WO2020187111A1 - 一种发动机测试工况构建方法 - Google Patents
一种发动机测试工况构建方法 Download PDFInfo
- Publication number
- WO2020187111A1 WO2020187111A1 PCT/CN2020/078841 CN2020078841W WO2020187111A1 WO 2020187111 A1 WO2020187111 A1 WO 2020187111A1 CN 2020078841 W CN2020078841 W CN 2020078841W WO 2020187111 A1 WO2020187111 A1 WO 2020187111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- operating
- transient
- steady
- test conditions
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/042—Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/042—Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
- G01M15/044—Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring power, e.g. by operating the engine with one of the ignitions interrupted; by using acceleration tests
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/05—Testing internal-combustion engines by combined monitoring of two or more different engine parameters
Definitions
- the invention belongs to the field of transportation, in particular to a method for constructing engine test conditions.
- the emission certification of heavy-duty commercial vehicles is indirectly certified through the engine bench test, in which the engine test conditions are the necessary input parameters for the bench test.
- the European ETC transient cycle and ESC steady-state cycle are used in the engine bench test of my country's heavy commercial vehicles.
- domestic research shows that the engine speed and load distribution characteristics in the actual operation of Chinese vehicles are quite different from the above cycles. As a result, there is a large deviation between the emission data under actual working conditions and the certification results under legal working conditions. It is of great significance to formulate engine test conditions in line with the actual road traffic conditions in my country to guide the application of energy-saving and emission-reduction technologies adapted to the actual road traffic conditions in China.
- the present invention provides a method for constructing engine test conditions, and the technical scheme adopted is as follows:
- a method for constructing engine test conditions including transient test conditions and steady-state test conditions.
- Transient test conditions are constructed based on the CHTC operating condition curve.
- Each transient operating point is composed of engine speed and load percentage
- the steady-state test condition is constructed based on the simultaneous distribution heat map of engine speed and load percentage.
- the vehicle speed in the CHTC operating condition curve is converted to engine speed through the engine transmission model. Determine the load according to the engine power P(t) corresponding to each operating point in the CHTC operating condition curve, and the maximum output power P max (Ne(t)) corresponding to the engine speed at each operating point in the CHTC operating condition curve percentage.
- the present invention has the following beneficial effects:
- test conditions constructed by the method proposed by the present invention can cover most of the engine test conditions of the engine operating conditions of heavy commercial vehicles.
- test conditions constructed by the method proposed by the present invention can truly reflect the operating conditions of my country's heavy commercial vehicle engines.
- a method for establishing steady-state test conditions is proposed.
- the established steady-state test conditions meet the test requirements of the engine development and test phases.
- FIG. 1 is the CHTC-HT operating cycle
- Figure 2 is the transient performance curve of the engine
- Figure 3 is a transient test condition constructed in the embodiment
- Figure 4 shows the simultaneous distribution of engine speed and load in the embodiment.
- the proposed engine test conditions include transient test conditions and steady-state test conditions.
- the transient operating point is composed of engine speed and load percentage.
- the transient test conditions are constructed based on the CHTC-HT operating cycle with various characteristic parameters at the average level in the CHTC system; a heavy-duty commercial vehicle with a maximum design total mass of 18000kg and a rated power of 134kw is adopted. To illustrate the process of establishing the test conditions, it is referred to as vehicle A in this embodiment for ease of description.
- the steps include:
- V(t) is the instantaneous speed of the whole vehicle driving cycle
- TM is the test quality of vehicle A
- KR is the inertia parameter of vehicle A's transmission system
- f i is the road sliding resistance parameter of vehicle A.
- the characteristic parameters include the transmission ratio of the final drive and the transmission ratio of the gearbox in each gear.
- the optimal gear rules include:
- Adaptability Find the torque value corresponding to each candidate gear through the transient performance curve, and select the gear with the closest torque value to the maximum torque value in the transient performance curve as the output gear to determine the transient test The engine speed corresponding to each operating point in the operating mode.
- the steps include:
- WF i (number of operating points in the i-th area/sum of operating points in all areas)*(1-P motor -P idle )(%)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Engines (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
一种发动机测试工况构建方法,包括瞬态测试工况和稳态测试工况,以CHTC工况曲线为基础构建瞬态测试工况,根据瞬态测试工况曲线,以发动机转速-负荷百分比联立分布热点图为基础构建稳态测试工况。建立瞬态测试工况时,通过发动机传动模型将CHTC工况曲线中的车速转变为发动机转速。由于重型商用车发动机类型繁多,整车配置复杂,并且因为生产企业致力于改进车辆燃油经济性和操控性能,发动机和传动系统技术始终在不停地变化和进步,直接采集发动机数据构建测试循环难以适应技术的动态发展,使用本方法能够保证工况的长久适用性、独立性和稳定性。
Description
本发明属于交通运输领域,尤其是一种发动机测试工况构建方法。
降低汽车尾气排放,是汽车行业必须要面对和解决的问题。重型商用车的节能和污染物防治是我国机动车绿色发展的重要措施,随着国家的能耗排放法规日趋严格,重型商用车辆在节能减排技术优化上面临更大挑战。
重型商用车的排放认证是通过发动机台架试验进行间接认证的,其中发动机测试工况是台架试验的必需输入参数。目前,我国重型商用车发动机台架试验所使用的是欧洲ETC瞬态循环和ESC稳态循环,国内相关研究表明,我国车辆实际运行中的发动机转速、负荷分布特征与以上循环差异较大,从而导致了实际工况下的排放数据和法规工况下的认证结果存在较大偏差。制定符合我国实际道路运行情况的发动机测试工况对于引导适应于我国实际道路交通状况的节能减排技术的应用具有重要意义。
发明内容
本发明提出一种发动机测试工况构建方法,采用的技术方案如下:
一种发动机测试工况构建方法,包括瞬态测试工况和稳态测试工况,以CHTC工况曲线为基础构建瞬态测试工况,每个瞬态工况点由发动机转速和负荷百分比组成,根据瞬态测试工况曲线,以发动机转速-负荷百分比联立分布热点图为基础构建稳态测试工况。
建立瞬态测试工况时,通过发动机传动模型将CHTC工况曲线中的车速转变为发动机转速。根据CHTC工况曲线中每个工况点对应的发动机功率P(t),与CHTC工况曲线中,每个工况点发动机转速所对应的最大输出功率P
max(Ne(t))确定负荷百分比。
建立稳态测试工况时,通过发动机转速-负荷联立分布热点图,选择若干联合密度最大的工况点作为稳态测试工况点。考察瞬态测试工况曲线中的工况点,以各稳态测试工况点为中心,辨识与其空间距离较近的瞬态工况点,将这些瞬态工况点纳入该稳态测试工况点的覆盖区域内,通过覆盖区域内所有瞬态工况点的个数,计算各稳态测试工况点对应的权重。
与现有技术相比,本发明的有益效果在于:
1.通过本发明提出的方法构建的测试工况能够覆盖大部分重型商用车发动机运行情况的发动机测试工况。
2.通过本发明提出的方法构建的测试工况能够真实的反映我国重型商用车发动机的运行情况。
3.提出了一种稳态测试工况的建立方法,建立的稳态测试工况满足了发动机的开发和试验阶段的测试需求。
图1是CHTC-HT工况循环;
图2是发动机瞬态性能曲线;
图3是实施例中构建的瞬态测试工况;
图4是实施例中发动机转速-负荷联立分布。
本实施例中,提出的发动机测试工况包括瞬态测试工况和稳态测试工况,瞬态测试工况中,瞬态工况点由发动机转速和负荷百分比组成。
本实施例中,选取了各项特征参数在CHTC体系中处于平均水准的CHTC-HT工况循环为基础构建瞬态测试工况;通过一种最大设计总质量18000kg,额定功率134kw的重型商用车说明测试工况的建立过程,为便于描述本实施例中称为车辆A。
建立瞬态测试工况时,步骤包括:
S101.通过由制造商提供的车辆A的行驶阻力曲线,计算CHTC-HT工况循环中,1800个工况点对应的整车功率,功率的计算公式为:
式中V(t)为整车行驶循环瞬时车速,TM为车辆A的测试质量,KR为车辆A的传动系统惯性参数,f
i为车辆A的道路滑动阻力参数。
S102.以国内外发动机工况传动模型为依据,建立通过特征参数表征的6档位发动机传动模型,特征参数包括主减速器传动比和各档位下的变速箱传动比。
S103.利用发动机传动模型确定CHTC-HT工况循环中,1800个工况点对应的输出档位。
具体包括:
S103-1.通过发动机传动模型,建立CHTC-HT工况循环中,计算每个工况点的车速在6个档位下所对应的发动机转速;
S103-2.根据发动机瞬态性能曲线,确定每个档位下对应的转速与最大扭矩值和最大功率的关系;
S103-3.找出符合最优档位规则的输出档位;
其中最优档位规则包括:
1.可操作性:除了起步和换挡,档位对应的转速应不低于最大功率为55%时,车辆在瞬态性能曲线对应的最低转速,不高于最大功率为90%时,车辆对应的最高转速。
2.动力性:档位下最大功率大于等于整车工况的瞬时功率P(t)。
3.适应性:通过瞬态性能曲线,找出每个候选档位对应的扭矩值,选取扭矩值与瞬态性能曲线中最大扭矩值最接近的档位作为输出档位,进而确定瞬态测试工况中每个工况点对应的发动机转速。
S104.通过传动模型和输出档位确定CHTC-HT工况循环中,1800个工况点对应的,输出功率最大时的转速(rpm),采用的公式为:
式中,i
m是变速器传动比,工况点对应的输出档位决定;i
f是传动模型的主减速器传动比;r为轮胎在车辆测试质量负载下,轮胎的滚动半径。
S105.通过瞬态性能曲线查找Ne(t)对应的最大输出功率P
max(N
e(t)),结合整车功率计算负荷百分比,采用的公式为:
建立稳态测试工况时,步骤包括:
S201.考察瞬态测试曲线的1800个瞬态工况点的发动机转速-负荷联立分布;
S202.通过发动机转速-负荷联立分布热点图,选择6个出现频率最高的发动机转速,本实施例中为30%,35%,40%,45%,55%,60%;
S203.考察瞬态测试工况曲线中的工况点在这6个发动机转速值附近的转速-负荷联合分布情况,选择分布密度最高的10个工况点作为稳态测试工况的工况点,同时以50%发动机转速为基点,添加一个全负荷工况点,以0%发动机转速为基点,添加一个怠速工况点。
S204.计算每个工况点对应的权重,具体为:
S204-1.通过CHTC-HT工况循环确定电机驱动工况点的权重P
motor(%);
S204-2.通过CHTC-HT工况循环确定怠速工况点的权重P
idle(%);
S204-3.根据瞬态测试工况曲线的1800个工况点的分布情况,确定另外11个稳态工况点对应的权重,确定权重时,近似以每个稳态工况点为中心,确定一个正方形区域,正方形的每条边到稳态工况点的距离相等。每个正方形区域的大小相同,在所有正方形互相之间重叠面积不超过一个正方形面积的限制条件下,尽量令所有正方形覆盖更多的瞬态工况点。统计每个正方形区域中瞬态工况点的个数,进而计算每个稳态工况点对应的权重,公式为:
WF
i=(第i个区域内工况点数量/所有区域内工况点总和)*(1-P
motor-P
idle)(%)
本实施例中,建立的稳态测试工况如下表所示:
表1
以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造 的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。
Claims (8)
- 一种发动机测试工况构建方法,其特征在于,包括瞬态测试工况和稳态测试工况,以CHTC工况曲线为基础构建瞬态测试工况,每个瞬态工况点由发动机转速和负荷百分比组成,根据瞬态测试工况曲线,以发动机转速-负荷百分比联立分布热点图为基础构建稳态测试工况。
- 如权利要求1所述一种发动机测试工况构建方法,其特征在于,通过发动机传动模型将CHTC工况曲线中的车速转变为发动机转速。
- 如权利要求2所述一种发动机测试工况构建方法,其特征在于,通过发动机传动模型将车速转变为发动机转速时,过程包括与车速和整车功率相对应的档位选择。
- 如权利要求1所述一种发动机测试工况构建方法,其特征在于,通过发动机转速-负荷百分比联立分布热点图,选择若干联合密度最大的工况点作为稳态测试工况点。
- 如权利要求5所述一种发动机测试工况构建方法,其特征在于,人工添加一个全负荷工况点作为稳态测试工况点。
- 如权利要求6所述一种发动机测试工况构建方法,其特征在于,人工添加怠速工况点作为稳态测试工况点。
- 如权利要求6所述一种发动机测试工况构建方法,其特征在于,利用瞬态测试工况曲线,以各稳态测试工况点为中心,寻找与其空间距离最近的所有瞬态工况点,将瞬态工况点纳入该稳态测试工况点的覆盖区域内,通过覆盖区域内所有瞬态工况点的个数,计算各稳态测试工况点对应的权重。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910200217.XA CN109883710A (zh) | 2019-03-15 | 2019-03-15 | 一种发动机测试工况构建方法 |
CN201910200217.X | 2019-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020187111A1 true WO2020187111A1 (zh) | 2020-09-24 |
Family
ID=66932563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/078841 WO2020187111A1 (zh) | 2019-03-15 | 2020-03-11 | 一种发动机测试工况构建方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN109883710A (zh) |
LU (1) | LU102195B1 (zh) |
WO (1) | WO2020187111A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109883710A (zh) * | 2019-03-15 | 2019-06-14 | 中国汽车技术研究中心有限公司 | 一种发动机测试工况构建方法 |
CN110531638B (zh) * | 2019-09-03 | 2020-11-06 | 清华大学 | 基于整车仿真模型的phev部件工况数据统计与工况构建方法 |
CN110555270B (zh) * | 2019-09-03 | 2021-05-14 | 清华大学 | 基于台架试验的phev部件工况数据统计方法与工况构建方法 |
CN113588270B (zh) * | 2021-06-18 | 2024-04-16 | 东风汽车集团股份有限公司 | 一种检测涡轮增压电控执行器的方法及装置 |
CN114547811B (zh) * | 2022-04-27 | 2022-07-15 | 中汽研汽车检验中心(天津)有限公司 | 一种发动机瞬态工况磨损量预测方法 |
CN116448436B (zh) * | 2023-06-13 | 2023-09-01 | 中汽研汽车检验中心(昆明)有限公司 | 高原whtc测试工况生成方法、系统、服务端及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103640A2 (en) * | 2004-04-20 | 2005-11-03 | Southwest Research Institute | Virtual cylinder pressure sensor with individual estimators for pressure-related values |
CN103969048A (zh) * | 2014-02-18 | 2014-08-06 | 潍柴动力股份有限公司 | 一种工况点选择方法及装置 |
CN109141910A (zh) * | 2018-05-23 | 2019-01-04 | 中国汽车技术研究中心有限公司 | 一种从整车到发动机的测试工况转换方法 |
CN109211572A (zh) * | 2018-08-17 | 2019-01-15 | 重庆世凯汽车科技有限公司 | 一种整车状态下发动机实时扭矩的在线检测装置及方法 |
CN109883710A (zh) * | 2019-03-15 | 2019-06-14 | 中国汽车技术研究中心有限公司 | 一种发动机测试工况构建方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004239702A (ja) * | 2003-02-05 | 2004-08-26 | Honda Motor Co Ltd | エンジンモデルを用いた自動エンジン試験装置のシーケンスファイルの作成および検証方法 |
JP4007299B2 (ja) * | 2003-10-07 | 2007-11-14 | トヨタ自動車株式会社 | 燃料処理システムの故障診断装置 |
CN105571866B (zh) * | 2015-12-11 | 2017-11-17 | 中国北方发动机研究所(天津) | 一种发动机振动图谱提取方法 |
-
2019
- 2019-03-15 CN CN201910200217.XA patent/CN109883710A/zh active Pending
-
2020
- 2020-03-11 LU LU102195A patent/LU102195B1/en active IP Right Grant
- 2020-03-11 WO PCT/CN2020/078841 patent/WO2020187111A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103640A2 (en) * | 2004-04-20 | 2005-11-03 | Southwest Research Institute | Virtual cylinder pressure sensor with individual estimators for pressure-related values |
CN103969048A (zh) * | 2014-02-18 | 2014-08-06 | 潍柴动力股份有限公司 | 一种工况点选择方法及装置 |
CN109141910A (zh) * | 2018-05-23 | 2019-01-04 | 中国汽车技术研究中心有限公司 | 一种从整车到发动机的测试工况转换方法 |
CN109211572A (zh) * | 2018-08-17 | 2019-01-15 | 重庆世凯汽车科技有限公司 | 一种整车状态下发动机实时扭矩的在线检测装置及方法 |
CN109883710A (zh) * | 2019-03-15 | 2019-06-14 | 中国汽车技术研究中心有限公司 | 一种发动机测试工况构建方法 |
Non-Patent Citations (1)
Title |
---|
YAN ZHEN;WANG ZHAO;ZHENG TIANLEI;BAO XIANG;LIU ZHICHAO: "Comparison of Simulation Results of Fuel Consumption of Heavy-Duty Commercial Vehicles in Different Test Cycles", CHINA AUTO, 15 February 2019 (2019-02-15), pages 1 - 6, XP055734414, ISSN: 1002-0918 * |
Also Published As
Publication number | Publication date |
---|---|
CN109883710A (zh) | 2019-06-14 |
LU102195B1 (en) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020187111A1 (zh) | 一种发动机测试工况构建方法 | |
CN109141910B (zh) | 一种从整车到发动机的测试工况转换方法 | |
Sovran et al. | A contribution to understanding automotive fuel economy and its limits | |
CN112943914B (zh) | 车辆换挡线确定方法、装置、计算机设备和存储介质 | |
CN113432880B (zh) | 一种基于发动机台架测试重型车排放油耗的系统及方法 | |
CN104535320A (zh) | 汽车自动变速器综合传动效率测试方法 | |
Phlips | Analytic engine and transmission models for vehicle fuel consumption estimation | |
CN104608771B (zh) | 一种基于伪谱法的车辆节能加速方式的优化方法 | |
CN113565954A (zh) | 一种基于工况的换挡优化方法和系统 | |
CN109271702A (zh) | 工程车发动机与液力变矩器逆向匹配的优化方法 | |
CN103528825B (zh) | 一种内燃机瞬态工况性能评价方法 | |
CN114810376A (zh) | 用于控制发动机进气量的方法、装置、存储介质及电子设备 | |
Asus et al. | Simple method of estimating consumption of internal combustion engine for hybrid application | |
CN104964827B (zh) | 一种怠速节油率计算方法 | |
CN107831018A (zh) | 一种燃烧识别方法及装置 | |
CN107341607A (zh) | 驾驶员经济性驾驶水平评价方法 | |
Yaxin et al. | Transmission parameter matching and simulation verification of pure electric vehicle | |
Cheli et al. | Vehicle subsystems' energy losses and model-based approach for fuel efficiency estimation towards an integrated optimisation | |
CN112172824A (zh) | 一种基于整车经济性的cvt速比控制策略确定方法 | |
Wang et al. | Simulation and experimental comparison of fuel consumption for a heavy-duty diesel vehicle | |
CN110949367A (zh) | 一种基于温差发电的isg轻度混合动力车模式切换优化方法 | |
CN105370418A (zh) | 一种柴油掺烧天然气的控制方法 | |
CN105181351B (zh) | 汽车发动机最大扭矩车速检测方法 | |
Jankovic et al. | Fuel economy optimization in automotive engines | |
Thai et al. | Optimization of the gear ratios for a vehicle manual transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20773664 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 08/11/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20773664 Country of ref document: EP Kind code of ref document: A1 |