WO2022262799A1 - 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质 - Google Patents

光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质 Download PDF

Info

Publication number
WO2022262799A1
WO2022262799A1 PCT/CN2022/099094 CN2022099094W WO2022262799A1 WO 2022262799 A1 WO2022262799 A1 WO 2022262799A1 CN 2022099094 W CN2022099094 W CN 2022099094W WO 2022262799 A1 WO2022262799 A1 WO 2022262799A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
rate
wavelength range
electrical signal
Prior art date
Application number
PCT/CN2022/099094
Other languages
English (en)
French (fr)
Inventor
杨波
黄新刚
雷星宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22824272.3A priority Critical patent/EP4351041A1/en
Publication of WO2022262799A1 publication Critical patent/WO2022262799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • the present application relates to the technical field of communication, and in particular to an optical signal receiving device, an optical line terminal, an optical signal receiving system, an optical signal receiving method, and a computer-readable storage medium.
  • the rate of optical signals is also increasing, and the uplink speed level of PON network is also increasing.
  • the uplink needs to be able to support optical signals of 50G rate level, 12.5G rate level and 25G rate level at the same time.
  • the optical line terminal (optical line terminal, OLT) side optical receiver uses a semiconductor optical amplifier (semiconductor optical amplifier, SOA), band-pass filter (band-pass filter, BPF) and photodetector (Photodetector, PD), that is, in the SOA+BPF+PD receiver architecture, since the BPF in the architecture is a narrow-band filter,
  • SOA semiconductor optical amplifier
  • BPF band-pass filter
  • Photodetector Photodetector
  • the SOA+BPF+PD receiver architecture the operating wavelength range of the uncooled laser at the transmitting end is relatively wide, which may cause a mismatch between the wavelength range of the narrowband filter and the wavelength range of the uncooled laser, resulting in the use of uncooled lasers for optical signals at the 12.5G rate level and 25G rate level.
  • the SOA+BPF+PD receiver architecture cannot be compatible with various optical signals supporting 50G rate level, 12.5G rate level and 25G rate level.
  • the solution in the related technology is: make the optical signals of 12.5G and 25G rate grades be sent by a transmitter with a cooler, and correspondingly, make the wavelength working ranges corresponding to the optical signals of 12.5G and 25G rate grades be the same as those of 50G rate grades
  • the wavelength working range corresponding to the optical signal is also narrowed to 4nm.
  • this solution will lead to a significant increase in the cost of the terminal optical module due to the use of a transmitter with a cooler. It can be seen that, on the premise of not increasing the manufacturing cost of the terminal optical module, there are some problems in the related receiver architecture in supporting optical signals of multiple rates at the same time.
  • a receiving device for optical signals including: a filter and at least one detector; the filter is placed after the amplifier, and the filtering characteristics of the filter are based on the preset wavelength Range configuration, configured to filter noise contained in the optical signal amplified by the amplifier and perform wavelength splitting processing on the optical signal to obtain at least one optical signal corresponding to the preset wavelength range; the At least one detector is configured to convert the at least one optical signal into an electrical signal.
  • an optical line terminal including: the above-mentioned apparatus for receiving an optical signal.
  • an optical signal receiving system including: the above-mentioned optical line terminal, and an optical network unit.
  • a method for receiving an optical signal including: filtering out the noise contained in the optical signal amplified by the amplifier through a filter and performing wavelength splitting processing on the optical signal to obtain at least one optical signal corresponding to a preset wavelength range; and converting the at least one optical signal into an electrical signal by at least one detector.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, the above method for receiving an optical signal is implemented.
  • FIG. 1 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application
  • Figure 3 shows a schematic diagram of the scope of the narrow band and wide band provided by the embodiment of the present application
  • FIG. 4 shows a schematic diagram of division of an uplink wavelength range provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a multi-rate light receiving component in Example 1 provided by the embodiment of the present application
  • FIG. 6 shows a schematic diagram of the system structure of the multi-rate receiving system in Example 1 provided by the embodiment of the present application;
  • FIG. 7 shows a schematic structural diagram of a multi-rate receiving device in Example 2 provided by the embodiment of the present application.
  • Fig. 8 shows a schematic structural diagram when the signal comparison module is configured to compare the magnitude of the DC component of the output signal in Example 2 provided by the embodiment of the present application;
  • FIG. 9 shows a schematic structural diagram when the signal comparison module is configured to compare the peak-to-peak values of the first electrical signal and the second electrical signal in Example 2 provided by the embodiment of the present application to implement signal comparison;
  • Fig. 10 shows a schematic structural diagram when the signal comparison module is configured to realize signal comparison by detecting the frequency of the first electrical signal in Example 2 provided by the embodiment of the present application;
  • FIG. 11 shows a schematic diagram of the system structure of the multi-rate receiving system in Example 2 provided by the embodiment of the present application;
  • FIG. 12 shows a schematic structural diagram of a multi-rate receiving device in Example 3 provided by the embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of a signal addition module including a variable delay module in Example 3 provided by the embodiment of the present application;
  • FIG. 14 shows a schematic diagram of the wavelength division method in Example 4 provided by the embodiment of the present application.
  • FIG. 15 shows a schematic diagram of a system structure of a multi-rate receiving system provided in Example 5 provided in the embodiment of the present application.
  • optical signal receiving device optical line terminal, optical signal receiving system, optical signal receiving method, and computer-readable Read the storage medium for a detailed description.
  • Embodiments described herein may be described with reference to plan views and/or cross-sectional views by way of idealized schematic representation of the application. Accordingly, the example illustrations may be modified according to manufacturing techniques and/or tolerances. Therefore, the embodiments are not limited to the ones shown in the drawings but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the drawings have schematic properties, and the shapes of the regions shown in the figures illustrate the shapes of the regions of the elements, but are not restrictive.
  • the present application provides an optical signal receiving device, including: a filter and at least one detector; the filter is placed after the amplifier, and the filtering characteristics of the filter are configured according to a preset wavelength range, and are configured to filter out the noise contained in the optical signal and perform wavelength splitting processing on the optical signal to obtain at least one optical signal corresponding to a preset wavelength range; at least one detector is configured to convert at least one optical signal into an electrical signal.
  • the at least one optical signal may be one or two, depending on the wavelength division of the optical signal.
  • the number of detectors mainly depends on the number of optical signals, for example, the number of detectors may be two.
  • the optical signal is filtered by a filter and divided into more than one output channel. After splitting, one optical channel only passes the optical signal in the high-speed wavelength range (that is, the narrowband wavelength working range), and the optical signal in the remaining wavelength range is transmitted from the other channel. light path through.
  • the filtering characteristics of the filter are reasonably configured according to the preset wavelength range, so that the filter can perform wavelength splitting processing while having the function of filtering amplifier spontaneous emission noise (ASE noise) of high-speed signals, and realize splitting road detection capability. It can be seen that the filter has the following two functions at the same time: on the one hand, it can filter out the noise generated by the amplifier; on the other hand, it can realize wavelength splitting.
  • the optical signal receiving device provided by the present application, by reasonably setting the transmission wavelength and reflection wavelength of the filter, the optical signals of different wavelength ranges are split and output.
  • the receiving device of the optical signal can perform wavelength demultiplexing processing through a filter according to the corresponding relationship between the signal rate and the wavelength, and then demultiplex and receive the original optical signal, so that the receiving device can be applied to optical signals of various rates .
  • the transmitting end since the receiving device is compatible with receiving optical signals of various wavelengths and rates, the transmitting end does not need to use a transmitter with a cooler, thereby not increasing the manufacturing cost of the terminal optical module.
  • FIG. 1 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates.
  • the receiving device includes: an amplifier 11 , a filter 12 , a first detector 13 and a second detector 14 .
  • the amplifier 11 is configured to amplify the received original optical signal.
  • the filter 12 is configured to perform wavelength splitting and narrowband filtering on the amplified original optical signal to obtain a first optical signal corresponding to the first wavelength range and/or a second optical signal corresponding to the second wavelength range .
  • the first detector 13 is configured to convert the first optical signal from the filter 12 into a first electrical signal
  • the second detector 14 is configured to convert the second optical signal from the filter 12 into a second electrical signal
  • the first One of the optical signal and the second optical signal is a narrowband optical signal.
  • the filter 12 performs wavelength splitting on the amplified high-speed signal and at the same time performs narrow-band filtering to reduce the ASE noise of the amplifier 11 from entering the detectors 13 and 14 and ensure the high-sensitivity detection performance of the optical signal receiving device.
  • the amplifier 11 in the optical signal receiving device provided in this application includes an optical amplifier, and may include a semiconductor optical amplifier SOA.
  • the filter 12 may include a single thin film filter (Thin Film Filter, TFF for short), a micro-optical component Z-Block, and/or a photonic integrated device (such as a Mach-Zehnder interferometer, Mach-Zehnder interferometer, MZI for short), etc.
  • the filter 12 in the optical signal receiving device provided in this application can also be called a filter module, which is configured to realize wavelength splitting and narrow-band filtering functions, and any device that can realize wavelength splitting and narrow-band filtering functions can be used as the filter 12 , the present application does not limit the implementation manner of the filter 12 .
  • the first detector 13 and the second detector 14 may include various detectors such as a PIN detector or an APD detector.
  • the signal rate level of the original optical signal can include multiple types, the wavelength ranges of the optical signals corresponding to different rate levels are different, so the related optical In the amplifier + narrowband filter + detector architecture, the narrowband filter will cut off optical signals outside the narrowband wavelength range, so that the receiver cannot receive low-rate optical signals with a wider wavelength range and operating wavelengths outside the narrowband wavelength range. That is, the related optical amplifier + narrow-band filter + detector architecture cannot be compatible with optical signals of various rates.
  • the wavelength range of the original optical signal is divided into a first wavelength range and a second wavelength range in advance, and correspondingly, the optical signal in the first wavelength range and the optical signal in the second wavelength range pass through the
  • the transmitted optical path and reflected optical path of the filter are transmitted to different detectors for reception, thereby realizing compatible reception of multi-rate optical signals.
  • the optical signal receiving device in the present application can be arranged in various types of optical devices, for example, it can be arranged inside an optical line terminal, or inside an optical network unit.
  • the present application does not limit the location of the optical signal receiving device, as long as the compatible reception of multi-rate optical signals can be realized.
  • the amplified original optical signal can be subjected to wavelength demultiplexing processing through a filter to obtain the first optical signal corresponding to the first wavelength range and the first optical signal corresponding to the second wavelength range.
  • the second optical signal corresponding to the two wavelength ranges correspondingly, the first detector converts the first optical signal from the filter into a first electrical signal, and the second detector converts the second optical signal from the filter into a first electrical signal Two electrical signals.
  • the optical signal receiving device by setting the transmission wavelength and reflection wavelength of the filter reasonably, the first wavelength range
  • the optical signal is converted into a first electrical signal through the first detector, and the optical signal in the second wavelength range is converted into a second electrical signal through the second detector.
  • the receiving device of the optical signal can perform wavelength splitting processing through the filter according to the corresponding relationship between the signal rate and the wavelength, and then convert the original optical signal splitting into two electrical signals through the detector, so that the receiving device can Applicable to optical signals of various rates.
  • FIG. 2 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates.
  • the receiving device includes: an amplifier 21 , a filter 22 , a first detector 23 , a second detector 24 and a signal preprocessing module 25 .
  • the amplifier 21 is configured to amplify the received original optical signal.
  • the filter 22 is configured to perform wavelength splitting and narrowband filtering on the amplified original optical signal to obtain a first optical signal corresponding to the first wavelength range and a second optical signal corresponding to the second wavelength range.
  • the first detector 23 is configured to convert the first optical signal from the filter 22 into a first electrical signal
  • the second detector 24 is configured to convert the second optical signal from the filter 22 into a second electrical signal
  • the first One of the optical signal and the second optical signal is a narrowband optical signal.
  • the filter 22 performs wavelength splitting on the amplified high-speed signal and at the same time performs narrow-band filtering to reduce the ASE noise of the amplifier 21 from entering the detectors 23 and 24, thereby ensuring the high-sensitivity detection performance of the optical signal receiving device.
  • the amplifier 21 in the optical signal receiving device provided in the present application includes an optical amplifier, which may include a semiconductor optical amplifier SOA.
  • the filter 22 may include a single thin film filter (Thin Film Filter, TFF for short), a micro-optical component Z-Block, and/or a photonic integrated device (such as a Mach-Zehnder interferometer, Mach-Zehnder interferometer, MZI for short), etc.
  • the filter 22 in the optical signal receiving device provided in this application can also be called a filter module, and is configured to realize wavelength splitting and narrow-band filtering functions. Any device that can realize wavelength splitting and narrow-band filtering functions can be used as the filter 22.
  • the present application does not limit the implementation manner of the filter 22 .
  • the first detector 23 and the second detector 24 may include various detectors such as a PIN detector or an APD detector.
  • the signal rate level of the original optical signal can include multiple types, the wavelength ranges of the optical signals corresponding to different rate levels are different, so the related optical In the amplifier + narrowband filter + detector architecture, the narrowband filter will cut off optical signals outside the narrowband wavelength range, so that the receiver cannot receive low-rate optical signals with a wider wavelength range and operating wavelengths outside the narrowband wavelength range. That is, the related optical amplifier + narrow-band filter + detector architecture cannot be compatible with optical signals of various rates.
  • the wavelength range of the original optical signal is divided into a first wavelength range and a second wavelength range in advance, and correspondingly, the optical signal in the first wavelength range and the optical signal in the second wavelength range pass through the
  • the transmitted optical path and reflected optical path of the filter are transmitted to different detectors for reception, thereby realizing compatible reception of multi-rate optical signals.
  • the filter 22 has a first output optical path and a second output optical path; the passband range of the first output optical path corresponds to the first wavelength range, and the passband range of the second output optical path corresponds to the second wavelength range; then the filter 22 can be configured In order to transmit the first optical signal corresponding to the first wavelength range to the first detector through the first output optical path after being processed by transmission or reflection, the second optical signal corresponding to the second wavelength range is processed by reflection or After transmission processing, it is transmitted to the second detector through the second output optical path.
  • the transmission wavelength of the filter 22 corresponds to the first wavelength range
  • the reflection wavelength of the filter 22 corresponds to the second wavelength range
  • the filter 22 can be configured to transmit the first optical signal corresponding to the first wavelength range After processing, it is transmitted to the first detector 23 through the first optical path, and the second optical signal corresponding to the second wavelength range is transmitted to the second detector 24 through the second optical path after reflection processing; in some embodiments, the first The first wavelength range and the second wavelength range are divided according to the corresponding relationship between the rate of the optical signal and the wavelength, then the first wavelength range corresponds to the original optical signal of the first rate, and the second wavelength range corresponds to the original optical signal of the second rate .
  • the corresponding relationship between the rate of the optical signal and the wavelength can be determined according to the parameters of the laser at the sending end of the optical signal.
  • the first rate is greater than the second rate, and the first wavelength range is less than the second wavelength range.
  • the optical signal receiving device is capable of receiving optical signals at three rates.
  • the first rate includes: 50 gigabits per second (Gbit/s)
  • the second rate includes: 12.5 Gbit/s s and/or 25Gbit/s.
  • the first rate includes: 50Gbit/s and 25Gbit/s
  • the second rate includes 12.5Gbit/s.
  • the present application does not limit the division manner of the first rate and the second rate.
  • the above-mentioned first rate is the first rate level
  • the second rate is the second rate level.
  • the corresponding relationship between the rate of the optical signal and the wavelength is the corresponding relationship between the rate level of the optical signal and the wavelength range.
  • the ranges of the reflected wavelength and the transmitted wavelength can also be interchanged, which is not limited in this application.
  • the manner of dividing the above-mentioned first wavelength range and the second wavelength range depends on the laser parameters of the optical signal sending end, and the optical signal sending end may be an optical network unit.
  • the manner of dividing the first wavelength range and the second wavelength range can be realized by at least one of the following two implementation manners.
  • the first wavelength range is located in the middle region of the second wavelength range
  • the second wavelength range may include: a first sub-range located on the first side (eg left side) of the first wavelength range, and a second sub-range located on a second side (eg, right side) of the first wavelength range. That is: the second wavelength range includes a preset wavelength range other than the first wavelength range.
  • the first sub-range may be located on a first side of the first wavelength range and be spaced from the first wavelength range by a first preset wavelength; the second sub-range may be located on a second side of the first wavelength range and be spaced from the first wavelength range second preset wavelength.
  • the lengths of the first preset wavelength and the second preset wavelength may be the same or different.
  • FIG. 4 shows a schematic diagram of division of an uplink wavelength range provided by the embodiment of the present application.
  • the first wavelength range is [ ⁇ 3, ⁇ 4]
  • the second wavelength range includes: The first sub-range [ ⁇ 1, ⁇ 5] on the left side and separated from the first wavelength range by the first preset wavelength, and the second sub-range [ ⁇ 1, ⁇ 5] on the right side of the first wavelength range and separated from the first wavelength range by the second preset wavelength subrange [ ⁇ 6, ⁇ 2].
  • the length of the first preset wavelength is equal to the difference between ⁇ 3 and ⁇ 5, and the length of the second preset wavelength is equal to the difference between ⁇ 6 and ⁇ 4.
  • the filter is configured to transmit the first optical signal corresponding to the first wavelength range to the first detector through the first output optical path after transmission processing or reflection processing, and to transmit the first optical signal corresponding to the second wavelength range (that is, including the above-mentioned
  • the second optical signal corresponding to the first sub-range and the second sub-range is transmitted to the second detector through the second output optical path after reflection processing or transmission processing.
  • the first wavelength range and the second wavelength range do not overlap each other, and there is an interval transition zone between the first wavelength range and the second wavelength range.
  • the second optical signal is the same as the second wavelength range the corresponding optical signal.
  • the interval transition zone refers to: a third wavelength range located between the first wavelength range and the second wavelength range, the third wavelength range neither coincides with the first wavelength range nor coincides with the second wavelength range, so that the third wavelength range There is a transitional band that can function as an interval between the first wavelength range and the second wavelength range.
  • the present application does not limit the division manner of the first wavelength range and the second wavelength range.
  • the signal preprocessing module 25 is configured to perform preprocessing on the first electrical signal output by the first detector 23 and the second electrical signal output by the second detector 24, to obtain a preprocessed third electrical signal, and convert the third electrical signal to output to the signal receiver.
  • the main function of the signal preprocessing module 25 is to analyze and process the first electrical signal and the second electrical signal to obtain a third electrical signal for outputting to the signal receiving end.
  • the third electrical signal can be the quality of one channel extracted from the first electrical signal and the second electrical signal.
  • a preferred electrical signal may also be an electrical signal obtained after preset processing such as addition of the first electrical signal and the second electrical signal, and the present application does not limit the details.
  • the signal preprocessing module 25 includes a signal comparison module.
  • the signal comparison module is configured to compare at least one of the DC component, peak-to-peak value, signal-to-noise ratio, or signal frequency of the first electrical signal and the second electrical signal, and compare the first electrical signal or the second electrical signal according to the comparison result.
  • the electrical signal serves as the third electrical signal.
  • the signal preprocessing module 25 includes a signal adding module.
  • the signal addition module is configured to add the first electrical signal and the second electrical signal to obtain a third electrical signal.
  • the signal preprocessing module 25 in the optical signal receiving device provided by the present application converts two electrical signals into one electrical signal, the signal receiving end only needs to have a pair of electrical signals configured to receive the third electrical signal.
  • the receiving signal pins are sufficient, and there is no need to set two pairs of receiving signal pins for the first electrical signal and the second electrical signal, thereby simplifying the hardware cost of the signal receiving end, reducing the volume of the signal receiving end, and facilitating the miniaturization of the signal receiving end Package processing.
  • the signal receiving end in the optical signal receiving device provided by this application can be various types of network equipment with optical signal receiving function, for example, it can be an optical line terminal.
  • the optical signal receiving device provided by this application can be set in Inside the optical line terminal, or communicated with the optical line terminal.
  • the optical signal receiving device may further include: a signal rate level indication module configured to identify the signal wavelength range and signal rate level according to the signal preprocessing module 25, and send a rate level indication signal to the signal receiving end.
  • the signal rate level indication module is mainly configured to determine the rate level of the third electrical signal according to the signal wavelength and signal rate of the third electrical signal, and send a rate level indication signal to the signal receiving end.
  • the signal receiving end receives a high-speed signal at this time, correspondingly, The high rate level indication signal is sent to the signal receiving end through the signal rate level indicating module; if all the third electrical signals are output from the second electrical signal, then the signal receiving end receives a low rate level signal at this time, correspondingly, the low rate level The level indication signal is sent to the signal receiving end through the signal rate level indicating module; if the third electrical signal is all output from the first electrical signal, and the signal rate is low, then the signal receiving end receives a low rate level signal at this time, and the corresponding Yes, the low rate level indication signal is sent to the signal receiving end through the signal rate level indication module; if the third electrical signal is output after comparing the first electrical signal with the second electrical signal (or, the first electrical signal and the second electrical signal are plus output, and both the first electrical signal and the
  • the signal preprocessing module 25 can judge the signal wavelength and rate level of the third electrical signal during the process of preprocessing the first electrical signal and the second electrical signal, the corresponding rate level indication signal can be determined according to The judgment result of the signal preprocessing module 25 is sent to the signal receiving end.
  • the original optical signal in the optical signal receiving device provided in the present application may be an uplink optical signal transmitted from the optical network unit to the optical line terminal.
  • An embodiment of the present application further provides an optical line terminal, including: the above-mentioned optical signal receiving apparatus.
  • the above-mentioned signal preprocessing module can also be omitted, so as to directly output the above-mentioned first electrical signal and second electrical signal to the signal receiving end.
  • the signal receiving end needs to provide two pairs of receiving signal pins, are respectively configured to receive the above-mentioned first electrical signal and second electrical signal.
  • the above-mentioned optical signal receiving device does not include a signal preprocessing module, in order to facilitate the signal receiving end (that is, the optical line terminal) to perform subsequent processing on the received electrical signal, it is necessary to know the rate level of the received signal according to the time slot schedule .
  • the optical line terminal includes: a signal selection module configured to determine the signal rate level corresponding to the current scheduling time slot according to the correspondence between the scheduling time slot and the signal rate stored in the time slot scheduling table, According to the signal rate level, the first electrical signal or the second electrical signal is selected as an effective electrical signal for reception.
  • the effective electrical signal refers to an effective received electrical signal that is actually used for subsequent processing.
  • the optical line terminal has two pairs of receiving signal pins, which respectively correspond to receiving the first electrical signal and the second electrical signal, and the first electrical signal and the second electrical signal respectively correspond to optical signals of different wavelength ranges, then in In some embodiments, when it is known that the optical signal received at the current time is a high-rate optical signal, the first electrical signal is an effective electrical signal component, and the second electrical signal is an invalid electrical signal component.
  • the first electrical signal is determined Receive effective electrical signals and control the receiving signal pins corresponding to the first electrical signal to work; when it is known that the current time is received as a low-rate optical signal, both the first electrical signal and the second signal may be valid electrical signal, at this time, the signal selection module in the optical line terminal respectively determines the bit error rate of the first electrical signal and the second electrical signal at the physical layer, and uses the electrical signal with a lower bit error rate among the first electrical signal and the second electrical signal as Valid electrical signals are received.
  • An embodiment of the present application also provides an optical signal receiving system, including: the above-mentioned optical line terminal, and an optical network unit.
  • the amplified original optical signal can be wavelength-divided and narrow-band filtered through a filter to obtain the first optical signal corresponding to the first wavelength range
  • the second optical signal corresponding to the second wavelength range correspondingly, the first detector converts the first optical signal from the filter into a first electrical signal, and the second detector converts the second optical signal from the filter converted into a second electrical signal.
  • the transmission wavelength and reflection wavelength of the filter are set reasonably, so that the first wavelength range
  • the optical signal of the first detector is converted into a first electrical signal
  • the optical signal of the second wavelength range is converted into a second electrical signal through a second detector.
  • the receiving device of the optical signal can perform wavelength splitting processing through a filter according to the corresponding relationship between the signal rate and the wavelength range, and then split the original optical signal into two electrical signals through the detector, so that the optical signal
  • the receiving device can be applied to optical signals of various rates.
  • two electrical signals can be converted into one electrical signal, thereby reducing the number of pins at the signal receiving end, reducing hardware costs, and reducing device volume.
  • TDM-PON time-division multiplexed passive optical network
  • 10G PON 10 Gigabit Passive Optical Network
  • GPON Gigabit-Capable Passive Optical Networks
  • 50Gbit/s passive optical network (based on time division multiplexing, namely 50G TDM PON) has become the evolution direction of 10G PON.
  • the ITU-T standard G.hsp.pmd currently defines three rate levels of uplink 12.5G, 25G and 50G. Therefore, in the actual deployment process in the future, there will be ONUs with three different upstream rates on the same ODN.
  • OLT equipment and OLT optical modules are required to be compatible with three upstream receiving rates at the same time.
  • the uplink rate is 50G, due to the substantial increase in the line rate, it is difficult to meet the link budget requirements of 32 decibels and above for the PON network by using related APD receivers.
  • FIG. 3 shows a schematic diagram of ranges of narrow bands and wide bands provided by the embodiment of the present application.
  • US0 and US1 respectively represent two wavelength schemes where 50G PON coexists with GPON and XGPON.
  • the OLT side optical receiver of the 50G rate level needs to adopt the SOA+BPF+PD receiver architecture, which cannot be compatible with the uncooled receivers of the 12.5G and 25G rate levels at the same time. laser.
  • the OLT receiving optical path is divided into two through a 1:2 optical splitter, and two receivers are used to receive 50G rate uplink signals and 12.5G/25G uplink signals respectively.
  • the optical splitter is not sensitive to wavelength, it will add 3 decibels of loss to the original link budget, which will pose a serious challenge to the performance of optical devices.
  • the above solution must use two pairs of uplink signal pins, but the two pairs of uplink signal pins are not conducive to the miniaturized packaging of the OLT optical module.
  • the multi-rate receiving device includes: an optical amplifier 11 , a filter 12 , a first detector 13 and a second detector 14 .
  • the optical amplifier 11 performs optical signal amplification processing on the received uplink optical signal.
  • the filter 12 sends the narrowband working wavelength (corresponding to the above-mentioned first wavelength range) in the upstream wavelength range to the first detector 13 through the first optical path, and at the same time sends the upstream wavelength range
  • Optical signals other than the working wavelength of the inner narrow band are sent to the second detector 14 through the second optical path.
  • the first detector 13 converts the narrow-band uplink optical signal passing through the first optical path into a first electrical signal for output.
  • the second detector 14 converts the uplink optical signal passing through the second optical path beyond the narrow-band working wavelength into a second electrical signal for output.
  • Figure 4 shows a schematic diagram of the division of the upstream wavelength range.
  • the filter has the following characteristics:
  • the upstream narrowband wavelength range is [ ⁇ 3 , ⁇ 4]
  • the pass band range of the first optical path of the filter (such as the transmitted optical path) is [ ⁇ 3, ⁇ 4]
  • the cutoff wavelength range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the second optical path of the filter (such as the reflected optical path )
  • the passband range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the cutoff wavelength range is [ ⁇ 3, ⁇ 4].
  • the wavelength ranges [ ⁇ 5, ⁇ 3] and [ ⁇ 4, ⁇ 6] are filter transition bands, and the optical signals in this wavelength range partly enter the first optical path and partly enter the second optical path.
  • ⁇ 1 is 1260nm
  • ⁇ 2 is 1280nm
  • ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 can be wavelengths within the range of 1260nm to 1280nm (excluding 1260nm and 1280nm)
  • ⁇ 3 is 1268nm
  • ⁇ 4 is 1272nm
  • ⁇ 5 is 1266nm
  • ⁇ 6 is 1274nm. It can be seen that ⁇ 1 ⁇ 5 ⁇ 3 ⁇ 4 ⁇ 6 ⁇ 2.
  • the optical amplifier 11 may include a semiconductor optical amplifier SOA
  • the filter 12 may include a single thin-film filter TFF, a micro-optical assembly Z-Block, a photonic integrated device (MZI), etc.
  • the detectors 13 and 14 may include a PIN detector or an APD detector .
  • the multi-rate receiving device mentioned above may be an OLT multi-rate receiving device, which may be composed of discrete components, packaged into an optical receiving component or a hybrid integrated optical chip.
  • the multi-rate optical receiving component may also include an optical path coupling device (such as a lens), an optical adapter, a metal casing, and a flexible printed circuit (FPC).
  • FIG. 5 shows a schematic structural diagram of a multi-rate light receiving component provided by an embodiment of the present application.
  • the multi-rate light-receiving assembly includes: semiconductor optical amplifier SOA, micro-optical assembly Z-Block50, detectors PD1 and PD2, lenses (corresponding to the circular parts in the figure), optical adapters and flexible boards ( FPC) and so on.
  • the micro-optical component Z-Block 50 may include a filter 51 and a filter 52 .
  • the above semiconductor optical amplifier (SOA) device receives the uplink incident optical signal through the optical adapter and amplifies the uplink optical signal. The amplified optical signal is converted into parallel light by the first lens and input to the micro-optical component Z-Block.
  • SOA semiconductor optical amplifier
  • the micro-optical component Z-Block transmits the input optical signal in the narrow-band wavelength range through the filter 51 and converges it through the second lens. It is sent to the detector PD1 and converted into the first electrical signal; the optical signal outside the input narrow-band wavelength range and the transition band of the filter 51 is totally reflected by the filter 51, then totally reflected by the filter 52, and finally passes through the third lens
  • the input detector PD2 is converted into the second electrical signal; the uplink optical signal in the transition band of the input filter 51 is partially transmitted through the filter 51 and then input into the detector PD1 to be converted into the first electrical signal, which is partially reflected by the filter 51 Afterwards, it is totally reflected by the filter 52 and input to the detector PD2 to convert it into a second electrical signal.
  • the multi-rate light-receiving component also includes a flexible board FPC, which is connected to the external circuit through the flexible board FPC, connected to the detector PD1 and the detector PD2, and converts the first electrical signal and the second electrical signal converted by the detectors PD1 and PD2.
  • the signal is output to an external circuit.
  • the external circuit is also connected to the control pins of the detectors (PD1, PD2) and the semiconductor optical amplifier SOA through the flexible board FPC to realize functions such as power supply, monitoring signal reading, and current adjustment.
  • the detectors PD1 and PD2 convert the input optical signal into an electrical signal, and after converting the optical signal into a current signal, convert the current signal into a differential voltage signal output through a transimpedance amplifier (TIA) circuit .
  • TIA transimpedance amplifier
  • the optical characteristics of the filter 51 conform to the wavelength definition mentioned above, that is, for the 50G PON with the uplink broadband wavelength range [ ⁇ 1, ⁇ 2] and the uplink narrowband wavelength range [ ⁇ 3, ⁇ 4], the filter 51
  • the passband range of the transmitted optical path is [ ⁇ 3, ⁇ 4]
  • the cutoff wavelength range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the reflective optical path passband range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the cutoff wavelength range is [ ⁇ 3, ⁇ 4].
  • the wavelength ranges [ ⁇ 5, ⁇ 3] and [ ⁇ 4, ⁇ 6] are filter transition bands, and part of the optical signal in this wavelength range enters the transmission optical path, and part of it enters the reflection optical path.
  • the filter 52 totally reflects all optical signals (including broadband and narrowband) within the 50G PON upstream wavelength range, or optical signals outside the narrowband wavelength range (ie [ ⁇ 1, ⁇ 3] and [ ⁇ 4, ⁇ 2]), that is, for In the reflection optical path of filter 51, all wavelengths within the 50G PON upstream wavelength range are passbands.
  • FIG. 6 shows a schematic diagram of a system structure of a multi-rate receiving system in Example 1 provided by the embodiment of the present application.
  • the multi-rate receiving system includes: a multi-rate receiving device 60 , a plurality of optical network units (ONUs) 61 , an optical splitter 62 , and a signal receiving end 67 .
  • the multi-rate receiving device 60 includes: an optical amplifier 63 , a filter 64 , a first detector 65 and a second detector 66 .
  • the signal receiving end 67 may be an optical line terminal.
  • the signal receiving end 67 may include 50G PON MAC (Media Access Control, Media Access Control).
  • a plurality of optical network units (ONU) 61 are used as signal sending ends, and each ONU can send optical signals of different rate levels, including: 12.5G, 25G, and 50G optical signals of various rate levels .
  • Multiple channels of optical signals corresponding to different rate levels sent by multiple ONUs are processed by the optical splitter 62 and then sent to the above-mentioned multi-rate receiving device 60 .
  • the optical amplifier 63 in the multi-rate receiving device 60 is responsible for amplifying the received optical signal
  • the filter 64 is configured to perform the wavelength demultiplexing process mentioned above, and transmit the optical signals after wavelength demultiplexing respectively to the first detector 65 and/or the second detector 66 .
  • the first detector 65 is mainly responsible for receiving and processing high-speed optical signals and low-speed signals in the first wavelength range
  • the second detector 66 is mainly responsible for receiving and processing low-speed optical signals in the second wavelength range.
  • a signal amplification module, a clock data recovery module, etc. can also be set between the multi-rate receiving device 60 and the signal receiving end 67, and the signal amplification module is configured to amplify the multi-rate The first electrical signal and the second electrical signal output by the receiving device, and the clock data recovery module is configured to perform clock data recovery on the signals.
  • a signal selection unit is included in the signal receiving end 67.
  • the above-mentioned signal selection unit is included in the 50G PON MAC chip of the optical line terminal, and the signal selection unit The unit is configured to determine the signal rate level corresponding to the current scheduling time slot according to the correspondence between the scheduling time slot and the signal rate stored in the time slot scheduling table, and select the first electrical signal or the second electrical signal according to the corresponding signal rate level.
  • the electrical signal is received as an active electrical signal. For example, read the time slot scheduling table according to the DBA scheduling information, so as to select uplink signals of different rate levels and transmit them to the MAC protocol processing module.
  • the first electrical signal is an effective electrical signal component, and the first signal is controlled to enter the MAC protocol processing module; when it is known that the optical signal received at the current time is a low-rate level, Both the first electrical signal and the second signal may be valid electrical signals.
  • the path with the lowest bit error rate among the first electrical signal and the second signal is selected as a valid electrical signal and entered into the MAC protocol for processing.
  • Module framing sublayer Framing sublayer
  • FIG. 7 shows a schematic structural diagram of the multi-rate receiving device in this example.
  • the multi-rate receiving device includes: an optical amplifier 71, a filter 72, a first detector 73, a second detector 74 and a signal comparison module 75.
  • a signal comparison module 75 is added, and the signal comparison module 75 is configured to compare the quality of the first electrical signal and the second electrical signal, and compare the quality of the first electrical signal and the second electrical signal.
  • the signal comparison module 75 compares the quality of the first electrical signal and the second electrical signal, including: comparing the magnitude of the DC component of the output signal of the first electrical signal and the second electrical signal, the peak-to-peak value, the level compared to the reference level, and the signal-to-noise ratio and/or frequency magnitude etc.
  • FIG. 8 shows a schematic structural diagram of the example when the signal comparison module 75 is configured to compare the magnitude of the DC component of the output signal to achieve signal comparison.
  • the signal comparison module 75 includes: a DC component detection module 81 , a DC component detection module 82 , a DC component comparison module 83 and a signal switch module 84 .
  • the DC component detection module 81 and the DC component detection module 82 respectively detect the DC component 1 and the DC component 2 of the first electrical signal and the second electrical signal and input them to the DC component comparison module 83 .
  • the DC component comparison module 83 judges the magnitude of the two input DC components, and controls the signal switch module 84 according to the comparison result.
  • the DC component comparison module 83 controlled the signal switch module 84 to pass the first electrical signal (that is, the first electrical signal was the third electrical signal output by the signal switch module 84); when the DC component 1 was less than the DC When the component is 2, the DC component comparison module 83 controls the signal switch module 84 to pass the second electrical signal (that is, the second electrical signal is the third electrical signal output by the signal switch module 84); when the DC component 1 is equal to the DC component 2, the DC component The comparison module 83 controls the signal switch module 84 to pass the second electric signal, and the DC component comparison module 83 can keep the current state unchanged, or pass the second electric signal.
  • FIG. 9 shows a schematic structural diagram of the example when the signal comparison module 75 is configured to compare the peak-to-peak values of the first electrical signal and the second electrical signal to implement signal comparison.
  • the signal comparison module 75 includes: an analog-to-digital converter 91 , an analog-to-digital converter 92 and a digital signal processing module 93 .
  • Analog-to-digital converter 91 converts the input first electrical signal into digital signal 1 after sampling, and sends it to digital signal processing module 93; Digital signal processing module 93.
  • the digital signal processing module 93 may include at least one of a DC blocking module for the digital signal 1 and a digital signal 2 , a clock recovery module, and a peak-to-peak level comparison module.
  • the digital signal processing module 93 also includes a signal switch module configured to output one signal among the digital signal 1 and the digital signal 2 as a third electrical signal to a subsequent signal processing module according to the signal quality.
  • the first optical path of the OLT multi-rate receiving device is converted into the first electrical signal and input to the analog-to-digital converter 91.
  • the second optical path is cut off, and the second optical signal has no differential signal output.
  • the digital signal 2 output by the converter 92 has no signal output after being processed by the DC blocking module.
  • the digital signal processing module 93 selects the digital signal 1 as the third electrical signal for output.
  • the digital signal 1 output by the digital-to-analog converter 91 is a DC noise signal, and the digital signal 1 output by the digital-to-analog converter 91 has no signal output after passing through the DC blocking module.
  • the second optical path analog-to-digital converter 92 outputs normal differential signals.
  • the digital signal processing module 93 selects the digital signal 2 as the third electrical signal for output.
  • the uplink 12.5G/25G rate optical signal When the uplink 12.5G/25G rate optical signal is input, and the wavelength of the 12.5G/25G rate optical signal is in the wavelength range of the transition zone of the first optical path and the second optical path, it is output through the first optical path and the second optical path of the OLT multi-rate receiving device , the analog-to-digital converter 91 and the analog-to-digital converter 92 respectively output digital signal 1 and digital signal 2.
  • the digital signal processing module 93 can select the one with the larger peak-to-peak value to output by comparing the peak-to-peak levels of the two digital signal levels. .
  • the uplink 12.5G/25G rate optical signal When the uplink 12.5G/25G rate optical signal is input, and when the wavelength of the 12.5G/25G rate optical signal is within the passband wavelength range of the first optical path, it is output through the first optical path of the OLT multi-rate receiving device, and the first optical path analog-to-digital converter 91 A normal differential signal is output, and the digital signal 2 output by the analog-to-digital converter 92 has no signal output after passing through the DC blocking module. At this time, the digital signal processing module 93 selects the digital signal 1 as the third electrical signal for output.
  • the digital signal processing module 93 may also include a digital equalization module, and the digital equalization module is configured to restore the quality of the input electrical signal, simultaneously detect the signal-to-noise ratio of the digital signal 1 and the digital signal 2, and select the one with the larger signal-to-noise ratio output as a third electrical signal.
  • the digital signal processing module further includes a frequency detection module configured to identify the first electrical signal rate level.
  • FIG. 10 shows a schematic structural diagram of the example when the signal comparison module 75 is configured to realize signal comparison by detecting the magnitude of the frequency of the first electrical signal.
  • the signal comparison module 75 includes a frequency detection module 101 , a comparison control module 102 and a signal switch module 103 .
  • the frequency detection module 101 detects the frequency of the first electrical signal, and low-pass filters the electrical signals with a rate of 25G and below.
  • the comparison control module 102 compares the low-pass filtered first electrical signal and the second electrical signal, and sends a switch indication signal to the signal switch module 103 .
  • the frequency detection module 101 detects that the frequency of the input first electrical signal is greater than 25GHz, and the comparison control module 102 controls the signal switch module 103 to pass the first electrical signal; when the uplink 25G/12.5G rate optical signal is input , the frequency detection module 101 detects that the frequency of the input first electrical signal is less than or equal to 25 GHz. At this time, the first electrical signal and the second electrical signal after the low-pass filtering are compared by the comparison control module 102.
  • the signal switch module 103 When the first electrical signal after the low-pass filtering When an electrical signal is greater than the second electrical signal, the signal switch module 103 passes the first electrical signal, and when the low-pass filtered first electrical signal is smaller than the second electrical signal, the signal switch module 103 passes the second electrical signal.
  • the frequency detection module 101 includes: a DC blocking sub-module configured to perform DC blocking processing on the first electrical signal, and correspondingly, the frequency detection module 101 is configured to detect the frequency of the first electrical signal after the DC blocking processing.
  • the output electrical signal in Example 2 is one channel.
  • the signal receiving end only needs to set a pair of receiving signal pins, which greatly reduces the hardware cost and device volume.
  • this example prompts the signal receiving end to the signal rate level.
  • the OLT multi-rate receiving device in this example also includes a signal rate level indication interface, which identifies the rate level of the effective electrical signal while selecting the first signal and the second signal, and sends the rate level indication signal of the effective electrical signal to the OLT device.
  • the signal rate level indication interface is an implementation of the signal rate level indication module mentioned above.
  • FIG. 11 shows a schematic diagram of a system structure of a multi-rate receiving system provided in Example 2.
  • the multi-rate receiving system includes: a multi-rate receiving device 119 (ie, the multi-rate receiving device shown in FIG. 7 ), a plurality of ONUs 111 , an optical splitter 112 , and a signal receiving end 118 .
  • the difference between the multi-rate receiving system and the system in Example 1 is that the multi-rate receiving device 119 of the multi-rate receiving system in Example 2 includes the optical amplifier 113, the filter 114, the first detector 115, and the second detector 117.
  • it also includes a signal comparison module 116 (that is, the signal comparison module 75 shown in FIG. 7 ).
  • the signal receiving end 118 in this system only needs to have a pair of receiving signal pins.
  • the signal comparison module 116 in the system can send the above-mentioned rate level indication signal.
  • FIG. 12 shows a schematic structural diagram of the multi-rate receiving device in this example.
  • the difference between the multi-rate receiving device in Example 3 and the multi-rate receiving device in Example 2 is that the signal comparison module 75 is replaced by a signal addition module 125 .
  • the multi-rate receiving device in Example 3 includes: an optical amplifier 121 , a filter 122 , a first detector 123 , a second detector 124 and a signal adding module 125 .
  • the signal addition module 125 adds the input first electrical signal and the second electrical signal to output a fourth electrical signal (corresponding to the third electrical signal mentioned in Example 2).
  • the signal addition module 125 may include a DC noise reduction module and a signal addition module, and the DC noise reduction module is configured to perform DC component isolation and noise reduction on the input first electrical signal and the second electrical signal respectively.
  • the signal addition module is configured to combine and output the two electrical signals after DC blocking and noise reduction into a fourth electrical signal.
  • the signal addition module further includes a variable delay module, which performs signal variable delay on the first electrical signal or the second electrical signal, so as to ensure that when the optical wavelength of the uplink signal is in the transition band of the filter, the two signals The amount of delay is equal to prevent signal jitter.
  • FIG. 13 shows a schematic structural diagram of a signal adding module including a variable delay module in this example.
  • the first optical path, first detector and first electrical signal in this example are also applicable to the uplink signal at a 25G rate.
  • the second optical path mainly passes the 12.5G rate level signal.
  • the 50G rate signal is correspondingly changed to a 50G/25G rate signal
  • the 12.5G/25G rate signal is correspondingly changed to 12.5G. Therefore, the above multi-rate receiving device can be flexibly applied to various scenarios of transmitters of different rate levels and different wavelength ranges.
  • the system structure of the multi-rate receiving system in Example 3 is similar to that in FIG. 11 , except that the signal comparison module 116 in FIG. 11 is replaced by the above-mentioned signal addition module 125 .
  • the main difference between the fourth example and the above three examples lies in the different ways of dividing wavelengths.
  • the wavelength division methods in Examples 1, 2, and 3, refer to FIG. 4 .
  • Figure 4 it can be seen that in the above examples 1, 2, and 3, when the low-rate uplink optical signal uses an uncooled laser transmitter, the wavelength may fall into the transition band of the filter, causing the first detector and the second detection All devices have electrical signal output, so it is necessary to select the signal output with higher signal quality among the output electrical signals, which makes the signal preprocessing module more complicated.
  • the existing 50G PON uplink wavelength range is divided into two sub-channels: narrowband and broadband.
  • the optical signal of 12.5G/25G rate can use a wide range of uncooled laser.
  • the wavelength range can be divided as follows: 1290-1294nm is a narrow-band sub-channel, 1296-1310nm is a wide-band sub-channel, and 1294-1296nm is a transition isolation band between two sub-passbands.
  • FIG. 14 shows a schematic diagram of a wavelength division manner in Example 4. It can be seen that, in Example 4, the first wavelength range and the second wavelength range do not overlap with each other, and there is an interval transition zone between the first wavelength range and the second wavelength range.
  • the filter in the OLT multi-rate receiving device has the following characteristics: the first optical path narrow-band sub-channel wavelength (corresponding to the above-mentioned first wavelength range) is a passband, and the wide-band sub-channel wavelength (corresponding to the above-mentioned first wavelength range) is a passband. Two wavelength ranges) cut-off; the second optical path broadband sub-channel wavelength is a passband, and the narrow-band sub-channel wavelength cut-off; the transition isolation band between the two sub-passbands is a filter transition band, and both the first optical path and the second optical path have optical signals output.
  • uplink signals of different rate levels are input to a fixed detector and converted to electrical signal output.
  • the uplink optical signal at 50G rate uses a narrow-band sub-channel
  • the uplink optical signal at 12.5G/25G rate uses a wide-band sub-channel
  • the uplink optical signal at a 50G rate passes through the first optical path and is output by the first detector
  • the uplink optical signal at the G/25G rate passes through the second optical path and is output by the second detector.
  • uplink optical signals of different rate levels correspond to different detectors, and uplink optical signals of different rate levels do not appear in two detectors at the same time.
  • the signal selection module mentioned above. That is: there is no need to set a signal selection module in the 50G PON MAC chip.
  • the uplink signals of different rate levels can be selected to the MAC protocol processing module by reading the DBA scheduling information.
  • the first detector and the second detector can select detectors and TIA devices with appropriate bandwidths according to the speed level, and high-speed devices do not need to be used for low-speed optical signals, which is beneficial to reduce cost and noise.
  • the OLT multi-rate receiving device may also include a signal selection module.
  • the selection state of the signal selection module can be controlled by sending a rate indication signal from the OLT PON MAC.
  • the signal selection module is configured to receive the rate indication signal from the OLT PON MAC, and determine the selection of two circuits according to the signal type of the rate indication signal. Which way of the signal is output.
  • the selection state of the signal selection module can also be controlled by comparing the magnitudes of the RSSI signals of the first detector and the second detector.
  • the multi-rate receiving device can include an RSSI comparison module, which is compared with the first detector
  • the detector, the second detector and the signal selection module are respectively connected, configured to detect the RSSI value of the first electrical signal of the first detector and the RSSI value of the second electrical signal of the second detector, and control the signal selection module according to the detection result Select one of the two electrical signals as the output signal.
  • the signal selection module can also judge by receiving the frequency of the optical signal, so as to select the electrical signal with the high-frequency signal, and no external control signal is needed at this time.
  • Example 5 is similar to the system structural diagram of the multi-rate receiving system provided in Example 2 shown in FIG. 11 .
  • FIG. 15 shows a schematic diagram of a system structure of a multi-rate receiving system provided in example five.
  • this multi-rate receiving system includes: the multi-rate receiving device 159 of example two (that is, the multi-rate receiving device shown in Figure 7), a plurality of optical network units ONU151, optical splitter 152, and signal receiving end 158 . Similar to the multi-rate receiving system in Example 2 (that is, the multi-rate receiving system shown in FIG.
  • the multi-rate receiving device 159 of the system in Example 5 includes an optical amplifier 153, a filter 154, a first detector 155, In addition to the second detector 157 , a signal comparison module 156 is also included.
  • the signal receiving end 158 in this system only needs to have a pair of receiving signal pins.
  • the main difference between the system shown in FIG. 15 and that in FIG. 11 is that the signal rate level indication interface in FIG. 15 is reversed compared with the signal rate level indication interface in FIG. 11 .
  • the so-called “reverse” means that the signal rate level in FIG. 15 indicates the input and output direction of the interface (ie, the signal flow direction) and that in FIG. 11 indicates that the input and output direction of the interface (ie, the signal flow direction) is opposite.
  • the rate level indication signal is sent out by the signal comparison module 116 and received by the signal receiving end 118 (that is, the optical line terminal).
  • the signal receiving end 118 that is, the optical line terminal
  • the rate level indication signal is sent by the signal receiving end 158 (ie, the optical line terminal) and received by the signal comparison module 156 .
  • the optical line terminal determines the signal rate corresponding to the current scheduling time slot according to the corresponding relationship between the scheduling time slot and the signal rate stored in the time slot scheduling table, and sends a rate level indication signal to the multi-rate receiving device 159
  • the signal comparison module 156 in the multi-rate receiving device 159 switches the output of the first electrical signal and the second electrical signal to the third electrical signal according to the current rate level indication signal and the signal quality comparison result.
  • the signal comparison module 156 when the OLT sends a high rate level indication signal, the signal comparison module 156 directly controls the output of the first electrical signal; when the OLT sends a low rate level indication signal, the signal comparison module 156 compares the signal quality of the first electrical signal and the second electrical signal, Select the path with high signal quality as the third electrical signal output.
  • the embodiment of the present application also provides a method for receiving an optical signal, including step 1 and step 2.
  • Step 1 Filter out the noise contained in the optical signal amplified by the amplifier through a filter and perform wavelength splitting processing on the optical signal to obtain at least one optical signal corresponding to a preset wavelength range.
  • At least one optical signal corresponding to the preset wavelength range includes: a first optical signal corresponding to the first wavelength range and/or a second optical signal corresponding to the second wavelength range.
  • Step 2 converting at least one optical signal into an electrical signal by at least one detector.
  • the number of detectors can be one or more.
  • the detector includes: a first detector and a second detector; the first detector is configured to convert the first optical signal into a first electrical signal, and the second detector is configured to convert the second optical signal into a second electrical signal. Signal.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, the above method for receiving an optical signal is realized.
  • the uplink optical signals of 25G and 12.5G speed levels can use uncooled lasers, and can work at any wavelength within the uplink wavelength range.
  • the low-speed working wavelength falls within the narrow-band working wavelength range, it is converted into an electrical signal output through the first optical path through the first detector; when the low-speed working wavelength falls outside the narrow-band working wavelength range, it passes through the second optical path and passes through the second
  • the detector is converted into an electrical signal output; when the low-rate operating wavelength falls in the transition band between the pass band and the stop band of the filter, it is divided into two paths and converted into the first electrical signal through the first optical path through the first detector
  • the output and the second optical path are converted into a second electrical signal output by the second detector.
  • the above technical solution is compatible with optical signals of various rate levels, and can convert two electrical signals into one electrical signal through the signal preprocessing module, so that the signal receiving end only needs to provide a pair of signal receiving pins, greatly
  • the cost of the receiving terminal is simplified, the volume of the receiving terminal is reduced, and it is convenient to realize miniaturized packaging of the device.
  • the multi-rate receiving device in each of the above examples is an optical signal receiving device, and the multi-rate receiving system is an optical signal receiving system.
  • the above-mentioned multi-rate receiving device can be flexibly replaced with any one of the above-mentioned structures, which is not limited in this application.
  • the above examples can be combined with each other.
  • the device structures in each example can be applicable to the two wavelength division methods shown in FIG. 4 and FIG. 14 at the same time, and only need to adjust the characteristics of the filter accordingly.
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • Example embodiments have been disclosed herein, and while described in detail, they are and should be construed in a generally descriptive sense only and not for purposes of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics, and/or elements described in connection with a particular embodiment may be used alone or in combination with features, characteristics described in connection with other embodiments, unless expressly stated otherwise. and/or elements in combination. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present application as set forth in the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光信号的接收装置、一种光线路终端、一种光信号的接收系统、一种光信号的接收方法、及一种计算机可读存储介质,该光信号的接收装置配置为接收多种速率的光信号,包括:滤波器以及至少一个探测器;所述滤波器置于放大器之后,且所述滤波器的滤波特性根据预设波长范围配置,配置为滤除经所述放大器放大后的光信号中包含的噪声并对所述光信号进行波长分路处理,得到与所述预设波长范围相对应的至少一路光信号;所述至少一个探测器配置为将所述至少一路光信号转换为电信号。

Description

光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
相关申请的交叉引用
本申请要求于2021年6月18日提交的中国专利申请NO.202110677204.9的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及通信技术领域,尤其涉及光信号的接收装置、光线路终端、光信号的接收系统、光信号的接收方法、及计算机可读存储介质。
背景技术
随着无源光网络(Passive Optical Network,PON)带宽需求的不断提升,光信号的速率也不断提升,PON网络上行速率等级也随之增多。例如,在50G PON系统中,上行需要能够同时支持50G速率等级、12.5G速率等级以及25G速率等级的光信号。当PON系统支持多种不同速率的光信号时,由于不同速率的光信号所对应的波长范围不同,因此,当光线路终端(optical line terminal,OLT)侧光接收机采用半导体光放大器(semiconductor optical amplifier,SOA)、带通滤波器(band-pass filter,BPF)以及光电探测器(Photodetector,PD),即,SOA+BPF+PD接收机架构时,由于该架构中的BPF为窄带滤波器,而发送端的非制冷激光器的工作波长范围较宽,可能会导致窄带滤波器的波长范围与非制冷激光器的波长范围不匹配,进而导致在12.5G速率等级以及25G速率等级的光信号采用非制冷激光器发送时,该SOA+BPF+PD接收机架构无法兼容支持50G速率等级、12.5G速率等级以及25G速率等级的多种光信号。
相关技术中的解决方案为:使12.5G和25G速率等级的光信号采用带制冷器的发射机发送,相应的,使12.5G和25G速率等级的光信号对应的波长工作范围与50G速率等级的光信号对应的波长工作范围一样收窄至4nm。但是,该解决方案由于采用了带制冷器的发射器,因而会导致终端光模块的成本大幅上升。由此可见,在不提升终端光模块的制造成本的前提下,相关的接收机架构在同时支持多种速率的光信号方面存在一些问题。
公开内容
根据本申请实施例的一个方面,提供了一种光信号的接收装置,包括:滤波器以及至少一个探测器;所述滤波器置于放大器之后,且所述滤波器的滤波特性根据预设波长范围配置,配置为滤除经所述放大器放大后的光信号中包含的噪声并对所述光信号进行波长分路处理,得到与所述预设波长范围相对应的至少一路光信号;所述至少一个探测器配置为将所述至少一路光信号转换为电信号。
根据本申请实施例的一个方面,提供了一种光线路终端,包括:上述的光信号的接收装置。
根据本申请实施例的一个方面,提供了一种光信号的接收系统,包括:上述的光线路终端、以及光网络单元。
根据本申请实施例的一个方面,提供了一种光信号的接收方法,包括:通过滤波器滤除经放大器放大后的光信号中包含的噪声并对所述光信号进行波长分路处理,得到与预设波长范围相对应的至少一路光信号;以及通过至少一个探测器将所述至少一路光信号转换为电信号。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现上述的光信号的接收方法。
附图说明
图1示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图2示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图3示出了本申请实施例提供的窄波段和宽波段的范围示意图;
图4示出了本申请实施例提供的一种上行波长范围的划分示意图;
图5示出了本申请实施例提供的示例一中的多速率光接收组件的结构示意图;
图6示出了本申请实施例提供的示例一中的多速率接收系统的系统结构示意图;
图7示出了本申请实施例提供的示例二中的多速率接收装置的结构示意图;
图8示出了本申请实施例提供的示例二中当信号比较模块配置为比较输出信号直流成分大小的方式实现信号比较时的结构示意图;
图9示出了本申请实施例提供的示例二中当信号比较模块配置为比较第一电信号和第二电信号的峰峰值大小实现信号比较时的结构示意图;
图10示出了本申请实施例提供的示例二中当信号比较模块配置 为通过第一电信号频率大小检测实现信号比较时的结构示意图;
图11示出了本申请实施例提供的示例二中的多速率接收系统的系统结构示意图;
图12示出了本申请实施例提供的示例三中的多速率接收装置的结构示意图;
图13示出了本申请实施例提供的示例三中包含可变延迟模块的信号相加模块的结构示意图;
图14示出了本申请实施例提供的示例四中的波长划分方式的示意图;以及
图15示出了本申请实施例提供的示例五提供的多速率接收系统的系统结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图对本申请提供的光信号的接收装置、光线路终端、光信号的接收系统、光信号的接收方法、及计算机可读存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现,且本申请不应当被解释为限于本文阐述的实施例。提供这些实施例的目的在于使本申请更加透彻和完整,并使本领域技术人员充分理解本申请的范围。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不限制本申请。如本文所使用的,单数形式“一个”和“该”也包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在特定特征、整体、步骤、操作、元件和/或组件,但不排除存在或可添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
本文所述实施例可借助本申请的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。因此,实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的形状,但并不是限制性的。
除非另外限定,否则本文所用的所有术语(包括技术术语和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本申请的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
本申请提供了一种光信号的接收装置,包括:滤波器以及至少 一个探测器;滤波器置于放大器之后,且滤波器的滤波特性根据预设波长范围配置,配置为滤除经放大器放大后的光信号中包含的噪声并对光信号进行波长分路处理,得到与预设波长范围相对应的至少一路光信号;至少一个探测器配置为将至少一路光信号转换为电信号。至少一路光信号可以为一路或两路,可取决于光信号的波长划分情况。另外,探测器的数量主要取决于光信号的数量,例如,探测器的数量可以为两个。
通常情况下,光信号经滤波器滤波后分为一路以上输出,分路后一路光路只通过高速率等级波长范围(即窄带波长工作范围)内的光信号,剩余波长范围的光信号从另一路光路通过。根据预设波长范围合理配置滤波器的滤波特性,以使滤波器在具备过滤高速信号的放大器自发辐射噪声(amplifier spontaneousemission noise,ASE噪声)的功能的同时,还能够进行波长分路处理,实现分路探测的能力。由此可见,滤波器同时具备如下两方面的功能:一方面,能够滤除由放大器产生的噪声;另一方面,能够实现波长分路。通过上述方式,能够实现可支持远端采用低速率非制冷激光器的有益效果。
由此可见,针对光信号的波长范围较宽的特点,在本申请提供的光信号的接收装置中,通过合理设置滤波器的透射波长以及反射波长,使不同波长范围的光信号分路输出。该光信号的接收装置能够根据信号速率与波长之间的对应关系,通过滤波器执行波长分路处理,进而将原始光信号分路接收,以使该接收装置能够适用于多种速率的光信号。并且,由于该接收装置能够兼容接收多种波长和速率的光信号,因而使得发送端无需采用带制冷器的发射器,从而不会提升终端光模块的制造成本。
图1示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号。如图1所示,该接收装置包括:放大器11、滤波器12、第一探测器13以及第二探测器14。放大器11配置为对接收到的原始光信号进行放大处理。滤波器12配置为对放大处理后的原始光信号进行波长分路以及窄带滤波处理,得到与第一波长范围相对应的第一光信号和/或与第二波长范围相对应的第二光信号。第一探测器13配置为将来自滤波器12的第一光信号转换为第一电信号,第二探测器14配置为将来自滤波器12的第二光信号转换为第二电信号,第一光信号和第二光信号之一为窄带光信号。滤波器12对放大后的高速信号进行波长分路的同时,进行窄带滤波,以减少放大器11的ASE噪声进入探测器13和14,保证光信号接收装置的高灵敏度探测性能。
本申请提供的光信号的接收装置中的放大器11包括光放大器,可以包括半导体光放大器SOA。滤波器12可以包括单个薄膜滤波片(Thin Film Filter,简称TFF)、微光学组件Z-Block、和/或光子 集成器件(如马赫-曾德尔干涉仪,Mach-Zehnder interferometer,简称MZI)等。本申请提供的光信号的接收装置中的滤波器12也可以称作滤波模块,配置为实现波长分路以及窄带滤波功能,凡是能够实现波长分路以及窄带滤波功能的器件均可作为滤波器12,本申请不限定滤波器12的实现方式。另外,第一探测器13以及第二探测器14可以包括PIN探测器或APD探测器等各类探测器。
由于信号速率等级与信号波长范围之间具有一定的对应关系,因此,当原始光信号的信号速率等级可以包括多种时,不同速率等级对应的光信号的波长范围宽窄不一,因而相关的光放大器+窄带滤波器+探测器架构中,窄带滤波器会截止窄带波长范围以外的光信号,导致接收机无法接收到波长范围较宽的且工作波长位于窄带波长范围以外的低速率等级光信号,即,相关的光放大器+窄带滤波器+探测器架构无法兼容多种速率的光信号。本申请提供的光信号的接收装置中预先将原始光信号的波长范围划分为第一波长范围以及第二波长范围,相应的,第一波长范围的光信号以及第二波长范围的光信号分别通过滤波器的透射光路以及反射光路传输至不同的探测器接收,从而实现了对多速率光信号的兼容接收。
另外,本申请中的光信号的接收装置可以设置在各类光器件中,例如,可以设置在光线路终端的内部,也可以设置在光网络单元的内部。本申请不限定该光信号的接收装置的位置,只要能够实现多速率光信号的兼容接收即可。
由此可见,在本申请提供的光信号的接收装置中,能够通过滤波器对放大处理后的原始光信号进行波长分路处理,得到与第一波长范围相对应的第一光信号以及与第二波长范围相对应的第二光信号,相应的,第一探测器将来自滤波器的第一光信号转换为第一电信号,第二探测器将来自滤波器的第二光信号转换为第二电信号。由此可见,针对多种速率的光信号的波长范围宽窄不一的特点,在本申请提供的光信号的接收装置中,通过合理设置滤波器的透射波长以及反射波长,使第一波长范围的光信号经由第一探测器转换为第一电信号,且使第二波长范围的光信号经由第二探测器转换为第二电信号。该光信号的接收装置能够根据信号速率与波长之间的对应关系,通过滤波器执行波长分路处理,进而将原始光信号分路经探测器转化为两路电信号,从而使该接收装置能够适用于多种速率的光信号。
图2示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号。如图2所示,该接收装置包括:放大器21、滤波器22、第一探测器23、第二探测器24以及信号预处理模块25。
放大器21配置为对接收到的原始光信号进行放大处理。滤波器22配置为对放大处理后的原始光信号进行波长分路以及窄带滤波处 理,得到与第一波长范围相对应的第一光信号以及与第二波长范围相对应的第二光信号。第一探测器23配置为将来自滤波器22的第一光信号转换为第一电信号,第二探测器24配置为将来自滤波器22的第二光信号转换为第二电信号,第一光信号和第二光信号之一为窄带光信号。滤波器22对放大后的高速信号进行波长分路的同时,进行窄带滤波,减少放大器21的ASE噪声进入探测器23和24,保证光信号接收装置的高灵敏度探测性能。
本申请提供的光信号接收装置中的放大器21包括光放大器,可以包括半导体光放大器SOA。滤波器22可以包括单个薄膜滤波片(Thin Film Filter,简称TFF)、微光学组件Z-Block、和/或光子集成器件(如马赫-曾德尔干涉仪,Mach-Zehnder interferometer,简称MZI)等。本申请提供的光信号接收装置中的滤波器22也可以称作滤波模块,配置为实现波长分路以及窄带滤波功能,凡是能够实现波长分路以及窄带滤波功能的器件均可作为滤波器22,本申请不限定滤波器22的实现方式。另外,第一探测器23以及第二探测器24可以包括PIN探测器或APD探测器等各类探测器。
由于信号速率等级与信号波长范围之间具有一定的对应关系,因此,当原始光信号的信号速率等级可以包括多种时,不同速率等级对应的光信号的波长范围宽窄不一,因而相关的光放大器+窄带滤波器+探测器架构中,窄带滤波器会截止窄带波长范围以外的光信号,导致接收机无法接收到波长范围较宽的且工作波长位于窄带波长范围以外的低速率等级光信号,即,相关的光放大器+窄带滤波器+探测器架构无法兼容多种速率的光信号。本申请提供的光信号的接收装置中预先将原始光信号的波长范围划分为第一波长范围以及第二波长范围,相应的,第一波长范围的光信号以及第二波长范围的光信号分别通过滤波器的透射光路以及反射光路传输至不同的探测器接收,从而实现了对多速率光信号的兼容接收。
滤波器22具有第一输出光路以及第二输出光路;第一输出光路的通带范围对应于第一波长范围,第二输出光路的通带范围对应于第二波长范围;则滤波器22可以配置为将与第一波长范围相对应的第一光信号经透射处理或反射处理后通过第一输出光路传输至第一探测器,将与第二波长范围相对应的第二光信号经反射处理或透射处理后通过第二输出光路传输至第二探测器。
例如,滤波器22的透射波长对应于第一波长范围,滤波器22的反射波长对应于第二波长范围;则滤波器22可以配置为将与第一波长范围相对应的第一光信号经透射处理后通过第一光路传输至第一探测器23,将与第二波长范围相对应的第二光信号经反射处理后通过第二光路传输至第二探测器24;在一些实施方式中,第一波长范围和第二波长范围根据光信号的速率与波长之间的对应关系划分, 则第一波长范围对应于第一速率的原始光信号,第二波长范围对应于第二速率的原始光信号。光信号的速率与波长之间的对应关系可根据光信号发送端的激光器参数确定。在一些实施方式中,第一速率大于第二速率,且第一波长范围小于第二波长范围。例如,在一些实施方式中,该光信号接收装置能够兼容接收三种速率的光信号,相应的,第一速率包括:50吉比特每秒(Gbit/s),第二速率包括:12.5Gbit/s和/或25Gbit/s。或者,第一速率包括:50Gbit/s和25Gbit/s,所述第二速率包括12.5Gbit/s。本申请不限定第一速率和第二速率的划分方式。上述的第一速率为第一速率等级,第二速率为第二速率等级。光信号的速率与波长之间的对应关系为光信号的速率等级与波长范围之间的对应关系。
当然,也可以将反射波长和透射波长的范围互换,本申请对此不做限定。
另外,上述的第一波长范围以及第二波长范围的划分方式取决于光信号发送端的激光器参数,光信号发送端可以为光网络单元。在一些实施方式中,第一波长范围以及第二波长范围的划分方式能够通过下述两种实现方式中的至少一种实现。
在第一种实现方式中,第一波长范围位于第二波长范围的中间区域,换言之,第二波长范围可包括:位于第一波长范围的第一侧(如左侧)的第一子范围,以及位于第一波长范围的第二侧(如右侧)的第二子范围。即:第二波长范围包括除第一波长范围之外的预设波长范围。第一子范围可以位于第一波长范围的第一侧,且与第一波长范围间隔第一预设波长;第二子范围可以位于第一波长范围的第二侧,且与第一波长范围间隔第二预设波长。第一预设波长与第二预设波长的长度可以相同或不同。例如,图4示出了本申请实施例提供的一种上行波长范围的划分示意图,以图4为例,第一波长范围为[λ3,λ4],第二波长范围包括:位于第一波长范围左侧、且与第一波长范围间隔第一预设波长的第一子范围[λ1,λ5],以及位于第一波长范围右侧、且与第一波长范围间隔第二预设波长的第二子范围[λ6,λ2]。第一预设波长的长度等于λ3与λ5之间的差值,第二预设波长的长度等于λ6与λ4之间的差值。相应的,滤波器配置为将与第一波长范围相对应的第一光信号经透射处理或反射处理后通过第一输出光路传输至第一探测器,将与第二波长范围(即包括上述的第一子范围和第二子范围)相对应的第二光信号经反射处理或透射处理后通过第二输出光路传输至第二探测器。
在第二种实现方式中,第一波长范围与第二波长范围互不重叠,且第一波长范围与第二波长范围之间具有间隔过渡带,此时第二光信号为与第二波长范围对应的光信号。间隔过渡带是指:位于第一波长范围以及第二波长范围之间的第三波长范围,该第三波长范围既不与 第一波长范围重合,也不与第二波长范围重合,从而使第一波长范围与第二波长范围之间具有一段能够起到间隔作用的过渡波段。本申请不限定第一波长范围以及第二波长范围的划分方式。
信号预处理模块25配置为针对第一探测器23输出的第一电信号以及第二探测器24输出的第二电信号进行预处理,得到预处理后的第三电信号,将第三电信号输出至信号接收端。信号预处理模块25的主要作用在于:针对第一电信号以及第二电信号进行分析处理,以得到用于输出至信号接收端的第三电信号。预处理方式可以为多种,例如,可以为信号比较处理、信号相加处理等各类方式,相应的,第三电信号既可以为从第一电信号和第二电信号中提取的一路质量较佳的电信号,也可以为针对第一电信号以及第二电信号进行相加等预设处理后得到的电信号,本申请对细节不做限定。
在一些实施方式中,信号预处理模块25包括信号比较模块。相应的,该信号比较模块配置为比较第一电信号以及第二电信号的直流成分、峰峰值、信噪比、或信号频率中的至少一种,根据比较结果将第一电信号或第二电信号作为第三电信号。
在一些实施方式中,信号预处理模块25包括信号相加模块。相应的,该信号相加模块配置为将第一电信号以及第二电信号相加,得到第三电信号。
由此可见,由于本申请提供的光信号的接收装置中通过信号预处理模块25将两路电信号转换为一路电信号,因此,信号接收端只需具有一对配置为接收第三电信号的接收信号管脚即可,无需针对第一电信号和第二电信号设置两对接收信号管脚,从而简化了信号接收端的硬件成本,且缩小了信号接收端的体积,便于实现信号接收端的小型化封装处理。本申请提供的光信号的接收装置中的信号接收端可以为各类具备光信号接收功能的网络设备,例如,可以为光线路终端,相应的,本申请提供的光信号的接收装置可以设置在光线路终端的内部,或者与光线路终端通信连接。
在一些实施方式中,为了便于信号接收端针对接收到的电信号进行后续处理,需要向信号接收端提示信号速率等级。相应的,该光信号的接收装置还可以包括:信号速率等级指示模块,配置为根据信号预处理模块25识别出信号波长范围和信号速率等级,并向信号接收端发送速率等级指示信号。由此可见,该信号速率等级指示模块主要配置为根据第三电信号的信号波长和信号速率确定第三电信号的速率等级,并向信号接收端发送速率等级指示信号。例如,当第一光信号对应窄带波长范围时,若第三电信号全部从第一电信号输出,且信号速率较高,则此时信号接收端接收到的为高速率等级信号,相应的,高速率等级指示信号通过信号速率等级指示模块发送至信号接收端;若第三电信号全部从第二电信号输出,则此时信号接收端接收到 的为低速率等级信号,相应的,低速率等级指示信号通过信号速率等级指示模块发送至信号接收端;若第三电信号全部从第一电信号输出,且信号速率较低,则此时信号接收端接收到的为低速率等级信号,相应的,低速率等级指示信号通过信号速率等级指示模块发送至信号接收端;若第三电信号为第一电信号和第二电信号比较后输出(或,第一电信号和第二电信号相加输出,且第一电信号和第二电信号都存在交流信号),则此时信号接收端接收到的为低速率等级信号,相应的,低速率等级指示信号通过信号速率等级指示模块发送至信号接收端。总之,由于信号预处理模块25在对第一电信号以及第二电信号进行预处理的过程中,能够判断出第三电信号的信号波长以及速率等级,从而,相应的速率等级指示信号可根据信号预处理模块25的判断结果发送至信号接收端。
在一些实施方式中,本申请提供的光信号的接收装置中的原始光信号可以为从光网络单元传输至光线路终端的上行光信号。
本申请实施例还提供了一种光线路终端,包括:上述的光信号的接收装置。
在一些实施方式中,也可以省略上述的信号预处理模块,从而直接向信号接收端输出上述的第一电信号以及第二电信号,此时,信号接收端需要提供两对接收信号管脚,分别配置为接收上述的第一电信号以及第二电信号。当上述的光信号的接收装置中不包含信号预处理模块时,为了便于信号接收端(即光线路终端)针对接收到的电信号进行后续处理,需要根据时隙调度表获知接收信号的速率等级。在一些实施方式中,光线路终端包括:信号选择模块,配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据信号速率等级选择第一电信号或第二电信号作为有效电信号进行接收。有效电信号是指:实际用于后续处理过程的有效接收电信号。由于上述光线路终端具有两对接收信号管脚,且分别对应接收第一电信号以及第二电信号,而第一电信号以及第二电信号又分别对应于不同波长范围的光信号,则在一些实施方式中,当获知当前时间接收的为高速率等级的光信号时,第一电信号为有效电信号成分,第二电信号则为无效电信号成分,此时,将第一电信号确定为有效电信号进行接收,并控制与第一电信号相对应的接收信号管脚工作;当获知当前时间接收的为低速率等级的光信号时,第一电信号和第二信号都可能为有效电信号,此时光线路终端中的信号选择模块分别确定第一电信号以及第二电信号在物理层的误码率,将第一电信号以及第二电信号中误码率低的电信号作为有效电信号进行接收。
本申请实施例还提供了一种光信号的接收系统,包括:上述的光线路终端、以及光网络单元。
综上可知,在本申请提供的光信号的接收装置中,能够通过滤波器对放大处理后的原始光信号进行波长分路以及窄带滤波处理,得到与第一波长范围相对应的第一光信号以及与第二波长范围相对应的第二光信号,相应的,第一探测器将来自滤波器的第一光信号转换为第一电信号,第二探测器将来自滤波器的第二光信号转换为第二电信号。由此可见,针对多种速率等级的光信号的波长范围宽窄不一的特点,在本申请提供的光信号的接收装置中,通过合理设置滤波器的透射波长以及反射波长,使第一波长范围的光信号经由第一探测器转换为第一电信号,且使第二波长范围的光信号经由第二探测器转换为第二电信号。该光信号的接收装置能够根据信号速率与波长范围之间的对应关系,通过滤波器执行波长分路处理,进而将原始光信号分路经探测器转化为两路电信号,从而使该光信号的接收装置能够适用于多种速率的光信号。并且,通过在本申请提供的光信号的接收装置中设置信号预处理模块,能够将两路电信号转换为一路电信号,从而减少信号接收端的管脚数量,降低硬件成本,缩小器件体积。
为了便于理解,下面以示例为例,详细介绍本申请提供的光信号的接收装置的实现细节。另外,在介绍下述几个示例之前,先简单介绍本申请的应用场景。
近年来,基于时分复用无源光网络(TDM-PON)技术的光接入网络迅速发展,10G PON(10吉比特无源光网络)已开始规模部署,并逐步替代吉比特无源光网络(Gigabit-Capable Passive Optical Networks,GPON)网络。未来,在接入网层面实现大带宽的家庭宽带接入、更高带宽政企接入,以及5G小基站回传等固移融合和全业务接入,对无源光网络带宽提出了更高的要求。50Gbit/s无源光网络(基于时分复用,即50G TDM PON)成为10G PON的演进方向。在50G PON系统中,ITU-T标准G.hsp.pmd目前定义了上行12.5G,25G和50G三个速率等级。因此,在未来实际部署过程中,同一ODN会出现上行三种不同速率的ONU,相应的,要求OLT设备以及OLT光模块需要同时兼容三种上行接收速率。当上行速率为50G速率时,由于线路速率大幅提升,采用相关APD接收机已很难满足PON网络32分贝及以上的链路预算要求。为了能够重用已部署的ODN网络,需要实现高灵敏度接收机,前置放大器是一种有效提升接收机灵敏度的方案。但是放大器存在ASE带外噪声,影响接收机性能,为此需要增加光滤波器(BPF),而且滤波器波长要与发射机波长匹配。为了降低滤波器设计,避免使用可调滤波器,需要将发射机波长收窄到一定范围,所以50G-PON需要有一种窄波长的波长方案。而对于PON系统,由于其终端要求器件成本极低,通常上行采用非制冷的DML激光器,其工作波长范围较宽,通常为20nm。因此,目前标准中50G PON上行方向波长规划50G速率定义了20nm的宽工作波长范围和4nm的窄工作波 长范围两类波长范围选项,且窄波长范围位于宽波长范围的中间位置。例如,图3示出了本申请实施例提供的窄波段和宽波段的范围示意图。图3中US0和US1分别代表50G PON与GPON和XGPON共存的两个波长方案。因此,当50G PON系统满足32分贝以上光功率预算时,50G速率等级的OLT侧光接收机需要采用SOA+BPF+PD接收机架构,此架构无法同时兼容发端12.5G和25G速率等级的非制冷激光器。为此,将OLT接收光路通过1:2的分光器一分为二,分别采用两种接收机接收50G速率上行信号和12.5G/25G上行信号。但是,由于分光器对波长不敏感,因而将在原链路预算上增加3分贝的损耗,从而会对光器件性能带来严重挑战。同时,上述方案必须采用两对上行信号管脚,但两对上行信号管脚不利于OLT光模块的小型化封装。
本申请提供的下述五个示例均在上述应用场景下实现。
示例一
该示例提供了一种多速率接收装置及系统。该示例中的多速率接收装置的结构示意图可参照图1。如图1所示,该多速率接收装置包括:光放大器11,滤波器12,第一探测器13和第二探测器14。光放大器11对接收到的上行光信号进行光信号放大处理。滤波器12根据50G无源光网络PON的上行波长规划,将上行波长范围内的窄带工作波长(对应于上述第一波长范围)经过第一光路送至第一探测器13,同时将上行波长范围内窄带工作波长以外光信号(对应于上述第二波长范围)经过第二光路送至第二探测器14。第一探测器13将经过第一光路的窄带上行光信号转换为第一电信号输出。第二探测器14将经过第二光路的窄带工作波长以外的上行光信号转换为第二电信号输出。滤波器12对上行光信号进行波长分路的同时,滤除了光放大器11的自发辐射(ASE)噪声,有效提升了50G速率等级的上行光信号的接收灵敏度且不会额外引入PON系统链路损耗,同时也大幅简化了接收机光路。对于50G PON上行波长规划,图4示出了上行波长范围的划分示意图,结合图4,滤波器具备以下特征:当50G PON上行宽带波长范围为[λ1,λ2],上行窄带波长范围为[λ3,λ4]时,滤波器第一光路(如透射光路)通带范围为[λ3,λ4],截止波长范围为[λ1,λ5]和[λ6,λ2],滤波器第二光路(如反射光路)通带范围为[λ1,λ5]和[λ6,λ2],截止波长范围为[λ3,λ4]。波长范围[λ5,λ3]和[λ4,λ6]则为滤波器过渡带,该波长范围内的光信号部分进入第一光路,部分进入第二光路。例如,对于50G PON1260纳米(nm)至1280nm上行波长选项,λ1即为1260nm,λ2即为1280nm,λ3、λ4、λ5、λ6可为1260nm至1280nm范围之内的波长(不包括1260nm和1280nm),如λ3为1268nm,λ4为1272nm,λ5为1266nm和λ6为1274nm。由此可见,λ1<λ5<λ3<λ4<λ6<λ2。
光放大器11可以包括半导体光放大器SOA,滤波器12可以包括单个薄膜滤波片TFF、微光学组件Z-Block、光子集成器件(MZI)等,探测器13和14可以包括PIN探测器或者APD探测器。在一些实施方式中,上述多速率接收装置可以为OLT多速率接收装置,可以由离散器件组成,封装成光接收组件或为混合集成光芯片。以OLT多速率接收装置为多速率光接收组件为例,该多速率光接收组件还可以包括光路耦合器件(如透镜)、光适配器、金属外壳、以及柔性板(Flexible Printed Circuit,FPC)等。
图5示出了本申请实施例提供的多速率光接收组件的结构示意图。如图5所示,该多速率光接收组件包括:半导体光放大器SOA、微光学组件Z-Block50、探测器PD1和PD2、透镜(对应于图中的圆形部件)、光适配器和柔性板(FPC)等。微光学组件Z-Block50可包括滤波器51以及滤波器52。上述半导体光放大器(SOA)器件通过光适配器接收上行入射光信号并对上行光信号进行放大。放大后的光信号经过第一透镜转换为平行光输入微光学组件Z-Block,微光学组件Z-Block将输入的窄带波长范围内的光信号经过滤波器51透射后,经过第二透镜会聚后送入探测器PD1转换为第一电信号;将输入的窄带波长范围以外以及滤波器51过渡带以外的光信号经过滤波器51全反射后,再经过滤波器52全反射,最后经过第三透镜送入探测器PD2转换为第二电信号;将输入的滤波器51过渡带内的上行光信号,经滤波器51部分透射后输入探测器PD1转换为第一电信号,经滤波器51部分反射后再经滤波器52全反射,输入探测器PD2转换为第二电信号。该多速率光接收组件还包括柔性板FPC,通过柔性板FPC与外部电路连接,与探测器PD1和探测器PD2相连,并将经探测器PD1和PD2转换后的第一电信号和第二电信号输出至外部电路。在一些实施方式中,外部电路还通过柔性板FPC连接探测器(PD1、PD2)和半导体光放大器SOA的控制管脚,实现供电、监控信号读取,电流大小调节等功能。上述多速率光接收组件中,探测器PD1和PD2将输入光信号转换为电信号,还包括将光信号转换为电流信号后,通过跨阻放大器(TIA)电路将电流信号转换为差分电压信号输出。
上述多速率光接收组件中,滤波器51的光学特征符合前文中的波长定义,即对于上行宽带波长范围为[λ1,λ2],上行窄带波长范围为[λ3,λ4]的50G PON,滤波器51透射光路通带范围为[λ3,λ4],截止波长范围为[λ1,λ5]和[λ6,λ2],反射光路通带范围为[λ1,λ5]和[λ6,λ2],截止波长范围为[λ3,λ4]。波长范围[λ5,λ3]和[λ4,λ6]则为滤波器过渡带,该波长范围内的光信号部分进入透射光路,部分进入反射光路。滤波器52则对50G PON上行波长范围内的所有光信号(包括宽带和窄带),或者窄带波长范围以外(即[λ1,λ3]和[λ4,λ2]以外)的光信号全反射,即对滤波 器51反射光路中,50G PON上行波长范围内所有波长为通带。
图6示出了本申请实施例提供的示例一中的多速率接收系统的系统结构示意图。该多速率接收系统包括:多速率接收装置60、多个光网络单元(ONU)61、分光器62、以及信号接收端67。多速率接收装置60包括:光放大器63、滤波器64、第一探测器65以及第二探测器66。信号接收端67可以为光线路终端。信号接收端67可包含50G PON MAC(Media Access Control,介质访问控制)。如图6所示,多个光网络单元(ONU)61作为信号发送端,且各个ONU能够发送不同速率等级的光信号,包括:12.5G、25G、以及50G等多种不同速率等级的光信号。多个ONU发送的多路分别对应于不同速率等级的光信号经过分光器62处理后,发送给上文提到的多速率接收装置60。该多速率接收装置60中的光放大器63负责对接收到的光信号进行放大处理,滤波器64配置为进行上文提到的波长分路处理,并将按照波长分路后的光信号分别传输给第一探测器65和/或第二探测器66。如图6所示,第一探测器65主要负责接收并处理高速光信号和第一波长范围内的低速信号,第二探测器66主要负责接收并处理第二波长范围内的低速光信号。
在一些实施方式中,本示例提供的多速率接收系统中,在多速率接收装置60和信号接收端67之间还可以设置信号放大模块、时钟数据恢复模块等,信号放大模块配置为放大多速率接收装置输出的第一电信号和第二电信号,时钟数据恢复模块配置为对信号进行时钟数据恢复。
在一些实施方式中,在信号接收端67中包括信号选择单元,例如,当信号接收端67为光线路终端时,在光线路终端的50G PON MAC芯片中包含上述的信号选择单元,该信号选择单元配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据对应的信号速率等级选择第一电信号或第二电信号作为有效电信号进行接收。例如,根据DBA调度信息读取时隙调度表,从而选择不同速率等级的上行信号传输至MAC协议处理模块。当获知当前时间接收的为高速率等级的光信号时,第一电信号为有效电信号成分,控制第一信号进入MAC协议处理模块;当获知当前时间接收的为低速率等级的光信号时,第一电信号和第二信号都可能为有效电信号,此时根据PHY层误码率高低来选择第一电信号和第二信号中误码率低的一路确定为有效电信号进入MAC协议处理模块成帧子层(Framing sublayer)。
示例二
该示例提供了一种多速率接收装置及系统。图7示出了该示例中的多速率接收装置的结构示意图。如图7所示,该多速率接收装置包括:光放大器71,滤波器72,第一探测器73、第二探测器74和信 号比较模块75。由此可见,示例一与示例二的主要区别在于:增加了信号比较模块75,该信号比较模块75配置为比较第一电信号和第二电信号的质量,将第一电信号和第二电信号中信号质量较优的一路电信号输出。该信号比较模块75比较第一电信号和第二电信号质量包括:比较第一电信号和第二电信号的输出信号直流成分大小、峰峰值大小、相比参考电平高低、信噪比大小和/或频率大小等。
图8示出了该示例中当信号比较模块75配置为比较输出信号直流成分大小的方式实现信号比较时的结构示意图。如图8所示,信号比较模块75包括:直流分量检测模块81、直流分量检测模块82、直流分量比较模块83和信号开关模块84。直流分量检测模块81、直流分量检测模块82分别检测第一电信号和第二电信号的直流分量1、直流分量2并输入直流分量比较模块83。直流分量比较模块83判断输入的两路直流分量大小,并根据比较结果控制信号开关模块84。当直流分量1大于直流分量2时,直流分量比较模块83控制信号开关模块84通过第一电信号(即第一电信号作为信号开关模块84输出的第三电信号);当直流分量1小于直流分量2时,直流分量比较模块83控制信号开关模块84通过第二电信号(即第二电信号作为信号开关模块84输出的第三电信号);当直流分量1等于直流分量2时,直流分量比较模块83控制信号开关模块84通过第二电信号,直流分量比较模块83可保持当前状态不变,或者通过第二电信号。
图9示出了该示例中当信号比较模块75配置为比较第一电信号和第二电信号的峰峰值大小实现信号比较时的结构示意图。如图9所示,该信号比较模块75包括:模数转换器91,模数转换器92以及数字信号处理模块93。模数转换器91将输入的第一电信号采样后转换为数字信号1,送入数字信号处理模块93;模数转换器92将输入的第二电信号采样后转换为数字信号2,送入数字信号处理模块93。数字信号处理模块93可包括对数字信号1和数字信号2的隔直模块、时钟恢复模块以及电平峰峰值大小比较模块中的至少一个。数字信号处理模块93还包括信号开关模块,配置为根据信号质量将数字信号1和数字信号2中的一路信号作为第三电信号输出至后续信号处理模块。
当上行50G速率光信号输入时,经过OLT多速率接收装置第一光路转换为第一电信号输入模数转换器91,此时,第二光路截止,第二光信号无差分信号输出,模数转换器92输出的数字信号2经过隔直模块处理后无信号输出。此时,数字信号处理模块93选择数字信号1作为第三电信号输出。当上行12.5G/25G速率光信号输入时,且12.5G/25G速率光信号波长位于第一光路截止波长范围以及第二光路通带波长范围时,经过OLT多速率接收装置的第一光路截止,数模转换器91输出的数字信号1为直流噪声信号,数模转换器91输出 的数字信号1经过隔直模块后无信号输出。第二光路模数转换器92输出正常差分信号。此时,数字信号处理模块93选择数字信号2作为第三电信号输出。当上行12.5G/25G速率光信号输入时,且12.5G/25G速率光信号波长位于第一光路以及第二光路过渡带的波长范围时,经过OLT多速率接收装置第一光路和第二光路输出,模数转换器91和模数转换器92分别输出数字信号1和数字信号2,此时,数字信号处理模块93可通过比较两路数字信号电平峰峰值大小,选择峰峰值大的那一路输出。当上行12.5G/25G速率光信号输入时,且12.5G/25G速率光信号波长位于第一光路通带波长范围时,经过OLT多速率接收装置第一光路输出,第一光路模数转换器91输出正常差分信号,模数转换器92输出的数字信号2经过隔直模块后无信号输出。此时,数字信号处理模块93选择数字信号1作为第三电信号输出。在一些实施方式中,数字信号处理模块93还可包括数字均衡模块,数字均衡模块配置为恢复输入电信号质量,同时检测数字信号1和数字信号2的信噪比,选择信噪比大的一路作为第三电信号输出。在一些实施方式中,数字信号处理模块还包括频率检测模块配置为识别第一电信号速率等级。
图10示出了该示例中当信号比较模块75配置为通过第一电信号频率大小检测实现信号比较时的结构示意图。如图10所示,该信号比较模块75包括频率检测模块101、比较控制模块102和信号开关模块103。频率检测模块101检测第一电信号的频率大小,并且低通滤波25G及以下速率电信号。比较控制模块102比较低通滤波后的第一电信号和第二电信号大小,并发送开关指示信号给信号开关模块103。当上行50G速率光信号输入时,频率检测模块101检测到输入第一电信号频率大于25GHz,通过比较控制模块102控制信号开关模块103通过第一电信号;当上行25G/12.5G速率光信号输入时,频率检测模块101检测到输入第一电信号频率小于或等于25GHz,此时通过比较控制模块102比较低通滤波后的第一电信号和第二电信号大小,当低通滤波后的第一电信号大于第二电信号时,信号开关模块103通过第一电信号,当较低通滤波后的第一电信号小于第二电信号时,信号开关模块103通过第二电信号。另外,频率检测模块101中包括:隔直子模块,配置为对第一电信号进行隔直处理,相应的,频率检测模块101配置为检测隔直处理后的第一电信号的频率大小。
与示例一相比,示例二中输出的电信号为一路,相应的,信号接收端只需设置一对接收信号管脚即可,大幅降低了硬件成本和器件体积。为了便于信号接收端针对接收到的电信号进行后续处理,本示例向信号接收端提示信号速率等级。相应的,本示例中的OLT多速率接收装置还包括信号速率等级指示接口,在选择第一信号和第二信号的同时,识别有效电信号的速率等级,并发送有效电信号的速率等级 指示信号给OLT设备。该信号速率等级指示接口即为上文提到的信号速率等级指示模块的一种实现方式。
图11示出了示例二提供的多速率接收系统的系统结构示意图。该多速率接收系统包括:多速率接收装置119(即图7所示的多速率接收装置)、多个光网络单元ONU111、分光器112、以及信号接收端118。该多速率接收系统与示例一中的系统的区别在于:示例二中多速率接收系统的多速率接收装置119除包含光放大器113、滤波器114、第一探测器115、第二探测器117之外,还包括信号比较模块116(即图7所示的信号比较模块75)。相应的,该系统中的信号接收端118只需具有一对接收信号管脚即可。并且,该系统中的信号比较模块116能够发送上述的速率等级指示信号。
示例三
该示例提供了一种多速率接收装置。图12示出了该示例中的多速率接收装置的结构示意图。示例三中的多速率接收装置与示例二中的多速率接收装置的区别在于:将信号比较模块75替换为信号相加模块125。相应的,示例三中的多速率接收装置包括:光放大器121、滤波器122、第一探测器123、第二探测器124以及信号相加模块125。
信号相加模块125将输入的第一电信号和第二电信号相加为第四电信号(对应于示例二中提到的第三电信号)输出。信号相加模块125可包括隔直降噪模块和信号相加模块,隔直降噪模块配置为对输入的第一电信号和第二电信号分别进行直流分量隔离以及噪声降低。信号相加模块配置为将隔直降噪后的两路电信号合并输出为第四电信号。
在一些实施方式中,信号相加模块还包括可变延迟模块,对第一电信号或第二电信号进行信号可变延迟,以保证当上行信号光波长位于滤波器过渡带时,两路信号延迟量相等,防止产生信号抖动。图13示出了本示例中包含可变延迟模块的信号相加模块的结构示意图。
本示例中,当上行信号为25G速率需要采用TEC控制器温控波长控制在窄带波长范围内时,本示例第一光路,第一探测器和第一电信号同时也适用于25G速率上行信号。此时第二光路主要通过12.5G速率等级信号。本示例中,50G速率信号相应变为50G/25G速率信号,12.5G/25G速率信号相应变为12.5G。因此,上述多速率接收装置可灵活适用于不同速率等级不同波长范围发射机的多种场景。
示例三中的多速率接收系统的系统结构与图11类似,区别在于:将图11中的信号比较模块116替换为上述的信号相加模块125。
示例四
示例四与上述三个示例的主要区别在于,波长划分方式不同。示例一、二、三中的波长划分方式可参照图4所示。结合图4可知,在上述的示例一、二、三中,低速率等级上行光信号采用非制冷激光 器发射机时,波长可能会落入滤波器过渡带中,导致第一探测器和第二探测器都有电信号输出,因而需要选择输出的电信号中信号质量较高的信号输出,导致信号预处理模块较复杂。在一些实施方式中,将50G PON现有上行波长总范围分为窄带和宽带两个子通道,两个子通道波长互不重叠,且具有一定间隔过渡带,从而保证50G/25G速率的光信号可采用窄带激光器和SOA接收机的同时,12.5G/25G速率的光信号可采用宽范围非制冷激光器。以1290至1310nm波长选项为例,其波长范围可按以下方式划分:1290至1294nm为窄带子通道,1296至1310nm为宽带子通道,1294至1296nm为两个子通带之间的过渡隔离带。图14示出了示例四中的波长划分方式的示意图。由此可见,在示例四中,第一波长范围与第二波长范围互不重叠,且第一波长范围与第二波长范围之间具有间隔过渡带。
采用上述波长划分后,OLT多速率接收装置中的滤波器具有以下特性:第一光路窄带子通道波长(对应于上述的第一波长范围)为通带,宽带子通道波长(对应于上述的第二波长范围)截止;第二光路宽带子通道波长为通带,窄带子通道波长截止;两个子通带之间的过渡隔离带为滤波器过渡带,第一光路和第二光路均有光信号输出。采用上述波长划分方式,不同速率等级的上行信号输入固定的探测器转换为电信号输出。例如,当50G速率的上行光信号采用窄带子通道,12.5G/25G速率的上行光信号采用宽带子通道时,上行50G速率的上行光信号经第一光路,由第一探测器输出;上行12.5G/25G速率的上行光信号经第二光路,由第二探测器输出。
在该示例中,当该多速率接收装置用于50G-PON系统时,不同速率等级的上行光信号分别对应于不同的探测器,且不同速率等级的上行光信号不会同时出现于两个探测器中,相应的,无需设置上文提到的信号选择模块。即:在50G PON MAC芯片中不需要设置信号选择模块。在省略信号选择模块的前提下,可以通过读取DBA调度信息,来选择不同速率等级的上行信号至MAC协议处理模块。本示例中,第一探测器和第二探测器可根据速率等级选择恰当带宽的探测器和TIA器件,对于低速率等级的光信号不需要采用高速器件,有利于降低成本和噪声。
在该示例的其他替代实现方式中,若需要减少OLT多速率接收装置的接收信号管脚数,则该OLT多速率接收装置也可以包括信号选择模块。该信号选择模块的选择状态可通过OLT PON MAC发送速率指示信号来控制,相应的,信号选择模块配置为接收来自OLT PON MAC的速率指示信号,并根据速率指示信号的信号类型确定选择两路电信号中的哪一路进行输出。信号选择模块的选择状态还可通过对第一探测器和第二探测器的RSSI信号大小的比较来控制,相应的,该多速率接收装置可包括RSSI比较模块,该RSSI比较模块与第一探测器、 第二探测器和信号选择模块分别相连,配置为检测第一探测器的第一电信号的RSSI值以及第二探测器的第二电信号的RSSI值,并根据检测结果控制信号选择模块从两路电信号中选择一路作为输出信号。在一些实施方式中,信号选择模块也可通过接收光信号频率进行判断,从而选择导通有高频信号的那一路电信号,此时不需要外部控制信号。
示例五
示例五与图11所示的示例二中提供的多速率接收系统的系统结构示意图类似。图15示出了示例五提供的多速率接收系统的系统结构示意图。如图15所示,该多速率接收系统包括:示例二的多速率接收装置159(即图7所示的多速率接收装置)、多个光网络单元ONU151、分光器152、以及信号接收端158。与示例二中的多速率接收系统(即图11所示的多速率接收系统)的类似,示例五中系统的多速率接收装置159除包含光放大器153、滤波器154、第一探测器155、第二探测器157之外,还包括信号比较模块156。相应的,该系统中的信号接收端158只需具有一对接收信号管脚。
图15所示的系统与图11的主要区别在于:图15中的信号速率等级指示接口与图11中的信号速率等级指示接口相比,是反向的。所谓“反向”是指:图15中的信号速率等级指示接口的输入输出方向(即信号流向)与图11中的信号速率等级指示接口的输入输出方向(即信号流向)相反。在图11所示的系统中,速率等级指示信号由信号比较模块116发出,并由信号接收端118(即光线路终端)接收。然而,在图15所示的系统中,速率等级指示信号由信号接收端158(即光线路终端)发出,并由信号比较模块156接收。光线路终端(OLT)根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率,并发送速率等级指示信号给多速率接收装置159,多速率接收装置159中的信号比较模块156根据当前速率等级指示信号以及信号质量比较结果切换第一电信号和第二电信号至第三电信号输出。例如:当OLT发送高速率等级指示信号,信号比较模块156直接控制第一电信号输出;当OLT发送低速率等级指示信号,信号比较模块156比较第一电信号和第二电信号的信号质量,选择信号质量高的那一路为第三电信号输出。
本申请实施例还提供了一种光信号的接收方法,包括步骤一和步骤二。
步骤一:通过滤波器滤除经放大器放大后的光信号中包含的噪声并对光信号进行波长分路处理,得到与预设波长范围相对应的至少一路光信号。
本步骤由滤波器执行。相应的,与预设波长范围相对应的至少一路光信号包括:与第一波长范围相对应的第一光信号和/或与第二波长范围相对应的第二光信号。
步骤二:通过至少一个探测器将至少一路光信号转换为电信号。
探测器的数量可以为一个或多个。例如,探测器包括:第一探测器以及第二探测器;第一探测器配置为将第一光信号转换为第一电信号,第二探测器配置为将第二光信号转换为第二电信号。
上述各个步骤的实现细节可参照上述对光信号的接收装置中相应部件的描述,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现上述的光信号的接收方法。
综上可知,通过采用以上示例中的技术方案,在50G PON系统中,上行25G和12.5G速率等级的光信号可采用非制冷激光器,且可工作在上行波长范围内任意波长。当低速率工作波长落在窄带工作波长范围内时,经过第一光路通过第一探测器转换为电信号输出;当低速率工作波长落在窄带工作波长范围外时,经过第二光路通过第二探测器转换为电信号输出;当低速率工作波长落在滤波器通带与阻带之间的过渡带时,则分为两路分别经过第一光路通过第一探测器转换为第一电信号输出、以及第二光路通过第二探测器转换为第二电信号输出。上述技术方案能够兼容多种速率等级的光信号,并且,能够通过信号预处理模块将两路电信号转换为一路电信号,从而使信号接收端只需提供一对信号接收管脚即可,大幅简化了接收终端的成本,缩小了接收终端的体积,便于实现器件的小型化封装。
另外,需要说明的是,上述各个示例中的多速率接收装置即为光信号的接收装置,多速率接收系统即为光信号的接收系统。并且,在光信号的接收系统中,可以将上述的多速率接收装置灵活替换为上文提到的任意一种结构,本申请对此不做限定。另外,上述各个示例之间可以相互组合。例如,各个示例中的装置结构均可同时适用于图4以及图14所示的两种波长划分方式,只需对应调整滤波器的特性即可。
本领域普通技术人员可以理解,上文中所申请方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算 机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然进行了详细描述,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可与结合其它实施例描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本申请的范围的情况下,可进行各种形式和细节上的改变。

Claims (15)

  1. 一种光信号的接收装置,包括:滤波器以及至少一个探测器;其中,
    所述滤波器置于放大器之后,且所述滤波器的滤波特性根据预设波长范围配置,配置为滤除经所述放大器放大后的光信号中包含的噪声并对所述光信号进行波长分路处理,得到与所述预设波长范围相对应的至少一路光信号;
    所述至少一个探测器配置为将所述至少一路光信号转换为电信号。
  2. 根据权利要求1所述的装置,其中,所述至少一个探测器包括:第一探测器以及第二探测器;
    且所述与所述预设波长范围相对应的至少一路光信号包括:与第一波长范围相对应的第一光信号或与第二波长范围相对应的第二光信号中的至少一者;
    则所述第一探测器配置为将所述第一光信号转换为第一电信号,所述第二探测器配置为将所述第二光信号转换为第二电信号。
  3. 根据权利要求1所述的装置,还包括:
    放大器,配置为对接收到的原始光信号进行放大处理,并将放大处理后的光信号传输至所述滤波器。
  4. 根据权利要求2或3所述的装置,其中,所述滤波器具有第一输出光路以及第二输出光路;其中,所述第一输出光路的通带范围对应于所述第一波长范围,所述滤波器的第二输出光路的通带范围对应于所述第二波长范围;
    则所述滤波器配置为将所述与第一波长范围相对应的第一光信号经透射处理或反射处理后通过所述第一输出光路传输至所述第一探测器,将所述与第二波长范围相对应的第二光信号经反射处理或透射处理后通过所述第二输出光路传输至所述第二探测器;
    其中,所述第一波长范围和所述第二波长范围根据光信号的速率与波长之间的对应关系划分,所述第一波长范围对应于第一速率的原始光信号,所述第二波长范围对应于第二速率的原始光信号。
  5. 根据权利要求4所述的装置,其中,所述光信号的速率与波长之间的对应关系根据光信号发送端的激光器参数确定;其中,所述第一速率大于所述第二速率,且所述第一波长范围小于所述第二波长 范围;
    其中,所述第一波长范围位于所述第二波长范围的中间区域;或者,所述第一波长范围与所述第二波长范围互不重叠,且所述第一波长范围与所述第二波长范围之间具有间隔过渡带;其中,所述第一速率包括:50吉比特每秒(Gbit/s),所述第二速率包括:12.5Gbit/s或25Gbit/s中的至少一者;或所述第一速率包括:50Gbit/s和25Gbit/s,所述第二速率包括12.5Gbit/s。
  6. 根据权利要求1至3中任一所述的装置,包括:
    信号预处理模块,配置为针对所述第一探测器输出的第一电信号以及所述第二探测器输出的第二电信号进行预处理,得到预处理后的第三电信号,将所述第三电信号输出至信号接收端。
  7. 根据权利要求6所述的装置,其中,所述信号预处理模块包括:信号比较模块、或信号相加模块;
    其中,所述信号比较模块配置为比较第一电信号以及第二电信号的直流成分、峰峰值、信噪比、或信号频率中的至少一者,根据比较结果将所述第一电信号或所述第二电信号作为所述第三电信号;
    所述信号相加模块配置为将所述第一电信号以及所述第二电信号相加,得到所述第三电信号。
  8. 根据权利要求6所述的装置,其中,所述信号接收端具有一对配置为接收所述第三电信号的接收信号管脚;
    并且,所述光信号的接收装置还包括:
    信号速率等级指示模块,配置为根据所述第三电信号的信号波长和信号速率确定所述第三电信号的速率等级,并向所述信号接收端发送速率等级指示信号。
  9. 根据权利要求1至3中任一所述的装置,其中,所述原始光信号为从光网络单元传输至光线路终端的上行光信号。
  10. 一种光线路终端,包括:权利要求1至9中任一所述的光信号的接收装置。
  11. 根据权利要求10所述的光线路终端,还包括:
    信号选择模块,配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据所述信号速率等级选择所述第一电信号或所述第二电信号作为有效电信号进行接收。
  12. 根据权利要求11所述的光线路终端,其中,所述信号选择模块配置为分别确定所述第一电信号以及所述第二电信号在物理层的误码率,将所述第一电信号以及所述第二电信号中误码率低的电信号作为所述有效电信号进行接收。
  13. 一种光信号的接收系统,包括:权利要求10至12中任一所述的光线路终端、以及光网络单元。
  14. 一种光信号的接收方法,包括:
    通过滤波器滤除经放大器放大后的光信号中包含的噪声并对所述光信号进行波长分路处理,得到与预设波长范围相对应的至少一路光信号;以及
    通过至少一个探测器将所述至少一路光信号转换为电信号。
  15. 一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现权利要求14所述的光信号的接收方法。
PCT/CN2022/099094 2021-06-18 2022-06-16 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质 WO2022262799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22824272.3A EP4351041A1 (en) 2021-06-18 2022-06-16 Optical signal receiving apparatus, system and method, optical line terminal, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110677204.9 2021-06-18
CN202110677204.9A CN115499066A (zh) 2021-06-18 2021-06-18 光信号的接收装置、终端、系统及方法

Publications (1)

Publication Number Publication Date
WO2022262799A1 true WO2022262799A1 (zh) 2022-12-22

Family

ID=84465086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099094 WO2022262799A1 (zh) 2021-06-18 2022-06-16 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4351041A1 (zh)
CN (1) CN115499066A (zh)
WO (1) WO2022262799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232467A (zh) * 2023-05-05 2023-06-06 深圳市飞思卓科技有限公司 200g光模块电路、控制方法及接口

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901411A (zh) * 2005-07-20 2007-01-24 阿尔卑斯电气株式会社 波长分路滤波器以及光通信模块
CN101611603A (zh) * 2007-04-30 2009-12-23 华为技术有限公司 多速率-多波长光突发检测器
CN101854212A (zh) * 2010-05-13 2010-10-06 成都优博创技术有限公司 一种双速率光信号接收装置
JP2016009897A (ja) * 2014-06-23 2016-01-18 日本電信電話株式会社 光増幅装置及び制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901411A (zh) * 2005-07-20 2007-01-24 阿尔卑斯电气株式会社 波长分路滤波器以及光通信模块
CN101611603A (zh) * 2007-04-30 2009-12-23 华为技术有限公司 多速率-多波长光突发检测器
CN101854212A (zh) * 2010-05-13 2010-10-06 成都优博创技术有限公司 一种双速率光信号接收装置
JP2016009897A (ja) * 2014-06-23 2016-01-18 日本電信電話株式会社 光増幅装置及び制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232467A (zh) * 2023-05-05 2023-06-06 深圳市飞思卓科技有限公司 200g光模块电路、控制方法及接口

Also Published As

Publication number Publication date
EP4351041A1 (en) 2024-04-10
CN115499066A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US10903928B2 (en) Multiplex conversion for a passive optical network
US8238753B2 (en) Optical line terminal
US9497523B2 (en) Arrangement for deploying co-existing GPON and XGPON optical communication systems
US7936991B2 (en) Optical line terminating apparatus and optical communication system
US20170033863A1 (en) Optical Time Domain Reflectometer Implementation Apparatus and System
WO2009012715A1 (en) A receiving apparatus and receiving method
US6404522B1 (en) Optical communication method and system using wavelength division multiplexing
Cheng et al. World's first demonstration of pluggable optical transceiver modules for flexible TWDM PONs
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
Cheng Flexible TWDM PONs
JP2010166279A (ja) 光通信システムおよび光集線装置
US8270837B2 (en) Optical power equalizer for passive optical network
WO2022262803A1 (zh) 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质
CN107276673B (zh) 一种光模块
WO2012009854A1 (zh) 一种光线路终端模块和上行传输模块
Noda et al. Burst-mode transceiver technology for 10G-EPON systems
WO2023169296A1 (zh) 光功率控制方法和装置
KR102280109B1 (ko) 다파장 선택 전환 기능을 내장한 가입자 장치용 pon 송수신 장치 및 그 파장 전환 방법
Chang et al. 1.25 Gb/s Uplink Burst–mode Transmissions: System Requirements and Optical Diagnostic Challenges of EPON Physical-layer Chipset for Enabling Broadband Optical Ethernet Access Networks
Chang Uplink burst-mode transmissions using EPON physical-layer chipset for broadband optical Ethernet access networks
JP5055316B2 (ja) 局舎側光通信装置および光通信システム
KR20090095598A (ko) 멀티레이트 다파장의 광 버스트 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022824272

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022824272

Country of ref document: EP

Effective date: 20240103

NENP Non-entry into the national phase

Ref country code: DE