and the like. .. Above all, an alcohol solvent such as isopropyl alcohol is preferable because a precipitate can be efficiently obtained, the boiling point is low, and drying tends to be easy. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
 ポリイミドを再溶解させる溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン、アニソール等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;クロロホルム、塩化メチレン、1,2-ジクロロエタンなどのハロゲン系溶媒等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 Examples of the solvent for redissolving polyimide include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene, mecitylene, and anisole; N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl. -Amid solvent such as pyrrolidone; Aproton solvent such as dimethyl sulfoxide; Glycol solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; chloroform, Examples thereof include halogen-based solvents such as methylene chloride and 1,2-dichloroethane. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
[ポリイミドの機械的特性]
 本発明のポリイミドの引張強度は、特に制限はないが、23℃、50%湿度下の測定において、通常50MPa以上、好ましくは70MPa以上、より好ましくは100MPa以上、さらに好ましくは150MPa以上である。本発明のポリイミドの引張強度は、好ましくは400MPa以下であり、より好ましくは300MPa以下である。
[Mechanical properties of polyimide]
The tensile strength of the polyimide of the present invention is not particularly limited, but is usually 50 MPa or more, preferably 70 MPa or more, more preferably 100 MPa or more, still more preferably 150 MPa or more in measurement at 23 ° C. and 50% humidity. The tensile strength of the polyimide of the present invention is preferably 400 MPa or less, more preferably 300 MPa or less.
 本発明のポリイミドの引張弾性率は、特に制限はないが、23℃、50%湿度下の測定において、通常1500MPa以上、好ましくは1800MPa以上、さらに好ましくは2000MPa以上、特に好ましくは3000MPa以上である。本発明のポリイミドの引張弾性率は、好ましくは20GPa以下であり、より好ましくは10GPa以下である。 The tensile elastic modulus of the polyimide of the present invention is not particularly limited, but is usually 1500 MPa or more, preferably 1800 MPa or more, more preferably 2000 MPa or more, and particularly preferably 3000 MPa or more in measurement at 23 ° C. and 50% humidity. The tensile elastic modulus of the polyimide of the present invention is preferably 20 GPa or less, more preferably 10 GPa or less.
 本発明のポリイミドの引張伸度は、特に制限はないが、23℃、50%湿度下の測定において、通常10%GL以上、好ましくは20%GL以上、より好ましくは50GL%以上である。本発明のポリイミドの引張伸度は、好ましくは400%GL以下であり、より好ましくは300%GL以下である。 The tensile elongation of the polyimide of the present invention is not particularly limited, but is usually 10% GL or more, preferably 20% GL or more, and more preferably 50 GL% or more in the measurement at 23 ° C. and 50% humidity. The tensile elongation of the polyimide of the present invention is preferably 400% GL or less, more preferably 300% GL or less.
 ポリイミドがこのような範囲の機械的特性を有することにより、より耐久性の高い成形体を得ることができ、好ましい。 It is preferable that the polyimide has mechanical properties in such a range, so that a molded product having higher durability can be obtained.
[ポリイミドの溶媒溶解性]
 本発明のポリイミドの溶媒溶解性は、特に制限はないが、好ましくは非プロトン性極性溶媒に室温(25℃)において、5質量%以上溶解するものが好ましく、この溶解度はより好ましくは10質量%以上であり、さらに好ましくは15質量%以上、最も好ましくは20質量%以上である。また、この溶解度の上限はなく高い方が好ましいが、通常80質量%以下である。
 溶媒溶解性がこの範囲であることで、製造性が向上し、また塗布等のプロセス適合性が向上するため、好ましい。
[Solvent solubility of polyimide]
The solvent solubility of the polyimide of the present invention is not particularly limited, but it is preferably dissolved in an aprotic polar solvent at room temperature (25 ° C.) in an amount of 5% by mass or more, and this solubility is more preferably 10% by mass. The above is more preferably 15% by mass or more, and most preferably 20% by mass or more. Further, there is no upper limit to the solubility, and it is preferable that the solubility is high, but it is usually 80% by mass or less.
When the solvent solubility is in this range, the manufacturability is improved and the process compatibility such as coating is improved, which is preferable.
 ここで、非プロトン性極性溶媒とは、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチルラクトン等が挙げられる。これらの溶媒は1種を単独で用いても、2種以上を任意の比率及び組み合わせで用いてもよい。 Here, examples of the aprotic polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyl lactone and the like. One of these solvents may be used alone, or two or more of these solvents may be used in any ratio and combination.
[フィルムの製造方法]
 本発明のポリイミドを用いてフィルム(ポリイミドフィルム)を製造することができる。その製造方法は特に制限はないが、例えば、本発明のポリイミドを溶媒に溶解させたポリイミド組成物をキャスト法等により基板に塗布成膜することにより製造することができる。
[Film manufacturing method]
A film (polyimide film) can be produced using the polyimide of the present invention. The production method is not particularly limited, and for example, it can be produced by applying a polyimide composition in which the polyimide of the present invention is dissolved in a solvent to a substrate by a casting method or the like.
<ポリイミド組成物>
 ポリイミド組成物中のポリイミドの含有量は特に限定されず、製造プロセス等に応じて適宜調整することができる。ポリイミド組成物中のポリイミドの含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、また、70質量%以下が好ましく、60質量%以下がより好ましい。ポリイミドの含有量がこの範囲であることで、通常の設備での成膜、取り扱いが容易となるため好ましい。
<Polyimide composition>
The content of polyimide in the polyimide composition is not particularly limited, and can be appropriately adjusted according to the production process and the like. The content of polyimide in the polyimide composition is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. When the polyimide content is in this range, film formation and handling in ordinary equipment are easy, which is preferable.
<<溶媒>>
 本発明のポリイミド組成物は溶媒を含む。本発明のポリイミド組成物に用いる溶媒は特に限定されないが、該溶媒の溶解度パラメータとポリイミドの繰返し単位に基づく溶解度パラメータの差の絶対値が2以上であることが好ましい。
<< Solvent >>
The polyimide composition of the present invention contains a solvent. The solvent used in the polyimide composition of the present invention is not particularly limited, but the absolute value of the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is preferably 2 or more.
 ポリイミド組成物を用いてフィルムを成膜する際に、ポリイミドの分子同士が相互作用し、ポリイミド分子がスタッキングかつ配向すると、得られるポリイミドフィルムは高性能化し、弾性率が高く、耐折り曲げ性に優れる傾向にある。溶媒の溶解度パラメータとポリイミドの繰返し単位に基づく溶解度パラメータの差が特定の範囲であることで、成膜時にポリイミド分子が配向しながら乾燥され、弾性率、耐折り曲げ性が良好なポリイミドフィルムを得ることができる傾向にある。 When a film is formed using a polyimide composition, the polyimide molecules interact with each other, and when the polyimide molecules are stacked and oriented, the obtained polyimide film has high performance, high elastic modulus, and excellent bending resistance. There is a tendency. When the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is within a specific range, the polyimide molecules are dried while being oriented during film formation, and a polyimide film having good elastic modulus and bending resistance can be obtained. Tends to be possible.
 この溶解度パラメータ(以下、SP値と表すことがある)の差の絶対値は2.1以上であることがよりより好ましく、2.5以上であることがさらに好ましい。また、SP値の差の絶対値は10以下が好ましく、8以下であることがより好ましい。SP値の差の絶対値が上記下限値以上であることで溶媒に対する溶解性が過剰となりすぎず、ポリイミドフィルムの成膜に際してポリイミド分子のスタッキングや配合が進行し、弾性率、耐折り曲げ性に優れたポリイミドフィルムを得ることができる傾向にある。SP値の差の絶対値が上記上限値以下であることで、ポリイミドの溶媒への溶解性が向上し、得られるフィルムの均一性、表面平滑性等に優れる傾向にある。 The absolute value of the difference between the solubility parameters (hereinafter, may be referred to as SP value) is more preferably 2.1 or more, and further preferably 2.5 or more. Further, the absolute value of the difference between the SP values is preferably 10 or less, and more preferably 8 or less. When the absolute value of the difference in SP value is equal to or more than the above lower limit value, the solubility in a solvent does not become excessive, the stacking and compounding of polyimide molecules proceed during the film formation of the polyimide film, and the elastic modulus and bending resistance are excellent. There is a tendency to obtain a polyimide film. When the absolute value of the difference between the SP values is not more than the above upper limit value, the solubility of the polyimide in the solvent is improved, and the uniformity of the obtained film, the surface smoothness, and the like tend to be excellent.
 本発明において溶解度パラメータ(SP値)とは、ハンセンの溶解度パラメーター(HSP)であり、ある物質が他のある物質にどのくらい溶けるのかという溶解性を表す指標である。SP値は、ヒルデブランド(Hildebrand)によって導入された溶解度パラメーターを、分散項δD、極性項δP、水素結合項δHの3成分に分割し、三次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、水素結合項δHは水素結合力による効果を示し、
 δD:分子間の分散力に由来するエネルギー
 δP:分子間の極性力に由来するエネルギー
 δH:分子間の水素結合力に由来するエネルギー
と、表記される(ここで、それぞれの単位はMPa0.5である。)。
 SP値の定義と計算は、下記の文献に記載されている。
 Charles M. Hansen著、Hansen Solubility Parameters: A Users Handbook(CRCプレス、2007年)。
In the present invention, the solubility parameter (SP value) is Hansen's solubility parameter (HSP), which is an index showing the solubility of a substance in another substance. The SP value is a three-dimensional space obtained by dividing the solubility parameter introduced by Hildebrand into three components of the dispersion term δD, the polarity term δP, and the hydrogen bond term δH. The dispersion term δD indicates the effect due to the dispersion force, the polar term δP indicates the effect due to the dipole force, and the hydrogen bond term δH indicates the effect due to the hydrogen bond force.
δD: Energy derived from intermolecular dispersion force δP: Energy derived from intermolecular polar force δH: Energy derived from intermolecular hydrogen bonding force (Here, each unit is MPa 0. It is 5. ).
Definitions and calculations of SP values are described in the literature below.
Charles M. Hansen, Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007).
 それぞれ、分散項はファンデルワールス力、極性項はダイポール・モーメント、水素結合項は水、アルコールなどによる作用を反映している。そしてSP値によるベクトルが似ているもの同士は溶解性が高いと判断でき、ベクトルの類似度はSP値の差の絶対値で判断し得る。また、SP値は、溶解性の判断だけではなく、ある物質が他のある物質中にどの程度存在しやすいか、すなわち分散性がどの程度良いかの判断の指標ともなり得る。 The dispersion term reflects the van der Waals force, the polarity term reflects the dipole moment, and the hydrogen bond term reflects the action of water, alcohol, etc. Then, it can be determined that the vectors having similar SP values have high solubility, and the degree of similarity of the vectors can be determined by the absolute value of the difference between the SP values. Further, the SP value can be an index not only for determining the solubility but also for determining how easily a certain substance is present in another substance, that is, how good the dispersibility is.
 本発明においてSP値[δD、δP、δH]は、例えば、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いることによって、その化学構造から簡便に推算できる。具体的には、HSPiPに実装されている、Y-MB法により化学構造から求められるものである。化学構造が未知である場合は、複数の溶媒を用いた溶解テストの結果からHSPiPに実装されているスフィア法により求められるものである。 In the present invention, the SP value [δD, δP, δH] can be easily estimated from its chemical structure by using, for example, the computer software Hansen Solubility Parameter in Practice (HSPiP). Specifically, it is obtained from the chemical structure by the Y-MB method implemented in HSPiP. When the chemical structure is unknown, it can be obtained by the sphere method implemented in HSPiP from the results of dissolution tests using a plurality of solvents.
 SP値の差の絶対値は、例えば溶質のSP値(本発明ではポリイミドの繰り返し単位に基づくSP値)を(δD,δP,δH)とし、溶媒のSP値を(δD,δP,δH)としたとき、下記式により算出することができる。
 SP値の差の絶対値={(δD-δD+(δP-δP+(δH-δH0.5
Absolute value of the difference between the SP value, for example, the SP value of solute (SP value based on the repeating unit of the polyimide in the present invention) (δD 1, δP 1, δH 1) and then, the SP value of the solvent ([delta] D 2, [delta] P When 2 , δH 2 ), it can be calculated by the following formula.
SP value of the absolute value of the difference = {(δD 1 -δD 2) 2 + (δP 1 -δP 2) 2 + (δH 1 -δH 2) 2} 0.5
 本発明において、ポリイミドの繰り返し単位に基づくSP値とは、ポリイミドの原料モノマーを1分子ずつ反応させた構造のSP値であり、ポリイミドに2種以上の繰り返し単位が含まれる場合は、各々の繰り返し単位の含有割合から、比例計算で求められる。
 溶媒や後述の製造溶媒についても同様に2種以上の混合溶媒を用いる場合は、各溶媒のSP値とその使用割合から比例計算で混合溶媒のSP値を求めることができる。
In the present invention, the SP value based on the repeating unit of polyimide is the SP value of the structure in which the raw material monomer of polyimide is reacted one molecule at a time, and when the polyimide contains two or more kinds of repeating units, each repetition is performed. It is calculated proportionally from the content ratio of the unit.
Similarly, when two or more kinds of mixed solvents are used for the solvent and the production solvent described later, the SP value of the mixed solvent can be obtained by proportional calculation from the SP value of each solvent and the usage ratio thereof.
 溶媒としては、後述の通り、各種のものが挙げられるが、成膜時の乾燥温度を下げる観点から、沸点の低い溶媒が好ましく、特に塩化メチレン(SP値19.8)を用いることが好ましい。従って、本発明のポリイミドは、塩化メチレンのSP値に対して繰り返し単位に基づくSP値が上記の関係を満たすことが好ましい。
 即ち、本発明のポリイミドは、(ポリイミドの繰り返し単位に基づくSP値)-(塩化メチレンのSP値)の値がプラスの場合、通常21.8以上、好ましくは21.9以上、より好ましくは22.3以上であり、好ましくは29.8以下、より好ましくは27.8以下である。この値がマイナスの場合、通常17.8以下、好ましくは17.7以下、より好ましくは17.3以下であり、9.8以上、より好ましくは11.8以上である。
As the solvent, various solvents can be mentioned as described later, but from the viewpoint of lowering the drying temperature at the time of film formation, a solvent having a low boiling point is preferable, and methylene chloride (SP value 19.8) is particularly preferable. Therefore, in the polyimide of the present invention, it is preferable that the SP value based on the repeating unit satisfies the above relationship with respect to the SP value of methylene chloride.
That is, the polyimide of the present invention is usually 21.8 or more, preferably 21.9 or more, more preferably 22 when the value of (SP value based on the repeating unit of polyimide)-(SP value of methylene chloride) is positive. It is 0.3 or more, preferably 29.8 or less, and more preferably 27.8 or less. When this value is negative, it is usually 17.8 or less, preferably 17.7 or less, more preferably 17.3 or less, 9.8 or more, and more preferably 11.8 or more.
 一方で、ポリイミドは、当該ポリイミドの製造時に使用される反応溶媒(以下、「製造溶媒」と称す場合がある。)に対する溶解性が低いものであると、製造時に析出してしまい、目的とするポリイミドを製造し得ないおそれがある。
 このため、本発明のポリイミドは製造溶媒に対してはある程度の溶解性を有すること、即ち、SP値が近いことが好ましく、この観点から、本発明のポリイミドの繰り返し単位に基づくSP値から製造溶媒のSP値を差し引いた値が-3.0以上、特に-1.0以上、とりわけ0.0以上であることが好ましく、5.0以下、特に4.0以下、とりわけ3.0以下であることが好ましい。
On the other hand, if the polyimide has low solubility in the reaction solvent used in the production of the polyimide (hereinafter, may be referred to as "production solvent"), it will be precipitated during the production, which is the target. There is a risk that polyimide cannot be manufactured.
Therefore, the polyimide of the present invention preferably has a certain degree of solubility in the production solvent, that is, the SP value is close to each other. From this viewpoint, the production solvent is obtained from the SP value based on the repeating unit of the polyimide of the present invention. The value obtained by subtracting the SP value of is preferably −3.0 or higher, particularly −1.0 or higher, particularly 0.0 or higher, and 5.0 or lower, particularly 4.0 or lower, particularly 3.0 or lower. Is preferable.
 ポリイミドの製造溶媒としては前述の通り、各種のものが挙げられるが、製造安定性や分子量伸長の起こりやすさの観点からジメチルアセトアミド(DMAc)(SP値23)やN-メチル-2-ピロリドン(NMP)(SP値23)を用いることが好ましい。従って、本発明のポリイミドの繰り返し単位に基づくSP値は20以上、特に21以上、とりわけ23以上で、28以下、特に27以下、とりわけ26以下であることが好ましい。 As described above, various solvents for producing polyimide can be mentioned, but from the viewpoint of production stability and susceptibility to molecular weight elongation, dimethylacetamide (DMAc) (SP value 23) and N-methyl-2-pyrrolidone ( It is preferable to use NMP) (SP value 23). Therefore, the SP value based on the repeating unit of the polyimide of the present invention is preferably 20 or more, particularly 21 or more, particularly 23 or more, and 28 or less, particularly 27 or less, particularly 26 or less.
 ポリイミド組成物には、ポリイミド及び溶媒以外にもその他の成分を含んでいてもよい。
 その他の成分としては、例えば、界面活性剤、酸化防止剤、潤滑剤、着色剤、安定剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤、レベリング剤、消泡剤等が挙げられる。その他必要に応じて、発明の目的を損なわない範囲で、粉末状、粒状、板状、繊維状等の、無機系充填剤又は有機系充填剤を配合してもよい。
 これらの添加成分は、ポリイミド前駆体及び/又はポリイミド組成物を製造するどの工程のどの段階で添加してもよい。
The polyimide composition may contain other components in addition to the polyimide and the solvent.
Other components include, for example, surfactants, antioxidants, lubricants, colorants, stabilizers, UV absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, leveling agents, defoamers, etc. Can be mentioned. In addition, if necessary, an inorganic filler or an organic filler such as powder, granular, plate, or fibrous may be blended as long as the object of the invention is not impaired.
These additive components may be added at any stage of any process for producing the polyimide precursor and / or the polyimide composition.
<<界面活性剤>>
 本発明のポリイミド組成物は界面活性剤を含んでいてもよい。界面活性剤を含むことで、ポリイミドの溶媒への溶解性が向上する傾向にある。
 界面活性剤にはカチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤、及びノニオン性界面活性剤等が挙げられる。界面活性剤は1種類でも、複数を組み合わせて用いてもよい。
<< Surfactant >>
The polyimide composition of the present invention may contain a surfactant. The inclusion of a surfactant tends to improve the solubility of polyimide in a solvent.
Examples of the surfactant include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant and the like. The surfactant may be used alone or in combination of two or more.
 本発明に用いられるカチオン性界面活性剤として具体的に、アミン型、第4級アンモニウム塩型等が挙げられる。
 アミン型としては、ポリオキシエチレンアルキルアミンやアルキルアミン塩等の脂肪族アミン、アルキルイミダゾリンなどの複素環アミン塩などが挙げられる。
 第4級アンモニウム塩型としては、アルキルトリメチルアンモニウム塩やジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、ポリジアリルジメチルアンモニウム塩;アルキルトリメチルアンモニウムクロライドやジアルキルジメチルアンモニウムクロライドなどの塩素塩型;アルキルジメチルエチルアンモニウムエチルサルフェートなどの非塩素型;などが挙げられる。
Specific examples of the cationic surfactant used in the present invention include amine type and quaternary ammonium salt type.
Examples of the amine type include aliphatic amines such as polyoxyethylene alkylamines and alkylamine salts, and heterocyclic amine salts such as alkylimidazolines.
The quaternary ammonium salt type includes alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, polydiallyldimethylammonium salt; chlorine salt type such as alkyltrimethylammonium chloride and dialkyldimethylammonium chloride; alkyldimethylethylammonium. Non-chlorine type such as ethyl sulfate; and the like.
 本発明に用いられるアニオン性界面活性剤として具体的に、硫酸エステル型、リン酸エステル型、カルボン酸型、スルホン酸型等が挙げられる。
 硫酸エステル型としては具体的に、アルキル硫酸エステル、エトキシ硫酸エステル、ポリオキシエチレンスチレン化フェニル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、長鎖アルコール硫酸エステル、その他の硫酸エステル、及びこれらの塩等が挙げられる。
 リン酸エステル型としては具体的に、ポリオキシエチレンアルキルエーテルリン酸エステル、及びこれらの塩などが挙げられる。
 カルボン酸型としては具体的に、脂肪酸、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキルエーテルスルホコハク酸、アルケニルコハク酸、ポリアクリル酸、スチレン-マレイン酸コポリマーアンモニウム、カルボキシメチルセルロース、ポリアクリル酸、ポリカルボン酸、及びこれらの塩などが挙げられる。
 スルホン酸型としては具体的に、スルホン酸、スルホコハク酸、アルキルベンゼンスルホン酸、アルカンスルホン酸、アルファオレフィンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸ナトリウムホルマリン縮合物、及びこれらの塩などが挙げられる。
Specific examples of the anionic surfactant used in the present invention include sulfate ester type, phosphoric acid ester type, carboxylic acid type, and sulfonic acid type.
Specific examples of the sulfate ester type include alkyl sulfate ester, ethoxy sulfate ester, polyoxyethylene styrene phenyl sulfate ester, polyoxyethylene alkyl ether sulfate ester, long-chain alcohol sulfate ester, other sulfate esters, and salts thereof. Can be mentioned.
Specific examples of the phosphoric acid ester type include polyoxyethylene alkyl ether phosphoric acid esters and salts thereof.
Specific examples of the carboxylic acid type include fatty acids, polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl ether sulfosuccinic acid, alkenyl succinic acid, polyacrylic acid, styrene-maleic acid copolymer ammonium, carboxymethyl cellulose, polyacrylic acid, and polycarboxylic acid. Acids and salts thereof may be mentioned.
Specific examples of the sulfonic acid type include sulfonic acid, sulfosuccinic acid, alkylbenzene sulfonic acid, alkane sulfonic acid, alpha olefin sulfonic acid, phenol sulfonic acid, sodium naphthalene sulfonic acid formalin condensate, and salts thereof.
 本発明に用いられる両性界面活性剤としては、具体的にはベタイン型、アミンオキサイド型、N-アルキルアミノ酸型、イミダゾリン型等が挙げられる。
 ベタイン型としては具体的に、アルキルベタイン、脂肪族アミドベタインなどのアミドベタインなどが挙げられる。
 アミンオキサイド型としては具体的に、アルキルアミンオキサイド等が挙げられる。
 N-アルキルアミノ酸型としては、具体的にN-アルキル-β-アミノプロピオン酸塩などが挙げられる。
 イミダゾリン型としては、具体的に2-アルキルイミダゾリン誘導体などが挙げられる。
Specific examples of the amphoteric surfactant used in the present invention include betaine type, amine oxide type, N-alkylamino acid type and imidazoline type.
Specific examples of the betaine type include alkyl betaine, amide betaine such as aliphatic amide betaine, and the like.
Specific examples of the amine oxide type include alkylamine oxides and the like.
Specific examples of the N-alkyl amino acid type include N-alkyl-β-aminopropionate.
Specific examples of the imidazoline type include 2-alkylimidazoline derivatives.
 本発明に用いられるノニオン性界面活性剤としては、具体的には、エーテル型、エステル型、エーテル・エステル型、多価アルコール型、アミド型、高分子型等が挙げられる。
 エーテル型としては具体的にはポリオキシアルキレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンアルキルアミンなどが挙げられる。
 エステル型としては、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ショ糖誘導体、脂肪酸エステル等が挙げられる。
 エーテル・エステル型としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油エーテルなどが挙げられる。
 多価アルコール型としては、アルキルグルコシド、アルキルポリグルコシドなどが挙げられる。
 アミド型としては具体的にはアルキルアルカノールアミドなどが挙げられる。
 高分子型としては、具体的に、ポリビニルピロリドン、ポリアルキレンポリアミンアルキレンオキシド付加物、ポリアルキレンポリイミンアルキレンオキシド付加物などが挙げられる。
Specific examples of the nonionic surfactant used in the present invention include ether type, ester type, ether ester type, polyhydric alcohol type, amide type, and polymer type.
Specific examples of the ether type include polyoxyalkylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene alkyl amine.
Examples of the ester type include sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, sucrose derivative, and fatty acid ester.
Examples of the ether ester type include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid ester, and polyoxyethylene hydrogenated castor oil ether.
Examples of the polyhydric alcohol type include alkyl glucosides and alkyl polyglucosides.
Specific examples of the amide type include alkylalkanolamides.
Specific examples of the polymer type include polyvinylpyrrolidone, a polyalkylene polyamine alkylene oxide adduct, and a polyalkylene polyimine alkylene oxide adduct.
 ノニオン性界面活性剤の具体例としては、エマルゲン123P、エマルゲン130K、エマルゲン150、エマルゲン430、エマルゲン409PV、エマルゲン705、エマルゲン707、エマルゲン709(花王社製)などのポリオキシエチレンアルキルエーテル;ソルゲン40(第一工業製薬社製)やニューコール20、ニューコール60、ニューコール80(日本乳化剤社製)などのソルビタン脂肪酸エステル;モノペットSB(第一工業製薬社製)などのショ糖安息香酸エステル;DKエステルF-110(第一工業製薬社製)などのショ糖脂肪酸エステル;ピッツコールK-30、ピッツコールK-40(第一工業製薬社製)などのポリビニルピロリドン;が挙げられる。 Specific examples of the nonionic surfactant include polyoxyethylene alkyl ethers such as Emargen 123P, Emargen 130K, Emargen 150, Emargen 430, Emargen 409PV, Emargen 705, Emargen 707, and Emargen 709 (manufactured by Kao); Sorbitane fatty acid esters such as (Daiichi Kogyo Seiyaku Co., Ltd.), New Coal 20, New Coal 60, and New Coal 80 (manufactured by Nippon Emulsifier); Examples thereof include sucrose fatty acid esters such as DK ester F-110 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and polyvinylpyrrolidone such as Pittscol K-30 and Pittscol K-40 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
 上記の中でも、ノニオン性界面活性剤を用いることが好ましい。ノニオン性界面活性剤を用いることで、ポリイミドの溶媒への溶解性が向上する傾向にある。 Among the above, it is preferable to use a nonionic surfactant. By using a nonionic surfactant, the solubility of polyimide in a solvent tends to be improved.
<<レベリング剤>>
 本発明のポリイミド組成物は、レベリング剤を含んでいてもよい。レベリング剤を含むことで、得られるポリイミドフィルムの平滑性が向上する傾向となる。
 レベリング剤としては、例えばシリコーン系化合物等が挙げられる。シリコーン系化合物は特に限定はないが、例えば、ポリエーテル変性シロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン、ポリエステル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、高重合シリコーン、アミノ変性シリコーン、アミノ誘導体シリコーン、フェニル変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
<< Leveling agent >>
The polyimide composition of the present invention may contain a leveling agent. The inclusion of the leveling agent tends to improve the smoothness of the obtained polyimide film.
Examples of the leveling agent include silicone compounds and the like. The silicone-based compound is not particularly limited, and for example, polyether-modified siloxane, polyether-modified polydimethylsiloxane, polyether-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, polyester-modified polydimethylsiloxane, and polyester-modified hydroxyl group. Examples thereof include polydimethylsiloxane contained, polyester-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, highly polymerized silicone, amino-modified silicone, amino derivative silicone, phenyl-modified silicone, and polyether-modified silicone. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
<成膜方法>
 上記のポリイミド組成物を用いたポリイミドフィルムの成膜方法は時に制限はないが、ポリイミド組成物を基材等に塗布する方法等が挙げられる。
<Film formation method>
The film forming method of the polyimide film using the above-mentioned polyimide composition is sometimes not limited, and examples thereof include a method of applying the polyimide composition to a substrate or the like.
 塗布する方法としては、ダイコーティング、スピンコーティング、ディップコーティング、スクリーン印刷、スプレー、キャスト法(枚葉法及び連続法)、コーターを用いる方法、吹付による塗布方法、浸漬法、カレンダー法等が挙げられる。これらの方法は塗布面積及び被塗布面の形状などに応じて適宜選択することができる。
 これらのうち、塗布膜厚の均一性が良好であり、表面平滑性が良好になる傾向があるため、キャスト法、コーターを用いる方法を採用することが好ましく、キャスト法を用いることがより好ましい。
Examples of the coating method include die coating, spin coating, dip coating, screen printing, spraying, casting method (single leaf method and continuous method), method using a coater, coating method by spraying, dipping method, calendar method and the like. .. These methods can be appropriately selected depending on the coated area, the shape of the surface to be coated, and the like.
Of these, since the uniformity of the coating film thickness is good and the surface smoothness tends to be good, it is preferable to adopt a casting method or a method using a coater, and it is more preferable to use the casting method.
 塗布等で形成した膜に含まれる溶媒を揮発させる方法も特に制限はない。通常は、塗布等で形成した膜を加熱することにより、溶媒を揮発させる。加熱方法は特に制限されず、例えば、熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱、及び熱板・ホットロール等を用いた接触による加熱等が挙げられる。 There is no particular limitation on the method of volatilizing the solvent contained in the film formed by coating or the like. Usually, the solvent is volatilized by heating the film formed by coating or the like. The heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, and heating by contact using a hot plate / hot roll or the like.
 溶媒を揮発させる場合の加熱温度は、溶媒の種類に応じて好適な温度を用いることができる。加熱温度は、溶媒の沸点に対して通常沸点以上、好ましくは溶媒の沸点+50℃以上、さらに好ましくは溶媒の沸点+100℃以上であり、通常溶媒の沸点+200℃以下、好ましくは溶媒の沸点+180℃以下、さらに好ましくは溶媒の沸点+150℃以下である。加熱温度が上記範囲である場合、溶媒が十分に揮発される点で好ましい。 As the heating temperature when the solvent is volatilized, a suitable temperature can be used depending on the type of solvent. The heating temperature is usually above the boiling point of the solvent, preferably above the boiling point of the solvent + 50 ° C, more preferably above the boiling point of the solvent + 100 ° C, usually below the boiling point of the solvent + 200 ° C, preferably above the boiling point of the solvent + 180 ° C. Hereinafter, the boiling point of the solvent is more preferably + 150 ° C. or lower. When the heating temperature is in the above range, the solvent is preferably sufficiently volatilized.
 本発明のポリイミドフィルムは、例えば、支持体に、上述したように、本発明のポリイミドとキャスト溶媒を含むポリイミド組成物を塗布後、加熱し、該支持体からフィルムを剥離することにより得られる。 The polyimide film of the present invention can be obtained, for example, by applying a polyimide composition containing the polyimide of the present invention and a casting solvent to a support as described above, heating the support, and peeling the film from the support.
 支持体からポリイミドフィルムを剥離する方法は特に制限はないが、フィルムなどの性能を損なうことなく剥離できるという点で、物理的に剥離する方法、レーザーによって剥離する方法が好ましい。 The method of peeling the polyimide film from the support is not particularly limited, but a physical peeling method or a laser peeling method is preferable in that the polyimide film can be peeled off without impairing the performance of the film or the like.
 物理的に剥離する方法とは、例えば、ポリイミドフィルム/支持体からなる積層体の周縁を切離してポリイミドフィルムを得る方法、周縁部を吸引してポリイミドフィルムを得る方法、周縁を固定し支持基材を移動させてポリイミドフィルムを得る方法などが挙げられる。 Examples of the method of physically peeling include a method of obtaining a polyimide film by cutting off the peripheral edge of a laminate made of a polyimide film / support, a method of sucking the peripheral edge portion to obtain a polyimide film, and a method of fixing the peripheral edge and supporting a base material. A method of obtaining a polyimide film by moving the film can be mentioned.
 このようにして得られる本発明のポリイミドフィルムの厚さは、通常1μm以上、好ましくは2μm以上であり、通常300μm以下、好ましくは200μm以下である。厚さが1μm以上であることにより、ポリイミドフィルムが十分な強度を得られ自立フィルムとして得られ、ハンドリング性が向上する傾向にある。また、厚さを300μm以下にすることによりフィルムの均一性が担保しやすい傾向にある。 The thickness of the polyimide film of the present invention thus obtained is usually 1 μm or more, preferably 2 μm or more, and usually 300 μm or less, preferably 200 μm or less. When the thickness is 1 μm or more, the polyimide film can obtain sufficient strength and can be obtained as a self-supporting film, and the handleability tends to be improved. Further, by setting the thickness to 300 μm or less, the uniformity of the film tends to be easily ensured.
[積層体]
 本発明のポリイミドフィルムは、積層体としても用いることができる。例えば、本発明のポリイミドフィルム上に、耐傷性、耐摩耗性等を付与する機能を有するハードコート層、光学補償等を付与する機能を有する層、接着層などを設けることができる。本発明のポリイミドフィルムの両面に同一又は異なる層を設けてもよい。
[Laminate]
The polyimide film of the present invention can also be used as a laminate. For example, on the polyimide film of the present invention, a hard coat layer having a function of imparting scratch resistance, abrasion resistance, etc., a layer having a function of imparting optical compensation, etc., an adhesive layer, and the like can be provided. The same or different layers may be provided on both sides of the polyimide film of the present invention.
 本発明のポリイミドフィルムは、高表面硬度で耐折り曲げ性に優れ、光透過性及び弾性率、柔軟性、透明性が高く、溶媒溶解性が高く、さらにデバイス適用性が高いことから、特にディスプレイ等のカバーフィルムとして有用である。この用途において、本発明のポリイミドフィルム上にハードコート層を有する積層体として用いることができる。 The polyimide film of the present invention has a high surface hardness, excellent bending resistance, high light transmittance, elastic modulus, flexibility, transparency, high solvent solubility, and high device applicability. It is useful as a cover film for. In this application, it can be used as a laminate having a hard coat layer on the polyimide film of the present invention.
 ハードコート層は、ポリイミドフィルム上に直接、または、接着層などを介して形成することができる。
 ハードコート層は特に限定されず、通常用いられるハードコート剤を用いて形成することができる。ハードコート剤としては、光、熱等の硬化性樹脂、無機材料、無機材料を含む硬化性樹脂等が挙げられる。その形成方法は、それぞれの材料に合わせて選択することができる。また、ハードコート剤には、必要に応じて、消泡剤、レベリング剤、増粘剤、帯電防止剤、防曇剤等を適宜添加してもよい。
The hard coat layer can be formed directly on the polyimide film or through an adhesive layer or the like.
The hard coat layer is not particularly limited and can be formed by using a commonly used hard coat agent. Examples of the hard coating agent include curable resins such as light and heat, inorganic materials, and curable resins containing inorganic materials. The forming method can be selected according to each material. Further, a defoaming agent, a leveling agent, a thickener, an antistatic agent, an antifogging agent and the like may be appropriately added to the hard coating agent, if necessary.
 ハードコート層の厚さは、特に限定されないが、50μm以上であることが好ましく、60μm以上であることがより好ましい。ハードコート層の厚さは、200μm以下であることが好ましく、180μm以下であることが好ましい。ハードコート層の厚さがこの範囲であることで、高表面硬度、耐屈曲性に優れる傾向にある。 The thickness of the hard coat layer is not particularly limited, but is preferably 50 μm or more, and more preferably 60 μm or more. The thickness of the hard coat layer is preferably 200 μm or less, and preferably 180 μm or less. When the thickness of the hard coat layer is within this range, it tends to be excellent in high surface hardness and bending resistance.
 本発明の積層体におけるハードコート層表面の鉛筆硬度は、特に限定されないが、好ましくB以上、より好ましくはF以上、さらに好ましくはH以上、特に好ましくは2H以上である。 The pencil hardness of the surface of the hard coat layer in the laminate of the present invention is not particularly limited, but is preferably B or higher, more preferably F or higher, still more preferably H or higher, and particularly preferably 2H or higher.
 特にディスプレイ用途などの積層体を光が透過する用途に使用する場合、ポリイミドフィルム/ハードコート層積層体は透明性が高い方が望ましい。本発明の積層体のYI(黄色度)は、特に限定されないが、好ましくは3以下、より好ましくは2.8以下、さらに好ましくは2以下である。 Especially when the laminate is used for light transmission such as display applications, it is desirable that the polyimide film / hard coat layer laminate has high transparency. The YI (yellowness) of the laminate of the present invention is not particularly limited, but is preferably 3 or less, more preferably 2.8 or less, and further preferably 2 or less.
 本発明の積層体のヘイズは、特に限定されないが、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、特に好ましくは1%未満である。 The haze of the laminate of the present invention is not particularly limited, but is preferably 3% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably less than 1%.
 以下に実施例により本発明をさらに詳細に説明する。以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り、以下の実施例に限定されるものではない。 The present invention will be described in more detail below by way of examples. The following examples are shown for explaining the present invention in detail, and the present invention is not limited to the following examples unless contrary to the gist thereof.
[溶解性試験]
 ポリイミドを25℃でN,N-ジメチルアセトアミド(DMAc)に20質量%となる濃度で溶解させ、目視にて確認し、すべて溶解(完溶)していた場合は〇、完溶していない場合は×とした。
[Solubility test]
The polyimide was dissolved in N, N-dimethylacetamide (DMAc) at 25 ° C. at a concentration of 20% by mass, visually confirmed, and if all were dissolved (completely dissolved), 〇, if not completely dissolved. Was x.
[フィルム成形]
 ポリイミドをDMAcに20質量%濃度となるように溶解させた溶液を、ソーダガラス基板に、500μmのアプリケーターを用いて塗布し、260~330℃で30分乾燥させた。その後ガラス基板から剥離して、厚さ50μmのポリイミドフィルムを得た。
 各実施例及び比較例における乾燥温度は表1に示す通りである。
[Film molding]
A solution prepared by dissolving polyimide in DMAc at a concentration of 20% by mass was applied to a soda glass substrate using a 500 μm applicator, and dried at 260 to 330 ° C. for 30 minutes. Then, it was peeled off from the glass substrate to obtain a polyimide film having a thickness of 50 μm.
The drying temperatures in each Example and Comparative Example are as shown in Table 1.
[動的粘弾性測定(DMS)]
 動的粘弾性分析装置(日立ハイテクサイエンス社製SII6100)を用いて、幅6mm、長さ20mmのポリイミドフィルムについて、周波数10Hz、昇温速度5℃/minで室温~430℃の温度範囲で測定した。温度に対して貯蔵弾性率をプロットした曲線の25℃の時の値を室温における弾性率として求めた。
[Dynamic Viscoelasticity Measurement (DMS)]
Using a dynamic viscoelastic analyzer (SII6100 manufactured by Hitachi High-Tech Science Co., Ltd.), a polyimide film having a width of 6 mm and a length of 20 mm was measured in a temperature range of room temperature to 430 ° C. at a frequency of 10 Hz and a heating rate of 5 ° C./min. .. The value of the curve plotting the storage elastic modulus with respect to temperature at 25 ° C. was obtained as the elastic modulus at room temperature.
[柔軟性評価]
 MIT試験器を用いて、幅15mm、長さ110mmのポリイミドフィルムを、折り曲げ半径0.38mm、175回/minの速度で折り曲げ、試験片が破断するまでの往復折り曲げ回数として評価した。
[Flexibility evaluation]
Using a MIT tester, a polyimide film having a width of 15 mm and a length of 110 mm was bent at a bending radius of 0.38 mm and a speed of 175 times / min, and evaluated as the number of reciprocating bends until the test piece broke.
[イエローインデックス(Y.I.)評価]
 スガ精機社製カラーコンピューターを用いて、ポリイミドフィルム50μm厚みあたりのイエローインデックス(Y.I.)として評価した。
[Yellow index (YI) evaluation]
Using a color computer manufactured by Suga Seiki Co., Ltd., it was evaluated as a yellow index (YI) per 50 μm thickness of the polyimide film.
[ポリイミド1g中の塩素量)]
 ポリイミドを磁性ボードに採取し、石英製管状炉(三菱ケミカルアナリテック社製 AQF-100型)で加熱し、燃焼ガス中の塩素分をH水溶液で吸収した。吸収液中のClをイオンクロマトグラフ(Thermo Fisher Scientific社製 ICS-1600型)で測定した。実施例2は実施例1と、実施例4、5は実施例3と、それぞれ原料、製法が同じであるため、測定は行っていないが、同程度の塩素量と推測される。
[Amount of chlorine in 1 g of polyimide)]
The polyimide was collected on a magnetic board and heated in a quartz tube furnace (AQF-100 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the chlorine content in the combustion gas was absorbed by the H 2 O 2 aqueous solution. Cl in the absorption liquid was measured by an ion chromatograph (ICS-1600 type manufactured by Thermo Fisher Scientific Co., Ltd.). Since the raw materials and manufacturing methods of Example 2 are the same as those of Example 1 and Examples 4 and 5 are the same as those of Example 3, the amount of chlorine is estimated to be about the same, although the measurement has not been performed.
[溶解度パラメーター(SP値)]
 HSPiP ver. 4.1.05を使用し、ポリイミドの原料のテトラカルボン酸二無水物とジアミン化合物を1分子反応させた場合に生成する構造を用いて計算を行った。2種類以上のテトラカルボン酸二無水物及び/又はジアミン化合物を用いた場合には、共重合比を用いて比例計算で求めた。
[Solubility parameter (SP value)]
HSPiP ver. Calculation was performed using 4.1.05 and using a structure formed when one molecule of tetracarboxylic dianhydride, which is a raw material of polyimide, was reacted with a diamine compound. When two or more kinds of tetracarboxylic dianhydrides and / or diamine compounds were used, they were calculated proportionally using the copolymerization ratio.
[実施例1]
 窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器、及び撹拌機を備えた4つ口フラスコに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物 34.0g、4,4’-ジアミノ-2,2’-ジメチルビフェニル 20.43g、テレフタル酸ジヒドラジド 2.7gとNMP171g、トルエン26gを加え、190℃のオイルバスで13時間加熱還流した。得られた反応液のうち、20gをDMAcで5倍希釈した。この液を室温にて撹拌しながらイソプロパノール500mLに滴下した。析出した紛体をろ別回収した。得られたウェットケーキをイソプロパノール200mLに入れ室温で30分撹拌した。この紛体をろ別回収後、80℃で30分、150℃で30分減圧乾燥し、ポリイミド1を得た。
 得られたポリイミド1について溶媒溶解性試験と塩素量の測定を行った。
 得られたポリイミド1を乾燥温度280℃でフィルム成形した。得られたポリイミドフィルムについて動的粘弾性測定、柔軟性及びY.I.評価を行った。
 これらの結果を表1に示す。
[Example 1]
34.0 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 40.43 g of 4,4'-diamino-2,2'-dimethylbiphenyl, 2.7 g of terephthalic acid dihydrazide, 171 g of NMP, and 26 g of toluene were added, and the mixture was heated under reflux in an oil bath at 190 ° C. for 13 hours. Of the obtained reaction solution, 20 g was diluted 5-fold with DMAc. This solution was added dropwise to 500 mL of isopropanol with stirring at room temperature. The precipitated powder was collected by filtration. The obtained wet cake was placed in 200 mL of isopropanol and stirred at room temperature for 30 minutes. The powder was collected by filtration and dried under reduced pressure at 80 ° C. for 30 minutes and at 150 ° C. for 30 minutes to obtain Polyimide 1.
The obtained polyimide 1 was subjected to a solvent solubility test and a measurement of the amount of chlorine.
The obtained polyimide 1 was film-molded at a drying temperature of 280 ° C. For the obtained polyimide film, dynamic viscoelasticity measurement, flexibility and Y. I. Evaluation was performed.
These results are shown in Table 1.
[実施例2]
 実施例1の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を340g、4,4’-ジアミノ-2,2’-ジメチルビフェニルを14.6g、テレフタル酸ジヒドラジドを8.0g、NMPを170g、トルエンを30gに変更した以外は、実施例1と同様にしてポリイミド2を得た。
 得られたポリイミド2について、実施例1と同様に評価を行った。結果を表1に示す。
[Example 2]
340 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 1, 14.6 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and 8. terephthalic acid dihydrazide. Polyimide 2 was obtained in the same manner as in Example 1 except that 0 g, NMP was changed to 170 g, and toluene was changed to 30 g.
The obtained polyimide 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例3]
 実施例1の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を37.1gに、4,4’-ジアミノ-2,2’-ジメチルビフェニルを19.1gに、テレフタル酸ジヒドラジドをイソフタル酸ジヒドラジド5.8gに、NMPを186gにトルエンを37.2gに変更した以外は実施例1と同様にしてポリイミド3を得た。
 得られたポリイミド3について、実施例1と同様に評価を行った。結果を表1に示す。
[Example 3]
Example 1 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride to 37.1 g, 4,4'-diamino-2,2'-dimethylbiphenyl to 19.1 g, terephthalic acid Polyimide 3 was obtained in the same manner as in Example 1 except that dihydrazide was changed to 5.8 g of isophthalic acid dihydrazide, NMP was changed to 186 g, and toluene was changed to 37.2 g.
The obtained polyimide 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例4]
 窒素ガス導入管、冷却器、ディーンスターク凝集器、及び撹拌機を備えた4つ口フラス
コに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物 25.5g、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 13.2g、イソフタル酸ジヒドラジド 8.0g、NMP 109g、キシレン72.4gを加え、80℃のオイルバスで1時間加熱撹拌後、200℃のオイルバスで13時間加熱還流した。得られた反応液から実施例1と同様にして、ポリイミド4を得た。
 得られたポリイミド4について、実施例1と同様に評価を行った。結果を表1に示す。
[Example 4]
3,3', 4,4'-biscyclohexanetetracarboxylic acid dianhydride 25.5 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer. -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 13.2 g, isophthalic acid dihydrazide 8.0 g, NMP 109 g, xylene 72.4 g were added, heated and stirred in an oil bath at 80 ° C for 1 hour, and then 200 ° C. The mixture was heated under reflux for 13 hours in the oil bath of. Polyimide 4 was obtained from the obtained reaction solution in the same manner as in Example 1.
The obtained polyimide 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例5]
 実施例4の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を30.9g、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルを24.0g、イソフタル酸ジヒドラジドをテレフタル酸ジヒドラジド 4.9gに、NMPを140gに、キシレンを92.7gに変更した以外は実施例4と同様にしてポリイミド5を得た。
 得られたポリイミド5について、実施例1と同様に評価を行った。結果を表1に示す。
[Example 5]
30.9 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and 24.0 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl of Example 4. Polyimide 5 was obtained in the same manner as in Example 4 except that isophthalic acid dihydrazide was changed to 4.9 g of terephthalic acid dihydrazide, NMP was changed to 140 g, and xylene was changed to 92.7 g.
The obtained polyimide 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例6]
 窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器、及び撹拌機を備えた4つ口フラスコに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物36.6g、4,4’-ジアミノ-2,2’-ジメチルビフェニル19.1g、テレフタル酸ジヒドラジド5.8gとNMP246g、トルエン49.2gを加え、190℃のオイルバスで13時間加熱還流した。得られた反応液のうち、20gをDMAcで5倍希釈し、この液を室温にて撹拌しながらイソプロパノール500mLに滴下した。析出した紛体をろ別回収した。得られたウェットケーキをイソプロパノール200mLに入れ室温で30分撹拌した。この紛体をろ別回収後、80℃で30分、150℃で30分減圧乾燥し、ポリイミド6を得た。
 得られたポリイミド6のSP値は27.4と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は7.6で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は4.4である。
 得られたポリイミド6を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 6]
36.6 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 19.1 g of 4,4'-diamino-2,2'-dimethylbiphenyl, 5.8 g of terephthalic acid dihydrazide, 246 g of NMP, and 49.2 g of toluene were added, and the mixture was heated under reflux in an oil bath at 190 ° C. for 13 hours. Of the obtained reaction solution, 20 g was diluted 5-fold with DMAc, and this solution was added dropwise to 500 mL of isopropanol with stirring at room temperature. The precipitated powder was collected by filtration. The obtained wet cake was placed in 200 mL of isopropanol and stirred at room temperature for 30 minutes. The powder was collected by filtration and dried under reduced pressure at 80 ° C. for 30 minutes and at 150 ° C. for 30 minutes to obtain polyimide 6.
The SP value of the obtained polyimide 6 was calculated to be 27.4. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 7.6, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 4.4.
A film was formed using the obtained polyimide 6, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[実施例7]
 実施例6の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を34.0g、4,4’-ジアミノ-2,2’-ジメチルビフェニルを20.43g、テレフタル酸ジヒドラジドを2.7g、NMPを171g、トルエンを26gに変更した以外は、実施例6と同様にしてポリイミド7を得た。
 得られたポリイミド7のSP値は26.4と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は6.6で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は3.4である。
 得られたポリイミド7を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 7]
34.0 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 6, 20.43 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and dihydrazide terephthalate. Polyimide 7 was obtained in the same manner as in Example 6 except that 2.7 g, NMP was changed to 171 g, and toluene was changed to 26 g.
The SP value of the obtained polyimide 7 was calculated to be 26.4. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 6.6, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 3.4.
A film was formed using the obtained polyimide 7, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[実施例8]
 実施例6の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を340g、4,4’-ジアミノ-2,2’-ジメチルビフェニルを14.6g、テレフタル酸ジヒドラジドを8.0g、NMPを170g、トルエンを30gに変更した以外は、実施例6と同様にしてポリイミド8を得た。
 得られたポリイミド8のSP値は28.3と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は8.5で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は5.3である。
 得られたポリイミド8を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 8]
340 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride of Example 6, 14.6 g of 4,4'-diamino-2,2'-dimethylbiphenyl, and 8. terephthalic acid dihydrazide. Polyimide 8 was obtained in the same manner as in Example 6 except that 0 g, NMP was changed to 170 g, and toluene was changed to 30 g.
The SP value of the obtained polyimide 8 was calculated to be 28.3. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 8.5, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 5.3.
A film was formed using the obtained polyimide 8, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[実施例9]
 実施例6の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を37.1gに、4,4’-ジアミノ-2,2’-ジメチルビフェニルを19.1gに、テレフタル酸ジヒドラジドをイソフタル酸ジヒドラジド5.8gに、NMPを186gに、トルエンを37.2gに変更した以外は実施例6と同様にしてポリイミド9を得た。
 得られたポリイミド9のSP値は27.2と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は7.4で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は4.2である。
 得られたポリイミド9を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 9]
Example 6 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride to 37.1 g, 4,4'-diamino-2,2'-dimethylbiphenyl to 19.1 g, terephthalic acid Polyimide 9 was obtained in the same manner as in Example 6 except that dihydrazide was changed to 5.8 g of isophthalic acid dihydrazide, NMP was changed to 186 g, and toluene was changed to 37.2 g.
The SP value of the obtained polyimide 9 was calculated to be 27.2. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 7.4, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 4.2.
A film was formed using the obtained polyimide 9, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[実施例10]
 窒素ガス導入管、冷却器、ディーンスターク凝集器、及び撹拌機を備えた4つ口フラスコに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物25.5g、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル13.2g、イソフタル酸ジヒドラジド8.0g、NMP109g、キシレン72.4gを加え、80℃のオイルバスで1時間加熱撹拌後、200℃のオイルバスで13時間加熱還流した。得られた反応液を実施例5と同様にして、ポリイミド10を得た。
 得られたポリイミド10のSP値は28.2と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は8.4で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は5.2である。
 得られたポリイミド10を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 10]
3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride 25.5 g, 2,2'in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator, and a stirrer. -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 13.2 g, isophthalic acid dihydrazide 8.0 g, NMP 109 g, xylene 72.4 g were added, and the mixture was heated and stirred in an oil bath at 80 ° C. for 1 hour, and then heated to 200 ° C. The mixture was heated under reflux in an oil bath for 13 hours. The obtained reaction solution was used in the same manner as in Example 5 to obtain Polyimide 10.
The SP value of the obtained polyimide 10 was calculated to be 28.2. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 8.4, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 5.2.
A film was formed using the obtained polyimide 10, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[実施例11]
 実施例8の3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を30.9g、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルを24.0g、イソフタル酸ジヒドラジドをテレフタル酸ジヒドラジド4.9gに、NMPを140gに、キシレンを92.7gに変更した以外は実施例10と同様にしてポリイミド11を得た。
 得られたポリイミド11のSP値は26.0と算出された。よって塩化メチレン(19.8)とのSP値の差の絶対値は6.2で、ジメチルアセトアミド(DMAc)(SP値23)とのSP値の差は3.0である。
 得られたポリイミド11を用いてフィルムを成形し、得られたポリイミドフィルムについて弾性率と耐折り曲げ性の評価を行い、結果を表2に示した。
[Example 11]
30.9 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride and 24.0 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl of Example 8. Polyimide 11 was obtained in the same manner as in Example 10 except that isophthalic acid dihydrazide was changed to 4.9 g of terephthalic acid dihydrazide, NMP was changed to 140 g, and xylene was changed to 92.7 g.
The SP value of the obtained polyimide 11 was calculated to be 26.0. Therefore, the absolute value of the difference in SP value from methylene chloride (19.8) is 6.2, and the difference in SP value from dimethylacetamide (DMAc) (SP value 23) is 3.0.
A film was formed using the obtained polyimide 11, and the elastic modulus and bending resistance of the obtained polyimide film were evaluated, and the results are shown in Table 2.
[比較例1]
 実施例1において、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を42.5gに、4,4’-ジアミノ-2,2’-ジメチルビフェニルを2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 33.6gに、テレフタル酸ジヒドラジドを4,4’-ジアミノベンズアニリド8.0gに、NMPを252gに、トルエンを50.4gに変更した以外は実施例1と同様にして、ポリイミド12を得た。
 得られたポリイミド12について、実施例1と同様に評価を行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride was added to 42.5 g, and 4,4'-diamino-2,2'-dimethylbiphenyl was added to 2,2'-bis. (Trifluoromethyl) -4,4'-diaminobiphenyl 33.6 g, terephthalic acid dihydrazide to 4,4'-diaminobenzanilide 8.0 g, NMP to 252 g, toluene to 50.4 g Polyimide 12 was obtained in the same manner as in Example 1.
The obtained polyimide 12 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例2]
 実施例1において、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物を31.8gに、4,4’-ジアミノ-2,2’-ジメチルビフェニルを2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 26.9gに、テレフタル酸ジヒドラジドを4,4’-ジアミノベンズアニリド12.7gに、NMPを245gに、トルエンを49.0gに変更し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 10.2gを加えた以外は実施例1と同様にして、ポリイミド13を得た。
 得られたポリイミド13は、溶媒溶解性が悪く、ポリイミドフィルムの成膜が困難であったため、溶媒溶解性以外の評価は行わなかった。
[Comparative Example 2]
In Example 1, 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride was added to 31.8 g, and 4,4'-diamino-2,2'-dimethylbiphenyl was added to 2,2'-bis. (Trifluoromethyl) -4,4'-diaminobiphenyl 26.9 g, terephthalic acid dihydrazide to 1,4'-diaminobenzanilide 12.7 g, NMP to 245 g, toluene to 49.0 g, 3 , 3', 4,4'-biphenyltetracarboxylic dianhydride 10.2 g was added in the same manner as in Example 1 to obtain a polyimide 13.
Since the obtained polyimide 13 had poor solvent solubility and it was difficult to form a polyimide film, no evaluation other than solvent solubility was performed.
[比較例3]
 窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器、及び撹拌機を備えた4つ口フラスコに3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物 16.0g、4,4’-ジアミノ-2,2’-ジメチルビフェニル 14.9g、NMP92g、トルエン18.4gを加え、190℃のオイルバスで7時間加熱還流した。得られた反応液に、テレフタル酸クロライド 3.5g、トリエチルアミン 3.5gとNMP5gを加え、80℃で4時間加熱撹拌した。得られた反応液から実施例1と同様にして、ポリイミド14を得た。
 得られたポリイミド14について、実施例1と同様に評価を行った。結果を表1に示す。
[Comparative Example 3]
16.0 g of 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride in a four-necked flask equipped with a nitrogen gas introduction tube, a cooler, a Dean-Stark aggregator filled with toluene, and a stirrer. 1,4.9 g of 4,4'-diamino-2,2'-dimethylbiphenyl, 92 g of NMP, and 18.4 g of toluene were added, and the mixture was heated under reflux in an oil bath at 190 ° C. for 7 hours. To the obtained reaction solution, 3.5 g of terephthalic acid chloride, 3.5 g of triethylamine and 5 g of NMP were added, and the mixture was heated and stirred at 80 ° C. for 4 hours. From the obtained reaction solution, polyimide 14 was obtained in the same manner as in Example 1.
The obtained polyimide 14 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例4]
 比較例3のテレフタル酸クロライドを4,4’-オキシビス(ベンゾイル)クロライド5.1gに変更した以外は比較例3と同様にして、ポリイミド15を得た。
 得られたポリイミド15について、実施例1と同様に評価を行った。結果を表1に示す。
[Comparative Example 4]
Polyimide 15 was obtained in the same manner as in Comparative Example 3 except that the terephthalic acid chloride of Comparative Example 3 was changed to 5.1 g of 4,4'-oxybis (benzoyl) chloride.
The obtained polyimide 15 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
 表1に使用の語句は以下を示す。
 HBPDA:3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物
 m-TB:4,4’-ジアミノ-2,2’-ジメチルビフェニル
 6F-m-TB:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニ

 TPDH:テレフタル酸ジヒドラジド
 TPC:テレフタル酸クロライド
 IPDH:イソフタル酸ジヒドラジド
 ODBC:4,4’-オキシビス(ベンゾイル)クロライド
 BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 DABA:4,4’-ジアミノベンズアニリド
The terms used in Table 1 are as follows.
HBPDA: 3,3', 4,4'-biscyclohexanetetracarboxylic dianhydride m-TB: 4,4'-diamino-2,2'-dimethylbiphenyl 6F-m-TB: 2,2'-bis (Trifluoromethyl) -4,4'-diaminobiphenyl TPDH: terephthalic acid dihydrazide TPC: terephthalic acid chloride IPDH: isophthalic acid dihydrazide ODBC: 4,4'-oxybis (benzoyl) chloride BPDA: 3,3', 4,4 '-Biphenyltetracarboxylic dianhydride DABA: 4,4'-diaminobenzanilide
 表1中、主鎖のイミド環に対するアミド結合の濃度としてのポリイミド中の一般式(1)に示す構造の導入量(mol%)を「構造(1)割合」と記載する。
 表1中の構造(1)割合は、用いた原料化合物の使用割合から計算により求めた値であるが、前述の分析方法による分析値との差異は小さいと考えられる。
In Table 1, the introduction amount (mol%) of the structure represented by the general formula (1) in the polyimide as the concentration of the amide bond with respect to the imide ring of the main chain is described as "structure (1) ratio".
The structure (1) ratio in Table 1 is a value obtained by calculation from the usage ratio of the raw material compound used, but it is considered that the difference from the analysis value by the above-mentioned analysis method is small.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1より、本発明のポリイミドは、光透過性、弾性率、柔軟性、及び透明性が高く、溶媒溶解性が高いものであることが分かる。
 これに対して、比較例1は弾性率が低く、比較例2はフィルム成膜が困難であった。比較例3,4は塩素量が多く、デバイス適用性が低く、さらにY.I.値が高い。
From Table 1, it can be seen that the polyimide of the present invention has high light transmittance, elastic modulus, flexibility, transparency, and high solvent solubility.
On the other hand, Comparative Example 1 had a low elastic modulus, and Comparative Example 2 had difficulty in film formation. Comparative Examples 3 and 4 have a large amount of chlorine, low device applicability, and Y. I. The value is high.
 表2より、特定のSP値を有するポリイミドを用いたポリイミドフィルムは弾性率が高く、耐折り曲げ性に優れることが分かる。 From Table 2, it can be seen that the polyimide film using the polyimide having a specific SP value has a high elastic modulus and excellent bending resistance.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月19日付で出願された日本特許出願2019-051099、2019年8月26日付で出願された日本特許出願2019-153992、及び2019年8月26日付で出願された日本特許出願2019-153988に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is a Japanese patent application filed on March 19, 2019, 2019-051099, a Japanese patent application filed on August 26, 2019, 2019-153992, and Japan filed on August 26, 2019. It is based on patent application 2019-153988, which is incorporated by reference in its entirety.

Claims (13)

  1.  テトラカルボン酸二無水物に由来する単位及びジアミン化合物に由来する単位を有するポリイミドであって、下記一般式(1)に示す構造を有し、ポリイミド1g中の塩素量が50μg以下である、ポリイミド。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、Rは置換基を有してもよい2価の、芳香環基、複素環基、脂環基及び鎖状脂肪族基からなる群より選択される少なくとも1つを表す。*は結合手を示す。
    A polyimide having a unit derived from a tetracarboxylic dianhydride and a unit derived from a diamine compound, having a structure represented by the following general formula (1), and having a chlorine content of 50 μg or less in 1 g of the polyimide. ..
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R represents at least one selected from the group consisting of a divalent aromatic ring group, a heterocyclic group, an alicyclic group and a chain aliphatic group which may have a substituent. .. * Indicates a bond.
  2.  前記テトラカルボン酸二無水物に由来する単位として、脂肪族骨格を有する、請求項1に記載のポリイミド。 The polyimide according to claim 1, which has an aliphatic skeleton as a unit derived from the tetracarboxylic dianhydride.
  3.  前記一般式(1)のRが、2価の、芳香環基及び鎖状脂肪族基からなる群より選択される少なくとも1つである、請求項1又は2に記載のポリイミド。 The polyimide according to claim 1 or 2, wherein R of the general formula (1) is at least one selected from the group consisting of a divalent aromatic ring group and a chain aliphatic group.
  4.  前記一般式(1)に示す構造が、少なくともテトラカルボン酸二無水物とジヒドラジド化合物との反応で得られる構造を含む、請求項1~3のいずれか1項に記載のポリイミド。 The polyimide according to any one of claims 1 to 3, wherein the structure represented by the general formula (1) includes at least a structure obtained by a reaction of a tetracarboxylic dianhydride and a dihydrazide compound.
  5.  25℃における弾性率が4GPa以上である、請求項1~4のいずれか1項に記載のポリイミド。 The polyimide according to any one of claims 1 to 4, which has an elastic modulus of 4 GPa or more at 25 ° C.
  6.  非プロトン性極性溶媒に25℃で5質量%以上80質量%以下溶解する、請求項1~5のいずれか1項に記載のポリイミド。 The polyimide according to any one of claims 1 to 5, which is dissolved in an aprotic polar solvent at 25 ° C. in an amount of 5% by mass or more and 80% by mass or less.
  7.  ガラス転移温度が150℃以上である、請求項1~6のいずれか1項に記載のポリイミド。 The polyimide according to any one of claims 1 to 6, wherein the glass transition temperature is 150 ° C. or higher.
  8.  請求項1~7のいずれか1項に記載のポリイミド及び溶媒を含む組成物であって、該溶媒の溶解度パラメータと該ポリイミドの繰返し単位に基づく溶解度パラメータの差の絶対値が2以上である、組成物。 The composition containing the polyimide and the solvent according to any one of claims 1 to 7, wherein the absolute value of the difference between the solubility parameter of the solvent and the solubility parameter based on the repeating unit of the polyimide is 2 or more. Composition.
  9.  請求項8に記載の組成物より得られたフィルム。 A film obtained from the composition according to claim 8.
  10.  前記フィルムの膜厚が、1μm以上300μm以下である、請求項9に記載のフィルム。 The film according to claim 9, wherein the film thickness is 1 μm or more and 300 μm or less.
  11.  前記フィルムが、キャスト法により得られたものである、請求項9又は10に記載のフィルム。 The film according to claim 9 or 10, wherein the film is obtained by a casting method.
  12.  請求項9~11のいずれか1項に記載のフィルム上にハードコート層を有する、積層体。 A laminate having a hard coat layer on the film according to any one of claims 9 to 11.
  13.  前記ハードコート層の膜厚が、50μm以上200μm以下である、請求項12に記載の積層体。 The laminate according to claim 12, wherein the hard coat layer has a film thickness of 50 μm or more and 200 μm or less.
PCT/JP2020/011104 2019-03-19 2020-03-13 Polyimide WO2020189555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507305A JPWO2020189555A1 (en) 2019-03-19 2020-03-13

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019051099 2019-03-19
JP2019-051099 2019-03-19
JP2019-153992 2019-08-26
JP2019153988 2019-08-26
JP2019153992 2019-08-26
JP2019-153988 2019-08-26

Publications (1)

Publication Number Publication Date
WO2020189555A1 true WO2020189555A1 (en) 2020-09-24

Family

ID=72521008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011104 WO2020189555A1 (en) 2019-03-19 2020-03-13 Polyimide

Country Status (3)

Country Link
JP (1) JPWO2020189555A1 (en)
TW (1) TW202045591A (en)
WO (1) WO2020189555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024207567A1 (en) * 2023-04-06 2024-10-10 瑞声科技(南京)有限公司 Resin composition, polyimide preparation method, and related product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275130A (en) * 1986-05-22 1987-11-30 Sumitomo Bakelite Co Ltd Production of heat-resistant resin
JPH1010539A (en) * 1996-06-27 1998-01-16 Hitachi Ltd Resin composition for coating, liquid crystal oriented film in common use as protective film for lcd formed by using the same and production of liquid crystal oriented film in common use as protective film for lcd
JPH1085571A (en) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc Separating membrane
JPH1192659A (en) * 1997-09-25 1999-04-06 Hitachi Chem Co Ltd Resin composition for printing and production of patterned printing resin film
JP2010013556A (en) * 2008-07-03 2010-01-21 Konica Minolta Ij Technologies Inc Inkjet ink and method for forming liquid crystal alignment layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275130A (en) * 1986-05-22 1987-11-30 Sumitomo Bakelite Co Ltd Production of heat-resistant resin
JPH1010539A (en) * 1996-06-27 1998-01-16 Hitachi Ltd Resin composition for coating, liquid crystal oriented film in common use as protective film for lcd formed by using the same and production of liquid crystal oriented film in common use as protective film for lcd
JPH1085571A (en) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc Separating membrane
JPH1192659A (en) * 1997-09-25 1999-04-06 Hitachi Chem Co Ltd Resin composition for printing and production of patterned printing resin film
JP2010013556A (en) * 2008-07-03 2010-01-21 Konica Minolta Ij Technologies Inc Inkjet ink and method for forming liquid crystal alignment layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024207567A1 (en) * 2023-04-06 2024-10-10 瑞声科技(南京)有限公司 Resin composition, polyimide preparation method, and related product

Also Published As

Publication number Publication date
TW202045591A (en) 2020-12-16
JPWO2020189555A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5888472B2 (en) Composition containing polyimide precursor and / or polyimide, and polyimide film
JP7392660B2 (en) Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
TWI725138B (en) Resin composition
JP7180617B2 (en) Polyimide resin composition and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020189556A1 (en) Polyimide film
TW202336092A (en) Film, production method therefor, and image display device
JP7247604B2 (en) Resin composition for insulating coating material and insulating coating material
JP7375749B2 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
CN113166413A (en) Polyimide resin composition and polyimide film
JPWO2020040057A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020189555A1 (en) Polyimide
TW202222910A (en) Polymer composition, varnish, and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2020158736A1 (en) Composition and metal-insulating coating material
WO2020189557A1 (en) Polyimide film
TW202348399A (en) Film, method for manufacturing same, and image display device
JP2018016787A (en) Polyimide composition, polyimide film and polyimide laminate obtained from polyimide composition, and method for producing polyimide laminate
JP6794682B2 (en) Composition containing polyimide precursor and / or polyimide
JP2023155614A (en) Resin composition, molding and film
JP2020158744A (en) Polyimide and polyimide film
TW202219122A (en) Polymer composition, varnish, and polyimide film
JP2020152892A (en) Polyimide
JP2018115246A (en) Polyimide
JP2018115247A (en) Polyimide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773731

Country of ref document: EP

Kind code of ref document: A1