WO2021213116A1 - 功率调整方法、装置及系统 - Google Patents

功率调整方法、装置及系统 Download PDF

Info

Publication number
WO2021213116A1
WO2021213116A1 PCT/CN2021/082494 CN2021082494W WO2021213116A1 WO 2021213116 A1 WO2021213116 A1 WO 2021213116A1 CN 2021082494 W CN2021082494 W CN 2021082494W WO 2021213116 A1 WO2021213116 A1 WO 2021213116A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
access network
network device
scale loss
Prior art date
Application number
PCT/CN2021/082494
Other languages
English (en)
French (fr)
Inventor
蒋镇军
乔云飞
王斌
秦大力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021213116A1 publication Critical patent/WO2021213116A1/zh
Priority to US17/968,018 priority Critical patent/US20230047970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • This application relates to the field of satellite communications, and in particular to power adjustment methods, devices and systems.
  • the satellite communication system is integrated with the 5th generation (5G) mobile network on the ground to form a seamless global sea, land, air, and space integrated communication network to meet the ubiquitous business needs of users. It is an important direction for future communication development.
  • 5G 5th generation
  • the base station deployed on the satellite has a higher rated power of the power amplifier device.
  • the nonlinear effect of the power amplifier will be more prominent, causing out-of-band leakage, in-band carrier interference, and causing the cell
  • the inter-interference increases, therefore, the power back-off of this type of base station is inevitable, so it is necessary to design a reasonable solution to realize the power back-off of this type of base station.
  • the embodiments of the present application provide a power adjustment method, device, and system, which can reduce out-of-band leakage, improve in-band signal quality, and reduce inter-cell interference, thereby improving cell throughput.
  • a power adjustment method is provided.
  • the method can be applied to a satellite communication system.
  • the method can be executed by a terminal device or a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device. Execution, this application uses the terminal device to execute the method as an example for description.
  • the method includes: a terminal device determines a large-scale loss difference, the large-scale loss difference being the difference between the large-scale loss at a first moment and the large-scale loss at a second moment, the second moment being earlier than the first moment ;
  • the terminal device sends the large-scale loss difference or the index of the large-scale loss difference to the first access network device.
  • the terminal device can indicate the large-scale loss difference to the first access network device
  • the first access network device can obtain the power back-off value according to the large-scale loss difference, and back off according to the power
  • the value completes the adjustment or fallback of output power, reduces out-of-band leakage, improves in-band signal quality, and reduces inter-cell interference, thereby improving cell throughput.
  • the terminal device determining the large-scale loss difference may include: the terminal device determines the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device, the first access network device Beam direction information, weather information within the beam range, or geographic location information of the beam range.
  • the terminal device does not need to measure the downlink signal, and can determine the large-scale loss difference according to at least one of the above-mentioned parameters, which can reduce the power consumption of the terminal device.
  • the terminal device determining the large-scale loss difference may include: the terminal device obtains signal quality information at the second time, and determines the large-scale loss at the second time according to the signal quality information at the second time; The device obtains the signal quality information at the first moment, and determines the large-scale loss at the first moment according to the signal quality information at the first moment; the terminal device calculates the difference between the large-scale loss at the first moment and the large-scale loss at the second moment The value is determined as the large-scale loss difference.
  • the terminal device can determine the large-scale loss difference, which can improve the accuracy of the obtained large-scale loss difference, thereby improving the accuracy of power adjustment of the first access network device.
  • a power adjustment method is provided.
  • the method can be applied to a satellite communication system.
  • the method can be executed by a first access network device or a component of the first access network device, such as the first access network device.
  • the processor, chip, or chip system of the network device is executed, and this application is described by taking the method executed by the first access network device as an example.
  • the method includes: a first access network device obtains a first power back-off value, where the first power back-off value is a power back-off value at a first moment; when the second power back-off value is different from the first power back-off value When the difference between the two is greater than or equal to the first threshold, the first access network device adjusts the output power according to the first power back-off value, and the second power back-off value is the power back-off value at the second time, and the second time is early At the first moment.
  • the first access network device can complete output power adjustment or fallback, reduce out-of-band leakage, improve in-band signal quality, and reduce inter-cell interference, thereby increasing cell throughput; on the other hand, , The first access network device adjusts its output power only when the difference between the power backoff values at the second time and the first time is greater than the threshold, which can prevent the first access network device from frequently adjusting power.
  • adjusting the output power of the first access network device according to the first power back-off value may include: the first access network device determines the first output power according to the first power back-off value, and sets the first output power The output power of an access network device is adjusted to the first output power.
  • the power adjustment method further includes: the first access network device determines a large-scale loss difference, where the large-scale loss difference is the large-scale loss at the first time and the large-scale loss at the second time.
  • the difference between the scale losses; the first access network device acquiring the first power back-off value includes: the first access network device determines the first power back-off value according to the large-scale loss difference.
  • the first access network device can independently complete the calculation of the first power backoff value without the assistance of other devices, which can improve the flexibility of obtaining the power backoff value.
  • determining the large-scale loss difference by the first access network device includes: the first access network device determines the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device , The beam direction information of the first access network device, the weather information within the beam range, or the geographic location information of the beam range.
  • the large-scale loss difference and the first power back-off value satisfy the following formula:
  • OBO t1 is the first power backoff value
  • P max is the maximum output power of the first access network device
  • P t2 is the output power at the second moment
  • ⁇ PL t1 is the large-scale loss Difference
  • obtaining the first power back-off value by the first access network device includes: the first access network device determines the first power back-off value according to the corresponding relationship between the first modulation and coding scheme MCS, MCS and the power back-off value.
  • a power backoff value, the first MCS is the MCS that the first access network device starts to use at the first moment.
  • the first access network device can obtain the first power back-off value according to the corresponding relationship between the MCS and the power back-off value, without calculating according to parameters, which can reduce the delay in obtaining the power back-off value, and also Reduce the computational complexity of the first access network device.
  • the first access network device determines the first power back-off value according to the large-scale loss difference, including: the first access network device determines the third power back-off value according to the large-scale loss difference. Backoff value; the first access network device determines the fourth power backoff value according to the corresponding relationship between the first MCS, MCS and the power backoff value, and the first MCS is the first access network device started to use at the first moment MCS; the first access network device determines the first power backoff value according to the third power backoff value and the fourth power backoff value.
  • the first two methods of obtaining the first power back-off value can be combined to optimize the combination of the two methods to obtain a more reasonable optimal power back-off value, thereby improving the accuracy of the power back-off .
  • the large-scale loss difference and the third power backoff value satisfy the following formula:
  • OBO 3 is the third power backoff value
  • P max is the maximum output power of the first access network device
  • P t2 is the output power at the second moment
  • ⁇ PL t1 is the large-scale loss Difference
  • the first power backoff value, the third power backoff value, and the fourth power backoff value satisfy the following formula:
  • OBO t1 is the first power back-off value
  • OBO 3 is the third power back-off value
  • OBO 4 is the fourth power back-off value
  • max(x,y) represents the value of x and y Maximum
  • the first power back-off value, the third power back-off value, and the fourth power back-off value satisfy the following formula:
  • OBO t1 is the first power back-off value
  • OBO 3 is the third power back-off value
  • obtaining the first power backoff value by the first access network device includes: the first access network device receives the first power backoff value from the control device.
  • the first access network device does not need to calculate or look up a table by itself to obtain the first power backoff value, which can reduce the calculation complexity of the first access network device.
  • the power adjustment method before the first access network device obtains the first power backoff value, the power adjustment method further includes: the first access network device receives the indication information; the first access network device obtains the first The power backoff value includes: when the indication information instructs the first access network device to adjust the power, the first access network device obtains the first power backoff value.
  • obtaining the first power backoff value by the first access network device includes: the coverage of the beam of the first access network device does not change with the movement of the first access network device In the case of, the first access network device obtains the first power backoff value.
  • obtaining the first power backoff value by the first access network device includes: when the coverage of the beam of the first access network device changes, the first access network device obtains the first power backoff value. Power back-off value.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • Network access equipment or a device that includes the above-mentioned first access network device, or a device that is included in the above-mentioned first access network device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • Network access equipment or a device that includes the above-mentioned first access network device, or a device that is included in the above-mentioned first access network device.
  • a communication device including: an interface circuit and a logic circuit, the interface circuit may be a code/data read-write interface circuit, the interface circuit is used to obtain data to be processed and/or output processed data
  • the processor is used to execute the method described in any one of the above aspects, process the data to be processed and/or generate the processed data.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • Network access equipment or a device that includes the above-mentioned first access network device, or a device that is included in the above-mentioned first access network device.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • Network access equipment or a device that includes the above-mentioned first access network device, or a device that is included in the above-mentioned first access network device.
  • a computer-readable storage medium stores instructions that, when run on a communication device, enable the communication device to execute the method described in any of the above aspects.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • Network access equipment or a device that includes the above-mentioned first access network device, or a device that is included in the above-mentioned first access network device.
  • a computer program product containing instructions which when running on a communication device, enables the communication device to execute the method described in any of the above aspects.
  • the communication device may be the terminal device in the foregoing first aspect, or a device including the foregoing terminal device, or a device included in the foregoing terminal device, such as a chip; or, the communication device may be the first interface in the foregoing second aspect.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • the technical effects brought about by any one of the design methods of the third aspect to the ninth aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect, which will not be repeated here.
  • a communication system in a tenth aspect, includes the terminal device described in the foregoing aspect and the first access network device described in the foregoing aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a terminal device and a first access network device provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a power adjustment method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another power adjustment method provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a first access network device provided by an embodiment of this application.
  • Satellite communication has significant advantages such as global coverage, long-distance transmission, flexible networking, easy deployment, and freedom from geographic location restrictions. It has been widely used in maritime communications, positioning and navigation, disaster relief, scientific experiments, video broadcasting, and earth observation. And many other fields.
  • satellites can be divided into highly elliptical orbiting (HEO) satellites, geostationary earth orbit (GEO) satellites, medium earth orbit (MEO) satellites, and low orbiting satellites.
  • HEO highly elliptical orbiting
  • GEO geostationary earth orbit
  • MEO medium earth orbit
  • LEO low orbiting satellites.
  • GEO satellites are also called geostationary satellites, and their moving speed is the same as the rotation speed of the earth. Therefore, GEO satellites remain stationary relative to the ground.
  • the cells of GEO satellites are also stationary.
  • the coverage of the GEO satellite cell is relatively large, and the diameter of the cell is generally 500km. LEO satellites move faster than the ground, about 7Km/s, so the service coverage area provided by LEO satellites also moves.
  • high-altitude platform (HAPS) communication is a communication technology similar to satellite communication.
  • HAPS communication base stations or some base station functions are deployed on high-altitude platforms.
  • the HAPS communication system and the satellite communication system can be collectively referred to as a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • At least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where "-" means that the associated objects before and after are a kind of "and"
  • the relationship of a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • satellite communication system NTN system and other systems, etc.
  • system can be used interchangeably with "network”.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to this application is only an example for illustration, and the communication system applicable to this application is not limited to this, which will be explained here in a unified manner, and will not be repeated in the following.
  • the communication system 10 includes a first access network device 30 and one or more terminal devices 40 connected to the first access network device 30.
  • different terminal devices 40 can communicate with each other.
  • the first access network device 30 in the embodiment of the present application may be deployed on a high-altitude platform or a satellite 20.
  • the communication system 10 may also include a measurement and control station and a core network gateway.
  • the first access network device 30 may be connected to the core network gateway, and complete data interaction with a ground data network (DN) through the core network gateway.
  • DN ground data network
  • the measurement and control station is used to complete the measurement, telemetry, etc. of the high-altitude platform or satellite 20, for example, to control the flight attitude of the high-altitude platform or the satellite 20, and to control the switch of the load equipment.
  • the first access network device 30 in the embodiment of the present application is a device that connects the terminal device 40 to a wireless network, and may be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE ; Or 5G network or future evolution of public land mobile network (public land mobile network, PLMN) in the base station, broadband network service gateway (broadband network gateway, BNG), convergence switch or non-third generation partnership project (3rd generation partnership) project, 3GPP) access equipment, etc., which are not specifically limited in the embodiment of the present application.
  • eNB evolved Node B
  • eNodeB evolved base station
  • 5G network or future evolution of public land mobile network (public land mobile network, PLMN) in the base station, broadband network service gateway (broadband network gateway, BNG), convergence switch or non-third generation partnership project (3rd generation partnership) project, 3GPP) access equipment, etc. which are not specifically limited in the embodiment of the present application.
  • the base stations in the embodiments of the present application may include base stations in various forms, such as macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation base stations (gNodeB, gNB), and home base stations.
  • Base station for example, home evolved nodeB, or home node B, HNB
  • BBU baseband unit
  • TRP transmission point
  • TP transmission point
  • mobile switching center etc.
  • the first access network device 30 in the embodiment of the present application may also refer to a centralized unit (CU) or a distributed unit (DU), or the network device may also be Composed of CU and DU.
  • CU and DU can be understood as the division of the base station from the perspective of logical functions. Wherein, the CU and the DU may be physically separated or deployed together, which is not specifically limited in the embodiment of the present application.
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • radio resource control (RRC) protocol layer For example, radio resource control (RRC) protocol layer, service data adaptation protocol stack (service data adaptation protocol, SDAP) protocol layer, and packet data convergence protocol (packet data convergence protocol, PDCP) protocol layer function settings
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • functions such as the radio link control (RLC) protocol layer, the media access control (MAC) protocol layer, and the physical (PHY) protocol layer are set in the DU.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the CU can be composed of a CU control plane (CU-CP) and a CU user plane (CU-UP).
  • CU-CP and CU-UP can be understood as slave logic functions to the CU The angle is divided.
  • CU-CP and CU-UP can be divided according to the protocol layer of the wireless network.
  • the functions of the RRC protocol layer and the PDCP protocol layer corresponding to the signaling radio bearer (signal radio bearer, SRB) are set in the CU-CP, and the data The function of the PDCP protocol layer corresponding to the data radio bearer (DRB) is set in the CU-UP.
  • the functions of the SDAP protocol layer may also be set in CU-UP.
  • the terminal device 40 in the embodiment of the present application may be a device used to implement a wireless communication function, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in a 5G network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal can be mobile or fixed.
  • the first access network device 30 and the terminal device 40 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application. .
  • FIG. 2 it is a schematic structural diagram of the first access network device 30 and the terminal device 40 provided in this embodiment of the application.
  • the terminal device 40 includes at least one processor (in FIG. 2 exemplarily includes a processor 401 for illustration) and at least one transceiver (in FIG. 2 exemplarily includes a transceiver 403 as an example for illustration) ).
  • the terminal device 40 may also include at least one memory (in FIG. 2 exemplarily includes a memory 402 as an example for illustration), at least one output device (in FIG. 2 exemplarily, an output device 404 is included as an example.
  • an input device in FIG. 2 exemplarily, an input device 405 is included as an example for description).
  • the processor 401, the memory 402, and the transceiver 403 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application. Circuit.
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 402 may exist independently, and is connected to the processor 401 through a communication line.
  • the memory 402 may also be integrated with the processor 401.
  • the memory 402 is used to store computer-executed instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 402, so as to implement the power adjustment method described in the embodiment of the present application.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 403 may use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, or wireless local area networks (WLAN).
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 communicates with the processor 401, and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 405 communicates with the processor 401, and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the first access network device 30 includes at least one processor (in FIG. 2 exemplarily includes a processor 301 as an example for illustration), at least one transceiver (in FIG. 2 exemplarily includes a transceiver 303 as an example) For description) and at least one network interface (in FIG. 2 exemplarily, one network interface 304 is included as an example for description).
  • the first access network device 30 may further include at least one memory (in FIG. 2 exemplarily, a memory 302 is included as an example for description).
  • the processor 301, the memory 302, the transceiver 303, and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 2) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • the processor 301, the memory 302, and the transceiver 303 reference may be made to the description of the processor 401, the memory 402, and the transceiver 403 in the terminal device 40, which will not be repeated here.
  • FIG. 3 is a specific structural form of the terminal device 40 provided in an embodiment of the application.
  • the functions of the processor 401 in FIG. 2 may be implemented by the processor 110 in FIG. 3.
  • the function of the transceiver 403 in FIG. 2 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 3.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 40 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 40.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 40 including wireless local area networks (WLAN) (such as Wi-Fi networks), bluetooth (BT), global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the wireless communication module 160 can provide an NFC wireless communication solution applied to the terminal device 40, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 40, which means that the first device includes an electronic tag (such as a radio frequency identification (RFID) tag). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • Wireless communication technologies can include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), and broadband code division. Multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), LTE, BT, GNSS, WLAN, NFC, FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 402 in FIG. 2 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 3.
  • an external memory such as a Micro SD card
  • the function of the output device 404 in FIG. 2 may be implemented by the display screen 194 in FIG. 3.
  • the display screen 194 is used to display images, videos, and so on.
  • the display screen 194 includes a display panel.
  • the function of the input device 405 in FIG. 2 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 3.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D e.g., a magnetic sensor 180D
  • an acceleration sensor 180E e.g., a distance sensor 180F
  • a proximity light sensor 180G e.g., a a proximity light sensor 180G
  • a fingerprint sensor 180H e.g., a fingerprint sensor 180H
  • the terminal device 40 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a "speaker"), a receiver 170B (also called a “handset"), and a microphone 170C (also called a "microphone", “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a "speaker”
  • a receiver 170B also called a "handset”
  • a microphone 170C also called a "microphone", “Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 40.
  • the terminal device 40 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the terminal device and/or the first access network device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples, and the embodiment of this application can also perform other Operation or deformation of various operations. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • the power adjustment method can be applied to a satellite communication system as an example, and the power adjustment method includes the following steps:
  • the first access network device obtains a first power backoff value.
  • the first power backoff value is the power backoff value at the first moment.
  • the first moment may be understood as the current moment
  • the power backoff value at the first moment may refer to the output power backoff of the first access network device obtained by the first access network device at the first moment. , OBO) value.
  • the first access network device may start to perform step S401 in various situations, that is, there may be multiple trigger scenarios for the execution of the power adjustment method provided in the embodiment of the present application.
  • the first access network device receives the instruction information.
  • acquiring the first power backoff value by the first access network device may include: when the indication information instructs the first access network device to adjust the power, the first access network device acquires the first power backoff value. That is, the first access network device obtains the first power backoff value based on the instruction.
  • the instruction information may be sent by the core network device to the first access network device, and the core network device may be used to assist the first access network device in completing data interaction with the ground data network.
  • the core network device may, for example, It can be an access and mobility management function (AMF) network element.
  • AMF access and mobility management function
  • the indication information may be sent by the second access network device to the first access network device.
  • the second access network device is an access network device deployed on a satellite or high-altitude platform different from the first access network device.
  • the second access network device may send the instruction information to the first access network device under different circumstances, for example:
  • One possible situation is that the output power of the first access network device is too large, which causes interference to the service transmission of the second access network device.
  • the second access network device can send data to the first access network device.
  • the indication information is used to instruct the first access network device to adjust the power.
  • Another possible situation is that for a fixed geographical area on the ground, a beam of the second access network device is covered by the beam of the second access network device within a period of time before the first moment (the end of this period of time is the first moment). Due to the movement of the satellite or high-altitude platform, at the first moment, the beam of the second access network device no longer covers the geographic area, and is covered by the beam of the first access network device. In this case, if within the time period when the beam of the second access network device covers the geographic area, the second access network device determines that power adjustment is required, but the second access network device no longer covers the geographic area , The instruction information can be sent to the first access network device, and the first access network device can subsequently adjust its own power.
  • obtaining the first power backoff value by the first access network device may include: the coverage of the beam of the first access network device does not change with the movement of the first access network device In the case of, the first access network device obtains the first power backoff value.
  • the movement of the first access network device can also be understood as the movement of the satellite or high-altitude platform on which the first access network device is deployed.
  • the first access network device needs to adjust its beam direction so that the coverage of the beam does not change
  • the distance between the first access network device and the terminal device, the loss of free space, and the signal strength received by the terminal device may change.
  • the first access network device may need to obtain a power backoff value to adjust its power.
  • acquiring the first power backoff value by the first access network device may include: when the coverage of the beam of the first access network device changes, the first access network device acquires the first power backoff value. A power back-off value.
  • a change in the coverage of the beam of the first access network device may be caused by a change in its beam direction or the movement of the first access network device.
  • the distance, free space loss, signal strength received by the terminal device, etc. may change, so the first access network device may need to obtain a power backoff value to adjust its power.
  • the first access network device adjusts the output power according to the first power backoff value.
  • the first access network device may compare the first power back-off value with the second power back-off value, and when the second power back-off value is different from the first power back-off value When the difference between the two is greater than or equal to the first threshold, step S402 is executed.
  • the first access network device adjusts the output power according to the first power backoff value.
  • the second power backoff value is the power backoff value at the second moment, and the second moment is earlier than the first moment.
  • the second moment may be the closest moment to the first moment when the first access network device adjusts the output power, that is, the second moment may be the last time the first access network device adjusts the output power; or, If step S402 is the first time the output power is adjusted after the first access network device is turned on or restarted, the second time can be any time between the time when the first access network device is turned on or restarted to the first time, and the corresponding Yes, the second power backoff value is 0.
  • the first threshold may be determined by the first access network device itself; or, it may be predefined by the protocol; or, it may be sent by the core network device or other devices to the first access network device.
  • This application The embodiment does not specifically limit this.
  • the first access network device adjusting the output power according to the first power back-off value may include: the first access network device determines the first output power according to the first power back-off value, and then connecting the first access network The output power of the device is adjusted to the first output power.
  • the first power backoff value and the first output power may satisfy the following formula A:
  • OBO t1 is the first power back-off value
  • P max is the maximum output power of the first access network device
  • P t1 is the first output power
  • the first access network device can complete its output power adjustment.
  • the first access network device can complete output power adjustment or fallback, reduce out-of-band leakage, improve in-band signal quality, and reduce inter-cell interference, thereby increasing cell throughput; on the other hand, , The first access network device adjusts its output power only when the difference between the power backoff values at the second time and the first time is greater than the threshold, which can prevent the first access network device from frequently adjusting power.
  • step S401 The method for obtaining the first power backoff value by the first access network device in step S401 will be described below.
  • the first access network device may first determine the large-scale loss difference, and then determine the first power backoff value according to the large-scale loss difference.
  • the large-scale loss difference is the difference between the large-scale loss at the first moment and the large-scale loss at the second moment.
  • the first access network device may determine the large-scale loss difference value according to at least one of the following: the ephemeris of the first access network device, the direction information of the beam of the first access network device, and the beam of the beam Weather information within the range, or geographic location information of the beam range of the beam.
  • the ephemeris of the first access network device can also be understood as the ephemeris of the satellite or high-altitude platform on which the first access network device is deployed, and the ephemeris of the first access network device can indicate the first access
  • the precise location or trajectory of the network device over time; the geographic location information of the beam range may indicate the geographic area covered by the beam, for example, may indicate the center position coordinates of the geographic area and/or the area radius of the geographic area.
  • the first access network device may also determine the large-scale loss difference according to the signal quality information reported by the terminal device.
  • the terminal device may measure channel-state information reference signal (CSI-RS), synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SSB), or demodulation reference signal Signals such as (demodulation reference signal, DMRS) obtain signal quality information, and report the signal quality information to the first access network device.
  • the signal quality information may be, for example, reference signal receiving power (RSRP).
  • RSRP reference signal receiving power
  • the large-scale loss difference and the first power back-off value may satisfy the following formula B:
  • OBO t1 is the first power backoff value
  • P max is the maximum output power of the first access network device
  • P t2 is the output power at the second moment
  • ⁇ PL t1 is the large-scale loss difference value.
  • the first output The power should be greater than the output power at the second moment.
  • the large-scale loss difference is less than 0, it means that the large-scale loss at the first time is less than the large-scale loss at the second time.
  • the first output power can be adaptively reduced, that is, it can be less than the output power at the second time.
  • the first access network device can independently complete the calculation of the first power backoff value without the assistance of other devices, which can improve the flexibility of obtaining the power backoff value.
  • obtaining the first power backoff value by the first access network device may include: the first access network device according to the first modulation and coding scheme (MCS), MCS and power The corresponding relationship of the back-off value determines the first power back-off value.
  • MCS modulation and coding scheme
  • the first MCS is the MCS that the first access network device starts to use at the first moment.
  • the first access network device may dynamically adjust the MCS used by it according to channel quality, etc.
  • the first access network device may determine the power backoff value according to the change of MCS For power adjustment.
  • the index of the MCS used by the first access network device is 19, At a moment, the first access network device starts to use the MCS whose index is 18, which can be obtained according to Table 1. At this time, the first power backoff value is 2.6 decibels (decibel, dB).
  • the first access network device can obtain the first power back-off value according to the correspondence between the MCS and the power back-off value, without calculating according to parameters, which can reduce the delay in obtaining the power back-off value, and also The calculation complexity of the first access network device can be reduced.
  • the first access network device may combine the foregoing first possible implementation manner and the second possible implementation manner to obtain the first power backoff value.
  • the first access network device may determine the large-scale loss difference, and determine the third power backoff value according to the large-scale loss difference.
  • the first access network The device also determines the fourth power back-off value according to the corresponding relationship between the first MCS, MCS and the power back-off value. You can refer to the related description in the second implementation manner above; finally, the first access network device determines the fourth power back-off value according to the third power The backoff value and the fourth power backoff value determine the first power backoff value.
  • the large-scale loss difference and the third power backoff value satisfy the following formula D:
  • OBO 3 is the third power backoff value
  • P max is the maximum output power of the first access network device
  • P t2 is the output power at the second moment
  • ⁇ PL t1 is the large-scale loss difference value.
  • the first power backoff value, the third power backoff value, and the fourth power backoff value may satisfy the following formula E:
  • OBO t1 is the first power back-off value
  • OBO 3 is the third power back-off value
  • OBO 4 is the fourth power back-off value
  • max(x,y) represents the maximum value of x and y.
  • the first power backoff value, the third power backoff value, and the fourth power backoff value may satisfy the following fourth formula F:
  • OBO t1 is the first power back-off value
  • OBO 3 is the third power back-off value
  • both ⁇ and ⁇ are one decimal place, that is, there is only one digit after the decimal point in the values of ⁇ and ⁇ , and this number can be 0.
  • the value of ⁇ can be 0.0, and the value of ⁇ can be Is 1.0.
  • the first power backoff value determined according to the third possible implementation manner is the same as the first power backoff value determined according to the second possible implementation manner; or, the value of ⁇ may be 0.4, the value of ⁇ can be 0.6; or the value of ⁇ can be 0.5, and the value of ⁇ can also be 0.5.
  • the values of ⁇ and ⁇ may be predefined by the protocol, or may be determined by the first access network device itself, or may be instructed by the core network device to the first access network device.
  • This embodiment of the present application There is no specific restriction on this.
  • the first two methods of obtaining the first power backoff value can be combined to optimize the combination of the two methods to obtain a more reasonable optimal power backoff value, thereby improving the accuracy of the power backoff. sex.
  • that the first access network device obtains the first power backoff value may include: the first access network device receives the first power backoff value from the control device.
  • the control device may also be different.
  • control device may be a second access network device.
  • the beam of the second access network device is covered by the beam of the second access network device within a period of time before the first moment (the end of this period of time is the first moment). Due to the movement of the satellite or high-altitude platform, at the first moment, the beam of the second access network device no longer covers the geographic area, and is covered by the beam of the first access network device.
  • the second access network device determines that power adjustment is required, and the first power backoff value has been calculated, but the second If the access network device no longer covers the geographic area, the second access network device may send the first power backoff value to the first access network device, and the first access network device will subsequently back off according to the first power Value to adjust its own power.
  • the second access network device may send the first power backoff value to the first access network device through an existing message, or may send the first power backoff value to the first access network device through a newly defined message.
  • the newly defined message may be a power configuration update (POEWR_CONFIGURATION_UPDATE) message.
  • the newly defined message may include a maximum power backoff (Max Transmit Power Backoff) field to indicate the first power backoff value. This application The embodiment does not specifically limit this.
  • the method for the second access network device to calculate the first power backoff value may be similar to the method for the first access network device to obtain the first power backoff value in the first possible implementation manner, or
  • the embodiment of the present application does not specifically limit this.
  • control device may be a core network device (for example, an AMF network element).
  • the core network device may calculate the first power backoff value, and send the calculated first power backoff value to the first access network device.
  • the core network device may send the first power backoff value to the first access network device through an existing message, for example, adding a field to the existing message to indicate the first power backoff value.
  • the core network device taking the core network device as an AM F network element as an example, the AMF network element can add the maximum power back-off ( The Max Transmit Power Back off) field is used to indicate the first power backoff value.
  • the core network device may also send the first power backoff value to the first access network device through a newly defined message.
  • the newly defined message may be, for example, a radio access network configuration update (RAN_CONFIGURATION_UPDATE) message.
  • the message may include a maximum power backoff (Max Transmit Power Backoff) field to indicate the first power backoff value, which is not specifically limited in this embodiment of the application.
  • the first access network device does not need to calculate or look up a table by itself to obtain the first power backoff value, which can reduce the calculation complexity of the first access network device.
  • the power adjustment method can be applied to a satellite communication system as an example, and the power adjustment method includes the following steps:
  • the terminal device determines a large-scale loss difference.
  • the large-scale loss difference is the difference between the large-scale loss at the first time and the large-scale loss at the second time.
  • first time and the second time please refer to the correlation in the embodiment shown in FIG. 4 The description will not be repeated here.
  • the terminal device can obtain the large-scale loss difference in multiple ways.
  • determining the large-scale loss by the terminal device may include: the terminal device determines the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device, the ephemeris of the first access network device The direction information of the beam, the weather information within the beam range of the beam, or the geographic location information of the beam range of the beam.
  • the terminal device determines the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device, the ephemeris of the first access network device The direction information of the beam, the weather information within the beam range of the beam, or the geographic location information of the beam range of the beam.
  • the terminal device determining the large-scale loss may include: the terminal device obtains signal quality information at the second time, and determines the large-scale loss at the second time according to the signal quality information at the second time; The device obtains the signal quality information at the first moment, and determines the large-scale loss at the first moment according to the signal quality information at the first moment; the terminal device calculates the difference between the large-scale loss at the first moment and the large-scale loss at the second moment The difference is determined as the large-scale loss difference.
  • the signal quality information at the second moment may be obtained by the terminal device by measuring downlink reference information at the second moment; the signal quality information at the first moment may be obtained by the terminal device by measuring downlink reference information at the first moment.
  • the signal quality information may be one or more of received signal code power (RSCP), RSRP, or reference signal receiving quality (RSRQ).
  • RSCP received signal code power
  • RSRP reference signal receiving quality
  • RSSQ reference signal receiving quality
  • the terminal device sends the large-scale loss difference or the index of the large-scale loss difference to the first access network device.
  • the first access network device receives the large-scale loss difference or the index of the large-scale loss difference from the terminal device.
  • the first access network device may determine the large-scale loss difference through the index after receiving the index.
  • the first access network device determines a first power backoff value according to the large-scale loss difference value.
  • the relationship between the large-scale loss difference value and the first power backoff value can satisfy the above formula B, and the above related description can be referred to, and the details are not repeated here.
  • the action performed by the first access network device may be understood as an action for the first access network device to obtain the first power backoff value.
  • the first access network device adjusts the output power according to the first power backoff value.
  • This step S504 is the same as the above step S402, and reference can be made to the related description in the above step S402, which will not be repeated here.
  • the first access network device can obtain the power back-off value according to the large-scale loss difference, and according to the power
  • the back-off value completes the adjustment or back-off of the output power, reduces out-of-band leakage, improves in-band signal quality, and reduces inter-cell interference, thereby increasing cell throughput; on the other hand, the first access network device
  • the output power is adjusted only when the difference between the power backoff values at the first moment is greater than the threshold value, which can avoid frequent adjustment of power by the first access network device.
  • the action of the first access network device may be called by the processor 301 in the first access network device 30 shown in FIG. 2 to call the application program stored in the memory 302
  • the code is executed by instructing the first access network device.
  • the action of the terminal device can be called by the processor 401 in the terminal device 40 shown in FIG.
  • the application code is used to instruct the terminal device to execute, and this embodiment does not impose any restriction on this.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used for the terminal device, and the methods and/or steps implemented by the first access network device /Or the steps can also be implemented by a component (for example, a chip or a circuit) that can be used in the first access network device.
  • components such as chips or circuits
  • the steps can also be implemented by a component (for example, a chip or a circuit) that can be used in the first access network device.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the first access network device in the foregoing method embodiment , Or a device including the above-mentioned first access network device, or a component that can be used for the first access network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a schematic structural diagram of a terminal device 60.
  • the terminal device 60 includes a processing module 601 and a transceiver module 602.
  • the transceiver module 602 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver, or communication interface.
  • the transceiver module 602 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the terminal device in the above method embodiment.
  • the processing module 601 may be used to perform the above method embodiment. Steps other than receiving and sending steps performed by the terminal device.
  • the transceiver module 602 is used to obtain information/messages, which can also be understood as the transceiver module 602 is used to receive information/messages; the transceiver module 602 is used to output information/messages, and also It can be understood that the transceiver module 602 is used to send information/messages.
  • the processing module 601 is used to determine the large-scale loss difference, the large-scale loss difference being the difference between the large-scale loss at the first moment and the large-scale loss at the second moment, which is earlier than the first moment Transceiving module 602, used to output the large-scale loss difference or the index of the large-scale loss difference, or in other words, the transceiver module 602, used to send the large-scale loss difference or the large-scale loss difference to the first access network device Index of the scale loss difference.
  • the processing module 601, configured to determine the large-scale loss difference may include: a processing module 601, configured to determine the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device, the first 1. The beam direction information of the access network equipment, the weather information within the beam range, or the geographic location information of the beam range.
  • the processing module 601, configured to determine the large-scale loss difference may include: a processing module 601, configured to obtain signal quality information at the second time, and determine the large-scale loss at the second time according to the signal quality information at the second time Scale loss; processing module 601, used to obtain signal quality information at the first moment, and determine the large-scale loss at the first moment according to the signal quality information at the first moment; processing module 601, used to calculate the large-scale loss at the first moment The difference between the large-scale loss at the second moment and the large-scale loss is determined as the large-scale loss difference.
  • the terminal device 60 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 60 may take the form of the terminal device 40 shown in FIG. 2.
  • the processor 401 in the terminal device 40 shown in FIG. 2 may invoke the computer execution instruction stored in the memory 402 to make the terminal device 40 execute the power adjustment method in the foregoing method embodiment.
  • the function/implementation process of the processing module 601 and the transceiver module 602 in FIG. 6 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 2 calling the computer execution instructions stored in the memory 402.
  • the function/implementation process of the processing module 601 in FIG. 6 can be realized by the processor 401 in the terminal device 40 shown in FIG. /The implementation process can be implemented by the transceiver 403 in the terminal device 40 shown in FIG. 2.
  • the terminal device 60 provided in this embodiment can perform the above-mentioned power adjustment method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 7 shows a schematic structural diagram of a first access network device 70.
  • the first access network device 70 includes a processing module 701 and an acquisition module 702.
  • the first access network device further includes a transceiver module 703.
  • the transceiver module 703 may also be referred to as a transceiver unit to implement sending and/or receiving functions.
  • it may be a transceiver circuit, a transceiver, or a transceiver.
  • communication interface may be a transceiver circuit, a transceiver, or a transceiver.
  • the transceiver module 703 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the first access network device in the foregoing method embodiment.
  • the processing module 701 and the acquiring module 702 may It is used to execute other steps performed by the first access network device in the foregoing method embodiment except for receiving and sending steps.
  • the transceiver module 703 is used to obtain information/messages, which can also be understood as the transceiver module 703 is used to receive information/messages; the transceiver module 703 is used to output information/messages, and also It can be understood that the transceiver module 703 is used to send information/messages.
  • the obtaining module 702 is configured to obtain a first power back-off value, where the first power back-off value is the power back-off value at the first moment; the processing module 701 is configured to compare the second power back-off value with the first power When the difference between the backoff values is greater than or equal to the first threshold, the output power is adjusted according to the first power backoff value.
  • the second power backoff value is the power backoff value at the second moment, which is earlier than the first For a moment.
  • the processing module 701, configured to adjust the output power according to the first power backoff value may include: a processing module 701, configured to determine the first output power according to the first power backoff value; the processing module 701, also configured to Adjust the output power of the first access network device to the first output power.
  • the obtaining module 702 is further configured to determine the large-scale loss difference, where the large-scale loss difference is the difference between the large-scale loss at the first moment and the large-scale loss at the second moment; the obtaining module 702,
  • the method for obtaining the first power backoff value may include: an obtaining module 702, configured to determine the first power backoff value according to the large-scale loss difference value.
  • the obtaining module 702 is further configured to determine the large-scale loss difference, and may include: the obtaining module 702 is further configured to determine the large-scale loss difference according to at least one of the following: the ephemeris of the first access network device , The beam direction information of the first access network device, the weather information within the beam range, or the geographic location information of the beam range.
  • the obtaining module 702, configured to obtain the first power backoff value may include: the obtaining module 702, configured to determine the first power according to the corresponding relationship between the first modulation and coding scheme MCS, MCS, and the power backoff value Backoff value, the first MCS is the MCS that the first access network device starts to use at the first moment.
  • the obtaining module 702 is configured to determine the first power back-off value according to the large-scale loss difference value, and may include: the obtaining module 702 is configured to determine the third power back-off value according to the large-scale loss difference value; The acquiring module 702 is further configured to determine a fourth power back-off value according to the corresponding relationship between the first MCS, MCS and the power back-off value.
  • the first MCS is the MCS that the communication device starts to use at the first moment; the acquiring module 702, It is also used to determine the first power back-off value according to the third power back-off value and the fourth power back-off value.
  • the obtaining module 702, configured to obtain the first power back-off value may include: the obtaining module 702, configured to receive the first power back-off value from the control device.
  • the transceiver module 703 is configured to obtain indication information, or the transceiver module 703 is configured to receive indication information; the obtaining module 702 is configured to obtain the first power back-off value, and may include: an obtaining module 702, configured to The indication information indicates that when the first access network device adjusts power, obtain the first power backoff value.
  • the acquiring module 702, configured to acquire the first power backoff value may include: the acquiring module 702, configured to prevent the coverage of the beam of the first access network device from occurring with the movement of the first access network device In the case of a change, the first power backoff value is obtained.
  • the obtaining module 702, configured to obtain the first power backoff value may include: the obtaining module 702, configured to obtain the first power backoff value when the coverage of the beam of the first access network device changes .
  • the first access network device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first access network device 70 may take the form of the first access network device 30 shown in FIG. 2.
  • the processor 301 in the first access network device 30 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 302 to cause the first access network device 30 to execute the power adjustment method in the foregoing method embodiment.
  • the function/implementation process of the processing module 701, the acquisition module 702, and the transceiver module 703 in FIG. 7 can be used to call the computer stored in the memory 302 through the processor 301 in the first access network device 30 shown in FIG. Implement instructions to achieve.
  • the function/implementation process of the processing module 701 and the acquisition module 702 in FIG. 7 can be implemented by the processor 301 in the first access network device 30 shown in FIG.
  • the function/implementation process of the transceiver module 703 in 7 can be implemented by the transceiver 303 in the first access network device 30 shown in FIG. 2.
  • the first access network device 70 provided in this embodiment can perform the above-mentioned power adjustment method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device also includes an interface circuit, the interface circuit is a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory and may be directly downloaded from The memory is read, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), the communication device includes an interface circuit and a logic circuit, and the interface circuit is used to obtain the data to be processed and / Or output processed data; the logic circuit is used to execute the method in any of the above method embodiments, process the data to be processed and/or generate processed data.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes an interface circuit and a logic circuit, and the interface circuit is used to obtain the data to be processed and / Or output processed data; the logic circuit is used to execute the method in any of the above method embodiments, process the data to be processed and/or generate processed data.
  • the foregoing data to be processed may be at least one of the following: the ephemeris of the first access network device, the first The beam direction information of the access network equipment, the weather information within the beam range, or the geographic location information of the beam range; in another possible case, the above-mentioned data to be processed may be: the signal quality information at the second moment and the first Signal quality information at the moment.
  • the processed data may be a large-scale loss difference or an index of a large-scale loss difference.
  • the foregoing data to be processed may be at least one of the following: the satellite of the first access network device Calendar, beam direction information of the first access network device, weather information within the beam range, or geographic location information of the beam range; in another possible case, the above-mentioned data to be processed may be the first MCS; and another Where possible, the aforementioned data to be processed may be a large-scale loss difference or an index of a large-scale loss difference. Correspondingly, in the three cases, the processed data may be the first power backoff value.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种功率调整方法、装置及系统,适用于卫星通信等领域,可以降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量。该方法中:第一接入网设备可以获取第一时刻的功率回退值,比较第一时刻的功率回退值与第二时刻的功率回退值,第二时刻早于第一时刻。在第二时刻的功率回退值与第一时刻的功率回退值之间的差值大于或等于第一阈值时,根据第一时刻的功率回退值调整输出功率。

Description

功率调整方法、装置及系统
本申请要求于2020年04月22日提交国家知识产权局、申请号为202010323558.9、申请名称为“功率调整方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信领域,尤其涉及功率调整方法、装置及系统。
背景技术
卫星通信系统与地面第五代(5th generation,5G)移动网络相互融合,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的重要方向。
其中,部署于卫星上的基站,其功放器件的额定功率较大,在卫星通信系统与5G相互融合时,会更加突出功放的非线性影响,造成带外泄漏、带内载波干扰,同时造成小区间干扰增加,因此,该类基站的功率回退不可避免,从而有必要设计合理的方案以实现该类基站的功率回退。
发明内容
本申请实施例提供一种功率调整方法、装置及系统,可以降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种功率调整方法,该方法可以应用于卫星通信系统,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备确定大尺度损耗差值,该大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值,该第二时刻早于第一时刻;终端设备向第一接入网设备发送该大尺度损耗差值或该大尺度损耗差值的索引。
基于该方案,由于终端设备可以向第一接入网设备指示大尺度损耗差值,从而可以使得第一接入网设备根据该大尺度损耗差值获取功率回退值,并根据该功率回退值完成输出功率的调整或回退,降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量。
在一种可能的设计中,终端设备确定大尺度损耗差值,可以包括:终端设备根据以下至少一项确定大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
基于该方案,终端设备无需对下行信号进行测量,即可根据上述至少一项参数确定大尺度损耗差值,可以降低终端设备的功耗。
在一种可能的设计中,终端设备确定大尺度损耗差值,可以包括:终端设备获取第二时刻的信号质量信息,并根据第二时刻的信号质量信息确定第二时刻的大尺度损耗;终端设备获取第一时刻的信号质量信息,并根据第一时刻的信号质量信息确定第一时刻的大尺度损耗;终端设备将第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值确定为该大尺度损耗差值。
基于该方案,终端设备可以确定大尺度损耗差值,可以提高获取的大尺度损耗差值 的准确性,从而提升第一接入网设备功率调整的精度。
第二方面,提供了一种功率调整方法,该方法可以应用于卫星通信系统,该方法可以由第一接入网设备执行,也可以由第一接入网设备的部件,例如第一接入网设备的处理器、芯片、或芯片系统等执行,本申请以第一接入网设备执行该方法为例进行说明。该方法包括:第一接入网设备获取第一功率回退值,该第一功率回退值为第一时刻的功率回退值;当第二功率回退值与第一功率回退值之间的差值大于或等于第一阈值时,第一接入网设备根据第一功率回退值调整输出功率,该第二功率回退值为第二时刻的功率回退值,第二时刻早于第一时刻。
基于该方案,一方面,可以使得第一接入网设备完成输出功率的调整或回退,降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量;另一方面,第一接入网设备在第二时刻和第一时刻的功率回退值之间的差值大于阈值时,才调整其输出功率,可以避免第一接入网设备频繁调整功率。
在一种可能的设计中,第一接入网设备根据第一功率回退值调整输出功率,可以包括:第一接入网设备根据第一功率回退值确定第一输出功率,并将第一接入网设备的输出功率调整至所述第一输出功率。
在一种可能的设计中,该功率调整方法还包括:第一接入网设备确定大尺度损耗差值,该大尺度损耗差值为该第一时刻的大尺度损耗与该第二时刻的大尺度损耗之间的差值;第一接入网设备获取第一功率回退值,包括:第一接入网设备根据该大尺度损耗差值,确定该第一功率回退值。
基于该可能的设计,第一接入网设备可以自主完成第一功率回退值的计算,无需其他设备的辅助,可以提高获取功率回退值的灵活性。
在一种可能的设计中,第一接入网设备确定大尺度损耗差值,包括:第一接入网设备根据以下至少一项确定大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
在一种可能的设计中,大尺度损耗差值与所述第一功率回退值满足如下公式:
OBO t1=P max-P t2-ΔPL t1
其中,OBO t1为所述第一功率回退值,P max为所述第一接入网设备的最大输出功率,P t2为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
在一种可能的设计中,第一接入网设备获取第一功率回退值,包括:第一接入网设备根据第一调制编码方案MCS、MCS与功率回退值的对应关系,确定第一功率回退值,第一MCS为第一接入网设备在第一时刻开始使用的MCS。
基于该可能的设计,第一接入网设备可以根据MCS与功率回退值的对应关系获取第一功率回退值,无需根据参数进行计算,可以降低获取功率回退值的时延,还可以降低第一接入网设备的计算复杂度。
在一种可能的设计中,第一接入网设备根据大尺度损耗差值,确定第一功率回退值,包括:第一接入网设备根据该大尺度损耗差值,确定第三功率回退值;第一接入网设备根据第一MCS、MCS与功率回退值的对应关系,确定第四功率回退值,该第一MCS为第一接入网设备在第一时刻开始使用的MCS;第一接入网设备根据该第三功率回退值和该第四功率回退值,确定该第一功率回退值。
基于该可能的设计,可以结合前两种获取第一功率回退值的方式,对该两种方式做最优化组合,得到更合理的最佳功率回退值,进而提高功率回退的准确性。
在一种可能的设计中,该大尺度损耗差值与所述第三功率回退值满足如下公式:
OBO 3=P max-P t2-ΔPL t1
其中,OBO 3为所述第三功率回退值,P max为所述第一接入网设备的最大输出功率,P t2为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
在一种可能的设计中,第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
OBO t1=max(OBO 3,OBO 4)
其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,max(x,y)表示x和y中的最大值;
或者,所述第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
OBO t1=αOBO 3+βOBO 4
其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,0≤α≤1,0≤β≤1,α+β=1。
在一种可能的设计中,第一接入网设备获取第一功率回退值,包括:第一接入网设备接收来自控制设备的第一功率回退值。
基于该可能的实现方式,第一接入网设备无需自行计算或查表以获取第一功率回退值,可以降低第一接入网设备的计算复杂度。
在一种可能的设计中,在第一接入网设备获取第一功率回退值之前,该功率调整方法还包括:第一接入网设备接收指示信息;第一接入网设备获取第一功率回退值,包括:当该指示信息指示第一接入网设备调整功率时,第一接入网设备获取第一功率回退值。
在一种可能的设计中,第一接入网设备获取第一功率回退值,包括:在该第一接入网设备的波束的覆盖范围不随该第一接入网设备的运动而发生变化的情况下,第一接入网设备获取第一功率回退值。
在一种可能的设计中,第一接入网设备获取第一功率回退值,包括:在该第一接入网设备的波束的覆盖范围发生变化时,第一接入网设备获取第一功率回退值。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。
第五方面,提供了一种通信装置,包括:接口电路和逻辑电路,该接口电路可以为代码/数据读写接口电路,该接口电路用于获取待处理的数据和/或输出处理后的数据;该处 理器用于执行上述任一方面所述的方法,对该待处理的数据进行处理和/或生成该处理后的数据。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。
第六方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。
第八方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接入网设备,或者包含上述第一接入网设备的装置,或者上述第一接入网设备中包含的装置。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供一种通信系统,该通信系统包括上述方面所述的终端设备和上述方面所述的第一接入网设备。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种终端设备和第一接入网设备的结构示意图;
图3为本申请实施例提供的另一种终端设备的结构示意图;
图4为本申请实施例提供的一种功率调整方法的流程示意图;
图5为本申请实施例提供的另一种功率调整方法的流程示意图;
图6为本申请实施例提供的一种终端设备的结构示意图;
图7为本申请实施例提供的一种第一接入网设备的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
卫星通信:
卫星通信具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理位置限制等 显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播、对地观测等多个领域。
按照卫星高度,即卫星轨位高度,可以将卫星分为高椭圆轨道(highly elliptical orbiting,HEO)卫星、高轨(geostationary earth orbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。其中,GEO卫星又称静止卫星,其运动速度与地球自转速度相同,因此GEO卫星相对地面保持静止状态,对应的,GEO卫星的小区也是静止的。GEO卫星小区的覆盖较大,一般情况下小区的直径为500km。LEO卫星相对地面移动较快,大约7Km/s,因此LEO卫星提供的服务覆盖区域也随之移动。
此外,高空平台(high altitude platform station,HAPS)通信是与卫星通信类似的通信技术,在HAPS通信中,基站或部分基站功能部署于高空平台。HAPS通信系统和卫星通信系统可以统称为非地面网络(non-terrestrial network,NTN)。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或者多个,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项
(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中“-”表示前后关联的对象是一种“和”的关系,a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址
(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、卫星通信系统、NTN系统和其它系统等。术语“系统”可以和“网络”相互替换。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图1所示,为本申请实施例提供的一种通信系统10。该通信系统10包括第一接入网设备30,以及与该第一接入网设备30连接的一个或多个终端设备40。可选的,不同的终端设备40之间可以相互通信。
可选的,本申请实施例中的第一接入网设备30可以部署于高空平台或者卫星20。可选的,该通信系统10还可以包括测控站和核心网网关,第一接入网设备30可以连接到核心网网关,通过该核心网网关与地面数据网络(data network,DN)完成数据交互。测控站用于完成对高空平台或卫星20的测量、遥测等,例如,控制高空平台或卫星20的飞行姿态,控制载荷设备的开关等。
可选的,本申请实施例中的第一接入网设备30,是一种将终端设备40接入到无线 网络的设备,可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
一种可能的方式中,本申请实施例中的第一接入网设备30可以也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备也可以是CU和DU组成的。CU和DU可以理解为是对基站从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如,无线资源控制(radio resource control,RRC)协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,本申请实施例对此不做具体限定。
可选的,CU可以由CU控制面(CU control plane,CU-CP)和CU用户面(CU user plane,CU-UP)组成,CU-CP和CU-UP可以理解为是对CU从逻辑功能的角度进行划分。其中,CU-CP和CU-UP可以根据无线网络的协议层划分,例如,RRC协议层和信令无线承载(signal radio bearer,SRB)对应的PDCP协议层的功能设置在CU-CP中,数据无线承载(data radio bearer,DRB)对应的PDCP协议层的功能设置在CU-UP中。此外,SDAP协议层的功能也可能设置在CU-UP中。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的第一接入网设备30与终端设备40也可以称之为通信装 置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图2所示,为本申请实施例提供的第一接入网设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图2中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图2中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图2中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图2中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图2中示例性的以包括一个输入设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的功率调整方法。可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、RAN、或者无线局域网(wireless local area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
第一接入网设备30包括至少一个处理器(图2中示例性的以包括一个处理器301 为例进行说明)、至少一个收发器(图2中示例性的以包括一个收发器303为例进行说明)和至少一个网络接口(图2中示例性的以包括一个网络接口304为例进行说明)。可选的,第一接入网设备30还可以包括至少一个存储器(图2中示例性的以包括一个存储器302为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图2中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
结合图2所示的终端设备40的结构示意图,示例性的,图3为本申请实施例提供的终端设备40的一种具体结构形式。
其中,在一些实施例中,图2中的处理器401的功能可以通过图3中的处理器110实现。
在一些实施例中,图2中的收发器403的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备40是第一设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备40是第二设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线 通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),LTE,BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图2中的存储器402的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图2中的输出设备404的功能可以通过图3中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图2中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图3中的传感器模块180来实现。示例性的,如图3所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图3所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图3所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,以图4所示的第一接入网设备30与任一终端设备40进行交互为例,对本申请实施例提供的功率调整方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的,本申请实施例中,终端设备和/或第一接入网设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
如图4所示,为本申请实施例提供的一种功率调整方法。该功率调整方法示例性的可以应用于卫星通信系统,该功率调整方法包括如下步骤:
S401、第一接入网设备获取第一功率回退值。
其中,第一功率回退值为第一时刻的功率回退值。
可选的,第一时刻可以理解为当前时刻,第一时刻的功率回退值可以指第一接入网设备在第一时刻获取的第一接入网设备的输出功率回退(output back off,OBO)值。
可选的,第一接入网设备可以在多种情况下开始执行该步骤S401,即本申请实施例提供的功率调整方法的执行触发场景可以有多种。
一种可能的实现方式中,在步骤S401前,第一接入网设备接收指示信息。此时,第一接入网设备获取第一功率回退值,可以包括:当该指示信息指示第一接入网设备调整功率时,第一接入网设备获取第一功率回退值。也就是说,第一接入网设备基于指示获取第一功率回退值。
可选的,该指示信息可以是核心网设备发送给第一接入网设备的,该核心网设备可以用于辅助第一接入网设备完成与地面数据网络的数据交互,该核心网设备例如可以为接入和移动性管理功能(access and mobility management function,AMF)网元。
可选的,该指示信息可以是第二接入网设备发送给第一接入网设备的。该第二接入网设备为部署于与第一接入网设备不同的卫星或高空平台的接入网设备。
可选的,第二接入网设备可以在不同的情况下向第一接入网设备发送该指示信息,示例性的:
一种可能的情况为,第一接入网设备的输出功率过大,对第二接入网设备的业务传输造成干扰,此时,第二接入网设备可以向第一接入网设备发送该指示信息,以指示第一接入网设备调整功率。
另一种可能的情况为,对于地面上固定的地理区域,在第一时刻之前的一段时间(该段时间的结束时刻为第一时刻)内,由第二接入网设备的波束覆盖。由于卫星或高空平台的运动,在第一时刻,第二接入网设备的波束不再覆盖该地理区域,由第一接入网设备的波束覆盖。在该情况下,若在第二接入网设备的波束覆盖该地理区域的时间段内,第二接入网设备确定需要进行功率调整,但第二接入网设备已不再覆盖该地理区域,则可以向第一接入网设备发送该指示信息,后续由第一接入网设备调整自身功率。
另一种可能的实现方式中,第一接入网设备获取第一功率回退值,可以包括:在第一接入网设备的波束的覆盖范围不随第一接入网设备的运动而发生变化的情况下,第一接入网设备获取第一功率回退值。
可以理解的是,第一接入网设备的运动也可以理解为部署有第一接入网设备的卫星或高空平台的运动。
可选的,为了保证第一接入网设备发生运动时第一接入网设备的波束的覆盖范围不发生变化,第一接入网设备需要调整其波束方向以使波束的覆盖范围不发生变化,在波束方向发生变化、第一接入网设备不断运动的情况下,第一接入网设备与终端设备之间的距离、自由空间损耗、终端设备接收的信号强度等可能会发生变化,从而第一接入网设备可能需要获取功率回退值以调整其功率。
又一种可能的实现方式中,第一接入网设备获取第一功率回退值,可以包括:在第一接入网设备的波束的覆盖范围发生变化时,第一接入网设备获取第一功率回退值。
可选的,第一接入网设备的波束的覆盖范围发生变化,可能由其波束方向的变化或第一接入网设备的运动导致,此时,第一接入网设备与终端设备之间的距离、自由空间损耗、终端设备接收的信号强度等可能会发生变化,从而第一接入网设备可能需要获取功率回退值以调整其功率。
S402、第一接入网设备根据第一功率回退值调整输出功率。
可选的,第一接入网设备获取第一功率回退值后,可以比较第一功率回退值与第二功率回退值,当第二功率回退值与第一功率回退值之间的差值大于或等于第一阈值时,执行该步骤S402。
也就是说,当第二功率回退值与第一功率回退值之间的差值大于或等于第一阈值时,第一接入网设备根据第一功率回退值调整输出功率。第二功率回退值为第二时刻的功率回退值,第二时刻早于第一时刻。
可选的,第二时刻可以为离第一时刻最近的,第一接入网设备调整输出功率的时刻,即第二时刻可以为第一接入网设备上一次调整输出功率的时刻;或者,若步骤S402为第一接入网设备开机或重启后第一次调整输出功率,第二时刻可以为第一接入网设备开机或重启的时刻到第一时刻之间的任何时刻,此时相应的,第二功率回退值为0。
可选的,第一阈值可以是第一接入网设备自行确定的;或者,可以是协议预定义的;或者,可以是核心网设备或其他设备发送给第一接入网设备的,本申请实施例对此不做具体限定。
可选的,第一接入网设备根据第一功率回退值调整输出功率,可以包括:第一接入网设备根据第一功率回退值确定第一输出功率,再将第一接入网设备的输出功率调整至第一输出功率。
可选的,第一功率回退值与第一输出功率,可以满足如下公式A:
P t1=P max-OBO t1
其中,OBO t1为第一功率回退值,P max为第一接入网设备的最大输出功率,P t1为第一输出功率。
至此,第一接入网设备可以完成其输出功率的调整。
基于该方案,一方面,可以使得第一接入网设备完成输出功率的调整或回退,降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量;另一方面,第一接入网设备在第二时刻和第一时刻的功率回退值之间的差值大于阈值时,才调整其输出功率,可以避免第一接入网设备频繁调整功率。
下面对步骤S401中,第一接入网设备获取第一功率回退值的方法进行说明。
第一种可能的实现方式中,第一接入网设备可以先确定大尺度损耗差值,再根据该大尺度损耗差值,确定第一功率回退值。
其中,该大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值。
可选的,第一接入网设备可以根据以下至少一项确定该大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束的方向信息、该波束的波束范围内的天气信息、或者该波束的波束范围的地理位置信息。
可选的,第一接入网设备的星历,也可以理解为部署有第一接入网设备的卫星或高空平台的星历,第一接入网设备的星历可以指示第一接入网设备的随时间而变的精确位置或轨迹;波束范围的地理位置信息可以指示波束所覆盖的地理区域,例如,可以指示该地理区域的中心位置坐标和/或该地理区域的区域半径。
可选的,第一接入网设备也可以根据终端设备上报的信号质量信息确定该大尺度损耗差值。示例性的,终端设备可以测量信道状态信息参考信号(channel-state  information reference signal,CSI-RS)、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)、或解调参考信号(demodulation reference signal,DMRS)等信号,得到信号质量信息,并向第一接入网设备上报该信号质量信息,该信号质量信息例如可以为参考信号接收功率(reference signal receiving power,RSRP)。
可选的,第一接入网设备根据该大尺度损耗差值,确定第一功率回退值时,该大尺度损耗差值与第一功率回退值可以满足如下公式B:
OBO t1=P max-P t2-ΔPL t1
其中,OBO t1为第一功率回退值,P max为第一接入网设备的最大输出功率,P t2为第二时刻的输出功率,ΔPL t1为该大尺度损耗差值。
可选的,结合公式A和公式B可得,第一输出功率和该大尺度损耗差值,满足如下公式C:
P t1=P t2+ΔPL t1
由该公式C可知,当该大尺度损耗差值大于0时,表示第一时刻的大尺度损耗高于第二时刻的大尺度损耗,为了保证第一接入网设备的通信性能,第一输出功率应大于第二时刻的输出功率。当该大尺度损耗差值小于0时,表示第一时刻的大尺度损耗小于第二时刻的大尺度损耗,此时,第一输出功率可以适应性的降低,即可以小于第二时刻的输出功率。
基于该可能的实现方式,第一接入网设备可以自主完成第一功率回退值的计算,无需其他设备的辅助,可以提高获取功率回退值的灵活性。
第二种可能的实现方式中,第一接入网设备获取第一功率回退值,可以包括:第一接入网设备根据第一调制编码方案(modulation and coding scheme,MCS)、MCS与功率回退值的对应关系,确定第一功率回退值。
其中,第一MCS为第一接入网设备在第一时刻开始使用的MCS。
也就是说,在第一时刻之前,第一接入网设备使用的MCS不为第一MCS。可选的,第一接入网设备可以根据信道质量等动态调整其所使用的MCS,当MCS发生变化时,为了保证通信性能,第一接入网设备可以根据MCS的变化确定功率回退值以进行功率调整。
示例性的,以MCS与功率回退值的对应关系包括如下表1所示的对应关系为例,若在第一时刻之前,第一接入网设备所使用的MCS的索引为19,在第一时刻,第一接入网设备开始使用索引为18的MCS,则根据表1可得,此时第一功率回退值为2.6分贝(decibel,dB)。
表1
MCS索引 OBO最佳回退值(dB)
18 2.6
19 3.1
20 3.1
基于该可能的实现方式,第一接入网设备可以根据MCS与功率回退值的对应关系获取第一功率回退值,无需根据参数进行计算,可以降低获取功率回退值的时延,还可以降低第一接入网设备的计算复杂度。
第三种可能的实现方式中,第一接入网设备可以结合上述第一种可能的实现方式和 第二种可能的实现方式,获取第一功率回退值。
可选的,第一接入网设备可以确定大尺度损耗差值,根据大尺度损耗差值确定第三功率回退值,可参考上述第一种实现方式中的相关描述;第一接入网设备还根据第一MCS、MCS与功率回退值的对应关系,确定第四功率回退值,可参考上述第二种实现方式中的相关描述;最后,第一接入网设备根据第三功率回退值和第四功率回退值,确定第一功率回退值。
可选的,该大尺度损耗差值与第三功率回退值满足如下公式D:
OBO 3=P max-P t2-ΔPL t1
其中,OBO 3为第三功率回退值,P max为第一接入网设备的最大输出功率,P t2为第二时刻的输出功率,ΔPL t1为该大尺度损耗差值。
可选的,第一功率回退值、第三功率回退值、以及第四功率回退值,可以满足如下公式E:
OBO t1=max(OBO 3,OBO 4)
其中,OBO t1为第一功率回退值,OBO 3为第三功率回退值,OBO 4为第四功率回退值,max(x,y)表示x和y中的最大值。
或者,第一功率回退值、第三功率回退值、以及第四功率回退值,可以满足如下第四公式F:
OBO t1=αOBO 3+βOBO 4
其中,OBO t1为第一功率回退值,OBO 3为第三功率回退值,OBO 4为第四功率回退值,0≤α≤1,0≤β≤1,α+β=1。
可选的,α和β均为一位小数,即α和β的取值中小数点后只有一个数字,该数字可以为0,示例性的,α的取值可以为0.0,β的取值可以为1.0,此时,根据第三种可能的实现方式确定的第一功率回退值与根据上述第二种可能的实现方式确定的第一功率回退值相同;或者,α的取值可以为0.4,β的取值可以为0.6;或者α的取值可以为0.5,β的取值也可以为0.5。
可以理解的是,上述α和β的取值仅是本申请的示例性说明,本申请实施例对α和β的具体取值不进行限制。
可选的,α和β的取值可以是协议预定义的,或者可以是第一接入网设备自行确定的,或者可以是核心网设备向第一接入网设备指示的,本申请实施例对此不做具体限定。
基于该可能的实现方式,可以结合前两种获取第一功率回退值的方式,对该两种方式做最优化组合,得到更合理的最佳功率回退值,进而提高功率回退的准确性。
第四种可能的实现方式中,第一接入网设备获取第一功率回退值,可以包括:第一接入网设备接收来自控制设备的第一功率回退值。可选的,在本申请实施例的不同实施场景下,控制设备也可能不同。
在一种可能的实施场景下,控制设备可以为第二接入网设备。
可选的,对于地面上固定的地理区域,在第一时刻之前的一段时间(该段时间的结束时刻为第一时刻)内,由第二接入网设备的波束覆盖。由于卫星或高空平台的运动,在第一时刻,第二接入网设备的波束不再覆盖该地理区域,由第一接入网设备的波束覆盖。在该情况下,若在第二接入网设备的波束覆盖该地理区域的时间段内,第二接入网设备确定需要进行功率调整,且已经计算出第一功率回退值,但第二接入网设备已不再覆盖该地理区域,则第二接入网设备可以向第一接入网设备发送该第一功率回退值,后 续由第一接入网设备根据第一功率回退值调整自身功率。
可选的,第二接入网设备可以通过现有的消息向第一接入网设备发送第一功率回退值,也可以通过新定义的消息向第一接入网设备发送第一功率回退值,该新定义的消息例如可以为功率配置更新(POEWR_CONFIGURATION_UPDATE)消息,该新定义的消息可以包括最大功率回退(Max Transmit Power Back off)字段以指示该第一功率回退值,本申请实施例对此不做具体限定。
可选的,第二接入网设备计算第一功率回退值的方法可类似于上述第一种可能的实现方式中,第一接入网设备获取第一功率回退值的方法,也可以为其他方法,本申请实施例对此不做具体限定。
在另一种可能的实施场景下,控制设备可以为核心网设备(例如AMF网元)。
可选的,核心网设备可以计算第一功率回退值,并将其计算得到的第一功率回退值发送给第一接入网设备。
可选的,核心网设备可以通过现有的消息向第一接入网设备发送第一功率回退值,例如在现有的消息中增加字段来表示第一功率回退值。示例性的,以核心网设备为AM F网元为例,AMF网元可以在现有的接入和移动性管理功能配置更新消息(AMF CON FI-GURATION UPDATE)消息中增加最大功率回退(Max Transmit Power Back off)字段以指示该第一功率回退值。
或者,核心网设备也可以通过新定义的消息向第一接入网设备发送第一功率回退值,该新定义的消息例如可以为无线接入网络配置更新(RAN_CONFIGURATION_UPDATE)消息,该新定义的消息可以包括最大功率回退(Max Transmit Power Back off)字段以指示该第一功率回退值,本申请实施例对此不做具体限定。
基于该可能的实现方式,第一接入网设备无需自行计算或查表以获取第一功率回退值,可以降低第一接入网设备的计算复杂度。
可选的,如图5所示,为本申请实施例提供的另一种功率调整方法。该功率调整方法示例性的可以应用于卫星通信系统,该功率调整方法包括如下步骤:
S501、终端设备确定大尺度损耗差值。
其中,该大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值,第一时刻与第二时刻可参见上述图4所示的实施例中的相关描述,在此不再赘述。
可选的,终端设备可以通过多种方式获取该大尺度损耗差值。
一种可能的实现方式中,终端设备确定大尺度损耗,可以包括:终端设备根据以下至少一项确定该大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束的方向信息、该波束的波束范围内的天气信息、或者该波束的波束范围的地理位置信息。相关参数的说明可参见上述图4所示的实施例中的相关描述,在此不再赘述。
另一种可能的实现方式中,终端设备确定大尺度损耗,可以包括:终端设备获取第二时刻的信号质量信息,并根据该第二时刻的信号质量信息确定第二时刻的大尺度损耗;终端设备获取第一时刻的信号质量信息,并根据该第一时刻的信号质量信息确定第一时刻的大尺度损耗;终端设备将第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值确定为该大尺度损耗差值。
可选的,第二时刻的信号质量信息可以是终端设备在第二时刻通过测量下行参考信 息获取的;第一时刻的信号质量信息可以是终端设备在第一时刻通过测量下行参考信息获取的。
可选的,信号质量信息可以为接收信号码功率(received signal code power,RSCP)、RSRP、或参考信号接收质量(reference signal receiving quality,RSRQ)中的一种或多种。
S502、终端设备向第一接入网设备发送大尺度损耗差值或该大尺度损耗差值的索引。相应的,第一接入网设备接收来自终端设备的大尺度损耗差值或该大尺度损耗差值的索引。
可选的,若终端设备向第一接入网设备发送大尺度损耗差值的索引,则第一接入网设备在接收该索引后,可以通过索引确定大尺度损耗差值。
S503、第一接入网设备根据大尺度损耗差值确定第一功率回退值。
该大尺度损耗差值与第一功率回退值的关系可满足上述公式B,可参考上述相关说明,在此不再赘述。
可选的,步骤S502-S503中,由第一接入网设备执行的动作可以理解为第一接入网设备获取第一功率回退值的动作。
S504、第一接入网设备根据第一功率回退值调整输出功率。
该步骤S504同上述步骤S402,可参见上述步骤S402中的相关说明,在此不再赘述。
基于该方案,一方面,由于终端设备可以向第一接入网设备指示大尺度损耗差值,可以使得第一接入网设备根据该大尺度损耗差值获取功率回退值,并根据该功率回退值完成输出功率的调整或回退,降低带外泄漏,提升带内信号质量,同时降低小区间干扰,从而提高小区吞吐量;另一方面,第一接入网设备在第二时刻和第一时刻的功率回退值之间的差值大于阈值时,才调整其输出功率,可以避免第一接入网设备频繁调整功率。
其中,上述图4或图5所示的实施例中,第一接入网设备的动作可以由图2所示的第一接入网设备30中的处理器301调用存储器302中存储的应用程序代码以指令该第一接入网设备执行,上述图4或图5所示的实施例中,终端设备的动作可以由图2所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该终端设备执行,本实施例对此不作任何限制。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由第一接入网设备实现的方法和/或步骤,也可以由可用于第一接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的第一接入网设备,或者包含上述第一接入网设备的装置,或者为可用于第一接入网设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。 本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图6示出了一种终端设备60的结构示意图。该终端设备60包括处理模块601和收发模块602。所述收发模块602,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
可选的,收发模块602,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤,处理模块601,可以用于执行上述方法实施例中由终端设备执行的除接收和发送类步骤之外的其他步骤。
可选的,本申请实施例的一种实施场景下,收发模块602用于获取信息/消息,也可以理解为收发模块602用于接收信息/消息;收发模块602用于输出信息/消息,也可以理解为收发模块602用于发送信息/消息。
处理模块601,用于确定大尺度损耗差值,该大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值,该第二时刻早于第一时刻;收发模块602,用于输出该大尺度损耗差值或者该大尺度损耗差值的索引,或者说,收发模块602,用于向第一接入网设备发送该大尺度损耗差值或该大尺度损耗差值的索引。
可选的,处理模块601,用于确定大尺度损耗差值,可以包括:处理模块601,用于根据以下至少一项确定该大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
可选的,处理模块601,用于确定大尺度损耗差值,可以包括:处理模块601,用于获取第二时刻的信号质量信息,并根据第二时刻的信号质量信息确定第二时刻的大尺度损耗;处理模块601,用于获取第一时刻的信号质量信息,并根据第一时刻的信号质量信息确定第一时刻的大尺度损耗;处理模块601,用于将第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值确定为大尺度损耗差值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备60以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备60可以采用图2所示的终端设备40的形式。
比如,图2所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的功率调整方法。
具体的,图6中的处理模块601和收发模块602的功能/实现过程可以通过图2所示 的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图6中的处理模块601的功能/实现过程可以通过图2所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图6中的收发模块602的功能/实现过程可以通过图2所示的终端设备40中的收发器403来实现。
由于本实施例提供的终端设备60可执行上述的功率调整方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的第一接入网设备为例。图7示出了一种第一接入网设备70的结构示意图。该第一接入网设备70包括处理模块701和获取模块702。可选的,该第一接入网设备还包括收发模块703,所述收发模块703,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
可选的,收发模块703,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一接入网设备执行的接收和发送类的步骤,处理模块701和获取模块702,可以用于执行上述方法实施例中由第一接入网设备执行的除接收和发送类步骤之外的其他步骤。
可选的,本申请实施例的一种实施场景下,收发模块703用于获取信息/消息,也可以理解为收发模块703用于接收信息/消息;收发模块703用于输出信息/消息,也可以理解为收发模块703用于发送信息/消息。
其中,获取模块702,用于获取第一功率回退值,该第一功率回退值为第一时刻的功率回退值;处理模块701,用于当第二功率回退值与第一功率回退值之间的差值大于或等于第一阈值时,根据第一功率回退值调整输出功率,该第二功率回退值为第二时刻的功率回退值,第二时刻早于第一时刻。
可选的,处理模块701,用于根据第一功率回退值调整输出功率,可以包括:处理模块701,用于根据第一功率回退值确定第一输出功率;处理模块701,还用于将第一接入网设备的输出功率调整至第一输出功率。
可选的,获取模块702,还用于确定大尺度损耗差值,该大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值;获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于根据该大尺度损耗差值,确定第一功率回退值。
可选的,获取模块702,还用于确定大尺度损耗差值,可以包括:获取模块702,还用于根据以下至少一项确定该大尺度损耗差值:第一接入网设备的星历、第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
可选的,获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于根据第一调制编码方案MCS、MCS与功率回退值的对应关系,确定该第一功率回退值,该第一MCS为第一接入网设备在第一时刻开始使用的MCS。
可选的,获取模块702,用于根据该大尺度损耗差值,确定第一功率回退值,可以包括:获取模块702,用于根据大尺度损耗差值,确定第三功率回退值;获取模块702,还用于根据第一MCS、MCS与功率回退值的对应关系,确定第四功率回退值,第一MCS为该通信装置在第一时刻开始使用的MCS;获取模块702,还用于根据该第三功率回退值和该第四功率回退值,确定该第一功率回退值。
可选的,获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于接收来自控制设备的第一功率回退值。
可选的,收发模块703,用于获取指示信息,或者收发模块703,用于接收指示信息;获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于当该指示信息指示第一接入网设备调整功率时,获取第一功率回退值。
可选的,获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于在第一接入网设备的波束的覆盖范围不随第一接入网设备的运动而发生变化的情况下,获取第一功率回退值。
可选的,获取模块702,用于获取第一功率回退值,可以包括:获取模块702,用于在第一接入网设备的波束的覆盖范围发生变化时,获取第一功率回退值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一接入网设备70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一接入网设备70可以采用图2所示的第一接入网设备30的形式。
比如,图2所示的第一接入网设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得第一接入网设备30执行上述方法实施例中的功率调整方法。
具体的,图7中的处理模块701、获取模块702、和收发模块703的功能/实现过程可以通过图2所示的第一接入网设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图7中的处理模块701和获取模块702的功能/实现过程可以通过图2所示的第一接入网设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图7中的收发模块703的功能/实现过程可以通过图2所示的第一接入网设备30中的收发器303来实现。
由于本实施例提供的第一接入网设备70可执行上述的功率调整方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括接口电路和逻辑电路,该接口电路用于获取待处理的数据和/或输出处理后的数据;该逻辑电路,用于执行上述任一方法实施例中的方法,对待处理的数据进行处理和/或生成处理后的数据。
当该通信装置用于实现上述方法实施例中的终端设备的功能时,一种可能的情况下,上述待处理的数据可以为以下至少一项:第一接入网设备的星历、第一接入网设备的 波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息;另一种可能的情况下,上述待处理的数据可以为:第二时刻的信号质量信息和第一时刻的信号质量信息。相应的,在该两种情况下,处理后的数据可以为大尺度损耗差值或者大尺度损耗差值的索引。
当该通信装置用于实现上述方法实施例中的第一接入网设备的功能时,一种可能的情况下,上述待处理的数据可以为以下至少一项:第一接入网设备的星历、第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息;另一种可能的情况下,上述待处理的数据可以为第一MCS;又一种可能的情况下,上述待处理的数据可以为大尺度损耗差值或大尺度损耗差值的索引。相应的,在该三种情况下,处理后的数据可以为第一功率回退值。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种功率调整方法,其特征在于,所述方法包括:
    终端设备确定大尺度损耗差值,所述大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值,所述第二时刻早于所述第一时刻;
    所述终端设备向第一接入网设备发送所述大尺度损耗差值或者所述大尺度损耗差值的索引。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定大尺度损耗差值,包括:
    所述终端设备根据以下至少一项确定所述大尺度损耗差值:所述第一接入网设备的星历、所述第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备确定大尺度损耗,包括:
    所述终端设备获取第二时刻的信号质量信息,并根据所述第二时刻的信号质量信息确定所述第二时刻的大尺度损耗;
    所述终端设备获取第一时刻的信号质量信息,并根据所述第一时刻的信号质量信息确定所述第一时刻的大尺度损耗;
    所述终端设备将所述第一时刻的大尺度损耗与所述第二时刻的大尺度损耗之间的差值确定为所述大尺度损耗差值。
  4. 一种功率调整方法,其特征在于,所述方法包括:
    第一接入网设备获取第一功率回退值,所述第一功率回退值为第一时刻的功率回退值;
    当第二功率回退值与所述第一功率回退值之间的差值大于或等于第一阈值时,所述第一接入网设备根据所述第一功率回退值调整输出功率,所述第二功率回退值为第二时刻的功率回退值,所述第二时刻早于所述第一时刻。
  5. 根据权利要求4所述的方法,其特征在于,所述第一接入网设备根据所述第一功率回退值调整输出功率,包括:
    所述第一接入网设备根据所述第一功率回退值确定第一输出功率;
    所述第一接入网设备将所述第一接入网设备的输出功率调整至所述第一输出功率。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备确定大尺度损耗差值,所述大尺度损耗差值为所述第一时刻的大尺度损耗与所述第二时刻的大尺度损耗之间的差值;
    所述第一接入网设备获取第一功率回退值,包括:
    所述第一接入网设备根据所述大尺度损耗差值,确定所述第一功率回退值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一接入网设备确定大尺度损耗差值,包括:
    所述第一接入网设备根据以下至少一项确定所述大尺度损耗差值:所述第一接入网设备的星历、所述第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述大尺度损耗差值与所述第一功率回退值满足如下公式:
    OBO t1=P max-P t2-ΔPL t1
    其中,OBO t1为所述第一功率回退值,P max为所述第一接入网设备的最大输出功率,P t2 为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
  9. 根据权利要求4或5所述的方法,其特征在于,所述第一接入网设备获取第一功率回退值,包括:
    所述第一接入网设备根据第一调制编码方案MCS、MCS与功率回退值的对应关系,确定所述第一功率回退值,所述第一MCS为所述第一接入网设备在所述第一时刻开始使用的MCS。
  10. 根据权利要求6或7所述的方法,其特征在于,所述第一接入网设备根据所述大尺度损耗差值,确定第一功率回退值,包括:
    所述第一接入网设备根据所述大尺度损耗差值,确定第三功率回退值;
    所述第一接入网设备根据第一MCS、MCS与功率回退值的对应关系,确定第四功率回退值,所述第一MCS为所述第一接入网设备在所述第一时刻开始使用的MCS;
    所述第一接入网设备根据所述第三功率回退值和所述第四功率回退值,确定所述第一功率回退值。
  11. 根据权利要求10所述的方法,其特征在于,所述大尺度损耗差值与所述第三功率回退值满足如下公式:
    OBO 3=P max-P t2-ΔPL t1
    其中,OBO 3为所述第三功率回退值,P max为所述第一接入网设备的最大输出功率,P t2为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
    OBO t1=max(OBO 3,OBO 4)
    其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,max(x,y)表示x和y中的最大值;
    或者,所述第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
    OBO t1=αOBO 3+βOBO 4
    其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,0≤α≤1,0≤β≤1,α+β=1。
  13. 根据权利要求4或5所述的方法,其特征在于,所述第一接入网设备获取第一功率回退值,包括:
    所述第一接入网设备接收来自控制设备的第一功率回退值。
  14. 根据权利要求4-13任一项所述的方法,其特征在于,在所述第一接入网设备获取第一功率回退值之前,所述方法还包括:
    所述第一接入网设备接收指示信息;
    所述第一接入网设备获取第一功率回退值,包括:
    当所述指示信息指示所述第一接入网设备调整功率时,所述第一接入网设备获取第一功率回退值。
  15. 根据权利要求4-13任一项所述的方法,其特征在于,所述第一接入网设备获取第一功率回退值,包括:
    在所述第一接入网设备的波束的覆盖范围不随所述第一接入网设备的运动而发生变化的 情况下,所述第一接入网设备获取第一功率回退值。
  16. 根据权利要求4-13任一项所述的方法,其特征在于,所述第一接入网设备获取第一功率回退值,包括:
    在所述第一接入网设备的波束的覆盖范围发生变化时,所述第一接入网设备获取第一功率回退值。
  17. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定大尺度损耗差值,所述大尺度损耗差值为第一时刻的大尺度损耗与第二时刻的大尺度损耗之间的差值,所述第二时刻早于所述第一时刻;
    所述收发模块,用于输出所述大尺度损耗差值或者所述大尺度损耗差值的索引。
  18. 根据权利要求17所述的通信装置,其特征在于,所述处理模块,用于确定大尺度损耗差值,包括:
    所述处理模块,用于根据以下至少一项确定所述大尺度损耗差值:第一接入网设备的星历、所述第一接入网设备的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
  19. 根据权利要求17所述的通信装置,其特征在于,所述处理模块,用于确定大尺度损耗差值,包括:
    所述处理模块,用于获取第二时刻的信号质量信息,并根据所述第二时刻的信号质量信息确定所述第二时刻的大尺度损耗;
    所述处理模块,用于获取第一时刻的信号质量信息,并根据所述第一时刻的信号质量信息确定所述第一时刻的大尺度损耗;
    所述处理模块,用于将所述第一时刻的大尺度损耗与所述第二时刻的大尺度损耗之间的差值确定为所述大尺度损耗差值。
  20. 一种通信装置,其特征在于,所述通信装置包括:获取模块和处理模块;
    所述获取模块,用于获取第一功率回退值,所述第一功率回退值为第一时刻的功率回退值;
    所述处理模块,用于当第二功率回退值与所述第一功率回退值之间的差值大于或等于第一阈值时,根据所述第一功率回退值调整输出功率,所述第二功率回退值为第二时刻的功率回退值,所述第二时刻早于所述第一时刻。
  21. 根据权利要求20所述的通信装置,其特征在于,所述处理模块,用于根据所述第一功率回退值调整输出功率,包括:
    所述处理模块,用于根据所述第一功率回退值确定第一输出功率;
    所述处理模块,还用于将所述通信装置的输出功率调整至所述第一输出功率。
  22. 根据权利要求20或21所述的通信装置,其特征在于,
    所述获取模块,还用于确定大尺度损耗差值,所述大尺度损耗差值为所述第一时刻的大尺度损耗与所述第二时刻的大尺度损耗之间的差值;
    所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于根据所述大尺度损耗差值,确定所述第一功率回退值。
  23. 根据权利要求22所述的通信装置,其特征在于,所述获取模块,还用于确定大尺度损耗差值,包括:
    所述获取模块,还用于根据以下至少一项确定所述大尺度损耗差值:所述通信装置的星历、所述通信装置的波束方向信息、波束范围内的天气信息、或者波束范围的地理位置信息。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述大尺度损耗差值与所述第一功率回退值满足如下公式:
    OBO t1=P max-P t2-ΔPL t1
    其中,OBO t1为所述第一功率回退值,P max为所述通信装置的最大输出功率,P t2为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
  25. 根据权利要求20或21所述的通信装置,其特征在于,所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于根据第一调制编码方案MCS、MCS与功率回退值的对应关系,确定所述第一功率回退值,所述第一MCS为所述通信装置在所述第一时刻开始使用的MCS。
  26. 根据权利要求22或23所述的通信装置,其特征在于,所述获取模块,用于根据所述大尺度损耗差值,确定第一功率回退值,包括:
    所述获取模块,用于根据所述大尺度损耗差值,确定第三功率回退值;
    所述获取模块,还用于根据第一MCS、MCS与功率回退值的对应关系,确定第四功率回退值,所述第一MCS为所述通信装置在所述第一时刻开始使用的MCS;
    所述获取模块,还用于根据所述第三功率回退值和所述第四功率回退值,确定所述第一功率回退值。
  27. 根据权利要求26所述的通信装置,其特征在于,所述大尺度损耗差值与所述第三功率回退值满足如下公式:
    OBO 3=P max-P t2-ΔPL t1
    其中,OBO 3为所述第三功率回退值,P max为所述通信装置的最大输出功率,P t2为所述第二时刻的输出功率,ΔPL t1为所述大尺度损耗差值。
  28. 根据权利要求26或27所述的通信装置,其特征在于,所述第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
    OBO t1=max(OBO 3,OBO 4)
    其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,max(x,y)表示x和y中的最大值;
    或者,所述第一功率回退值、所述第三功率回退值、以及所述第四功率回退值,满足如下公式:
    OBO t1=αOBO 3+βOBO 4
    其中,OBO t1为所述第一功率回退值,OBO 3为所述第三功率回退值,OBO 4为所述第四功率回退值,0≤α≤1,0≤β≤1,α+β=1。
  29. 根据权利要求20或21所述的通信装置,其特征在于,所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于接收来自控制设备的第一功率回退值。
  30. 根据权利要求20-29任一项所述的通信装置,其特征在于,所述通信装置还包括:收发模块;
    所述收发模块,用于获取指示信息;
    所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于当所述指示信息指示所述通信装置调整功率时,获取第一功率回退值。
  31. 根据权利要求20-29任一项所述的通信装置,其特征在于,所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于在所述通信装置的波束的覆盖范围不随所述通信装置的运动而发生变化的情况下,获取第一功率回退值。
  32. 根据权利要求20-29任一项所述的通信装置,其特征在于,所述获取模块,用于获取第一功率回退值,包括:
    所述获取模块,用于在所述通信装置的波束的覆盖范围发生变化时,获取第一功率回退值。
  33. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,所述通信装置执行如权利要求1-3中任一项所述的方法,或者所述通信装置执行如权利要求4-16中任一项所述的方法。
  34. 一种通信装置,其特征在于,所述通信装置包括:接口电路和逻辑电路;
    所述接口电路,用于输出处理后的数据;
    所述逻辑电路用于执行权利要求1-3任一项所述的方法,生成所述处理后的数据。
  35. 一种通信装置,其特征在于,所述通信装置包括:接口电路和逻辑电路;
    所述接口电路,用于获取待处理的数据;
    所述逻辑电路用于执行权利要求4-16任一项所述的方法,对所述待处理的数据进行处理。
  36. 一种计算机可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求1-3中任一项所述的方法被实现,或者,使如权利要求4-16中任一项所述的方法被实现。
  37. 一种通信系统,其特征在于,所述通信系统包括如权利要求17-19中任一项所述的通信装置,以及如权利要求20-32中任一项所述的通信装置。
  38. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于读取存储器中存储的计算机程序或指令,并执行所述计算机程序或指令,以使所述通信装置执行如权利要求1-3中任一项所述的方法,或者,以使所述通信装置执行如权利要求4-16中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,以使所述通信装置执行如权利要求1-3中任一项所述的方法,或者,以使所述通信装置执行如权利要求4-16中任一项所述的方法。
PCT/CN2021/082494 2020-04-22 2021-03-23 功率调整方法、装置及系统 WO2021213116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/968,018 US20230047970A1 (en) 2020-04-22 2022-10-18 Power adjustment method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010323558.9 2020-04-22
CN202010323558.9A CN113541762B (zh) 2020-04-22 2020-04-22 功率调整方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/968,018 Continuation US20230047970A1 (en) 2020-04-22 2022-10-18 Power adjustment method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021213116A1 true WO2021213116A1 (zh) 2021-10-28

Family

ID=78094214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082494 WO2021213116A1 (zh) 2020-04-22 2021-03-23 功率调整方法、装置及系统

Country Status (3)

Country Link
US (1) US20230047970A1 (zh)
CN (1) CN113541762B (zh)
WO (1) WO2021213116A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016352A1 (zh) * 2022-07-22 2024-01-25 Oppo广东移动通信有限公司 通信方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105578409A (zh) * 2015-12-18 2016-05-11 航天恒星科技有限公司 基于多波束卫星通信系统的终端发射功率的调整方法
CN110636626A (zh) * 2018-06-21 2019-12-31 华为技术有限公司 通信方法、通信设备以及网络设备
EP3592048A1 (en) * 2017-06-16 2020-01-08 Huawei Technologies Co., Ltd. Power determination method, device, and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114332C (zh) * 1999-10-28 2003-07-09 华为技术有限公司 码分多址移动通信系统中功率控制的方法
US7801099B2 (en) * 2007-05-10 2010-09-21 Broadcom Corporation Cooperative transceiving between wireless interface devices of a host device with acknowledge priority
CN101741437B (zh) * 2008-11-19 2013-05-22 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN102695260B (zh) * 2012-05-21 2014-12-03 华为技术有限公司 功率控制的方法、装置及系统
GB2506749B (en) * 2012-08-30 2014-12-17 Zte Wistron Telecom Ab Methods and apparatus for using a geometry indicator in hetnet deployments
CN104717738B (zh) * 2013-12-17 2018-12-14 华为技术有限公司 上行功率同步方法,接入网设备和终端
WO2018083860A1 (ja) * 2016-11-02 2018-05-11 ソニー株式会社 通信装置及び通信方法
CN108270532B (zh) * 2016-12-30 2021-05-18 华为技术有限公司 一种信息传输方法、接入网设备及终端
CN110858801B (zh) * 2018-08-24 2021-02-12 华为技术有限公司 一种信息接收和发送方法及装置
CN110891305B (zh) * 2019-12-11 2022-04-19 维沃移动通信有限公司 一种功率控制装置、方法及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105578409A (zh) * 2015-12-18 2016-05-11 航天恒星科技有限公司 基于多波束卫星通信系统的终端发射功率的调整方法
EP3592048A1 (en) * 2017-06-16 2020-01-08 Huawei Technologies Co., Ltd. Power determination method, device, and system
CN110636626A (zh) * 2018-06-21 2019-12-31 华为技术有限公司 通信方法、通信设备以及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: ""On UL Power Control"", 3GPP TSG RAN WG1 MEETING NR#3, R1-1716040, 21 September 2017 (2017-09-21), XP051339499 *

Also Published As

Publication number Publication date
CN113541762A (zh) 2021-10-22
US20230047970A1 (en) 2023-02-16
CN113541762B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021056582A1 (zh) 通信方法、设备及系统
US20230132815A1 (en) Report transmission method, apparatus, and system
US20230337175A1 (en) Method for reporting positioning capability, terminal device, and network device
WO2021218820A1 (zh) 测量方法、装置及系统
WO2021213116A1 (zh) 功率调整方法、装置及系统
US20230239097A1 (en) Wireless communication method, terminal device and network device
US11595916B2 (en) User equipment for satellite communication
WO2021056593A1 (zh) 通信方法、设备及系统
CN111385891A (zh) 配置方法、设备及系统
WO2017026976A1 (en) Apparatus, system and method of cellular-assisted fine time measurement
WO2023087325A1 (zh) 一种确定小区的卫星类型的方法及其装置
US20230292164A1 (en) Electronic device, method, and storage medium for wireless communication system
WO2022027370A1 (zh) 一种移动性测量方法及装置
EP4192100A1 (en) Communication method, apparatus and system
CN116325607A (zh) 上报直流载波位置的方法、终端设备和网络设备
CN116057867A (zh) 上报直流载波位置的方法、终端设备和网络设备
CN116097899A (zh) 确定上行传输时域资源的方法、终端设备及网络设备
WO2020143638A1 (zh) 信号发送方法、装置及系统
US11924893B2 (en) Method for establishing connection, and terminal device
WO2023020352A1 (zh) 一种数据传输方法及相关装置
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
CN112261636B (zh) 通信方法、设备和存储介质
WO2023065158A1 (zh) 无线通信的方法、终端设备和网络设备
US20230232391A1 (en) Beam management method, apparatus, and system
US20220338093A1 (en) Communication method, device, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792111

Country of ref document: EP

Kind code of ref document: A1