WO2020186973A1 - 通信方法、装置、设备及系统 - Google Patents

通信方法、装置、设备及系统 Download PDF

Info

Publication number
WO2020186973A1
WO2020186973A1 PCT/CN2020/076445 CN2020076445W WO2020186973A1 WO 2020186973 A1 WO2020186973 A1 WO 2020186973A1 CN 2020076445 W CN2020076445 W CN 2020076445W WO 2020186973 A1 WO2020186973 A1 WO 2020186973A1
Authority
WO
WIPO (PCT)
Prior art keywords
broadcast signal
terminal device
network device
broadcast
network
Prior art date
Application number
PCT/CN2020/076445
Other languages
English (en)
French (fr)
Inventor
黄晶晶
陈军
刘鹏
王光健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20773843.6A priority Critical patent/EP3920433A4/en
Publication of WO2020186973A1 publication Critical patent/WO2020186973A1/zh
Priority to US17/466,238 priority patent/US20210400462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18523Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service
    • H04B7/18526Arrangements for data linking, networking or transporting, or for controlling an end to end session
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device, equipment and system.
  • satellites In satellite communication systems (such as Iridium, Globalstar, Shuraya Thuraya, etc.), satellites often use spot beams to provide communication services to ground terminals located in the coverage area of spot beams. At this time, the antenna beams in the ground terminals require Aim at the satellite to access the satellite.
  • the ground terminal it takes a long time for the ground terminal to blindly align and access the satellite without knowing its own location and satellite location.
  • the beam of the satellite and the beam of the antenna in the ground terminal need to be scanned periodically, until the two beams are aligned, the ground terminal can access the satellite, especially the narrow beam alignment of the antenna in the ground terminal and the satellite access process will consume more It takes a long time and is inefficient.
  • This application provides a communication method, device, equipment and system, which are used to implement the process of terminal equipment accessing network equipment through beams with different beam widths and smoothly transmitting data with the network equipment, which improves the efficiency of access and saves access duration.
  • this application provides a communication method, including:
  • the terminal device receives the broadcast signal broadcast by N network devices through the first beam, each broadcast signal includes the current broadcast time and the identification information of the network device broadcasting the broadcast signal, and N is a positive integer;
  • the terminal device measures the broadcast signals of the N network devices through the second beam corresponding to the broadcast signal;
  • the terminal device Acquiring, by the terminal device, a second beam corresponding to a target network device according to a measurement result, where the target network device is one network device among the N network devices;
  • the terminal device performs data transmission with the target network device through the second beam corresponding to the target network device.
  • the terminal device can set the first beam to a beam with a wider beam width (herein referred to as a wide beam), so that the terminal device can smoothly receive the broadcast signal broadcast by each network device, thereby reducing the connection rate. Entry time.
  • the embodiment of the present application does not limit the number N of network devices.
  • the terminal device may receive broadcast signals broadcast by one network device, or may receive broadcast signals broadcast by multiple network devices. And, each network device can broadcast one or more broadcast signals. Each network device can send the broadcast signal directly to the terminal device, or forward the broadcast signal to the terminal device through other devices that have a feeder link with the terminal device.
  • the beam width of the antenna in the terminal device is small, which facilitates high-speed data transmission between the antenna and the network device. Therefore, based on the demand for high-speed signal transmission, in the embodiment of the present application, the terminal device can set the second beam to a beam with a smaller beam width (referred to as a narrow beam in this article), so as to facilitate communication between the terminal device and the network device. High-speed data transmission improves the signal transmission rate.
  • the embodiment of the application does not limit the specific beam width of the second beam, as long as the width of the first beam (the width mentioned herein refers to the beam width) is greater than the width of the second beam.
  • the terminal device in order to ensure that the terminal device can select a suitable network device for data transmission, when the terminal device receives the broadcast signal, it can obtain the second beam corresponding to the broadcast signal to ensure that the second beam corresponding to the broadcast signal can be aligned with the corresponding broadcast signal. , So that the terminal device can use the second beam to measure the signal.
  • the terminal equipment and the network equipment can use beams of different frequency bands, and/or the broadcast signal of the network equipment is damaged due to the attenuation of the signal by oxygen and water vapor in the atmosphere and the rain attenuation Changes occur in real time. Therefore, in order to avoid the phenomenon that the data transmission between the terminal device and the network device is poor or unable to communicate, the terminal device can use the second beam corresponding to the broadcast signal, and the broadcast signal of each network device is as multipath The fading characteristics, frequency selectivity and other performance are measured to learn the current situation of the broadcast signal of each network device and obtain the measurement result.
  • the broadcast signal of each network device may be the broadcast signal of N broadcast signals received by the terminal device, or other broadcast signals currently received, or may be a combination of the above two broadcast signals. This is not limited.
  • the embodiment of the present application does not limit the specific parameters for the terminal device to measure the broadcast signal of each network device, and it only needs to satisfy the parameter to indicate the performance of the broadcast signal of the network device.
  • the terminal device can determine and select a network device suitable for data transmission with the terminal device according to the measurement result, that is, the target network device, to improve the data transmission performance reliability.
  • the terminal device can obtain the second beam corresponding to the target network device.
  • the terminal device in addition to the performance of the broadcast signal of each network device, the terminal device can also comprehensively consider its own actual needs and other subjective and objective factors to determine the target network device so that the terminal device and the target network device can successfully transmit data.
  • the terminal device can access the target network device at a high speed by using the second beam corresponding to the target network device, and further, the terminal device can communicate with the target network device at high speed.
  • Data transmission reduces the access time and improves the access efficiency of terminal equipment.
  • the terminal device can receive the broadcast signal broadcast by each network device as quickly as possible, which improves the signal acquisition rate and reduces the access time.
  • the terminal device uses a beam with a smaller beam width, it is conducive to high-speed data transmission with the network device.
  • the terminal device can set the width of the second beam to be smaller and accurately obtain the second beam corresponding to the broadcast signal , To ensure that the second beam corresponding to the broadcast signal can be aligned with the network device corresponding to the broadcast signal, so that the terminal device can use the second beam corresponding to the broadcast signal to measure the broadcast signal of each network device to obtain the The measurement result of the actual situation of the broadcast signal to determine the performance of the broadcast signal of each network device. Therefore, the terminal device can select the target network device suitable for data transmission with the terminal device from the N network devices according to the measurement result, so that the terminal device can use the second beam corresponding to the target network device to reliably communicate with the target network device.
  • the data transmission not only saves the beam scanning process, saves access time, but also improves the efficiency of access and ensures the reliability of data transmission.
  • the method further includes:
  • the terminal device determines the location of the N network devices and/or the location of the terminal device according to the broadcast signal.
  • the terminal device determining the locations of the N network devices according to the broadcast signal includes:
  • the terminal device determines the locations of the N network devices according to the correspondence between the locations of the network devices and the time.
  • the terminal device determining the location of the terminal device according to the broadcast signal includes:
  • the terminal device determines the location of the terminal device according to the locations of the N network devices and the propagation delay of the broadcast signal.
  • the terminal device can learn the current broadcast time of each broadcast signal through each broadcast signal, so that the terminal device can determine the specific time when each network device broadcasts the broadcast signal, and know the broadcast time of each broadcast signal.
  • the identification information of the network device enables the terminal device to determine the corresponding specific network device according to the identification information.
  • the embodiment of the present application does not limit the specific implementation form of the current broadcast time.
  • the terminal device can determine the location of each network device according to the current broadcast time and the identification information of the network device, or determine the location of the terminal device itself, or determine each network device And the location of the terminal device itself.
  • the position of each network device is fixed relative to the terminal device.
  • the network device can be a satellite device.
  • the satellite device revolves around an earth orbit and periodically runs in a closed orbit. It is relatively fixed.
  • the terminal device, and/or other devices that have a feeder link with the terminal device may take the form of a list or matrix in advance to determine the correspondence between the location of the network device and the identification information, and/or, Store the correspondence between the location of the network device and the time.
  • the terminal device and/or the ground base station may store the correspondence between the position and time of the satellite device through the satellite ephemeris.
  • the terminal device can determine the location of the network device corresponding to the current broadcast time according to the correspondence between the location of the network device and the identification information, and/or the correspondence between the location of the network device and the time, so as to locate each Network devices.
  • the position of the terminal device itself is relatively fixed or the terminal device moves within a small range. Therefore, optionally, the terminal device may determine according to the positions of N network devices and the propagation delay of the broadcast signal The location of the terminal device. Specifically, the terminal device uses the received broadcast signal to determine the position of the terminal device itself through the following formula (1).
  • the coordinates (x, y, z) represent the location of the terminal device
  • the coordinates (x i , y i , z i ) represent the location of N network devices
  • i is a positive integer
  • i ⁇ N c is the light in vacuum the propagation velocity
  • ⁇ t represents the propagation delay of the terminal device to the network device broadcasts a broadcast signal
  • d i represents the distance between the network device and terminal device.
  • the terminal device can learn the locations of N network devices, that is, x i , y i , and z i are known. And since the location of the terminal device and each network device is relatively fixed, therefore, the terminal device can know in advance a distance between the terminal device and each network device, i.e., d i are known. In this way, there are four unknowns of x, y, z and ⁇ t in the above formula (1). Those skilled in the art can understand that in order to calculate the four unknowns through least squares or other methods, the terminal device needs at least four broadcast signals, or the terminal device can reduce the number of broadcast signals by eliminating the unknowns. number.
  • N network devices need to send at least four broadcast signals to the terminal device, that is, four or more broadcast signals. Furthermore, on the premise that each network device is set to broadcast at least one broadcast signal to the terminal device, three scenarios are used to respectively describe in detail the specific implementation process of the terminal device determining the position of the terminal device itself.
  • the terminal device can receive at least four broadcast signals, so that the terminal device can determine the position of the terminal device itself through formula (1).
  • the terminal device can receive at least four broadcast signals, and the formula (1 ) Determine the location of the terminal device itself. If each network device only broadcasts one broadcast signal to the terminal device, the terminal device can receive three broadcast signals. Therefore, the terminal device needs to eliminate any one of the above four unknowns in advance, and then determine the terminal device by formula (1) Own position.
  • the terminal device may be provided with a measurement module for measuring any coordinate value of x, y, and z. Furthermore, the terminal device can measure any one of the coordinate values of x, y, and z through the measurement module, and then determine the position of the terminal device itself through formula (1).
  • the terminal device can use a sea wave measuring instrument to measure the sea wave position of the terminal device, that is, the coordinate value z, thereby eliminating the unknown number z.
  • ⁇ t can be calculated, and the PSS of the terminal equipment and other equipment belonging to the same area Same as SSS, therefore, other devices in the same area as the terminal device can send PSS and/or SSS to each network device.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • each network device broadcasts the broadcast signal to the terminal device, except for the current broadcast time and network device
  • it can also include PSS and/or SSS, so that the terminal device can receive the PSS and/or SSS through the broadcast signal, so that the terminal device can calculate ⁇ t according to the PSS and/or SSS, thereby eliminating the unknown ⁇ t, Then use formula (1) to determine the position of the terminal device itself.
  • the terminal device can determine the position of the terminal device itself through formula (1). If each network device only broadcasts one broadcast signal to the terminal device, the terminal device can receive two broadcast signals. Therefore, the terminal device needs to eliminate any two of the above four unknowns in advance, and then determine the terminal by formula (1) The location of the device itself.
  • the terminal device can receive at least four broadcast signals, and the formula (1) Determine the location of the terminal device itself.
  • each broadcast signal includes the current broadcast time and the identification information of the network device that broadcasts the broadcast signal, and the location of each network device and the location of the terminal device are relatively fixed, therefore, The terminal device can determine the location of each network device and the location of the terminal device according to the received broadcast signal without using other devices, so that the terminal device can automatically access N network devices, which improves the efficiency of access.
  • the terminal device can also use other devices to determine the location of N network devices and/or the location of the terminal device by reducing the number of received broadcast signals.
  • the acquiring, by the terminal device, the second beam corresponding to the broadcast signal includes:
  • the terminal device separately obtains the azimuth angle and the elevation angle of the second beam corresponding to the broadcast signal according to the positions of the N network devices and the position of the terminal device.
  • the terminal device in order to determine the second beam more accurately, can determine the azimuth and elevation angle of the second beam corresponding to each broadcast signal according to the location of each network device and the location of the terminal device. The determination is made so that the terminal device can use the second beam to accurately measure the actual situation of the broadcast signal of the network device, thereby improving the reliability of data transmission.
  • the terminal device when the terminal device determines the location of the terminal device and the location of any network device, the terminal device can determine the azimuth and pitch of the second beam corresponding to the broadcast signal broadcast by the network device according to formula (2) angle.
  • A is the azimuth angle of the second beam
  • E is the elevation angle of the second beam
  • ⁇ 1 is the longitude value of the terminal device
  • ⁇ 2 is the longitude value of the network device
  • is the latitude value of the network device.
  • the terminal device measures the broadcast signals of the N network devices through the second beam corresponding to the broadcast signal, including:
  • the terminal device determines the signal-to-noise ratio as the measurement result.
  • the terminal device acquiring the second beam corresponding to the target network device according to the measurement result includes:
  • the terminal device determines the network device with the largest signal-to-noise ratio as the target network device according to the measurement result
  • the terminal device determines the azimuth angle and the elevation angle of the second beam corresponding to the target network device.
  • the determination by the terminal device of the azimuth angle and the elevation angle of the second beam corresponding to the target network device includes:
  • the terminal device determines the azimuth angle and the pitch angle of the second beam corresponding to the target network device according to the location of the target network device and the location of the terminal device; or,
  • the terminal device determines the azimuth angle and the elevation angle of the second beam corresponding to the target network device according to the azimuth angle and the elevation angle of the second beam corresponding to the target network device and the broadcast signal.
  • the terminal device receiving broadcast signals broadcast by N network devices through the first beam includes:
  • the terminal device receives the broadcast signal broadcast by the network device through the beam of the network device through the first beam with the same frequency as the target frequency point, and the target frequency point is the network device that broadcasts the broadcast signal. Frequency point of the beam.
  • each network device may broadcast to the terminal device in advance what the network device uses The frequency point of the beam is the target frequency point. Therefore, the terminal device can quickly receive the broadcast signal broadcast by each network device by using the first beam with the same frequency as the target frequency point, which improves the receiving rate of the network device. Saved access time
  • each broadcast signal includes at least one of the following methods:
  • the network device turns on one beam and turns off the broadcast signal broadcast by the other beams;
  • the broadcast signal received by the terminal device is: any network device can first improve the transmission efficiency, and then broadcast the broadcast signal to the terminal device, thereby compensating the first beam and the second beam of the terminal device To reduce the impact of the gain difference on the terminal equipment.
  • the first beam is a combination of multiple third beams, and the width of the third beam is smaller than the width of the first beam.
  • the terminal device may use multiple beams with a wider width.
  • the third beam is spliced to replace the first beam of one beam width, thereby reducing the gain difference between the first beam and the second beam.
  • the first beam is a high-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device is a high-frequency beam
  • the first beam is a low-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device includes a low-frequency beam and a high-frequency beam
  • the first beam is a low-frequency beam
  • the second beam is a low-frequency beam
  • the beam of each network device is a low-frequency beam.
  • the terminal device is provided with a first beam and a second beam, so that the terminal device uses the first beam to receive broadcast signals based on the performance of the first beam and the second beam, and uses the second beam to measure and align the network device, thereby Save access time and improve access efficiency.
  • the terminal device can control the frequency band of the first beam and the frequency band of the second beam, and the network device changes as the frequency band of the first beam and the frequency band of the second beam change.
  • the working frequency bands allocated by the International Telecommunication Union ITU for satellite communications are: L, S, C, X, Ku, Ka, and on this basis, it can carry out narrow-bandwidth or wide-bandwidth language and data services.
  • low frequency bands such as L and S frequency bands
  • high frequency bands such as the Ku and Ka frequency bands
  • the advantages of less interference and small device size and are generally used for high-speed data transmission services such as high-definition television and gigabit bandwidth.
  • the low frequency and high frequency bands have different frequency bands and different bandwidths, the corresponding beam widths are different.
  • the high frequency band has a higher frequency band, greater path attenuation, and greater atmospheric attenuation. Compared with the low frequency band, the antenna gain is higher and the beam width is smaller.
  • the beam of each network device usually uses a narrow beam.
  • the first beam is a high-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device may be a high-frequency beam.
  • each network device can use a high-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a high-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam (ie, the second beam) of the terminal device and the high-frequency beam of the network device can mutually transmit data.
  • the first beam is a low-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device may include a low-band beam and a high-band beam.
  • each network device can use a low-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a low-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam of the terminal device and the high-frequency beam of the network device (that is, the second beam) can mutually transmit data.
  • the first beam is a low-frequency beam
  • the second beam is a low-frequency beam
  • the beam of each network device is a low-frequency beam.
  • each network device can use a low-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a low-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam of the terminal device and the low-frequency beam of the network device can mutually transmit data.
  • the terminal device is configured with a first beam and a second beam, and the width of the first beam is greater than the width of the second beam.
  • the terminal device can set the frequency band of the first beam and the frequency band of the second beam to be the same or different, and the frequency band of the network device can change with the frequency band of the first beam and the frequency band of the second beam, so that the terminal device And network equipment can transmit data smoothly in any scenario.
  • this application provides a communication method, including:
  • the network equipment obtains the signal strength of the broadcast signal
  • the network device sends the broadcast signal to the terminal device when the signal strength of the broadcast signal meets a preset condition.
  • the network device can use the signal strength of the broadcast signal to characterize the transmit power of the broadcast signal. Therefore, when the signal strength of the broadcast signal meets the preset condition, the network device can determine that the transmission power of the broadcast signal is relatively large, and can compensate for the gain difference between the first beam and the second beam, and further, the network device can directly report to the terminal The device sends a broadcast signal. When the signal strength of the broadcast signal does not meet the preset conditions, the network device determines that the transmit power of the broadcast signal is small, and cannot compensate for the gain difference between the first beam and the second beam. Furthermore, the network device can perform the broadcast signal Adjust so that the intensity of the adjusted broadcast signal meets the preset condition, and then send the adjusted broadcast signal to the terminal device.
  • the method further includes:
  • the maximum output power of a network device is fixed. Therefore, the network device concentrates all the energy of the network device in this one beam by turning on one beam and turning off the other beams, adjusts the signal strength of the broadcast signal, and increases the transmission power of the broadcast signal to meet the preset conditions .
  • the method further includes:
  • the network device adjusts the signal strength of the broadcast signal and increases the transmission power of the broadcast signal by setting a super capacitor to meet the preset condition.
  • the network device can also increase the transmission power of the broadcast signal by setting other modules, and this embodiment of the present application only uses a super capacitor for illustration.
  • the method further includes:
  • the network device adjusts the receiving time of the broadcast signal by setting the length of the broadcast signal to meet the preset length, and increases The total energy of the broadcast signal meets the preset condition.
  • this application provides a communication device, including:
  • the receiving module is configured to receive broadcast signals broadcast by N network devices through the first beam, each broadcast signal includes the current broadcast time and identification information of the network device broadcasting the broadcast signal, and N is a positive integer;
  • An obtaining module configured to obtain a second beam corresponding to the broadcast signal, the width of the first beam is greater than the width of the second beam;
  • a measurement module configured to measure the broadcast signals of the N network devices through the second beam corresponding to the broadcast signal
  • the acquiring module is further configured to acquire a second beam corresponding to a target network device according to a measurement result, where the target network device is one network device among the N network devices;
  • the transmission module is configured to perform data transmission with the target network device through the second beam corresponding to the target network device.
  • the device further includes:
  • the determining module is configured to determine the locations of the N network devices and/or the locations of terminal devices according to the broadcast signal.
  • the determining module is specifically configured to determine the locations of the N network devices according to the correspondence between the locations of the network devices and the time.
  • the determining module is specifically configured to determine the location of the terminal device according to the locations of the N network devices and the propagation delay of the broadcast signal.
  • the obtaining module is configured to obtain the azimuth angle and the elevation angle of the second beam corresponding to the broadcast signal according to the positions of the N network devices and the positions of the terminal devices.
  • the measurement module is specifically configured to determine the signal-to-noise ratio of the broadcast signals of the N network devices according to the second beam corresponding to the broadcast signal; and determine the signal-to-noise ratio as The measurement result.
  • the acquisition module is further configured to determine, according to the measurement result, the network device with the largest signal-to-noise ratio as the target network device; determine the second beam corresponding to the target network device Azimuth and pitch angle.
  • the acquisition module is specifically configured to determine the azimuth and elevation angles of the second beam corresponding to the target network device according to the location of the target network device and the location of the terminal device; or, Determine the azimuth angle and the elevation angle of the second beam corresponding to the target network device according to the azimuth angle and the elevation angle of the second beam corresponding to the target network device and the broadcast signal.
  • the receiving module is configured to receive the broadcast signal broadcast by the network device through the beam of the network device through the first beam with the same frequency as the target frequency point, and the target frequency The point is the frequency point of the beam of the network device broadcasting the broadcast signal.
  • each broadcast signal includes at least one of the following methods:
  • the network device turns on one beam and turns off the broadcast signal broadcast by the other beams;
  • the first beam is a combination of multiple third beams, and the width of the third beam is smaller than the width of the first beam.
  • the first beam is a high-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device is a high-frequency beam
  • the first beam is a low-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device includes a low-frequency beam and a high-frequency beam
  • the first beam is a low-frequency beam
  • the second beam is a low-frequency beam
  • the beam of each network device is a low-frequency beam.
  • this application provides a communication device, including:
  • the acquisition module is used to acquire the signal strength of the broadcast signal
  • the sending module is configured to send the broadcast signal to the terminal device when the signal strength of the broadcast signal meets a preset condition.
  • the device further includes:
  • the first adjustment module is configured to adjust the signal strength of the broadcast signal to satisfy the preset condition by turning on one beam and turning off the other beams when the signal strength of the broadcast signal does not meet the preset condition.
  • the device further includes:
  • the second adjustment module is configured to adjust the signal strength of the broadcast signal to meet the preset condition by setting a super capacitor when the signal strength of the broadcast signal does not meet the preset condition.
  • the device further includes:
  • the third adjustment module is configured to adjust the signal strength of the broadcast signal to satisfy the preset condition by setting the length of the broadcast signal to meet the preset length when the signal strength of the broadcast signal does not meet the preset condition. condition.
  • this application provides a terminal device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to call the program instructions in the memory to execute the first aspect and any one of the possible design communication methods in the first aspect.
  • this application provides a network device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is used to call the program instructions in the memory to execute the second aspect and any one of the possible design communication methods of the second aspect.
  • the present application provides a communication system, including: the communication device provided in any one of the third aspect and any possible design of the third aspect and N fourth aspect and any one of the fourth aspect
  • the provided communication device, N is a positive integer.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the terminal device executes any one of the first aspect and the first aspect.
  • a possible design communication method is provided.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the network device executes any one of the second aspect and the second aspect.
  • a possible design communication method is provided.
  • the present application provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the terminal device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the terminal device to implement the first aspect and the communication method in any one of the possible designs of the first aspect.
  • the present application provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the network device can read the execution instruction from a readable storage medium, and the execution of the execution instruction by the at least one processor causes the network device to implement the second aspect and the communication method in any possible design of the second aspect.
  • the present application provides a chip that is connected to a memory, or a memory is integrated on the chip, and when the software program stored in the memory is executed, the communication described in any of the above is realized method.
  • this application provides a terminal device, which is used to implement the first aspect and the communication method in any possible design of the first aspect.
  • this application provides a network device for implementing the second aspect and any possible design communication method in the second aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a flowchart of an embodiment of a communication method provided by this application.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 11 is a schematic diagram of the structure of a network device provided by this application.
  • the embodiments of this application can be applied to wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: Narrow Band-Internet of Things (NB-IoT), Global Mobile Communication system (Global System for Mobile Communications, GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), Long Term Evolution (LTE), the future fifth generation ( 5th Generation, 5G) system, and future communication systems, such as 6G systems.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global Mobile Communication system
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 system
  • Time Division-Synchronization Code Division Multiple Access Time Division-Synchronization Code Division Multiple Access
  • the communication devices involved in this application mainly include network equipment or terminal equipment.
  • the network device is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC) , Node B (Node B, NB), base station controller (BSC), base transceiver station (base transmitter station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP) in the wireless fidelity (WIFI) system Transmission point, TP), etc.
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G system antenna panel
  • it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (Radio Resource Control, RRC), Packet Data Convergence Protocol (PDCP) layer functions, DU implements wireless link The functions of radio link control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • DU implements wireless link The functions of radio link control (RLC), media access control (MAC) and physical (PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment can also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • terminal devices with wireless transceiver functions and chips that can be set in the aforementioned terminal devices are collectively referred to as terminal devices.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • the communication system of this application may include network equipment and terminal equipment, and various transmission methods can be used for data transmission between the network equipment and the terminal equipment. .
  • various transmission methods include optical fiber transmission suitable for long-distance limited transmission, x Digital Subscriber Line (xDSL) suitable for medium-distance wired transmission, coaxial cable direct connection suitable for short-distance wired transmission and Suitable for microwave, satellite and other methods of wireless transmission.
  • xDSL Digital Subscriber Line
  • the network device is a satellite device and the terminal device is a ground terminal as an example to illustrate the data transmission process between the satellite device and the ground terminal.
  • each satellite device needs to use an appropriate amount of spot beams for real-time coverage to the area that the satellite device needs to serve. Specifically, when the beam of the satellite device covers the area where the ground terminal is located, if the beam of the antenna in the ground terminal is not aligned with the satellite, the ground terminal will not be able to access the satellite device. If the beam of the antenna in the ground terminal is aligned with the satellite device, the ground terminal can complete the initial access, so that after the ground terminal is connected, the satellite device and the ground terminal can transmit data to each other.
  • the ground terminal In the process of aligning the ground terminal with the satellite equipment, the ground terminal needs to determine its own position and the position of the satellite equipment. Otherwise, the ground terminal will blindly aim at the satellite equipment. Generally, the antenna beam and the satellite equipment beam in the ground terminal will be scanned periodically. Until the two beams are aligned, the ground terminal can access the satellite equipment. This access process will be costly. A lot of time and low efficiency.
  • This application provides a communication method, device, equipment, and system, which can reduce the time for the terminal equipment to align and access the network equipment while realizing the data transmission between the terminal equipment and the network equipment, and improve the access efficiency of the terminal equipment.
  • the specific implementation process of the communication method of the embodiment of the present application will be described in detail below with reference to FIG. 2.
  • FIG. 2 is a flowchart of an embodiment of a communication method provided by this application. As shown in FIG. 2, the communication method in this embodiment may include:
  • the terminal device receives broadcast signals broadcast by N network devices through the first beam, and each broadcast signal includes the current broadcast time and identification information of the network device that broadcasts the broadcast signal, and N is a positive integer.
  • the terminal device can set the first beam to a beam with a wider beam width (herein referred to as a wide beam), so that the terminal device can smoothly receive the broadcast signal broadcast by each network device, thereby reducing the connection rate. Entry time.
  • the embodiment of the present application does not limit the specific beam width of the first beam.
  • a terminal device may receive a broadcast signal broadcast by one network device, or may receive broadcast signals broadcast by multiple network devices sequentially or simultaneously, which is specifically determined by the capabilities of the terminal device, which is not limited in this application.
  • any network device may use a broadcast signal in the prior art, and may also use a broadcast signal in other formats.
  • each network device can use broadcast signals in the same format, or broadcast signals in different formats.
  • the network device may adopt a broadcast signal in the format of "frame header and data packet", and the frame header may carry the identification of the network device and/or the identification of the terminal device to facilitate the identification of the terminal device to receive the broadcast signal in order.
  • the data packet may carry communication data transmitted by the network device to the terminal device, such as audio data, video data, or file data.
  • each network device can broadcast one or more broadcast signals.
  • Each network device can directly send the broadcast signal to the terminal device, or forward the broadcast signal to the terminal device through other devices that have a feeder link with the terminal device.
  • the satellite device may directly broadcast a broadcast signal to the ground terminal, or may forward the broadcast signal to the ground terminal through a ground base station.
  • the ground base station and the ground terminal are connected to each other and have a feeder link.
  • each network device may broadcast to the terminal device the frequency of the beam used by the network device in advance. Point, that is, the target frequency point. Therefore, the terminal device can quickly receive the broadcast signal broadcast by each network device by using the first beam with the same frequency as the target frequency point, which improves the reception rate of the network device and saves Entry time.
  • the terminal device can know the current broadcast time of each broadcast signal, so that the terminal device can determine the specific time when each network device broadcasts the broadcast signal, and learn the network device broadcasting each broadcast signal
  • the identification information allows the terminal device to determine the corresponding specific network device according to the identification information.
  • the embodiment of the present application does not limit the specific implementation form of the current broadcast time.
  • the current broadcast time can be in the form of an identification, number, or code.
  • a list can be created in advance based on the correspondence between the time and the identifier, and the terminal device and the network device both store the list, so that the network device can carry the identifier corresponding to the current broadcast time based on the list
  • the terminal device can determine the time corresponding to the identifier according to the list to determine the current broadcast time.
  • the network device and the terminal device can unify the fixed conversion format of the time in advance.
  • the network device can convert the current broadcast time into a corresponding number according to the format, and transmit it to the terminal device through the broadcast signal, so that the terminal device can be based on the format.
  • the format converts the number into the corresponding time to determine the current broadcast time.
  • the identification information may be information that uniquely identifies the network device.
  • the identification information may be the device model of the network device, or the number of the network device.
  • the identification information may be the ID of the network device.
  • the terminal device can determine the location of each network device according to the current broadcast time and the identification information of the network device, or determine the location of the terminal device itself, or determine each network device And the location of the terminal device itself.
  • the position of each network device is fixed relative to the terminal device.
  • the network device can be a satellite device.
  • the satellite device revolves around an earth orbit and periodically runs in a closed orbit. It is relatively fixed.
  • the terminal device, and/or other devices that have a feeder link with the terminal device may take the form of a list or matrix in advance to determine the correspondence between the location of the network device and the identification information, and/or, Store the correspondence between the location of the network device and the time.
  • the terminal device and/or the ground base station may store the correspondence between the position and time of the satellite device through the satellite ephemeris.
  • the terminal device can determine the location of the network device corresponding to the current broadcast time according to the correspondence between the location of the network device and the identification information, and/or the correspondence between the location of the network device and the time, so as to locate each Network devices.
  • the position of the terminal device itself is relatively fixed or the terminal device moves within a small range. Therefore, optionally, the terminal device may determine according to the positions of N network devices and the propagation delay of the broadcast signal The location of the terminal device. Specifically, the terminal device uses the received broadcast signal to determine the position of the terminal device itself through the following formula (1).
  • the coordinates (x, y, z) represent the location of the terminal device
  • the coordinates (x i , y i , z i ) represent the location of N network devices
  • i is a positive integer
  • i ⁇ N c is the light in vacuum the propagation velocity
  • ⁇ t represents the propagation delay of the terminal device to the network device broadcasts a broadcast signal
  • d i represents the distance between the network device and terminal device.
  • the terminal device can learn the locations of N network devices, that is, x i , y i , and z i are known. And since the location of the terminal device and each network device is relatively fixed, therefore, the terminal device can know in advance a distance between the terminal device and each network device, i.e., d i are known. In this way, there are four unknowns of x, y, z and ⁇ t in the above formula (1). Those skilled in the art can understand that in order to calculate the four unknowns through least squares or other methods, the terminal device needs at least four broadcast signals, or the terminal device can reduce the number of broadcast signals by eliminating the unknowns. number.
  • N network devices need to send at least four broadcast signals to the terminal device, that is, four or more broadcast signals. Furthermore, on the premise that each network device is set to broadcast at least one broadcast signal to the terminal device, three scenarios are used to respectively describe in detail the specific implementation process of the terminal device determining the position of the terminal device itself.
  • the terminal device can receive at least four broadcast signals, so that the terminal device can determine the position of the terminal device itself through formula (1).
  • the terminal device can receive at least four broadcast signals, and the formula (1 ) Determine the location of the terminal device itself. If each network device only broadcasts one broadcast signal to the terminal device, the terminal device can receive three broadcast signals. Therefore, the terminal device needs to eliminate any one of the above four unknowns in advance, and then determine the terminal device by formula (1) Own position.
  • the terminal device may be provided with a measurement module for measuring any coordinate value of x, y, and z. Furthermore, the terminal device can measure any one of the coordinate values of x, y, and z through the measurement module, and then determine the position of the terminal device itself through formula (1).
  • the terminal device can use a sea wave measuring instrument to measure the sea wave position of the terminal device, that is, the coordinate value z, thereby eliminating the unknown number z.
  • ⁇ t can be calculated, and the PSS of the terminal equipment and other equipment belonging to the same area Same as SSS, therefore, other devices in the same area as the terminal device can send PSS and/or SSS to each network device.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • each network device broadcasts the broadcast signal to the terminal device, except for the current broadcast time and network device
  • it can also include PSS and/or SSS, so that the terminal device can receive the PSS and/or SSS through the broadcast signal, so that the terminal device can calculate ⁇ t according to the PSS and/or SSS, thereby eliminating the unknown ⁇ t, Then use formula (1) to determine the position of the terminal device itself.
  • the terminal device can determine the position of the terminal device itself through formula (1). If each network device only broadcasts one broadcast signal to the terminal device, the terminal device can receive two broadcast signals. Therefore, the terminal device needs to eliminate any two of the above four unknowns in advance, and then determine the terminal by formula (1) The location of the device itself.
  • the terminal device can receive at least four broadcast signals, and the formula (1) Determine the location of the terminal device itself.
  • the terminal device can determine the location of the N network devices and/or the location of the terminal device according to the broadcast signal without using other devices, so that the terminal device can locate the N network devices without relying on other devices.
  • the terminal device can also use other devices to determine the location of N network devices and/or the location of the terminal device by reducing the number of received broadcast signals.
  • the terminal device acquires a second beam corresponding to the broadcast signal, where the width of the first beam is greater than the width of the second beam.
  • the beam width of the antenna in the terminal device is small, which facilitates high-speed data transmission between the antenna and the network device. Therefore, based on the demand for high-speed signal transmission, in the embodiment of the present application, the terminal device can set the second beam to a beam with a smaller beam width (referred to as a narrow beam in this article), so as to facilitate communication between the terminal device and the network device. High-speed data transmission improves the signal transmission rate.
  • the embodiment of the application does not limit the specific beam width of the second beam, as long as the width of the first beam (the width mentioned herein refers to the beam width) is greater than the width of the second beam.
  • the terminal device in order to ensure that the terminal device can select a suitable network device for data transmission, when the terminal device receives a broadcast signal, it can obtain the second beam corresponding to the broadcast signal to ensure that the second beam corresponding to the broadcast signal can be aligned with the broadcast signal.
  • the network device corresponding to the signal so that the terminal device can use the second beam to measure the signal.
  • the terminal device can determine the location of each network device and the location of the terminal device according to the received broadcast signal.
  • the terminal device may determine the azimuth angle of the second beam corresponding to each broadcast signal according to the location of each network device and the location of the terminal device. And the pitch angle to determine.
  • the terminal device when the terminal device determines the location of the terminal device and the location of any network device, the terminal device can determine the azimuth and pitch of the second beam corresponding to the broadcast signal broadcast by the network device according to formula (2) angle.
  • A is the azimuth angle of the second beam
  • E is the elevation angle of the second beam
  • ⁇ 1 is the longitude value of the terminal device
  • ⁇ 2 is the longitude value of the network device
  • is the latitude value of the network device.
  • the terminal device is provided with a first beam and a second beam, so that the terminal device uses the first beam to receive broadcast signals based on the performance of the first beam and the second beam, and uses the second beam
  • the beam measures and aligns the network equipment to save access time and improve access efficiency.
  • the terminal device can control the frequency band of the first beam and the frequency band of the second beam, and the network device changes as the frequency band of the first beam and the frequency band of the second beam change.
  • the working frequency bands allocated by the International Telecommunication Union ITU for satellite communications are: L, S, C, X, Ku, Ka, and on this basis, it can carry out narrow-bandwidth or wide-bandwidth language and data services.
  • low frequency bands such as L and S frequency bands
  • high frequency bands such as the Ku and Ka frequency bands
  • the advantages of less interference and small device size and are generally used for high-speed data transmission services such as high-definition television and gigabit bandwidth.
  • the low frequency and high frequency bands have different frequency bands and different bandwidths, the corresponding beam widths are different.
  • the high frequency band has a higher frequency band, greater path attenuation, and greater atmospheric attenuation. Compared with the low frequency band, the antenna gain is higher and the beam width is smaller.
  • the beam of each network device usually uses a narrow beam.
  • the first beam is a high-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device may be a high-frequency beam.
  • each network device can use a high-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a high-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam (ie, the second beam) of the terminal device and the high-frequency beam of the network device can mutually transmit data.
  • the first beam is a low-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device may include a low-band beam and a high-band beam.
  • each network device can use a low-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a low-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam of the terminal device and the high-frequency beam of the network device (that is, the second beam) can mutually transmit data.
  • the first beam is a low-frequency beam
  • the second beam is a low-frequency beam
  • the beam of each network device is a low-frequency beam.
  • each network device can use a low-frequency beam to broadcast a broadcast signal to a terminal device, so that the terminal device can use a low-frequency beam (ie, the first beam) to receive the broadcast signal.
  • the high-frequency beam of the terminal device and the low-frequency beam of the network device can mutually transmit data.
  • the terminal device is configured with a first beam and a second beam, and the width of the first beam is greater than the width of the second beam.
  • the terminal device can set the frequency bands of the first beam and the second beam to be the same or different, and the frequency band of the network device can change as the frequency band of the first beam and the frequency band of the second beam change, so that the terminal device and the network The device can transmit data smoothly in any scenario.
  • the terminal device measures the broadcast signals of the N network devices through the second beam corresponding to the broadcast signal.
  • the terminal equipment and the network equipment can use beams of different frequency bands, and/or the broadcast signal of the network equipment is damaged due to the attenuation of the signal by oxygen and water vapor in the atmosphere and the rain attenuation Changes occur in real time. Therefore, in order to avoid the phenomenon that the data transmission between the terminal device and the network device is poor or unable to communicate, the terminal device can use the second beam corresponding to the broadcast signal, and the broadcast signal of each network device is as multipath The fading characteristics, frequency selectivity and other performance are measured to learn the current situation of the broadcast signal of each network device and obtain the measurement result.
  • the broadcast signal of each network device may be the broadcast signal received by the terminal device in step S101, other broadcast signals, or a combination of the foregoing two broadcast signals, which is not limited in this embodiment of the application.
  • the embodiment of the present application does not limit the specific parameters for the terminal device to measure the broadcast signal of each network device, and it only needs to satisfy the parameter to indicate the performance of the broadcast signal of the network device.
  • the terminal device may determine the signal-to-noise ratio (Singal Noise Ratio, SNR) of each network device according to the second beam corresponding to the broadcast signal. Furthermore, the terminal device may determine the signal-to-noise ratio of the broadcast signal of each network device as the measurement result.
  • SNR Signal-to-noise ratio
  • the terminal device obtains the second beam corresponding to the target network device according to the measurement result, where the target network device is one network device among the N network devices.
  • the terminal device can determine and select a network device suitable for data transmission with the terminal device according to the measurement result, that is, the target network device, to improve the data transmission performance reliability.
  • the terminal device can obtain the second beam corresponding to the target network device.
  • the terminal device in addition to the performance of the broadcast signal of each network device, the terminal device can also comprehensively consider its own actual needs and other subjective and objective factors to determine the target network device so that the terminal device and the target network device can successfully transmit data.
  • the terminal device can determine the network device with the largest signal-to-noise ratio as the target network device according to the measurement result, that is, the terminal device can obtain information from N networks The network device with the best performance is selected as the target network device. Furthermore, the terminal device can determine the azimuth angle and the elevation angle of the second beam corresponding to the target network device.
  • the terminal device since the terminal device has determined the target network device, the terminal device can determine the second beam corresponding to the target network device according to the location of the target network device and the location of the terminal device through formula (2)
  • the azimuth angle and the pitch angle please refer to the implementation process of step S102 above, which will not be repeated here.
  • the terminal device since the terminal device has determined the target network device, and in step S102, the azimuth angle and the elevation angle of the second beam corresponding to the broadcast signal are obtained, the terminal device can be based on the target network device and the broadcast signal Corresponding to the azimuth angle and the elevation angle of the second beam, determine the azimuth angle and the elevation angle of the second beam corresponding to the target network device.
  • the terminal device performs data transmission with the target network device through the second beam corresponding to the target network device.
  • the terminal device can access the target network device at a high speed by using the second beam corresponding to the target network device, and further, the terminal device can communicate with the target network device at high speed.
  • Data transmission reduces the access time and improves the access efficiency of terminal equipment.
  • the terminal device can receive the broadcast signal broadcast by each network device as quickly as possible, which improves the signal acquisition rate and reduces the access time.
  • each broadcast signal includes the current broadcast time and the identification information of the network device that broadcasts the broadcast signal, and the location of each network device and the location of the terminal device are relatively fixed, the terminal device does not need to rely on other devices, According to the received broadcast signal, the location of each network device and the location of the terminal device can be determined, so that the terminal device can automatically access N network devices, which improves the efficiency of access.
  • the terminal device uses a beam with a smaller beam width, it is conducive to high-speed data transmission with the network device.
  • the terminal device can set the width of the second beam to be smaller and accurately obtain the second beam corresponding to the broadcast signal , To ensure that the second beam corresponding to the broadcast signal can be aligned with the network device corresponding to the broadcast signal, so that the terminal device can use the second beam corresponding to the broadcast signal to measure the broadcast signal of each network device to obtain the The measurement result of the actual situation of the broadcast signal to determine the performance of the broadcast signal of each network device. Therefore, the terminal device can select the target network device suitable for data transmission with the terminal device from the N network devices according to the measurement result, so that the terminal device can use the second beam corresponding to the target network device to reliably communicate with the target network device.
  • the data transmission not only saves the beam scanning process, saves access time, but also improves the efficiency of access and ensures the reliability of data transmission.
  • the terminal device since the terminal device is configured with a first beam and a second beam, and the width of the first beam is greater than the width of the second beam, it is unavoidable that the first beam and the second beam are There is a gain difference between them, which will reduce the receiving performance of the terminal device. In some cases, the gain difference can reach about 20dB.
  • the first beam is a combination of multiple third beams, and the width of the third beam is smaller than the width of the first beam.
  • the terminal device may use multiple third beams with a wider beam width for splicing to replace the first beam with one beam width, thereby reducing the gain difference between the first beam and the second beam.
  • the terminal device can splice four 35° ⁇ 35° third beams to implement, so that the gain difference will be reduced to 15dB.
  • any network device can broadcast and transmit high-efficiency broadcast signals to the terminal device, thereby compensating for the gain difference between the first beam and the second beam of the terminal device, so as to reduce the impact of the gain difference on the terminal device. influences.
  • the specific implementation process of the network device to improve the transmission efficiency of broadcast signals will be described in detail.
  • FIG. 3 is a flowchart of an embodiment of a communication method provided by this application. As shown in FIG. 3, the communication method in this embodiment may include:
  • the network device obtains the signal strength of the broadcast signal.
  • the network device sends the broadcast signal to the terminal device when the signal strength of the broadcast signal meets a preset condition.
  • the network device may use the signal strength of the broadcast signal to characterize the transmit power of the broadcast signal. Therefore, when the signal strength of the broadcast signal meets the preset condition, the network device can determine that the transmission power of the broadcast signal is relatively large, and can compensate for the gain difference between the first beam and the second beam, and further, the network device can directly report to the terminal The device sends a broadcast signal. When the signal strength of the broadcast signal does not meet the preset conditions, the network device determines that the transmit power of the broadcast signal is small, and cannot compensate for the gain difference between the first beam and the second beam. Furthermore, the network device can perform the broadcast signal Adjust so that the intensity of the adjusted broadcast signal meets the preset condition, and then send the adjusted broadcast signal to the terminal device.
  • the embodiment of the present application does not limit the specific implementation manner for the network device to improve the signal strength of the broadcast signal.
  • three implementation methods are used to describe in detail the specific implementation manners for network equipment to increase the signal strength of broadcast signals.
  • the maximum output power of the network device is fixed. Therefore, the network device can concentrate all the energy of the network device in this beam by turning on one beam and turning off the other beams, thereby adjusting the signal strength of the broadcast signal and increasing the transmission power of the broadcast signal to meet the preset conditions.
  • the network device can set a super capacitor to instantly increase the transmission power of the broadcast signal and adjust the signal strength of the broadcast signal to meet preset conditions.
  • the network device can also increase the transmission power of the broadcast signal by setting other modules, and this embodiment of the present application only uses a super capacitor for illustration.
  • the network device adjusts the broadcast signal reception by setting the length of the broadcast signal to meet the preset length. Receiving time, increasing the total energy of the broadcast signal to meet the preset conditions.
  • the high gain beam of the ground terminal is typically 6° ⁇ 6°.
  • the minimum elevation angle of the satellite equipment is 55°, therefore, the width of the wide beam of the ground terminal is not less than 70° ⁇ 70°.
  • the gain difference between the first beam and the second beam will reach 21 dB.
  • the satellite equipment can turn off 15 beams and reserve one beam for broadcasting signals, and the transmission power of the broadcasting signals can be increased by 12dB.
  • the transmission power of the broadcast signal can be instantly increased by 6dB.
  • the satellite equipment increases the length of the PSS sequence, it will require the gain difference between the first beam and the second beam to be reduced by 3dB.
  • the satellite device can compensate for a gain of about 20dB, so as to meet the communication needs of the ground terminal and the satellite device.
  • the network device may adopt one or more methods to reduce the gain difference between the first beam and the second beam to meet the communication requirements of the terminal device and the network device.
  • the operations performed by the terminal device can also be implemented by components (such as chips, circuits) that can be used in the terminal, and the operations performed by the network device can also be implemented by components that can be used in the network device (for example, chip, circuit) implementation.
  • FIG. 4 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the operations performed by the communication device 10 can be implemented using components (such as chips and circuits) of a terminal device.
  • the communication device 10 may include: a receiving module 11, an acquiring module 12, a measuring module 13, and a transmitting module 14.
  • the receiving module 11 is configured to receive broadcast signals broadcast by N network devices through the first beam, each broadcast signal includes the current broadcast time and identification information of the network device that broadcasts the broadcast signal, and N is a positive integer;
  • the obtaining module 12 is configured to obtain a second beam corresponding to the broadcast signal, where the width of the first beam is greater than the width of the second beam;
  • the measurement module 13 is configured to measure the broadcast signal of N network devices through the second beam corresponding to the broadcast signal;
  • the obtaining module 12 is further configured to obtain a second beam corresponding to the target network device according to the measurement result, where the target network device is one network device among the N network devices;
  • the transmission module 14 is configured to perform data transmission with the target network device through the second beam corresponding to the target network device.
  • FIG. 5 is a schematic structural diagram of an embodiment of a communication device provided by this application. As shown in FIG. 5, based on the structure shown in FIG. 4, the communication device 10 of the embodiment of this application may further include: a determining module 15. The determining module 15 is used to determine the locations of N network devices and/or the locations of terminal devices according to the broadcast signal.
  • the determining module 15 is specifically configured to determine the locations of N network devices according to the correspondence between the locations of the network devices and the time.
  • the determining module 15 is specifically configured to determine the location of the terminal device according to the location of the N network devices and the propagation delay of the broadcast signal.
  • the obtaining module 12 is configured to obtain the azimuth angle and the pitch angle of the second beam corresponding to the broadcast signal according to the positions of the N network devices and the positions of the terminal devices.
  • the measurement module 14 is specifically configured to determine the signal-to-noise ratio of the broadcast signal of the N network devices according to the second beam corresponding to the broadcast signal; determine the signal-to-noise ratio as the measurement result.
  • the acquiring module 12 is further configured to determine the network device with the largest signal-to-noise ratio as the target network device according to the measurement result; determine the azimuth and elevation angle of the second beam corresponding to the target network device.
  • the acquiring module 12 is specifically configured to determine the azimuth and elevation angles of the second beam corresponding to the target network device according to the location of the target network device and the location of the terminal device; or, according to the target network device and the broadcast signal Corresponding to the azimuth angle and the elevation angle of the second beam, determine the azimuth angle and the elevation angle of the second beam corresponding to the target network device.
  • the receiving module 11 is configured to receive the broadcast signal broadcast by the network device through the beam of the network device through the first beam of the same frequency as the target frequency point, and the target frequency point is the beam of the network device that broadcasts the broadcast signal. Frequency.
  • each broadcast signal includes at least one of the following methods:
  • the network device turns on one beam and turns off the broadcast signal broadcast by the other beams;
  • the first beam is a combination of multiple third beams, and the width of the third beam is smaller than the width of the first beam.
  • the first beam is a high-frequency beam
  • the second beam is a high-frequency beam
  • the beam of each network device is a high-frequency beam
  • the first beam is a low-frequency beam
  • the second beam is a high-frequency beam.
  • the beam of each network device includes a low-frequency beam and a high-frequency beam; or,
  • the first beam is a low-frequency beam
  • the second beam is a low-frequency beam
  • the beam of each network device is a low-frequency beam.
  • the communication device of this embodiment can be used to implement the technical solutions of the terminal equipment in the method embodiments shown in Figures 1 to 3, and its implementation principles and technical effects are similar.
  • the implementation of each module can be further referred to in the method embodiments. Related descriptions are not repeated here.
  • the modules here can also be replaced with components or circuits.
  • the device 20 may include: an obtaining module 21 and a sending module 22.
  • the acquiring module 21 is used to acquire the signal strength of the broadcast signal
  • the sending module 22 is configured to send the broadcast signal to the terminal device when the signal strength of the broadcast signal meets the preset condition.
  • FIG. 7 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the communication device 20 of this embodiment may further include: first adjustment Module 23, wherein the first adjustment module 23 is used to adjust the signal strength of the broadcast signal to meet the preset condition by turning on one beam and turning off the other beams when the signal strength of the broadcast signal does not meet the preset condition.
  • FIG. 8 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the communication device 20 of this embodiment may further include: a second adjustment Module 24, wherein the second adjustment module 24 is used to adjust the signal strength of the broadcast signal to meet the preset condition by setting a super capacitor when the signal strength of the broadcast signal does not meet the preset condition.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the communication device 20 of this embodiment may further include: a third adjustment Module 25, wherein the third adjustment module 25 is used to adjust the signal strength of the broadcast signal to meet the preset condition by setting the length of the broadcast signal to meet the preset length when the signal strength of the broadcast signal does not meet the preset condition.
  • the communication device of this embodiment can be used to implement the technical solutions of the network equipment in the method embodiments shown in Figs. Description, not repeat them here.
  • the modules here can also be replaced with components or circuits.
  • the present application may divide the communication device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by this application. As shown in FIG. 10, the terminal device 30 includes:
  • the memory 31 is used to store program instructions, and the memory 31 may be a flash (flash memory).
  • the processor 32 is configured to call and execute program instructions in the memory to implement various steps corresponding to the terminal device in the communication method of FIGS. 1 to 3. For details, refer to the relevant description in the foregoing method embodiment.
  • An input/output interface 33 may also be included.
  • the input/output interface 33 may include an independent output interface and an input interface, or may be an integrated interface that integrates input and output. Wherein, the output interface is used to output data, and the input interface is used to obtain input data.
  • the above output data is the general term output in the above method embodiment, and the input data is the general term input in the above method embodiment.
  • the terminal device 30 may be used to execute various steps and/or procedures corresponding to the corresponding terminal device in the foregoing method embodiments.
  • FIG. 11 is a schematic structural diagram of a network device provided by this application. As shown in FIG. 11, the network device 40 includes:
  • the memory 41 is used to store program instructions, and the memory 41 may be a flash (flash memory).
  • the processor 42 is configured to call and execute program instructions in the memory to implement various steps of the corresponding network device in the communication method of FIGS. 1 to 3. For details, refer to the relevant description in the foregoing method embodiment.
  • the input/output interface 43 may include an independent output interface and an input interface, or may be an integrated interface that integrates input and output. Wherein, the output interface is used to output data, and the input interface is used to obtain input data.
  • the above output data is the general term output in the above method embodiment, and the input data is the general term input in the above method embodiment.
  • the network device 40 may be used to execute various steps and/or procedures corresponding to the corresponding network device in the foregoing method embodiments.
  • the present application also provides a readable storage medium in which an execution instruction is stored.
  • an execution instruction is stored.
  • the terminal device executes the communication method in the foregoing method embodiment.
  • the present application also provides a readable storage medium in which an execution instruction is stored.
  • an execution instruction is stored.
  • the network device executes the communication method in the foregoing method embodiment.
  • This application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium. At least one processor of the terminal device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to enable the terminal device to implement the communication method in the foregoing method embodiment.
  • This application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium. At least one processor of the network device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to enable the network device to implement the communication method in the foregoing method embodiment.
  • the present application also provides a chip, which is connected to the memory, or the memory is integrated on the chip, and when the software program stored in the memory is executed, the communication method in the foregoing method embodiment is implemented.
  • a person of ordinary skill in the art can understand that: in the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

本申请提供一种通信方法、装置、设备及系统。该方法包括:终端设备通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播广播信号的网络设备的标识信息,N为正整数。终端设备获取广播信号对应的第二波束,第一波束的宽度大于第二波束的宽度。终端设备通过广播信号对应的第二波束,对N个网络设备的广播信号进行测量。终端设备根据测量结果,获取目标网络设备对应的第二波束,目标网络设备为N个网络设备中的一个网络设备。终端设备通过目标网络设备对应的第二波束与目标网络设备进行数据传输。从而节省接入时长,提高接入效率。

Description

通信方法、装置、设备及系统
本申请要求于2019年03月15日提交中国专利局、申请号为201910200019.3、申请名称为“通信方法、装置、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备及系统。
背景技术
卫星通信系统(如铱星Iridium、全球星Globalstar、舒拉亚Thuraya等)中,卫星常常通过点波束对位于点波束覆盖区域内的地面终端提供通信服务,此时,地面终端中天线的波束需要对准卫星,才可以接入卫星。
然而,地面终端在不知道自身位置和卫星位置的情况下,盲目对准和接入卫星会花费很长时间。通常卫星的波束和地面终端中天线的波束需要周期性扫描,直至两波束对准,地面终端才可以接入卫星,尤其是地面终端中天线采用窄波束对准和接入卫星的过程会消耗更久时长,且效率低下。
发明内容
本申请提供一种通信方法、装置、设备及系统,用于实现终端设备通过不同波束宽度的波束接入网络设备并与网络设备顺利传输数据的过程,提高了接入的效率,节省了接入时长。
第一方面,本申请提供一种通信方法,包括:
终端设备通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播所述广播信号的网络设备的标识信息,N为正整数;
所述终端设备获取所述广播信号对应的第二波束,所述第一波束的宽度大于所述第二波束的宽度;
所述终端设备通过所述广播信号对应的第二波束,对所述N个网络设备的广播信号进行测量;
所述终端设备根据测量结果,获取目标网络设备对应的第二波束,所述目标网络设备为所述N个网络设备中的一个网络设备;
所述终端设备通过所述目标网络设备对应的第二波束与所述目标网络设备进行数据传输。
本领域技术人员可以理解,终端设备中天线的波束宽度越大,天线可以尽可能多的接收到广播信号。因此,本申请实施例中,终端设备可以将第一波束设置为波束宽度较宽的波束(本文中简称为宽波束),方便终端设备可以顺利接收每个网络设备广播的广播信号,从而降低接入时长。
其中,本申请实施例对网络设备的个数N不做限定。具体地,终端设备可以接收一个网络设备广播的广播信号,也可以接收多个网络设备广播的广播信号。并且,每个网络设备可以广播一个或多个广播信号。每个网络设备可以将广播信号直接发送给终端设备,也可以通 过与终端设备有馈电链路的其他设备,将广播信号转发给终端设备。
本领域技术人员可以理解,终端设备中天线的波束宽度较小,有利于天线与网络设备之间高速进行数据传输。因此,基于信号高速传输的需求,本申请实施例中,终端设备可以将第二波束可以设置为波束宽度较小的波束(本文中简称为窄波束),从而方便终端设备与网络设备之间可以高速传输数据,提高了信号的传输速率。其中,本申请实施例对第二波束的具体波束宽度不做限定,只需满足第一波束的宽度(本文提及的宽度指的是波束宽度)大于第二波束的宽度即可。
并且,为了保证终端设备可以选择适合的网络设备进行数据传输,终端设备在接收到广播信号时,可以获取广播信号对应的第二波束,保证广播信号对应的第二波束可以对准该广播信号对应的网络设备,以便终端设备可以使用该第二波束对信号进行测量。
本申请实施例中,由于终端设备和网络设备皆可采用不同频段的波束,和/或,网络设备的广播信号由于大气层中氧气和水蒸气对信号的衰减所带来的传播损坏和雨衰会实时发生变化,因此,为了避免终端设备与网络设备之间的数据传输效果差或者无法通信的现象,终端设备可以使用广播信号对应的第二波束,对每个网络设备的广播信号的如多径衰落的特性、频率选择性等性能进行测量,以获知每个网络设备的广播信号的当前情况,得到测量结果。
其中,每个网络设备的广播信号可以为终端设备接收到N个广播信号的广播信号,也可以为当前接收到的其他广播信号,亦可以为上述两种广播信号的组合,本申请实施例对此不做限定。并且,本申请实施例对终端设备测量每个网络设备的广播信号的具体参数不做限定,只需满足该参数可以表明网络设备的广播信号的性能即可。
由于测量结果可以表征每个网络设备的广播信号的性能,因此,终端设备可以根据该测量结果,确定选择出适合于与终端设备进行数据传输的网络设备,即目标网络设备,以提高数据传输的可靠性。从而,终端设备可以获取目标网络设备对应的第二波束。
其中,终端设备,除了每个网络设备的广播信号的性能之外,还可以综合考虑自身的实际需求等主客观因素,确定目标网络设备,以便终端设备与目标网络设备顺利进行数据传输。
本申请实施例中,由于第二波束的波束宽度较小,因此,终端设备使用目标网络设备对应的第二波束,可以高速接入目标网络设备,进而,终端设备可以与目标网络设备高速进行的数据传输,减少了接入时长,提高了终端设备的接入效率。
通过第一方面提供的通信方法,由于第一波束的波束宽度较大,因此,第一波束的覆盖范围较大,使得尽可能多的广播信号会落在第一波束的覆盖范围内,进而,终端设备使用该第一波束,可以尽可能快的接收到每个网络设备广播的广播信号,提高了信号的获取速率,减少了接入时长。并且,又由于终端设备使用波束宽度较小的波束,有利于与网络设备之间高速进行数据传输,因此,终端设备可以设置第二波束的宽度较小,且准确获取广播信号对应的第二波束,保证广播信号对应第二波束可以对准该广播信号对应的网络设备,使得终端设备可以利用广播信号对应的第二波束,对每个网络设备的广播信号进行测量,得到表示每个网络设备的广播信号的实际情况的测量结果,以确定出每个网络设备的广播信号的性能。从而终端设备可以根据测量结果,从N个网络设备中,选择出适用于与终端设备进行数据传输的目标网络设备,使得终端设备可以使用目标网络设备对应的第二波束,与目标网络设备进行可靠的数据传输,不仅省去了波束扫描的过程,节省了接入时长,还提高了接入的效率,保证了数据传输的可靠性。
在一种可能的设计中,所述方法还包括:
所述终端设备根据所述广播信号,确定所述N个网络设备的位置和/或所述终端设备的位 置。
在一种可能的设计中,所述终端设备根据所述广播信号,确定所述N个网络设备的位置,包括:
所述终端设备根据网络设备的位置与时刻之间的对应关系,确定所述N个网络设备的位置。
在一种可能的设计中,所述终端设备根据所述广播信号,确定所述终端设备的位置,包括:
所述终端设备根据所述N个网络设备的位置和所述广播信号的传播时延,确定所述终端设备的位置。
本申请实施例中,终端设备通过每个广播信号,可以获知广播每个广播信号的当前广播时刻,使得终端设备可以确定每个网络设备广播广播信号的具体时刻,以及获知广播每个广播信号的网络设备的标识信息,使得终端设备可以根据该标识信息确定对应的具体网络设备。
其中,本申请实施例对当前广播时刻的具体实现形式不做限定。
进一步地,在终端设备接收到广播信号时,终端设备可以根据当前广播时刻和网络设备的标识信息,确定每个网络设备的位置,或者,确定终端设备自身的位置,或者,确定每个网络设备的位置和终端设备自身的位置。
本申请实施例中,每个网络设备的位置相对于终端设备是固定的,如网络设备可以为卫星设备,该卫星设备围绕一颗地球轨道并按闭合轨道做周期性运行,终端设备相对于地球是相对固定的。可选地,终端设备,和/或,与终端设备有馈电链路的其他设备,事先可以采用列表或矩阵等形式,对网络设备的位置与标识信息之间的对应关系,和/或,对网络设备的位置与时刻之间的对应关系,进行存储。
具体地,以网络设备为卫星设备,终端设备为地面终端为例,终端设备和/或地面基站可以通过卫星星历存储卫星设备的位置与时刻之间的对应关系。
进而,终端设备可以根据网络设备的位置与标识信息之间的对应关系,和/或,网络设备的位置与时刻之间的对应关系,确定与当前广播时刻对应的网络设备的位置,从而定位每个网络设备。
本申请实施例中,终端设备自身的位置是相对固定的或者终端设备在很小范围内移动,因此,可选地,终端设备可以根据N个网络设备的位置和广播信号的传播时延,确定终端设备的位置。具体地,终端设备通过如下公式(1),利用接收到的广播信号,确定终端设备自身的位置。
Figure PCTCN2020076445-appb-000001
其中,坐标(x,y,z)表示终端设备的位置,坐标(x i,y i,z i)表示N个网络设备的位置,i为正整数,且i≤N,c为光在真空中的传播速度,Δt表示网络设备向终端设备广播广播信号的传播时延,d i表示网络设备与终端设备之间的距离。
基于上述描述,终端设备可以获知N个网络设备的位置,即x i,y i,z i为已知的。且由于终端设备和每个网络设备的位置是相对固定的,因此,终端设备可以事先获知终端设备与每个网络设备之间的距离,即d i为已知的。这样,上述公式(1)中存在x,y,z和Δt这四个未知数。本领域技术人员可以理解,通过最小二乘或者其它方法,为了计算出这个四个未知数,终端设备需要至少四个以上的广播信号,或者,终端设备通过消除未知数的方式,可以减少广播信号的个数。
下面,结合网络设备的个数N>1和N=1这两种情况对终端确定终端设备自身的位置的具 体实现过程进行详细说明。
当网络设备的个数N>1时,N个网络设备需要向终端设备发送至少四个广播信号,即四个及四个以上的广播信号。进而,在设定每个网络设备至少向终端设备广播一个广播信号的前提下,采用三种情况,分别对终端设备确定终端设备自身的位置的具体实现过程进行详细说明。
在网络设备的个数N≥4时,终端设备可以接收到至少四个广播信号,从而终端设备可以通过公式(1)确定终端设备自身的位置。
在网络设备的个数N=3时,若任意一个网络设备在至少两个不同位置处分别向终端设备广播广播信号,则终端设备便可接收到至少四个广播信号,并可以通过公式(1)确定终端设备自身的位置。若每个网络设备仅向终端设备广播一个广播信号,则终端设备可以接收到三个广播信号,因此,终端设备需要事先消除上述四个未知数中的任意一个,再通过公式(1)确定终端设备自身的位置。
一种可能的实现方式中,终端设备中可以设置有测量x,y,z中的任意一个坐标值的测量模块。进而,终端设备通过该测量模块可以测量出x,y,z中的任意一个坐标值,再通过公式(1)确定终端设备自身的位置。
例如,终端设备可以利用海波测量仪测量出终端设备的海波位置,即坐标值z,从而消除z这个未知数。
另一种可能的实现方式中,由于主同步信号(Primary Synchronization Signal,PSS)和/或辅同步信号(Secondary Synchronization Signal,SSS)可以计算出Δt,且属于同一区域的终端设备和其他设备的PSS和SSS相同,因此,与终端设备属于同一区域的其他设备可以向每个网络设备发送PSS和/或SSS,进而,每个网络设备向终端设备广播的广播信号,除了包括当前广播时刻和网络设备的标识信息之外,还可以包括PSS和/或SSS,使得终端设备可以通过广播信号接收到PSS和/或SSS,从而终端设备可以根据PSS和/或SSS计算出Δt,从而消除Δt这个未知数,再通过公式(1)确定终端设备自身的位置。
在网络设备的个数N=2时,若N个网络设备在不同位置处分别向终端设备广播至少四个广播信号,则终端设可以通过公式(1)确定终端设备自身的位置。若每个网络设备仅向终端设备广播一个广播信号,则终端设备可以接收到二个广播信号,因此,终端设备需要事先消除上述四个未知数中的任意二个,再通过公式(1)确定终端设备自身的位置。
一种可能的实现方式中,终端设备中可以设置有测量x,y,z中的任意两个坐标值的测量模块。进而,终端设备通过该测量模块可以测量出x,y,z中的任意两个坐标值,再通过公式(1)确定终端设备自身的位置,具体可参见N=3的实现过程,此处不做赘述。
另一种可能的实现方式中,终端设备可以通过测量模块测量出x,y,z中的任意一个坐标值以及根据广播信号中的PSS和/或SSS计算出Δt,从而消除Δt这个未知数,再通过公式(1)确定终端设备自身的位置,具体可参见N=3的实现过程,此处不做赘述。
当网络设备的个数N=1时,若该网络设备在至少四个不同位置处分别向终端设备广播广播信号,则终端设备便可接收到至少四个广播信号,并可以通过公式(1)确定终端设备自身的位置。另外,终端设备设备可以参见N=2或者N=3的实现过程,消除上述四个未知数中的任意三个,再通过上述公式(1)确定终端设备自身的位置,具体可以参见N=2或者N=3的实现过程,此处不做详细说明。
通过该实施方式提供的通信方法,由于每个广播信号中包括当前广播时刻和广播该广播信号的网络设备的标识信息,且每个网络设备的位置与终端设备的位置是相对固定的,因此, 终端设备无需借助其他设备,根据接收到的广播信号,便可确定每个网络设备的位置和终端设备的位置,从而终端设备可以自动接入N个网络设备,提高了接入的效率。另外,终端设备也可以借助其他设备,通过减少接收广播信号的个数,确定N个网络设备的位置和/或终端设备的位置。
在一种可能的设计中,所述终端设备获取所述广播信号对应的第二波束,包括:
所述终端设备根据所述N个网络设备的位置和所述终端设备的位置,分别获取所述广播信号对应的第二波束的方位角和俯仰角。
通过该实施方式提供的通信方法,为了更加准确的确定第二波束,终端设备可以根据每个网络设备的位置和终端设备的位置,对每个广播信号对应的第二波束的方位角和俯仰角进行确定,使得终端设备可以利用第二波束,可以准确测量网络设备的广播信号的实际情况,从而提高数据传输的可靠性。
举例来说,当终端设备确定出终端设备的位置和任意一个网络设备的位置时,终端设备可以根据公式(2),确定与该网络设备广播的广播信号对应的第二波束的方位角和俯仰角。
Figure PCTCN2020076445-appb-000002
其中,A为该第二波束的方位角,E为该第二波束的俯仰角,φ 1为终端设备的经度值,φ 2为网络设备的经度值,β为网络设备的纬度值。
在一种可能的设计中,所述终端设备通过所述广播信号对应的第二波束,对所述N个网络设备的广播信号进行测量,包括:
所述终端设备根据所述广播信号对应的第二波束,确定所述N个网络设备的广播信号的信噪比;
所述终端设备将所述信噪比确定为所述测量结果。
在一种可能的设计中,所述终端设备根据测量结果,获取目标网络设备对应的第二波束,包括:
所述终端设备根据所述测量结果,将信噪比最大的网络设备确定为所述目标网络设备;
所述终端设备确定所述目标网络设备对应的第二波束的方位角和俯仰角。
在一种可能的设计中,所述终端设备确定所述目标网络设备对应的第二波束的方位角和俯仰角,包括:
所述终端设备根据所述目标网络设备的位置和所述终端设备的位置,确定所述目标网络设备对应的第二波束的方位角和俯仰角;或者,
所述终端设备根据所述目标网络设备和所述广播信号对应的第二波束的方位角和俯仰角,确定所述目标网络设备对应的第二波束的方位角和俯仰角。
在一种可能的设计中,所述终端设备通过第一波束接收由N个网络设备广播的广播信号,包括:
所述终端设备通过与目标频点同频的所述第一波束,接收所述网络设备通过所述网络设备的波束广播的广播信号,所述目标频点为广播所述广播信号的网络设备的波束的频点。
通过该实施方式提供的通信方法,在网络设备直接向终端设备广播广播信号时,为了便于终端设备接收到广播信号,可选地,每个网络设备可以事先向终端设备广播该网络设备所 使用的波束的频点,即目标频点,从而,终端设备使用与该目标频点同频的第一波束,便可快速地接收到每个网络设备广播的广播信号,提高了网络设备的接收速率,节省了接入时长
在一种可能的设计中,每个广播信号包括如下方式的至少一种:
网络设备通过开启一个波束且关闭其余波束广播的广播信号;和,
设置有超级电容的网络设备的广播信号;和,
满足预设长度的广播信号。
通过该实施方式提供的通信方法,终端设备所接收到的广播信号为:任意一个网络设备可以先提高发射效率,再向终端设备广播的广播信号,从而补偿终端设备的第一波束和第二波束之间的增益差,以降低该增益差对终端设备带来的影响。
在一种可能的设计中,所述第一波束为多个第三波束的组合,所述第三波束的宽度小于所述第一波束的宽度,这样,终端设备可以采用多个波束宽度较宽的第三波束进行拼接,来代替一个波束宽度的第一波束,从而降低第一波束和第二波束之间的增益差。
在一种可能的设计中,
所述第一波束为高频段波束,所述第二波束为高频段波束,每个网络设备的波束为高频段波束;或者,
所述第一波束为低频段波束,所述第二波束为高频段波束,每个网络设备的波束包括低频段波束和高频段波束;或者,
所述第一波束为低频段波束,所述第二波束为低频段波束,每个网络设备的波束为低频段波束。通过第一方面提供的通信方法,
进一步地,终端设备设置有第一波束和第二波束,从而,终端设备基于第一波束和第二波束的性能,采用第一波束接收广播信号,采用第二波束测量并对准网络设备,从而节省接入时长,提高接入效率。
其中,终端设备可以对第一波束的频段和第二波束的频段,且网络设备随着第一波束的频段和第二波束的频段的变化而发生变化。下面,对上述具体过程进行详细说明。
本领域技术人员可以理解,国际电信联盟ITU为卫星通信划分的工作频段有:L、S、C、X、Ku、Ka,且在此基础上,开展窄带宽或宽带宽的语言、数据等业务。其中,低频段,如L、S频段,具有覆盖范围广的特点,一般用于语言或者低速数据业务。相比之下,高频段,如Ku、Ka频段,具有干扰少、设备体积小的优点,一般等用于如高清电视、千兆比特级带宽高速数据传输业务。并且,低频度和高频段由于频带不同,带宽不同,对应的波束宽度就不同。一般情况下,高频段由于频段高、路径衰减和大气衰减较大,相较于低频段而言,天线增益较高,波束宽度较小。
进一步地,在保证第一波束为宽波束,第二波束为窄波束的基础上,基于上述描述,对第一波束和第二波束的具体频段进行详细说明。另外,本申请实施例中,每个网络设备的波束通常使用窄波束。
一种可能的实现方式中,第一波束为高频段波束,第二波束为高频段波束,使得终端设备与网络设备之间可以传输高速信号,满足高速数据业务的需求。并且,每个网络设备的波束可以为高频段波束。这样,一方面,每个网络设备可以使用高频段波束向终端设备广播广播信号,使得终端设备可以使用高频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束(即第二波束)可以与网络设备的高频段波束之间可以相互传输数据。
另一种可能的实现方式中,第一波束为低频段波束,第二波束为高频段波束,使得终端设备与网络设备之间可以传输高速信号,满足高速数据业务的需求。并且,每个网络设备的 波束可以包括低频段波束和高频段波束。这样,一方面,每个网络设备可以使用低频段波束向终端设备广播广播信号,使得终端设备可以使用低频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束可以与网络设备的高频段波束(即第二波束)之间可以相互传输数据。
另一种可能的实现方式中,第一波束为低频段波束,第二波束为低频段波束,使得终端设备与网络设备之间可以传输低速信号,满足低速数据业务的需求。并且,每个网络设备的波束为低频段波束。这样,一方面,每个网络设备可以使用低频段波束向终端设备广播广播信号,使得终端设备可以使用低频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束可以与网络设备的低频段波束(即第二波束)之间可以相互传输数据。
通过该实施方式提供的通信方法,终端设备配置有第一波束和第二波束,第一波束的宽度大于第二波束的宽度。并且,终端设备可以设置第一波束的频段和第二波束的频段相同或者不同,且网络设备的频段可以随着第一波束的频段和第二波束的频段的变化而发生变化,从而使得终端设备和网络设备在任何场景下均可以顺利传输数据。
第二方面,本申请提供一种通信方法,包括:
网络设备获取广播信号的信号强度;
所述网络设备在所述广播信号的信号强度满足预设条件时,向终端设备发送所述广播信号。
通过第二方面提供的通信方法,网络设备可以采用广播信号的信号强度来表征广播信号的发射功率。从而,在广播信号的信号强度满足预设条件时,网络设备可以确定该广播信号的发射功率较大,能够补偿第一波束和第二波束之间的增益差,进而,网络设备可以直接向终端设备发送广播信号。在广播信号的信号强度不满足预设条件时,网络设备确定该广播信号的发射功率较小,无法补偿第一波束和第二波束之间的增益差,进而,网络设备可以对该广播信号进行调整,使得调整后的广播信号的强度满足预设条件,再向终端设备发送调整后的广播信号。
在一种可能的设计中,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
通常,网络设备的最大输出功率是一定的。因此,所述网络设备通过开启一个波束且关闭其余波束,将网络设备全部能量集中在这一个波束中,调整所述广播信号的信号强度,提高广播信号的发射功率,以满足所述预设条件。
在一种可能的设计中,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
所述网络设备通过设置超级电容,调整所述广播信号的信号强度,提高广播信号的发射功率,以满足所述预设条件。另外,网络设备还可以通过设置其他模块来提高广播信号的发射功率,本申请实施例仅以超级电容进行示意。
在一种可能的设计中,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
由于随着广播信号的长度增加,一般会要求降低广播信号的功率,如3dB,因此,所述网络设备通过设置所述广播信号的长度满足预设长度,调整所述广播信号的接收时长,提高广播信号的总能量,以满足所述预设条件。
第三方面,本申请提供一种通信装置,包括:
接收模块,用于通过第一波束接收由N个网络设备广播的广播信号,每个广播信号 中包括当前广播时刻和广播所述广播信号的网络设备的标识信息,N为正整数;
获取模块,用于获取所述广播信号对应的第二波束,所述第一波束的宽度大于所述第二波束的宽度;
测量模块,用于通过所述广播信号对应的第二波束,对所述N个网络设备的广播信号进行测量;
所述获取模块,还用于根据测量结果,获取目标网络设备对应的第二波束,所述目标网络设备为所述N个网络设备中的一个网络设备;
传输模块,用于通过所述目标网络设备对应的第二波束与所述目标网络设备进行数据传输。
在一种可能的设计中,所述装置还包括:
确定模块,用于根据所述广播信号,确定所述N个网络设备的位置和/或终端设备的位置。
在一种可能的设计中,所述确定模块,具体用于根据网络设备的位置与时刻之间的对应关系,确定所述N个网络设备的位置。
在一种可能的设计中,所述确定模块,具体用于根据所述N个网络设备的位置和所述广播信号的传播时延,确定所述终端设备的位置。
在一种可能的设计中,所述获取模块,用于根据所述N个网络设备的位置和终端设备的位置,分别获取所述广播信号对应的第二波束的方位角和俯仰角。
在一种可能的设计中,所述测量模块,具体用于根据所述广播信号对应的第二波束,确定所述N个网络设备的广播信号的信噪比;将所述信噪比确定为所述测量结果。
在一种可能的设计中,所述获取模块,还用于根据所述测量结果,将信噪比最大的网络设备确定为所述目标网络设备;确定所述目标网络设备对应的第二波束的方位角和俯仰角。
在一种可能的设计中,所述获取模块,具体用于根据所述目标网络设备的位置和终端设备的位置,确定所述目标网络设备对应的第二波束的方位角和俯仰角;或者,根据所述目标网络设备和所述广播信号对应的第二波束的方位角和俯仰角,确定所述目标网络设备对应的第二波束的方位角和俯仰角。
在一种可能的设计中,所述接收模块,用于通过与目标频点同频的所述第一波束,接收所述网络设备通过所述网络设备的波束广播的广播信号,所述目标频点为广播所述广播信号的网络设备的波束的频点。
在一种可能的设计中,每个广播信号包括如下方式的至少一种:
网络设备通过开启一个波束且关闭其余波束广播的广播信号;和,
设置有超级电容的网络设备的广播信号;和,
满足预设长度的广播信号。
在一种可能的设计中,所述第一波束为多个第三波束的组合,所述第三波束的宽度小于所述第一波束的宽度。
在一种可能的设计中,
所述第一波束为高频段波束,所述第二波束为高频段波束,每个网络设备的波束为高频段波束;或者,
所述第一波束为低频段波束,所述第二波束为高频段波束,每个网络设备的波束包括低频段波束和高频段波束;或者,
所述第一波束为低频段波束,所述第二波束为低频段波束,每个网络设备的波束为低频段波束。
上述第三方面以及上述第三方面的各可能的设计中所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种通信装置,包括:
获取模块,用于获取广播信号的信号强度;
发送模块,用于在所述广播信号的信号强度满足预设条件时,向终端设备发送所述广播信号。
在一种可能的设计中,所述装置还包括,
第一调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过开启一个波束且关闭其余波束,调整所述广播信号的信号强度,以满足所述预设条件。
在一种可能的设计中,所述装置还包括:
第二调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过设置超级电容,调整所述广播信号的信号强度,以满足所述预设条件。
在一种可能的设计中,所述装置还包括:
第三调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过设置所述广播信号的长度满足预设长度,调整所述广播信号的信号强度,以满足所述预设条件。
上述第四方面以及上述第四方面的各可能的设计中所提供的通信装置,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种终端设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中的通信方法。
第六方面,本申请提供一种网络设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第二方面及第二方面任一种可能的设计中的通信方法。
第七方面,本申请提供一种通信系统,包括:如第三方面及第三方面任一种可能的设计中提供的通信装置和N个第四方面及第四方面任一种可能的设计中提供的通信装置,N为正整数。
第八方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行第一方面及第一方面任一种可能的设计中的通信方法。
第九方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行第二方面及第二方面任一种可能的设计中的通信方法。
第十方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施第一方面及第一方面任一种可能的设计中的通信方法。
第十一方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在 可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施第二方面及第二方面任一种可能的设计中的通信方法。
第十二方面,本申请提供一种芯片,所述芯片与存储器相连,或者所述芯片上集成有存储器,当所述存储器中存储的软件程序被执行时,实现上述任一项所述的通信方法。
第十三方面,本申请提供一种终端设备,用于实现第一方面及第一方面任一种可能的设计中的通信方法。
第十四方面,本申请提供一种网络设备,用于实现第二方面及第二方面任一种可能的设计中的通信方法。
附图说明
图1为本申请一实施例提供的通信系统的示意图;
图2为本申请提供的一种通信方法实施例的流程图;
图3为本申请提供的一种通信方法实施例的流程图;
图4为本申请提供的一种通信装置实施例的结构示意图;
图5为本申请提供的一种通信装置实施例的结构示意图;
图6为本申请提供的一种通信装置实施例的结构示意图;
图7为本申请提供的一种通信装置实施例的结构示意图;
图8为本申请提供的一种通信装置实施例的结构示意图;
图9为本申请提供的一种通信装置实施例的结构示意图;
图10为本申请提供的一种终端设备结构示意图;
图11为本申请提供的一种网络设备结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、未来的第五代(5th Generation,5G)系统,及未来的通信系统,如6G系统等。
本申请涉及的通信装置主要包括网络设备或者终端设备。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者 transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或者,卫星设备,该卫星设备可以包括但不限于高通量波束宽度较小的卫星设备,具体可以为包括海事通信、航空机载通信、陆地车载通信在内的移动通信,以及固定卫星宽带互联网接入等应用提供服务等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
图1为本申请一实施例提供的通信系统的示意图,如图1所示,本申请的通信系统可以包括网络设备和终端设备,网络设备和终端设备之间可以采用各种传输方式进行数据传输。
其中,各种传输方式包括适用于远距离有限传输的光纤传输、适用于中等距离有线传输的x数字用户线路(x Digital Subscriber Line,xDSL)、适用于近距离有线传输的同轴电缆直连和适用于无线传输的微波、卫星等方式。
其中,图1中以网络设备为卫星设备,终端设备为地面终端为例,说明卫星设备和地面终端之间的数据传输过程。
在实际应用中,通信系统往往会在同一时刻形成多个点波束覆盖地面的不同区域,实现卫星设备与地面终端之间的数据传输。其中,每颗卫星设备需要向该卫星设备需要服务的区域使用适量的点波束进行实时覆盖。具体地,当卫星设备的波束覆盖地面终端所在区域时,若地面终端中天线的波束未对准卫星,则地面终端将无法接入卫星设备。若地面终端中天线的波束对准卫星设备,则地面终端才可完成初始接入,从而在地面终端接入后,卫星设备和地面终端之间便可相互进行数据传输。
在地面终端对准卫星设备的过程中,地面终端需要确定自身的位置和卫星设备的位置。否则,地面终端将会盲目对准卫星设备,通常地面终端中天线的波束和卫星设备的波束会周期性扫描,直至两波束对准,地面终端才可以接入卫星设备,该接入过程会耗费大量时长, 且效率低下。
本申请提供一种通信方法、装置、设备及系统,可在实现终端设备与网络设备数据传输的同时,降低终端设备对准和接入网络设备的时长,提高终端设备的接入效率。下面,结合图2,对本申请实施例的通信方法的具体实现过程进行详细说明。
图2为本申请提供的一种通信方法实施例的流程图,如图2所示,本实施例的通信方法可以包括:
S101、终端设备通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播广播信号的网络设备的标识信息,N为正整数。
本领域技术人员可以理解,终端设备中天线的波束宽度越大,天线可以尽可能多的接收到广播信号。因此,本申请实施例中,终端设备可以将第一波束设置为波束宽度较宽的波束(本文中简称为宽波束),方便终端设备可以顺利接收每个网络设备广播的广播信号,从而降低接入时长。其中,本申请实施例对第一波束的具体波束宽度不做限定。
其中,本申请实施例对网络设备的个数N不做限定。具体地,终端设备可以接收一个网络设备广播的广播信号,也可以依次接收或者同时接收多个网络设备广播的广播信号,具体由终端设备的能力决定,本申请对此不做限定。并且,任意一个网络设备可以采用现有技术中的广播信号,还可以采用其他格式的广播信号。且每个网络设备可以采用相同格式的广播信号,也可以不同格式的广播信号。例如,网络设备可以采用“帧头和数据包”格式的广播信号,该帧头中可以携带有网络设备的标识和/或终端设备的标识,便于终端设备识别以顺序接收广播信号。该数据包中可以携带有网络设备传输给终端设备的通信数据,如音频数据、视频数据或者文件数据等。另外,每个网络设备可以广播一个或多个广播信号。每个网络设备可以将广播信号直接发送给终端设备,也可以通过与终端设备有馈电链路的其他设备,将广播信号转发给终端设备。
具体地,以网络设备为卫星设备,终端设备为地面终端为例,卫星设备可以直接向地面终端广播广播信号,也可以通过地面基站向地面终端转发该广播信号。其中,该地面基站与地面终端相互连接,且具有馈电链路。
本申请实施例中,在网络设备直接向终端设备广播广播信号时,为了便于终端设备接收到广播信号,可选地,每个网络设备可以事先向终端设备广播该网络设备所使用的波束的频点,即目标频点,从而,终端设备使用与该目标频点同频的第一波束,便可快速地接收到每个网络设备广播的广播信号,提高了网络设备的接收速率,节省了接入时长。
进一步地,终端设备通过每个广播信号,可以获知广播每个广播信号的当前广播时刻,使得终端设备可以确定每个网络设备广播广播信号的具体时刻,以及获知广播每个广播信号的网络设备的标识信息,使得终端设备可以根据该标识信息确定对应的具体网络设备。
其中,本申请实施例对当前广播时刻的具体实现形式不做限定。例如,当前广播时刻可以采用标识、数字或者代码等形式。
具体地,本申请实施例可以事先根据时刻与标识之间的对应关系创建列表,且终端设备和网络设备均存储有该列表,从而网络设备根据该列表,可以将与当前广播时刻对应的标识携带在广播信号中,使得终端设备可以根据该列表确定与该标识对应的时刻,来确定当前广播时刻。另外,网络设备与终端设备可以事先统一时刻的固定转换格式,进而,网络设备可以根据该格式,将当前广播时刻转换成对应的数字,并通过广播信号传输给终端设备,使得终端设备可以根据该格式将数字转换成对应的时刻,来确定当前广播时刻。
其中,该标识信息可以为唯一标识网络设备的信息,例如,该标识信息可以为网络设备 的设备型号,或者,网络设备的编号。例如,该标识信息可以为网络设备的ID。
进一步地,在终端设备接收到广播信号时,终端设备可以根据当前广播时刻和网络设备的标识信息,确定每个网络设备的位置,或者,确定终端设备自身的位置,或者,确定每个网络设备的位置和终端设备自身的位置。
本申请实施例中,每个网络设备的位置相对于终端设备是固定的,如网络设备可以为卫星设备,该卫星设备围绕一颗地球轨道并按闭合轨道做周期性运行,终端设备相对于地球是相对固定的。可选地,终端设备,和/或,与终端设备有馈电链路的其他设备,事先可以采用列表或矩阵等形式,对网络设备的位置与标识信息之间的对应关系,和/或,对网络设备的位置与时刻之间的对应关系,进行存储。
具体地,以网络设备为卫星设备,终端设备为地面终端为例,终端设备和/或地面基站可以通过卫星星历存储卫星设备的位置与时刻之间的对应关系。
进而,终端设备可以根据网络设备的位置与标识信息之间的对应关系,和/或,网络设备的位置与时刻之间的对应关系,确定与当前广播时刻对应的网络设备的位置,从而定位每个网络设备。
本申请实施例中,终端设备自身的位置是相对固定的或者终端设备在很小范围内移动,因此,可选地,终端设备可以根据N个网络设备的位置和广播信号的传播时延,确定终端设备的位置。具体地,终端设备通过如下公式(1),利用接收到的广播信号,确定终端设备自身的位置。
Figure PCTCN2020076445-appb-000003
其中,坐标(x,y,z)表示终端设备的位置,坐标(x i,y i,z i)表示N个网络设备的位置,i为正整数,且i≤N,c为光在真空中的传播速度,Δt表示网络设备向终端设备广播广播信号的传播时延,d i表示网络设备与终端设备之间的距离。
基于上述描述,终端设备可以获知N个网络设备的位置,即x i,y i,z i为已知的。且由于终端设备和每个网络设备的位置是相对固定的,因此,终端设备可以事先获知终端设备与每个网络设备之间的距离,即d i为已知的。这样,上述公式(1)中存在x,y,z和Δt这四个未知数。本领域技术人员可以理解,通过最小二乘或者其它方法,为了计算出这个四个未知数,终端设备需要至少四个以上的广播信号,或者,终端设备通过消除未知数的方式,可以减少广播信号的个数。
下面,结合网络设备的个数N>1和N=1这两种情况对终端确定终端设备自身的位置的具体实现过程进行详细说明。
当网络设备的个数N>1时,N个网络设备需要向终端设备发送至少四个广播信号,即四个及四个以上的广播信号。进而,在设定每个网络设备至少向终端设备广播一个广播信号的前提下,采用三种情况,分别对终端设备确定终端设备自身的位置的具体实现过程进行详细说明。
在网络设备的个数N≥4时,终端设备可以接收到至少四个广播信号,从而终端设备可以通过公式(1)确定终端设备自身的位置。
在网络设备的个数N=3时,若任意一个网络设备在至少两个不同位置处分别向终端设备广播广播信号,则终端设备便可接收到至少四个广播信号,并可以通过公式(1)确定终端设备自身的位置。若每个网络设备仅向终端设备广播一个广播信号,则终端设备可以接收到三个广播信号,因此,终端设备需要事先消除上述四个未知数中的任意一个,再通过公式(1)确定终端设备自身的位置。
一种可能的实现方式中,终端设备中可以设置有测量x,y,z中的任意一个坐标值的测量模块。进而,终端设备通过该测量模块可以测量出x,y,z中的任意一个坐标值,再通过公式(1)确定终端设备自身的位置。
例如,终端设备可以利用海波测量仪测量出终端设备的海波位置,即坐标值z,从而消除z这个未知数。
另一种可能的实现方式中,由于主同步信号(Primary Synchronization Signal,PSS)和/或辅同步信号(Secondary Synchronization Signal,SSS)可以计算出Δt,且属于同一区域的终端设备和其他设备的PSS和SSS相同,因此,与终端设备属于同一区域的其他设备可以向每个网络设备发送PSS和/或SSS,进而,每个网络设备向终端设备广播的广播信号,除了包括当前广播时刻和网络设备的标识信息之外,还可以包括PSS和/或SSS,使得终端设备可以通过广播信号接收到PSS和/或SSS,从而终端设备可以根据PSS和/或SSS计算出Δt,从而消除Δt这个未知数,再通过公式(1)确定终端设备自身的位置。
在网络设备的个数N=2时,若N个网络设备在不同位置处分别向终端设备广播至少四个广播信号,则终端设可以通过公式(1)确定终端设备自身的位置。若每个网络设备仅向终端设备广播一个广播信号,则终端设备可以接收到二个广播信号,因此,终端设备需要事先消除上述四个未知数中的任意二个,再通过公式(1)确定终端设备自身的位置。
一种可能的实现方式中,终端设备中可以设置有测量x,y,z中的任意两个坐标值的测量模块。进而,终端设备通过该测量模块可以测量出x,y,z中的任意两个坐标值,再通过公式(1)确定终端设备自身的位置,具体可参见N=3的实现过程,此处不做赘述。
另一种可能的实现方式中,终端设备可以通过测量模块测量出x,y,z中的任意一个坐标值以及根据广播信号中的PSS和/或SSS计算出Δt,从而消除Δt这个未知数,再通过公式(1)确定终端设备自身的位置,具体可参见N=3的实现过程,此处不做赘述。
当网络设备的个数N=1时,若该网络设备在至少四个不同位置处分别向终端设备广播广播信号,则终端设备便可接收到至少四个广播信号,并可以通过公式(1)确定终端设备自身的位置。另外,终端设备设备可以参见N=2或者N=3的实现过程,消除上述四个未知数中的任意三个,再通过上述公式(1)确定终端设备自身的位置,具体可以参见N=2或者N=3的实现过程,此处不做详细说明。
进一步地,终端设备无需借助其他设备,便可根据广播信号,确定N个网络设备的位置和/或终端设备的位置,这样,终端设备可以不依赖于其他设备定位N个网络设备。另外,终端设备也可以借助其他设备,通过减少接收广播信号的个数,确定N个网络设备的位置和/或终端设备的位置。
S102、终端设备获取广播信号对应的第二波束,第一波束的宽度大于第二波束的宽度。
一方面,本领域技术人员可以理解,终端设备中天线的波束宽度较小,有利于天线与网络设备之间高速进行数据传输。因此,基于信号高速传输的需求,本申请实施例中,终端设备可以将第二波束可以设置为波束宽度较小的波束(本文中简称为窄波束),从而方便终端设备与网络设备之间可以高速传输数据,提高了信号的传输速率。其中,本申请实施例对第二波束的具体波束宽度不做限定,只需满足第一波束的宽度(本文提及的宽度指的是波束宽度)大于第二波束的宽度即可。
另一方面,为了保证终端设备可以选择适合的网络设备进行数据传输,终端设备在接收到广播信号时,可以获取广播信号对应的第二波束,保证广播信号对应的第二波束可以对准该广播信号对应的网络设备,以便终端设备可以使用该第二波束对信号进行测量。
进一步地,基于步骤101中具体过程,终端设备可以根据接收到的广播信号,确定每个网络设备的位置和终端设备的位置。为了更加准确的确定第二波束,因此,本申请实施例中,可选地,终端设备可以根据每个网络设备的位置和终端设备的位置,对每个广播信号对应的第二波束的方位角和俯仰角进行确定。
举例来说,当终端设备确定出终端设备的位置和任意一个网络设备的位置时,终端设备可以根据公式(2),确定与该网络设备广播的广播信号对应的第二波束的方位角和俯仰角。
Figure PCTCN2020076445-appb-000004
其中,A为该第二波束的方位角,E为该第二波束的俯仰角,φ 1为终端设备的经度值,φ 2为网络设备的经度值,β为网络设备的纬度值。
进一步地,基于步骤S101和S102的具体过程,终端设备设置有第一波束和第二波束,从而,终端设备基于第一波束和第二波束的性能,采用第一波束接收广播信号,采用第二波束测量并对准网络设备,从而节省接入时长,提高接入效率。
其中,终端设备可以对第一波束的频段和第二波束的频段,且网络设备随着第一波束的频段和第二波束的频段的变化而发生变化。下面,对上述具体过程进行详细说明。
本领域技术人员可以理解,国际电信联盟ITU为卫星通信划分的工作频段有:L、S、C、X、Ku、Ka,且在此基础上,开展窄带宽或宽带宽的语言、数据等业务。其中,低频段,如L、S频段,具有覆盖范围广的特点,一般用于语言或者低速数据业务。相比之下,高频段,如Ku、Ka频段,具有干扰少、设备体积小的优点,一般等用于如高清电视、千兆比特级带宽高速数据传输业务。并且,低频度和高频段由于频带不同,带宽不同,对应的波束宽度就不同。一般情况下,高频段由于频段高、路径衰减和大气衰减较大,相较于低频段而言,天线增益较高,波束宽度较小。
进一步地,在保证第一波束为宽波束,第二波束为窄波束的基础上,基于上述描述,对第一波束和第二波束的具体频段进行详细说明。另外,本申请实施例中,每个网络设备的波束通常使用窄波束。
一种可能的实现方式中,第一波束为高频段波束,第二波束为高频段波束,使得终端设备与网络设备之间可以传输高速信号,满足高速数据业务的需求。并且,每个网络设备的波束可以为高频段波束。这样,一方面,每个网络设备可以使用高频段波束向终端设备广播广播信号,使得终端设备可以使用高频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束(即第二波束)可以与网络设备的高频段波束之间可以相互传输数据。
另一种可能的实现方式中,第一波束为低频段波束,第二波束为高频段波束,使得终端设备与网络设备之间可以传输高速信号,满足高速数据业务的需求。并且,每个网络设备的波束可以包括低频段波束和高频段波束。这样,一方面,每个网络设备可以使用低频段波束向终端设备广播广播信号,使得终端设备可以使用低频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束可以与网络设备的高频段波束(即第二波束)之间可以相互传输数据。
另一种可能的实现方式中,第一波束为低频段波束,第二波束为低频段波束,使得终端设备与网络设备之间可以传输低速信号,满足低速数据业务的需求。并且,每个网络设备的 波束为低频段波束。这样,一方面,每个网络设备可以使用低频段波束向终端设备广播广播信号,使得终端设备可以使用低频段波束(即第一波束)接收广播信号。另一方面,终端设备的高频段波束可以与网络设备的低频段波束(即第二波束)之间可以相互传输数据。
进一步地,终端设备配置有第一波束和第二波束,第一波束的宽度大于第二波束的宽度。并且,终端设备可以设置第一波束和第二波束的频段相同或者不同,且网络设备的频段可以随着第一波束的频段和第二波束的频段的变化而发生变化,从而使得终端设备和网络设备在任何场景下均可以顺利传输数据。
S103、终端设备通过广播信号对应的第二波束,对N个网络设备的广播信号进行测量。
本申请实施例中,由于终端设备和网络设备皆可采用不同频段的波束,和/或,网络设备的广播信号由于大气层中氧气和水蒸气对信号的衰减所带来的传播损坏和雨衰会实时发生变化,因此,为了避免终端设备与网络设备之间的数据传输效果差或者无法通信的现象,终端设备可以使用广播信号对应的第二波束,对每个网络设备的广播信号的如多径衰落的特性、频率选择性等性能进行测量,以获知每个网络设备的广播信号的当前情况,得到测量结果。
其中,每个网络设备的广播信号可以为步骤S101中终端设备接收到的广播信号,也可以为其他广播信号,亦可以为上述两种广播信号的组合,本申请实施例对此不做限定。并且,本申请实施例对终端设备测量每个网络设备的广播信号的具体参数不做限定,只需满足该参数可以表明网络设备的广播信号的性能即可。
可选地,终端设备可以根据广播信号对应的第二波束,确定每个网络设备的广播信号信噪比(Singal Noise Ratio,SNR)。进而,终端设备可以将每个网络设备的广播信号的信噪比确定为测量结果。
S104、终端设备根据测量结果,获取目标网络设备对应的第二波束,目标网络设备为N个网络设备中的一个网络设备。
由于测量结果可以表征每个网络设备的广播信号的性能,因此,终端设备可以根据该测量结果,确定选择出适合于与终端设备进行数据传输的网络设备,即目标网络设备,以提高数据传输的可靠性。从而,终端设备可以获取目标网络设备对应的第二波束。
其中,终端设备,除了每个网络设备的广播信号的性能之外,还可以综合考虑自身的实际需求等主客观因素,确定目标网络设备,以便终端设备与目标网络设备顺利进行数据传输。
可选地,在测量结果为每个网络设备的广播信号的信噪比时,终端设备可以根据测量结果,将信噪比最大的网络设备确定为目标网络设备,即终端设备可以从N个网络设备中选择性能最好的网络设备作为目标网络设备。进而,终端设备可以确定目标网络设备对应的第二波束的方位角和俯仰角。
下面,采用两种实现方式,对终端设备获取第二波束的方位角和俯仰角的具体实现方式进行详细说明。
一种可能的实现方式中,由于终端设备已确定目标网络设备,因此,终端设备可以通过公式(2),根据目标网络设备的位置和终端设备的位置,确定目标网络设备对应的第二波束的方位角和俯仰角,具体可参见上述步骤S102的实现过程,此处不做赘述。
另一种可能的实现方式中,由于终端设备已确定目标网络设备,且在步骤S102中获得广播信号对应的第二波束的方位角和俯仰角,因此,终端设备可以根据目标网络设备和广播信号对应的第二波束的方位角和俯仰角,确定目标网络设备对应的第二波束的方位角和俯仰角。
S105、终端设备通过目标网络设备对应的第二波束与目标网络设备进行数据传输。
本申请实施例中,由于第二波束的波束宽度较小,因此,终端设备使用目标网络设备对 应的第二波束,可以高速接入目标网络设备,进而,终端设备可以与目标网络设备高速进行的数据传输,减少了接入时长,提高了终端设备的接入效率。
本申请实施例提供的通信方法,由于第一波束的波束宽度较大,因此,第一波束的覆盖范围较大,使得尽可能多的广播信号会落在第一波束的覆盖范围内,进而,终端设备使用该第一波束,可以尽可能快的接收到每个网络设备广播的广播信号,提高了信号的获取速率,减少了接入时长。另外,由于每个广播信号中包括当前广播时刻和广播该广播信号的网络设备的标识信息,且每个网络设备的位置与终端设备的位置是相对固定的,因此,终端设备无需借助其他设备,根据接收到的广播信号,便可确定每个网络设备的位置和终端设备的位置,从而终端设备可以自动接入N个网络设备,提高了接入的效率。并且,又由于终端设备使用波束宽度较小的波束,有利于与网络设备之间高速进行数据传输,因此,终端设备可以设置第二波束的宽度较小,且准确获取广播信号对应的第二波束,保证广播信号对应第二波束可以对准该广播信号对应的网络设备,使得终端设备可以利用广播信号对应的第二波束,对每个网络设备的广播信号进行测量,得到表示每个网络设备的广播信号的实际情况的测量结果,以确定出每个网络设备的广播信号的性能。从而终端设备可以根据测量结果,从N个网络设备中,选择出适用于与终端设备进行数据传输的目标网络设备,使得终端设备可以使用目标网络设备对应的第二波束,与目标网络设备进行可靠的数据传输,不仅省去了波束扫描的过程,节省了接入时长,还提高了接入的效率,保证了数据传输的可靠性。
在上述图2实施例的基础上,由于终端设备配置有第一波束和第二波束,且第一波束的宽度大于第二波束的宽度,因此,不可避免的,第一波束和第二波束之间存在增益差,该增益差会降低终端设备的接收性能。某些情况下,该增益差会达到20dB左右。
为了解决上述问题,本申请实施例中,一方面,可选地,第一波束为多个第三波束的组合,第三波束的宽度小于第一波束的宽度。具体地,终端设备可以采用多个波束宽度较宽的第三波束进行拼接,来代替一个波束宽度的第一波束,从而降低第一波束和第二波束之间的增益差。
例如,对于1个70°×70°的第一波束,终端设备可以拼接4个35°×35°的第三波束来实现,这样,该增益差将会减小至15dB。
另一方面,任意一个网络设备可以向终端设备广播发射效率较高的广播信号,从而补偿终端设备的第一波束和第二波束之间的增益差,以降低该增益差对终端设备带来的影响。下面,以一个网络设备为例,结合图3,对该网络设备提高广播信号的发射效率的具体实现过程进行详细说明。
图3为本申请提供的一种通信方法实施例的流程图,如图3所示,本实施例的通信方法可以包括:
S201、网络设备获取广播信号的信号强度。
S202、网络设备在广播信号的信号强度满足预设条件时,向终端设备发送广播信号。
S203、网络设备在广播信号的信号强度不满足预设条件时,调整广播信号的信号强度,以满足预设条件,再执行S202。
本申请实施例中,网络设备可以采用广播信号的信号强度来表征广播信号的发射功率。从而,在广播信号的信号强度满足预设条件时,网络设备可以确定该广播信号的发射功率较大,能够补偿第一波束和第二波束之间的增益差,进而,网络设备可以直接向终端设备发送广播信号。在广播信号的信号强度不满足预设条件时,网络设备确定该广播信号的发射功率较小,无法补偿第一波束和第二波束之间的增益差,进而,网络设备可以对该广播信号进行 调整,使得调整后的广播信号的强度满足预设条件,再向终端设备发送调整后的广播信号。
其中,本申请实施例对网络设备提高广播信号的信号强度的具体实现方式不做限定。下面,采用三种实现方法对网络设备提高广播信号的信号强度的具体实现方式进行详细说明。
一种可能的实现方式中,通常,网络设备的最大输出功率是一定的。因此,网络设备可以通过开启一个波束且关闭其余波束,将网络设备全部能量集中在这一个波束中,从而调整广播信号的信号强度,提高广播信号的发射功率,以满足预设条件。
另一种可能的实现方式中,网络设备可以通过设置超级电容,可以瞬时提高广播信号的发射功率,调整广播信号的信号强度,以满足预设条件。另外,网络设备还可以通过设置其他模块来提高广播信号的发射功率,本申请实施例仅以超级电容进行示意。
另一种可能的实现方式中,由于随着广播信号的长度增加,一般会要求降低广播信号的功率,如3dB,因此,网络设备通过设置广播信号的长度满足预设长度,调整接收广播信号的接收时长,提高广播信号的总能量,以满足预设条件。
具体地,以网络设备为卫星设备,终端设备为地面终端为例,地面终端的高增益波束典型值为6°×6°。卫星设备的最小仰角为55°,因此,地面终端宽波束的宽度不小于70°×70°。此时,第一波束与第二波束之间的增益差会达到21dB。
若卫星设备的总波束数为16,则卫星设备可以关掉15个波束,保留1个波束进行广播信号的广播,则广播信号的发射功率可提升12dB。
若卫星设备通过设置超级电容,则广播信号的发射功率可以瞬时提升6dB。
若卫星设备增加PSS序列的长度,则会要求第一波束和第二波束之间的增益差降低3dB。
结合上述三种实现方式,卫星设备可以补偿大约20dB左右的增益,从而满足地面终端与卫星设备的通信需求。
需要说明的是,网络设备可以采用一种或者多种方式降低第一波束和第二波束之间的增益差,以满足终端设备与网络设备的通信需求。
可以理解的是,上述各个方法实施例中,由终端设备执行的操作也可以由可用于终端的部件(例如芯片,电路)实现,由网络设备执行的操作也可以由可用于网络设备的部件(例如芯片,电路)实现。
图4为本申请提供的一种通信装置实施例的结构示意图,该通信装置10执行的操作可使用终端设备的部件(例如芯片,电路)进行实现,如图4所示,本申请实施例的通信装置10可以包括:接收模块11、获取模块12、测量模块13和传输模块14。
接收模块11,用于通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播广播信号的网络设备的标识信息,N为正整数;
获取模块12,用于获取广播信号对应的第二波束,第一波束的宽度大于第二波束的宽度;
测量模块13,用于通过广播信号对应的第二波束,对N个网络设备的广播信号进行测量;
获取模块12,还用于根据测量结果,获取目标网络设备对应的第二波束,目标网络设备为N个网络设备中的一个网络设备;
传输模块14,用于通过目标网络设备对应的第二波束与目标网络设备进行数据传输。
图5为本申请提供的一种通信装置实施例的结构示意图,如图5所示,本申请实施例的通信装置10在图4所示结构的基础上,进一步地,还可以包括:确定模块15,其中,确定模块15,用于根据广播信号,确定N个网络设备的位置和/或终端设备的位置。
在一些实施例中,确定模块15,具体用于根据网络设备的位置与时刻之间的对应关系,确定N个网络设备的位置。
在一些实施例中,确定模块15,具体用于根据N个网络设备的位置和广播信号的传播时延,确定终端设备的位置。
在一些实施例中,获取模块12,用于根据N个网络设备的位置和终端设备的位置,分别获取广播信号对应的第二波束的方位角和俯仰角。
在一些实施例中,测量模块14,具体用于根据广播信号对应的第二波束,确定N个网络设备的广播信号的信噪比;将信噪比确定为测量结果。
在一些实施例中,获取模块12,还用于根据测量结果,将信噪比最大的网络设备确定为目标网络设备;确定目标网络设备对应的第二波束的方位角和俯仰角。
在一些实施例中,获取模块12,具体用于根据目标网络设备的位置和终端设备的位置,确定目标网络设备对应的第二波束的方位角和俯仰角;或者,根据目标网络设备和广播信号对应的第二波束的方位角和俯仰角,确定目标网络设备对应的第二波束的方位角和俯仰角。
在一些实施例中,接收模块11,用于通过与目标频点同频的第一波束,接收网络设备通过网络设备的波束广播的广播信号,目标频点为广播广播信号的网络设备的波束的频点。
在一些实施例中,每个广播信号包括如下方式的至少一种:
网络设备通过开启一个波束且关闭其余波束广播的广播信号;和,
设置有超级电容的网络设备的广播信号;和,
满足预设长度的广播信号。
在一些实施例中,第一波束为多个第三波束的组合,第三波束的宽度小于第一波束的宽度。
在一些实施例中,
第一波束为高频段波束,第二波束为高频段波束,每个网络设备的波束为高频段波束;或者,
第一波束为低频段波束,第二波束为高频段波束,每个网络设备的波束包括低频段波束和高频段波束;或者,
第一波束为低频段波束,第二波束为低频段波束,每个网络设备的波束为低频段波束。
本实施例的通信装置,可以用于执行图1-图3所示方法实施例中终端设备的技术方案,其实现原理和技术效果类似,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
图6为本申请提供的一种通信装置实施例的结构示意图,该通信装置20执行的操作可使用网络设备的部件(例如芯片,电路)进行实现,如图6所示,本实施例的通信装置20可以包括:获取模块21和发送模块22。
其中,获取模块21,用于获取广播信号的信号强度;
发送模块22,用于在广播信号的信号强度满足预设条件时,向终端设备发送广播信号。
图7为本申请提供的一种通信装置实施例的结构示意图,如图7所示,本实施例的通信装置20在图6所示结构的基础上,进一步地,还可以包括:第一调整模块23,其中,第一 调整模块23,用于在广播信号的信号强度不满足预设条件时,通过开启一个波束且关闭其余波束,调整广播信号的信号强度,以满足预设条件。
图8为本申请提供的一种通信装置实施例的结构示意图,如图8所示,本实施例的通信装置20在图6所示结构的基础上,进一步地,还可以包括:第二调整模块24,其中,第二调整模块24,用于在广播信号的信号强度不满足预设条件时,通过设置超级电容,调整广播信号的信号强度,以满足预设条件。
图9为本申请提供的一种通信装置实施例的结构示意图,如图9所示,本实施例的通信装置20在图6所示结构的基础上,进一步地,还可以包括:第三调整模块25,其中,第三调整模块25,用于在广播信号的信号强度不满足预设条件时,通过设置广播信号的长度满足预设长度,调整广播信号的信号强度,以满足预设条件。
本实施例的通信装置,可以用于执行图1-图3所示方法实施例中网络设备的技术方案,其实现原理和技术效果类似,其中各个模块实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
本申请可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图10为本申请提供的一种终端设备结构示意图,如图10所示,该终端设备30包括:
存储器31,用于存储程序指令,该存储器31可以是flash(闪存)。
处理器32,用于调用并执行存储器中的程序指令,以实现图1-图3的通信方法中对应终端设备的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括输入/输出接口33。输入/输出接口33可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该终端设备30可以用于执行上述方法实施例中相应的终端设备对应的各个步骤和/或流程。
图11为本申请提供的一种网络设备结构示意图,如图11所示,该网络设备40包括:
存储器41,用于存储程序指令,该存储器41可以是flash(闪存)。
处理器42,用于调用并执行存储器中的程序指令,以实现图1-图3的通信方法中对应网络设备的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括输入/输出接口43。输入/输出接口43可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该网络设备40可以用于执行上述方法实施例中相应的网络设备对应的各个步骤和/或流程。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行上述方法实施例中的通信方法。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少 一个处理器执行该执行指令时,网络设备执行上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施上述方法实施例中的通信方法。
本申请还提供一种芯片,芯片与存储器相连,或者芯片上集成有存储器,当存储器中存储的软件程序被执行时,实现上述方法实施例中的通信方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    终端设备通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播所述广播信号的网络设备的标识信息,N为正整数;
    所述终端设备获取所述广播信号对应的第二波束,所述第一波束的宽度大于所述第二波束的宽度;
    所述终端设备通过所述广播信号对应的第二波束,对所述N个网络设备的广播信号进行测量;
    所述终端设备根据测量结果,获取目标网络设备对应的第二波束,所述目标网络设备为所述N个网络设备中的一个网络设备;
    所述终端设备通过所述目标网络设备对应的第二波束与所述目标网络设备进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述广播信号,确定所述N个网络设备的位置和/或所述终端设备的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述广播信号,确定所述N个网络设备的位置,包括:
    所述终端设备根据网络设备的位置与时刻之间的对应关系,确定所述N个网络设备的位置。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端设备根据所述广播信号,确定所述终端设备的位置,包括:
    所述终端设备根据所述N个网络设备的位置和所述广播信号的传播时延,确定所述终端设备的位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述终端设备获取所述广播信号对应的第二波束,包括:
    所述终端设备根据所述N个网络设备的位置和所述终端设备的位置,分别获取所述广播信号对应的第二波束的方位角和俯仰角。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述终端设备通过所述广播信号对应的第二波束,对所述N个网络设备的广播信号进行测量,包括:
    所述终端设备根据所述广播信号对应的第二波束,确定所述N个网络设备的广播信号的信噪比;
    所述终端设备将所述信噪比确定为所述测量结果。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据测量结果,获取目标网络设备对应的第二波束,包括:
    所述终端设备根据所述测量结果,将信噪比最大的网络设备确定为所述目标网络设备;
    所述终端设备确定所述目标网络设备对应的第二波束的方位角和俯仰角。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备确定所述目标网络设备对应的第二波束的方位角和俯仰角,包括:
    所述终端设备根据所述目标网络设备的位置和所述终端设备的位置,确定所述目标网络设备对应的第二波束的方位角和俯仰角;或者,
    所述终端设备根据所述目标网络设备和所述广播信号对应的第二波束的方位角和俯仰角,确定所述目标网络设备对应的第二波束的方位角和俯仰角。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述终端设备通过第一波束接收由N个网络设备广播的广播信号,包括:
    所述终端设备通过与目标频点同频的所述第一波束,接收所述网络设备通过所述网络设备的波束广播的广播信号,所述目标频点为广播所述广播信号的网络设备的波束的频点。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,每个广播信号包括如下方式的至少一种:
    网络设备通过开启一个波束且关闭其余波束广播的广播信号;和,
    设置有超级电容的网络设备的广播信号;和,
    满足预设长度的广播信号。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一波束为多个第三波束的组合,所述第三波束的宽度小于所述第一波束的宽度。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,
    所述第一波束为高频段波束,所述第二波束为高频段波束,每个网络设备的波束为高频段波束;或者,
    所述第一波束为低频段波束,所述第二波束为高频段波束,每个网络设备的波束包括低频段波束和高频段波束;或者,
    所述第一波束为低频段波束,所述第二波束为低频段波束,每个网络设备的波束为低频段波束。
  13. 一种通信方法,其特征在于,包括:
    网络设备获取广播信号的信号强度;
    所述网络设备在所述广播信号的信号强度满足预设条件时,向终端设备发送所述广播信号。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
    所述网络设备通过开启一个波束且关闭其余波束,调整所述广播信号的信号强度,以满足所述预设条件。
  15. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
    所述网络设备通过设置超级电容,调整所述广播信号的信号强度,以满足所述预设条件。
  16. 根据权利要求13所述的方法,其特征在于,所述网络设备在所述广播信号的信号强度不满足预设条件时,所述方法还包括:
    所述网络设备通过设置所述广播信号的长度满足预设长度,调整所述广播信号的信号强度,以满足所述预设条件。
  17. 一种通信装置,其特征在于,包括:
    接收模块,用于通过第一波束接收由N个网络设备广播的广播信号,每个广播信号中包括当前广播时刻和广播所述广播信号的网络设备的标识信息,N为正整数;
    获取模块,用于获取所述广播信号对应的第二波束,所述第一波束的宽度大于所述第二波束的宽度;
    测量模块,用于通过所述广播信号对应的第二波束,对所述N个网络设备的广播信 号进行测量;
    所述获取模块,还用于根据测量结果,获取目标网络设备对应的第二波束,所述目标网络设备为所述N个网络设备中的一个网络设备;
    传输模块,用于通过所述目标网络设备对应的第二波束与所述目标网络设备进行数据传输。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    确定模块,用于根据所述广播信号,确定所述N个网络设备的位置和/或终端设备的位置。
  19. 根据权利要求18所述的装置,其特征在于,所述确定模块,具体用于根据网络设备的位置与时刻之间的对应关系,确定所述N个网络设备的位置。
  20. 根据权利要求18或19所述的装置,其特征在于,所述确定模块,具体用于根据所述N个网络设备的位置和所述广播信号的传播时延,确定所述终端设备的位置。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,所述获取模块,用于根据所述N个网络设备的位置和终端设备的位置,分别获取所述广播信号对应的第二波束的方位角和俯仰角。
  22. 根据权利要求17-21任一项所述的装置,其特征在于,所述测量模块,具体用于根据所述广播信号对应的第二波束,确定所述N个网络设备的广播信号的信噪比;将所述信噪比确定为所述测量结果。
  23. 根据权利要求22所述的装置,其特征在于,所述获取模块,还用于根据所述测量结果,将信噪比最大的网络设备确定为所述目标网络设备;确定所述目标网络设备对应的第二波束的方位角和俯仰角。
  24. 根据权利要求23所述的装置,其特征在于,所述获取模块,具体用于根据所述目标网络设备的位置和终端设备的位置,确定所述目标网络设备对应的第二波束的方位角和俯仰角;或者,根据所述目标网络设备和所述广播信号对应的第二波束的方位角和俯仰角,确定所述目标网络设备对应的第二波束的方位角和俯仰角。
  25. 根据权利要求17-24任一项所述的装置,其特征在于,所述接收模块,用于通过与目标频点同频的所述第一波束,接收所述网络设备通过所述网络设备的波束广播的广播信号,所述目标频点为广播所述广播信号的网络设备的波束的频点。
  26. 根据权利要求17-25任一项所述的装置,其特征在于,每个广播信号包括如下方式的至少一种:
    网络设备通过开启一个波束且关闭其余波束广播的广播信号;和,
    设置有超级电容的网络设备的广播信号;和,
    满足预设长度的广播信号。
  27. 根据权利要求17-26任一项所述的装置,其特征在于,所述第一波束为多个第三波束的组合,所述第三波束的宽度小于所述第一波束的宽度。
  28. 根据权利要求17-27任一项所述的装置,其特征在于,
    所述第一波束为高频段波束,所述第二波束为高频段波束,每个网络设备的波束为高频段波束;或者,
    所述第一波束为低频段波束,所述第二波束为高频段波束,每个网络设备的波束包括低频段波束和高频段波束;或者,
    所述第一波束为低频段波束,所述第二波束为低频段波束,每个网络设备的波束为 低频段波束。
  29. 一种通信装置,其特征在于,包括:
    获取模块,用于获取广播信号的信号强度;
    发送模块,用于在所述广播信号的信号强度满足预设条件时,向终端设备发送所述广播信号。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括,
    第一调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过开启一个波束且关闭其余波束,调整所述广播信号的信号强度,以满足所述预设条件。
  31. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    第二调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过设置超级电容,调整所述广播信号的信号强度,以满足所述预设条件。
  32. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    第三调整模块,用于在所述广播信号的信号强度不满足预设条件时,通过设置所述广播信号的长度满足预设长度,调整所述广播信号的信号强度,以满足所述预设条件。
  33. 一种终端设备,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行权利要求1-12任一项所述的通信方法。
  34. 一种网络设备,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行权利要求13-16任一项所述的通信方法。
  35. 一种通信系统,其特征在于,包括:如权利要求17-28任一项所述的通信装置和N个如权利要求29-32任一项所述的通信装置,N为正整数。
  36. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,所述终端设备执行权利要求1-12任一项所述的通信方法。
  37. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,所述网络设备执行权利要求13-16任一项所述的通信方法。
  38. 一种计算机程序产品,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-12或13-16任一项所述的通信方法被执行。
PCT/CN2020/076445 2019-03-15 2020-02-24 通信方法、装置、设备及系统 WO2020186973A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773843.6A EP3920433A4 (en) 2019-03-15 2020-02-24 COMMUNICATION METHOD AND APPARATUS, DEVICE AND SYSTEM
US17/466,238 US20210400462A1 (en) 2019-03-15 2021-09-03 Communication method, communications apparatus, device, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910200019.3A CN111698761B (zh) 2019-03-15 2019-03-15 通信方法、装置、设备及系统
CN201910200019.3 2019-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/466,238 Continuation US20210400462A1 (en) 2019-03-15 2021-09-03 Communication method, communications apparatus, device, and communications system

Publications (1)

Publication Number Publication Date
WO2020186973A1 true WO2020186973A1 (zh) 2020-09-24

Family

ID=72475570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076445 WO2020186973A1 (zh) 2019-03-15 2020-02-24 通信方法、装置、设备及系统

Country Status (4)

Country Link
US (1) US20210400462A1 (zh)
EP (1) EP3920433A4 (zh)
CN (1) CN111698761B (zh)
WO (1) WO2020186973A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102021016648A2 (pt) * 2020-08-26 2022-03-08 Nokia Technologies Oy Realocação de contexto de equipamento de usuário na borda de área de notificação de rede de acesso de rádio
US20230291469A1 (en) * 2022-03-11 2023-09-14 All.Space Networks Limited Satellite communications network, satellite terminal and operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209891B1 (en) * 2012-09-24 2015-12-08 RKF Engineering Solutions, LLC Satellite beamforming using split switches
CN106559122A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种采用波束赋形的数据通信方法和装置
CN108260134A (zh) * 2016-12-28 2018-07-06 华为技术有限公司 一种下行波束调整的方法及装置
CN108377559A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 基于波束的多连接通信方法、终端设备及网络设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996372B2 (en) * 2001-09-06 2006-02-07 Hughes Electronics Corporation Mobility management-radio resource layer interface system and method for handling dark beam scenarios
US20030128159A1 (en) * 2002-01-10 2003-07-10 De La Chapelle Michael 1-D electronic scanned satellite user terminal antenna
US9716547B2 (en) * 2011-10-28 2017-07-25 Hughes Network Systems, Llc Method and apparatus for beam selection for a multibeam, multi-satellite communications system
US9083430B2 (en) * 2011-10-28 2015-07-14 Hughes Network Systems, Llc Method and apparatus for beam selection for a multibeam satellite communications system
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
CN103476125B (zh) * 2013-09-03 2016-07-13 郑州大学 一种机会干扰对齐中用户调度的优化方法和系统
US10222445B2 (en) * 2014-09-29 2019-03-05 Maxtena, Inc. System in which a phased array antenna emulates lower directivity antennas
EP3217737B1 (en) * 2014-12-29 2019-09-25 Huawei Technologies Co., Ltd. Method and apparatus for aligning beams of antennae of high-low frequency co-station network
EP4012941B1 (en) * 2015-01-16 2023-08-02 Hughes Network Systems, LLC Method and apparatus for beam selection for a multibeam, multi-satellite communications system
CN105356981B (zh) * 2015-11-20 2019-05-10 上海华为技术有限公司 一种通信的方法、设备及系统
CN107888237B (zh) * 2016-09-30 2022-06-21 北京三星通信技术研究有限公司 初始接入和随机接入的方法、基站设备及用户设备
US20180164441A1 (en) * 2016-12-12 2018-06-14 The Boeing Company Accelerated satellite acquisition scheme
CN107223347B (zh) * 2017-04-18 2020-09-11 北京小米移动软件有限公司 信息获取方法、装置及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209891B1 (en) * 2012-09-24 2015-12-08 RKF Engineering Solutions, LLC Satellite beamforming using split switches
CN106559122A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种采用波束赋形的数据通信方法和装置
CN108377559A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 基于波束的多连接通信方法、终端设备及网络设备
CN108260134A (zh) * 2016-12-28 2018-07-06 华为技术有限公司 一种下行波束调整的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920433A4

Also Published As

Publication number Publication date
CN111698761A (zh) 2020-09-22
EP3920433A1 (en) 2021-12-08
CN111698761B (zh) 2021-10-22
EP3920433A4 (en) 2022-07-27
US20210400462A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
TWI596918B (zh) 毫米波通訊的波束成型方法以及使用此方法的基地台與使用者設備
WO2020088350A1 (zh) 一种定位方法及设备
US20200120518A1 (en) Communication method and communications apparatus
US9967886B2 (en) Hierarchical beamforming method and base station and user equipment using the same
US10389560B2 (en) Baseband processing unit, radio remote unit, and communication method
WO2019001411A1 (zh) 电子装置、无线通信设备和无线通信方法
US20210400462A1 (en) Communication method, communications apparatus, device, and communications system
WO2021008495A1 (zh) 波束配置方法和装置
WO2018145529A1 (zh) 一种数据传输方法及装置
US11800375B2 (en) Beam training method, related apparatus, and system
WO2023197226A1 (zh) 波束选择方法和装置
WO2022121710A1 (zh) 重复传输次数确定方法与装置、终端和网络设备
TW201622244A (zh) 階層式波束成型方法及其基地台與使用者設備
US20220124669A1 (en) Communication method and apparatus, device, system, and storage medium
US10649062B2 (en) Terminal positioning method and apparatus
WO2022037187A1 (zh) 一种无源互调故障点的检测方法及装置
WO2016095526A1 (zh) 授时方法、装置及系统、存储介质
US20230180093A1 (en) Communication method, apparatus, and system
WO2023124959A1 (zh) 干扰规避方法、装置及系统
CN112804742A (zh) 发射功率配置方法、装置及系统、计算机存储介质
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2021213116A1 (zh) 功率调整方法、装置及系统
US20240155451A1 (en) Method and apparatus for determining satellite frequency band, and method and apparatus for adjusting frequency band
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2020238922A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020773843

Country of ref document: EP

Effective date: 20210902

NENP Non-entry into the national phase

Ref country code: DE