WO2022262803A1 - 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质 - Google Patents

光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质 Download PDF

Info

Publication number
WO2022262803A1
WO2022262803A1 PCT/CN2022/099116 CN2022099116W WO2022262803A1 WO 2022262803 A1 WO2022262803 A1 WO 2022262803A1 CN 2022099116 W CN2022099116 W CN 2022099116W WO 2022262803 A1 WO2022262803 A1 WO 2022262803A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
optical signal
wavelength range
filter
Prior art date
Application number
PCT/CN2022/099116
Other languages
English (en)
French (fr)
Inventor
杨波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22824276.4A priority Critical patent/EP4351161A1/en
Publication of WO2022262803A1 publication Critical patent/WO2022262803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present application relates to the field of communication technology, and in particular to an optical signal receiving device, an optical signal receiving method, an optical line terminal, an optical signal receiving system, and a computer-readable storage medium.
  • the rate of optical signals is also increasing, and the uplink speed level of PON network is also increasing.
  • the uplink needs to be able to support optical signals of 50G rate level, 12.5G rate level and 25G rate level at the same time.
  • the wavelength ranges corresponding to the optical signals of different rates are different.
  • the optical receiver on the optical line terminal (OLT) side uses a semiconductor optical amplifier (semiconductor Optical amplifier, SOA), band-pass filter (band-pass filter, BPF) and photodetector (Photodetector, PD), that is, when using the SOA+BPF+PD receiver architecture, since the BPF in this architecture is narrow-band filter, and the uncooled laser at the transmitting end has a wide operating wavelength range, so the wavelength range of the narrowband filter may not match the wavelength range of the uncooled laser, resulting in optical
  • the SOA+BPF+PD receiver architecture cannot be compatible with supporting various optical signals of 50G rate level, 12.5G rate level and 25G rate level.
  • the solution in the related technology is: make the optical signals of 12.5G and 25G rate grades be sent by a transmitter with a cooler, and correspondingly, make the wavelength working ranges corresponding to the optical signals of 12.5G and 25G rate grades be the same as those of 50G rate grades
  • the wavelength working range corresponding to the optical signal is also narrowed to 4nm.
  • this solution will lead to a significant increase in the cost of the terminal optical module due to the use of a transmitter with a cooler. It can be seen that, on the premise of not increasing the manufacturing cost of the terminal optical module, there are some problems in the related receiver architecture in supporting optical signals of multiple rates at the same time.
  • a receiving device for optical signals which is suitable for receiving optical signals of various rates, including: a first filter, an amplifier, a second filter, and a detection element;
  • the first A filter is configured to perform wavelength demultiplexing processing on the original optical signal, and perform at least one of the following operations: output the first optical signal corresponding to the first wavelength range through the first output optical path, or output the first optical signal corresponding to the first wavelength range through the second output optical path a second optical signal corresponding to the second wavelength range;
  • the amplifier is configured to amplify the first optical signal corresponding to the first wavelength range to obtain an amplified first optical signal;
  • the second The filter is configured to receive the amplified first optical signal, perform noise reduction processing on the amplified first optical signal, and transmit the noise-reduced first optical signal to the detection element;
  • the The detection element is configured to receive at least one of the noise-reduced first optical signal or the second optical signal corresponding to the second wavelength range, and convert the noise-reduced
  • an optical line terminal including: the above-mentioned apparatus for receiving an optical signal.
  • an optical signal receiving system including: the above-mentioned optical line terminal, and an optical network unit.
  • a method for receiving an optical signal which is suitable for receiving optical signals of various rates, including: performing wavelength branching processing on the original optical signal, and outputting a signal corresponding to the first wavelength range. At least one of the first optical signal or the second optical signal corresponding to the second wavelength range; amplifying the first optical signal corresponding to the first wavelength range to obtain the amplified first optical signal signal; and receiving the amplified first optical signal, and performing noise reduction processing on the amplified first optical signal, and denoising the first optical signal or the first optical signal corresponding to the second wavelength range At least one of the second optical signals is converted into a transmission electrical signal.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, the above method for receiving an optical signal is implemented.
  • FIG. 1 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application
  • Figure 3 shows a schematic diagram of the scope of the narrow band and wide band provided by the embodiment of the present application
  • FIG. 4 shows a schematic diagram of division of an uplink wavelength range provided by an embodiment of the present application
  • Fig. 5 shows the schematic structural view of the multi-rate light-receiving assembly provided by the embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application.
  • Fig. 7 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to compare the magnitude of the DC component of the output signal to achieve signal comparison;
  • Fig. 8 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to compare the peak-to-peak values of the first electrical signal and the second electrical signal to achieve signal comparison;
  • Fig. 9 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to realize signal comparison by detecting the frequency of the first electrical signal;
  • FIG. 10 shows a schematic structural diagram of a signal adding module including a variable delay module in an optical signal receiving device provided by an embodiment of the present application
  • FIG. 11 shows a schematic diagram of a wavelength division method provided by an embodiment of the present application.
  • FIG. 12 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application.
  • Figure 13 shows a schematic diagram of the device structure of the optical signal receiving device provided by the embodiment of the present application.
  • FIG. 14 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application.
  • Figure 15 shows a schematic diagram of the device structure of the optical signal receiving device provided by the embodiment of the present application.
  • FIG. 16 shows a schematic structural diagram of an optical signal receiving system provided by an embodiment of the present application.
  • optical signal receiving device optical line terminal
  • optical signal receiving system optical signal receiving method
  • computer-readable Storage media are described in detail.
  • Embodiments described herein may be described with reference to plan views and/or cross-sectional views by way of idealized schematic representation of the application. Accordingly, the example illustrations may be modified according to manufacturing techniques and/or tolerances. Therefore, the embodiments are not limited to the ones shown in the drawings but include modifications of configurations formed based on manufacturing processes. Accordingly, the regions illustrated in the drawings have schematic properties, and the shapes of the regions shown in the figures illustrate the shapes of the regions of the elements, but are not restrictive.
  • FIG. 1 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates.
  • the receiving device includes: a first filter 11 , an amplifier 12 , a second filter 13 , and a detection element 14 .
  • the first filter 11 is configured to perform wavelength demultiplexing processing on the original optical signal, output the first optical signal corresponding to the first wavelength range through the first output optical path, and/or output the first optical signal corresponding to the second wavelength range through the second output optical path corresponding to the second optical signal.
  • the amplifier 12 is configured to amplify the first optical signal corresponding to the first wavelength range to obtain the amplified first optical signal.
  • the second filter 13 is configured to receive the amplified first optical signal, perform noise reduction processing on the amplified first optical signal, and transmit the noise reduction processed first optical signal to the detection element 14 .
  • the detection element 14 is configured to receive the noise-reduced first optical signal and/or the second optical signal corresponding to the second wavelength range, and to receive the noise-reduced first optical signal and/or the second optical signal corresponding to the second wavelength range.
  • the corresponding second optical signal is converted into a transmission electrical signal.
  • the amplifier 12 in the optical signal receiving device provided in this application includes an optical amplifier, which may include a semiconductor optical amplifier SOA.
  • the first filter 11 may include a single thin film filter (Thin Film Filter, TFF for short), a micro-optical component Z-Block, and/or a photonic integrated device (such as a Mach-Zehnder interferometer, Mach-Zehnder interferometer, MZI for short) Wait.
  • the first filter 11 in the optical signal receiving device provided in this application can also be called a filter module, and is configured to realize the function of wavelength splitting. Any device that can realize the function of wavelength splitting can be used as the first filter. This application The implementation manner of the first filter 11 is not limited.
  • the second filter 13 is mainly configured to filter out the noise generated by the amplifier 12.
  • the parameters of the second filter 13 can be flexibly set by those skilled in the art, as long as the noise generated by the amplifier can be filtered out.
  • the detection element 14 may include various types of detectors such as a PIN detector or an APD detector.
  • the signal rate level of the original optical signal can include multiple types, the wavelength ranges of the optical signals corresponding to different rate levels are different, so the related optical In the amplifier + narrowband filter + detector architecture, the narrowband filter will cut off optical signals outside the narrowband wavelength range, so that the receiver cannot receive low-rate optical signals with a wider wavelength range and operating wavelengths outside the narrowband wavelength range. That is, the related optical amplifier + narrow-band filter + detector architecture cannot be compatible with optical signals of various rates.
  • the wavelength range of the original optical signal is divided into a first wavelength range and a second wavelength range in advance, and correspondingly, the optical signal in the first wavelength range and the optical signal in the second wavelength range pass through the The first output optical path and the second output optical path of the filter output, thereby realizing compatible reception of multi-rate optical signals.
  • the first output optical path may be a reflected optical path, and the second output optical path may be a transmitted optical path; or, the first output optical path may also be a transmitted optical path, and the second output optical path may also be a reflected optical path, which is not limited in this application.
  • the optical signal receiving device provided in the present application can be set in various types of optical devices, for example, it can be set inside an optical line terminal, or inside an optical network unit.
  • the present application does not limit the location of the optical signal receiving device, as long as the compatible reception of multi-rate optical signals can be realized.
  • the detection element in the optical signal receiving device provided by the present application can be implemented in various ways: for example, it can be set as two detectors respectively corresponding to the first optical signal and the second optical signal, so that through the two detectors Respectively receive two optical signals; as another example, the second filter can also have two input optical paths in addition to the noise reduction function, so that the first optical signal and/or the second optical signal can be transmitted through the two input optical paths.
  • the number of the second filter may be one or two, and the present application does not limit the implementation details. In short, as long as the detection element can convert the two optical signals into transmission electrical signals.
  • the original optical signal can be subjected to wavelength demultiplexing processing through the first filter, and the first optical signal corresponding to the first wavelength range and/or the first optical signal corresponding to the first wavelength range can be obtained.
  • the first optical signal needs to be amplified by the amplifier and denoised by the second filter, so as to improve the quality of the first optical signal.
  • the detection element can receive the noise-reduced first optical signal and/or the second optical signal corresponding to the second wavelength range, so as to convert the noise-reduced first optical signal and/or the second optical signal corresponding to the second wavelength range
  • the second optical signal is converted into a transmission electrical signal for output.
  • FIG. 2 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates.
  • the receiving device includes: a first filter 21 , an amplifier 22 , a second filter 23 , a first detector 24 and a second detector 25 .
  • the functions of the first filter 21 , the amplifier 22 and the second filter 23 are similar to those of the first filter 11 , the amplifier 12 and the second filter 13 shown in FIG. 1 , and will not be repeated here.
  • the detecting elements in the optical signal receiving device provided in the present application may include the first detector 24 and the second detector 25 .
  • the first detector 24 is connected to the second filter 23, configured to receive the first optical signal after noise reduction processing, and convert the first optical signal after noise reduction processing into a first electrical signal; the second detector 25 and The first filter 21 is connected and configured to receive the second optical signal corresponding to the second wavelength range and convert the second optical signal corresponding to the second wavelength range into a second electrical signal.
  • the transmission electrical signal in the optical signal receiving device provided in the present application is generated according to the first electrical signal and/or the second electrical signal.
  • the signal rate level of the original optical signal can include multiple types, the wavelength ranges of the optical signals corresponding to different rate levels are different, so the related optical In the amplifier + narrowband filter + detector architecture, the narrowband filter will cut off optical signals outside the narrowband wavelength range, so that the receiver cannot receive low-rate optical signals with a wider wavelength range and operating wavelengths outside the narrowband wavelength range. That is, the related optical amplifier + narrow-band filter + detector architecture cannot be compatible with optical signals of various rates.
  • the wavelength range of the original optical signal is divided into a first wavelength range and a second wavelength range in advance, and correspondingly, the optical signal in the first wavelength range and the optical signal in the second wavelength range pass through the
  • the first output optical path and the second output optical path of the filter are transmitted to different detectors, thereby realizing compatible reception of multi-rate optical signals.
  • the passband range of the first output optical path of the first filter corresponds to the first wavelength range
  • the passband range of the second output optical path of the first filter corresponds to the second wavelength range
  • the first filter is configured to be with the second wavelength range
  • the first optical signal corresponding to a wavelength range is transmitted to the amplifier through the first output optical path after being processed by transmission or reflection
  • the second optical signal corresponding to the second wavelength range is processed by the second output after being processed by reflection or transmission.
  • the optical path is transmitted to the second detector; in some embodiments, the first wavelength range and the second wavelength range are divided according to the corresponding relationship between the rate of the optical signal and the wavelength range, then the first wavelength range corresponds to the original wavelength range of the first rate For the optical signal, the second wavelength range corresponds to the original optical signal at the second rate.
  • the corresponding relationship between the rate of the optical signal and the wavelength range is determined according to the laser parameters at the optical signal sending end.
  • the first rate is greater than the second rate, and the first wavelength range is less than the second wavelength range.
  • the optical signal receiving device is capable of receiving optical signals at three rates.
  • the first rate includes 50 gigabits per second (Gbit/s)
  • the second rate includes 12.5 Gbit/s and / or 25Gbit/s.
  • the above-mentioned first rate is the first rate level
  • the second rate is the second rate level.
  • the corresponding relationship between the rate of the optical signal and the wavelength is the corresponding relationship between the rate level of the optical signal and the wavelength range.
  • the manner of dividing the above-mentioned first wavelength range and the second wavelength range depends on the laser parameters of the optical signal sending end, and the optical signal sending end may be an optical network unit.
  • the first wavelength range is located in the middle region of the second wavelength range
  • the second wavelength range includes: a first sub-range located on the first side (such as the left side) of the first wavelength range; A second subrange on the second side (eg right side) of a wavelength range. That is, the second wavelength range includes preset wavelength ranges other than the first wavelength range.
  • the first sub-range may be located on a first side of the first wavelength range and be spaced from the first wavelength range by a first preset wavelength; the second sub-range may be located on a second side of the first wavelength range and be spaced from the first wavelength range second preset wavelength.
  • the lengths of the first preset wavelength and the second preset wavelength may be the same or different.
  • FIG. 4 shows a schematic diagram of division of an uplink wavelength range provided by the embodiment of the present application. Taking FIG.
  • the first wavelength range is [ ⁇ 3, ⁇ 4]
  • the second wavelength range includes: The first sub-range [ ⁇ 1, ⁇ 5] on the left side and separated from the first wavelength range by the first preset wavelength, and the second sub-range [ ⁇ 1, ⁇ 5] on the right side of the first wavelength range and separated from the first wavelength range by the second preset wavelength subrange [ ⁇ 6, ⁇ 2].
  • the length of the first preset wavelength is equal to the difference between ⁇ 3 and ⁇ 5
  • the length of the second preset wavelength is equal to the difference between ⁇ 6 and ⁇ 4.
  • the passband range of the first output optical path of the first filter corresponds to the first wavelength range
  • the passband range of the second output optical path of the first filter corresponds to wavelengths within the second wavelength range and outside the first wavelength range.
  • the first filter is configured to transmit the first optical signal corresponding to the first wavelength range through the first output optical path after transmission processing or reflection processing
  • the second optical signal corresponding to the wavelength outside the first wavelength range (that is, including the first sub-range and the second sub-range) in the second wavelength range is processed by reflection or transmission and then passed through the second output
  • the light path is transmitted to the second detector.
  • the first wavelength range and the second wavelength range do not overlap each other, and there is an interval transition zone between the first wavelength range and the second wavelength range, at this time the second optical signal corresponds to the second wavelength range light signal.
  • the interval transition zone refers to: a third wavelength range located between the first wavelength range and the second wavelength range, the third wavelength range neither coincides with the first wavelength range nor coincides with the second wavelength range, so that the third wavelength range There is a transitional band that can function as an interval between the first wavelength range and the second wavelength range.
  • the present application does not limit the division manner of the first wavelength range and the second wavelength range.
  • the first wavelength division method (that is, the first wavelength range is located in the middle region of the second wavelength range) in the above-mentioned embodiment is taken as an example to describe in detail.
  • the application scenario of this application first briefly introduce the application scenario of this application:
  • TDM-PON time-division multiplexed passive optical network
  • 10G PON 10 Gigabit Passive Optical Network
  • GPON Gigabit-Capable Passive Optical Networks
  • 50Gbit/s passive optical network (based on time division multiplexing, namely 50G TDM PON) has become the evolution direction of 10G PON.
  • the ITU-T standard G.hsp.pmd currently defines three rate levels of uplink 12.5G, 25G and 50G. Therefore, in the actual deployment process in the future, there will be ONUs with three different upstream rates on the same ODN.
  • OLT equipment and OLT optical modules are required to be compatible with three upstream receiving rates at the same time.
  • the uplink rate is 50G, due to the substantial increase in the line rate, it is difficult to meet the link budget requirements of 32 decibels and above for the PON network by using related APD receivers.
  • the 50G rate in the 50G PON upstream wavelength planning in the current standard defines two types of wavelength range options: a wide operating wavelength range of 20nm and a narrow operating wavelength range of 4nm, and the narrow wavelength range is located in the middle of the wide wavelength range.
  • FIG. 3 shows a schematic diagram of ranges of narrow bands and wide bands provided by the embodiment of the present application.
  • US0 and US1 respectively represent two wavelength schemes where 50G PON coexists with GPON and XGPON.
  • the OLT side optical receiver of the 50G rate level needs to adopt the SOA+BPF+PD receiver architecture, which cannot be compatible with the uncooled receivers of the 12.5G and 25G rate levels at the same time. laser.
  • the OLT receiving optical path is divided into two through a 1:2 optical splitter, and two receivers are used to receive 50G rate uplink signals and 12.5G/25G uplink signals respectively. Since the optical splitter is not sensitive to wavelength, it will add 3 decibels of loss to the original link budget, which will pose a serious challenge to the performance of optical devices.
  • the above solution must use two pairs of uplink signal pins, but the two pairs of uplink signal pins are not conducive to the miniaturization and packaging of the OLT optical module.
  • the optical signal receiving device provided in the present application implements wavelength branching through the first filter, which can solve the problems in the above application scenarios.
  • the first filter has the following characteristics: When the 50G PON upstream broadband wavelength range is [ ⁇ 1, ⁇ 2] and the upstream narrowband wavelength range is [ ⁇ 3, ⁇ 4], the first filter The passband range of the first output optical path (such as reflected optical path or transmitted optical path) of the filter is [ ⁇ 3, ⁇ 4], the cutoff wavelength range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2], the second output optical path of the first filter ( Such as transmitted optical path or reflected optical path) the passband range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2], and the cutoff wavelength range is [ ⁇ 3, ⁇ 4].
  • the wavelength ranges [ ⁇ 5, ⁇ 3] and [ ⁇ 4, ⁇ 6] are the transition bands of the first filter, and the optical signals within the range of the transition bands partly enter the first output optical path and partly enter the second output optical path.
  • ⁇ 1 is 1260nm
  • ⁇ 2 is 1280nm
  • ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 can be wavelengths within the range of 1260nm- to 1280nm (excluding 1260nm and 1280nm ), such as ⁇ 3 is 1268nm, ⁇ 4 is 1272nm, ⁇ 5 is 1266nm and ⁇ 6 is 1274nm.
  • the optical amplifier may include a semiconductor optical amplifier SOA
  • the filter may include a single thin-film filter TFF, a micro-optical component Z-Block, a photonic integrated device (MZI), etc.
  • the detection element may include a PIN detector or an APD detector.
  • the multi-rate receiving device mentioned above may be an OLT multi-rate receiving device, which may be composed of discrete components, packaged into an optical receiving component or a hybrid integrated optical chip.
  • the multi-rate optical receiving component may also include an optical path coupling device (such as a lens), an optical adapter, a metal casing, and a flexible printed circuit (FPC).
  • an optical path coupling device such as a lens
  • an optical adapter such as a lens
  • a metal casing such as a metal casing
  • FPC flexible printed circuit
  • FIG. 5 shows a schematic structural diagram of a multi-rate light receiving component provided by an embodiment of the present application.
  • this multi-rate light-receiving assembly includes: semiconductor optical amplifier SOA 50, filter 51 and filter 52, detector PD1 and PD2, lens (corresponding to the circular part among Figure 5), optical adapter, Total reflection sheet 53 and flexible board FPC etc.
  • the optical signal (first optical signal) corresponding to the first uplink wavelength range is transmitted through the filter 51 and then enters the semiconductor optical amplifier SOA 50.
  • the SOA 50 amplifies the incident uplink optical signal and outputs it, and the ASE noise is filtered out by the filter 52.
  • the lens is coupled into the detector PD2 and converted into a second electrical signal; the upstream optical signal within the second upstream wavelength range and within the transition band of the filter 51 is partially transmitted through the filter 51 and then input into the semiconductor optical amplifier SOA 50.
  • the filter 52 After being amplified by the optical amplifier SOA 50 and filtered by the filter 52, it is coupled into the detector PD1 and converted into a first electrical signal, and after being partially reflected, it is reflected by the total reflection sheet 53 and then coupled into the detector PD2 to be converted into a second electrical signal.
  • the transmission spectrum passband of the filter 52 is equal to the 3-dB bandwidth of the filter 51 (that is, the wavelength range corresponding to a 3 decibel reduction in the passband loss of the filter 51) .
  • the multi-rate light-receiving component also includes a flexible board FPC, which is connected to an external circuit through the flexible board FPC, connected to the detector PD1 and the detector PD2, and converts the first electrical signal and the second electrical signal converted by the detector PD1 and the detector PD2 The signal is output to an external circuit.
  • the external circuit can also connect the detectors (PD1, PD2) and the control pins of the semiconductor optical amplifier SOA 50 through the flexible board FPC to realize functions such as power supply, monitoring signal reading, and current size adjustment.
  • the detector PD1 and the detector PD2 convert the input optical signal into an electrical signal, and after converting the optical signal into a current signal, convert the current signal into a differential signal through a transimpedance amplifier (TIA) circuit Voltage signal output.
  • TIA transimpedance amplifier
  • the optical characteristics of the filter 51 conform to the wavelength definition mentioned above, that is, for the 50G PON with the uplink broadband wavelength range [ ⁇ 1, ⁇ 2] and the uplink narrowband wavelength range [ ⁇ 3, ⁇ 4], the filter 51
  • the pass band range of the transmitted light path is [ ⁇ 3, ⁇ 4]
  • the cut-off wavelength range is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the pass band range of the transmitted light path is [ ⁇ 1, ⁇ 5] and [ ⁇ 6, ⁇ 2]
  • the cut-off wavelength range is [ ⁇ 3, ⁇ 4].
  • the wavelength ranges [ ⁇ 5, ⁇ 3] and [ ⁇ 4, ⁇ 6] are the transition bands of the filter 51, and part of the optical signals within the wavelength range of the transition band enter the transmission optical path, and part of them enter the reflection optical path.
  • the filter 52 totally reflects the wavelength within the 3-dB bandwidth range of the filter 51 in the 50G PON upstream wavelength range, that is, the passband of the reflected optical path 50G PON upstream narrowband wavelength of the filter 52 is lower than that of the filter 51 transition band
  • the wavelengths in the 3-dB range are the passband.
  • the above-mentioned first electrical signal and the second electrical signal can be respectively output to the signal receiving end by the first detector and the second detector.
  • the signal receiving end needs to provide two The receiving signal pins are respectively configured to receive the above-mentioned first electrical signal and the second electrical signal.
  • the optical line terminal includes: a signal selection module, configured to determine the signal rate level corresponding to the current scheduling time slot according to the corresponding relationship between the scheduling time slot and the signal rate stored in the time slot scheduling table, and according to the signal The rate class selects either the first electrical signal or the second electrical signal as the valid electrical signal.
  • the effective electrical signal refers to an effective received electrical signal that is actually used for subsequent processing. Because the optical line terminal in the receiving device of the optical signal has two pairs of receiving signal pins, which correspond to the first electrical signal and the second electrical signal respectively, and the first electrical signal and the second electrical signal respectively correspond to different wavelengths.
  • the first electrical signal is an effective electrical signal component
  • the second electrical signal is an invalid electrical signal component.
  • the first electrical signal The signal is determined to be an effective electrical signal, and the receiving signal pin corresponding to the first electrical signal is controlled to work; when the transmitting end sends an optical signal at a low rate level, both the first signal and the second electrical signal may be effective electrical signal components
  • the channel with high signal quality is selected as an effective electrical signal through the signal selection module, and the corresponding receiving signal pin is controlled to work.
  • the signal selection module is configured to determine the bit error rates of the first electrical signal and the second electrical signal at the physical layer respectively, and the bit error rates of the first electrical signal and the second electrical signal A low electrical signal is regarded as an effective electrical signal.
  • the first output optical path of the receiving device of the above optical signal, the first detector and the first Subsequent connections of electrical signals are also applicable to 25G rate uplink signals.
  • the second output optical path mainly passes the 12.5G rate level signal.
  • the 50G rate signal is correspondingly changed into a 50G/25G rate signal
  • the 12.5G/25G rate signal is correspondingly changed into a 12.5G rate signal. Therefore, the above optical signal receiving device can be flexibly applied to various scenarios of transmitters of different rate levels and different wavelength ranges.
  • FIG. 6 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates.
  • the receiving device includes: a first filter 61 , an amplifier 62 , a second filter 63 , a first detector 64 , a second detector 65 and a signal preprocessing module 66 .
  • the operating principles of the first filter 61, the amplifier 62, the second filter 63, the first detector 64 and the second detector 65 are respectively the same as those of the first filter 21 and the amplifier in the receiving device of the optical signal shown in Fig. 2 22.
  • the second filter 23, the first detector 24, and the second detector 25 are similar, and will not be repeated here.
  • a signal preprocessing module 66 is added, through which the first detector 64 and the second The two electrical signals output by the detector 65 are preprocessed, so that the two electrical signals are converted into an output electrical signal for transmission, and the effect of reducing signal pins is realized.
  • the signal preprocessing module 66 is configured to perform preprocessing on the first electrical signal output by the first detector 64 and the second electrical signal output by the second detector 65, to obtain a preprocessed third electrical signal , outputting the third electrical signal as a transmission electrical signal to the signal receiving end.
  • the main function of the signal preprocessing module 66 is to analyze and process the first electrical signal and the second electrical signal to obtain a transmission electrical signal for outputting to the signal receiving end.
  • the third electrical signal can be the quality of one channel extracted from the first electrical signal and the second electrical signal.
  • a preferred electrical signal may also be an electrical signal obtained after preset processing such as addition of the first electrical signal and the second electrical signal, and the present application does not limit the details.
  • the signal preprocessing module 66 includes a signal comparison module.
  • the signal comparison module is configured to compare the DC component, peak-to-peak value, signal-to-noise ratio, and/or signal frequency of the first electrical signal and the second electrical signal, and take the first electrical signal or the second electrical signal as third electrical signal.
  • the signal preprocessing module 66 includes a signal summing module.
  • the signal addition module is configured to add the first electrical signal and the second electrical signal to obtain a third electrical signal.
  • the optical signal receiving device shown in FIG. 6 converts two electrical signals into one electrical signal through the signal preprocessing module 66, the signal receiving end only needs to have a pair of receiving signal tubes configured to receive the third electrical signal. It is not necessary to set two pairs of receiving signal pins for the first electrical signal and the second electrical signal, thereby simplifying the hardware cost of the signal receiving end, reducing the volume of the signal receiving end, and facilitating the miniaturization and packaging of the signal receiving end.
  • the signal receiving end in the optical signal receiving device can be various types of network equipment with optical signal receiving function, for example, it can be an optical line terminal.
  • the optical signal receiving device provided by this application can be set at the optical line terminal internal, or communicated with the optical line terminal.
  • the optical signal receiving apparatus shown in FIG. 6 may further include: a signal rate level indication module configured to determine the rate level of the third electrical signal according to the signal wavelength of the third electrical signal, and send the rate level to the signal receiving end indicator signal. For example, if the third electrical signal corresponds to the second electrical signal, it indicates that the signal wavelength range is wider and the signal rate is lower.
  • the signal rate level indication module sends a low rate level indication signal to the signal receiving end; if the second The three electrical signals correspond to the first electrical signal, indicating that the signal may be a high-speed signal or a low-speed signal.
  • the rate identified by the signal preprocessing module for example, the rate of the signal can be identified by the frequency detection module
  • the signal preprocessing module can determine the signal wavelength and rate level of the third electrical signal during the preprocessing process of the first electrical signal and the second electrical signal, and correspondingly, can send the rate to the signal receiving end according to the judgment result Level indicator signal.
  • the signal preprocessing module is a signal comparison module configured to compare the quality of the first electrical signal and the second electrical signal, and output an electrical signal with better signal quality among the first electrical signal and the second electrical signal.
  • the signal comparison module compares the quality of the first electrical signal and the second electrical signal, including: comparing the DC component of the output signal of the first electrical signal and the second electrical signal, the peak-to-peak value, the level compared to the reference level, the signal-to-noise ratio, and /or frequency magnitude etc.
  • FIG. 7 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to compare the magnitude of the DC component of the output signal to achieve signal comparison.
  • the signal comparison module includes: a DC component detection module 71 , a DC component detection module 72 , a DC component comparison module 73 and a signal switch module 74 .
  • the DC component detection module 71 and the DC component detection module 72 respectively detect the DC component 1 and the DC component 2 of the first electrical signal and the second electrical signal and input them to the DC component comparison module 73 .
  • the DC component comparison module 73 judges the magnitude of the two input DC components, and controls the signal switch module 74 according to the comparison result.
  • the DC component comparison module 73 controls the signal switch module 74 to pass the first electrical signal (that is, the first electrical signal is used as the above-mentioned third electrical signal); when the DC component 1 is smaller than the DC component 2, The DC component comparison module 73 controls the signal switch module 74 to pass the second electrical signal (that is, the second electrical signal is used as the above-mentioned third electrical signal); when the DC component 1 is equal to the DC component 2, the DC component comparison module 73 controls the signal switch module 74 Through the second electrical signal, the DC component comparison module 73 can keep the current state unchanged, or through the second electrical signal.
  • Fig. 8 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to compare the peak-to-peak values of the first electrical signal and the second electrical signal to achieve signal comparison.
  • the signal comparison module includes: an analog-to-digital converter 81 , an analog-to-digital converter 82 and a digital signal processing module 83 .
  • Analog-to-digital converter 81 converts the input first electrical signal into digital signal 1 after sampling, and sends it to digital signal processing module 83; Digital signal processing module 83.
  • the digital signal processing module 83 includes at least one of a DC blocking module for the digital signal 1 and a digital signal 2, a clock recovery module, and a peak-to-peak level comparison module.
  • the digital signal processing module 83 also includes a signal switch module configured to switch one of the digital signal 1 and the digital signal 2 according to the signal quality and output it as a third electrical signal to a subsequent signal processing module.
  • the first optical path of the OLT multi-rate receiving device (that is, the optical signal receiving device) is converted into a first electrical signal and input to the analog-to-digital converter 81.
  • the second optical path is cut off, and the second optical The signal has no differential signal output, and the digital signal 2 output by the analog-to-digital converter 82 has no signal output after being processed by the DC blocking module.
  • the digital signal processing module 83 selects the digital signal 1 as the third electrical signal for output.
  • the digital signal 1 output by the digital-to-analog converter 81 is a DC noise signal, and the digital signal 1 output by the analog-to-digital converter 81 has no signal output after being processed by the DC blocking module.
  • the second optical path analog-to-digital converter 82 outputs normal differential signals.
  • the digital signal processing module 83 selects the digital signal 2 as the third electrical signal for output.
  • the uplink 12.5G/25G rate optical signal When the uplink 12.5G/25G rate optical signal is input, and the wavelength of the 12.5G/25G rate optical signal is in the wavelength range of the transition zone of the first optical path and the second optical path, it is output through the first optical path and the second optical path of the OLT multi-rate receiving device,
  • the analog-to-digital converter 81 and the analog-to-digital converter 82 output digital signal 1 and digital signal 2 respectively, and the digital signal processing module 83 can compare the peak-to-peak levels of the two digital signal levels, and select the digital signal with a higher peak-to-peak value to output.
  • the digital signal processing module 83 can also include a digital equalization module, the digital equalization module is configured to restore the quality of the input electrical signal, simultaneously detect the signal-to-noise ratio of the digital signal 1 and the digital signal 2, and select the one with the larger signal-to-noise ratio output as a third electrical signal.
  • FIG. 9 shows a schematic structural diagram when the signal comparison module in the optical signal receiving device provided by the embodiment of the present application is configured to realize signal comparison by detecting the frequency of the first electrical signal.
  • the signal comparison module includes: a frequency detection module 91 , a comparison control module 92 and a signal switch module 93 .
  • the frequency detection module 91 detects the frequency of the first electrical signal, and low-pass filters the electrical signals with a rate of 25G and below.
  • the comparison control module 92 compares the low-pass filtered first electrical signal and the second electrical signal, and sends a switch indication signal to the signal switch module 93 .
  • the frequency detection module 91 detects that the frequency of the input first electrical signal is greater than 25GHz, and the comparison control module 92 controls the signal switch module 93 to pass the first electrical signal; when the uplink 25G/12.5G rate optical signal is input , the frequency detection module 91 detects that the frequency of the input first electrical signal is less than or equal to 25 GHz. At this time, the comparison control module 92 compares the magnitude of the first electrical signal and the second electrical signal after the low-pass filtering.
  • the frequency detection module 91 includes: a DC blocking sub-module configured to perform DC blocking processing on the first electrical signal, and correspondingly, the frequency detection module 91 is configured to detect the frequency of the first electrical signal after the DC blocking processing.
  • the signal preprocessing module is a signal addition module configured to add the input first electrical signal and the second electrical signal into a fourth electrical signal (corresponding to the third electrical signal mentioned above) output.
  • the signal addition module includes a DC noise reduction module and a signal addition module, and the DC noise reduction module is configured to perform DC component isolation and noise reduction on the input first electrical signal and the second electrical signal respectively.
  • the signal addition module is configured to combine and output the two electrical signals after DC blocking and noise reduction into a fourth electrical signal.
  • the signal addition module further includes a variable delay module, which performs signal variable delay on the first electrical signal or the second electrical signal, so as to ensure that when the optical wavelength of the uplink signal is in the transition band of the filter, the two signals The amount of delay is equal to prevent signal jitter.
  • FIG. 10 shows a schematic structural diagram of a signal adding module including a variable delay module in an optical signal receiving device provided by an embodiment of the present application.
  • the wavelength division methods in the optical signal receiving devices shown in Fig. 1, Fig. 2 and Fig. 6 all adopt the method shown in Fig. 4. Since there is an overlapping area between the first wavelength range and the second wavelength range in Fig. 4, Therefore, when an uncooled laser transmitter is used for an uplink optical signal at a low rate level, the wavelength may fall into the transition band of the first filter, resulting in electrical signal output from both the first detector and the second detector, thereby Among the electrical signals output by the detector, it is necessary to select a signal output with higher signal quality, which leads to a complex structure of the signal processing module.
  • the existing 50G PON uplink wavelength range is divided into two sub-channels, narrowband and broadband, and the wavelengths of the two sub-channels do not overlap with each other, and there is a certain interval transition zone between the two sub-channels.
  • 50G/25G rate optical signals can use narrowband lasers and SOA receivers
  • 12.5G/25G rate optical signals can use wide-range uncooled lasers.
  • the wavelength range can be divided in the following ways: 1290 to 1294nm is a narrowband sub-channel (corresponding to the first wavelength range mentioned above), and 1296 to 1310nm is a broadband subchannel (corresponding to the above-mentioned The second wavelength range mentioned in the article), 1294 to 1296nm is the transition isolation band between the two sub-channels.
  • FIG. 11 shows a schematic diagram of a wavelength division manner provided by an embodiment of the present application.
  • An optical signal receiving device adopting the wavelength division method shown in FIG. 11 can be realized by using the structure shown in FIG. 2 .
  • the optical signal receiving device adopting the wavelength division method shown in FIG. 11 has the same structure as the optical signal device in FIG. 2 , and the only difference lies in the division of the wavelength range.
  • the filtering characteristics of the first filter are also different from those of the first filter 21 in the optical signal apparatus shown in FIG. 2 .
  • the first filter in the receiving device of the optical signal using the wavelength division method shown in Figure 11 has the following characteristics: for the first output optical path, the wavelength of the narrow-band sub-channel is a passband, and the wavelength of the wide-band sub-channel is cut-off; for the second output As far as the optical path is concerned, the wavelength of the wideband sub-channel is the passband, and the wavelength of the narrowband sub-channel is cut-off; the transition isolation band between the two sub-passbands is the transition band of the filter, and both the first output optical path and the second output optical path have optical signal output.
  • uplink optical signals of different rate levels are input to a fixed detector and converted to electrical signal output.
  • the uplink 50G rate signal is output by the first detector through the first optical path (that is, the first output optical path); the uplink 12.5G/25G rate signal It is output by the second detector through the second optical path (that is, the second output optical path).
  • the 50G PON MAC chip does not need to include a signal selection module, and can select uplink signals of different speed levels to the MAC protocol processing module according to the DBA scheduling information; or the signal selection module is no longer needed To select signals of different rate levels to output to the next signal processing module.
  • the first detector and the second detector can select the appropriate bandwidth detector and TIA device according to the rate level, and it is not necessary to use high-speed optical signals for low rate level optical signals. device, which helps reduce cost and noise.
  • the first filter when the wavelength planning shown in Figure 11 is adopted, can be a sideband filter (such as a passband when the first optical path is less than 1294nm, and a cutoff when it is greater than 1296nm; as the second optical path cut-off when it is less than 1294nm, passband when it is greater than 1296nm), the second filter can be a vertical incidence band-pass filter (passband from 1290 to 1294nm, cut-off for other wavelengths), at this time, the requirements for filter packaging accuracy can be reduced, which is beneficial Reduce the difficulty of packaging.
  • the first detector and the second detector can select detectors and TIA devices with appropriate bandwidths according to the speed level, and it is not necessary to use high-speed devices for low-speed optical signals, which is beneficial to reduce costs and noise.
  • the optical signal receiving device may further include a signal selection module.
  • the selection state of the signal selection module can be controlled by the OLT PON MAC sending rate indication signal. In some embodiments, the selection state of the signal selection module can also be controlled by comparing the magnitudes of the RSSI signals of the first detector and the second detector. In some implementations, the selection state of the signal selection module can also be judged by the frequency of the received optical signal, and select the electrical signal that conducts the high-frequency signal, and no external control signal is needed at this time.
  • Figure 12 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application, which is suitable for receiving optical signals of various rates, including: a first filter 121, an amplifier 122, a second filter 123, and Detection element 124 .
  • the second filter 123 has a first input optical path and a second input optical path, and the second filter is configured to receive the amplified first optical signal through the first input optical path, and perform noise reduction processing on the amplified first optical signal Then output to the detection element through the output optical path; and/or, receive the second optical signal corresponding to the second wavelength range through the second input optical path, and output the second optical signal corresponding to the second wavelength range through the output optical path to the detection element.
  • the second filter 123 has two input optical paths, which can combine the first optical signal and the second optical signal into one output optical signal, so that the detection element can be realized only through one detector, greatly reducing the device cost.
  • the characteristics of a filter are the same; correspondingly, the characteristics of the second filter 123 are as follows: for the first output optical path (such as the reflection optical path) of the second filter 123, the wavelength range 1290 to 1294nm is a passband, and the wavelength range 1296nm To 1310nm cutoff, the wavelength range 1294 to 1296nm is the transition band; for the second output optical path of the second filter (such as the transmission optical path), the wavelength range 1296 to 1310nm is the passband, the wavelength range 1290 to 1294nm cutoff, the wavelength range 1294nm To 1296nm is the transition zone.
  • the characteristics of the first filter 121 can also be compared with the first filter 21 in the optical signal receiving device shown in Figure 2 The characteristics are the same, which is not limited in this application.
  • FIG. 13 shows a schematic diagram of a device structure of an optical signal receiving device provided by an embodiment of the present application.
  • the optical signal receiving device includes: a first filter 131, a first total reflection wave plate 132, an optical amplifier 133, a second total reflection wave plate 134, a second filter 135 and a first detector 136 . After the uplink optical signal passes through the first filter 131, it is output through the first optical path or the second optical path.
  • the optical signal of the first optical path is reflected by the first total reflection wave plate 132 and sent to the optical amplifier 133 for amplification, and then undergoes the second total reflection After being reflected by the wave plate 134 , it is sent to the second filter 135 ; the optical signal of the second optical path is output to the first detector 136 through the second filter 135 .
  • FIG. 14 shows a schematic structural diagram of an optical signal receiving device provided by an embodiment of the present application.
  • the second filter includes: a noise reduction filter and a branch receiving filter; a noise reduction filter and an amplifier connected, configured to receive the amplified first optical signal, and perform noise reduction processing on the amplified first optical signal, and transmit the noise-reduced first optical signal to the branch receiving filter; then the branch receiving filter
  • the device has a first input optical path and a second input optical path, configured to receive the noise-reduced first optical signal through the first input optical path, and output the noise-reduced first optical signal to the detection element through the output optical path; and /or, receiving the second optical signal corresponding to the second wavelength range through the second input optical path, and outputting the second optical signal corresponding to the second wavelength range to the detection element through the output optical path.
  • the optical signal receiving device includes: a first filter 141 , an amplifier 142 , a noise reduction filter 143 , a split receiving filter 144 and a first detector 145 .
  • the characteristics of the first filter 141 are the same as those of the first filter 121 in the optical signal receiving device shown in FIG.
  • the characteristics of the second filter in the optical signal receiving device in the wavelength division mode are the same, and are mainly configured to implement noise reduction processing; the characteristics of the split receiving filter 144 are the same as those of the first filter 141 .
  • high-speed optical signals (corresponding to a narrow wavelength range) can be output to the first detector 145 through the first optical path, and low-speed optical signals (corresponding to a wide wavelength range) can be output to the first detector 145 through the second optical path.
  • Detector 145 high-speed optical signals (corresponding to a narrow wavelength range) can be output to the first detector 145 through the first optical path, and low-speed optical signals (corresponding to a wide wavelength range) can be output to the first detector 145 through the second optical path.
  • FIG. 15 shows a schematic diagram of a device structure of an optical signal receiving device provided by an embodiment of the present application.
  • the receiving device of this optical signal comprises: a first filter 151, a first total reflection wave plate 152, an optical amplifier 153, a second filter 154, a second total reflection wave plate 155, a third filter 156 and the first detector 157.
  • the uplink signal is a narrowband 50G rate uplink signal
  • it is input to the first detector 157 through the first optical path.
  • the uplink signal is a 12.5G/25G rate uplink signal with a narrow band and outside the passband of the filter 151 and beyond the transition band, it is input to the first detector 157 through the second optical path.
  • the uplink signal When the uplink signal is located in the transition zone of the filter 151, it is input to the first detector 157 through the first optical path and the second optical path respectively.
  • the second optical path further includes a variable phase delayer 150 configured to perform phase delay on the input uplink signal to prevent the first detector 157 from generating signal jitter and signal coherence and cancellation.
  • the various implementations above can be combined or replaced with each other.
  • the wavelength division method in FIG. 4 or FIG. 11 can be flexibly selected in various implementations, and the characteristics of the filter can be set correspondingly according to the selected wavelength division method.
  • the original optical signal in the foregoing various implementation manners may be an uplink optical signal transmitted from the optical network unit to the optical line terminal.
  • an embodiment of the present application further provides an optical line terminal, including: the above-mentioned optical signal receiving apparatus.
  • the optical line terminal includes: a signal selection module configured to , determine the signal rate level corresponding to the current scheduling time slot, and select the first electrical signal or the second electrical signal as an effective electrical signal according to the signal rate level.
  • an embodiment of the present application further provides an optical signal receiving system, including: the above-mentioned optical line terminal, and an optical network unit.
  • FIG. 16 shows a schematic structural diagram of an optical signal receiving system provided by an embodiment of the present application.
  • the optical signal receiving system includes: the above-mentioned optical signal receiving device 160, an optical splitter 162 , a plurality of optical network units ONU 161, and a signal receiving end 163.
  • the optical signal receiving device 160 may be implemented by using any of the above-mentioned optical signal receiving devices, which will not be repeated here.
  • the signal receiving end 163 may be an optical line terminal.
  • the signal receiving end 163 may include 50G PON MAC (Media Access Control, Media Access Control).
  • Each ONU 161 can send optical signals of different rate levels, including optical signals of different rate levels such as 12.5G, 25G, and 50G.
  • Multiple optical signals corresponding to different rate levels sent by multiple ONUs 161 are processed by the optical splitter 162 and sent to the above-mentioned optical signal receiving device.
  • a signal amplification module, a clock data recovery module, etc. may also be set between the optical signal receiving device 160 and the signal receiving end 163, and the signal amplification module is configured to amplify the optical signal For the first electrical signal and the second electrical signal output by the receiving device, the clock data recovery module is configured to recover the clock data of the signal.
  • a signal selection unit is included in the signal receiving end 163, for example, when the signal receiving end is an optical line terminal, the above-mentioned signal selection unit is included in the 50G PON MAC chip of the optical line terminal, and the signal selection unit It is configured to determine the signal rate level corresponding to the current scheduling time slot according to the corresponding relationship between the scheduling time slot and the signal rate stored in the time slot scheduling table, and select the first electrical signal or the second electrical signal as the signal rate level according to the signal rate level. valid electrical signal. For example, read the time slot scheduling table according to the DBA scheduling information, so as to select uplink signals of different rate levels and transmit them to the MAC protocol processing module.
  • the path with the lowest bit error rate can be selected according to the bit error rate of the PHY layer to enter the MAC protocol processing module for framing Sublayer (Framing sublayer).
  • the optical signal receiving device 160 can be implemented in any of the above-mentioned embodiments.
  • the optical signal output by the optical signal receiving device 160 may be two channels, or one channel, depending on the reception of the optical signal.
  • the structure of the device. In a word, the optical signal receiving device with any structure above can be applied to the system shown in FIG. 16 , and the present application will not repeat them one by one.
  • the optical signals of the uplink 25G and 12.5G speed levels can use uncooled lasers, and can work at any wavelength within the uplink wavelength range.
  • the low-speed working wavelength falls within the narrow-band working wavelength range, it is converted into an electrical signal output through the first optical path through the first detector; when the low-speed working wavelength falls outside the narrow-band working wavelength range, it passes through the second optical path and passes through the second
  • the detector is converted into an electrical signal output; when the low-rate operating wavelength falls in the transition band between the pass band and the stop band of the filter, it is divided into two paths and converted into the first electrical signal through the first optical path through the first detector
  • the output and the second optical path are converted into a second electrical signal output by the second detector.
  • the above technical solution is compatible with optical signals of various rate levels, and can convert two electrical signals into one electrical signal through the signal preprocessing module, so that the signal receiving end only needs to provide a pair of signal receiving pins, greatly
  • the cost of the receiving terminal is simplified, the volume of the receiving terminal is reduced, and it is convenient to realize miniaturized packaging of the device.
  • one detector can also be omitted by properly setting the characteristics of the second filter, so that the two optical signals are output through the same detector.
  • the embodiment of the present application also provides a method for receiving an optical signal, which is suitable for receiving optical signals of various rates, including the following steps 1 to 3.
  • Step 1 Perform wavelength demultiplexing processing on the original optical signal, and output at least one of the first optical signal corresponding to the first wavelength range or the second optical signal corresponding to the second wavelength range.
  • This step can be performed by the first filter in the optical signal receiving device provided in this application, and the processing method can refer to the description about the first filter part in the above optical signal receiving device.
  • Step 2 amplifying the first optical signal corresponding to the first wavelength range to obtain the amplified first optical signal. This step can be achieved by the amplifier mentioned above.
  • Step 3 Receive the amplified first optical signal, perform noise reduction processing on the amplified first optical signal, and convert the noise-reduced first optical signal and/or the second optical signal corresponding to the second wavelength range to The signal is converted into an electrical signal for transmission.
  • This step can be realized by the detection element in the optical signal receiving device provided in this application, and the implementation details can refer to the description of the corresponding part in the above optical signal receiving device, and will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, the above method for receiving an optical signal is realized.
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • Example embodiments have been disclosed herein, and while described in detail, they are and should be construed in a generally descriptive sense only and not for purposes of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics, and/or elements described in connection with a particular embodiment may be used alone or in combination with features, characteristics described in connection with other embodiments, unless expressly stated otherwise. and/or elements in combination. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present application as set forth in the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光信号的接收装置、一种光线路终端、一种光信号的接收系统、一种光信号的接收方法、及一种计算机可读存储介质,该光信号的接收装置包括:第一滤波器、放大器、第二滤波器、以及探测元件;第一滤波器配置为对原始光信号进行波长分路处理,并进行下述至少一种操作:输出与第一波长范围对应的第一光信号、或与第二波长范围相对应的第二光信号中的至少一者;放大器配置为对与第一波长范围相对应的第一光信号进行放大处理;第二滤波器配置为对放大后的第一光信号进行降噪处理后传输至探测元件;以及探测元件配置为接收降噪处理后的第一光信号或与第二波长范围相对应的第二光信号中的至少一者,并转换为传输电信号。

Description

光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质
相关申请的交叉引用
本申请要求于2021年6月18日提交的中国专利申请NO.202110677407.8的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及通信技术领域,尤其涉及光信号的接收装置、光信号的接收方法、光线路终端、光信号的接收系统、及计算机可读存储介质。
背景技术
随着无源光网络(Passive Optical Network,PON)带宽需求的不断提升,光信号的速率也不断提升,PON网络上行速率等级也随之增多。例如,在50G PON系统中,上行需要能够同时支持50G速率等级、12.5G速率等级以及25G速率等级的光信号。当PON系统能够支持多种不同速率的光信号时,由于不同速率的光信号所对应的波长范围不同,因此,当光线路终端(optical line terminal,OLT)侧光接收机采用半导体光放大器(semiconductor optical amplifier,SOA)、带通滤波器(band-pass filter,BPF)以及光电探测器(Photodetector,PD)时,即,采用SOA+BPF+PD接收机架构时,由于该架构中的BPF为窄带滤波器,而发送端的非制冷激光器的工作波长范围较宽,因此,可能会导致窄带滤波器的波长范围与非制冷激光器的波长范围不匹配,进而导致在12.5G速率等级以及25G速率等级的光信号采用非制冷激光器发送时,该SOA+BPF+PD接收机架构无法兼容支持50G速率等级、12.5G速率等级以及25G速率等级的多种光信号。
相关技术中的解决方案为:使12.5G和25G速率等级的光信号采用带制冷器的发射机发送,相应的,使12.5G和25G速率等级的光信号对应的波长工作范围与50G速率等级的光信号对应的波长工作范围一样收窄至4nm。但是,该解决方案由于采用了带制冷器的发射器,因而会导致终端光模块的成本大幅上升。由此可见,在不提升终端光模块的制造成本的前提下,相关的接收机架构在同时支持多种速率的光信号方面存在一些问题。
公开内容
根据本申请实施例的一个方面,提供了一种光信号的接收装置,适于接收多种速率的光信号,包括:第一滤波器、放大器、第二滤波器、以及探测元件;所述第一滤波器配置为对原始光信号进行波长分路处理,并进行下述至少一种操作:通过第一输出光路输出与第一波长范围相对应的第一光信号、或通过第二输出光路输出与第二波长范围相对应的第二光信号;所述放大器配置为对所述与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号;所述第二滤波器配置为接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号传输至所述探测元件;以及所述探测元件配置为接收所述降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者,将所述降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者转换为传输电信号。
根据本申请实施例的一个方面,提供了一种光线路终端,包括:上述的光信号的接收装置。
根据本申请实施例的一个方面,提供了一种光信号的接收系统,包括:上述的光线路终端、以及光网络单元。
根据本申请实施例的一个方面,提供了一种光信号的接收方法,适于接收多种速率的光信号,包括:对原始光信号进行波长分路处理,输出与第一波长范围相对应的第一光信号、或与第二波长范围相对应的第二光信号中的至少一者;对所述与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号;以及接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者转换为传输电信号。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现上述的光信号的接收方法。
附图说明
图1示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图2示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图3示出了本申请实施例提供的窄波段和宽波段的范围示意图;
图4示出了本申请实施例提供的一种上行波长范围的划分示意图;
图5示出了本申请实施例提供的多速率光接收组件的结构示意 图;
图6示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图7示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为比较输出信号直流成分大小的方式实现信号比较时的结构示意图;
图8示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为比较第一电信号和第二电信号的峰峰值大小实现信号比较时的结构示意图;
图9示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为通过第一电信号频率大小检测实现信号比较时的结构示意图;
图10示出了本申请实施例提供的光信号的接收装置中包含可变延迟模块的信号相加模块的结构示意图;
图11示出了本申请实施例提供的一种波长划分方式的示意图;
图12示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图13示出了本申请实施例提供的光信号的接收装置的器件结构示意图;
图14示出了本申请实施例提供的一种光信号的接收装置的结构示意图;
图15示出了本申请实施例提供的光信号的接收装置的器件结构示意图;以及
图16示出了本申请实施例提供的一种光信号的接收系统的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图对本申请提供的光信号的接收装置、光线路终端、光信号的接收系统、光信号的接收方法、计算机可读存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现,且本申请不应当被解释为限于本文阐述的实施例。提供这些实施例的目的在于使本申请更加透彻和完整,并使本领域技术人员充分理解本申请的范围。
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不限制本申请。如本文所使用的,单数形式“一个”和“该”也包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括” 和/或“由……制成”时,指定存在特定特征、整体、步骤、操作、元件和/或组件,但不排除存在或可添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
本文所述实施例可借助本申请的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。因此,实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的形状,但并不是限制性的。
除非另外限定,否则本文所用的所有术语(包括技术术语和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本申请的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
图1示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号。如图1所示,该接收装置包括:第一滤波器11、放大器12、第二滤波器13、以及探测元件14。第一滤波器11配置为对原始光信号进行波长分路处理,通过第一输出光路输出与第一波长范围相对应的第一光信号,和/或通过第二输出光路输出与第二波长范围相对应的第二光信号。放大器12配置为对与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号。第二滤波器13配置为接收放大后的第一光信号,并对放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号传输至探测元件14。探测元件14配置为接收降噪处理后的第一光信号和/或与第二波长范围相对应的第二光信号,将降噪处理后的第一光信号和/或与第二波长范围相对应的第二光信号转换为传输电信号。
本申请提供的光信号的接收装置中的放大器12包括光放大器,可以包括半导体光放大器SOA。第一滤波器11可以包括单个薄膜滤波片(Thin Film Filter,简称TFF)、微光学组件Z-Block、和/或光子集成器件(如马赫-曾德尔干涉仪,Mach-Zehnder interferometer,简称MZI)等。本申请提供的光信号的接收装置中的第一滤波器11也可以称作滤波模块,配置为实现波长分路功能,凡是能够实现波长分路功能的器件均可作为第一滤波器,本申请不限定第一滤波器11的实现方式。第二滤波器13主要配置为滤除由放大器12产生的噪声,相应的,第二滤波器13的参数可由本领域技术人员灵活设置,只要能够滤除由放大器产生的噪声即可。另外,探测元件14可以包括PIN探测器或APD探测器等各类探测器。
由于信号速率等级与信号波长范围之间具有一定的对应关系,因此,当原始光信号的信号速率等级可以包括多种时,不同速率等级对应的光信号的波长范围宽窄不一,因而相关的光放大器+窄带滤波 器+探测器架构中,窄带滤波器会截止窄带波长范围以外的光信号,导致接收机无法接收到波长范围较宽的且工作波长位于窄带波长范围以外的低速率等级光信号,即,相关的光放大器+窄带滤波器+探测器架构无法兼容多种速率的光信号。本申请提供的光信号的接收装置中预先将原始光信号的波长范围划分为第一波长范围以及第二波长范围,相应的,第一波长范围的光信号以及第二波长范围的光信号分别通过滤波器的第一输出光路以及第二输出光路输出,从而实现了对多速率光信号的兼容接收。第一输出光路可以为反射光路,第二输出光路可以为透射光路;或者,第一输出光路也可以为透射光路,第二输出光路也可以为反射光路,本申请对此不做限定。
本申请提供的光信号的接收装置可以设置在各类光器件中,例如,可以设置在光线路终端的内部,也可以设置在光网络单元的内部。本申请不限定该光信号的接收装置的位置,只要能够实现多速率光信号的兼容接收即可。
本申请提供的光信号的接收装置中的探测元件可通过多种实现方式实现:例如,可以设置为两个分别对应于第一光信号以及第二光信号的探测器,从而通过两个探测器分别接收两路光信号;又如,还可以使第二滤波器除具备降噪功能之外,还具有两路输入光路,从而通过两路输入光路将第一光信号和/或第二光信号汇合为一路光信号输出至探测元件,此时,第二滤波器的数量可以为一个或两个,本申请对实现细节不做限定。总之,只要能够使探测元件将两路光信号转换为传输电信号即可。
由此可见,在本申请提供的光信号的接收装置中,能够通过第一滤波器对原始光信号进行波长分路处理,得到与第一波长范围相对应的第一光信号和/或与第二波长范围相对应的第二光信号,相应的,第一光信号需经由放大器进行放大处理,并经由第二滤波器进行降噪处理,从而提升第一光信号的质量。并且,探测元件能够接收降噪后的第一光信号和/或与第二波长范围相对应的第二光信号,从而将降噪后的第一光信号和/或与第二波长范围相对应的第二光信号转换为传输电信号输出。由此可见,针对多种速率的光信号的波长范围宽窄不一的特点,在本申请提供的光信号的接收装置中,通过合理设置第一滤波器的透射波长以及反射波长,使第一波长范围的光信号以及第二波长范围的光信号分别经由不同的输出光路输出。该光信号的接收装置能够根据信号速率与波长范围之间的对应关系,通过第一滤波器执行波长分路处理,进而将原始光信号分路为两路光信号,以使该接收装置能够适用于多种速率的光信号。
图2示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号。如图2所示,该接收装置包括:第一滤波器21、放大器22、第二滤波器23、第一探测器24以及第 二探测器25。第一滤波器21、放大器22以及第二滤波器23的作用分别与图1所示的第一滤波器11、放大器12以及第二滤波器13的作用类似,此处不再赘述。由此可见,本申请提供的光信号的接收装置中的探测元件可以包括第一探测器24以及第二探测器25。第一探测器24与第二滤波器23相连,配置为接收降噪处理后的第一光信号,并将降噪处理后的第一光信号转换为第一电信号;第二探测器25与第一滤波器21相连,配置为接收与第二波长范围相对应的第二光信号,并将与第二波长范围相对应的第二光信号转换为第二电信号。相应的,本申请提供的光信号的接收装置中的传输电信号根据第一电信号和/或第二电信号生成。
由于信号速率等级与信号波长范围之间具有一定的对应关系,因此,当原始光信号的信号速率等级可以包括多种时,不同速率等级对应的光信号的波长范围宽窄不一,因而相关的光放大器+窄带滤波器+探测器架构中,窄带滤波器会截止窄带波长范围以外的光信号,导致接收机无法接收到波长范围较宽的且工作波长位于窄带波长范围以外的低速率等级光信号,即,相关的光放大器+窄带滤波器+探测器架构无法兼容多种速率的光信号。本申请提供的光信号的接收装置中预先将原始光信号的波长范围划分为第一波长范围以及第二波长范围,相应的,第一波长范围的光信号以及第二波长范围的光信号分别通过滤波器的第一输出光路以及第二输出光路传输至不同的探测器,从而实现了对多速率光信号的兼容接收。
第一滤波器的第一输出光路的通带范围对应于第一波长范围,第一滤波器的第二输出光路的通带范围对应于第二波长范围;则第一滤波器配置为将与第一波长范围相对应的第一光信号经透射处理或反射处理后通过第一输出光路传输至放大器,将与第二波长范围相对应的第二光信号经反射处理或透射处理后通过第二输出光路传输至第二探测器;在一些实施方式中,第一波长范围和第二波长范围根据光信号的速率与波长范围之间的对应关系划分,则第一波长范围对应于第一速率的原始光信号,第二波长范围对应于第二速率的原始光信号。光信号的速率与波长范围之间的对应关系根据光信号发送端的激光器参数确定。在一些实施方式中,第一速率大于第二速率,且第一波长范围小于第二波长范围。例如,在一些实施方式中,该光信号接收装置能够兼容接收三种速率的光信号,相应的,第一速率包括50吉比特每秒(Gbit/s),第二速率包括12.5Gbit/s和/或25Gbit/s。
上述的第一速率为第一速率等级,第二速率为第二速率等级。光信号的速率与波长之间的对应关系为光信号的速率等级与波长范围之间的对应关系。
上述的第一波长范围以及第二波长范围的划分方式取决于光信号发送端的激光器参数,光信号发送端可以为光网络单元。例如,在 一些实施方式中,第一波长范围位于第二波长范围的中间区域,第二波长范围包括:位于第一波长范围的第一侧(如左侧)的第一子范围,以及位于第一波长范围的第二侧(如右侧)的第二子范围。即,第二波长范围包括除第一波长范围之外的预设波长范围。第一子范围可以位于第一波长范围的第一侧,且与第一波长范围间隔第一预设波长;第二子范围可以位于第一波长范围的第二侧,且与第一波长范围间隔第二预设波长。第一预设波长与第二预设波长的长度可以相同或不同。例如,图4示出了本申请实施例提供的一种上行波长范围的划分示意图,以图4为例,第一波长范围为[λ3,λ4],第二波长范围包括:位于第一波长范围左侧、且与第一波长范围间隔第一预设波长的第一子范围[λ1,λ5],以及位于第一波长范围右侧、且与第一波长范围间隔第二预设波长的第二子范围[λ6,λ2]。第一预设波长的长度等于λ3与λ5之间的差值,第二预设波长的长度等于λ6与λ4之间的差值。此时,第一滤波器的第一输出光路的通带范围对应于第一波长范围,第一滤波器的第二输出光路的通带范围对应于第二波长范围内且第一波长范围以外的波长(即包括上述的第一子范围和第二子范围);则第一滤波器配置为将与第一波长范围相对应的第一光信号经透射处理或反射处理后通过第一输出光路传输至放大器,将与第二波长范围内第一波长范围以外的波长(即包括上述的第一子范围和第二子范围)相对应的第二光信号经反射处理或透射处理后通过第二输出光路传输至第二探测器。
在一些实施方式中,第一波长范围与第二波长范围互不重叠,且第一波长范围与第二波长范围之间具有间隔过渡带,此时第二光信号为与第二波长范围对应的光信号。间隔过渡带是指:位于第一波长范围以及第二波长范围之间的第三波长范围,该第三波长范围既不与第一波长范围重合,也不与第二波长范围重合,从而使第一波长范围与第二波长范围之间具有一段能够起到间隔作用的过渡波段。本申请不限定第一波长范围以及第二波长范围的划分方式。
接下来,以上述实施方式中的第一种波长划分方式(即第一波长范围位于第二波长范围的中间区域)为例进行详细说明。为了便于理解,先简单介绍本申请的应用场景:
近年来,基于时分复用无源光网络(TDM-PON)技术的光接入网络迅速发展,10G PON(10吉比特无源光网络)已开始规模部署,并逐步替代吉比特无源光网络(Gigabit-Capable Passive Optical Networks,GPON)网络。未来,在接入网层面实现大带宽的家庭宽带接入、更高带宽政企接入,以及5G小基站回传等固移融合和全业务接入,对无源光网络带宽提出了更高的要求。50Gbit/s无源光网络(基于时分复用,即50G TDM PON)成为10G PON的演进方向。在50G PON系统中,ITU-T标准G.hsp.pmd目前定义了上行12.5G,25G和 50G三个速率等级。因此,在未来实际部署过程中,同一ODN会出现上行三种不同速率的ONU,相应的,要求OLT设备以及OLT光模块需要同时兼容三种上行接收速率。当上行速率为50G速率时,由于线路速率大幅提升,采用相关APD接收机已很难满足PON网络32分贝及以上的链路预算要求。为了能够重用已部署的ODN网络,需要实现高灵敏度接收机,前置放大器是一种有效提升接收机灵敏度的方案。但是放大器存在ASE带外噪声,影响接收机性能,为此需要增加光滤波器(BPF),而且滤波器波长要与发射机波长匹配。为了降低滤波器设计,避免使用可调滤波器,需要将发射机波长收窄到一定范围,所以50G-PON需要有一种窄波长的波长方案。而对于PON系统,由于其终端要求器件成本极低,通常上行采用非制冷的DML激光器,其工作波长范围较宽,通常为20nm。因此,目前标准中50G PON上行方向波长规划50G速率定义了20nm的宽工作波长范围和4nm的窄工作波长范围两类波长范围选项,且窄波长范围位于宽波长范围的中间位置。例如,图3示出了本申请实施例提供的窄波段和宽波段的范围示意图。图3中US0和US1分别代表50G PON与GPON和XGPON共存的两个波长方案。因此,当50G PON系统满足32分贝以上光功率预算时,50G速率等级的OLT侧光接收机需要采用SOA+BPF+PD接收机架构,此架构无法同时兼容发端12.5G和25G速率等级的非制冷激光器。为此,将OLT接收光路通过1:2的分光器一分为二,分别采用两种接收机接收50G速率上行信号和12.5G/25G上行信号。由于分光器对波长不敏感,因而将在原链路预算上增加3分贝的损耗,从而会对光器件性能带来严重挑战。同时,上述方案必须采用2对上行信号管脚,但2对上行信号管脚不利于OLT光模块的小型化封装。本申请提供的光信号的接收装置通过第一滤波器实现波长分路的方式能够解决上述应用场景中的问题。
对于50G PON上行波长规划,如图4所示,第一滤波器具备以下特征:当50G PON上行宽带波长范围为[λ1,λ2],上行窄带波长范围为[λ3,λ4]时,第一滤波器的第一输出光路(如反射光路或透射光路)通带范围为[λ3,λ4],截止波长范围为[λ1,λ5]和[λ6,λ2],第一滤波器的第二输出光路(如透射光路或反射光路)通带范围为[λ1,λ5]和[λ6,λ2],截止波长范围为[λ3,λ4]。波长范围[λ5,λ3]和[λ4,λ6]则为第一滤波器的过渡带,位于该过渡带范围内的光信号部分进入第一输出光路,部分进入第二输出光路。例如,对于50G PON 1260纳米(nm)至1280nm上行波长选项,λ1即为1260nm,λ2即为1280nm,λ3、λ4、λ5、λ6可为1260nm-至1280nm范围之内的波长(不包括1260nm和1280nm),如λ3为1268nm,λ4为1272nm,λ5为1266nm和λ6为1274nm。由此可见,λ1<λ5<λ3<λ4<λ6<λ2。光放大器可以包括半导体光放大器SOA,滤 波器可以包括单个薄膜滤波片TFF、微光学组件Z-Block、光子集成器件(MZI)等,探测元件可以包括PIN探测器或者APD探测器。在一些实施方式中,上述多速率接收装置可以为OLT多速率接收装置,可以由离散器件组成,封装成光接收组件或为混合集成光芯片。以OLT多速率接收装置为多速率光接收组件为例,该多速率光接收组件还可以包括光路耦合器件(如透镜)、光适配器、金属外壳、以及柔性板(Flexible Printed Circuit,FPC)等。
第二滤波器的作用主要为滤除由放大器产生的噪声。相应的,第二滤波器具备以下特征:第二滤波器的反射谱或透射谱通带等于第一滤波器的3-dB带宽(即第一滤波器通带损耗降低3分贝对应的波长范围)。图5示出了本申请实施例提供的多速率光接收组件的结构示意图。如图5所示,该多速率光接收组件包括:半导体光放大器SOA 50、滤波器51以及滤波器52、探测器PD1和PD2、透镜(对应于图5中的圆形部件)、光适配器、全反射片53和柔性板FPC等。上行第一波长范围对应的光信号(第一光信号)经过滤波器51透射后入射半导体光放大器SOA 50,SOA 50对入射的上行光信号进行放大后输出,经滤波器52滤除ASE噪声,通过透镜耦合输入探测器PD1并转换为第一电信号;上行第二波长范围内且位于第一波长范围以外的波长范围对应的光信号经过滤波器51反射后通过全反射片53反射,再经透镜耦合输入探测器PD2并转换为第二电信号;上行第二波长范围内且位于滤波器51过渡带内的上行光信号则经滤波器51部分透射后输入半导体光放大器SOA 50,在经过半导体光放大器SOA 50放大和滤波器52滤波之后耦合进入探测器PD1转换为第一电信号,部分反射后经全反射片53反射后耦合进入探测器PD2转换为第二电信号。为保证滤波器52通过滤波器51过渡带范围内的光信号,滤波器52的透射谱通带等于滤波器51的3-dB带宽(即滤波器51通带损耗降低3分贝对应的波长范围)。该多速率光接收组件还包括柔性板FPC,通过柔性板FPC与外部电路连接,与探测器PD1和探测器PD2相连,将探测器PD1和探测器PD2转换后的第一电信号和第二电信号输出至外部电路。在一些实施方式中,外部电路还可通过柔性板FPC连接探测器(PD1、PD2)和半导体光放大器SOA 50的控制管脚,实现供电、监控信号读取,电流大小调节等功能。上述多速率光接收组件中,探测器PD1和探测器PD2将输入的光信号转换为电信号,还包括将光信号转换为电流信号后,通过跨阻放大器(TIA)电路将电流信号转换为差分电压信号输出。
上述多速率光接收组件中,滤波器51的光学特征符合前文中的波长定义,即对于上行宽带波长范围为[λ1,λ2],上行窄带波长范围为[λ3,λ4]的50G PON,滤波器51透射光路通带范围为[λ3,λ4],截止波长范围为[λ1,λ5]和[λ6,λ2],透射光路通带范围 为[λ1,λ5]和[λ6,λ2],截止波长范围为[λ3,λ4]。波长范围[λ5,λ3]和[λ4,λ6]则为滤波器51的过渡带,该过渡带波长范围内的光信号部分进入透射光路,部分进入反射光路。滤波器52对50G PON上行波长范围内的滤波器51的3-dB带宽范围内的波长全反射,即对于滤波器52的反射光路50G PON上行窄带波长和滤波器51过渡带相比通带下降3-dB范围内的波长为通带。
另外,在本示例的光信号接收装置中,可以分别由第一探测器和第二探测器向信号接收端输出上述的第一电信号以及第二电信号,此时,信号接收端需要提供两对接收信号管脚,分别配置为接收上述的第一电信号以及第二电信号。当上述的光信号的接收装置中不包含信号预处理模块时,为了便于信号接收端(即光线路终端)针对接收到的电信号进行后续处理,需要根据时隙调度表判断接收信号的速率等级。相应的,光线路终端中包括:信号选择模块,配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据信号速率等级选择第一电信号或第二电信号作为有效电信号。有效电信号是指:实际用于后续处理过程的有效接收电信号。由于该光信号的接收装置中的光线路终端具有两对接收信号管脚,且分别对应于第一电信号以及第二电信号,而第一电信号以及第二电信号又分别对应于不同波长和速率等级的光信号,相应的,当发送端发送高速率等级的光信号时,第一电信号为有效电信号成分,第二电信号则为无效电信号成分,此时,将第一电信号确定为有效电信号,并控制与第一电信号相对应的接收信号管脚工作;当发送端发送低速率等级的光信号时,第一信号和第二电信号都可能为有效电信号成分,此时通过信号选择模块选择信号质量高的一路为有效电信号,并控制对应的接收信号管脚工作。在根据信号波长范围选择有效电信号时,该信号选择模块配置为分别确定第一电信号以及第二电信号在物理层的误码率,将第一电信号以及第二电信号中误码率低的电信号作为有效电信号。
上述光信号的接收装置中,当上行信号为25G速率等级需要采用TEC控制器温控波长控制在窄带波长范围内时,上述光信号的接收装置的第一输出光路,第一探测器和第一电信号后续连接同时也适用于25G速率上行信号。此时第二输出光路主要通过12.5G速率等级信号。上述光信号的接收装置中,50G速率信号相应变为50G/25G速率信号,12.5G/25G速率信号相应变为12.5G速率信号。因此,上述光信号的接收装置可灵活适用于不同速率等级不同波长范围发射机的多种场景。
图6示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号。如图6所示,该接收装置包括:第一滤波器61、放大器62、第二滤波器63、第一探测器64、第二探 测器65以及信号预处理模块66。第一滤波器61、放大器62、第二滤波器63、第一探测器64以及第二探测器65的工作原理分别与图2所示的光信号的接收装置中的第一滤波器21、放大器22、第二滤波器23、第一探测器24以及第二探测器25类似,此处不再赘述。图6所示的光信号的接收装置与图2所示的光信号的接收装置的主要区别在于:增加了信号预处理模块66,通过信号预处理模块66能够对第一探测器64以及第二探测器65输出的两路电信号进行预处理,从而将两路电信号转换为一路传输电信号输出,实现减少信号管脚的效果。
在一些实施方式中,信号预处理模块66配置为针对第一探测器64输出的第一电信号以及第二探测器65输出的第二电信号进行预处理,得到预处理后的第三电信号,将第三电信号作为传输电信号输出至信号接收端。信号预处理模块66的主要作用在于:针对第一电信号以及第二电信号进行分析处理,以得到用于输出至信号接收端的传输电信号。预处理方式可以为多种,例如,可以为信号比较处理、信号相加处理等各类方式,相应的,第三电信号既可以为从第一电信号和第二电信号中提取的一路质量较佳的电信号,也可以为针对第一电信号以及第二电信号进行相加等预设处理后得到的电信号,本申请对细节不做限定。
在一些实施方式中,信号预处理模块66包括信号比较模块。相应的,该信号比较模块配置为比较第一电信号以及第二电信号的直流成分、峰峰值、信噪比、和/或信号频率,根据比较结果将第一电信号或第二电信号作为第三电信号。
在一些实施方式中,信号预处理模块66包括信号相加模块。相应的,该信号相加模块配置为将第一电信号以及第二电信号相加,得到第三电信号。
由于图6所示的光信号的接收装置中通过信号预处理模块66将两路电信号转换为一路电信号,因此,信号接收端只需具有一对配置为接收第三电信号的接收信号管脚即可,无需针对第一电信号和第二电信号设置两对接收信号管脚,从而简化了信号接收端的硬件成本,且缩小了信号接收端的体积,便于实现信号接收端的小型化封装处理。该光信号的接收装置中的信号接收端可以为各类具备光信号接收功能的网络设备,例如,可以为光线路终端,相应的,本申请提供的光信号的接收装置可以设置在光线路终端的内部,或者与光线路终端通信连接。
在一些实施方式中,为了便于信号接收端针对接收到的电信号进行后续处理,需要向信号接收端提示信号速率等级。相应的,图6所示的光信号的接收装置还可以包括:信号速率等级指示模块,配置为根据第三电信号的信号波长确定第三电信号的速率等级,并向信号 接收端发送速率等级指示信号。例如,若第三电信号对应于第二电信号,则说明信号波长范围较宽,且信号速率较低,相应的,通过信号速率等级指示模块向信号接收端发送低速率等级指示信号;若第三电信号对应于第一电信号,则说明信号有可能是高速信号或低速信号,此时通过信号预处理模块识别的速率高低(例如,可通过频率检测模块识别信号的速率高低),相应的,通过信号速率等级指示模块向信号接收端发送高或低速率等级指示信号。由于信号预处理模块在对第一电信号以及第二电信号进行预处理的过程中,能够判断出第三电信号的信号波长以及速率等级,相应的,能够根据判断结果向信号接收端发送速率等级指示信号。
下面介绍信号预处理模块的两种可能的实现方式。
在一些实施方式中,信号预处理模块为信号比较模块,配置为比较第一电信号和第二电信号质量,将第一电信号和第二电信号中信号质量较优的一路电信号输出。该信号比较模块比较第一电信号和第二电信号质量包括:比较第一电信号和第二电信号的输出信号直流成分大小、峰峰值大小、相比参考电平高低、信噪比大小和/或频率大小等。
图7示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为比较输出信号直流成分大小的方式实现信号比较时的结构示意图。如图7所示,信号比较模块包括:直流分量检测模块71、直流分量检测模块72、直流分量比较模块73和信号开关模块74。直流分量检测模块71、直流分量检测模块72分别检测第一电信号和第二电信号的直流分量1、直流分量2并输入直流分量比较模块73。直流分量比较模块73判断输入的两路直流分量大小,并根据比较结果控制信号开关模块74。当直流分量1大于直流分量2时,直流分量比较模块73控制信号开关模块74通过第一电信号(即第一电信号作为上述的第三电信号);当直流分量1小于直流分量2时,直流分量比较模块73控制信号开关模块74通过第二电信号(即第二电信号作为上述的第三电信号);当直流分量1等于直流分量2时,直流分量比较模块73控制信号开关模块74通过第二电信号,直流分量比较模块73可保持当前状态不变,或者通过第二电信号。
图8示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为比较第一电信号和第二电信号的峰峰值大小实现信号比较时的结构示意图。如图8所示,该信号比较模块包括:模数转换器81,模数转换器82以及数字信号处理模块83。模数转换器81将输入的第一电信号采样后转换为数字信号1,送入数字信号处理模块83;模数转换器82将输入的第二电信号采样后转换为数字信号2,送入数字信号处理模块83。数字信号处理模块83包括对数字信号1和数字信号2的隔直模块、时钟恢复模块以及电平峰峰值大小比较模 块中的至少一个。数字信号处理模块83还包括信号开关模块,配置为根据信号质量切换数字信号1和数字信号2中的一路信号作为第三电信号输出至后续信号处理模块。
当上行50G速率光信号输入时,经过OLT多速率接收装置(即光信号的接收装置)第一光路转换为第一电信号输入模数转换器81,此时,第二光路截止,第二光信号无差分信号输出,模数转换器82输出的数字信号2经过隔直模块处理后无信号输出。数字信号处理模块83选择数字信号1作为第三电信号输出。当上行12.5G/25G速率光信号输入时,且12.5G/25G速率光信号波长位于第一光路截止波长范围以及第二光路通带波长范围时,经过OLT多速率接收装置的第一光路截止,数模转换器81输出的数字信号1为直流噪声信号,模数转换器81输出的数字信号1经过隔直模块处理后无信号输出。第二光路模数转换器82输出正常差分信号。数字信号处理模块83选择数字信号2作为第三电信号输出。当上行12.5G/25G速率光信号输入时,且12.5G/25G速率光信号波长位于第一光路以及第二光路过渡带波长范围时,经过OLT多速率接收装置第一光路和第二光路输出,模数转换器81和模数转换器82分别输出数字信号1和数字信号2,数字信号处理模块83可通过比较两路数字信号电平峰峰值大小,选择峰峰值大的那一路数字信号输出。在一些实施方式中,数字信号处理模块83还可包括数字均衡模块,数字均衡模块配置为恢复输入电信号质量,同时检测数字信号1和数字信号2的信噪比,选择信噪比大的一路作为第三电信号输出。
图9示出了当本申请实施例提供的光信号的接收装置中的信号比较模块配置为通过第一电信号频率大小检测实现信号比较时的结构示意图。如图9所示,该信号比较模块包括:频率检测模块91,比较控制模块92和信号开关模块93。频率检测模块91检测第一电信号的频率大小,并且低通滤波25G及以下速率电信号。比较控制模块92比较低通滤波后的第一电信号和第二电信号大小,并发送开关指示信号给信号开关模块93。当上行50G速率光信号输入时,频率检测模块91检测到输入第一电信号频率大于25GHz,通过比较控制模块92控制信号开关模块93通过第一电信号;当上行25G/12.5G速率光信号输入时,频率检测模块91检测到输入第一电信号频率小于或等于25GHz,此时比较控制模块92比较低通滤波后的第一电信号和第二电信号大小,当低通滤波后的第一电信号大于第二电信号时,控制信号开关模块93通过第一电信号,当低通滤波后的第一电信号小于第二电信号时,控制信号开关模块93通过第二电信号。频率检测模块91中包括:隔直子模块,配置为对第一电信号进行隔直处理,相应的,频率检测模块91配置为检测隔直处理后的第一电信号的频率大小。
在一些实施方式中,信号预处理模块为信号相加模块,配置为将输入的第一电信号和第二电信号相加为第四电信号(对应于上文提到的第三电信号)输出。信号相加模块包括隔直降噪模块和信号相加模块,隔直降噪模块配置为对输入的第一电信号和第二电信号分别进行直流分量隔离以及噪声降低。信号相加模块配置为将隔直降噪后的两路电信号合并输出为第四电信号。
在一些实施方式中,信号相加模块还包括可变延迟模块,对第一电信号或第二电信号进行信号可变延迟,以保证当上行信号光波长位于滤波器过渡带时,两路信号延迟量相等,防止产生信号抖动。图10示出了本申请实施例提供的光信号的接收装置中包含可变延迟模块的信号相加模块的结构示意图。
图1、图2和图6所示的光信号的接收装置中的波长划分方式均采用图4所示的方式,由于图4中的第一波长范围与第二波长范围之间存在重合区域,因此,当低速率等级的上行光信号采用非制冷激光器发射机时,波长可能会落入第一滤波器的过渡带中,从而导致第一探测器和第二探测器都有电信号输出,从而需要选择探测器输出的电信号中信号质量较高的信号输出,导致信号处理模块结构复杂。为了解决上述问题,将50G PON现有上行波长总范围分为窄带和宽带两个子通道,且两个子通道波长互不重叠,两个子通道之间具有一定的间隔过渡带。相应的,在保证50G/25G速率光信号可采用窄带激光器和SOA接收机的同时,使12.5G/25G速率的光信号可采用宽范围非制冷激光器。以1290至1310nm波长选项为例,其波长范围可按以下方式划分:1290至1294nm为窄带子通道(对应于上文提到的第一波长范围),1296至1310nm为宽带子通道(对应于上文提到的第二波长范围),1294至1296nm为两个子通道之间的过渡隔离带。图11示出了本申请实施例提供的一种波长划分方式的示意图。
采用图11所示波长划分方式的光信号的接收装置可以采用图2所示的结构实现。换言之,采用图11所示波长划分方式的光信号的接收装置与图2中的光信号的装置结构相同,区别仅在于波长范围的划分不同。相应的,在采用图11所示波长划分方式的光信号的接收装置中,第一滤波器的滤波特性也与图2所示的光信号的装置中的第一滤波器21的滤波特性不同。采用图11所示波长划分方式的光信号的接收装置中的第一滤波器具有以下特性:对于第一输出光路而言,窄带子通道波长为通带,宽带子通道波长截止;对于第二输出光路而言,宽带子通道波长为通带,窄带子通道波长截止;两个子通带之间的过渡隔离带为滤波器过渡带,第一输出光路和第二输出光路均有光信号输出。采用上述波长划分,不同速率等级的上行光信号输入固定的探测器转换为电信号输出。例如,当50G速率采用窄带子通道,12.5G/25G速率采用宽带子通道时,上行50G速率信号经第一光路(即 第一输出光路)由第一探测器输出;上行12.5G/25G速率信号经第二光路(即第二输出光路)由第二探测器输出。该装置用于50G-PON系统时,50G PON MAC芯片中无需包含信号选择模块,可以根据DBA调度信息读取,来选择不同速率等级的上行信号至MAC协议处理模块;或者不再需要信号选择模块来选择不同速率等级信号输出至下一信号处理模块。采用图11所示波长划分方式的光信号的接收装置中,第一探测器和第二探测器可根据速率等级选择恰当带宽的探测器和TIA器件,对于低速率等级的光信号不需要采用高速器件,有利于降低成本和噪声。
例如,在一些实施方式中,当采用图11所示的波长规划时,第一滤波器可以为边带滤波器(如第一光路小于1294nm时为通带,大于1296nm时截止;如第二光路小于1294nm时截止,大于1296nm时为通带),第二滤波器可以为垂直入射带通滤波器(1290至1294nm为通带,其他波长截止),此时可降低滤波器封装精度要求,有利于降低封装难度。同样的,第一探测器和第二探测器可根据速率等级选择恰当带宽的探测器和TIA器件,对于低速率等级的光信号不需要采用高速器件,有利于降低成本和噪声。
在一些实施方式中,如果需要减少光信号接收装置的输出信号管脚数,该光信号接收装置还可以包括信号选择模块。该信号选择模块的选择状态可通过OLT PON MAC发送速率指示信号来控制。在一些实施方式中,该信号选择模块的选择状态还可通过比较第一探测器和第二探测器的RSSI信号大小来控制。在一些实施方式中,该信号选择模块的选择状态也可通过接收光信号频率判断,选择导通有高频信号的那一路电信号,此时不需要外部控制信号。
图12示出了本申请实施例提供的一种光信号的接收装置的结构示意图,适于接收多种速率的光信号,包括:第一滤波器121、放大器122、第二滤波器123、以及探测元件124。第二滤波器123具有第一输入光路以及第二输入光路,且第二滤波器配置为通过第一输入光路接收放大后的第一光信号,并对放大后的第一光信号进行降噪处理后通过输出光路输出至探测元件;和/或,通过第二输入光路接收与第二波长范围相对应的第二光信号,并将与第二波长范围相对应的第二光信号通过输出光路输出至探测元件。由此可见,第二滤波器123具有两个输入光路,能够将第一光信号以及第二光信号汇合为一路光信号输出,从而使探测元件只需通过一个探测器即可实现,大幅降低了器件成本。
当图12所示的光信号的接收装置中的波长划分方式如图11所示时,第一滤波器121的特性可以与上述采用图11所示波长划分方式的光信号的接收装置中的第一滤波器的特性相同;相应的,第二滤波器123的特征如下:对于第二滤波器123的第一输出光路(如反射 光路)而言,波长范围1290至1294nm为通带,波长范围1296至1310nm截止,波长范围1294至1296nm为过渡带;对于第二滤波器的第二输出光路(如透射光路)而言,波长范围1296至1310nm为通带,波长范围1290至1294nm截止,波长范围1294至1296nm为过渡带。若图12所示的光信号的接收装置中的波长划分方式如图4所示时,第一滤波器121的特性还可以与图2所示的光信号的接收装置中的第一滤波器21的特性相同,本申请对此不做限定。
图13示出了本申请实施例提供的光信号的接收装置的器件结构示意图。如图13所示,该光信号接收装置包括:第一滤波器131、第一全反射波片132、光放大器133、第二全反射波片134、第二滤波器135以及第一探测器136。上行光信号经第一滤波器131后,通过第一光路或第二光路输出,第一光路的光信号通过第一全反射波片132反射后送入光放大器133放大,并经第二全反射波片134反射后送入第二滤波器135;第二光路的光信号经第二滤波器135输出至第一探测器136。
图14示出了本申请实施例提供的一种光信号的接收装置的结构示意图。图14所示的光信号的接收装置与图12所示的光信号的接收装置的主要区别在于,第二滤波器包括:降噪滤波器、以及分路接收滤波器;降噪滤波器与放大器相连,配置为接收放大后的第一光信号,并对放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号传输至分路接收滤波器;则分路接收滤波器具有第一输入光路以及第二输入光路,配置为通过第一输入光路接收降噪处理后的第一光信号,并将降噪处理后的第一光信号通过输出光路输出至探测元件;和/或,通过第二输入光路接收与第二波长范围相对应的第二光信号,并将与第二波长范围相对应的第二光信号通过输出光路输出至探测元件。
如图14所示,该光信号的接收装置包括:第一滤波器141、放大器142、降噪滤波器143、分路接收滤波器144以及第一探测器145。第一滤波器141的特性与图12所示的光信号的接收装置中的第一滤波器121特性相同,主要配置为实现波长分路;降噪滤波器143的特性与上述采用图11所示波长划分方式的光信号的接收装置中的第二滤波器的特性相同,主要配置为实现降噪处理;分路接收滤波器144的特性与第一滤波器141的特性相同。通过图14所示的结构,高速光信号(对应于窄波长范围)能够通过第一光路输出至第一探测器145,低速光信号(对应于宽波长范围)能够通过第二光路输出至第一探测器145。
图15示出了本申请实施例提供的光信号的接收装置的器件结构示意图。如图15所示,该光信号的接收装置包括:第一滤波器151、第一全反射波片152、光放大器153、第二滤波器154、第二全反射波片155、第三滤波器156以及第一探测器157。采用上述光信号的 接收装置,当上行信号为窄带50G速率上行信号时,经第一光路输入至第一探测器157。当上行信号为窄带以及滤波器151通带且过渡带范围以外的12.5G/25G速率上行信号时,经第二光路输入至第一探测器157。当上行信号位于滤波器151的过渡带时,分别经第一光路和第二光路输入第一探测器157。第二光路还包括可变相位延迟器150,配置为对输入上行信号进行相位延迟,防止第一探测器157产生信号抖动和信号相干相消。
上述各种实施方式可以相互结合或替换,例如,各种实施方式都可以灵活选择图4或图11中的波长划分方式,并根据选择的波长划分方式对应设置滤波器的特性。上述各种实施方式中的原始光信号可以为从光网络单元传输至光线路终端的上行光信号。
另外,本申请实施例还提供了一种光线路终端,包括:上述的光信号的接收装置。另外,当光信号的接收装置包括第一探测器以及第二探测器时,光线路终端包括:信号选择模块,配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据信号速率等级选择第一电信号或第二电信号作为有效电信号。
另外,本申请实施例还提供了一种光信号的接收系统,包括:上述的光线路终端、以及光网络单元。
例如,图16示出了本申请实施例提供的一种光信号的接收系统的结构示意图,如图16所述,该光信号的接收系统包括:上述的光信号的接收装置160、分光器162、多个光网络单元ONU 161、以及信号接收端163。光信号的接收装置160可以采用上述任一结构的光信号的接收装置实现,此处不再赘述。另外,信号接收端163可以为光线路终端。信号接收端163可包含50G PON MAC(Media Access Control,介质访问控制)。多个光网络单元ONU 161作为信号发送端,且各个ONU 161能够发送不同速率等级的光信号,包括:12.5G、25G、以及50G等不同速率等级的光信号。多个ONU 161发送的多路分别对应于不同速率等级的光信号经过分光器162处理后,发送给上文提到的光信号的接收装置。
在一些实施方式中,图16所示的接收系统中,在光信号的接收装置160和信号接收端163之间还可以设置信号放大模块、时钟数据恢复模块等,信号放大模块配置为放大光信号的接收装置输出的第一电信号和第二电信号,时钟数据恢复模块配置为对信号进行时钟数据恢复。
在一些实施方式中,在信号接收端163中包括信号选择单元,例如,当信号接收端为光线路终端时,在光线路终端的50G PON MAC芯片中包含上述的信号选择单元,该信号选择单元配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度 时隙相对应的信号速率等级,根据信号速率等级选择第一电信号或第二电信号作为有效电信号。例如,根据DBA调度信息读取时隙调度表,从而选择不同速率等级的上行信号传输至MAC协议处理模块。当12.5G/25G速率等级的信号同时出现在第一电信号和第二电信号的管脚中时,可根据PHY层误码率高低来选择误码率低的一路进入MAC协议处理模块成帧子层(Framing sublayer)。
在实际应用场景中,光信号的接收装置160可采用上述任一实施方式实现,相应的,光信号的接收装置160输出的光信号可能为两路,也可以为一路,取决于光信号的接收装置的结构。总之,上述任一结构的光信号的接收装置均可应用于图16所述的系统中,本申请不再一一赘述。
综上可知,通过采用以上实施方式中的技术方案,在50G PON系统中,上行25G和12.5G速率等级的光信号可采用非制冷激光器,且可工作在上行波长范围内任意波长。当低速率工作波长落在窄带工作波长范围内时,经过第一光路通过第一探测器转换为电信号输出;当低速率工作波长落在窄带工作波长范围外时,经过第二光路通过第二探测器转换为电信号输出;当低速率工作波长落在滤波器通带与阻带之间的过渡带时,则分为两路分别经过第一光路通过第一探测器转换为第一电信号输出、以及第二光路通过第二探测器转换为第二电信号输出。上述技术方案能够兼容多种速率等级的光信号,并且,能够通过信号预处理模块将两路电信号转换为一路电信号,从而使信号接收端只需提供一对信号接收管脚即可,大幅简化了接收终端的成本,缩小了接收终端的体积,便于实现器件的小型化封装。而且,还可以通过合理设置第二滤波器的特性来省略一个探测器,从而使两路光信号都通过同一个探测器输出。
本申请实施例还提供了一种光信号的接收方法,适于接收多种速率的光信号,包括如下步骤一至步骤三。
步骤一:对原始光信号进行波长分路处理,输出与第一波长范围相对应的第一光信号、或与第二波长范围相对应的第二光信号中的至少一者。
该步骤可通过本申请提供的光信号接收装置中的第一滤波器执行,处理方式可参照上述光信号的接收装置中关于第一滤波器部分的描述。
步骤二:对与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号。该步骤可通过上文提到的放大器实现。
步骤三:接收放大后的第一光信号,并对放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号和/或与第二波长范围相对应的第二光信号转换为传输电信号。该步骤可通过本申请提供的光信号接收装置中的探测元件实现,实现细节可参照上述光信号的接收 装置中相应部分的描述,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现上述的光信号的接收方法。
本领域普通技术人员可以理解,上文中所申请方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然进行了详细描述,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可与结合其它实施例描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本申请的范围的情况下,可进行各种形式和细节上的改变。

Claims (15)

  1. 一种光信号的接收装置,配置为接收多种速率的光信号,包括:第一滤波器、放大器、第二滤波器、以及探测元件;其中,
    所述第一滤波器配置为对原始光信号进行波长分路处理,并进行下述至少一种操作:通过第一输出光路输出与第一波长范围相对应的第一光信号、或通过第二输出光路输出与第二波长范围相对应的第二光信号;
    所述放大器配置为对所述与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号;
    所述第二滤波器配置为接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号传输至所述探测元件;以及
    所述探测元件配置为接收所述降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者,将所述降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者转换为传输电信号。
  2. 根据权利要求1所述的装置,其中,所述探测元件包括:第一探测器以及第二探测器,所述第一探测器与所述第二滤波器相连,配置为接收所述降噪处理后的第一光信号,并将所述降噪处理后的第一光信号转换为第一电信号;
    且所述第二探测器与所述第一滤波器相连,配置为接收所述与第二波长范围相对应的第二光信号,并将所述与第二波长范围相对应的第二光信号转换为第二电信号;则所述传输电信号根据所述第一电信号或所述第二电信号中的至少一者生成。
  3. 根据权利要求2所述的装置,包括:
    信号预处理模块,配置为针对所述第一探测器输出的第一电信号以及所述第二探测器输出的第二电信号进行预处理,得到预处理后 的第三电信号,将所述第三电信号作为所述传输电信号输出至信号接收端。
  4. 根据权利要求3所述的装置,其中,所述信号预处理模块包括:信号比较模块、或信号相加模块;
    其中,所述信号比较模块配置为比较所述第一电信号以及所述第二电信号的直流成分、峰峰值、信噪比、或信号频率中的至少一者,根据比较结果将所述第一电信号或所述第二电信号作为所述第三电信号;
    所述信号相加模块配置为将所述第一电信号以及所述第二电信号相加,得到所述第三电信号。
  5. 根据权利要求3或4所述的装置,其中,所述信号接收端具有一对配置为接收所述第三电信号的接收信号管脚;
    并且,所述光信号的接收装置包括:
    信号速率等级指示模块,配置为根据所述第三电信号的信号波长确定所述第三电信号的速率等级,并向所述信号接收端发送速率等级指示信号。
  6. 根据权利要求1所述的装置,其中,所述第二滤波器具有第一输入光路以及第二输入光路,且所述第二滤波器配置为以下至少一种:
    通过所述第一输入光路接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理后通过输出光路输出至所述探测元件;或,
    通过所述第二输入光路接收所述与第二波长范围相对应的第二光信号,并将所述与第二波长范围相对应的第二光信号通过所述输出光路输出至所述探测元件。
  7. 根据权利要求6所述的装置,其中,所述第二滤波器包括: 降噪滤波器、以及分路接收滤波器;
    其中,所述降噪滤波器与所述放大器相连,配置为接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号传输至所述分路接收滤波器;
    所述分路接收滤波器具有第一输入光路以及第二输入光路,配置为以下至少一种:
    通过所述第一输入光路接收所述降噪处理后的第一光信号,并将所述降噪处理后的第一光信号通过输出光路输出至所述探测元件、或通过所述第二输入光路接收所述与第二波长范围相对应的第二光信号,并将所述与第二波长范围相对应的第二光信号通过所述输出光路输出至所述探测元件。
  8. 根据权利要求1至4中任一所述的装置,其中,所述第一波长范围和所述第二波长范围根据光信号的速率与波长之间的对应关系划分,则所述第一波长范围对应于第一速率的原始光信号,所述第二波长范围对应于第二速率的原始光信号;所述光信号的速率与波长之间的对应关系根据光信号发送端的激光器参数确定;其中,第一速率大于第二速率,且第一波长范围小于第二波长范围;
    其中,所述第一速率包括50吉比特每秒(Gbit/s),所述第二速率包括12.5Gbit/s或25Gbit/s中的至少一者。
  9. 根据权利要求1至4中任一所述的装置,其中,所述第一波长范围位于第二波长范围的中间区域;或者,所述第一波长范围与所述第二波长范围互不重叠,且所述第一波长范围与所述第二波长范围之间具有间隔过渡带;
    其中,当所述第一波长范围位于所述第二波长范围的中间区域时,所述第二波长范围包括:位于所述第一波长范围的第一侧的第一子范围,以及位于所述第一波长范围的第二侧的第二子范围。
  10. 根据权利要求1至4中任一所述的装置,其中,所述原始 光信号为从光网络单元传输至光线路终端的上行光信号。
  11. 一种光线路终端,包括:权利要求1至10中任一所述的光信号的接收装置。
  12. 根据权利要求11所述的光线路终端,其中,当所述光信号的接收装置包括第一探测器以及第二探测器时,所述光线路终端包括:
    信号选择模块,配置为根据时隙调度表中存储的调度时隙与信号速率之间的对应关系,确定与当前调度时隙相对应的信号速率等级,根据所述信号速率等级选择所述第一电信号或所述第二电信号作为有效电信号。
  13. 一种光信号的接收系统,包括:权利要求11或12所述的光线路终端、以及光网络单元。
  14. 一种光信号的接收方法,配置为接收多种速率的光信号,包括:
    对原始光信号进行波长分路处理,输出与第一波长范围相对应的第一光信号、或与第二波长范围相对应的第二光信号中的至少一者;
    对所述与第一波长范围相对应的第一光信号进行放大处理,得到放大后的第一光信号;以及
    接收所述放大后的第一光信号,并对所述放大后的第一光信号进行降噪处理,将降噪处理后的第一光信号或所述与第二波长范围相对应的第二光信号中的至少一者转换为传输电信号。
  15. 一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时,实现权利要求14所述的光信号的接收方法。
PCT/CN2022/099116 2021-06-18 2022-06-16 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质 WO2022262803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22824276.4A EP4351161A1 (en) 2021-06-18 2022-06-16 Optical signal receiving apparatus, method and system, optical line terminal, computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110677407.8A CN115499730A (zh) 2021-06-18 2021-06-18 光信号的接收装置、终端及系统
CN202110677407.8 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022262803A1 true WO2022262803A1 (zh) 2022-12-22

Family

ID=84464182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099116 WO2022262803A1 (zh) 2021-06-18 2022-06-16 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4351161A1 (zh)
CN (1) CN115499730A (zh)
WO (1) WO2022262803A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536370A (zh) * 2006-11-07 2009-09-16 韩国科学技术院 用于将遗留无源光网络升级到基于波分复用无源光网络的下一代无源光网络的方法和网络体系结构
KR20110064352A (ko) * 2009-12-08 2011-06-15 한국전자통신연구원 파장 분할 다중화 방식 수동형 광가입자망
CN105223663A (zh) * 2015-10-30 2016-01-06 武汉光迅科技股份有限公司 一种双向波长可调bosa器件
US20170288782A1 (en) * 2016-03-31 2017-10-05 Nokia Solutions And Networks Oy Apparatus And Method For Transmitting In An Optical Communication Network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536370A (zh) * 2006-11-07 2009-09-16 韩国科学技术院 用于将遗留无源光网络升级到基于波分复用无源光网络的下一代无源光网络的方法和网络体系结构
KR20110064352A (ko) * 2009-12-08 2011-06-15 한국전자통신연구원 파장 분할 다중화 방식 수동형 광가입자망
CN105223663A (zh) * 2015-10-30 2016-01-06 武汉光迅科技股份有限公司 一种双向波长可调bosa器件
US20170288782A1 (en) * 2016-03-31 2017-10-05 Nokia Solutions And Networks Oy Apparatus And Method For Transmitting In An Optical Communication Network

Also Published As

Publication number Publication date
EP4351161A1 (en) 2024-04-10
EP4351161A9 (en) 2024-05-22
CN115499730A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US20240146435A1 (en) Multiplex conversion for a passive optical network
US7936991B2 (en) Optical line terminating apparatus and optical communication system
US7529484B2 (en) Triplexer transceiver using parallel signal detection
US20090190931A1 (en) Optical line terminal
WO2009012715A1 (en) A receiving apparatus and receiving method
US20170033863A1 (en) Optical Time Domain Reflectometer Implementation Apparatus and System
WO2013036945A1 (en) Arrangement for deploying co-existing gpon and xgpon optical communication systems
Cheng et al. World's first demonstration of pluggable optical transceiver modules for flexible TWDM PONs
IL124639A (en) Optical communication method and system using wavelength division multiplexing
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
CN101496319A (zh) 用于改善信号质量的方法和装置
Cheng Flexible TWDM PONs
WO2022262803A1 (zh) 光信号的接收装置、方法及系统、光线路终端、计算机可读存储介质
US8270837B2 (en) Optical power equalizer for passive optical network
Galili et al. Generation and detection of 2.56 Tbit/s OTDM data using DPSK and polarisation multiplexing
CN107276673B (zh) 一种光模块
JP2008526171A (ja) 光通信システムにおける分散スロープを緩和するシステム及び方法
WO2012009854A1 (zh) 一种光线路终端模块和上行传输模块
US20080267625A1 (en) Multi-Rate Multi-Wavelength Optical Burst Detector
Noda et al. Burst-mode transceiver technology for 10G-EPON systems
Kim et al. Demonstration of Bit-Level CWDM-Based Power Budget Extender Providing a High-Power Gain of 54dB in Symmetric-Rate 10G-EPON System
JP5055316B2 (ja) 局舎側光通信装置および光通信システム
Chang et al. 1.25 Gb/s Uplink Burst–mode Transmissions: System Requirements and Optical Diagnostic Challenges of EPON Physical-layer Chipset for Enabling Broadband Optical Ethernet Access Networks
Chang Uplink burst-mode transmissions using EPON physical-layer chipset for broadband optical Ethernet access networks
KR20090095598A (ko) 멀티레이트 다파장의 광 버스트 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18571343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022824276

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022824276

Country of ref document: EP

Effective date: 20240103

NENP Non-entry into the national phase

Ref country code: DE