WO2020187051A1 - 开关驱动电路及电池控制电路 - Google Patents

开关驱动电路及电池控制电路 Download PDF

Info

Publication number
WO2020187051A1
WO2020187051A1 PCT/CN2020/078067 CN2020078067W WO2020187051A1 WO 2020187051 A1 WO2020187051 A1 WO 2020187051A1 CN 2020078067 W CN2020078067 W CN 2020078067W WO 2020187051 A1 WO2020187051 A1 WO 2020187051A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic switch
resistor
circuit
switch
drive
Prior art date
Application number
PCT/CN2020/078067
Other languages
English (en)
French (fr)
Inventor
周军
Original Assignee
东莞新能德科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能德科技有限公司 filed Critical 东莞新能德科技有限公司
Priority to US16/648,271 priority Critical patent/US11996723B2/en
Priority to EP20709463.2A priority patent/EP3944455A4/en
Publication of WO2020187051A1 publication Critical patent/WO2020187051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6874Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/04206Modifications for accelerating switching by feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • This application relates to the field of battery technology, and in particular to a switch drive circuit and a battery control circuit.
  • BMS battery management system
  • NMOS N-Metal-Oxide-Semiconductor, N-type metal-oxide-semiconductor
  • An embodiment of the present application provides a switch drive circuit, the switch drive circuit includes a switch drive port, a discharge circuit, a voltage generation circuit, and a drive port conduction circuit;
  • the discharging circuit is electrically connected to the voltage generating circuit for providing a supply voltage for the voltage generating circuit;
  • the voltage generating circuit is electrically connected to the switch drive port, and the voltage generating circuit is used to boost the supply voltage according to the output signal of the microcontroller to output a drive voltage, and the drive voltage is used to control the connection with the switch
  • the electronic switch module connected to the drive port is turned on or off;
  • the drive port conduction circuit is electrically connected to the switch drive port, and is used to control the switch drive port to conduct the electrical connection between the voltage generating circuit and the electronic switch module according to the first control signal output by the microcontroller. connection.
  • the switch drive circuit further includes a drive port cutoff circuit that is electrically connected to the switch drive port and is configured to control the drive port according to the second control signal output by the microcontroller.
  • the switch drive port disconnects the connection between the voltage generating circuit and the electronic switch module.
  • the switch drive circuit further includes a drive voltage feedback circuit, the drive voltage feedback circuit is electrically connected to the voltage generation circuit, and the drive voltage feedback circuit is used to The driving voltage is detected.
  • the switch drive circuit further includes a switch feedback circuit electrically connected to the electronic switch module, and the switch feedback circuit is used to detect the working state of the electronic switch module.
  • the switch drive circuit further includes a drive power supply circuit electrically connected to the voltage generation circuit, and the drive power supply circuit is used to supply power to the voltage generation circuit.
  • the discharge circuit includes a first electronic switch, a second electronic switch, a first resistor, a second resistor, a third resistor, and a fourth resistor.
  • the first end of the first electronic switch passes through The first resistor is connected to the first control pin of the microcontroller, the second terminal of the first electronic switch is grounded, and the third terminal of the first electronic switch is connected to the second electronic switch through the second resistor.
  • the first end of the switch, the first end of the second electronic switch is connected to the second end of the second electronic switch through the third resistor, the second end of the second electronic switch is connected to the positive electrode of the battery, the The third terminal of the second electronic switch is connected to the voltage generating circuit through the fourth resistor.
  • the voltage generating circuit includes a third electronic switch, a fourth electronic switch, a first diode, a second diode, a third diode, a fourth diode, a first A capacitor, a fifth resistor, a sixth resistor, and a seventh resistor.
  • the first end of the third electronic switch is connected to the second control pin of the microcontroller through the fifth resistor.
  • the second end is grounded, the third end of the third electronic switch is connected to the drive power supply circuit, and the first end of the fourth electronic switch is connected to the second control pin of the microcontroller through the sixth resistor ,
  • the second terminal of the fourth electronic switch is grounded, the third terminal of the fourth electronic switch is connected to the cathode of the first diode through the seventh resistor, and the anode of the first diode is connected to The cathode of the second diode, the anode of the second diode is connected to the driving power supply circuit, and the cathode of the second diode is also connected to the third diode through the first capacitor
  • the anode of the third diode is connected to the drive port conduction circuit, the anode of the third diode is also connected to the cathode of the fourth diode, and the The anode is connected to the third terminal of the second electronic switch through the fourth resistor.
  • the voltage generating circuit further includes a second capacitor and a first Zener diode, the first end of the second capacitor is connected to the cathode of the third diode, and the second capacitor The second end of the first Zener diode is connected to the anode of the fourth diode, the cathode of the first Zener diode is connected to the first end of the second capacitor, and the anode of the first Zener diode is connected to the second capacitor The second end.
  • the drive port conduction circuit includes a fifth electronic switch, a sixth electronic switch, an eighth resistor, a ninth resistor, and a tenth resistor, and the first end of the fifth electronic switch passes through the
  • the eighth resistor is connected to the third control pin of the microcontroller, the second terminal of the fifth electronic switch is grounded, and the third terminal of the fifth electronic switch is connected to the sixth terminal through the ninth resistor.
  • the first terminal of the electronic switch, the first terminal of the sixth electronic switch is also connected to the second terminal of the sixth electronic switch through the tenth resistor, and the second terminal of the sixth electronic switch is connected to the first terminal
  • the cathode of the three diodes, and the third terminal of the sixth electronic switch is connected to the switch drive port.
  • the drive port cutoff circuit includes a seventh electronic switch, an eighth electronic switch, an eleventh resistor, a twelfth resistor, and a thirteenth resistor, and the first end of the seventh electronic switch
  • the fourth control pin of the microcontroller is connected through the eleventh resistor, the second terminal of the seventh electronic switch is grounded, and the third terminal of the seventh electronic switch is connected through the twelfth resistor
  • the first end of the eighth electronic switch, the first end of the eighth electronic switch is also connected to the second end of the eighth electronic switch through the thirteenth resistor, and the second end of the eighth electronic switch
  • the terminal is connected to the third terminal of the sixth electronic switch, and the third terminal of the eighth electronic switch is connected to the anode of the fourth diode.
  • the driving voltage feedback circuit includes a fourteenth resistor, a fifteenth resistor, a sixteenth resistor, and a third capacitor, and the first end of the fourteenth resistor is connected to the microcontroller
  • the fifth control pin of the fourteenth resistor, the first end of the fourteenth resistor is also grounded through the third capacitor, the second end of the fourteenth resistor is grounded through the fifteenth resistor, and the fourteenth The second end of the resistor is also connected to the cathode of the first Zener diode through the sixteenth resistor.
  • the driving voltage feedback circuit includes a fourteenth resistor, a fifteenth resistor, a sixteenth resistor, and a third capacitor, and the first end of the fourteenth resistor is connected to the microcontroller
  • the fifth control pin of the fourteenth resistor, the first end of the fourteenth resistor is also grounded through the third capacitor, the second end of the fourteenth resistor is grounded through the fifteenth resistor, and the fourteenth The second end of the resistor is also connected to the third end of the sixth electronic switch through the sixteenth resistor.
  • the switch feedback circuit includes a seventeenth resistor, an eighteenth resistor, a nineteenth resistor, and a fourth capacitor, and the first end of the seventeenth resistor is connected to the microcontroller
  • the sixth control pin the first end of the seventeenth resistor is also grounded through the fourth capacitor, the second end of the seventeenth resistor is grounded through the eighteenth resistor, and the seventeenth resistor The second end of is also connected to the electronic switch module through the nineteenth resistor.
  • the driving power supply circuit includes a ninth electronic switch, a tenth electronic switch, a twentieth resistor, a twenty-first resistor, a twenty-second resistor, and a twenty-third resistor.
  • the first end of the nine electronic switch is connected to the seventh control pin of the microcontroller through the twentieth resistor, the second end of the ninth electronic switch is grounded, and the first end of the ninth electronic switch also passes through the
  • the twenty-first resistor is connected to the second end of the ninth electronic switch, and the third end of the ninth electronic switch is connected to the tenth electronic switch through the twenty-second resistor and the twenty-third resistor.
  • the second end of the tenth electronic switch is also connected to the positive electrode of the battery, and the first end of the tenth electronic switch is connected to the node between the twenty-second resistor and the twenty-third resistor.
  • the third terminal of the tenth electronic switch is connected to the anode of the second diode.
  • the battery control circuit includes an electronic switch module, a microcontroller, and the switch drive circuit as described above;
  • the electronic switch module is electrically connected to the power supply circuit between the positive electrode of the battery and the external port, and the electronic switch module is used to control the on or off of the power supply circuit;
  • the microcontroller is electrically connected to the switch drive circuit for outputting signals to the switch drive circuit;
  • the switch drive circuit is connected to the electronic switch module, and the switch drive circuit is used to drive the electronic switch module to be turned on or off according to the signal of the microcontroller.
  • the electronic switch module includes an eleventh electronic switch and a twelfth electronic switch, a first end of the eleventh electronic switch is connected to the switch drive port, and the eleventh electronic switch
  • the second end of the switch is connected to the positive electrode of the battery
  • the third end of the eleventh electronic switch is connected to the first end of the eleventh electronic switch through a twenty-fourth resistor
  • the first end of the twelfth electronic switch is Terminal is connected to the switch drive port
  • the second terminal of the twelfth electronic switch is connected to an external port
  • the third terminal of the twelfth electronic switch is connected to the third terminal of the eleventh electronic switch
  • the third terminal of the twelfth electronic switch is also connected to the first terminal of the twelfth electronic switch through a second Zener diode.
  • the switch drive circuit and the battery control circuit having the switch drive circuit provided by the embodiments of the present application provide a power supply voltage to the voltage generation circuit through the discharge circuit, and generate a drive voltage through the voltage generation circuit to control and
  • the electronic switch module connected to the switch drive port is turned on or off.
  • the switch drive circuit and the battery control circuit provided by the embodiments of the present application have strong scalability and low cost, and the drive voltage and drive capability can be flexibly adjusted.
  • Fig. 1 is a block diagram of a battery control circuit according to a preferred embodiment of the present application.
  • Fig. 2 is a block diagram of the switch drive circuit in Fig. 1.
  • Fig. 3 is a circuit diagram of a first embodiment of the battery control circuit in Fig. 1.
  • Fig. 4 is a circuit diagram of a second embodiment of the battery control circuit in Fig. 1.
  • the first resistor to the twenty-fourth resistor R1-R24 is the first resistor to the twenty-fourth resistor R1-R24
  • the first diode to the fourth diode D1-D4 is the first diode to the fourth diode D1-D4
  • the first Zener diode to the second Zener diode ZD1-ZD2 The first Zener diode to the second Zener diode ZD1-ZD2
  • FIG. 1 is a block diagram of a preferred embodiment of the battery control circuit 100 according to the present application.
  • the battery control circuit 100 is electrically connected between the battery positive electrode 200 and the external port 300 to form a power supply loop.
  • the battery control circuit 100 is used to control the power supply loop to turn on or off, thereby controlling the charging and discharging of the battery.
  • the battery control circuit 100 includes a switch drive circuit 10, an electronic switch module 20 and a microcontroller 30.
  • the electronic switch module 20 is located in the power supply circuit of the battery positive electrode 200 and the external port 300, and the switch drive circuit 10 is connected to the electronic switch module 20 and the microcontroller 30 between.
  • the microcontroller 30 is electrically connected to the switch drive circuit 10 for outputting signals to the switch drive circuit 10.
  • the switch driving circuit 10 can drive the electronic switch module 20 to be turned on or off according to the control signal of the microcontroller 20.
  • FIG. 2 is a block diagram of a preferred embodiment of the switch driving circuit 10 according to the present application.
  • the switch drive circuit 10 includes a discharge circuit 11, a switch drive port 12, a voltage generation circuit 13 and a drive port conduction circuit 14.
  • the discharging circuit 11 is electrically connected to the voltage generating circuit 13, and the discharging circuit 11 is used to provide a supply voltage for the voltage generating circuit 13.
  • the voltage generation circuit 13 is electrically connected to the switch drive port 12 through the drive port conduction circuit 14.
  • the voltage generation circuit 13 is used to boost the supply voltage according to the output signal of the microcontroller 30 Then, a driving voltage is output, and the driving voltage is used to control the electronic switch module 20 connected to the switch driving port 12 to be turned on or off.
  • the drive port conduction circuit 14 is used to control the switch drive port 12 to conduct the connection between the voltage generating circuit 13 and the electronic switch module 20 according to the first control signal output by the microcontroller 30 .
  • the switch driving circuit 10 may further include a driving port cut-off circuit 15.
  • the drive port cut-off circuit 15 is electrically connected to the switch drive port 12, and the drive port cut-off circuit 15 is used to control the switch drive port 12 to turn off the switch drive port 12 according to the second control signal output by the microcontroller 30
  • the connection between the voltage generating circuit 13 and the electronic switch module 20 is electrically connected to the switch drive port 12, and the drive port cut-off circuit 15 is used to control the switch drive port 12 to turn off the switch drive port 12 according to the second control signal output by the microcontroller 30.
  • the switch driving circuit 10 may further include a driving voltage feedback circuit 16.
  • the driving voltage feedback circuit 16 is electrically connected to the voltage generating circuit 13 through the driving port conduction circuit 14.
  • the driving voltage feedback circuit 16 is used to detect the driving voltage output by the voltage generating circuit 13 and feed it back to The microcontroller 30.
  • the switch driving circuit 10 may further include a switch feedback circuit 17.
  • the switch feedback circuit 17 is electrically connected to the electronic switch module 20, and the switch feedback circuit 17 is used to detect the working state of the electronic switch module 20 and feed it back to the microcontroller 30 in real time.
  • the switch driving circuit 10 may further include a driving power supply circuit 18.
  • the driving power supply circuit 18 is electrically connected to the voltage generating circuit 13, and the driving power supply circuit 18 is used for supplying power to the voltage generating circuit 13.
  • FIG. 3 is a circuit diagram of a first embodiment of the battery control circuit 100 according to the present application.
  • the discharge circuit 11 includes a first electronic switch Q1, a second electronic switch Q2, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • the first terminal of the first electronic switch Q1 is connected to the control pin A of the microcontroller 30 through the first resistor R1, the second terminal of the first electronic switch Q1 is grounded, and the first electronic switch
  • the third terminal of Q1 is connected to the first terminal of the second electronic switch Q2 through the second resistor R2.
  • the first terminal of the second electronic switch Q2 is connected to the second terminal of the second electronic switch Q2 through the third resistor R3, and the second terminal of the second electronic switch Q2 is connected to the battery positive electrode 200, so
  • the third terminal of the electronic switch Q2 is connected to the voltage generating circuit 13 through the fourth resistor R4.
  • the first electronic switch Q1 is an NPN transistor
  • the second electronic switch Q2 is a P-type field effect transistor.
  • the first end, the second end and the third end of the first electronic switch Q1 correspond to the base, emitter and collector of the NPN transistor, respectively.
  • the first terminal, the second terminal and the third terminal of the second electronic switch Q2 correspond to the gate, source and drain of the P-type field effect transistor, respectively.
  • the voltage generating circuit 13 may include a third electronic switch Q3, a fourth electronic switch Q4, a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4.
  • the first capacitor C1 the fifth resistor R5, the sixth resistor R6, and the seventh resistor R7.
  • the first end of the third electronic switch Q3 is connected to the second control pin B of the microcontroller 30 through the fifth resistor R5, the second end of the third electronic switch Q3 is grounded, and the third The third terminal of the electronic switch Q3 is connected to the driving power supply circuit 18.
  • the first end of the fourth electronic switch Q4 is connected to the second control pin B of the microcontroller 30 through the sixth resistor R6, the second end of the fourth electronic switch Q4 is grounded, and the fourth The third terminal of the electronic switch Q4 is connected to the cathode of the first diode D1 through the seventh resistor R7, the anode of the first diode D1 is connected to the cathode of the second diode D2, and the The anode of the second diode D2 is connected to the driving power supply circuit 18, the cathode D2 of the second diode is also connected to the anode of the third diode D3 through the first capacitor C1, and the third The cathode of the diode D3 is connected to the drive port conduction circuit 14, the anode of the third diode D3 is also connected to the cathode of the fourth diode D4, and the anode of the fourth diode D4 passes through The fourth resistor R4 is connected to the third terminal of the second electronic switch Q2.
  • the third electronic switch Q3 and the fourth electronic switch Q4 are both NPN transistors.
  • the first terminal, the second terminal, and the third terminal of the third electronic switch Q3 and the fourth electronic switch Q4 correspond to the base, emitter, and collector of the NPN transistor, respectively.
  • the voltage generating circuit 13 may further include a second capacitor C2 and a first Zener diode ZD1.
  • the first end of the second capacitor C2 is connected to the cathode of the third diode D3, the second end of the second capacitor C2 is connected to the anode of the fourth diode D4, and the first regulator
  • the cathode of the diode ZD1 is connected to the first end of the second capacitor C2, and the anode of the first Zener diode ZD1 is connected to the second end of the second capacitor C2.
  • the drive port conduction circuit 14 includes a fifth electronic switch Q5, a sixth electronic switch Q6, and an eighth resistor R8, a ninth resistor R9, and a tenth resistor R10.
  • the first terminal of the fifth electronic switch Q5 is connected to the third control pin C of the microcontroller 30 through the eighth resistor R8, the second terminal of the fifth electronic switch Q5 is grounded, and the fifth electronic switch Q5 is grounded.
  • the third terminal of the electronic switch Q5 is connected to the first terminal of the sixth electronic switch Q6 through the ninth resistor R9, and the first terminal of the sixth electronic switch Q6 is also connected to the first terminal through the tenth resistor R10.
  • the second terminal of the six electronic switch Q6, the second terminal of the sixth electronic switch Q6 is connected to the cathode of the third diode D3, and the third terminal of the sixth electronic switch Q6 is connected to the switch drive port 12 .
  • the fifth electronic switch Q5 is an NPN type transistor
  • the sixth electronic switch Q6 is a PNP type transistor.
  • the first end, the second end and the third end of the fifth electronic switch Q5 correspond to the base, emitter and collector of the NPN transistor, respectively.
  • the first terminal, the second terminal, and the third terminal of the sixth electronic switch Q6 correspond to the base, emitter, and collector of the PNP transistor, respectively.
  • the drive port cutoff circuit 15 includes a seventh electronic switch Q7, an eighth electronic switch Q8, an eleventh resistor R11, a twelfth resistor R12, and a thirteenth resistor R13.
  • the first terminal of the seventh electronic switch Q7 is connected to the fourth control pin D of the microcontroller 30 through the eleventh resistor R11, the second terminal of the seventh electronic switch Q7 is grounded, and the The third terminal of the seventh electronic switch Q7 is connected to the first terminal of the eighth electronic switch Q8 through the twelfth resistor R12, and the first terminal of the eighth electronic switch Q8 is also connected through the thirteenth resistor R13
  • the second end of the eighth electronic switch Q8, the second end of the eighth electronic switch Q8 is connected to the third end of the sixth electronic switch Q6, and the third end of the eighth electronic switch Q8 is connected to the The anode of the fourth diode D4.
  • the seventh electronic switch Q7 is an NPN type transistor
  • the eighth electronic switch Q8 is a PNP type transistor.
  • the first terminal, the second terminal, and the third terminal of the seventh electronic switch Q7 correspond to the base, emitter, and collector of the NPN transistor, respectively.
  • the first end, the second end and the third end of the eighth electronic switch Q8 correspond to the base, emitter and collector of the PNP transistor, respectively.
  • the driving voltage feedback circuit 16 includes a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16, and a third capacitor C3.
  • the first end of the fourteenth resistor R14 is connected to the fifth control pin E of the microcontroller 30, and the first end of the fourteenth resistor R14 is also grounded through the third capacitor C3.
  • the second end of the fourteenth resistor R14 is grounded through the fifteenth resistor R15, and the second end of the fourteenth resistor R14 is also connected to the third end of the sixth electronic switch Q6 through the sixteenth resistor R16 .
  • the switch feedback circuit 17 includes a seventeenth resistor R17, an eighteenth resistor R18, a nineteenth resistor R19, and a fourth capacitor C4.
  • the first end of the seventeenth resistor R17 is connected to the sixth control pin F of the microcontroller 30, and the first end of the seventeenth resistor R17 is also grounded through the fourth capacitor C4.
  • the second end of the seventeenth resistor R17 is grounded through the eighteenth resistor R18, and the second end of the seventeenth resistor R17 is also connected to the electronic switch module 20 and the external port through the nineteenth resistor R19 300 between node P1.
  • the sixth control pin F of the microcontroller 30 is an ADC input port.
  • the driving power supply circuit 18 includes a ninth electronic switch Q9, a tenth electronic switch Q10, a twentieth resistor R20, a twenty-first resistor R21, a twenty-second resistor R22, and a twenty-third resistor R23. .
  • the first terminal of the ninth electronic switch Q9 is connected to the seventh control pin G of the microcontroller 30 through the twentieth resistor R20, the second terminal of the ninth electronic switch Q9 is grounded, and the The first terminal of the nine electronic switch Q9 is also connected to the second terminal of the ninth electronic switch Q9 through the twenty-first resistor R21, and the third terminal of the ninth electronic switch Q9 is through the twenty-second resistor R22 and the twenty-third resistor R23 are connected to the second end of the tenth electronic switch Q10, and the second end of the tenth electronic switch Q10 is also connected to the battery anode 200.
  • the first terminal of the tenth electronic switch Q10 is connected to the node between the twenty-second resistor R22 and the twenty-third resistor R23, and the third terminal of the tenth electronic switch Q10 is connected to the second pole Anode of tube D2.
  • the ninth electronic switch Q9 is an NPN type transistor
  • the tenth electronic switch Q10 is a PNP type transistor.
  • the first terminal, the second terminal and the third terminal of the ninth electronic switch Q9 correspond to the base, emitter and collector of the NPN transistor, respectively.
  • the first terminal, the second terminal and the third terminal of the tenth electronic switch Q10 correspond to the base, emitter and collector of the PNP transistor, respectively.
  • the electronic switch module 20 includes an eleventh electronic switch Q11, a twelfth electronic switch Q12, a twenty-fourth resistor R24, and a second Zener diode ZD2.
  • the first end of the eleventh electronic switch Q11 is connected to the switch drive port 12, the second end of the eleventh electronic switch Q11 is connected to the positive electrode 200 of the battery, and the third end of the eleventh electronic switch Q11 is The terminal is connected to the first terminal of the eleven electronic switch Q11 through a twenty-fourth resistor R24.
  • the first end of the twelfth electronic switch Q12 is connected to the switch drive port 12, the second end of the twelfth electronic switch Q12 is connected to the external port 300, and the third end of the twelfth electronic switch Q12 is The terminal is connected to the third terminal of the eleventh electronic switch Q11, and the third terminal of the twelfth electronic switch Q12 is also connected to the first terminal of the twelfth electronic switch Q12 through a second Zener diode ZD2.
  • the eleventh electronic switch Q11 and the twelfth electronic switch Q12 are both N-type field effect transistors.
  • the first terminal, the second terminal, and the third terminal of the eleventh electronic switch Q11 and the twelfth electronic switch Q12 correspond to the gate, drain, and source of the N-type field effect transistor, respectively.
  • FIG. 4 is a circuit diagram of a second embodiment of the battery control circuit 100 of this application.
  • the difference between the battery control circuit 100 of this embodiment and the battery control circuit 100 of the first embodiment is:
  • the driving voltage feedback circuit 16 includes a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16, and a third capacitor C3.
  • the first end of the fourteenth resistor R14 is connected to the fifth control pin E of the microcontroller 30, and the first end of the fourteenth resistor R14 is also grounded through the third capacitor C3.
  • the second end of the fourteenth resistor R14 is grounded through the fifteenth resistor R15, and the second end of the fourteenth resistor R14 is also connected to the cathode of the first Zener diode ZD1 through the sixteenth resistor R16.
  • the fifth control pin E of the microcontroller 30 is an ADC input port.
  • the first control pin A of the microcontroller 30 outputs a high-level control signal to the first end of the first electronic switch Q1 to control the first electronic switch Q1 to be turned on.
  • the potential of the second terminal of the second electronic switch Q2 is pulled down, the second electronic switch Q2 is turned on, and the battery anode 200 outputs a supply voltage to the anode of the fourth diode D4 of the voltage generating circuit 13.
  • the seventh control pin G of the microcontroller 30 outputs a high-level control signal to the first end of the ninth electronic switch Q9 to control the ninth electronic switch Q9 to be turned on and turn on
  • the potential of the first terminal of the tenth electronic switch Q10 is pulled down, and the tenth electronic switch Q10 is turned on, so that the positive electrode 200 of the battery outputs a pulsating voltage to the second diode D2 in the voltage generating circuit 13 The anode.
  • the second control pin B of the microcontroller 30 outputs a pulse width modulation signal to the first end of the third electronic switch Q3 and the fourth electronic switch Q4 to control the third electronic switch Q3 and the fourth electronic switch Q4 are turned on.
  • the high frequency switches of the third electronic switch Q3 and the fourth electronic switch Q4 can make the first diode D1, the second diode D2, the third diode D3, the fourth diode D4, and the A capacitor C1 forms a voltage doubling rectification structure to generate a higher voltage than the positive electrode 200 of the battery, and the voltage is stabilized by the first Zener diode ZD1 to be stored by the second capacitor C2.
  • the third control pin C of the microcontroller 30 outputs a high-level control signal to the fifth electronic switch Q5, so as to control the fifth electronic switch Q5 to be turned on, thereby pulling down the sixth electronic switch Q5.
  • the sixth electronic switch Q6 is turned on.
  • the drive voltage stored at both ends of the second capacitor C2 is output to the first end of the eleventh electronic switch Q11 and the twelfth electronic switch Q12 through the switch drive port 12, thereby controlling the The eleventh electronic switch Q11 and the twelfth electronic switch Q12 are turned on.
  • the driving voltage feedback circuit 16 detects the driving voltage output by the voltage generating circuit 13 for detection, and transmits the detected driving voltage to the microcontroller 30, and the microcontroller 30 will determine Whether the driving voltage is greater than or equal to the first preset voltage (such as 12V). If the driving voltage is less than the first preset voltage, the first control pin B of the microcontroller 30 will adjust the duty cycle of the pulse width modulation signal until the driving voltage is greater than or equal to The first preset voltage.
  • the first preset voltage such as 12V
  • the switch feedback circuit 17 detects the conduction state of the eleventh electronic switch Q11 and the twelfth electronic switch Q12, that is, the microcontroller 30 obtains the node P1 through the switch feedback circuit 17 And determine whether the detected voltage is equal to the voltage output by the positive electrode 200 of the battery. If yes, the switch drive circuit 10 successfully drives the electronic switch module 20, otherwise, it performs a shutdown process.
  • the third control pin C of the microcontroller 30 stops outputting a high-level control signal to the fifth electronic switch Q5, and the third control pin C of the microcontroller 30
  • the fourth control pin D starts to output a high-level control signal to the first end of the seventh electronic switch Q7 to control the seventh electronic switch Q7 to turn on, thereby pulling down the first end of the eighth electronic switch Q8.
  • the eighth electronic switch Q8 is turned on, the switch drive port 12 is in the off state, and the second control pin B of the microcontroller 30 stops outputting a pulse width modulation signal to the third electronic switch Q3 And the fourth electronic switch Q4, the seventh control pin G of the microcontroller 30 stops outputting high-level control signals to the ninth electronic switch Q9, and the first control pin A of the microcontroller 30 Stop outputting the high-level control signal to the first electronic switch Q1.
  • the microcontroller 30 determines whether the voltage at the node P1 is equal to a second preset voltage (for example, 0V). If yes, the driving of the electronic switch module 20 can be successfully turned off, otherwise, abnormal processing is turned off.
  • a second preset voltage for example, 0V
  • the switch drive circuit 10 and the battery control circuit 100 having the switch drive circuit 10 provided in the above embodiments provide a supply voltage to the voltage generating circuit 13 through the discharging circuit 11, and the voltage generating circuit 13 generates drive The voltage is used to control the electronic switch module 20 connected to the switch drive port 12 to be turned on or off.
  • the switch drive circuit 10 and the battery control circuit 100 provided by the embodiments of the present application have strong scalability and low cost, and the drive voltage and drive capability can be flexibly adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

本申请提供一种开关驱动电路,所述开关驱动电路包括开关驱动端口、放电电路、电压产生电路以及驱动端口导通电路。所述放电电路用于为电压产生电路提供供电电压。所述电压产生电路用于根据微控制器输出信号将供电电压进行升压后输出驱动电压,所述驱动电压用于控制与开关驱动端口连接的电子开关模块导通或截止。所述驱动端口导通电路用于根据微控制器输出的第一控制信号以控制开关驱动端口导通电压产生电路与电子开关模块之间的连接。本申请还提供一种电池控制电路。根据本申请实施方式提供的所述开关驱动电路及电池控制电路具备功能安全要求、拓展性强、成本低廉,并且驱动电压及驱动能力可以灵活调整。

Description

开关驱动电路及电池控制电路 技术领域
本申请涉及电池技术领域,尤其涉及一种开关驱动电路及电池控制电路。
背景技术
随着消费类电子产品的快速发展,为了保证消费类电子产品的使用安全,电子产品中所使用的电池通常会设置有电池管理系统(battery management system,BMS)
现有技术中,通常NMOS(N-Metal-Oxide-Semiconductor,N型金属-氧化物-半导体)作为BMS控制的正极主开关基本采用专用的集成芯片来实现,或者使用带隔离电源的驱动模块来实现。如此一来,驱动能力受到芯片内部电路的制约,拓展不便或驱动模块成本较高。
发明内容
鉴于上述内容,有必要提供一种具备功能安全要求、拓展性强、成本低廉,并且驱动电压及驱动能力可以灵活调整的开关驱动电路及电池控制电路。
本申请的一实施方式提供一种开关驱动电路,所述开关驱动电路包括开关驱动端口、放电电路、电压产生电路以及驱动端口导通电路;
所述放电电路电连接所述电压产生电路,以用于为所述电压产生电路提供供电电压;
所述电压产生电路电连接所述开关驱动端口,所述电压产生电路用于根据微控制器输出信号将所述供电电压进行升压后输出驱动电压,所述驱动电压用于控制与所述开关驱动端口连接的电子开关模块导通或截止;及
所述驱动端口导通电路电连接所述开关驱动端口,用于根据微控制器输出的第一控制信号以控制所述开关驱动端口导通所述电压产生电路与所述电子开关模块之间的连接。
根据本申请的一实施方式,所述开关驱动电路还包括驱动端口截止电路,所述驱动端口截止电路电连接所述开关驱动端口,用于根据微控制器输出的第二控制信号以控制所述开关驱动端口断开所述电压产生电路与所述电子开关模块之间的连接。
根据本申请的一实施方式,所述开关驱动电路还包括驱动电压反馈电路,所述驱动电压反馈电路电连接所述电压产生电路,所述驱动电压反馈电路用于对所述电压产生电路输出的驱动电压进行检测。
根据本申请的一些实施方式,所述开关驱动电路还包括开关反馈电路,所述开关反馈电路电连接所述电子开关模块,所述开关反馈电路用于检测所述电子开关模块的工作状态。
根据本申请的一实施方式,所述开关驱动电路还包括驱动供电电路,所述驱动供电电路电连接所述电压产生电路,所述驱动供电电路用于为所述电压产生电路供电。
根据本申请的一些实施方式,所述放电电路包括第一电子开关、第二电子开关、第一电阻、第二电阻、第三电阻、第四电阻,所述第一电子开关的第一端通过所述第一电阻连接微控制器的第一控制引脚,所述第一电子开关的第二端接地,所述第一电子开关的第三端通过所述第二电阻连接所述第二电子开关的第一端,所述第二电子开关的第一端通过所述第三电阻连接所述第二电子开关的第二端,所述第二电子开关的第二端连接电池正极,所述第二电子开关的第三端通过所述第四电阻连接所述电压产生电路。
根据本申请的一些实施方式,所述电压产生电路包括第三电子开关、第四电子开关、第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第五电阻、第六电阻以及第七电阻,所述第三电子开关的第一端通过所述第五电阻连接所述微控制器的第二控制引脚,所述第三电子开关的第二端接地,所述第三电子开关的第三端连接所 述驱动供电电路,所述第四电子开关的第一端通过所述第六电阻连接所述微控制器的第二控制引脚,所述第四电子开关的第二端接地,所述第四电子开关的第三端通过所述第七电阻连接所述第一二极管的阴极,所述第一二极管的阳极连接所述第二二极管的阴极,所述第二二极管的阳极连接所述驱动供电电路,所述第二二极管的阴极还通过所述第一电容连接所述第三二极管的阳极,所述第三二极管的阴极连接所述驱动端口导通电路,所述第三二极管的阳极还连接所述第四二极管的阴极,所述第四二极管的阳极通过所述第四电阻连接所述第二电子开关的第三端。
根据本申请的一些实施方式,所述电压产生电路还包括第二电容及第一稳压二极管,所述第二电容的第一端连接所述第三二极管的阴极,所述第二电容的第二端连接所述第四二极管的阳极,所述第一稳压二极管的阴极连接所述第二电容的第一端,所述第一稳压二极管的阳极连接所述第二电容的第二端。
根据本申请的一些实施方式,所述驱动端口导通电路包括第五电子开关、第六电子开关及第八电阻、第九电阻、第十电阻,所述第五电子开关的第一端通过所述第八电阻连接所述微控制器的第三控制引脚,所述第五电子开关的第二端接地,所述第五电子开关的第三端通过所述第九电阻连接所述第六电子开关的第一端,所述第六电子开关的第一端还通过所述第十电阻连接所述第六电子开关的第二端,所述第六电子开关的第二端连接所述第三二极管的阴极,所述第六电子开关的第三端连接所述开关驱动端口。
根据本申请的一些实施方式,所述驱动端口截止电路包括第七电子开关、第八电子开关及第十一电阻、第十二电阻、第十三电阻,所述第七电子开关的第一端通过所述第十一电阻连接所述微控制器的第四控制引脚,所述第七电子开关的第二端接地,所述第七电子开关的第三端通过所述第十二电阻连接所述第八电子开关的第一端,所述第八电子开关的第一端还通过所述第十三电阻连接所述第八电子开关的第二端,所述第八电子开关的第二端连接所述第六电子开关的第三端, 所述第八电子开关的第三端连接所述第四二极管的阳极。
根据本申请的一些实施方式,所述驱动电压反馈电路包括第十四电阻、第十五电阻、第十六电阻及第三电容,所述第十四电阻的第一端连接所述微控制器的第五控制引脚,所述第十四电阻的第一端还通过所述第三电容接地,所述第十四电阻的第二端通过所述第十五电阻接地,所述第十四电阻的第二端还通过所述第十六电阻连接所述第一稳压二极管的阴极。
根据本申请的一些实施方式,所述驱动电压反馈电路包括第十四电阻、第十五电阻、第十六电阻及第三电容,所述第十四电阻的第一端连接所述微控制器的第五控制引脚,所述第十四电阻的第一端还通过所述第三电容接地,所述第十四电阻的第二端通过所述第十五电阻接地,所述第十四电阻的第二端还通过所述第十六电阻连接所述第六电子开关的第三端。
根据本申请的一些实施方式,所述开关反馈电路包括第十七电阻、第十八电阻、第十九电阻及第四电容,所述第十七电阻的第一端连接所述微控制器的第六控制引脚,所述第十七电阻的第一端还通过所述第四电容接地,所述第十七电阻的第二端通过所述第十八电阻接地,所述第十七电阻的第二端还通过所述第十九电阻连接所述电子开关模块。
根据本申请的一些实施方式,所述驱动供电电路包括第九电子开关、第十电子开关、第二十电阻、第二十一电阻、第二十二电阻及第二十三电阻,所述第九电子开关的第一端通过所述第二十电阻连接微控制器的第七控制引脚,所述第九电子开关的第二端接地,所述第九电子开关的第一端还通过所述第二十一电阻连接所述第九电子开关的第二端,所述第九电子开关的第三端通过所述第二十二电阻及第二十三电阻连接所述第十电子开关的第二端,所述第十电子开关的第二端还连接电池正极,所述第十电子开关的第一端连接所述第二十二电阻与第二十三电阻之间的节点,所述第十电子开关的第三端连接所述第二二极管的阳极。
本申请的另一实施方式提供一种电池控制电路,所述电池控制电路包括电子开关模块、微控制器以及如上述所述的开关驱动电路;
所述电子开关模块电连接于电池正极与外接端口的供电回路中,所述电子开关模块用于控制所述供电回路的导通或截止;
所述微控制器电连接所述开关驱动电路,以用于输出信号至所述开关驱动电路;及
所述开关驱动电路与所述电子开关模块连接,所述开关驱动电路用于根据所述微控制器的信号驱动所述电子开关模块导通或者截止。
根据本申请的一些实施方式,所述电子开关模块包括第十一电子开关及第十二电子开关,所述第十一电子开关的第一端连接所述开关驱动端口,所述第十一电子开关的第二端连接所述电池正极,所述第十一电子开关的第三端通过第二十四电阻连接所述十一电子开关的第一端,所述第十二电子开关的第一端连接所述开关驱动端口,所述第十二电子开关的第二端连接外接端口,所述第十二电子开关的第三端连接至所述第十一电子开关的第三端,所述第十二电子开关的第三端还通过第二稳压二极管连接所述第十二电子开关的第一端。
本申请实施方式提供的开关驱动电路及具有所述开关驱动电路的电池控制电路,通过所述放电电路为所述电压产生电路提供供电电压,并通过所述电压产生电路产生驱动电压以控制与所述开关驱动端口连接的电子开关模块导通或截止。如此,本申请实施方式提供的开关驱动电路及电池控制电路,拓展性强、成本低廉,并且驱动电压及驱动能力可以灵活调整。
附图说明
图1为根据本申请一较佳实施方式的电池控制电路的方框图。
图2为图1中开关驱动电路的方框图。
图3为图1中电池控制电路的第一实施方式的电路图。
图4为图1中电池控制电路的第二实施方式的电路图。
主要元件符号说明
电池控制电路                     100
电池正极                         200
外接端口                         300
开关驱动电路                     10
放电电路                         11
开关驱动端口                     12
电压产生电路                     13
驱动端口导通电路                 14
驱动端口截止电路                 15
驱动电压反馈电路                 16
开关反馈电路                     17
驱动供电电路                     18
电子开关模块                     20
微控制器                         30
第一电阻至第二十四电阻           R1-R24
第一电容至第四电容               C1-C4
第一二极管至第四二极管           D1-D4
第一稳压二极管至第二稳压二极管   ZD1-ZD2
第一电子开关至第十二电子开关     Q1-Q12
如下具体实施方式将结合上述附图进一步详细说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都是属于本申请保护的范 围。
请参阅图1,图1为根据本申请电池控制电路100一较佳实施方式的方框图。所述电池控制电路100电连接于电池正极200及外接端口300之间以形成供电回路,所述电池控制电路100用于控制所述供电回路导通或截止,从而控制电池的充电和放电。
所述电池控制电路100包括开关驱动电路10、电子开关模块20以及微控制器30。
具体到本申请实施方式中,所述电子开关模块20位于所述电池正极200与外接端口300的供电回路中,所述开关驱动电路10连接于所述电子开关模块20及所述微控制器30之间。所述微控制器30电连接所述开关驱动电路10,以用于输出信号至所述开关驱动电路10。所述开关驱动电路10可以根据所述微控制器20的控制信号驱动所述电子开关模块20导通或者截止。
请参阅图2,图2为根据本申请开关驱动电路10一较佳实施方式的方框图。
在本实施方式中,所述开关驱动电路10包括放电电路11、开关驱动端口12、电压产生电路13以及驱动端口导通电路14。
所述放电电路11电连接所述电压产生电路13,所述放电电路11用于为所述电压产生电路13提供供电电压。
所述电压产生电路13通过所述驱动端口导通电路14电连接所述开关驱动端口12,所述电压产生电路13用于根据所述微控制器30的输出信号将所述供电电压进行升压后输出驱动电压,所述驱动电压用于控制与所述开关驱动端口12连接的电子开关模块20导通或截止。
所述驱动端口导通电路14用于根据所述微控制器30输出的第一控制信号以控制所述开关驱动端口12导通所述电压产生电路13与所述电子开关模块20之间的连接。
在一较佳实施方式中,所述开关驱动电路10还可进一步包括驱动端口截止电路15。
所述驱动端口截止电路15电连接所述开关驱动端口12,所述驱 动端口截止电路15用于根据所述微控制器30输出的第二控制信号以控制所述开关驱动端口12断开所述电压产生电路13与所述电子开关模块20之间的连接。
在一较佳实施方式中,所述开关驱动电路10还可进一步包括驱动电压反馈电路16。
所述驱动电压反馈电路16通过所述驱动端口导通电路14电连接所述电压产生电路13,所述驱动电压反馈电路16用于检测所述电压产生电路13输出的驱动电压,并实时反馈给所述微控制器30。
在一较佳实施方式中,所述开关驱动电路10还可进一步包括开关反馈电路17。
所述开关反馈电路17电连接所述电子开关模块20,所述开关反馈电路17用于检测所述电子开关模块20的工作状态,并实时反馈给所述微控制器30。
在一较佳实施方式中,所述开关驱动电路10还可进一步包括驱动供电电路18。
所述驱动供电电路18电连接所述电压产生电路13,所述驱动供电电路18用于为所述电压产生电路13供电。
请参阅图3,图3为根据本申请电池控制电路100的第一实施方式的电路图。
在本实施方式中,所述放电电路11包括第一电子开关Q1、第二电子开关Q2、第一电阻R1、第二电阻R2、第三电阻R3以及第四电阻R4。
所述第一电子开关Q1的第一端通过所述第一电阻R1连接所述微控制器30的控制引脚A,所述第一电子开关Q1的第二端接地,所述第一电子开关Q1的第三端通过所述第二电阻R2连接所述第二电子开关Q2的第一端。所述第二电子开关Q2的第一端通过所述第三电阻R3连接所述第二电子开关Q2的第二端,所述第二电子开关Q2的第二端连接所述电池正极200,所述电子开关Q2的第三端通过所述第四电阻R4连接所述电压产生电路13。
在本实施方式中,所述第一电子开关Q1为NPN型三极管,所述第二电子开关Q2为P型场效应管。所述第一电子开关Q1的第一端、第二端以及第三端分别对应所述NPN型三极管的基极、发射极以及集电极。所述第二电子开关Q2的第一端、第二端以及第三端分别对应所述P型场效应管的栅极、源极以及漏极。
进一步地,所述电压产生电路13可包括第三电子开关Q3、第四电子开关Q4、第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一电容C1、第五电阻R5、第六电阻R6以及第七电阻R7。
所述第三电子开关Q3的第一端通过所述第五电阻R5连接所述微控制器30的第二控制引脚B,所述第三电子开关Q3的第二端接地,所述第三电子开关Q3的第三端连接所述驱动供电电路18。
所述第四电子开关Q4的第一端通过所述第六电阻R6连接所述微控制器30的第二控制引脚B,所述第四电子开关Q4的第二端接地,所述第四电子开关Q4的第三端通过所述第七电阻R7连接所述第一二极管D1的阴极,所述第一二极管D1的阳极连接所述第二二极管D2的阴极,所述第二二极管D2的阳极连接所述驱动供电电路18,所述第二二极管的阴极D2还通过所述第一电容C1连接所述第三二极管D3的阳极,所述第三二极管D3的阴极连接所述驱动端口导通电路14,所述第三二极管D3的阳极还连接所述第四二极管D4的阴极,所述第四二极管D4的阳极通过所述第四电阻R4连接所述第二电子开关Q2的第三端。
在本实施方式中,所述第三电子开关Q3及所述第四电子开关Q4均为NPN型三极管。所述第三电子开关Q3及所述第四电子开关Q4的第一端、第二端以及第三端分别对应所述NPN型三极管的基极、发射极以及集电极。
在一些实施方式中,所述电压产生电路13可进一步包括第二电容C2及第一稳压二极管ZD1。
所述第二电容C2的第一端连接所述第三二极管D3的阴极,所述 第二电容C2的第二端连接所述第四二极管D4的阳极,所述第一稳压二极管ZD1的阴极连接所述第二电容C2的第一端,所述第一稳压二极管ZD1的阳极连接所述第二电容C2的第二端。
在本实施方式中,所述驱动端口导通电路14包括第五电子开关Q5、第六电子开关Q6及第八电阻R8、第九电阻R9以及第十电阻R10。
所述第五电子开关Q5的第一端通过所述第八电阻R8连接所述微控制器30的第三控制引脚C,所述第五电子开关Q5的第二端接地,所述第五电子开关Q5的第三端通过所述第九电阻R9连接所述第六电子开关Q6的第一端,所述第六电子开关Q6的第一端还通过所述第十电阻R10连接所述第六电子开关Q6的第二端,所述第六电子开关Q6的第二端连接所述第三二极管D3的阴极,所述第六电子开关Q6的第三端连接所述开关驱动端口12。
本实施方式中,所述第五电子开关Q5为NPN型三极管,所述第六电子开关Q6为PNP型三极管。所述第五电子开关Q5的第一端、第二端以及第三端分别对应所述NPN型三极管的基极、发射极以及集电极。所述第六电子开关Q6的第一端、第二端以及第三端分别对应所述PNP型三极管的基极、发射极以及集电极。
在本实施方式中,所述驱动端口截止电路15包括第七电子开关Q7、第八电子开关Q8及第十一电阻R11、第十二电阻R12以及第十三电阻R13。
所述第七电子开关Q7的第一端通过所述第十一电阻R11连接所述微控制器30的第四控制引脚D,所述第七电子开关Q7的第二端接地,所述第七电子开关Q7的第三端通过所述第十二电阻R12连接所述第八电子开关Q8的第一端,所述第八电子开关Q8的第一端还通过所述第十三电阻R13连接所述第八电子开关Q8的第二端,所述第八电子开关Q8的第二端连接所述第六电子开关Q6的第三端,所述第八电子开关Q8的第三端连接所述第四二极管D4的阳极。
本实施方式中,所述第七电子开关Q7为NPN型三极管,所述第八电子开关Q8为PNP型三极管。所述第七电子开关Q7的第一端、 第二端以及第三端分别对应所述NPN型三极管的基极、发射极以及集电极。所述第八电子开关Q8的第一端、第二端以及第三端分别对应所述PNP型三极管的基极、发射极以及集电极。
在本实施方式中,所述驱动电压反馈电路16包括第十四电阻R14、第十五电阻R15、第十六电阻R16以及第三电容C3。
所述第十四电阻R14的第一端连接所述微控制器30的第五控制引脚E,所述第十四电阻R14的第一端还通过所述第三电容C3接地,所述第十四电阻R14的第二端通过所述第十五电阻R15接地,所述第十四电阻R14的第二端还通过所述第十六电阻R16连接所述第六电子开关Q6的第三端。
在本实施方式中,所述开关反馈电路17包括第十七电阻R17、第十八电阻R18、第十九电阻R19以及第四电容C4。
所述第十七电阻R17的第一端连接所述微控制器30的第六控制引脚F,所述第十七电阻R17的第一端还通过所述第四电容C4接地,所述第十七电阻R17的第二端通过所述第十八电阻R18接地,所述第十七电阻R17的第二端还通过所述第十九电阻R19连接所述电子开关模块20与所述外接端口300之间的节点P1。其中,所述微控制器30的第六控制引脚F为ADC输入端口。
本实施方式中,所述驱动供电电路18包括第九电子开关Q9、第十电子开关Q10、第二十电阻R20、第二十一电阻R21、第二十二电阻R22以及第二十三电阻R23。
所述第九电子开关Q9的第一端通过所述第二十电阻R20连接所述微控制器30的第七控制引脚G,所述第九电子开关Q9的第二端接地,所述第九电子开关Q9的第一端还通过所述第二十一电阻R21连接所述第九电子开关Q9的第二端,所述第九电子开关Q9的第三端通过所述第二十二电阻R22及第二十三电阻R23连接所述第十电子开关Q10的第二端,所述第十电子开关Q10的第二端还连接所述电池正极200。所述第十电子开关Q10的第一端连接所述第二十二电阻R22与第二十三电阻R23之间的节点,所述第十电子开关Q10的第三端连接 所述第二二极管D2的阳极。
本实施方式中,所述第九电子开关Q9为NPN型三极管,所述第十电子开关Q10为PNP型三极管。所述第九电子开关Q9的第一端、第二端以及第三端分别对应所述NPN型三极管的基极、发射极以及集电极。所述第十电子开关Q10的第一端、第二端以及第三端分别对应所述PNP型三极管的基极、发射极以及集电极。
在本实施方式中,所述电子开关模块20包括第十一电子开关Q11、第十二电子开关Q12、第二十四电阻R24以及第二稳压二极管ZD2。
所述第十一电子开关Q11的第一端连接所述开关驱动端口12,所述第十一电子开关Q11的第二端连接所述电池正极200,所述第十一电子开关Q11的第三端通过第二十四电阻R24连接所述十一电子开关Q11的第一端。所述第十二电子开关Q12的第一端连接所述开关驱动端口12,所述第十二电子开关Q12的第二端连接所述外接端口300,所述第十二电子开关Q12的第三端连接至所述第十一电子开关Q11的第三端,所述第十二电子开关Q12的第三端还通过第二稳压二极管ZD2连接所述第十二电子开关Q12的第一端。
本实施方式中,所述第十一电子开关Q11及所述第十二电子开关Q12均为N型场效应管。所述第十一电子开关Q11及所述第十二电子开关Q12的第一端、第二端以及第三端均分别对应所述N型场效应管的栅极、漏极以及源极。
请参阅图4,图4为本申请电池控制电路100的第二实施方式的电路图。
本实施方式的电池控制电路100与第一实施方式的电池控制电路100的区别在于:
在本实施方式中,所述驱动电压反馈电路16包括第十四电阻R14、第十五电阻R15、第十六电阻R16以及第三电容C3。
所述第十四电阻R14的第一端连接所述微控制器30的第五控制引脚E,所述第十四电阻R14的第一端还通过所述第三电容C3接地, 所述第十四电阻R14的第二端通过所述第十五电阻R15接地,所述第十四电阻R14的第二端还通过所述第十六电阻R16连接所述第一稳压二极管ZD1的阴极。其中,所述微控制器30的第五控制引脚E为ADC输入端口。
下面将以本申请电池控制电路100的第一实施方式的电路图为例进行说明:
使用时,所述微控制器30的第一控制引脚A输出高电平的控制信号至所述第一电子开关Q1的第一端,以控制所述第一电子开关Q1导通,所述第二电子开关Q2的第二端的电位被拉低,所述第二电子开关Q2导通,所述电池正极200输出供电电压给所述电压产生电路13的第四二极管D4的阳极。
接着,所述微控制器30的第七控制引脚G输出高电平的控制信号给所述第九电子开关Q9的第一端,以控制所述第九电子开关Q9导通,并将所述第十电子开关Q10的第一端的电位拉低,所述第十电子开关Q10导通,进而使得所述电池正极200输出脉动电压到所述电压产生电路13中的第二二极管D2的阳极。
此时,所述微控制器30的第二控制引脚B输出脉冲宽度调制信号至所述第三电子开关Q3及所述第四电子开关Q4的第一端,以控制所述第三电子开关Q3及第四电子开关Q4导通。所述第三电子开关Q3、第四电子开关Q4的高频开关可使得所述第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4以及第一电容C1构成倍压整流结构,以生成比所述电池正极200更高的电压,并由所述第一稳压二极管ZD1进行稳压,以由所述第二电容C2进行存储。
接着,所述微控制器30的第三控制引脚C输出高电平的控制信号至所述第五电子开关Q5,以控制所述第五电子开关Q5导通,进而拉低所述第六电子开关Q6的第一端的电位,所述第六电子开关Q6导通。此时,存储在所述第二电容C2两端的驱动电压通过所述开关驱动端口12输出至所述第十一电子开关Q11及所述第十二电子开关Q12的第一端,进而控制所述第十一电子开关Q11及所述第十二电子 开关Q12导通。
此时,所述驱动电压反馈电路16检测所述电压产生电路13所输出的驱动电压进行检测,并将检测到的驱动电压传输给所述微控制器30,所述微控制器30将判断所述驱动电压是否大于或等于第一预设电压(如12V)。若所述驱动电压小于所述第一预设电压,所述微控制器30的第一控制引脚B将会调整所述脉冲宽度调制信号的占空比大小,直到所述驱动电压大于或等于所述第一预设电压。
接着,所述开关反馈电路17检测所述第十一电子开关Q11及所述第十二电子开关Q12的导通状态,即所述微控制器30通过所述开关反馈电路17获取所述节点P1的检测电压,并判断所述检测电压是否等于所述电池正极200输出的电压。若是,所述开关驱动电路10对所述电子开关模块20驱动成功,否则进行关断处理。
当不需要对所述电子开关模块20进行驱动时,所述微控制器30的第三控制引脚C停止输出高电平的控制信号给第五电子开关Q5,所述微控制器30的第四控制引脚D开始输出高电平的控制信号至所述第七电子开关Q7的第一端,以控制所述第七电子开关Q7导通,进而拉低所述第八电子开关Q8的第一端的电位,所述第八电子开关Q8导通,所述开关驱动端口12处于关闭状态,所述微控制器30的第二控制引脚B停止输出脉冲宽度调制信号给第三电子开关Q3及第四电子开关Q4,所述微控制器30的第七控制引脚G停止输出高电平的控制信号给所述第九电子开关Q9,所述微控制器30的第一控制引脚A停止输出高电平的控制信号给第一电子开关Q1。
接着,所述微控制器30判断所述节点P1处的电压是否等于第二预设电压(如0V)。若是,即可成功关断所述电子开关模块20的驱动,否则关断异常处理。
上述实施方式提供的开关驱动电路10及具有所述开关驱动电路10的电池控制电路100,通过所述放电电路11为所述电压产生电路13提供供电电压,并通过所述电压产生电路13产生驱动电压以控制与所述开关驱动端口12连接的电子开关模块20导通或截止。如此, 本申请实施方式提供的开关驱动电路10及电池控制电路100,拓展性强、成本低廉,并且驱动电压及驱动能力可以灵活调整。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (16)

  1. 一种开关驱动电路,其特征在于,所述开关驱动电路包括开关驱动端口、放电电路、电压产生电路以及驱动端口导通电路;
    所述放电电路电连接所述电压产生电路,以用于为所述电压产生电路提供供电电压;
    所述电压产生电路电连接所述开关驱动端口,所述电压产生电路用于根据微控制器输出信号将所述供电电压进行升压后输出驱动电压,所述驱动电压用于控制与所述开关驱动端口连接的电子开关模块导通或截止;及
    所述驱动端口导通电路电连接所述开关驱动端口,用于根据微控制器输出的第一控制信号以控制所述开关驱动端口导通所述电压产生电路与所述电子开关模块之间的连接。
  2. 如权利要求1所述的开关驱动电路,其特征在于,所述开关驱动电路还包括驱动端口截止电路,所述驱动端口截止电路电连接所述开关驱动端口,用于根据微控制器输出的第二控制信号以控制所述开关驱动端口断开所述电压产生电路与所述电子开关模块之间的连接。
  3. 如权利要求2所述的开关驱动电路,其特征在于,所述开关驱动电路还包括驱动电压反馈电路,所述驱动电压反馈电路电连接所述电压产生电路,所述驱动电压反馈电路用于对所述电压产生电路输出的驱动电压进行检测。
  4. 如权利要求3所述的开关驱动电路,其特征在于,所述开关驱动电路还包括开关反馈电路,所述开关反馈电路电连接所述电子开关模块,所述开关反馈电路用于检测所述电子开关模块的工作状态。
  5. 如权利要求4所述的开关驱动电路,其特征在于,所述开关驱动电路还包括驱动供电电路,所述驱动供电电路电连接所述电压产生电路,所述驱动供电电路用于为所述电压产生电路供电。
  6. 如权利要求5所述的开关驱动电路,其特征在于,所述放电电路包括第一电子开关、第二电子开关、第一电阻、第二电阻、第三电 阻、第四电阻,所述第一电子开关的第一端通过所述第一电阻连接微控制器的第一控制引脚,所述第一电子开关的第二端接地,所述第一电子开关的第三端通过所述第二电阻连接所述第二电子开关的第一端,所述第二电子开关的第一端通过所述第三电阻连接所述第二电子开关的第二端,所述第二电子开关的第二端连接电池正极,所述第二电子开关的第三端通过所述第四电阻连接所述电压产生电路。
  7. 如权利要求6所述的开关驱动电路,其特征在于,所述电压产生电路包括第三电子开关、第四电子开关、第一二极管、第二二极管、第三二极管、第四二极管、第一电容、第五电阻、第六电阻以及第七电阻,所述第三电子开关的第一端通过所述第五电阻连接所述微控制器的第二控制引脚,所述第三电子开关的第二端接地,所述第三电子开关的第三端连接所述驱动供电电路,所述第四电子开关的第一端通过所述第六电阻连接所述微控制器的第二控制引脚,所述第四电子开关的第二端接地,所述第四电子开关的第三端通过所述第七电阻连接所述第一二极管的阴极,所述第一二极管的阳极连接所述第二二极管的阴极,所述第二二极管的阳极连接所述驱动供电电路,所述第二二极管的阴极还通过所述第一电容连接所述第三二极管的阳极,所述第三二极管的阴极连接所述驱动端口导通电路,所述第三二极管的阳极还连接所述第四二极管的阴极,所述第四二极管的阳极通过所述第四电阻连接所述第二电子开关的第三端。
  8. 如权利要求7所述的开关驱动电路,其特征在于,所述电压产生电路还包括第二电容及第一稳压二极管,所述第二电容的第一端连接所述第三二极管的阴极,所述第二电容的第二端连接所述第四二极管的阳极,所述第一稳压二极管的阴极连接所述第二电容的第一端,所述第一稳压二极管的阳极连接所述第二电容的第二端。
  9. 如权利要求8所述的开关驱动电路,其特征在于,所述驱动端口导通电路包括第五电子开关、第六电子开关及第八电阻、第九电阻、第十电阻,所述第五电子开关的第一端通过所述第八电阻连接所述微控制器的第三控制引脚,所述第五电子开关的第二端接地,所述第五 电子开关的第三端通过所述第九电阻连接所述第六电子开关的第一端,所述第六电子开关的第一端还通过所述第十电阻连接所述第六电子开关的第二端,所述第六电子开关的第二端连接所述第三二极管的阴极,所述第六电子开关的第三端连接所述开关驱动端口。
  10. 如权利要求9所述的开关驱动电路,其特征在于,所述驱动端口截止电路包括第七电子开关、第八电子开关及第十一电阻、第十二电阻、第十三电阻,所述第七电子开关的第一端通过所述第十一电阻连接所述微控制器的第四控制引脚,所述第七电子开关的第二端接地,所述第七电子开关的第三端通过所述第十二电阻连接所述第八电子开关的第一端,所述第八电子开关的第一端还通过所述第十三电阻连接所述第八电子开关的第二端,所述第八电子开关的第二端连接所述第六电子开关的第三端,所述第八电子开关的第三端连接所述第四二极管的阳极。
  11. 如权利要求10所述的开关驱动电路,其特征在于,所述驱动电压反馈电路包括第十四电阻、第十五电阻、第十六电阻及第三电容,所述第十四电阻的第一端连接所述微控制器的第五控制引脚,所述第十四电阻的第一端还通过所述第三电容接地,所述第十四电阻的第二端通过所述第十五电阻接地,所述第十四电阻的第二端还通过所述第十六电阻连接所述第一稳压二极管的阴极。
  12. 如权利要求10所述的开关驱动电路,其特征在于,所述驱动电压反馈电路包括第十四电阻、第十五电阻、第十六电阻及第三电容,所述第十四电阻的第一端连接所述微控制器的第五控制引脚,所述第十四电阻的第一端还通过所述第三电容接地,所述第十四电阻的第二端通过所述第十五电阻接地,所述第十四电阻的第二端还通过所述第十六电阻连接所述第六电子开关的第三端。
  13. 如权利要求11所述的开关驱动电路,其特征在于,所述开关反馈电路包括第十七电阻、第十八电阻、第十九电阻及第四电容,所述第十七电阻的第一端连接所述微控制器的第六控制引脚,所述第十七电阻的第一端还通过所述第四电容接地,所述第十七电阻的第二端 通过所述第十八电阻接地,所述第十七电阻的第二端还通过所述第十九电阻连接所述电子开关模块。
  14. 如权利要求13所述的开关驱动电路,其特征在于,所述驱动供电电路包括第九电子开关、第十电子开关、第二十电阻、第二十一电阻、第二十二电阻及第二十三电阻,所述第九电子开关的第一端通过所述第二十电阻连接微控制器的第七控制引脚,所述第九电子开关的第二端接地,所述第九电子开关的第一端还通过所述第二十一电阻连接所述第九电子开关的第二端,所述第九电子开关的第三端通过所述第二十二电阻及第二十三电阻连接所述第十电子开关的第二端,所述第十电子开关的第一端连接所述第二十二电阻与第二十三电阻之间的节点,所述第十电子开关的第二端还连接电池正极,所述第十电子开关的第三端连接所述第二二极管的阳极。
  15. 一种电池控制电路,其特征在于,所述电池控制电路包括电子开关模块、微控制器以及如权利要求1-14任一项所述的开关驱动电路;
    所述电子开关模块电连接于电池正极与外接端口的供电回路中,所述电子开关模块用于控制所述供电回路的导通或截止;
    所述微控制器电连接所述开关驱动电路,以用于输出信号至所述开关驱动电路;及
    所述开关驱动电路与所述电子开关模块连接,所述开关驱动电路用于根据所述微控制器的信号驱动所述电子开关模块导通或者截止。
  16. 如权利要求15所述的电池控制电路,其特征在于,所述电子开关模块包括第十一电子开关及第十二电子开关,所述第十一电子开关的第一端连接所述开关驱动端口,所述第十一电子开关的第二端连接所述电池正极,所述第十一电子开关的第三端通过第二十四电阻连接所述十一电子开关的第一端,所述第十二电子开关的第一端连接所述开关驱动端口,所述第十二电子开关的第二端连接外接端口,所述第十二电子开关的第三端连接至所述第十一电子开关的第三端,所述第十二电子开关的第三端还通过第二稳压二极管连接所述第十二电子 开关的第一端。
PCT/CN2020/078067 2019-03-21 2020-03-05 开关驱动电路及电池控制电路 WO2020187051A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/648,271 US11996723B2 (en) 2019-03-21 2020-03-05 Driving circuit for switch and battery control circuit using the same
EP20709463.2A EP3944455A4 (en) 2019-03-21 2020-03-05 SWITCH CONTROL CIRCUIT AND BATTERY CONTROL CIRCUIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910219362.2 2019-03-21
CN201910219362.2A CN111725857B (zh) 2019-03-21 2019-03-21 开关驱动电路及电池控制电路

Publications (1)

Publication Number Publication Date
WO2020187051A1 true WO2020187051A1 (zh) 2020-09-24

Family

ID=72519657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078067 WO2020187051A1 (zh) 2019-03-21 2020-03-05 开关驱动电路及电池控制电路

Country Status (4)

Country Link
US (1) US11996723B2 (zh)
EP (1) EP3944455A4 (zh)
CN (1) CN111725857B (zh)
WO (1) WO2020187051A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890158A (zh) * 2021-10-26 2022-01-04 东莞新能德科技有限公司 电池节能电路及电子设备
CN116260223A (zh) * 2021-11-10 2023-06-13 深圳达人高科电子有限公司 具有隔离功能的能量存储电路
CN114448063B (zh) * 2022-04-11 2022-09-06 西安航天民芯科技有限公司 一种应用于电池管理芯片的mosfet驱动电路
TWI807862B (zh) * 2022-06-15 2023-07-01 新盛力科技股份有限公司 應用於電池模組之保護開關上的驅動電路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679321B2 (en) * 2005-03-16 2010-03-16 Mitsumi Electric Co., Ltd. Power circuit
CN103916114A (zh) * 2013-01-08 2014-07-09 东莞钜威新能源有限公司 一种开关驱动电路
CN107891756A (zh) * 2017-11-10 2018-04-10 宁德时代新能源科技股份有限公司 开关驱动电路及方法、驱动器、电池装置、运载工具和计算机可读存储介质
CN207354057U (zh) * 2017-10-23 2018-05-11 广州极飞科技有限公司 一种开关驱动电路、电池控制电路、电池和无人机

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508874A (en) * 1993-05-14 1996-04-16 Siliconix Incorporated Disconnect switch circuit to power head retract in hard disk drive memories
JPH10261946A (ja) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp 半導体集積回路
US6008680A (en) * 1997-08-27 1999-12-28 Lsi Logic Corporation Continuously adjustable delay-locked loop
US7205818B2 (en) * 2004-09-30 2007-04-17 Rockwell Automation Technologies, Inc. Current loop drive module with dynamic compliance voltage
US7595608B2 (en) 2006-03-10 2009-09-29 Atmel Corporation Gate driver for a battery pack
CN100536297C (zh) * 2006-09-18 2009-09-02 扬智科技股份有限公司 供电装置
TW200820538A (en) * 2006-10-17 2008-05-01 Syspotek Corp Power supply apparatus
US8344790B2 (en) 2007-11-21 2013-01-01 O2Micro Inc. Circuits and methods for controlling a charge pump system
TW200931778A (en) * 2008-01-08 2009-07-16 Richtek Technology Corp Asynchronous boost converter
US7834657B1 (en) * 2010-01-12 2010-11-16 Freescale Semiconductor, Inc. Inverter circuit with compensation for threshold voltage variations
CN202094794U (zh) * 2011-05-18 2011-12-28 南京博兰得电子科技有限公司 一种自举型门极驱动控制电路
WO2013001682A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 アナログ測定データ検出システム、電池電圧検出システム
CN102904329B (zh) * 2011-07-29 2016-04-20 富泰华工业(深圳)有限公司 电源管理电路
WO2014169186A2 (en) * 2013-04-11 2014-10-16 Lion Semiconductor Inc. Apparatus, systems, and methods for providing a hybrid voltage regulator
JP6117640B2 (ja) 2013-07-19 2017-04-19 ルネサスエレクトロニクス株式会社 半導体装置及び駆動システム
WO2015072098A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 ゲート駆動回路およびそれを用いた電力変換装置
JP2015171305A (ja) * 2014-03-11 2015-09-28 オムロンオートモーティブエレクトロニクス株式会社 電源供給回路
US9673622B2 (en) * 2014-07-28 2017-06-06 Chicony Power Technology Co., Ltd. Power supplying system, linear controlling module thereof, and controlling method of switching component
WO2016118083A1 (en) * 2015-01-21 2016-07-28 Agency For Science, Technology And Research Device and method for energy harvesting using a self-oscillating power-on-reset start-up circuit with auto-disabling function
DE102015011230A1 (de) * 2015-08-25 2017-03-02 Audi Ag Energiespeichervorrichtung für ein elektrisches Wechselspannungsnetz
JP6690818B2 (ja) * 2016-03-18 2020-04-28 新日本無線株式会社 スイッチング制御回路
CN206023570U (zh) 2016-08-31 2017-03-15 洛阳隆盛科技有限责任公司 一种高速、高压、高侧mos驱动电路
CN108075463B (zh) * 2016-11-14 2022-01-11 恩智浦有限公司 具有反向电流保护和电源断接检测的集成电路
US10432007B2 (en) * 2017-05-03 2019-10-01 Dell Products L.P. Circuits, systems and methods for balancing power for system load components
CN207150798U (zh) * 2017-05-08 2018-03-27 Tcl通力电子(惠州)有限公司 音响设备
CN109302050A (zh) 2018-12-10 2019-02-01 吴亚杰 一种应用于电池管理的mos驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679321B2 (en) * 2005-03-16 2010-03-16 Mitsumi Electric Co., Ltd. Power circuit
CN103916114A (zh) * 2013-01-08 2014-07-09 东莞钜威新能源有限公司 一种开关驱动电路
CN207354057U (zh) * 2017-10-23 2018-05-11 广州极飞科技有限公司 一种开关驱动电路、电池控制电路、电池和无人机
CN107891756A (zh) * 2017-11-10 2018-04-10 宁德时代新能源科技股份有限公司 开关驱动电路及方法、驱动器、电池装置、运载工具和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944455A4 *

Also Published As

Publication number Publication date
EP3944455A4 (en) 2023-04-05
CN111725857B (zh) 2022-02-15
US11996723B2 (en) 2024-05-28
CN111725857A (zh) 2020-09-29
EP3944455A1 (en) 2022-01-26
US20210273470A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020187051A1 (zh) 开关驱动电路及电池控制电路
WO2021237615A1 (zh) 充电器驱动电路、集成电路、充电器、充电控制方法及充电控制系统
TWI464717B (zh) 時序控制電路及使用其的電子裝置
WO2022027264A1 (zh) 通道开关的驱动电路、充电控制方法及充电器
WO2023016574A1 (zh) 开关电路、电池管理系统、电池包、用电设备及控制方法
CN215934520U (zh) 电源切换系统及双电源供电设备
CN112290782B (zh) 驱动信号控制电路及开关电源芯片
CN110445242B (zh) 电源切换电路
WO2017120994A1 (zh) 电压产生电路及液晶电视
US20200146354A1 (en) Power supply drive module, power supply device and electronic cigarette
CN109130948B (zh) 一种bms双辅源供电系统
CN206947944U (zh) 打印机喷头供电电路及打印机
CN110768518A (zh) 电源隔离电路以及智能门锁系统
TWI595244B (zh) 電壓報警系統
CN108768356B (zh) 一种上电自锁控制电路和电源
CN213360524U (zh) 讲台散热风扇及讲台
TWI684096B (zh) 電源供應裝置
CN215990180U (zh) 一种开关保护电路和装置
CN218300472U (zh) 插线板
CN210806817U (zh) 一种ups充电电路
CN220821408U (zh) 低压直流接触器的控制电路和低压直流接触器
CN211266757U (zh) 电源隔离电路以及智能门锁系统
CN213986775U (zh) 一种应用广播系统的线路故障采样电路
CN109708562B (zh) 用于车载抬头显示仪盖板的检测控制电路
CN112217179B (zh) 一种用于外骨骼机器人的开关及保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20709463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020709463

Country of ref document: EP

Effective date: 20211021