WO2020186842A1 - 一种波长锁定光模块、装置和波长锁定方法 - Google Patents

一种波长锁定光模块、装置和波长锁定方法 Download PDF

Info

Publication number
WO2020186842A1
WO2020186842A1 PCT/CN2019/125267 CN2019125267W WO2020186842A1 WO 2020186842 A1 WO2020186842 A1 WO 2020186842A1 CN 2019125267 W CN2019125267 W CN 2019125267W WO 2020186842 A1 WO2020186842 A1 WO 2020186842A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
tosa
signal
rosa
Prior art date
Application number
PCT/CN2019/125267
Other languages
English (en)
French (fr)
Inventor
周顺利
邹晖
刘成刚
卜勤练
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Priority to US17/438,093 priority Critical patent/US11770192B2/en
Publication of WO2020186842A1 publication Critical patent/WO2020186842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to the technical field of optical communication, in particular to a wavelength locking optical module, a device and a wavelength locking method.
  • DWDM Dense Wavelength Division Multiplexing
  • the wave locker is a device that locks the wavelength.
  • the traditional wave locker is placed in the light emitting module TOSA.
  • a beam splitter, a wavelength selective filter and two backlight detectors are set in the TOSA.
  • the signal light emitted by the laser is The splitter is divided into two parts. One part enters the corresponding backlight detector after passing through the wavelength selection filter, and the other part directly enters the corresponding backlight detector.
  • the two backlight detectors monitor the wavelength change to achieve precise control of the wavelength, which results in TOSA
  • the structure is complex, the manufacturing process is complicated, and the volume is large, which increases the package size, which is not conducive to miniaturization and the cost is high.
  • the traditional wave locker is placed in the TOSA.
  • a splitter, a wavelength selective filter and two backlight detectors are arranged in the TOSA, which makes the structure and manufacturing process of the TOSA more complex, larger in size, and higher in cost.
  • the present invention provides a wavelength-locked optical module, including a DSP unit, TOSA and ROSA, the signal output end of the DSP unit is connected to the TOSA, and the signal input end of the DSP unit is connected to the ROSA ;
  • the DSP unit is used for signal processing
  • the TOSA is used for optical transmission
  • the ROSA is used for optical reception;
  • a TEC is provided in the TOSA, and the TEC is used to adjust the temperature according to the control signal from the DSP unit, and then adjust the emission wavelength of the TOSA;
  • the ROSA is provided with a filter, and the filter is used to filter the light entering the ROSA from the TOSA, so that the light of a preset wavelength is converted into an electrical signal and then output to the DSP unit;
  • the DSP unit calculates the optical power according to the received electrical signal, and monitors the wavelength change of the TOSA according to the optical power change, so as to adjust the output wavelength of the TOSA to a preset wavelength.
  • the optical module further includes an electrical interface and an optical interface, the electrical interface is connected to the DSP unit, so that the electrical signal sent by the system board is output to the DSP unit through the electrical interface;
  • the optical interface is respectively connected to the TOSA and ROSA, so that the optical signal emitted by the TOSA is output through the optical interface, and the ROSA receives the optical signal through the optical interface.
  • an E/O conversion module is also provided in the TOSA, and the E/O conversion module is connected to the DSP unit to receive the electrical signal transmitted by the DSP unit and convert the electrical signal into an optical signal Output
  • An O/E conversion module is also provided in the ROSA, and the O/E conversion module is respectively connected to the optical filter and the DSP unit to convert the received optical signal of the preset wavelength into an electrical signal, And output to the DSP unit.
  • a PD detector and a TIA are integrated in the O/E conversion module, and the PD detector is used to detect optical signals and convert the detected optical signals of a preset wavelength into electrical signals. Used to realize the amplification of electrical signals.
  • the present invention also provides a wavelength locking device, including a first optical module and a second optical module
  • the first optical module includes a first DSP unit, a first TOSA, and a first ROSA, the first The signal output end of the DSP unit is connected to the first TOSA, and the signal input end is connected to the first ROSA
  • the second optical module includes a second DSP unit, a second TOSA, and a second ROSA, the second DSP The signal output terminal of the unit is connected to the second TOSA, and the signal input terminal is connected to the second ROSA; the signal output terminal of the first TOSA is connected to the signal input terminal of the second ROSA, and the second TOSA The signal output terminal is connected to the signal input terminal of the first ROSA;
  • the first TOSA is provided with a first TEC
  • the second ROSA is provided with a second filter
  • the optical signal is filtered, and the light of the preset wavelength is converted into an electrical signal and output to the second DSP unit.
  • the second DSP unit calculates the optical power, and generates an encoded signal containing the wavelength control direction according to the change in the optical power.
  • the second TOSA, the second TOSA converts the encoded signal into an optical signal and sends it to the first ROSA.
  • the first ROSA converts the optical signal into an encoded signal and transmits it to the first DSP unit.
  • the first DSP unit sends the encoded signal to the first TEC.
  • the control signal further adjusts the temperature of the first TEC to make the emission wavelength of the first TOSA reach the preset wavelength.
  • the first optical module further includes a first electrical interface and a first optical interface
  • the second optical module further includes a second electrical interface and a second optical interface
  • the first electrical interface is connected to the first optical interface.
  • the DSP unit is connected, and the second electrical interface is connected with the second DSP unit;
  • the first optical interface is connected to the first TOSA and the first ROSA
  • the second optical interface is connected to the second TOSA and the second ROSA
  • the first optical interface is also connected to the second ROSA. If the optical interface is connected, the optical signal of the first TOSA is output through the first optical interface, and then enters the second ROSA through the second optical interface; the optical signal of the second TOSA passes through the second ROSA After the optical interface is output, the first optical interface enters the first ROSA.
  • a first DCM module and a first OA are connected between the signal output terminal of the first optical interface and the signal input terminal of the second optical interface, and the signal output terminal of the second optical interface is connected to the signal input terminal of the second optical interface.
  • a second DCM module and a second OA are connected between the signal input ends of the first optical interface;
  • the first DCM module and the second DCM module are used for digital clock management, and the first OA and the second OA are used for amplifying optical signals.
  • the present invention also provides a wavelength locking method.
  • the first optical module and the second optical module in the wavelength locking device described in the second aspect realize the mutual regulation of wavelengths, and when it is necessary to change the wavelength of the first optical module
  • the wavelength locking method includes:
  • the optical signal output by the first TOSA enters the second ROSA, it is filtered by the second filter, and the light of the preset wavelength is converted into an electrical signal and then output to the second DSP unit;
  • the second DSP unit calculates the detected optical power according to the received electrical signal, and then sends an encoded signal including wavelength regulation to the second TOSA according to the change in the optical power, and the second TOSA converts the encoded signal into an optical signal for transmission To the first ROSA;
  • the first ROSA converts the optical signal into an encoded signal and transmits it to the first DSP unit.
  • the first DSP unit sends a control signal to the first TEC according to the encoded signal, and then adjusts the emission wavelength of the first TOSA through temperature adjustment ;
  • the detection optical power in the second ROSA reaches a maximum value
  • the emission wavelength of the first TOSA reaches a preset wavelength, and the wavelength locking of the first optical module is realized.
  • the sending the encoded signal including wavelength regulation to the second TOSA according to the change of the optical power is specifically:
  • the second DSP unit compares the currently calculated detection optical power with the maximum optical power
  • the second DSP unit updates the maximum optical power according to the comparison result, and at the same time judges the wavelength change of the first TOSA and determines the wavelength control direction;
  • the second DSP unit generates a corresponding FEC encoded signal according to the wavelength control direction, and sends it to the second TOSA;
  • the initial value of the maximum value of the optical power is the detected optical power calculated for the first time by the second DSP unit based on the received electrical signal.
  • the second DSP unit updates the maximum optical power according to the comparison result, and at the same time judges the wavelength change of the first TOSA and determines the wavelength control direction, specifically:
  • the second DSP unit determines that the wavelength adjustment of the first TOSA is unnecessary this time, and saves the currently calculated detected optical power as the new maximum optical power. Used for the next comparison;
  • the second DSP unit determines that the optical signal output by the first TOSA has a wavelength shift, and then determines the wavelength of the first TOSA according to the detection optical power and the maximum optical power. Control direction.
  • the structure in TOSA is simplified, an optical filter is added in ROSA, and the original optical detection function of the signal receiving end ROSA and the signal processing function of the DSP unit are combined to monitor the wavelength change, Then the wavelength change information is transmitted to the signal transmitter TOSA. After the TOSA receives the signal, the laser wavelength is adjusted to the preset value through the TEC.
  • This structure reduces the volume of the TOSA, facilitates miniaturization, simplifies the process, and reduces the production cost. Effectively solve the problem of wavelength instability in the optical transmission process of the DWDM system.
  • FIG. 1 is a schematic structural diagram of a wavelength-locked optical module provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a traditional wavelength-locked optical module
  • FIG. 3 is a schematic structural diagram of a wavelength locking device provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of a wavelength locking method provided by an embodiment of the present invention.
  • ROSA Receiver Optical Sub Assembly, optical receiving module
  • O/E Optics/Electric, optical/electric, that is, optical signal is converted into electrical signal
  • E/O Electric/Optics, electrical/optical, that is, electrical signals are converted to optical signals;
  • MCU Micro Controller Unit, micro control unit
  • TIA Trans-Impedance Amplifier, transimpedance amplifier
  • the embodiment of the present invention provides a wavelength-locked optical module, which has a certain wavelength-locked function, and can be used to solve the problem of wavelength instability during optical transmission in a DWDM system.
  • the optical module provided by the embodiment of the present invention includes a DSP unit, an optical transmitting unit TOSA, and an optical receiving unit ROSA.
  • the signal output end of the DSP unit is connected to the TOSA, and the signal input end of the DSP unit is connected to the TOSA.
  • the ROSA connection wherein the DSP unit is used for signal processing, the TOSA is used for light transmission, and the ROSA is used for light reception.
  • a cooler TEC is provided in the TOSA, and the TEC can receive the control signal sent by the DSP unit, and according to the control signal The temperature of the optical module is adjusted, and then the emission wavelength of the TOSA is adjusted to ensure that the center wavelength of the TOSA is stable.
  • the ROSA is equipped with a filter.
  • the filter can filter the light entering the ROSA to prevent It is assumed that the light of the wavelength is converted into an electrical signal and output to the DSP unit; the DSP unit can then calculate the optical power according to the received electrical signal, and determine the wavelength adjustment of another optical module TOSA according to the optical power change, so as to The output wavelength of the other optical module TOSA is adjusted to the preset wavelength.
  • the preset wavelength is the expected output wavelength of the optical module TOSA, which is equivalent to the center wavelength hereinafter.
  • module A is used to monitor the emission wavelength of module B, and the wavelength of module B is adjusted through the TEC of module B;
  • the module B is used to monitor the emission wavelength of the module A, and the wavelength of the module A is adjusted by the TEC of the module A.
  • Embodiment 2 which will not be repeated here.
  • the structure in TOSA is simplified, an optical filter is added in ROSA, and the original optical detection function of the signal receiving end ROSA and the signal processing function of the DSP unit are combined to monitor the wavelength.
  • the laser wavelength is adjusted to the preset value through the TEC.
  • a complete optical module includes five parts: electrical interface, DSP unit, TOSA, ROSA, and optical interface.
  • the electrical interface is respectively connected with the system board and the DSP unit, thereby realizing the connection between the optical module and the system board.
  • the DSP unit implements electrical signal processing, and integrates AD sampling functions, MCU control processing functions, and CDR data clock recovery functions.
  • the TOSA converts the input electrical signal into an optical signal for output, and has a wavelength adjustment function, and specifically includes an E/O conversion module and a TEC, and the E/O conversion module is connected to the DSP unit to receive the DSP unit The transmitted electric signal is converted into an optical signal for output, and the TEC realizes wavelength adjustment.
  • the ROSA converts the received optical signal into an electrical signal for output, and has a wavelength monitoring function, and specifically includes an optical filter and an O/E conversion module.
  • the O/E conversion module is connected to the optical filter and the DSP respectively.
  • the unit is connected to convert the received optical signal of the preset wavelength into an electrical signal and output to the DSP unit.
  • the optical interface is respectively connected to the TOSA and ROSA, so that the optical signal emitted by the TOSA is output through the optical interface, and the ROSA receives the optical signal through the optical interface.
  • the O/E conversion module integrates a PD detector and a transimpedance amplifier TIA
  • the PD detector is used for detecting optical signals and converting the detected optical signals into electrical signals
  • the TIA is used for Realize the amplification of electrical signals.
  • the electrical signal sent by the system board is input to the DSP unit through the electrical interface, and the DSP unit performs waveform shaping and amplitude amplification on the electrical signal, and then outputs to the TOSA; the TOSA will The electrical signal is converted into an optical signal and output through the optical interface.
  • the ROSA receives the optical signal through the optical interface, it converts the wavelength change of the optical signal into an electrical signal, and outputs it to the DSP unit for processing.
  • the electrical signal sent by the system board is usually a differential signal.
  • the traditional optical module with wavelength locking function also includes five parts: electrical interface, DSP unit, TOSA, ROSA, and optical interface.
  • the TOSA of the traditional optical module integrates EML laser, beam splitter, backlight detector MPD1, backlight detector MPD2, cooler TEC1, cooler TEC2 and ETLON.
  • ETLON is a kind of etalon, only the light of the center wavelength can pass, which is similar to the function of the filter, and the characteristics of ETLON are easily affected by temperature, and light of different center wavelengths can be passed under different temperature conditions.
  • the principle of wavelength locking is as follows: the optical signal generated by the EML laser is transmitted to the optical splitter, and the optical splitter transmits part of the light to the ETLON, which is filtered by the ETLON and transmitted to MPD1.
  • the MCU is based on the current generated by MPD1 and MPD1 is allocated to the proportion of light, calculate the optical power corresponding to the center wavelength; the other part of the light is directly transmitted to MPD2, the MCU according to the size of the current generated by MPD2 and the proportion of the light that MPD2 is allocated to calculate the actual optical power.
  • the MCU By calculating the difference between the optical power corresponding to the center wavelength and the actual optical power, the MCU outputs a control signal to TEC2 in IIC mode, thereby adjusting the laser temperature and then adjusting the wavelength. At the same time, the MCU constantly monitors the ETLON temperature through the temperature sensor to maintain the stability of the center wavelength of the transmitted light. When the difference between the optical power corresponding to the center wavelength and the actual optical power is zero, the actual light wavelength is equal to the center wavelength, achieving the purpose of wavelength regulation.
  • the embodiment of the present invention integrates two wavelength-locked optical modules, and further provides a wavelength-locking device to solve the problem of wavelength instability in the optical transmission process in the DWDM system.
  • the wavelength locking device includes a first optical module and a second optical module.
  • the structures of the two optical modules are the same as the optical module structure of Embodiment 1 (that is, as shown in FIG. 1), and the functions of each component It is also the same.
  • the distinction is made between "first" and "second”.
  • the specific structure of the wavelength locking device is as follows:
  • the first optical module includes a first electrical interface, a first DSP unit, a first TOSA, a first ROSA, and a first optical interface, the first electrical interface is connected to the first DSP unit; the first DSP The signal output end of the unit is connected to the first TOSA, and the signal input end is connected to the first ROSA; the first optical interface is respectively connected to the first TOSA and the first ROSA.
  • the first DSP unit is provided with a first CDR and a first MCU
  • the first TOSA is provided with a first TEC and a first E/O conversion module
  • the first ROSA is provided with a first filter And the first O/E conversion module, in which the first PD detector and the first transimpedance amplifier TIA are integrated.
  • the second optical module includes a second electrical interface, a second DSP unit, a second TOSA, a second ROSA, and a second optical interface, and the second electrical interface is connected to the second DSP unit; the second DSP The signal output end of the unit is connected to the second TOSA, and the signal input end is connected to the second ROSA; the second optical interface is respectively connected to the second TOSA and the second ROSA.
  • the second DSP unit is provided with a second CDR and a second MCU
  • the second TOSA is provided with a second TEC and a second E/O conversion module
  • the second ROSA is provided with a second filter And a second O/E conversion module, in which a second PD detector and a second transimpedance amplifier TIA are integrated.
  • the connection relationship between the two optical modules is as follows: the first optical interface is connected to the second optical interface, specifically the signal output end of the first optical interface and the second optical interface
  • the signal input end of the second optical interface is connected to the signal input end of the first optical interface; the signal output end of the first TOSA passes through the first optical interface and the first optical interface.
  • the second optical interface is connected to the signal input end of the second ROSA, and the signal output end of the second TOSA is connected to the signal input end of the first ROSA through the second optical interface and the first optical interface, After the optical signal emitted by the first TOSA is output through the first optical interface, it enters the second ROSA through the second optical interface; the optical signal output by the second TOSA passes through the second optical interface. After the interface is output, it enters the first ROSA through the first optical interface.
  • a first DCM module and a first OA are also connected between the signal output terminal of the first optical interface and the signal input terminal of the second optical interface, and the signal output terminal of the second optical interface is connected to the signal input terminal of the second optical interface.
  • a second DCM module and a second OA are also connected between the signal input ends of the first optical interface.
  • the first DCM module and the second DCM module can be used for digital clock management of the transmitted optical signal, and the first OA and the second OA are used for amplifying the optical signal.
  • the emission wavelengths of the first optical module and the second optical module can be adjusted, that is, the first optical module can monitor the emission wavelength of the second optical module to realize the second optical module
  • the second optical module can monitor the emission wavelength of the first optical module to realize the wavelength control of the first optical module.
  • the specific control method please refer to Embodiment 3, which will not be repeated here.
  • the wavelength locking device is not limited to two optical modules, but a larger number of optical modules can be set according to actual needs, and multiple optical modules are matched in pairs to form a group, so that Each optical module can achieve wavelength locking.
  • an embodiment of the present invention also provides a wavelength locking method, which is completed by the wavelength locking device described in embodiment 2.
  • a wavelength locking method which is completed by the wavelength locking device described in embodiment 2.
  • Step 201 After the optical signal output by the first TOSA enters the second ROSA, it is filtered by the second filter, so that the light of the preset wavelength passes through and is converted into an electrical signal and output to the second DSP unit.
  • the first TOSA of the first optical module outputs an optical signal ⁇ + ⁇ with a wavelength change through the first optical interface.
  • the optical signal passes through the first DCM module and the first OA in turn, the The second optical interface enters the second ROSA of the second optical module.
  • the optical signal with the wavelength ⁇ is transmitted to the second O/E module, and the optical signal is converted by the second PD detector inside the second O/E module Is the current signal Ed, and is transmitted to the second DSP unit.
  • represents the preset wavelength of the first optical module, that is, the center wavelength; during the transmission process, due to factors such as temperature or fiber loss, part of the light will have a wavelength shift, that is, away from the center wavelength ⁇ , so the transmission process
  • the wavelength of the optical signal in can be expressed by ⁇ + ⁇ .
  • the second optical filter In the actual optical transmission, after the second optical filter is filtered, only the light with the center wavelength ⁇ is transmitted to the second PD detector, and the other part of the wavelength shifted light cannot pass, resulting in the second ROSA.
  • the detected optical power is smaller than the actual optical power. If all the wavelengths emitted by the first optical module reach the center wavelength, that is, there is no wavelength shift, then the light received by the second ROSA can pass through the second filter, and the detected optical power and the actual optical power Equal, the detection optical power reaches the maximum value.
  • the detection optical power in the second optical module does not reach the maximum value, it is necessary to continue wavelength detection and regulation; only when the detection optical power in the second optical module reaches the maximum value, can the first TOSA be proved All of the emission wavelengths reach the preset wavelength, which realizes the wavelength locking of the first optical module.
  • Step 202 The second DSP unit calculates the detected optical power according to the received electrical signal, and then sends an encoded signal including wavelength regulation to the second TOSA according to the change in the optical power, and the second TOSA converts the encoded signal into The optical signal is sent to the first ROSA.
  • the sending of an encoded signal including wavelength regulation to the second TOSA according to the change of the optical power is specifically as follows: the second DSP unit compares the currently calculated detected optical power with the maximum optical power, and then according to the comparison As a result, the maximum optical power is selectively updated, and the wavelength change of the first TOSA is determined and the wavelength adjustment direction is determined; the second DSP unit generates a corresponding FEC encoded signal according to the wavelength adjustment direction and sends it to the second TOSA .
  • the second TOSA converts the FEC-encoded signal into an optical signal ⁇ m and sends it to the first ROSA; where the FEC-encoded signal is an electrical signal containing the direction of wavelength regulation, and after conversion by the second TOSA, the wavelength The control direction may be further included in the optical signal ⁇ m.
  • the entire system is always under dynamic control, instead of stopping after the wavelength is controlled, that is, it is necessary to continuously repeat steps 201-203 to perform multiple adjustments, and each time the second DSP unit is adjusted to perform a light Power calculation; the initial value of the maximum optical power is the detected optical power calculated by the second DSP unit for the first time according to the received electrical signal.
  • the maximum value M can be updated so that M is always the maximum value of the optical power in multiple detections so far, and it is judged whether the wavelength is locked, specifically:
  • the specific calculation and judgment process can be implemented by the second MCU in the second DSP unit.
  • the currently calculated detection optical power is less than the maximum optical power, that is, the maximum is not reached yet, it can be determined that the optical signal output by the first TOSA has a wavelength shift, and the emission wavelength of the first TOSA needs to be adjusted , And then determine the wavelength adjustment direction of the first TOSA according to the difference between the detected optical power and the maximum optical power; at the same time, the maximum optical power does not need to be updated and can still be used in the next adjustment.
  • Step 203 The first ROSA converts the optical signal into an encoded signal and transmits it to the first DSP unit, and the first DSP unit sends a control signal to the first TEC according to the encoded signal, and then adjusts the emission of the first TOSA through temperature. Adjust the wavelength;
  • the first ROSA converts the optical signal ⁇ m into an electrical signal and transmits it to the first DSP unit, where the electrical signal is the FEC encoded signal generated by the second DSP unit, and the first DSP unit decodes the signal
  • the FEC encoded signal can know the wavelength control direction contained therein, and then a control signal Ctr is sent to the first TEC in the form of IIC through the first MCU to adjust the temperature of the first TEC, and then adjust the first TOSA The wavelength of the emitted light.
  • the detected optical power obtained by the second optical module for n consecutive times remains unchanged and is always at the maximum value, it can be considered that all wavelengths emitted by the first optical module have no wavelength shift, that is, all wavelengths are The center wavelength achieves the purpose of wavelength locking.
  • the n here can be specifically selected according to actual needs, for example, it can usually take a value in the range of 3-6.
  • the above is the wavelength locking method of the first optical module.
  • the wavelength detection can be performed through the first optical module to determine the wavelength regulation direction, and then the second optical module of the second optical module can perform wavelength detection.
  • TEC performs wavelength adjustment.
  • the specific process is similar to the above steps 201 to 203, and will not be repeated here.
  • the filter function of the signal receiving end ROSA and the original light detection function are used, combined with the signal processing function of the DSP unit to monitor the wavelength change, and then the wavelength change information is transmitted to the signal
  • the TOSA at the transmitting end adjusts the laser center wavelength to a preset value through the TEC at the transmitting end, which can effectively achieve wavelength locking and solve the problem of wavelength instability in the optical transmission process of the DWDM system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及光通信技术领域,具体涉及一种波长锁定光模块、装置和波长锁定方法,其中光模块包括DSP单元、TOSA和ROSA,DSP单元的信号输出端与TOSA连接,信号输入端与ROSA连接;TOSA内设有TEC,用于根据DSP单元传来的控制信号进行温度调整,进而调整TOSA发射波长;ROSA内设有滤光片,用于滤波,使预设波长的光通过后被转换为电信号输出至DSP单元;DSP单元根据接收的电信号计算光功率,并根据光功率变化确定TOSA的波长调控。本发明在ROSA内设滤光片,结合ROSA原有光探测功能和DSP单元信号处理功能监测波长变化,通过TEC调整波长,减小TOSA体积,简化工艺,降低成本。

Description

一种波长锁定光模块、装置和波长锁定方法 【技术领域】
本发明涉及光通信技术领域,具体涉及一种波长锁定光模块、装置和波长锁定方法。
【背景技术】
目前,密集光波分复用(Dense Wavelength Division Multiplexing,简写为DWDM)技术已广泛应用于光通信系统,该技术通过一根光纤传输多个不同波长的光信号,增加通信信道的数量,实现大容量。在实际应用中,相邻通道之间的波长间距需要尽可能缩小,从而增加传输通道的数量。而随着光通信速率的提高,波长间距的缩短,DWDM系统对激光源波长的稳定性提出了越来越严格的要求,有必要采用有效的波长稳定技术,以提高激光器的波长稳定性。
锁波器是一种锁定波长的装置,传统的锁波器置于光发射模块TOSA中,具体是在TOSA内设置分光器、波长选择滤波器和两个背光探测器,激光器发出的信号光被分光器分成两部分,一部分通过波长选择滤波器后进入相应的背光探测器,另一部分直接进入相应的背光探测器,通过两个背光探测器监测波长变化来实现波长的精确控制,这就造成TOSA的结构复杂、制作工艺复杂,体积较大,增加了封装尺寸,不利于小型化封装,且成本较高。
鉴于此,克服上述现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明需要解决的技术问题是:
传统的锁波器置于TOSA中,具体是在TOSA内设置分光器、波长选择滤波器和两个背光探测器,使得TOSA的结构和制作工艺比较复杂,体积较大,且成本较高。
本发明通过如下技术方案达到上述目的:
第一方面,本发明提供了一种波长锁定光模块,包括DSP单元、TOSA和ROSA,所述DSP单元的信号输出端与所述TOSA连接,所述DSP单元的信号输入端与所述ROSA连接;其中,所述DSP单元用于信号处理,所述TOSA用于光发射,所述ROSA用于光接收;
所述TOSA内设有TEC,所述TEC用于根据所述DSP单元传来的控制信号进行温度调整,进而调整所述TOSA的发射波长;
所述ROSA内设有滤光片,所述滤光片用于对由TOSA进入所述ROSA的光进行滤波,使预设波长的光通过后被转换为电信号输出至所述DSP单元;所述DSP单元根据接收的电信号计算光功率,并根据光功率变化监测TOSA的波长变化,以便将TOSA的输出波长调至预设波长。
优选的,所述光模块还包括电接口和光接口,所述电接口与所述DSP单元连接,以便系统板卡发出的电信号通过所述电接口输出至所述DSP单元;
所述光接口分别与所述TOSA和ROSA连接,以便所述TOSA发射的光信号通过所述光接口输出,所述ROSA通过所述光接口接收到光信号。
优选的,所述TOSA内还设有E/O转换模块,所述E/O转换模块与所述DSP单元连接,以便接收所述DSP单元传送来的电信号,并将电信号转换为光信号输出;
所述ROSA内还设有O/E转换模块,所述O/E转换模块分别与所述滤光片和所述DSP单元连接,以便将接收到的预设波长的光信号转换为电信号,并输出至所述DSP单元。
优选的,所述O/E转换模块内集成有PD探测器和TIA,所述PD探测器用于进行光信号的探测,并将探测到的预设波长的光信号转换为电信号,所述TIA用于实现电信号的放大。
第二方面,本发明还提供了一种波长锁定装置,包括第一光模块和第二光模块,所述第一光模块包括第一DSP单元、第一TOSA和第一ROSA,所述第一DSP单元的信号输出端与所述第一TOSA连接,信号输入端与所述第一ROSA连接;所述第二光模块包括第二DSP单元、第二TOSA和第二ROSA,所述第二DSP单元的信号输出端与所述第二TOSA连接,信号输入端与所述第二ROSA连接;所述第一TOSA的信号输出端与所述第二ROSA的信号输入端连接,所述第二TOSA的信号输出端与所述第一ROSA的信号输入端连接;
其中,所述第一TOSA内设有第一TEC,所述第二ROSA内设有第二滤光片;则第一TOSA输出的光信号进入第二ROSA后,所述第二滤光片对光信号进行滤波,使预设波长的光通过后被转换为电信号输出至第二DSP单元,由第二DSP单元计算光功率,并根据光功率大小变化生成包含波长调控方向的编码信号发送至第二TOSA,第二TOSA将编码信号转换为光信号发送至第一ROSA,第一ROSA将光信号转换为编码信号传输至第一DSP单元,由第一DSP单元根据编码信号向第一TEC发送控制信号,进而通过调整第一TEC温度使第一TOSA的发射波长达到预设波长。
优选的,所述第一光模块还包括第一电接口和第一光接口,所述第二光模块还包括第二电接口和第二光接口,所述第一电接口与所述第一DSP单元连接,所述第二电接口与所述第二DSP单元连接;
所述第一光接口分别与所述第一TOSA和第一ROSA连接,所述第二光接口分别与所述第二TOSA和第二ROSA连接,所述第一光接口还与所述第二光接口连接,则所述第一TOSA的光信号通过所述第一光接口输出后,由所述第二光接口进入所述第二ROSA;所述第二TOSA的光信号通 过所述第二光接口输出后,由所述第一光接口进入所述第一ROSA。
优选的,所述第一光接口的信号输出端与所述第二光接口的信号输入端之间连接有第一DCM模块和第一OA,所述第二光接口的信号输出端与所述第一光接口的信号输入端之间连接有第二DCM模块和第二OA;
其中,所述第一DCM模块和所述第二DCM模块用于进行数字时钟管理,所述第一OA和所述第二OA用于进行光信号的放大。
第三方面,本发明还提供了一种波长锁定方法,通过第二方面所述的波长锁定装置中第一光模块和第二光模块实现波长的相互调控,则当需要将第一光模块的发射波长锁定至预设波长时,所述波长锁定方法包括:
第一TOSA输出的光信号进入第二ROSA后,由第二滤光片进行滤波,使预设波长的光通过后被转换为电信号输出至第二DSP单元;
所述第二DSP单元根据接收到的电信号计算出探测光功率,进而根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,由所述第二TOSA将编码信号转换为光信号发送至第一ROSA;
所述第一ROSA将光信号转换为编码信号传输至第一DSP单元,由所述第一DSP单元根据编码信号向第一TEC发送控制信号,进而通过温度调整对第一TOSA的发射波长进行调整;
其中,当所述第二ROSA内的探测光功率达到最大值时,所述第一TOSA的发射波长达到预设波长,实现第一光模块的波长锁定。
优选的,所述根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,具体为:
所述第二DSP单元将当前计算的探测光功率与光功率最大值比较;
所述第二DSP单元根据比较结果对光功率最大值进行更新,同时判断第一TOSA的波长变化并确定波长调控方向;
所述第二DSP单元根据波长调控方向生成相应的FEC编码信号,并发送至所述第二TOSA;
其中,所述光功率最大值的初始值为,所述第二DSP单元第一次根据接收到的电信号计算出的探测光功率。
优选的,所述第二DSP单元根据比较结果对光功率最大值进行更新,同时判断第一TOSA的波长变化并确定波长调控方向,具体为:
如果当前计算出的探测光功率大于光功率最大值,则所述第二DSP单元判断本次无需进行第一TOSA的波长调控,并将当前计算的探测光功率作为新的光功率最大值保存,作为下次比较时使用;
如果当前计算出的探测光功率小于光功率最大值,则所述第二DSP单元判断第一TOSA输出的光信号存在波长偏移,进而根据探测光功率和光功率最大值确定对第一TOSA的波长调控方向。
本发明的有益效果是:
本发明实施例提供的波长锁定装置中,对TOSA内的结构进行简化,在ROSA内增设滤光片,结合信号接收端ROSA原有的光探测功能和DSP单元的信号处理功能来监测波长变化,再将波长变化的信息传送到信号发送端TOSA,TOSA接收信号后通过TEC调整激光波长到预设值,该结构减小了TOSA的体积,利于小型化封装,简化工艺,降低了制作成本,可有效解决DWDM系统光传输过程中波长不稳定的问题。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种波长锁定光模块的结构示意图;
图2为一种传统的波长锁定光模块的结构示意图;
图3为本发明实施例提供的一种波长锁定装置的结构示意图;
图4为本发明实施例提供的一种波长锁定方法的流程图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
为便于理解,首先对文中出现的各缩写进行介绍:
DSP,Digital Signal Processing,数字信号处理;
TOSA,Transmitter Optical Sub Assembly,光发射模块;
ROSA,Receiver Optical Sub Assembly,光接收模块;
O/E,Optics/Electric,光/电,即光信号转换为电信号;
E/O,Electric/Optics,电/光,即电信号转换为光信号;
TEC,Thermo Electric Cooler,半导体致冷器;
MCU,Micro Controller Unit,微控制单元;
CDR,Clock Data Recovery,时钟数据恢复;
PD,Photo-Diode,光电二极管;
TIA,Trans-Impedance Amplifier,跨阻放大器;
DCM,Digital Clock Manager,数字时钟管理;
OA,optical amplifier,光放大器;
FEC,Forward Error Correction,前向纠错码;
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。下面就参考附图和实施例结合来详 细说明本发明。
实施例1:
本发明实施例提供了一种波长锁定光模块,具有一定的波长锁定功能,可用于解决DWDM系统中光传输过程中波长不稳定的问题。如图1所示,本发明实施例提供的光模块包括DSP单元、光发射单元TOSA和光接收单元ROSA,所述DSP单元的信号输出端与所述TOSA连接,所述DSP单元的信号输入端与所述ROSA连接;其中,所述DSP单元用于进行信号处理,所述TOSA用于光发射,所述ROSA用于光接收。
由于所述TOSA的波长会随光模块的温度变化发生偏移,为实现波长调整,所述TOSA内设有制冷器TEC,所述TEC可接收所述DSP单元发送的控制信号,并根据控制信号进行光模块的温度调整,进而调整所述TOSA的发射波长,确保所述TOSA的中心波长稳定。
为实现波长监测,所述ROSA内设有滤光片,当所述ROSA接收到由另一光模块TOSA发出的光后,所述滤光片可对进入所述ROSA的光进行滤波,使预设波长的光通过后被转换为电信号输出至所述DSP单元;所述DSP单元进而可根据接收的电信号计算光功率,并根据光功率变化确定另一光模块TOSA的波长调控,以便将另一光模块TOSA的输出波长调至预设波长。其中,所述预设波长即光模块TOSA期望的输出波长,等同于下文中的中心波长。
需要说明的是,在实际应用中,是通过两个上述光模块相互配合来实现彼此的波长调控,即利用A模块对B模块的发射波长进行监测,通过B模块的TEC实现B模块波长调整;利用B模块对A模块的发射波长进行监测,再通过A模块的TEC实现A模块波长调整,具体整合结构可参考实施例2,在此不再赘述。
本发明实施例提供的上述波长锁定光模块中,对TOSA内的结构进行简化,在ROSA内增设滤光片,结合信号接收端ROSA原有的光探测功能 和DSP单元的信号处理功能来监测波长变化,再将波长变化的信息传送到信号发送端TOSA,TOSA接收信号后通过TEC调整激光波长到预设值,该结构减小了TOSA的体积,利于小型化封装,简化工艺,降低了制作成本,可有效解决DWDM系统光传输过程中波长不稳定的问题。
下面结合附图,对所述光模块的结构进行详细介绍:
结合图1,在一个具体的实施例中,完整的光模块包括电接口、DSP单元、TOSA、ROSA和光接口五个部分。所述电接口分别与系统板卡和所述DSP单元连接,进而实现光模块与系统板卡的连接。所述DSP单元实现电信号的处理,并集成AD采样功能、MCU的控制处理功能以及CDR的数据时钟恢复功能等。所述TOSA将输入的电信号转换成光信号输出,并具有波长调节功能,具体包括E/O转换模块和TEC,所述E/O转换模块与所述DSP单元连接,以便接收所述DSP单元传送来的电信号,并将电信号转换为光信号输出,所述TEC实现波长调节。所述ROSA将接收的光信号转换成电信号输出,并具有波长监测功能,具体包括滤光片和O/E转换模块,所述O/E转换模块分别与所述滤光片和所述DSP单元连接,以便将接收到的预设波长的光信号转换为电信号,并输出至所述DSP单元。所述光接口分别与所述TOSA和ROSA连接,以便所述TOSA发射的光信号通过所述光接口输出,所述ROSA通过所述光接口接收到光信号。
其中,所述O/E转换模块内集成有PD探测器和跨阻放大器TIA,所述PD探测器用于进行光信号的探测,并将探测到的光信号转换为电信号,所述TIA用于实现电信号的放大。
在实际应用中,系统板卡发出的电信号经过所述电接口输入到所述DSP单元,由所述DSP单元对电信号进行波形整形和幅度放大,然后输出到所述TOSA;所述TOSA将电信号转换成光信号,并通过所述光接口输出。所述ROSA通过所述光接口接收到光信号后,将光信号波长变化转换成电信号,并输出到所述DSP单元进行处理。其中,所述系统板卡发出的 电信号通常为差分信号。
参考图2,在传统的具有波长锁定功能的光模块中,同样包括电接口、DSP单元、TOSA、ROSA和光接口五个部分,与本实施例的主要区别在于:传统光模块的TOSA内部集成有EML激光器、分光器、背光探测器MPD1、背光探测器MPD2、制冷器TEC1、制冷器TEC2和ETLON。其中,ETLON是一种标准具,只有中心波长的光才能通过,与滤波片的功能类似,而且ETLON特性易受温度影响,不同温度条件下可通过不同中心波长的光。
根据图2所示的结构,波长锁定原理具体如下:EML激光器产生的光信号传输至分光器,分光器将一部分光传输到ETLON,经过ETLON滤波后传输至MPD1,MCU根据MPD1产生的电流大小以及MPD1被分配到的光的比例大小,计算出中心波长对应的光功率;另一部分光直接传输到MPD2,MCU根据MPD2产生的电流大小以及MPD2被分配的光的比例大小,计算出实际光功率。通过计算中心波长对应光功率与实际光功率的差值,MCU以IIC方式输出一个控制信号到TEC2,由此调整激光器温度,进而调整波长。与此同时,MCU时刻通过温度传感器监控ETLON温度,维持透过光的中心波长稳定性。当中心波长对应光功率与实际光功率的差值为零时,实际光的波长与中心波长相等,达到波长调控目的。
由此可见,在传统的光模块中,为实现波长锁定,TOSA中需设置多个分离元件,这将极大的增加封装的元件数目,使得光模块体积较大,不利于小型化封装,结构复杂且成本高昂,另外多个分离元件的组装工艺极其复杂。而在本发明实施例提供的光模块中,TOSA内的器件数量大大减少,将ROSA内原有的光探测器充分利用,仅在ROSA内增设一滤光片进行滤波,通过两个光模块的相互配合即可实现彼此的波长调控,减小了TOSA的体积,利于光模块的小型化封装,而且结构更简单,简化了工艺,降低了制作成本。
实施例2:
在上述实施例1的基础上,本发明实施例将两个波长锁定光模块进行整合,进一步提供了一种波长锁定装置,用于解决DWDM系统中光传输过程中波长不稳定的问题。如图3所示,所述波长锁定装置包括第一光模块和第二光模块,两个光模块的结构均与实施例1(即图1所示)的光模块结构相同,各部件的功能也相同,本发明实施例中只是为了便于描述,故采用“第一”“第二”进行区分。所述波长锁定装置的结构具体如下:
所述第一光模块包括第一电接口、第一DSP单元、第一TOSA、第一ROSA和第一光接口,所述第一电接口与所述第一DSP单元连接;所述第一DSP单元的信号输出端与所述第一TOSA连接,信号输入端与所述第一ROSA连接;所述第一光接口分别与所述第一TOSA和第一ROSA连接。所述第一DSP单元内设有第一CDR和第一MCU,所述第一TOSA内设有第一TEC和第一E/O转换模块,所述第一ROSA内设有第一滤光片和第一O/E转换模块,所述第一O/E转换模块内集成有第一PD探测器和第一跨阻放大器TIA。
所述第二光模块包括第二电接口、第二DSP单元、第二TOSA、第二ROSA和第二光接口,所述第二电接口与所述第二DSP单元连接;所述第二DSP单元的信号输出端与所述第二TOSA连接,信号输入端与所述第二ROSA连接;所述第二光接口分别与所述第二TOSA和第二ROSA连接。所述第二DSP单元内设有第二CDR和第二MCU,所述第二TOSA内设有第二TEC和第二E/O转换模块,所述第二ROSA内设有第二滤光片和第二O/E转换模块,所述第二O/E转换模块内集成有第二PD探测器和第二跨阻放大器TIA。
其中,关于所述波长锁定装置中两个光模块各部分的具体结构和功能,可参考实施例1的相关描述,此处不再赘述。
进一步参考图3,两个光模块之间的连接关系如下:所述第一光接口与所述第二光接口连接,具体为所述第一光接口的信号输出端与所述第二光 接口的信号输入端连接,所述第二光接口的信号输出端与所述第一光接口的信号输入端连接;则所述第一TOSA的信号输出端通过所述第一光接口、所述第二光接口与所述第二ROSA的信号输入端连接,所述第二TOSA的信号输出端通过所述第二光接口、所述第一光接口与所述第一ROSA的信号输入端连接,使得所述第一TOSA发射的光信号通过所述第一光接口输出后,再通过所述第二光接口进入所述第二ROSA;所述第二TOSA输出的光信号通过所述第二光接口输出后,再通过所述第一光接口进入所述第一ROSA。
其中,所述第一光接口的信号输出端与所述第二光接口的信号输入端之间还连接有第一DCM模块和第一OA,所述第二光接口的信号输出端与所述第一光接口的信号输入端之间还连接有第二DCM模块和第二OA。所述第一DCM模块和所述第二DCM模块可用于对传输的光信号进行数字时钟管理,所述第一OA和所述第二OA用于进行光信号的放大。
通过本发明实施例提供的波长锁定装置,第一光模块和第二光模块的发射波长均可得到调控,即第一光模块可对第二光模块的发射波长进行监测,实现第二光模块的波长调控;而第二光模块可对第一光模块的发射波长进行监测,实现第一光模块的波长调控,具体调控方法可参考实施例3,在此不再赘述。
当然,在实际应用中,波长锁定装置中并不局限于设置两个光模块,还可根据实际需求设置更多数量的光模块,且多个光模块之间两两匹配为一组,从而使得每个光模块均可实现波长锁定。
实施例3:
在上述实施例2的基础上,本发明实施例还提供了一种波长锁定方法,通过实施例2所述的波长锁定装置来完成。结合实施例1和实施例可知,在进行波长调控时,需通过第一光模块和第二光模块实现波长的相互控制,则当需要控制第一光模块的发射波长达到预设波长时,所述波长锁定方法 可参考图4,具体包括:
步骤201,第一TOSA输出的光信号进入第二ROSA后,由第二滤光片进行滤波,使预设波长的光通过后被转换为电信号输出至第二DSP单元。
结合图3,所述第一光模块的第一TOSA通过所述第一光接口输出波长变化的光信号λ+Δλ,光信号依次经过所述第一DCM模块和第一OA后,由所述第二光接口进入所述第二光模块的第二ROSA。然后经过所述第二滤光片过滤后,将波长为λ的光信号传输到所述第二O/E模块,由所述第二O/E模块内部的第二PD探测器将光信号转换为电流信号Ed,并传输至所述所述第二DSP单元。其中,λ表示第一光模块的预设波长,即中心波长;在传输过程中,由于受温度或光纤损耗等因素的影响,部分光会发生波长偏移,即偏离中心波长λ,因此传输过程中的光信号波长可用λ+Δλ表示。
在实际的光传输中,经过所述第二滤光片滤光后,只有中心波长λ的光传输到了第二PD探测器,另外一部分波长偏移的光无法通过,导致所述第二ROSA内的探测光功率比实际光功率小。如果第一光模块发射的所有波长均达到中心波长,即不存在波长偏移,则所述第二ROSA接收的光均可通过所述第二滤光片,此时探测光功率与实际光功率相等,探测光功率达到最大值。因此,只要所述第二光模块内的探测光功率未达到最大值,便需要继续进行波长探测和调控;只有当第二光模块内的探测光功率达到最大值时,才可证明第一TOSA的所有发射波长均达到预设波长,实现第一光模块的波长锁定。
步骤202,所述第二DSP单元根据接收到的电信号计算出探测光功率,进而根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,由所述第二TOSA将编码信号转换为光信号发送至第一ROSA。
结合图3,所述根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,具体为:所述第二DSP单元将当前计算的探测光功率与光功率 最大值进行比较,进而根据比较结果对光功率最大值进行选择性更新,同时判断第一TOSA的波长变化并确定波长调控方向;所述第二DSP单元根据波长调控方向生成相应的FEC编码信号,并发送至所述第二TOSA。最终由所述第二TOSA将FEC编码信号转换为光信号λm发送至第一ROSA;其中,所述FEC编码信号是包含波长调控方向的电信号,则经过所述第二TOSA的转换后,波长调控方向可进一步包含在光信号λm中。
需要注意的是,整个系统始终处于动态控制,而不是波长控制下来之后就停止了,即需要不断循环重复步骤201-步骤203,进行多次调控,每次调控所述第二DSP单元进行一次光功率的计算;则所述光功率最大值的初始值为,所述第二DSP单元第一次根据接收到的电信号计算的探测光功率。在后续每次调控时,可对最大值M进行更新,使得M始终为目前为止多次探测中的光功率最大值,并判断波长是否已锁定,具体为:
如果当前计算出的探测光功率大于光功率最大值,则判断需要对光功率最大值进行更新,将当前计算出的探测光功率作为新的光功率最大值保存,作为下次比较时使用;而且,由于本次的探测光功率已经是目前为止多次探测中的光功率最大值,则判断本次无需进行第一TOSA的波长调控。其中,具体的计算和判断过程均可由第二DSP单元内的第二MCU实现。
如果当前计算出的探测光功率小于光功率最大值,即当前还未达到最大值,则可判断所述第一TOSA输出的光信号存在波长偏移,需要对所述第一TOSA发射波长进行调控,进而根据探测光功率和光功率最大值的差值确定对第一TOSA的波长调控方向;同时,光功率最大值无需进行更新,仍可在下次调控时使用。
例如,第一次调控时的探测光功率为100,则M=100;如果第二次调控时的探测光功率为80,由于80<100,则无需进行最大值更新,仍为M=100,且由于当前探测光功率未达到最大值,需要进行波长调控;如果第二次调控时的探测光功率为120,由于120>100,则需进行最大值更新, M=120,且由于当前探测光功率为目前最大值,本次无需进行波长调控;后续每次调控以此类推,此处不再赘述。
步骤203,所述第一ROSA将光信号转换为编码信号传输至第一DSP单元,由所述第一DSP单元根据编码信号向第一TEC发送控制信号,进而通过温度调整对第一TOSA的发射波长进行调整;
所述第一ROSA将光信号λm转换为电信号传输到所述第一DSP单元,这里的电信号即为所述第二DSP单元生成的FEC编码信号,则所述第一DSP单元通过解码所述FEC编码信号可得知其中包含的波长调控方向,然后通过所述第一MCU以IIC的方式发送一个控制信号Ctr到所述第一TEC,调整第一TEC温度,进而调整所述第一TOSA发射光的波长。
其中,当连续n次所述第二光模块得到的探测光功率保持不变,且始终为最大值时,可认为第一光模块发射的所有波长均无波长偏移发生,即所有波长均为中心波长,实现了波长锁定目的。这里的n具体可根据实际需要选择,例如,通常可在3-6范围内取值。
以上所述为第一光模块的波长锁定方法,当需要对第二光模块进行波长锁定时,则可通过第一光模块进行波长探测,确定波长调控方向,再由第二光模块的第二TEC进行波长调整。具体过程与上述步骤201-步骤203类似,此处不再赘述。
通过本发明实施例提供的上述波长锁定方法,利用信号接收端ROSA的滤光功能和原有的光探测功能,结合DSP单元的信号处理功能来监测波长变化,再将波长变化的信息传送到信号发送端的TOSA,通过发送端的TEC调整激光中心波长到预设值,可有效实现波长锁定,解决DWDM系统光传输过程中波长不稳定的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种波长锁定光模块,其特征在于,包括DSP单元、TOSA和ROSA,所述DSP单元的信号输出端与所述TOSA连接,所述DSP单元的信号输入端与所述ROSA连接;其中,所述DSP单元用于信号处理,所述TOSA用于光发射,所述ROSA用于光接收;
    所述TOSA内设有TEC,所述TEC用于根据所述DSP单元传来的控制信号进行温度调整,进而调整所述TOSA的发射波长;
    所述ROSA内设有滤光片,所述滤光片用于对由TOSA进入所述ROSA的光进行滤波,使预设波长的光通过后被转换为电信号输出至所述DSP单元;所述DSP单元根据接收的电信号计算光功率,并根据光功率变化监测TOSA的波长变化,以便将TOSA的输出波长调至预设波长。
  2. 根据权利要求1所述的波长锁定光模块,其特征在于,所述光模块还包括电接口和光接口,所述电接口与所述DSP单元连接,以便系统板卡发出的电信号通过所述电接口输出至所述DSP单元;
    所述光接口分别与所述TOSA和ROSA连接,以便所述TOSA发射的光信号通过所述光接口输出,所述ROSA通过所述光接口接收到光信号。
  3. 根据权利要求1所述的波长锁定光模块,其特征在于,所述TOSA内还设有E/O转换模块,所述E/O转换模块与所述DSP单元连接,以便接收所述DSP单元传送来的电信号,并将电信号转换为光信号输出;
    所述ROSA内还设有O/E转换模块,所述O/E转换模块分别与所述滤光片和所述DSP单元连接,以便将接收到的预设波长的光信号转换为电信号,并输出至所述DSP单元。
  4. 根据权利要求3所述的波长锁定光模块,其特征在于,所述O/E转换模块内集成有PD探测器和TIA,所述PD探测器用于进行光信号的探测,并将探 测到的预设波长的光信号转换为电信号,所述TIA用于实现电信号的放大。
  5. 一种波长锁定装置,其特征在于,包括第一光模块和第二光模块,所述第一光模块包括第一DSP单元、第一TOSA和第一ROSA,所述第一DSP单元的信号输出端与所述第一TOSA连接,信号输入端与所述第一ROSA连接;所述第二光模块包括第二DSP单元、第二TOSA和第二ROSA,所述第二DSP单元的信号输出端与所述第二TOSA连接,信号输入端与所述第二ROSA连接;所述第一TOSA的信号输出端与所述第二ROSA的信号输入端连接,所述第二TOSA的信号输出端与所述第一ROSA的信号输入端连接;
    其中,所述第一TOSA内设有第一TEC,所述第二ROSA内设有第二滤光片;则第一TOSA输出的光信号进入第二ROSA后,所述第二滤光片对光信号进行滤波,使预设波长的光通过后被转换为电信号输出至第二DSP单元,由第二DSP单元计算光功率,并根据光功率大小变化生成包含波长调控方向的编码信号发送至第二TOSA,第二TOSA将编码信号转换为光信号发送至第一ROSA,第一ROSA将光信号转换为编码信号传输至第一DSP单元,由第一DSP单元根据编码信号向第一TEC发送控制信号,进而通过调整第一TEC温度使第一TOSA的发射波长达到预设波长。
  6. 根据权利要求5所述的波长锁定装置,其特征在于,所述第一光模块还包括第一电接口和第一光接口,所述第二光模块还包括第二电接口和第二光接口,所述第一电接口与所述第一DSP单元连接,所述第二电接口与所述第二DSP单元连接;
    所述第一光接口分别与所述第一TOSA和第一ROSA连接,所述第二光接口分别与所述第二TOSA和第二ROSA连接,所述第一光接口还与所述第二光接口连接,则所述第一TOSA的光信号通过所述第一光接口输出后,由所述第二光接口进入所述第二ROSA;所述第二TOSA的光信号通过所述第二光接口输出后,由所述第一光接口进入所述第一ROSA。
  7. 根据权利要求6所述的波长锁定装置,其特征在于,所述第一光接口的信号输出端与所述第二光接口的信号输入端之间连接有第一DCM模块和第一OA,所述第二光接口的信号输出端与所述第一光接口的信号输入端之间连接有第二DCM模块和第二OA;
    其中,所述第一DCM模块和所述第二DCM模块用于进行数字时钟管理,所述第一OA和所述第二OA用于进行光信号的放大。
  8. 一种波长锁定方法,其特征在于,通过第一光模块和第二光模块实现波长的相互调控,则当需要将第一光模块的发射波长锁定至预设波长时,所述波长锁定方法包括:
    第一TOSA输出的光信号进入第二ROSA后,由第二滤光片进行滤波,使预设波长的光通过后被转换为电信号输出至第二DSP单元;
    所述第二DSP单元根据接收到的电信号计算出探测光功率,进而根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,由所述第二TOSA将编码信号转换为光信号发送至第一ROSA;
    所述第一ROSA将光信号转换为编码信号传输至第一DSP单元,由所述第一DSP单元根据编码信号向第一TEC发送控制信号,进而通过温度调整对第一TOSA的发射波长进行调整;
    其中,当所述第二ROSA内的探测光功率达到最大值时,所述第一TOSA的发射波长达到预设波长,实现第一光模块的波长锁定。
  9. 根据权利要求8所述的波长锁定方法,其特征在于,所述根据光功率大小变化向第二TOSA发送包含波长调控的编码信号,具体为:
    所述第二DSP单元将当前计算的探测光功率与光功率最大值进行比较;
    所述第二DSP单元根据比较结果对光功率最大值进行更新,同时判断第一TOSA的波长变化并确定波长调控方向;
    所述第二DSP单元根据波长调控方向生成相应的FEC编码信号,并发送至所述第二TOSA;
    其中,所述光功率最大值的初始值为,所述第二DSP单元第一次根据接收到的电信号计算出的探测光功率。
  10. 根据权利要求9所述的波长锁定方法,其特征在于,所述第二DSP单元根据比较结果对光功率最大值进行更新,同时判断第一TOSA的波长变化并确定波长调控方向,具体为:
    如果当前计算出的探测光功率大于光功率最大值,则所述第二DSP单元判断本次无需进行第一TOSA的波长调控,并将当前计算的探测光功率作为新的光功率最大值保存,作为下次比较时使用;
    如果当前计算出的探测光功率小于光功率最大值,则所述第二DSP单元判断第一TOSA输出的光信号存在波长偏移,进而根据探测光功率和光功率最大值确定对第一TOSA的波长调控方向。
PCT/CN2019/125267 2019-03-15 2019-12-13 一种波长锁定光模块、装置和波长锁定方法 WO2020186842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,093 US11770192B2 (en) 2019-03-15 2019-12-13 Wavelength locking optical module, device, and wavelength locking method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910196972.5A CN109981180B (zh) 2019-03-15 2019-03-15 一种波长锁定光模块、装置和波长锁定方法
CN201910196972.5 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020186842A1 true WO2020186842A1 (zh) 2020-09-24

Family

ID=67078952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125267 WO2020186842A1 (zh) 2019-03-15 2019-12-13 一种波长锁定光模块、装置和波长锁定方法

Country Status (3)

Country Link
US (1) US11770192B2 (zh)
CN (1) CN109981180B (zh)
WO (1) WO2020186842A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981180B (zh) 2019-03-15 2020-06-30 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法
CN112448758B (zh) * 2019-09-03 2024-04-12 华为技术有限公司 一种波长调节方法以及相关设备
CN113037383A (zh) * 2019-12-24 2021-06-25 中兴通讯股份有限公司 波长调节方法、装置、电子设备及计算机可读介质
CN111756469B (zh) * 2020-06-09 2022-11-01 杭州兰特普光电子技术有限公司 光模块波长锁定的方法、光模块及dwdm网络
CN112073122A (zh) * 2020-08-07 2020-12-11 武汉恒讯通光电子有限责任公司 智能电网光通讯模块
CN112073124B (zh) * 2020-08-13 2021-11-16 武汉光迅科技股份有限公司 一种用于调节波长的器件
CN112073125B (zh) * 2020-08-13 2022-04-08 武汉光迅科技股份有限公司 一种用于调节波长的器件
CN114640907B (zh) * 2020-12-16 2023-07-07 华为技术有限公司 一种光通信装置和光通信方法
CN113922915B (zh) * 2021-09-03 2023-05-23 烽火通信科技股份有限公司 Dml光模块波长自动纠偏方法、dml光模块及dwdm系统
CN115173937B (zh) * 2022-06-24 2023-05-26 烽火通信科技股份有限公司 一种自动调测锁定光模块波长的方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN201118093Y (zh) * 2007-10-30 2008-09-17 武汉电信器件有限公司 基于锁波的可调谐激光器自动控制装置
US20080226296A1 (en) * 2007-03-15 2008-09-18 Moriyasu Ichino Optical transmitter with suppressing wavelength deviation at begging of operation
US20170353268A1 (en) * 2014-12-12 2017-12-07 Lightron Fiber-Optic Devices Inc. Optical transceiver using fec, optical transceiving system comprising same, and remote optical wavelength control method
CN109981180A (zh) * 2019-03-15 2019-07-05 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法
CN110022186A (zh) * 2018-01-10 2019-07-16 中兴通讯股份有限公司 一种波长锁定装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100295810B1 (ko) * 1998-06-02 2001-10-26 서평원 파장분할다중방식광전송망채널감시시스템
US7359643B2 (en) * 2001-02-05 2008-04-15 Finisar Corporation Optical transceiver module with power integrated circuit
US8128283B2 (en) * 2007-09-28 2012-03-06 Finisar Corporation Temperature measurement apparatus for optoelectronic transceiver
US8867924B2 (en) * 2010-09-30 2014-10-21 Cisco Technology, Inc. Low power consumption small form-factor pluggable transceiver
WO2012167135A1 (en) * 2011-06-03 2012-12-06 Skyfiber, Inc Active tracking for free-space optical communication systems
CN102749684B (zh) * 2012-03-26 2015-01-07 武汉华工正源光子技术有限公司 激光收发器件及其制造方法和提高其温度运作范围的方法
US8879909B2 (en) * 2012-04-25 2014-11-04 Source Photonics, Inc. Circuits and methods for monitoring power parameters in an optical transceiver
JP6229474B2 (ja) 2013-12-13 2017-11-15 富士通株式会社 半導体レーザ装置、光アンプおよび判定方法
US9455782B2 (en) 2014-08-11 2016-09-27 Applied Optoelectronics, Inc. Monitoring a multiplexed laser array in an optical communication system
CN105763282B (zh) * 2014-12-17 2018-06-22 上海诺基亚贝尔股份有限公司 一种pon系统中可调onu的波长控制方法及其装置
CN107024744A (zh) 2016-01-29 2017-08-08 青岛海信宽带多媒体技术有限公司 一种光模块及波长监控方法
US10203455B2 (en) * 2016-12-13 2019-02-12 Source Photonics (Chengdu) Co., Ltd. Multi-channel optical transmitter and methods of making and using the same
CN107342821B (zh) * 2017-07-18 2021-10-15 华为技术有限公司 一种光模块、网络设备、光学系统及通信系统
CN108333689A (zh) * 2018-03-26 2018-07-27 杭州芯耘光电科技有限公司 一种集成可调窄带滤波器的多信道光接收组件
CN110855366A (zh) * 2018-08-20 2020-02-28 华为技术有限公司 色散补偿方法、装置和存储介质
CN109412013B (zh) * 2018-11-09 2023-08-08 武汉联特科技股份有限公司 一种波长可调谐光模块、远程波长切换方法及锁定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
US20080226296A1 (en) * 2007-03-15 2008-09-18 Moriyasu Ichino Optical transmitter with suppressing wavelength deviation at begging of operation
CN201118093Y (zh) * 2007-10-30 2008-09-17 武汉电信器件有限公司 基于锁波的可调谐激光器自动控制装置
US20170353268A1 (en) * 2014-12-12 2017-12-07 Lightron Fiber-Optic Devices Inc. Optical transceiver using fec, optical transceiving system comprising same, and remote optical wavelength control method
CN110022186A (zh) * 2018-01-10 2019-07-16 中兴通讯股份有限公司 一种波长锁定装置及方法
CN109981180A (zh) * 2019-03-15 2019-07-05 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法

Also Published As

Publication number Publication date
US11770192B2 (en) 2023-09-26
US20220216921A1 (en) 2022-07-07
CN109981180B (zh) 2020-06-30
CN109981180A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020186842A1 (zh) 一种波长锁定光模块、装置和波长锁定方法
US7200338B2 (en) Method and system for communicating a clock signal over an optical link
US20090136229A1 (en) Method and System for Transmitting Information in an Optical Communication System Using Distributed Amplification
US20070258722A1 (en) Optical receiver
US9941975B2 (en) Wavelength division multiplexing optical receiver and driving method for same
JPH08251109A (ja) 自己増幅ネットワーク
US7200344B1 (en) Receiver and method for a multichannel optical communication system
CN111756469B (zh) 光模块波长锁定的方法、光模块及dwdm网络
US7035543B1 (en) Method and system for demultiplexing non-intensity modulated wavelength division multiplexed (WDM) signals
IL124639A (en) Optical communication method and system using wavelength division multiplexing
CN109743113B (zh) 光模块与光线路终端
Takechi et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid
Yu et al. 25Gb/s hybrid-integrated silicon photonic receiver with microring wavelength stabilization
CN102347796A (zh) 光纤接续方法、光纤发射机、光纤接收机及光纤接续系统
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
CN110677214A (zh) 波长调整方法,光发射模组,光接收模组及光网络系统
WO2002091634A2 (en) Method and system for tuning an optical signal based on transmission conditions
US20240031036A1 (en) Optical module, wavelength adaptive coherent optical communication method, and computer storage medium
WO2012009854A1 (zh) 一种光线路终端模块和上行传输模块
CN117856962A (zh) 一种光功率可调光合分器、相关设备以及系统
Ducellier et al. Compact SOA-based preamplified receiver module for 20Gb/s applications
Brunsting et al. Performance and simulation for transmission of RF and digital signals over optical fibers
CN107346989A (zh) 一种多通道激光波长相关性监测器及监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919886

Country of ref document: EP

Kind code of ref document: A1