WO2012009854A1 - 一种光线路终端模块和上行传输模块 - Google Patents

一种光线路终端模块和上行传输模块 Download PDF

Info

Publication number
WO2012009854A1
WO2012009854A1 PCT/CN2010/075381 CN2010075381W WO2012009854A1 WO 2012009854 A1 WO2012009854 A1 WO 2012009854A1 CN 2010075381 W CN2010075381 W CN 2010075381W WO 2012009854 A1 WO2012009854 A1 WO 2012009854A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
burst mode
limiting amplifier
mode limiting
optical line
Prior art date
Application number
PCT/CN2010/075381
Other languages
English (en)
French (fr)
Inventor
张强
李大伟
赵其圣
杨思更
何鹏
潘红超
林青合
张建伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to PCT/CN2010/075381 priority Critical patent/WO2012009854A1/zh
Publication of WO2012009854A1 publication Critical patent/WO2012009854A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an optical line termination module and an uplink transmission module. Background technique
  • Ethernet passive optical networks have been used for access networks. Uplink signal and downlink signal speed are both
  • the 10G EPON OLT module can transmit data in 10G/s continuous mode 1577nm downlink, 10G/s burst mode 1270nm uplink, 1.25G/s continuous mode 1490nm downlink, and 1.25G/s burst mode 1310nm uplink.
  • the 10G EPON OLT module borrows the existing EPON network.
  • the 10G EPON OLT module borrows 10G SDH (synchronous digital series) and is easy to set up.
  • BM TIA Band Trans-Impedance Amplifier
  • BM LIA burst mode limit amplifier
  • the optical line termination module requires a large amount of preamable to ensure performance when performing uplink transmission, thereby increasing overhead and reducing efficiency.
  • the embodiment of the invention provides an optical line termination module and an uplink transmission module, which are used to solve the problem that the optical line termination module existing in the prior art needs a large number of preamables to ensure performance, thereby increasing the overhead, and the P strip is low. The problem of efficiency.
  • An optical line termination module provided by the embodiment of the present invention includes: a 10G optical receiving submodule, a 10G burst mode limiting amplifier, and an adjustment module;
  • the 10G optical receiving submodule is configured to convert the received optical signal into an electrical signal, and output the electrical signal to the 10G burst mode limiting amplifier through the adjusting module;
  • the 10G burst mode limiting amplifier is configured to amplify and output the electrical signal; and the adjusting module is configured to adjust a sensitivity and a receiving setup time of the 10G burst mode limiting amplifier.
  • An uplink transmission module provided by the embodiment of the present invention includes: a 10G optical receiving submodule, a 10G burst mode limiting amplifier, and an adjustment module;
  • the 10G optical receiving submodule is configured to convert the received optical signal into an electrical signal, and output the electrical signal to the 10G burst mode limiting amplifier through the adjusting module;
  • the 10G burst mode limiting amplifier is configured to amplify and output the electrical signal; and the adjusting module is configured to adjust a sensitivity and a receiving setup time of the 10G burst mode limiting amplifier.
  • DRAWINGS 1 is a schematic diagram of a first optical line termination module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a second optical line termination module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a first uplink transmission module according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a second uplink transmission module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of application of an optical line termination module according to an embodiment of the present invention. detailed description
  • an adjustment module is added between the 10G optical receiving sub-module and the 10G burst mode limiting amplifier, and the adjusting module adjusts the sensitivity and the receiving establishment time of the 10G burst mode limiting amplifier. Since the sensitivity of the 10G burst mode limiting amplifier and the reception setup time are adjusted by the adjustment module, the number of preamables is reduced under the premise of ensuring performance, thereby reducing overhead and improving efficiency.
  • Sensitivity refers to the minimum optical power that the optical module can detect.
  • the receiving setup time refers to the time taken by the packet to recover from receiving to normal. The shorter the reception setup time, the less the leader of the loss is. Therefore, the embodiment of the present invention can adjust the sensitivity of the 10G burst mode limiting amplifier and the reception setup time to ensure that the data can be received normally after the adjustment of the setup setup time. Next, make the adjusted sensitivity higher.
  • the first optical line termination module of the embodiment of the present invention includes: a 10G optical receiving sub-module (ROSA) 10, a 10G burst mode limiting amplifier 20 and an adjustment module 30.
  • ROSA optical receiving sub-module
  • 10G burst mode limiting amplifier 20 the first optical line termination module of the embodiment of the present invention includes: a 10G optical receiving sub-module (ROSA) 10, a 10G burst mode limiting amplifier 20 and an adjustment module 30.
  • ROSA optical receiving sub-module
  • the 10G optical receiving sub-module 10 is configured to convert the received optical signal into an electrical signal, and output an electrical signal to the 10G burst mode limiting amplifier 20 through the adjusting module 30.
  • 10G burst mode limiting amplifier 20 used to amplify the received electrical signal and output.
  • the adjustment module 30 is connected to the non-inverting end of the 10G optical receiving sub-module 10, and the other end is connected to the non-inverting input pin of the 10G burst mode limiting amplifier 20 for adjusting the sensitivity and receiving establishment of the 10G burst mode limiting amplifier. time.
  • the adjustment module 30 can be a capacitor; or it can be a circuit, such as multiple
  • the capacitance is composed of a parallel connection or consists of a plurality of capacitors in series or consists of an inductor and a capacitor.
  • the adjustment module 30 is a capacitor, preferably, the capacitance is 100OpF;
  • the adjustment module 30 is a circuit, preferably, the total capacitance of the circuit is 1000 pF. It should be noted that lOOOpF is only the capacitance value of the capacitor when the sensitivity and the reception setup time match optimally. While the embodiment of the present invention is not limited to 1000 pF, other numerical values are equally applicable to the embodiment of the present invention, but the effect is not optimal.
  • the optical line termination module of the embodiment of the present invention may further include: a voltage regulation module 40, in order to further improve the performance of the optical line termination module on the basis of the reduction of the preamable.
  • the voltage regulating module 40 is configured to determine a voltage value corresponding to the temperature of the current 10G burst mode limiting amplifier 20 according to a preset relationship between the temperature and the voltage value, and limit the amplitude to the 10G burst mode according to the determined voltage value.
  • the output signal quality adjustment terminal of the amplifier 20 outputs a control voltage so that the 10G burst mode limiting amplifier 20 operates stably in the burst mode.
  • the voltage regulating module 40 can also determine the current temperature of the optical line termination module, and use the current temperature of the optical line termination module as the temperature of the 10G burst mode limiting amplifier 20.
  • the correspondence between the temperature and the voltage value is not constant, and the correspondence between the temperature and the voltage value can be updated as needed.
  • the optical line termination module of the embodiment of the present invention may further include: a termination module 50.
  • the termination module 50 is configured to terminate the idle input of the 10G burst mode limiting amplifier 20.
  • the termination module 50 can be a circuit composed of a capacitor and a resistor.
  • a plurality of capacitors may be connected in parallel or in series, and a plurality of resistors may be connected in parallel or in series, and a capacitor and a resistor may be connected in series; or a capacitor and a resistor may be connected in series.
  • the total value of the capacitors in the termination module 50 is 100OpF and the total value of the resistors is 50 ohms. That is, the total value of the capacitance in the termination module 50 can be equal to the value (or total value) of the capacitance of the adjustment module 30.
  • the optical line termination module of the embodiment of the present invention may further include: a 1G burst mode limiting amplifier 60.
  • the 10G optical receiving sub-module 10 is further configured to: output the electrical signal to the 1G burst mode limiting amplifier;
  • 1G burst mode limiting amplifier for amplifying the electrical signal and outputting it.
  • the 10G optical receiving sub-module 10 respectively transmits the electrical signal to the 10G burst mode limiting amplifier 20 and the 1G burst mode limiting amplifier 60 through two channels.
  • both the 10G burst mode limiting amplifier 20 and the 1G burst mode limiting amplifier 60 will process; if the output electrical signal is a 10G electrical signal, the 10G burst mode limiting amplifier 20 will be processed, and the 1G burst mode limiting amplifier 60 will not be able to handle the bandwidth relationship.
  • the module may be a capacitor. It can also be a circuit, such as consisting of multiple capacitors in parallel or consisting of multiple capacitors in series or consisting of inductors and capacitors. If it is a capacitor, preferably, the capacitor is 220 pF; if it is a circuit, preferably, the total capacitance of the circuit is 220 pF.
  • the module can be a circuit consisting of a capacitor and a resistor.
  • a plurality of capacitors may be connected in parallel or in series, and a plurality of resistors may be connected in parallel or in series, and a capacitor and a resistor may be connected in series; or a capacitor and a resistor may be connected in series.
  • the total capacitance of the module is 220 pF and the total value of the resistor is 50 ohms. That is, the module has the same value (or total value) of the capacitance of the above module.
  • the optical line termination module of the embodiment of the present invention may further include: a downlink module 70.
  • the optical line termination module of the embodiment of the present invention may further include: a downlink module 70.
  • the downlink module 70 is configured to perform downlink transmission.
  • the downlink module 70 can support downlink transmission at both rates of 10G and 1G.
  • the second optical line termination module of the embodiment of the present invention is a specific form of the practical application of the optical line termination module in FIG.
  • the 10G optical receiving sub-module 10 is a 1G/10G APD/TIA (1G/10G dual-rate avalanche diode cross-group amplifier);
  • 10G Burst Mode Limiting Amplifier 20 is a 10G Burst Mode Limiting Amp (10G Burst Mode Limiting Amplifier);
  • the adjustment module 30 is a 1000pF capacitor
  • the termination module 50 is a circuit in which a 1000 pF capacitor and a 50 ohm resistor are connected in series;
  • 1G Burst Mode Limiting Amplifier 60 is 1G Burst Mode Limiting Amp;
  • 1 G Burst Mode Limiting Amp's idle input is connected by a 220pF capacitor and a 50 ohm resistor in series.
  • the downlink module 70 consists of a 1G 1490nm DFB TOSA (Distribute Feed Back Transmitter Optical Sub Assembly), a 10G 1577nm EML TOSA (Electro-absorption Modulated Laser Transmitter Optical Sub Assembly) Device), two Laser Drivers and a Signal Conditioner (CDR).
  • DFB TOSA Distribute Feed Back Transmitter Optical Sub Assembly
  • EML TOSA Electro-absorption Modulated Laser Transmitter Optical Sub Assembly
  • CDR Signal Conditioner
  • the second optical line termination module of the embodiment of the present invention there are two WDM (Wavelength Division Multiplexing) modules, a Module Shutdown (Module Shutdown Function) module, and an I2C Interface (Serial Interface) module.
  • WDM Widelength Division Multiplexing
  • Module Shutdown Module Shutdown Function
  • I2C Interface Serial Interface
  • the non-inverting terminal of the 1G/10G APD/TIA is connected to the non-inverting input of the 10G Burst Mode Limiting Amp through a 1000pF capacitor.
  • the reverse end of the 1G/10G APD/TIA is connected to the reverse input of the 1G Burst Mode Limiting Amp through a 220pF capacitor. end.
  • the inverting input of the 10G Burst Mode Limiting Amp is terminated with the non-inverting input of the 1G Burst Mode Limiting Amp, and the input of the 1G/10G APD/TIA is connected to the reflective port (Refllect port) of the WDM2.
  • the transmission port (pass) of WDM1 is connected to 10G 1577nm EML TOSA, WDM1's transmission port (Reflect port) is connected to 1G 1490nm DFB TOSA, then WDM1's common port (Com port) is connected to WDM2's transmission port (Pass port). WDM2's public port (Com port) is externally input/output.
  • the drive signal input of the 10G 1577nm EML TOSA is connected to the drive signal output of the 10G Laser Driver; the signal input of the 10G Laser Driver is connected to the signal output of the Signal Conditioner; 1G 1490nm DFB TOSA drive signal input and 1G The output of the Laser Driver is connected.
  • Serial Data I/O and Serial Clock are serial channel interfaces
  • 10G Tx Disable of 10G Laser Driver is a 10G illumination enable pin
  • 10G Tx DATA(+) and 10G Tx DATA( - ) are 10G differential signal data input pins (one forward and one reverse);
  • 1G Tx DATA(+) and 1G Tx DATA( -) of 1G Laser Driver are 1G differential signal data input pins (one forward and one reverse);
  • 1G Laser Driver's Tx Disable is a 1G illumination enable pin
  • 1G Burst Mode Limiting Amp's 1G Tx DATA(+) and 1G Tx DATA( - ) are 1G differential signal data output pins (one forward and one reverse);
  • 1G Burst Mode Limiting Amp's 1G Tx LOS is a 1G optical loss alarm pin; 10G Burst Mode Limiting Amp's 10G Tx DATA(+) and 10G Tx DATA( - ) are
  • 10G Burst Mode Limiting Amp's 10G Tx LOS is a 10G optical loss alarm pin;
  • the RSSI Trigger and Rx RSSI of the 1G/10G APD/TIA are monitoring pins.
  • Module Shutdown module When the pin is pulled up to the voltage of 5V, all modules are in the off state. At this time, the uplink module and the downlink module (ie, transmit and receive) are turned off, only the serial port works, the pin is grounded, all The module works fine.
  • I2C Interface module Serial interface, monitoring the state of the OLT operation, including: temperature, 10G transmit bias current, 10G transmit optical power, 1G transmit bias current, 1G transmit optical power, 3.3V and 5V voltage , TEC ( Thermo-Electric Coolers) monitors current and bursts of received optical power.
  • Serial interface monitoring the state of the OLT operation, including: temperature, 10G transmit bias current, 10G transmit optical power, 1G transmit bias current, 1G transmit optical power, 3.3V and 5V voltage
  • TEC Thermo-Electric Coolers
  • the first uplink transmission module in the embodiment of the present invention includes all modules involved in uplink transmission in the first optical line termination module.
  • the 10G optical receiving sub-module 10, the 10G burst mode limiting amplifier 20 and the adjusting module 30 are included.
  • a voltage regulating module 40 Further comprising: a voltage regulating module 40, a terminating module 50 and a 1G burst mode limiting amplifier 60.
  • a voltage regulating module 40 For the function of each module, refer to the content in Figure 1, and details are not described herein.
  • each module has the same function, pin, and connection mode as the modules in FIG. 2, and details are not described herein again.
  • one end of the optical line terminal module is connected to the OLT system device, and the other end is connected to the optical splitter.
  • the optical line termination module of the embodiment of the present invention can be used for a 10Gbit Ethernet passive optical network access network, such as FTTC (Fiber To The Curb), FTTB (Fiber To The Building, Fiber to the Building), and FTTH. ( Fiber To The Home, Fiber to the Home).
  • FTTC Fiber To The Curb
  • FTTB Fiber To The Building, Fiber to the Building
  • FTTH Fiber To The Home
  • the optical line termination module of the embodiment of the present invention combines a 10G EPON OLT and a 1G EPON OLT.
  • the optical line termination module of the embodiment of the present invention may be called: dual rate coexistence symmetric 10G EPON OLT) .
  • FIG. 2 The following is a detailed description using FIG. 2 as an example.
  • the optical line termination The downlink of the module has the following characteristics:
  • the downlink of the optical line termination module has the following characteristics:
  • the distributed feedback laser has a center wavelength of 1490 nm, an average transmit power of 2 to 7 dBm, and a better average transmit power of 4 dBm.
  • the reception setup is only 200ns and the dynamic range can reach 20dB.
  • the center wavelength is 1270nm, and the sensitivity is better than -28dBm.
  • the center wavelength is 1310 nm, and the sensitivity is better than -29.78 dBm.
  • the 10G receiver (composed of 10G ROSA+10G Burst Mode Limiting Amp +1000pF capacitor) using the above specific device is tested by test.
  • the optical characteristics of the IG receiver (consisting of IG ROSA+IG Burst Mode Limiting Amp +220pF capacitor) are shown in the table below. :
  • ROSA Fluorescence Activated Gas Sensor
  • the lOG/s receiver uses the in-phase output of the ROSA
  • the lG/s receiver uses the inverted output of the ROSA.
  • the LIA of the lO/s receiver and the remaining inputs of the LIA of the lG/s receiver are connected to a 50 ohm terminal. It has a differential output for both lOG/s and lG/s receivers. Both receivers have the RX_LOS (Optical Loss of Alarm) feature.
  • the adjustment module Since the sensitivity of the 10G burst mode limiting amplifier and the reception setup time are adjusted by the adjustment module, the number of preamables is reduced under the premise of ensuring performance, thereby reducing overhead and improving efficiency.
  • the optical line termination module of the embodiment of the present invention is symmetric, so that the IEEE802.3av protocol can be satisfied.
  • the optical line termination module can implement the uplink burst mode, and the dynamic range can reach 20 dB when the reception setup time is less than 200 ns (that is, the two optical aberrations are 20 dBm, and the normal recovery can be performed, that is, If one light is -6dBm and the other light is -26dBm, both packets can be recovered normally.
  • the optical line termination module of the embodiment of the present invention can be used to establish a 10G EPON access network outside the laboratory, thereby accelerating the development of data services and telecommunication services, and having a rapid development of optical communication. help.
  • the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of the inventions

Description

一种光线路终端模块和上行传输模块 技术领域
本发明涉及光通信技术领域, 特别涉及一种光线路终端模块和上行传输 模块。 背景技术
随着语音、 视频和数据的容量增长, 需要越来越多的带宽。 在过去的几 年中, 人们将以太无源光网络用于接入网。 上行信号和下行信号速度均为
1.25G/s。 考虑到开销与其他损失, 带宽效率极其有限。 即使对于吉比特无源 光网络, 下行速度为 2.5Gb/s, 上行速度也局限于 1.25Gb/s ( GPON的下行是 2.5Gb/s, 上行 1.25Gb/s )。 这种传输速度都限制了光网络容量的增长。 在这种 情况下, 下一代接入网显得非常重要。
几年前, IEEE ( IEEE Institute of Electrical and Electronics Engineers, 电气 和电子工程师学会) 已经开始了对 10G比特以太无源光网络的研究工作, 并 且公布了关于 10G EPON (以太无源光网络) IEEE 802.3av的新协议。 很多公 司都对该协议进行了研究。 新的 10G EPON OLT ( Optical Line Terminal, 光线 路终端)模块已投入使用。
10G EPON OLT模块能够以 10G/s连续模式 1577nm下行、 10G/s突发模 式 1270nm上行、 1.25G/s连续模式 1490nm下行、 1.25G/s突发模式 1310nm 上行传输数据。 对于 1.25G/S上行和下行, 10G EPON OLT模块借用现有的 EPON网络。 对于 lOG/s下行, 10G EPON OLT模块借用 10G SDH (同步数字 系列)并且很容易建立。但是对于 lOG/s上行,因为没有可用的 BM TIA( Burst mode Trans-Impedance Amplifier,突发模式跨阻放大器 )和 BM LIA( burst mode limit amplifier, 突发模式限幅放大器), 尽管能够实现 10G/s上行突发模式功 能, 但是存在接收建立时间 ( receiving setting time )过长的问题。 由于过长的 接收建立时间, 需要使用大量的前导(Preamable ) 来保证净荷(payload )尽 量少的受到接收建立时间过长带来的损失。
综上所述, 目前光线路终端模块在进行上行传输时需要大量的 preamable 来保证性能, 从而增加了开销, 降低了效率。 发明内容
本发明实施例提供一种光线路终端模块和上行传输模块, 用以解决现有 技术中存在的光线路终端模块在进行上行传输时需要大量的 preamable 来保 证性能, 从而增加了开销, P条低了效率的问题。
本发明实施例提供的一种光线路终端模块, 该光线路终端模块包括: 10G 光接收子模块、 10G突发模式限幅放大器和调节模块;
所述 10G光接收子模块, 用于将接收到的光信号转换成电信号, 并通过 所述调节模块向所述 10G突发模式限幅放大器输出所述电信号;
所述 10G突发模式限幅放大器, 用于将所述电信号放大后输出; 所述调节模块, 用于调整所述 10G突发模式限幅放大器的灵敏度和接收 建立时间。
本发明实施例提供的一种上行传输模块, 该上行传输模块包括: 10G光 接收子模块、 10G突发模式限幅放大器和调节模块;
所述 10G光接收子模块, 用于将接收到的光信号转换成电信号, 并通过 所述调节模块向所述 10G突发模式限幅放大器输出所述电信号;
所述 10G突发模式限幅放大器, 用于将所述电信号放大后输出; 所述调节模块, 用于调整所述 10G突发模式限幅放大器的灵敏度和接收 建立时间。
由于通过调节模块调整 10G突发模式限幅放大器的灵敏度和接收建立时 间, 在保证性能的前提下, 减少了 preamable的数量, 从而减少了开销, 提高 了效率。 附图说明 图 1为本发明实施例第一种光线路终端模块的示意图;
图 2为本发明实施例第二种光线路终端模块的示意图;
图 3为本发明实施例第一种上行传输模块的示意图;
图 4为本发明实施例第二种上行传输模块的示意图;
图 5为本发明实施例光线路终端模块的应用示意图。 具体实施方式
本发明实施例在 10G光接收子模块和 10G突发模式限幅放大器之间添加 一个调节模块, 该调节模块调整 10G突发模式限幅放大器的灵敏度和接收建 立时间。 由于通过调节模块调整 10G突发模式限幅放大器的灵敏度和接收建 立时间, 在保证性能的前提下, 减少了 preamable的数量, 从而减少了开销, 提高了效率。
其中, 灵敏度指光模块能够探测到的最小光功率; 接收建立时间指突发 性能下, 数据包从接收到恢复正常所占用的时间。 由于接收建立时间越短, 损失的前导就越少, 所以本发明实施例通过调整 10G突发模式限幅放大器的 灵敏度和接收建立时间, 在保证调整后的接收建立时间内能够正常接收数据 的前提下, 使调整后的灵敏度比较高。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 1 所示, 本发明实施例第一种光线路终端模块包括: 10G光接收子 模块(ROSA ) 10、 10G突发模式限幅放大器 20和调节模块 30。
10G光接收子模块 10, 用于将接收到的光信号转换成电信号, 并通过调 节模块 30向 10G突发模式限幅放大器 20输出电信号。
10G突发模式限幅放大器 20, 用于将收到的电信号放大后输出。
调节模块 30,—端与 10G光接收子模块 10的同相端相连,另一端与 10G 突发模式限幅放大器 20的同相输入脚相连,用于调整 10G突发模式限幅放大 器的灵敏度和接收建立时间。
其中, 调节模块 30可以是一个电容; 也可以是一个电路, 比如由多个电 容并联组成或由多个电容串联组成或由电感和电容组成。
由于电容越大, 灵敏度就会越好, 电容越大带来的电容效应就越严重, 所以就会占用越长的时间去建立突发包的电平, 这就造成了接收建立时间越 长, (要想保证尽量好的灵敏度, 需要选取尽量大的电容, 而大电容带来的问 题就是接收建立时间越长)也就是说 10G突发模式限幅放大器的电容越大, 灵敏度越好, 接收建立时间越长; 相应的, 10G 突发模式限幅放大器的电容 越小, 灵敏度越低, 接收建立时间越短。 所以调节模块 30调节后的灵敏度和 接收建立时间, 需要保证在满足接收建立时间的前提下, 尽量提高灵敏度。
如果调节模块 30是一个电容, 较佳的, 该电容是 lOOOpF;
如果调节模块 30是一个电路, 较佳的, 该电路的电容的总值是 1000pF。 需要说明的是, lOOOpF只是灵敏度和接收建立时间匹配最佳时, 电容的 容值。 而本发明实施例并不局限于 1000pF, 其他数值也同样适用本发明实施 例, 只是效果不是最佳。
为了在减少 Preamable的基础上, 进一步提高光线路终端模块的性能, 本 发明实施例的光线路终端模块还可以进一步包括: 调压模块 40。
调压模块 40, 用于根据预先设定的温度和电压值的对应关系, 确定当前 10G 突发模式限幅放大器 20 的温度对应的电压值, 并根据确定的电压值向 10G突发模式限幅放大器 20的输出信号质量调节端输出控制电压, 使得 10G 突发模式限幅放大器 20在突发模式下稳定工作。
在具体实施过程中,调压模块 40也可以确定光线路终端模块当前的温度, 并将光线路终端模块当前的温度作为 10G突发模式限幅放大器 20的温度。
温度和电压值的对应关系并不是不变的, 根据需要还可以对温度和电压 值的对应关系进行更新。
为了进一步减少反射和向外辐射能量, 提高性能本发明实施例的光线路 终端模块还可以进一步包括: 端接模块 50。
端接模块 50, 用于将 10G突发模式限幅放大器 20的闲置输入端进行端 接。 在具体实施过程中, 端接模块 50可以是一个电路, 由电容和电阻组成。 比如可以是多个电容并联或串联, 多个电阻并联或串联, 电容和电阻之间是 串联; 还可以是一个电容和一个电阻串联。
较佳的, 端接模块 50中的电容的总值是 lOOOpF, 电阻的总值是 50欧姆。 也就是说, 端接模块 50中的电容的总值可以和调节模块 30的电容的值(或 总值)相等。
为了进一步的减少模块数量, 降低成本以及节省资源, 本发明实施例的 光线路终端模块还可以进一步包括: 1G突发模式限幅放大器 60。
相应的, 10G光接收子模块 10还用于: 将电信号输出给 1G突发模式限 幅放大器;
1G突发模式限幅放大器, 用于将电信号放大后输出。
具体的, 10G光接收子模块 10在将光信号转换成电信号后, 会分别将电 信号通过两路向 10G突发模式限幅放大器 20和 1G突发模式限幅放大器 60 发送。
如果输出的电信号是 1G电信号, 则 10G突发模式限幅放大器 20和 1G 突发模式限幅放大器 60都会进行处理; 如果输出的电信号是 10G电信号, 则 10G突发模式限幅放大器 20会进行处理, 1G突发模式限幅放大器 60会因为 带宽关系而处理不了。
进一步的, 1G突发模式限幅放大器 60和 10G光接收子模块 10之间也就 可以有一个用于调整 1G 突发模式限幅放大器的灵敏度和接收建立时间的模 块, 这个模块可以是一个电容; 也可以是一个电路, 比如由多个电容并联组 成或由多个电容串联组成或由电感和电容组成。 如果是一个电容, 较佳的, 该电容是 220pF; 如果是一个电路, 较佳的, 该电路的电容的总值是 220pF。
进一步的, 还可以有一个将 10突发模式限幅放大器 50的闲置输入端进 行端接的模块。 该模块可以是一个电路, 由电容和电阻组成。 比如可以是多 个电容并联或串联, 多个电阻并联或串联, 电容和电阻之间是串联; 还可以 是一个电容和一个电阻串联。 较佳的, 该模块中的电容的总值是 220pF, 电阻的总值是 50欧姆。 即该 模块与上述的模块的电容的值(或总值)相同。
本发明实施例的光线路终端模块除了能够完成上行传输, 还可以完成下 行传输, 则本发明实施例的光线路终端模块还可以进一步包括: 下行模块 70。
下行模块 70, 用于进行下行传输。
具体的, 下行模块 70可以支持 10G和 1G两种速率的下行传输。
如图 2所示, 本发明实施例第二种光线路终端模块是图 1 中光线路终端 模块实际应用的一种具体形式。
具体的, 10G光接收子模块 10是 1G/10G APD/TIA ( 1G/10G双速率雪崩 二极管跨组放大器);
10G突发模式限幅放大器 20是 10G Burst Mode Limiting Amp ( 10G突发 模式限幅放大器);
调节模块 30是一个 1000pF的电容;
端接模块 50是一个 1000pF的电容和一个 50欧姆的电阻串联的电路;
1G突发模式限幅放大器 60是 1G Burst Mode Limiting Amp;
1G Burst Mode Limiting Amp和 1G/10G APD/TIA之间还有一个 220pF的 电容;
1 G Burst Mode Limiting Amp的闲置输入端处连接由一个 220pF的电容和 一个 50欧姆的电阻串联的电路。
下行模块 70 由一个 1G 1490nm DFB TOSA ( Distribute Feed Back Transmitter Optical Sub Assembly, 分布反馈式光发送子器件)、 一个 10G 1577nm EML TOSA( Electro-absorption Modulated Laser Transmitter Optical Sub Assembly,电吸收调制激光器光发送子器件)、两个 Laser Driver (激光驱动器) 和一个 Signal Conditioner (时钟恢复模块, CDR )组成。
本发明实施例第二种光线路终端模块中还有两个 WDM ( Wavelength Division Multiplexing, 波分复用)模块、 一个 Module Shutdown (模块关断功 能)模块和一个 I2C Interface (串行接口)模块。 具体的连接方式是:
1G/10G APD/TIA的同相端通过 1000pF电容, 连接到 10G Burst Mode Limiting Amp的同相输入脚, 1G/10G APD/TIA的反向端通过 220pF电容连接 到 1 G Burst Mode Limiting Amp的反向输入端。 10G Burst Mode Limiting Amp 的反向输入端和 1G Burst Mode Limiting Amp的同相输入端进行端接, 1G/10G APD/TIA的输入端与 WDM2的反射端口 ( Refllect端口)相连接。
WDM1的透射端口 ( Pass口)连接 10G 1577nm的 EML TOSA, WDM1 的发射端口 (Reflect口)连接 1G 1490nm的 DFB TOSA, 然后 WDM1的公 共端口 (Com口 ) 与 WDM2的透射端口 (Pass口)相连, WDM2的公共端 口 (Com口)对外输入 /输出。
10G 1577nm的 EML TOSA的驱动信号输入端与 10G Laser Driver的驱动 信号输出端连接; 10G Laser Driver的信号输入端连接与 Signal Conditioner的 信号输出端连接; 1G 1490nm的 DFB TOSA的驱动信号输入端与 1G Laser Driver的输出端连接。
其中, Serial Data I/O和 Serial Clock是串行通道接口;
10G Laser Driver的 10G Tx Disable是 10G发光使能管脚;
Signal Conditioner的 10G Tx DATA(+)和 10G Tx DATA( - )是 10G差分信 号数据输入管脚(一个正向一个反向);
1G Laser Driver的 1G Tx DATA(+)和 1G Tx DATA( -)是 1G差分信号数据 输入管脚 (一个正向一个反向);
1G Laser Driver的 Tx Disable是 1G发光使能管脚;
1G Burst Mode Limiting Amp的 1G Tx DATA(+)和 1G Tx DATA( - )是 1G 差分信号数据输出管脚(一个正向一个反向);
1G Burst Mode Limiting Amp的 1G Tx LOS是 1G光丢失告警管脚; 10G Burst Mode Limiting Amp的 10G Tx DATA(+)和 10G Tx DATA( - )是
10G差分信号数据输出管脚(一个正向一个反向);
10G Burst Mode Limiting Amp的 10G Tx LOS是 10G光丢失告警管脚; 1G/10G APD/TIA的 RSSI Trigger和 Rx RSSI是监控管脚。
Module Shutdown模块的作用是: 将引脚上拉到电压 5V时, 所有模块处 于关断状态, 此时上行模块和下行模块(即发射和接收) 关断, 只有串口工 作, 将引脚接地, 所有模块正常工作。
一个 I2C Interface模块的作用是: 串行接口, 监控 OLT工作的状态量, 包括: 温度, 10G发射偏置电流, 10G发射光功率, 1G发射偏置电流, 1G发 射光功率, 3.3V和 5V电压, TEC ( Thermo-Electric Coolers, 热电制冷)监控 电流, 突发接收光功率。
如图 3 所示, 本发明实施例第一种上行传输模块包括第一种光线路终端 模块中涉及上行传输的所有模块。
具体的, 包括 10G光接收子模块 10、 10G突发模式限幅放大器 20和调 节模块 30。
进一步包括: 调压模块 40、 端接模块 50和 1G突发模式限幅放大器 60。 具体每个模块的功能参见图 1中的内容, 在此不再赘述。
如图 4所示, 本发明实施例第二种上行传输模块中, 每个模块都与图 2 中的各个模块的功能、 管脚以及连接方式全都相同, 在此不再赘述。
与图 2的区别在于, 由于只有上行传输功能, 所以没有 WDM2模块, 信 号直接输入到 1G 0G APD/TIA中。
如图 5 所示, 本发明实施例光线路终端模块的应用示意图中光线路终端 模块一端与 OLT系统设备连接, 另一端与分光器连接。
本发明实施例的光线路终端模块能够用于 10G比特以太无源光网络接入 网,例如 FTTC( Fiber To The Curb,光纤到路边)、 FTTB( Fiber To The building, 光纤到大楼)和 FTTH ( Fiber To The Home, 光纤到户)。
本发明实施例的光线路终端模块将 10G EPON OLT和 1G EPON OLT组 合, 由于上行和下行共计 4个波长, 所以本发明实施例的光线路终端模块可 以叫做: 双速率共存式对称 10G EPON OLT)。 下面以图 2为例进行详细说明。
如果图 2中 10G TOSA 1577nm EML是电吸收调制激光器,则光线路终端 模块的下行具有以下特征:
内部具有温度控制,用于保持波长稳定。其输出光功率能够达到 2~5dBm, 消光比远高于 6dB。 其中心波长为 1577nm, 波长范围为 1575nm至 1580nm。 在 1分 32的分光比下, 可以传输 20km。
如果图 2中 IG TOSA 1490nm DFB是分布式反馈激光器, 则光线路终端 模块的下行具有以下特征:
分布式反馈激光器的中心波长为 1490nm, 平均发射功率为 2~7dBm, 较 佳的平均发射功率为 4dBm。
如果图 2中 1G/10G上行集成了 APD/TIA光学器件, 对于 10G上行链路 来说, 接收建立仅为 200ns 并且动态范围能够达到 20dB, 其中心波长为 1270nm,灵敏度优于 -28dBm,对于 1G上行链路来说,其中心波长是 1310nm, 灵敏度优于 -29.78dBm。
通过试验测量采用上述具体器件的 10G发射机(由 10G TOSA 1577nm EML+IOG Laser Driver+ Signal Conditioner组成)以及 IG发射机(由 IG TOSA 1490nm DFB+1G Laser Driver组成)光学特性参见下表: 发射机光学特性
参数 表示符号 最小 典型值 最大 单位 备注
10.3125Gb/s发射机
激光器类型 1577nm CW EML
下行信号速率 10.3125 Gb/s
平均发射功率 POUT 2 - 5 dBm
光中心波长 λ 1575 1577 1580 ran
边模抑制比 SMSR 30 - - dB
消光比 ER 6 - - dB
1.25Gb/s发射机
激光器类型 1490nm CW DFB Laser
下行信号速率 1.25 Gb/s
平均发射功率 POUT 2 - 7 dBm
光上升和下降时
Tr / Tf - - 260 ps 20% - 80% 间 光中心波长 λ 1480 1490 1500 nm
谱宽 Δλ - 1 nm
边模抑制比 SMSR 30 - - dB
消光比 ER 9 - - dB
输出眼图 符合 IEEE802.3ah
通过试睑测量采用上述具体器件的 10G接收机(由 10G ROSA+10G Burst Mode Limiting Amp +1000pF电容组成) IG接收机(由 IG ROSA+IG Burst Mode Limiting Amp +220pF电容组成)光学特性参见下表:
Figure imgf000012_0001
Figure imgf000013_0001
(ROSA), lOG/s接收机使用该 ROSA的同相输出, lG/s接收机使用 ROSA的 反相输出。 lOG/s接收机的 LIA和 lG/s接收机的 LIA的其余输入与 50欧姆端 子连接。 对于 lOG/s和 lG/s接收机两者具有差分输出。 这两个接收机都具有 RX_LOS (光信号丟失报警)功能。
由于通过调节模块调整 10G突发模式限幅放大器的灵敏度和接收建立时 间, 在保证性能的前提下, 减少了 preamable的数量, 从而减少了开销, 提高 了效率。
进一步的, 由于 IEEE802.3av协议够用于对称或非对称 EPON接入网 , 而本发明实施例光线路终端模块是对称式的, 所以能够满足 IEEE802.3av协 议。 本发明实施例光线路终端模块能够实现上行突发模式, 通过试验测量到 在接收建立时间少于 200ns时, 动态范围能够达到 20dB (也就是说, 两个光 相差 20dBm, 都可以正常恢复, 即如果一个光是 -6dBm, 另一个光是 -26dBm, 则两个数据包都可以正常恢复)。 由于具有上述两个特性, 本发明实施例的光 线路终端模块可用于在实验室外建立 10G EPON接入网, 从而能够加速数据 业务和电信业务的开发, 对光通信的快速发展具有 ί艮大帮助。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种光线路终端模块, 其特征在于, 包括: 10G光接收子模块、 10G 突发模式限幅放大器和调节模块;
所述 10G光接收子模块, 用于将接收到的光信号转换成电信号, 并通过 所述调节模块向所述 10G突发模式限幅放大器输出所述电信号;
所述 10G突发模式限幅放大器, 用于将所述电信号放大后输出; 所述调节模块一端与所述 10G光接收子模块的同相端相连, 另一端与所 述 10G突发模式限幅放大器的同相输入脚相连, 用于调整所述 10G突发模式 限幅放大器的灵敏度和接收建立时间。
2、 如权利要求 1所述的光线路终端模块, 其特征在于, 所述光线路终端 模块还包括:
调压模块, 用于根据预先设定的温度和电压值的对应关系, 确定当前所 述 10G突发模式限幅放大器的温度对应的电压值, 并根据确定的电压值向所 述 10G突发模式限幅放大器的输出信号盾量调节端输出控制电压,使所述 10G 突发模式限幅放大器在突发模式下稳定工作。
3、 如权利要求 1所述的光线路终端模块, 其特征在于, 所述光线路终端 模块还包括: 1G突发模式限幅放大器;
所述 10G光接收子模块还用于: 将所述电信号输出给所述 1G突发模式 限幅放大器;
所述 1G突发模式限幅放大器, 用于将所述电信号放大后输出。
4、 如权利要求 1 ~ 3任一所述的光线路终端模块, 其特征在于, 所述调 节模块是一个电容或由多个电容并联组成或由多个电容串联组成或由电感和 电容组成。
5、 如权利要求 4任一所述的光线路终端模块, 其特征在于, 所述电容的 总值是 1000pF。
6、 如权利要求 1所述的光线路终端模块, 其特征在于, 所述光线路终端 模块还包括:
端接模块,用于将所述 10G突发模式限幅放大器的闲置输入端进行端接。
7、 如权利要求 6所述的光线路终端模块, 所述端接模块由电容和电阻组 成。
8、 如权利要求 7所述的光线路终端模块, 所述电容的总值是 1000pF。
9、 如权利要求 7所述的光线路终端模块, 其特征在于, 所述调节模块是 一个电容时, 所述 10G光接收子模块的同相端通过电容连接到 10G突发模式 限幅放大器的同相输入脚, 所述 10G光接收子模块的反向端通过电容连接到 所述 1G突发模式限幅放大器的反向输入端, 所述 10G 突发模式限幅放大器 的反向输入端和所述 1G突发模式限幅放大器的同相输入端进行端接。
10、 如权利要求 1 - 3、 6 ~ 8任一所述的光线路终端模块, 其特征在于, 所述光线路终端模块还包括:
下行模块, 用于进行下行传输。
11、 一种上行传输模块, 其特征在于, 该上行传输模块包括: 10G光接 收子模块、 10G突发模式限幅放大器和调节模块;
所述 10G光接收子模块, 用于将接收到的光信号转换成电信号, 并通过 所述调节模块向所述 10G突发模式限幅放大器输出所述电信号;
所述 10G突发模式限幅放大器, 用于将所述电信号放大后输出; 所述调节模块一端与 10G光接收子模块 10的同相端相连,另一端与 10G 突发模式限幅放大器 20的同相输入脚相连,用于调整所述 10G突发模式限幅 放大器的灵敏度和接收建立时间。
PCT/CN2010/075381 2010-07-22 2010-07-22 一种光线路终端模块和上行传输模块 WO2012009854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075381 WO2012009854A1 (zh) 2010-07-22 2010-07-22 一种光线路终端模块和上行传输模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075381 WO2012009854A1 (zh) 2010-07-22 2010-07-22 一种光线路终端模块和上行传输模块

Publications (1)

Publication Number Publication Date
WO2012009854A1 true WO2012009854A1 (zh) 2012-01-26

Family

ID=45496446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075381 WO2012009854A1 (zh) 2010-07-22 2010-07-22 一种光线路终端模块和上行传输模块

Country Status (1)

Country Link
WO (1) WO2012009854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402627A (zh) * 2019-09-12 2022-04-26 谷歌有限责任公司 端口复制器
WO2023071310A1 (zh) * 2021-10-26 2023-05-04 京信网络系统股份有限公司 一种5g毫米波基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581735A (zh) * 2003-08-08 2005-02-16 中兴通讯股份有限公司 一种实现对不同输入光功率自适应的光接收装置
CN101212258A (zh) * 2006-12-26 2008-07-02 三菱电机株式会社 光接收器
CN101394230A (zh) * 2008-10-30 2009-03-25 武汉电信器件有限公司 智能10Gbps可插拔光收发模块及其主工作流程
WO2009066690A1 (ja) * 2007-11-19 2009-05-28 Fujikura Ltd. 光バースト信号受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581735A (zh) * 2003-08-08 2005-02-16 中兴通讯股份有限公司 一种实现对不同输入光功率自适应的光接收装置
CN101212258A (zh) * 2006-12-26 2008-07-02 三菱电机株式会社 光接收器
WO2009066690A1 (ja) * 2007-11-19 2009-05-28 Fujikura Ltd. 光バースト信号受信装置
CN101394230A (zh) * 2008-10-30 2009-03-25 武汉电信器件有限公司 智能10Gbps可插拔光收发模块及其主工作流程

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402627A (zh) * 2019-09-12 2022-04-26 谷歌有限责任公司 端口复制器
TWI765346B (zh) * 2019-09-12 2022-05-21 美商谷歌有限責任公司 用於光通信之方法及光電光轉換器
WO2023071310A1 (zh) * 2021-10-26 2023-05-04 京信网络系统股份有限公司 一种5g毫米波基站

Similar Documents

Publication Publication Date Title
US7936991B2 (en) Optical line terminating apparatus and optical communication system
EP2088696A1 (en) Station-side terminator
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
KR20130095314A (ko) 수동 광 네트워크를 위한 멀티플렉스 변환
WO2010133159A1 (zh) 突发光信号放大方法、突发光放大器及系统和通信系统
CN101471731A (zh) 网络系统、光集线装置以及光网络装置
US11876564B2 (en) System and methods for coherent burst reception
Cheng et al. World's first demonstration of pluggable optical transceiver modules for flexible TWDM PONs
WO2017118153A1 (zh) 基于啁啾光栅的长距离无源光网络系统及色散补偿方法
Sugawa et al. Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system
Cheng Flexible TWDM PONs
JP2010166279A (ja) 光通信システムおよび光集線装置
Guo et al. Demonstration of 10G Burst-Mode DML and EDC in symmetric 40Gbit/s TWDM-PON over 40km Passive Reach
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
WO2012009854A1 (zh) 一种光线路终端模块和上行传输模块
WO2014180253A1 (zh) 一种支持两种无源光网络共存的光组件及方法
Jin et al. First demonstration of 50G TDM-PON prototype in compliance with ITU-T G. 9804.3 standard N1 ODN class 29-dB
US8270837B2 (en) Optical power equalizer for passive optical network
CN107276673B (zh) 一种光模块
EP3424159B1 (en) Agrregator-based cost-optimized communications topology for a point-to-multipoint network
WO2023169296A1 (zh) 光功率控制方法和装置
WO2022262803A1 (zh) 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质
Li et al. First Real-Time Symmetric 50G TDM-PON Prototype with High Bandwidth and Low Latency
Kaur et al. Effects of using rz and nrz modulation formats for tdm-pon system on transmission characteristics for downstream signals
JP6932255B2 (ja) 光送受信装置、光通信装置、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854884

Country of ref document: EP

Kind code of ref document: A1