WO2020186639A1 - 一种微界面强化柴油加氢精制反应系统及方法 - Google Patents
一种微界面强化柴油加氢精制反应系统及方法 Download PDFInfo
- Publication number
- WO2020186639A1 WO2020186639A1 PCT/CN2019/090306 CN2019090306W WO2020186639A1 WO 2020186639 A1 WO2020186639 A1 WO 2020186639A1 CN 2019090306 W CN2019090306 W CN 2019090306W WO 2020186639 A1 WO2020186639 A1 WO 2020186639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- diesel
- micro
- hydrogen
- liquid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/001—Controlling catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
Definitions
- the invention relates to the technical field of diesel hydrodesulfurization and denitrification, in particular to a micro-interface enhanced diesel hydrorefining reaction system and method.
- Sulfur is a harmful substance that exists in diesel in nature. As crude oil continues to get heavier, the sulfur content in diesel will continue to increase. Therefore, effective fuel hydrodesulfurization technology plays an important role in the development of society, economy and environment.
- the hydrodesulfurization (HDS) technology is recognized as the most effective and economical desulfurization method, especially the selective hydrodesulfurization technology, which removes a large amount of sulfur-containing compounds in diesel fuel while suppressing the saturation of olefins to reduce the octane number. loss.
- This type of technology has the characteristics of mild operating conditions, high diesel yield, low hydrogen consumption and small octane loss.
- the key to the hydrodesulfurization technology is the selection of hydrodesulfurization catalysts.
- Supported cobalt and molybdenum catalysts are an important type of diesel hydrodesulfurization catalyst. Usually, cobalt and molybdenum are supported on porous supports (such as alumina, silica, activated carbon). Or its composite carrier), which is widely used in the hydrodesulfurization process to obtain high-quality diesel products.
- heterocyclic compounds Most of the nitrogen-containing compounds in diesel fuel are heterocyclic compounds, and the non-heterocyclic nitrogen compounds are mainly aliphatic amines and nitriles, which have a small content and are prone to hydrodenitrogenation reactions.
- Heterocyclic nitrides can be divided into basic nitrides (mainly including pyridines, quinolines, acridines and their derivatives) and non-basic nitrides (mainly including carbazoles and their derivatives). ).
- nitrogen compounds will have a huge impact on the stability of the oil.
- the presence of nitrogen compounds will have a strong inhibitory effect on the removal of sulfides, especially basic nitrogen compounds are more likely to be adsorbed on the catalyst It is not easy to desorb, which directly leads to a decrease in the number of active centers of the catalyst, which affects the activity and life of the catalyst, causes the catalyst to be poisoned and deactivated, and ultimately affects the quality of the hydrogenation product. Therefore, reducing the nitrogen compounds in the diesel fraction is of great significance for improving the hydrodesulfurization reaction activity.
- Chinese Patent Publication Number: CN108993521A discloses a diesel hydrodesulfurization and denitrification process.
- the process uses a fixed bed reactor filled with a hydrodesulfurization and denitrification catalyst.
- the catalyst includes a carrier and an active component; the carrier is Synthesize SAPO-5 with heteroatom Cu 2+ in the framework structure; the active component is a mixture of molybdenum nitride MO 2 N, tungsten nitride W 2 N, molybdenum carbide Mo 2 C and tungsten carbide WC;
- the catalyst contains a catalytic promoter, and the catalytic promoter is a mixture of TiO 2 , CeO 2 , V2O 5 and NbOPO 4 ; the reaction conditions of the fixed bed reactor: reaction temperature 320-360°C, reaction pressure 6-8 MPa ,
- the volume ratio of hydrogen to oil is 300-600 and the volumetric space velocity is 1.0-2.5h -1 .
- the hydrogen pressure used during the operation of the process is too high, there is a potential safety hazard during operation, a large amount of resources are consumed, and the process operation cost is high.
- the process requires a higher reaction temperature. While increasing the reaction temperature in the fixed bed, the energy consumption of the process is further increased.
- the present invention provides a micro-interface enhanced diesel hydrorefining reaction system and method to overcome the problem of excessively high process energy consumption due to insufficient hydrogen contact with diesel in the prior art.
- the present invention provides a micro-interface enhanced diesel hydrofining reaction system, including:
- Liquid phase feeding unit for storing and transporting diesel oil
- Gas phase feeding unit for storing and transporting hydrogen
- At least one Micro Interfacial Generator which is respectively connected with the liquid phase feeding unit and the gas phase feeding unit, and converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it Give hydrogen bubbles to crush hydrogen to form micro-bubbles with a diameter greater than or equal to 1 ⁇ m and less than 1mm to increase the mass transfer area between diesel and hydrogen. After crushing, the diesel and microbubbles are mixed to form a gas-liquid emulsion at a preset pressure Enhance the reaction efficiency between diesel and hydrogen within the scope;
- MIG Micro Interfacial Generator
- a fixed-bed reactor connected to the micro-interface generator for loading gas-liquid emulsion and providing reaction space for diesel oil and microbubbles in the gas-liquid emulsion;
- the separation tank is used for gas-liquid separation of the mixture of the desulfurized and denitrified diesel oil and the mixed gas after the reaction in the fixed bed reactor.
- the micro-interface generators are arranged in parallel, and the setting mode is series and/or parallel, so as to output the mixed gas-liquid emulsion to The fixed bed reactor is used to perform the reaction.
- micro-interface generator is one or more of a pneumatic micro-interface generator, a hydraulic micro-interface generator and a gas-liquid linkage micro-interface generator.
- liquid phase feeding unit includes:
- Liquid raw material tank for storing diesel oil
- a feed pump which is connected to the liquid raw material tank to provide power for the transportation of diesel
- a liquid feed preheater which is connected to the feed pump, and is used to preheat the diesel fuel delivered by the feed pump to make the diesel fuel reach a specified temperature, and the liquid feed preheater outlet is provided with a flow divider Pipes for transporting diesel to the corresponding micro-interface generators;
- the feed pump starts to operate, pumping diesel out of the liquid raw material tank and transporting it to the liquid feed preheater, and the liquid feed preheater will After the diesel is heated to a specified temperature, the diesel is delivered to the micro-interface generator.
- gas phase feed unit includes:
- a compressor which is connected to the gas raw material buffer tank to provide power for the transmission of hydrogen
- a gas feed preheater which is connected to the compressor, and is used to preheat the hydrogen delivered by the compressor to make the hydrogen reach a specified temperature, and a split pipeline is provided at the outlet of the gas feed preheater, Used to deliver hydrogen to the corresponding micro-interface generators;
- the compressor starts to operate, and the hydrogen is pumped out of the gas raw material buffer tank and delivered to the gas feed preheater for preheating. After the preheating is completed, the gas The feed preheater delivers hydrogen to the micro-interface generator so that the micro-interface generator breaks the hydrogen to a specified size.
- the fixed bed reactor includes:
- the reaction tank which is a tank body, is used to provide a reaction space for the gas-liquid emulsion, and the reaction tank is provided with a discharge port for outputting the desulfurized and denitrified diesel oil and mixed gas after the reaction;
- At least one catalyst bed layer which is fixed at a designated position inside the reaction tank, and a catalyst is arranged in the catalyst bed layer to improve the reaction efficiency of each substance in the gas-liquid emulsion.
- a catalyst is arranged in the catalyst bed layer to improve the reaction efficiency of each substance in the gas-liquid emulsion.
- the top end of the separation tank is provided with a gas phase outlet for conveying mixed gas
- the bottom end of the separation tank is provided with a liquid phase outlet for conveying desulfurized and denitrogenated diesel oil.
- the present invention provides a micro-interface enhanced diesel hydrofining reaction method, including:
- Step 1 Before operating the system, add a specified amount of diesel to the liquid raw material tank, and add a specified amount of hydrogen to the gas raw material buffer tank;
- Step 2 After the addition is complete, start the system, extract diesel from the liquid raw material tank through the feed pump, and extract hydrogen from the gas raw material buffer tank through the compressor;
- Step 3 Diesel flows through the liquid feed preheater, the liquid feed preheater heats the diesel to the specified temperature, the hydrogen flows through the gas feed preheater, and the gas feed preheater heats the hydrogen to the specified temperature;
- Step 4 Diesel is split after preheating, the split diesel will be delivered to the corresponding micro-interface generators, the hydrogen will be split after preheating, and the split hydrogen will be delivered to the corresponding micro-interface generators;
- Step 5 Each of the micro-interface generators will control the ratio between the diesel fuel and the hydrogen they receive, and break the hydrogen to a micrometer scale to form micro-bubbles. After the breaking is completed, each of the micro-interface generators will Bubble diesel and mix to form gas-liquid emulsion;
- Step 6 Each of the micro-interface generators outputs the gas-liquid emulsion to the fixed-bed reactor after mixing, controls the pressure and temperature in the fixed-bed reactor, and makes the gas-liquid emulsion flow in a designated direction;
- Step 7 The gas-liquid emulsion flows through the catalyst bed to control the space velocity of the gas-liquid emulsion, so that the catalyst arranged in the catalyst bed promotes the reaction of the sulfur element in the diesel oil in the gas-liquid emulsion with the microbubbles to generate desulfurization and desulfurization.
- Nitrogen diesel, hydrogen sulfide and ammonia are used for desulfurization and denitrification of diesel, and hydrogen sulfide and ammonia will form mixed gas with hydrogen;
- Step 8 After the reaction is completed, the fixed-bed reactor transports the mixture formed by the desulfurization and denitrification diesel oil and the mixed gas to the separation tank, and the mixture settles in the separation tank.
- the desulfurization and denitrogenation diesel oil settles in the lower layer of the separation tank and is separated from the liquid phase.
- the outlet is output from the system for subsequent processing, and the mixed gas stays in the upper layer of the separation tank after the desulfurization and denitrification diesel has settled, and the mixed gas is output from the gas phase outlet to the system for subsequent processing.
- the reaction pressure in the fixed bed reactor is 1-14 MPa, and the reaction temperature is 250-350°C.
- the space velocity of the gas-liquid emulsion in the step 7 is 2-5 h -1 .
- the beneficial effect of the present invention is that, compared with the traditional fixed-bed reactor, the present invention breaks the gas to form micro-sized micro-bubbles and mixes the micro-bubbles with diesel to form a gas-liquid emulsion.
- the pressure in the reaction process can be reduced by 10-80%; at the same time, the present invention passes Mass transfer is greatly enhanced, so the gas-liquid ratio can be greatly reduced, which not only reduces the material consumption of gas, but also reduces the energy consumption of subsequent gas cycle compression; and the method of the present invention has low process severity and high production safety , Low cost per ton of product and strong market competitiveness.
- the system of the present invention uses different catalysts, the operating temperature will be adjusted appropriately according to the active temperature of the catalyst. Therefore, the system of the present invention also has the ability to significantly or exponentially reduce the operating temperature under different catalyst systems. Pressure and increase the space velocity (handling capacity) advantage.
- the micron-sized bubbles collide with the movement of the catalyst particles, they are not prone to coalescence and can basically maintain their original shape. Therefore, the contact area between the gas phase and the liquid phase in the fixed bed reactor is increased geometrically, and the emulsification and mixing are more sufficient and stable, so as to achieve the effect of enhancing mass transfer and macro-reaction.
- liquid phase feed unit and the gas phase feed unit are respectively provided with a feed pump and a compressor, so that when the system is running, the feed pump and the compressor can provide for the transportation of diesel and hydrogen, respectively.
- the power enables diesel and hydrogen to be delivered to the designated device at a designated rate, which improves the operating efficiency of the system.
- the liquid-phase feed unit and the gas-phase feed unit are also provided with a liquid feed preheater and a gas feed preheater, respectively.
- a liquid feed preheater and a gas feed preheater When the diesel and hydrogen are transported, the liquid feed preheater and the gas The feed preheater can separately preheat diesel oil and hydrogen.
- the fixed bed reactor does not need to heat diesel and hydrogen with high power during operation, which saves the resource consumption of the fixed bed and reduces The energy consumption of the system.
- the system is provided with at least one micro-interface generator, so that the system can fully mix diesel and hydrogen in different proportions by using multiple micro-interface generators, which can significantly improve the performance of the reaction with the catalyst.
- the reaction efficiency of each substance in the gas-liquid emulsion is provided with at least one micro-interface generator, so that the system can fully mix diesel and hydrogen in different proportions by using multiple micro-interface generators, which can significantly improve the performance of the reaction with the catalyst.
- the fixed bed reactor is provided with at least one layer of catalyst bed plate, and by using multiple layers of catalysts to fully contact the gas-liquid emulsion, the reaction rate of the gas-liquid emulsion can be further increased, thereby further improving the operating efficiency of the system .
- the separation tank can separate the reacted mixture into gas and liquid by using gravity, without using redundant separation devices for the separation tank, which further reduces the energy consumption of the system.
- micro-interface enhanced diesel hydrofining reaction method also restricts the temperature and pressure in the reaction tank, which ensures that the gas-liquid emulsion in the reaction tank can react efficiently while keeping the energy consumption of the system to a minimum. , Can further reduce the energy consumption of the system.
- micro-interface enhanced diesel hydrofining reaction method also controls the space velocity of the catalyst to ensure that the various substances in the gas-liquid emulsion can react with the highest efficiency, and further improve the operating efficiency of the system
- Figure 1 is a schematic structural diagram of the bottom-mounted micro-interface enhanced diesel hydrorefining reaction system of the present invention
- FIG. 2 is a schematic structural diagram of the side-mounted micro-interface enhanced diesel hydrofining reaction system of the present invention
- FIG. 3 is a schematic diagram of the structure of a multi-stage micro-interface enhanced diesel hydrofining reaction system installed under the present invention
- Fig. 4 is a schematic diagram of the structure of the top-mounted micro-interface enhanced diesel hydrofining reaction system of the present invention.
- the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- FIG. 1 is a schematic structural diagram of a bottom-mounted micro-interface enhanced diesel hydrofining reaction system according to an embodiment of the present invention, including a liquid feeding unit 1, a gas feeding unit 2, a micro-interface generator 3 (Micro Interfacial Generator, MIG for short), fixed bed reactor 4 and separation tank 5; wherein, the micro-interface generator 3 is connected to the liquid feed unit 1 and the gas feed unit 2 respectively to receive the liquid feed
- MIG Micro Interfacial Generator
- the liquid feeding unit 1 When the system is running, the liquid feeding unit 1 is activated and the diesel oil stored in it is delivered to the micro-interface generator 3, while the gas feeding unit 2 is activated and the hydrogen stored in it is activated. Transported to the micro-interface generator 3, the micro-interface generator 3 breaks the hydrogen gas to a micrometer scale to form micro-bubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm. After the crushing is completed, the micro-interface generator 3 Mix the microbubbles and diesel oil to form a gas-liquid emulsion. The micro-interface generator 3 outputs the gas-liquid emulsion to the fixed-bed reactor 4 after the gas-liquid emulsion is mixed.
- the gas pressure and the space velocity of the gas-liquid emulsion are used to efficiently react the gas-liquid emulsion in the fixed-bed reactor.
- the fixed-bed reactor 4 outputs the resulting mixture to the separation tank 5, and the separation tank 5 transfers the The desulfurized and denitrified diesel is separated from the mixed gas formed by hydrogen, hydrogen sulfide and ammonia and separately processed for subsequent treatment.
- system of the present invention can be used not only for the hydrodesulfurization and denitrification of diesel, but also for the hydrogenation of gasoline, wax oil, lubricating oil or other types of low molecular weight oils, as long as It is sufficient that the system is capable of hydrogenating oil products so that the oil products can react efficiently and reach the specified standard after the reaction.
- system of the present invention can also be used in other multiphase reactions, such as micro-interface, micro-nano interface, ultra-micro interface, micro-bubble bioreactor or micro-bubble bioreactor, etc., using micro-mixing, micro-fluidization, etc.
- the liquid feed unit 1 includes: a liquid raw material tank 11, a feed pump 12, and a liquid feed preheater 13; wherein, the feed pump 12 and the The liquid raw material tank 11 is connected to pump out the diesel oil in the liquid raw material tank 11; the liquid feed preheater 13 is arranged at the output end of the feed pump 12 and the liquid feed preheater 13 is connected to the micro
- the interface generator 3 is connected to preheat the diesel oil output by the feed pump 12 and deliver the diesel to the micro interface generator 3 after preheating.
- the feed pump 12 When the liquid feed unit 1 is running, the feed pump 12 will extract the diesel oil stored in the liquid raw material tank 11 and deliver it to the liquid feed preheater 13, which is a liquid feed preheater. 13 After preheating the diesel to a specified temperature, the diesel is delivered to the micro-interface generator 3.
- the liquid raw material tank 11 is a tank body for storing diesel oil, and the liquid raw material tank 11 is connected with the feed pump 12 to deliver the diesel fuel to the designated destination through the feed pump 12 when the system is running. position. It is understandable that the liquid raw material tank 11 may be a metal oil tank or a non-metal oil tank, as long as the liquid raw material tank 11 can be loaded with a specified amount of diesel.
- the feed pump 12 is a centrifugal pump, which is arranged at the outlet of the liquid raw material tank 11 to provide power for the transportation of diesel.
- the feed pump 12 starts to operate to pump out the diesel oil in the liquid raw material tank 1 and deliver it to the liquid feed preheating unit 13.
- the model and power of the feed pump 12 are not specifically limited in this embodiment, as long as the feed pump 12 can deliver diesel at a specified flow rate.
- the liquid feed preheater 13 is a preheater for preheating diesel oil, and the outlet of the liquid feed preheater 13 is provided with a branch pipe to separate the preheated diesel oil. Transported to the inside of each of the micro-interface generators.
- the feed pump 12 delivers diesel
- the diesel will flow through the liquid feed preheater 13, and the liquid feed preheater 13 will preheat the diesel and divert the diesel when it reaches a specified temperature, and deliver the diesel separately To the inside of each micro-interface generator.
- the type of preheater and heating method of the liquid feed preheater 13 are not specifically limited in this embodiment, as long as the liquid feed preheater 13 can preheat diesel fuel to a specified temperature. can.
- the gas feeding unit 2 includes: a gas raw material buffer tank 21, a compressor 22, and a gas feed preheater 23; wherein, the compressor 22 and the gas
- the raw material buffer tank 21 is connected to extract the hydrogen in the gas raw material buffer tank 21;
- the gas feed preheater 23 is arranged at the output end of the compressor 22 and the gas feed preheater 23 is connected to the micro
- the interface generator 3 is connected to preheat the hydrogen output from the compressor 22 and deliver the hydrogen to the micro interface generator 3 after the preheating.
- the compressor 22 When the gas feed unit 2 is running, the compressor 22 will extract the hydrogen stored in the gas raw material buffer tank 21 and deliver it to the gas feed preheater 23, which is a gas feed preheater 23 After preheating the hydrogen to a specified temperature, the hydrogen is delivered to the micro-interface generator 3.
- the gas raw material buffer tank 21 is a tank body for storing hydrogen gas, and the gas raw material buffer tank 21 is connected to the compressor 22 to deliver hydrogen gas to the designated destination through the compressor 22 when the system is running. position. It is understandable that the type of the gas raw material buffer tank 21 is not specifically limited in this embodiment, as long as the gas raw material buffer tank 21 can be loaded with a specified amount of hydrogen.
- the compressor 22 is arranged at the outlet of the gas raw material buffer tank 21 to provide power for the transmission of hydrogen.
- the compressor 22 starts to operate to extract the hydrogen in the gas raw material tank 2 and deliver it to the gas feed preheating unit 23.
- the power of the compressor 22 is not specifically limited in this embodiment, as long as the compressor 22 can deliver hydrogen at a specified flow rate.
- the gas feed preheater 23 is a preheater for preheating hydrogen, and the outlet of the gas feed preheater 23 is provided with a branch pipe to separate the preheated hydrogen. Transported to the inside of each of the micro-interface generators.
- the compressor 22 delivers hydrogen
- the hydrogen will flow through the gas feed preheater 23, and the gas feed preheater 23 will preheat the hydrogen and split the flow when the hydrogen reaches a specified temperature, and deliver the hydrogen to The inside of each of the micro-interface generators.
- the type of preheater and heating method of the gas feed preheater 23 are not specifically limited in this embodiment, as long as the gas feed preheater 23 can preheat hydrogen to a specified temperature. can.
- the micro-interface generator 3 of the present invention includes a first micro-interface generator 31 and a second micro-interface generator 32, the first micro-interface generator 31 and the second micro-interface generator 32 is vertically arranged at the bottom of the fixed-bed reactor 4, and the first micro-interface generator 31 and the second micro-interface generator 32 are parallel to each other, and each micro-interface generator output port is arranged inside the fixed-bed reactor 4, So as to output the gas-liquid emulsion to the fixed bed reactor 4.
- the first micro-interface generator 31 and the second micro-interface generator 32 will receive a specified amount of diesel and hydrogen, respectively.
- the second micro-interface generator 32 breaks the received hydrogen and breaks the hydrogen to a micrometer scale to form microbubbles.
- the microbubbles are mixed with diesel to form a gas-liquid emulsion, and after the mixing is completed, the gas-liquid emulsion is output to the place The fixed bed reactor 4.
- connection between the micro-interface generator 3 and the fixed-bed reactor 4 can be pipe connection, and the output end of the micro-interface generator 3 is set inside the fixed-bed reactor 4 or other types of connections Mode, as long as it is satisfied that the micro-interface generator 3 can output the gas-liquid emulsion to the inside 4 of the fixed bed reactor.
- the first micro-interface generator 31 is a gas-liquid linkage type micro-interface generator, which is arranged at the bottom of the fixed bed reactor 4 and is respectively connected with the liquid feed preheater 13 and the gas feed preheater.
- the heat exchanger 23 is connected to crush hydrogen and output the gas-liquid emulsion formed by mixing microbubbles and diesel oil to the inside of the fixed bed reactor 4.
- the first micro-interface generator 31 will receive a specified amount of diesel and hydrogen respectively, and use the pressure energy of the gas and the kinetic energy of the liquid to break the hydrogen bubbles to the micrometer scale.
- the microbubbles and diesel are mixed vigorously to form a gas-liquid emulsion, and the gas-liquid emulsion is output to the fixed bed reactor 4 after the mixing is completed.
- the second micro-interface generator 32 is a pneumatic micro-interface generator, which is arranged at the bottom of the fixed bed reactor 4 and is respectively preheated with the liquid feed preheater 13 and the gas feed
- the reactor 23 is connected to crush hydrogen and output the gas-liquid emulsion formed by mixing microbubbles and diesel oil to the inside of the fixed bed reactor 4.
- the first micro-interface generator 31 will respectively receive a specified amount of diesel and hydrogen, and use the pressure of the gas to break the hydrogen bubbles to a micrometer scale.
- the gas-liquid emulsion is formed by vigorous mixing, and the gas-liquid emulsion is output to the fixed bed reactor 4 after the mixing is completed.
- the fixed bed reactor 4 includes a reaction tank 41 and a catalyst bed layer 42; wherein the catalyst bed layer 42 is arranged inside the reaction tank 41 for loading catalyst.
- the micro-interface generator 3 will output the gas-liquid emulsion to the bottom of the reaction tank 41, and the gas-liquid emulsion will gradually flow upwards after entering the bottom of the reaction tank 41, and the gas-liquid emulsification
- the substance contacts the built-in catalyst in the catalyst bed 42 and starts to react, so that the sulfur element contained in the diesel in the gas-liquid emulsion reacts with the microbubbles to generate hydrogen sulfide, and the nitrogen element reacts with the microbubbles to generate ammonia.
- the catalyst can be one or a mixture of molybdenum-based catalysts, cobalt-based catalysts, tungsten-based catalysts, nickel-based catalysts, and iron-based catalysts, as long as the catalyst can improve the gas-liquid emulsion The reaction efficiency of each substance is sufficient.
- the present invention is applicable to the above mentioned catalyst systems as well as other hydrogenation catalyst systems not mentioned.
- the operating temperature will be based on the active temperature of the catalyst used. Properly adjust, and the parallel system has the ability to greatly or double the operating pressure and increase the space velocity (processing capacity) under different catalyst systems.
- the reaction tank 41 is a cylindrical metal tank with an inlet at the bottom for receiving the gas-liquid emulsion output by the micro-interface generator 3, and an outlet at the top.
- the discharging port is connected with the separation tank 5 for outputting the reaction-completed mixture to the separation tank 5 for gas-liquid separation.
- the feed port of the reaction tank 41 will receive the gas-liquid emulsion output by the micro-interface generator 3 and provide a reaction space for the gas-liquid emulsion.
- a mixture of desulfurized and denitrogenated diesel oil and mixed gas is formed, and the reaction tank 41 outputs the mixture to the separation tank 5 through the discharge port.
- reaction tank 41 the size and material of the reaction tank 41 are not specifically limited in this embodiment, as long as the reaction tank 41 can be loaded with a specified amount of gas-liquid emulsion and has a specified strength to withstand the preset reaction temperature and Just react to pressure.
- the catalyst bed 42 is at least one bed plate, and a catalyst is fixedly arranged inside the bed plate to increase the reaction speed of the gas-liquid emulsion.
- the gas-liquid emulsion in the reaction tank 41 will flow upward from the bottom of the reaction tank 41 and pass through the catalyst bed 42 during the flow.
- the catalyst in the catalyst bed 42 In contact with the gas-liquid emulsion, the catalyst promotes the reaction between the sulfur element in the diesel fuel in the gas-liquid emulsion and the microbubbles to generate hydrogen sulfide, and the nitrogen element reacts with the microbubbles to generate ammonia gas to desulfurize and denitrify diesel.
- the catalyst bed 42 may be a grid, a screen, a ceramic ball or other types of structures, as long as the catalyst bed 42 can stably load the catalyst.
- the number of layers of the catalyst bed 42 can be one, two or other numbers, as long as the catalyst bed 42 can make the substances in the gas-liquid emulsion reach the specified reaction efficiency.
- the separation tank 5 is a metal tank body, which is connected to the discharge port of the reaction tank 41, and is used to perform gas-liquid gasification on the mixture output from the reaction tank 41. Separate.
- the separation tank 5 is provided with a gas phase outlet at the top end for outputting mixed gas, and a liquid phase outlet at the bottom end for outputting desulfurized and denitrogenated diesel oil.
- the separation tank 5 After the fixed bed reactor 4 outputs the reacted mixture to the separation tank 5, the separation tank 5 will use gravity to separate the mixed gas in the mixture from the desulfurized and denitrified diesel oil, and will contain hydrogen, The mixed gas of hydrogen sulfide and ammonia is output through the gas phase outlet, and the desulfurized and denitrified diesel is output through the liquid phase outlet. It is understandable that the size and material of the separation tank 5 are not specifically limited in this embodiment, as long as the separation tank 5 has a specified strength and can be loaded with a mixture of a specified volume.
- FIG. 2 is a schematic structural diagram of a side-mounted hedge micro-interface enhanced diesel hydrorefining reaction system according to an embodiment of the present invention.
- the components used in the system are the same as those in the first embodiment of the system.
- the micro-interface generator 3 is also provided with a third micro-interface generator 33, and the third micro-interface generator 33 is set in the gas feed forecast.
- the third micro-interface generator 33 is connected in parallel with the second micro-interface generator 32 to break a specified amount of hydrogen; the third micro-interface generator 33 is also connected to the first
- a micro-interface generator 31 is connected in series to break the hydrogen gas in multiple stages, thereby further reducing the diameter of the microbubbles.
- the first micro-interface generator 31 and the second micro-interface generator 32 are respectively arranged on the side wall of the bottom of the reaction tank 4, and the first micro-interface generator 31 and the second micro-interface generator 32 are paired It is arranged to make the first micro-interface generator 31 and the second micro-interface generator 32 impact each other when outputting the gas-liquid emulsion, so that the gas-liquid emulsion is mixed more uniformly.
- the third micro-interface generator 33 and the second micro-interface generator 32 will respectively receive designated The amount of diesel and hydrogen is broken down to the micron size to form microbubbles and the diesel and microbubbles are mixed to form a gas-liquid emulsion.
- the third micro-interface generator 33 will transport the gas-liquid emulsion to the first micro The interface generator 31 is further broken.
- the second micro-interface generator 32 and the third micro-interface generator 33 will output the internal gas-liquid emulsions to the bottom of the reaction tank 4 and move from bottom to top.
- the two micro-interface generators are arranged opposite to each other, when the first micro-interface generator 31 and the second micro-interface generator 32 output gas-liquid emulsion, two streams of gas-liquid emulsion fluid will be in the reaction tank 41 The bottom is hedged to achieve the secondary mixing of the gas-liquid emulsion to further increase the mass transfer area of diesel oil and microbubbles between the gas-liquid emulsion.
- FIG. 3 is a schematic structural diagram of the bottom-mounted multi-stage micro-interface enhanced diesel hydrofining reaction system of the present invention.
- the components of the system are the same as those in the first embodiment of the system.
- the reaction tank 41 is provided with multiple catalyst beds 42 inside, and the bottom of each catalyst bed 42 except for the lowermost catalyst bed 42 is provided with an inlet
- the gas port is used to transport the hydrogen output from the gas feed unit 2 to the inside of the reaction tank; the outlet of the gas feed preheating unit 23 is provided with multiple shunt pipes for transporting the preheated hydrogen to At the air inlet at the bottom of each catalyst bed 42, the hydrogen content in the reaction tank 41 is ensured.
- the gas feed preheating unit 23 After the gas feed preheating unit 23 completes the preheating of hydrogen, it will output hydrogen.
- a shunt pipe is provided at the outlet of the gas feed preheating unit. After the hydrogen is output, it will be split and delivered to the corresponding components. , A part of hydrogen is delivered to the micro-interface generator 3, is broken to form microbubbles and forms a gas-liquid emulsion with diesel; the other part of hydrogen is delivered to the inside of the reaction tank 41 and passes through each of the air inlets. It is transported to the bottom of each catalyst bed 42 to maintain the hydrogen content in the reaction tank 41 within a specified range to ensure the reaction efficiency of each substance in the gas-liquid emulsion in the reaction tank 41.
- FIG. 4 is a schematic structural diagram of a top-mounted micro-interface enhanced diesel hydrorefining reaction system according to an embodiment of the present invention.
- the components used in the system are the same as those in the first embodiment of the system.
- Embodiment 1 of the above system is that in this embodiment, the micro-interface generator 3 is arranged on the top of the reaction tank 41, and the discharge port of the reaction tank 41 is arranged at the bottom of the tank body to make the micro-interface
- the gas-liquid emulsion output by the generator 3 flows from top to bottom in the reaction tank 41 by gravity to reduce the energy consumption of the system.
- the gas-liquid emulsion is located above the inside of the reaction tank 41 and moves downward under the action of gravity During the movement of the gas-liquid emulsion, it contacts with the catalyst in the catalyst bed 42 and starts to react, and after the reaction is completed, it is output to the separation tank 5 through the discharge port at the bottom of the reaction tank 41. Since the gas-liquid emulsion is moved downward by gravity, the system of this embodiment does not need to provide power for the movement of the gas-liquid emulsion in the reaction tank 41, thereby further reducing the energy consumption of the system.
- a method of micro-interface strengthening diesel hydrofining reaction including the following steps:
- Step 1 Before operating the system, add a specified amount of diesel to the liquid raw material tank 11, and add a specified amount of hydrogen to the gas raw material buffer tank 21;
- Step 2 After the addition is complete, start the system, extract diesel from the liquid raw material tank 11 through the feed pump 12, and extract hydrogen from the gas raw material buffer tank 21 through the compressor 22;
- Step 3 Diesel flows through the liquid feed preheater 13, the liquid feed preheater 13 heats the diesel to a specified temperature, the hydrogen flows through the gas feed preheater 23, and the gas feed preheater 23 heats the hydrogen to Specified temperature
- Step 4 Diesel is split after preheating.
- the split diesel will be delivered to the corresponding micro-interface generators.
- the hydrogen will be split after preheating.
- the split hydrogen will be delivered to the corresponding micro-interface generators. in;
- Step 5 Each of the micro-interface generators will control the ratio between the diesel fuel and the hydrogen they receive, and break the hydrogen to a micrometer scale to form micro-bubbles. After the breaking is completed, each of the micro-interface generators will Air bubbles and diesel oil are mixed to form a gas-liquid emulsion;
- Step 6 Each of the micro-interface generators outputs the gas-liquid emulsion to the fixed-bed reactor 4 after the mixing is completed, the pressure in the fixed-bed reactor is controlled at 1-14MPa, the temperature is controlled at 250-350°C, and Make the gas-liquid emulsion flow in the specified direction;
- Step 7 The gas-liquid emulsion flows through the catalyst bed 42, and the space velocity of the gas-liquid emulsion is controlled at 2-5h -1 , so that the catalyst arranged in the catalyst bed promotes the sulfur in the diesel oil in the gas-liquid emulsion Reacts with microbubbles to generate desulfurized and denitrified diesel, hydrogen sulfide, and ammonia to desulfurize and denitrify diesel, and hydrogen sulfide and ammonia will form a mixed gas with hydrogen;
- Step 8 After the reaction is completed, the fixed bed reactor transports the mixture formed by the desulfurization and denitrification diesel oil and the mixed gas to the separation tank 5, and the mixture settles in the separation tank 5, and the desulfurization and denitrification diesel oil settles in the lower layer of the separation tank 5.
- the liquid phase outlet is output from the system for subsequent treatment, and the mixed gas stays in the upper layer of the separation tank 5 after the desulfurization and denitrification diesel oil settles and is output from the system through the gas phase outlet for subsequent treatment.
- the mixing ratio of diesel and hydrogen in each micro-interface generator in the step 5 is: the standard volume ratio of hydrogen to diesel in the first micro-interface generator is 0.2:1; the hydrogen in the second micro-interface generator The standard volume ratio with diesel is 1000:1.
- each of the micro-interface generators in the step 5 generates micro-bubbles with an average diameter greater than or equal to 1 ⁇ m and less than 1 mm after the hydrogen gas is broken.
- step 6 the air pressure inside the fixed reactor 4 is controlled at 6 MPa, and the reaction temperature is controlled at 270°C.
- the catalyst in the step 7 is FZC-302 type catalyst, and the space velocity of the gas-liquid emulsion is controlled at 2h -1 .
- the sulfur content in raw diesel is 220ppm and the nitrogen content is 150ppm; the sulfur content in the desulfurization and denitrification diesel after the system treatment is reduced to 50ppm, and the nitrogen content is reduced to 60ppm.
- the mixing ratio of diesel and hydrogen in each micro-interface generator in the step 5 is: the standard volume ratio of hydrogen to diesel in the first micro-interface generator is 0.28:1; the standard of hydrogen to diesel in the second micro-interface generator The volume ratio is 900:1.
- each of the micro-interface generators generates micro-bubbles with an average diameter greater than or equal to 1 ⁇ m and less than 1 mm after breaking up hydrogen.
- step 6 the air pressure inside the fixed reactor 4 is controlled at 11 MPa, and the reaction temperature is controlled at 300°C.
- the catalyst in step 7 is molybdenum tungsten catalyst, and the space velocity of the gas-liquid emulsion is controlled at 3 h -1 .
- the sulfur content of raw diesel is 220ppm, and the nitrogen content is 150ppm; the sulfur content of the desulfurized and denitrified diesel after the system treatment is reduced to 45ppm, and the nitrogen content is reduced to 50ppm.
- the mixing ratio of diesel and hydrogen in each micro-interface generator in the step 5 is: the standard volume ratio of hydrogen to diesel in the first micro-interface generator is 0.2:1; the standard volume ratio of hydrogen to diesel in the second micro-interface generator The volume ratio is 700:1.
- each of the micro-interface generators generates micro-bubbles with an average diameter greater than or equal to 1 ⁇ m and less than 1 mm after breaking up hydrogen.
- the air pressure inside the fixed reactor 4 is controlled at 14 MPa, and the reaction temperature is controlled at 330°C.
- the catalyst in step 7 is an iron-cobalt catalyst, and the space velocity of the gas-liquid emulsion is controlled at 5h -1 .
- the sulfur element content in the raw diesel oil is 220ppm, and the nitrogen element content is 150ppm; after the system treatment, the sulfur element content in the desulfurization and denitrification diesel oil is reduced to 30ppm, and the nitrogen content is reduced to 40ppm.
- the catalyst in the fixed bed reactor is FZC-302 type catalyst, the reaction temperature in the fixed bed reactor is 400° C., the hydrogen pressure is 20 MPa, the hydrogen-to-oil volume ratio is 1200:1, and the mixture space velocity is 1 h -1 .
- the sulfur element content in the raw diesel oil is 220 ppm, and the nitrogen element content is 150 ppm; after the system treatment, the sulfur element content in the desulfurized and denitrified diesel oil drops to 65 ppm, and the nitrogen element content drops to 70 ppm.
- micro-interface enhanced diesel hydrorefining reaction system and method of the present invention can effectively remove the sulfur element in diesel under medium, low pressure and low temperature environments.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
一种微界面强化柴油加氢精制反应系统及方法,包括:液体进料单元(1)、气体进料单元(2)、微界面发生器(3)、固定床反应器(4)和分离罐(5)。通过破碎气体使其形成微米尺度的微气泡,使微气泡与柴油混合形成乳化液以增大气液两相的相间面积。
Description
本发明涉及柴油加氢脱硫脱氮技术领域,尤其涉及一种微界面强化柴油加氢精制反应系统及方法。
硫是自然界存在于柴油中的一种有害物质,随着原油的不断变重,柴油中的硫含量还会不断增加。因而,有效的燃油加氢脱硫技术,对社会、经济、环境的发展都有重要的作用。
目前加氢脱硫(HDS)技术是公认的最有效、最经济的脱硫方法,尤其是选择性加氢脱硫技术,即在脱除柴油大量含硫化合物的同时尽量抑制烯烃的饱和以减少辛烷值损失。这类技术具有操作条件缓和,柴油收率高,氢耗低和辛烷值损失小等特点。加氢脱硫技术的关键是加氢脱硫催化剂的选择,负载型的钴钼催化剂是一类重要的柴油加氢脱硫催化剂,通常是把钴钼负载在多孔载体上(如氧化铝、氧化硅、活性炭或其复合载体),广泛应用于加氢脱硫过程中,以获得高质量柴油产品。
柴油中含氮化合物大部分为杂环化合物,非杂环氮化物主要是脂肪胺类和腈类,其含量很少,也容易发生加氢脱氮反应。杂环氮化物根据碱性的不同可分为碱性氮化物(主要包括吡啶类、喹啉类和吖啶类及其衍生物)和非碱性氮化物(主要包括咔唑类及其衍生物)。
尽管柴油中的氮含量低于硫含量,但氮化物会对油品的安定性产生巨大影响,氮化物的存在对硫化物的脱除会产生强烈抑制作用,尤其碱性氮化物更易吸附在催化剂的酸性中心上,且不易脱附,直接导致催化剂的活性中心数目下降,影响催化剂的活性和寿命,导致催化剂中毒失活,最终影响加氢产品质量。因此,减少柴油馏分中的氮化物对提高加氢脱硫反应活性具有重要意义。
中国专利公开号:CN108993521A公开了一种柴油加氢脱硫脱氮工艺,所述工艺采用填有加氢脱硫脱氮催化剂的固定床反应器,所述催化剂包括载体和活性组分;所述载体为合成骨架结构中掺入杂原子Cu
2+的SAPO-5;所述活性组分为氮 化二钼MO
2N、氮化钨W
2N、碳化钼Mo
2C和碳化钨WC的混合物;所述的催化剂含有催化助剂,所述催化助剂为TiO
2、CeO
2、V2O
5和NbOPO
4的混合物;所述固定床反应器的反应条件:反应温度320-360℃,反应压力6-8MPa,氢油体积比300-600,体积空速1.0-2.5h
-1。
由此可见,所述工艺存在以下问题:
第一,所述工艺在运行时使用的氢气压力过大,在运行时存在安全隐患,且需要消耗大量的资源,工艺运行成本高。
第二,所述工艺为保证催化剂活性,需要较高的反应温度,在提高固定床中反应温度的同时,进一步增加了所述工艺的能耗。
第三,所述工艺中仅仅将氢气与柴油进行混合,使得氢气分子无法与柴油进行充分混合,从而导致反应效率降低。
发明内容
为此,本发明提供一种微界面强化柴油加氢精制反应系统及方法,用以克服现有技术中氢气无法与柴油充分接触导致工艺能耗过高的问题。
一方面,本发明提供一种微界面强化柴油加氢精制反应系统,包括:
液相进料单元,用以存储和输送柴油;
气相进料单元,用以存储和输送氢气;
至少一个微界面发生器(Micro Interfacial Generator,简称MIG),其分别与所述液相进料单元和气相进料单元相连,将气体的压力能和/或液体的动能转变为气泡表面能并传递给氢气气泡,使氢气破碎形成直径大于等于1μm,小于1mm的微气泡以提高柴油与氢气间的传质面积,并在破碎后将柴油与微气泡混合形成气液乳化物,以在预设压力范围内强化柴油与氢气间反应效率;
固定床反应器,其与所述微界面发生器相连,用以装载气液乳化物并为气液乳化物中的柴油和微气泡提供反应空间;
分离罐,用以将所述固定床反应器中反应完成的脱硫脱氮柴油与混合气体的混合物进行气液分离。
进一步地,当所述微界面发生器的数量大于等于两个时,各所述微界面发生器平行设置,且设置方式为串联和/或并联,用以将混合后的气液乳化物输出至 所述固定床反应器以进行反应。
进一步地,所述微界面发生器为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器中的一种或多种。
进一步地,所述液相进料单元包括:
液体原料罐,用以存储柴油;
进料泵,其与所述液体原料罐相连,用以为柴油的输送提供动力;
液体进料预热器,其与所述进料泵相连,用以对所述进料泵输送的柴油进行预热以使柴油达到指定温度,所述液体进料预热器出口处设有分流管道,用以将柴油分别输送至对应的微界面发生器;
当所述液相进料单元在输送柴油时,所述进料泵开始运作,将柴油从所述液体原料罐中抽出并输送至所述液体进料预热器,液体进料预热器将柴油加热至指定温度后将柴油输送至所述微界面发生器。
进一步地,所述气相进料单元包括:
气体原料缓冲罐,用以储存氢气;
压缩机,其与所述气体原料缓冲罐相连,用以为氢气的输送提供动力;
气体进料预热器,其与所述压缩机相连,用以对所述压缩机输送的氢气进行预热以使氢气达到指定温度,所述气体进料预热器出口处设有分流管道,用以将氢气分别输送至对应的微界面发生器;
当所述气相进料单元在输送氢气时,所述压缩机开始运作,将氢气从所述气体原料缓冲罐中抽出并输送至所述气体进料预热器进行预热,预热完成后气体进料预热器将氢气输送至所述微界面发生器以使微界面发生器将氢气破碎至指定尺寸。
进一步地,所述固定床反应器包括:
反应罐,其为一罐体,用以为气液乳化物提供反应空间,反应罐中设有出料口,用以输出反应后的脱硫脱氮柴油以及混合气体;
至少一层催化剂床层,其固定在所述反应罐内部的指定位置,催化剂床层内设有催化剂,用以提高气液乳化物中各物质的反应效率,当气液乳化物在流经催化剂床层时,催化剂床层内的催化剂会与气液乳化物接触并促进气液乳化物之间的反应以提高气液乳化物中各物质的反应效率。
进一步地,所述分离罐顶端设有气相出口,用以输送混合气体,分离罐底端设有液相出口,用以输送脱硫脱氮柴油,当所述固定床反应器内的气液乳化物反应完成后,分离罐将反应后的混合物输送至所述分离罐,混合物中脱硫脱氮柴油受重力作用沉降至分离罐底端并经由液相出口从所述系统中输出,混合物中的混合气体经由气相出口从所述系统中输出。
另一方面,本发明提供一种微界面强化柴油加氢精制反应方法,包括:
步骤1:在运行系统前向所述液体原料罐中添加指定量的柴油,并向所述气体原料缓冲罐中添加指定量的氢气;
步骤2:添加完成后启动系统,通过进料泵从液体原料罐中抽取柴油,通过压缩机从气体原料缓冲罐中抽取氢气;
步骤3:柴油流经液体进料预热器,液体进料预热器将柴油加热至指定温度,氢气流经气体进料预热器,气体进料预热器将氢气加热至指定温度;
步骤4:柴油在预热后进行分流,分流后的柴油会分别输送至对应的微界面发生器,氢气在进行预热后进行分流,分流后的氢气会分别输送至对应的微界面发生器;
步骤5:各所述微界面发生器会控制其接收柴油和氢气之间的比例,并对氢气打碎至微米尺度以形成微气泡,打碎完成后,各所述微界面发生器会将微气泡柴油和进行混合形成气液乳化物;
步骤6:各所述微界面发生器在混合完成后将气液乳化物输出至固定床反应器,控制固定床反应器内的压力和温度,并使气液乳化物按指定方向流动;
步骤7:气液乳化物流经所述催化剂床层,控制气液乳化物空速,使催化剂床层内设置的催化剂促进气液乳化物中柴油内部的硫元素与微气泡发生反应,生成脱硫脱氮柴油、硫化氢和氨气以对柴油进行脱硫脱氮,硫化氢和氨气会与氢气形成混合气体;
步骤8:反应完成后,固定床反应器将脱硫脱氮柴油与混合气体形成的混合物输送至所述分离罐,混合物在分离罐内进行沉降,脱硫脱氮柴油沉降在分离罐下层并由液相出口从系统中输出以进行后续处理,混合气体在脱硫脱氮柴油沉降后停留在分离罐上层并由气相出口将混合气体输出系统以进行后续处理。
进一步地,所述步骤6中固定床反应器内的反应压力为1-14MPa,反应温度 为250-350℃。
进一步地,所述步骤7中气液乳化物的空速为2-5h
-1。
与现有技术相比,本发明的有益效果在于,与传统的固定床反应器相比,本发明通过破碎气体使其形成微米尺度的微气泡,使微气泡与柴油混合形成气液乳化物,以增大气液两相的相间面积,并达到在较低预设范围内强化传质的效果,在保证反应效率的同时,能够使反应过程中的压力降低10-80%;同时,本发明通过大幅度强化传质,因此可大幅减小气液比,这不但减少了气体的物耗,同时也降低了后续气体循环压缩的能耗;且本发明所述方法工艺苛刻度低,生产安全性高,吨产品成本低,市场竞争力强。
尤其,本发明所述系统在采用不同的催化剂时,操作温度会依据采用催化剂的活性温度进行适当调整,因此本发明所述系统还具有在不同的催化剂体系下仍能够大幅或成倍地降低操作压力并提高空速(处理量)的优点。
尤其,微米级气泡在与催化剂颗粒的运动碰撞中,不容易发生气泡的聚并,基本可以保持原有形态。因此固定床反应器内气相与液相的接触面积呈几何倍数的增加,并使得乳化混合更加充分和稳定,从而达到强化传质和宏观反应的效果。
进一步地,所述液相进料单元和气相进料单元中分别设有进料泵和压缩机,这样,在所述系统运行时,进料泵和压缩机能够分别为柴油和氢气的运输提供动力,使柴油和氢气能够以指定的速率输送至指定装置,提高了所述系统的运行效率。
尤其,所述液相进料单元和气相进料单元中还分别设有液体进料预热器和气体进料预热器,在输送柴油和氢气时,所述液体进料预热器和气体进料预热器能够分别对柴油和氢气进行预热,这样,所述固定床反应器在运行时就无需再对柴油和氢气进行高功率加热,节约了所述固定床的资源消耗,降低了所述系统的能耗。
进一步地,所述系统设有至少一个微界面发生器,这样,所述系统能够通过使用多个微界面发生器,使柴油和氢气以不同的比例充分混合,在与催化剂进行反应时能够显著提高气液乳化物中各物质的反应效率。
尤其,所述固定床反应器中设有至少一层催化剂床板,通过使用多层催化剂与气液乳化物充分接触,能够进一步提高气液乳化物的反应速率,从而进一步提 高所述系统的运行效率。
进一步地,所述分离罐通过使用重力作用即可将反应后的混合物进行气液分离,无需对分离罐使用多余的分离装置,进一步降低了所述系统的能耗。
尤其,所述微界面强化柴油加氢精制反应方法中还对反应罐中的温度和压强进行了限制,在保证反应罐中气液乳化物能够高效反应的同时,将系统的能耗控制在最低,能够进一步降低所述系统的能耗。
尤其,所述微界面强化柴油加氢精制反应方法中还对催化剂的空速进行了控制,以保证气液乳化物中各物质能够以最高的效率进行反应,进一步提高了所述系统的运行效率
图1为本发明所述下置式微界面强化柴油加氢精制反应系统的结构示意图;
图2为本发明所述侧置式微界面强化柴油加氢精制反应系统的结构示意图;
图3为本发明所下置多段式微界面强化柴油加氢精制反应系统的结构示意图;
图4为本发明所述上置式微界面强化柴油加氢精制反应系统的结构示意图。
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也 可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
系统实施例一
请参阅图1所示,其为本发明实施例所述下置式微界面强化柴油加氢精制反应系统的结构示意图,包括液体进料单元1、气体进料单元2、微界面发生器3(Micro Interfacial Generator,简称MIG)、固定床反应器4和分离罐5;其中,所述微界面发生器3分别与所述液体进料单元1和气体进料单元2相连,用以接收所述液体进料单元1输送的柴油以及气体进料单元2输送的氢气;所述固定床反应器4与所述微界面发生器3相连且微界面发生器3的输出端设置于固定床反应器4内部,用以将微界面发生器3中的气液乳化物输出至固定床反应器;所述分离罐5与所述固定床反应器4相连,用以接收固定床反应器4输出的混合物并对混合物进行气液分离。
当所述系统运行时,所述液体进料单元1启动,并将其内部储存的柴油输送至所述微界面发生器3,同时所述气体进料单元2启动,并将其内部储存的氢气输送至所述微界面发生器3,微界面发生器3会对氢气进行打碎,使氢气破碎至微米尺度,形成直径大于等于1μm,小于1mm的微气泡,在破碎完成后,微界面发生器3将微气泡与柴油混合形成气液乳化物,微界面发生器3在气液乳化物混合完成后将气液乳化物输出至固定床反应器4,通过控制固定床反应器4内的温度、气压以及气液乳化物的空速以使气液乳化物在固定床反应器内进行高效反应,反应完成后固定床反应器4将生成的混合物输出至分离罐5,分离罐5将混合物中的脱硫脱氮柴油与氢气、硫化氢和氨气形成的混合气体分离并分别进行后续处理。本领域的技术人员可以理解的是,本发明所述系统不仅可用于对柴油的加氢脱硫脱氮,也可用于汽油、蜡油、润滑油或其它种类的小分子量的油品加氢,只要满足所述系统能够对油品进行加氢使油品进行高效反应并在反应后达到指定标准即可。当然,本发明所述系统还可用于其他多相反应中,如通过微界面、微纳界面、超微界面、微泡生化反应器或微泡生物反应器等设备,使用微混合、微流化、超微流化、微泡发酵、微泡鼓泡、微泡传质、微泡传递、微泡反应、微 泡吸收、微泡增氧、微泡接触等工艺或方法,以使物料形成多相微混流、多相微纳流、多相乳化流、多相微结构流、气液固微混流、气液固微纳流、气液固乳化流、气液固微结构流、微气泡、微气泡流、微泡沫、微泡沫流、微气液流、气液微纳乳化流、超微流、微分散流、两项微混流、微湍流、微泡流、微鼓泡、微鼓泡流、微纳鼓泡以及微纳鼓泡流等由微米尺度颗粒形成的多相流体、或由微纳尺度颗粒形成的多相流体(简称微界面流体),从而有效地增大了反应过程中所述气相和/或液相与液相和/或固相之间的相界传质面积。
请继续参阅图1所示,本发明实施例所述液体进料单元1包括:液体原料罐11、进料泵12和液体进料预热器13;其中,所述进料泵12与所述液体原料罐11相连,用以将液体原料罐11内的柴油抽出;所述液体进料预热器13设置在所述进料泵12的输出端且液体进料预热器13与所述微界面发生器3相连,用以对进料泵12输出的柴油进行预热,并在预热后将柴油输送至微界面发生器3。当所述液体进料单元1运行时,所述进料泵12会抽取所述液体原料罐11中储存的柴油并将其输送至所述液体进料预热器13,液体进料预热器13对柴油预热至指定温度后,将柴油输送至所述微界面发生器3。
具体而言,所述液体原料罐11为一罐体,用以储存柴油,液体原料罐11与所述进料泵12相连,用以在系统运行时,通过进料泵12将柴油输送至指定位置。可以理解的是,所述液体原料罐11可以为金属油罐,也可以为非金属油罐,只要满足所述液体原料罐11能够装载指定量的柴油即可。
具体而言,所述进料泵12为一离心泵,其设置在所述液体原料罐11的出口处,用以为柴油的输送提供动力。当所述液体进料单元1运作时,所述进料泵12开始运行,将所述液体原料罐1中的柴油抽出并输送至所述液体进料预热单元13。可以理解的是,所述进料泵12的型号及功率本实施例均不作具体限制,只要满足所述进料泵12能够以指定流速输送柴油即可。
具体而言,所述液体进料预热器13为一预热器,用以对柴油进行预热,液体进料预热器13出口处设有分流管,用以将预热后的柴油分别输送至各所述微界面发生器内部。当所述进料泵12输送柴油时,柴油会流经液体进料预热器13,液体进料预热器13会对柴油进行预热并在柴油达到指定温度后进行分流,将柴油分别输送至各微界面发生器的内部。可以理解的是,所述液体进料预热器13 的预热器种类及加热方式本实施例均不作具体限制,只要满足所述液体进料预热器13能够将柴油预热至指定温度即可。
请继续参阅图1所示,本发明实施例所述气体进料单元2包括:气体原料缓冲罐21、压缩机22和气体进料预热器23;其中,所述压缩机22与所述气体原料缓冲罐21相连,用以将气体原料缓冲罐21内的氢气抽出;所述气体进料预热器23设置在所述压缩机22的输出端且气体进料预热器23与所述微界面发生器3相连,用以对压缩机22输出的氢气进行预热,并在预热后将氢气输送至微界面发生器3。当所述气体进料单元2运行时,所述压缩机22会抽取所述气体原料缓冲罐21中储存的氢气并将其输送至所述气体进料预热器23,气体进料预热器23对氢气预热至指定温度后,将氢气输送至所述微界面发生器3。
具体而言,所述气体原料缓冲罐21为一罐体,用以储存氢气,气体原料缓冲罐21与所述压缩机22相连,用以在系统运行时,通过压缩机22将氢气输送至指定位置。可以理解的是,所述气体原料缓冲罐21的种类本实施例不作具体限制,只要满足所述气体原料缓冲罐21能够装载指定量的氢气即可。
具体而言,所述压缩机22设置在所述气体原料缓冲罐21的出口处,用以为氢气的输送提供动力。当所述气体进料单元2运作时,所述压缩机22开始运行,将所述气体原料罐2中的氢气抽出并输送至所述气体进料预热单元23。可以理解的是,所述压缩机22的功率本实施例不作具体限制,只要满足所述压缩机22能够以指定流速输送氢气即可。
具体而言,所述气体进料预热器23为一预热器,用以对氢气进行预热,气体进料预热器23出口处设有分流管,用以将预热后的氢气分别输送至各所述微界面发生器内部。当所述压缩机22输送氢气时,氢气会流经气体进料预热器23,气体进料预热器23会对氢气进行预热并在氢气达到指定温度后进行分流,将氢气分别输送至各所述微界面发生器的内部。可以理解的是,所述气体进料预热器23的预热器种类及加热方式本实施例均不作具体限制,只要满足所述气体进料预热器23能够将氢气预热至指定温度即可。
请继续参阅图1所示,本发明所述微界面发生器3包括第一微界面发生器31和第二微界面发生器32,所述第一微界面发生器31和第二微界面发生器32竖直设置在所述固定床反应器4底部,且第一微界面发生器31和第二微界面发 生器32互相平行,各微界面发生器输出口设置在固定床反应器4内部,用以将气液乳化物输出至固定床反应器4。当所述微界面发生器3运作时,所述第一微界面发生器31和第二微界面发生器32会分别接收指定量的柴油和氢气,接收完成后第一微界面发生器31和第二微界面发生器32会打碎接收的氢气并使氢气破碎至微米尺度以形成微气泡,破碎完成后将微气泡与柴油混合形成气液乳化物,混合完成后将气液乳化物输出至所述固定床反应器4。可以理解的是,所述微界面发生器3与所述固定床反应器4的连接方式可以为管道连接,将微界面发生器3的输出端设置在固定床反应器4内部或其他种类的连接方式,只要满足所述微界面发生器3能够将气液乳化物输出至固定床反应器内部4即可。
具体而言,所述第一微界面发生器31为一气液联动式微界面发生器,其设置在所述固定床反应器4底部并分别与所述液体进料预热器13和气体进料预热器23相连,用以破碎氢气并将微气泡与柴油混合形成的气液乳化物输出至所述固定床反应器4内部。当微界面发生器3运行时,所述第一微界面发生器31会分别接收指定量的柴油和氢气,并使用气体的压力能和液体的动能将氢气气泡破碎至微米尺度,破碎完成后使微气泡与柴油剧烈混合形成气液乳化物,并在混合完成后将气液乳化物输出至所述固定床反应器4。
具体而言,所述第二微界面发生器32为一气动式微界面发生器,其设置在所述固定床反应器4底部并分别与所述液体进料预热器13和气体进料预热器23相连,用以破碎氢气并将微气泡与柴油混合形成的气液乳化物输出至所述固定床反应器4内部。当微界面发生器3运行时,所述第一微界面发生器31会分别接收指定量的柴油和氢气,并使用气体的压力能将氢气气泡破碎至微米尺度,破碎完成后使微气泡与柴油剧烈混合形成气液乳化物,并在混合完成后将气液乳化物输出至所述固定床反应器4。
请继续参阅图1所示,本发明实施例所述固定床反应器4包括反应罐41和催化剂床层42;其中所述催化剂床层42设置在反应罐41内部,用以装载催化剂。当所述固定床反应器4运行时,所述微界面发生器3会将气液乳化物输出至反应罐41底部,气液乳化物在进入反应罐41底部后会逐渐向上流动,气液乳化物在流动过程中与所述催化剂床层42内置的催化剂接触并开始发生反应,使气液乳化物内柴油含有的硫元素与微气泡反应生成硫化氢,氮元素与微气泡反应生 成氨气,以此完成对柴油的脱硫脱氮。可以理解的是,所述催化剂可以为钼系催化剂、钴系催化剂、钨系催化剂、镍系催化剂、铁系催化剂中的一种或多种混合物,只要满足所述催化剂能够提高气液乳化物中各物质的反应效率即可。当然本发明适用于上述已提及的催化剂体系,也适用于未提及的其它加氢催化剂体系,只要满足本发明所述系统在采用不同的催化剂时,操作温度会依据采用催化剂的活性温度进行适当调整,并时系统具有在不同的催化剂体系下仍能够大幅或成倍地降低操作压力并提高空速(处理量)即可。
具体而言,所述反应罐41为一圆柱形金属罐,在其底部设有进料口,用以接收所述微界面发生器3输出的气液乳化物,在其顶部设有出料口,出料口与所述分离罐5相连,用以将反应完成的混合物输出至分离罐5以进行气液分离。所述固定床反应器4在运行时,所述反应罐41进料口会接收所述微界面发生器3输出的气液乳化物,并为气液乳化物提供反应空间,当气液乳化物反应完成后形成脱硫脱氮柴油与混合气体的混合物,所述反应罐41会通过出料口将混合物输出至所述分离罐5。可以理解的是,所述反应罐41的尺寸和材质本实施例均不作具体限制,只要满足所述反应罐41能够装载指定量的气液乳化物并具有指定强度以承受预设的反应温度和反应压力即可。
具体而言,所述催化剂床层42为至少一层床板,在床板内部固定设置有催化剂,用以提高气液乳化物的反应速度。当所述固定床反应器4运行时,所述反应罐41中气液乳化物会从反应罐41底部向上流动,并在流动过程中经过催化剂床层42,此时催化剂床层42中的催化剂与气液乳化物接触,催化剂促使气液乳化物中柴油内硫元素与微气泡发生反应生成硫化氢,氮元素与微气泡反应生成氨气,以对柴油进行脱硫脱氮。可以理解的是,所述催化剂床层42可以为格栅、筛网、瓷球或其它种类的结构,只要满足所述催化剂床层42能够稳固装载催化剂即可。当然,所述催化剂床层42的层数可以为一层,两层或其它数量的层数,只要满足所述催化剂床层42能够使气液乳化物中各物质达到指定的反应效率即可。
请继续参阅图1所示,本发明实施例所述分离罐5为一金属罐体,其与所述反应罐41的出料口相连,用以对所述反应罐41输出的混合物进行气液分离。所述分离罐5顶端设有气相出口,用以输出混合气体,底端设有液相出口,用以输 出脱硫脱氮柴油。当所述固定床反应器4将反应后的混合物输出至所述分离罐5后,分离罐5会利用重力作用将混合物中的混合气体与脱硫脱氮柴油进行气液分离,并将含有氢气、硫化氢和氨气的混合气体通过气相出口输出,将脱硫脱氮柴油通过液相出口输出。可以理解的是,所述分离罐5的尺寸和材质本实施例均不作具体限制,只要满足所述分离罐5具有指定的强度且能够装载指定容积的混合物即可。
系统实施例二
请参阅图2所示,其为本发明实施例侧置对冲式微界面强化柴油加氢精制反应系统的结构示意图,该系统使用部件与所述系统实施例一相同。
与上述系统实施例一不同的是,本实施例中所述微界面发生器3中还设有第三微界面发生器33,所述第三微界面发生器33设置在所述气体进料预热器23出口处,且第三微界面发生器33与所述第二微界面发生器32并联,用以分别对指定量的氢气进行打碎;第三微界面发生器33还与所述第一微界面发生器31串联,用以对氢气进行多级的打碎,从而进一步减少微气泡的直径。
所述第一微界面发生器31和第二微界面发生器32分别设置在所述反应罐4底部的侧壁上,且所述第一微界面发生器31和第二微界面发生器32对向设置,用以使第一微界面发生器31与第二微界面发生器32在输出气液乳化物时互相冲击,以使气液乳化物混合更加均匀。
当所述液体进料单元1和气体进料单元2分别将柴油和氢气输送至所述微界面发生器后,所述第三微界面发生器33和第二微界面发生器32会分别接收指定量的柴油和氢气,将氢气破碎至微米尺度以形成微气泡并使柴油与微气泡混合形成气液乳化物,破碎后,第三微界面发生器33会将气液乳化物输送至第一微界面发生器31进行进一步打碎,打碎完成后,第二微界面发生器32和第三微界面发生器33会将内部的气液乳化物分别输出至所述反应罐4底部并由下向上移动,由于两所述微界面发生器对向设置,在第一微界面发生器31与第二微界面发生器32输出气液乳化物时,两股气液乳化物流体会在所述反应罐41底部进行对冲,从而达到气液乳化物的二次混合,以进一步提高气液乳化物之间柴油与微气泡的传质面积。
系统实施例三
请参阅图3所示,其为本发明所述下置多段式微界面强化柴油加氢精制反应系统的结构示意图,该系统使用部件与所述系统实施例一相同。
与所述系统实施例一不同的是,本实施例中所述反应罐41内部设有多层催化剂床层42,且在除最下层催化剂床层42以外的各催化剂床层42底部设有进气口,用以将所述气体进料单元2输出的氢气输送至反应罐内部;所述气体进料预热单元23出口处设有多个分流管,用以将预热完成的氢气输送至各所述催化剂床层42底部的进气口处,并以此保证反应罐41内部的氢气含量。
当所述气体进料预热单元23对氢气完成预热后,会将氢气输出,在气体进料预热单元的出口处设有分流管,氢气在输出后开始分流并分别输送至对应的部件,一部分氢气输送至所述微界面发生器3中,被打碎形成微气泡并与柴油形成气液乳化物;另一部分氢气被输送至所述反应罐41内部并通过各所述进气口分别输送至各所述催化剂床层42底部,通过使反应罐41内部的氢气含量维持在指定范围从而保证反应罐41内气液乳化物中各物质的反应效率。
系统实施例四
请参阅图4所示,其为本发明实施例上置式微界面强化柴油加氢精制反应系统的结构示意图,该系统使用部件与所述系统实施例一相同。
与上述系统实施例一不同的是,本实施例中所述微界面发生器3设置在所述反应罐41的顶部,且反应罐41的出料口设置在罐体底部,用以使微界面发生器3输出的气液乳化物通过重力在反应罐41内部由上向下流动,以减少系统的能耗。
当所述第一微界面发生器31与第二微界面发生器32将气液乳化物输出至所述反应罐41后,气液乳化物位于反应罐41内部上方,并受到重力作用向下移动,在气液乳化物的移动过程中与所述催化剂床层42中催化剂接触并开始发生反应,并在反应完成后通过反应罐41底部的出料口输出至所述分离罐5。由于通过使用重力作用使气液乳化物向下移动,因此本实施例所述系统无需再为反应罐41内气液乳化物的移动提供动力,从而进一步减少所述系统所需能耗。
实验例一
下面结合图2进一步说明本发明所述系统的具体方法与效果。
一种微界面强化柴油加氢精制反应方法,包括以下步骤:
步骤1:在运行系统前向所述液体原料罐11中添加指定量的柴油,并向所述气体原料缓冲罐21中添加指定量的氢气;
步骤2:添加完成后启动系统,通过进料泵12从液体原料罐11中抽取柴油,通过压缩机22从气体原料缓冲罐21中抽取氢气;
步骤3:柴油流经液体进料预热器13,液体进料预热器13将柴油加热至指定温度,氢气流经气体进料预热器23,气体进料预热器23将氢气加热至指定温度;
步骤4:柴油在预热后进行分流,分流后的柴油会分别输送至对应的微界面发生器中,氢气在进行预热后进行分流,分流后的氢气会分别输送至对应的微界面发生器中;
步骤5:各所述微界面发生器会控制其接收柴油和氢气之间的比例,并对氢气打碎至微米尺度以形成微气泡,打碎完成后,各所述微界面发生器会将微气泡和柴油进行混合形成气液乳化物;
步骤6:各所述微界面发生器在混合完成后将气液乳化物输出至固定床反应器4,将固定床反应器内的压力控制在1-14MPa,温度控制在250-350℃,并使气液乳化物按指定方向流动;
步骤7:气液乳化物流经所述催化剂床层42,将气液乳化物的空速控制在2-5h
-1,使催化剂床层内设置的催化剂促进气液乳化物中柴油内部的硫元素与微气泡发生反应,生成脱硫脱氮柴油和硫化氢以及氨气以对柴油进行脱硫脱氮,硫化氢和氨气会与氢气形成混合气体;
步骤8:反应完成后,固定床反应器将脱硫脱氮柴油与混合气体形成的混合物输送至所述分离罐5,混合物在分离罐5内进行沉降,脱硫脱氮柴油沉降在分离罐5下层并由液相出口从系统中输出以进行后续处理,混合气体在脱硫脱氮柴油沉降后停留在分离罐5上层并由气相出口从系统中输出以进行后续处理。
具体而言,所述步骤5中各微界面发生器中柴油与氢气的混合比例为:第一 微界面发生器中氢气与柴油的标准体积比为0.2:1;第二微界面发生器中氢气与柴油的标准体积比为1000:1。
具体而言,所述步骤5中各所述微界面发生器在对氢气进行打碎后生成平均直径大于等于1μm,小于1mm微气泡。
使用上述方法并使用所述系统实施例二中的系统对柴油进行加氢脱硫脱氮,其中:
所述步骤6中固定反应器4内部的气压控制在6MPa,反应温度控制在270℃。
所述步骤7中的催化剂选用FZC-302型催化剂,气液乳化物的空速控制在2h
-1。
分别对系统运行前后的柴油进行检测,检测结果如下:
在系统处理前原料柴油中硫元素含量为220ppm,氮元素含量为150ppm;经系统处理后的脱硫脱氮柴油中硫元素含量下降至50ppm,氮元素含量下降至60ppm。
实验例二
本实验例所述方法的步骤与所述实验例一中的步骤相同。
使用上述方法并使用所述系统实施例一中的系统对柴油进行加氢脱硫脱氮,其中:
所述步骤5中各微界面发生器中柴油与氢气的混合比例为:第一微界面发生器中氢气与柴油的标准体积比为0.28:1;第二微界面发生器中氢气与柴油的标准体积比为900:1。
所述步骤5中各所述微界面发生器在对氢气进行打碎后生成平均直径大于等于1μm,小于1mm微气泡。
所述步骤6中固定反应器4内部的气压控制在11MPa,反应温度控制在300℃。
所述步骤7中的催化剂选用钼钨催化剂,气液乳化物的空速控制在3h
-1。
分别对系统运行前后的柴油进行检测,检测结果如下:
在系统处理前原料柴油中硫元素含量为220ppm,氮元素含量为150ppm;经系统处理后的脱硫脱氮柴油中硫元素含量下降至45ppm,氮元素含量下降至50ppm。
实验例三
本实验例所述方法的步骤与所述实验例一中的步骤相同。
使用上述方法并使用所述系统实施例一中的系统对柴油进行加氢脱硫脱氮,其中:
所述步骤5中各微界面发生器中柴油与氢气的混合比例为:第一微界面发生器中氢气与柴油的标准体积比为0.2:1;第二微界面发生器中氢气与柴油的标准体积比为700:1。
所述步骤5中各所述微界面发生器在对氢气进行打碎后生成平均直径大于等于1μm,小于1mm微气泡。
所述步骤6中固定反应器4内部的气压控制在14MPa,反应温度控制在330℃。
所述步骤7中的催化剂选用铁钴催化剂,气液乳化物的空速控制在5h
-1。
分别对系统运行前后的柴油进行检测,检测结果如下:
在系统处理前原料柴油中硫元素含量为220ppm,氮元素含量为150ppm;经系统处理后的脱硫脱氮柴油中硫元素含量下降至30ppm,氮元素含量下降至40ppm。
对比例一
本对比例一选用现有技术中的常规固定床反应器系统对柴油进行脱硫改质,其中:
所述固定床反应器中催化剂选用FZC-302型催化剂,固定床反应器内的反应温度为400℃,氢气压力为20MPa,氢油体积比为1200:1,混合物空速为1h
-1。
分别对系统运行前后的柴油进行检测,检测结果如下:
在系统处理前原料柴油中硫元素含量为220ppm,氮元素含量为150ppm;经系统处理后的脱硫脱氮柴油中硫元素含量下降至65ppm,氮元素含量下降至70ppm。
将上述三实验例与对比例中工艺参数与处理后的硫含量进行统计,统计结果如表1所示:
表1各实施例系统对柴油进行处理的数据对比图
由此可见,本发明所述微界面强化柴油加氢精制反应系统及方法在中低压以及低温的环境下即可对柴油中的硫元素进行有效地去除。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种微界面强化柴油加氢精制反应系统,其特征在于,包括:液相进料单元,用以存储和输送柴油;气相进料单元,用以存储和输送氢气;至少一个微界面发生器,其分别与所述液相进料单元和气相进料单元相连,将气体的压力能和/或液体的动能转变为气泡表面能并传递给氢气气泡,使氢气破碎形成直径大于等于1μm,小于1mm的微气泡以提高柴油与氢气间的传质面积,并在破碎后将柴油与微气泡混合形成气液乳化物,以在预设压力范围内强化柴油与氢气间反应效率;固定床反应器,其与所述微界面发生器相连,用以装载气液乳化物并为气液乳化物中的柴油和微气泡提供反应空间;分离罐,用以将所述固定床反应器中反应完成的脱硫脱氮柴油与混合气体的混合物进行气液分离。
- 根据权利要求1所述的微界面强化柴油加氢精制反应系统,其特征在于,当所述微界面发生器的数量大于等于两个时,各所述微界面发生器平行设置,且设置方式为串联和/或并联,用以将混合后的气液乳化物输出至所述固定床反应器以进行反应。
- 根据权利要求2所述的微界面强化柴油加氢精制反应系统,其特征在于,所述微界面发生器为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器中的一种或多种。
- 根据权利要求1所述的微界面强化柴油加氢精制反应系统,其特征在于,所述液相进料单元包括:液体原料罐,用以存储柴油;进料泵,其与所述液体原料罐相连,用以为柴油的输送提供动力;液体进料预热器,其与所述进料泵相连,用以对所述进料泵输送的柴油进行预热以使柴油达到指定温度,所述液体进料预热器出口处设有分流管道,用以将柴油分别输送至对应的微界面发生器;当所述液相进料单元在输送柴油时,所述进料泵开始运作,将柴油从所述液体原料罐中抽出并输送至所述液体进料预热器,液体进料预热器将柴油加热至指定温度后将柴油输送至所述微界面发生器。
- 根据权利要求1所述的微界面强化柴油加氢精制反应系统,其特征在于,所述气相进料单元包括:气体原料缓冲罐,用以储存氢气;压缩机,其与所述气体原料缓冲罐相连,用以为氢气的输送提供动力;气体进料预热器,其与所述压缩机相连,用以对所述压缩机输送的氢气进行预热以使氢气达到指定温度,所述气体进料预热器出口处设有分流管道,用以将氢气分别输送至对应的微界面发生器;当所述气相进料单元在输送氢气时,所述压缩机开始运作,将氢气从所述气体原料缓冲罐中抽出并输送至所述气体进料预热器进行预热,预热完成后气体进料预热器将氢气输送至所述微界面发生器以使微界面发生器将氢气破碎至指定尺寸。
- 根据权利要求1所述的微界面强化柴油加氢精制反应系统,其特征在于,所述固定床反应器包括:反应罐,其为一罐体,用以为气液乳化物提供反应空间,反应罐中设有出料口,用以输出反应后的脱硫脱氮柴油以及混合气体;至少一层催化剂床层,其固定在所述反应罐内部的指定位置,催化剂床层内设有催化剂,用以提高气液乳化物中各物质的反应效率,当气液乳化物在流经催化剂床层时,催化剂床层内的催化剂会与气液乳化物接触并促进气液乳化物之间的反应以提高气液乳化物中各物质的反应效率。
- 根据权利要求1所述的微界面强化柴油加氢精制反应系统,其特征在于,所述分离罐顶端设有气相出口,用以输送混合气体,分离罐底端设有液相出口,用以输送脱硫脱氮柴油,当所述固定床反应器内的气液乳化物反应完成后,分离罐将反应后的混合物输送至所述分离罐,混合物中脱硫脱氮柴油受重力作用沉降至分离罐底端并经由液相出口从所述系统中输出,混合物中的混合气体经由气相出口从所述系统中输出。
- 一种微界面强化柴油加氢精制反应方法,其特征在于,包括:步骤1:在运行系统前向所述液体原料罐中添加指定量的柴油,并向所述气体原料缓冲罐中添加指定量的氢气;步骤2:添加完成后启动系统,通过进料泵从液体原料罐中抽取柴油,通过 压缩机从气体原料缓冲罐中抽取氢气;步骤3:柴油流经液体进料预热器,液体进料预热器将柴油加热至指定温度,氢气流经气体进料预热器,气体进料预热器将氢气加热至指定温度;步骤4:柴油在预热后进行分流,分流后的柴油会分别输送至对应的微界面发生器,氢气在进行预热后进行分流,分流后的氢气会分别输送至对应的微界面发生器;步骤5:各所述微界面发生器会控制其接收柴油和氢气之间的比例,并对氢气打碎至微米尺度以形成微气泡,打碎完成后,各所述微界面发生器会将微气泡柴油和进行混合形成气液乳化物;步骤6:各所述微界面发生器在混合完成后将气液乳化物输出至固定床反应器,控制固定床反应器内的压力和温度,并使气液乳化物按指定方向流动;步骤7:气液乳化物流经所述催化剂床层,控制气液乳化物空速,使催化剂床层内设置的催化剂促进气液乳化物中柴油内部的硫元素与微气泡发生反应,生成脱硫脱氮柴油、硫化氢和氨气以对柴油进行脱硫脱氮,硫化氢和氨气会与氢气形成混合气体;步骤8:反应完成后,固定床反应器将脱硫脱氮柴油与混合气体形成的混合物输送至所述分离罐,混合物在分离罐内进行沉降,脱硫脱氮柴油沉降在分离罐下层并由液相出口从系统中输出以进行后续处理,混合气体在脱硫脱氮柴油沉降后停留在分离罐上层并由气相出口将混合气体输出系统以进行后续处理。
- 根据权利要求8所述的一种微界面强化柴油加氢精制反应方法,其特征在于,所述步骤6中固定床反应器内的反应压力为1-14MPa,反应温度为250-350℃。
- 根据权利要求8所述的一种微界面强化柴油加氢精制反应方法,其特征在于,所述步骤7中气液乳化物的空速为2-5h -1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910196586.6 | 2019-03-15 | ||
CN201910196586.6A CN111359542A (zh) | 2019-03-15 | 2019-03-15 | 一种微界面强化柴油加氢精制反应系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020186639A1 true WO2020186639A1 (zh) | 2020-09-24 |
Family
ID=71200206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090306 WO2020186639A1 (zh) | 2019-03-15 | 2019-06-06 | 一种微界面强化柴油加氢精制反应系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111359542A (zh) |
WO (1) | WO2020186639A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111871333B (zh) * | 2020-07-16 | 2023-06-27 | 南京延长反应技术研究院有限公司 | 一种蒽油加氢的微界面反应系统及方法 |
CN111871332A (zh) * | 2020-07-16 | 2020-11-03 | 南京延长反应技术研究院有限公司 | 一种蒽油加氢的反应系统及方法 |
CN111871337A (zh) * | 2020-07-16 | 2020-11-03 | 南京延长反应技术研究院有限公司 | 一种柴油加氢的微界面反应系统及方法 |
CN111871339A (zh) * | 2020-07-16 | 2020-11-03 | 南京延长反应技术研究院有限公司 | 一种柴油加氢的反应系统及方法 |
CN113035285B (zh) * | 2021-04-01 | 2023-04-11 | 南京延长反应技术研究院有限公司 | 微气泡尺寸对油品加氢脱硫效果影响的计算方法 |
CN117923426B (zh) * | 2024-01-19 | 2024-06-18 | 上海中弗新能源科技股份有限公司 | 一种界面强化柴油重整制氢的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4102778A (en) * | 1975-04-10 | 1978-07-25 | Ruether John A | Method and apparatus for carrying out hydrogenation reactions |
CN101588864A (zh) * | 2007-06-27 | 2009-11-25 | Hrd有限公司 | 加氢脱硫、加氢脱氮或加氢精制的系统和方法 |
CN102051207A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种悬浮床加氢技术的强化传质方法 |
CN105733662A (zh) * | 2014-12-10 | 2016-07-06 | 中国石油天然气股份有限公司 | 一种液相加氢反应器及工艺方法 |
CN107561938A (zh) * | 2017-08-30 | 2018-01-09 | 南京大学 | 微界面强化反应器反应速率构效调控模型建模方法 |
CN109225073A (zh) * | 2018-09-17 | 2019-01-18 | 清华大学 | 一种微填充床内加氢反应装置及其进行加氢反应的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6776898B1 (en) * | 2000-04-04 | 2004-08-17 | Exxonmobil Research And Engineering Company | Process for softening fischer-tropsch wax with mild hydrotreating |
CN102311790B (zh) * | 2010-07-07 | 2013-12-04 | 中国石油化工股份有限公司 | 一种提高混氢量的液相循环加氢处理方法 |
CN103666545B (zh) * | 2012-09-21 | 2015-09-23 | 中国石油化工股份有限公司 | 一种柴油加氢精制方法 |
CN103789005B (zh) * | 2012-11-03 | 2016-03-02 | 中国石油化工股份有限公司 | 一种两相加氢反应器中的溶氢方法 |
CN105647577B (zh) * | 2014-11-13 | 2017-10-17 | 中国石油天然气股份有限公司 | 一种烃类连续液相加氢工艺方法及其装置 |
CN107474875B (zh) * | 2017-09-22 | 2019-04-26 | 北京化工大学 | 一种超重力柴油和汽油加氢精制的方法 |
-
2019
- 2019-03-15 CN CN201910196586.6A patent/CN111359542A/zh active Pending
- 2019-06-06 WO PCT/CN2019/090306 patent/WO2020186639A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4102778A (en) * | 1975-04-10 | 1978-07-25 | Ruether John A | Method and apparatus for carrying out hydrogenation reactions |
CN101588864A (zh) * | 2007-06-27 | 2009-11-25 | Hrd有限公司 | 加氢脱硫、加氢脱氮或加氢精制的系统和方法 |
CN102051207A (zh) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | 一种悬浮床加氢技术的强化传质方法 |
CN105733662A (zh) * | 2014-12-10 | 2016-07-06 | 中国石油天然气股份有限公司 | 一种液相加氢反应器及工艺方法 |
CN107561938A (zh) * | 2017-08-30 | 2018-01-09 | 南京大学 | 微界面强化反应器反应速率构效调控模型建模方法 |
CN109225073A (zh) * | 2018-09-17 | 2019-01-18 | 清华大学 | 一种微填充床内加氢反应装置及其进行加氢反应的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111359542A (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020186639A1 (zh) | 一种微界面强化柴油加氢精制反应系统及方法 | |
US11345865B2 (en) | Micro-interface strengthening reaction system and method for preparing ship fuel | |
CN210079476U (zh) | 一种微界面强化沸腾床加氢反应系统 | |
US8371741B2 (en) | System and process for hydrodesulfurization, hydrodenitrogenation, or hydrofinishing | |
CN102311790B (zh) | 一种提高混氢量的液相循环加氢处理方法 | |
CN102596386B (zh) | 一种沸腾床反应器及其加氢方法 | |
CN102049220B (zh) | 一种强化沸腾床加氢反应器气液传质的方法 | |
WO2020186644A1 (zh) | 一种下行式固定床油品加氢微界面强化反应系统 | |
CN109679690A (zh) | 一种液相加氢系统及液相加氢方法 | |
CN101942327A (zh) | 生产超低硫柴油的加氢处理组合工艺方法 | |
CN111068589B (zh) | 一种液相加氢系统及液相加氢方法 | |
WO2020186637A1 (zh) | 一种微界面强化沸腾床加氢反应系统 | |
CN111686646A (zh) | 一种汽油加氢脱硫改质微界面强化反应系统及方法 | |
WO2020186641A1 (zh) | 一种微界面强化蜡油加氢反应系统及方法 | |
CN210176767U (zh) | 一种过氧化氢对孟烷的制备的强化系统 | |
CN102311761A (zh) | 一种低氢油比的加氢处理方法和反应器 | |
WO2020186640A1 (zh) | 一种微界面强化润滑油加氢精制反应系统及方法 | |
CN108659882B (zh) | 一种重油加氢方法及其加氢系统 | |
CN111686643A (zh) | 一种上行式固定床油品加氢微界面强化反应系统 | |
CN111686657A (zh) | 一种油煤共加氢微界面强化沸腾床反应系统 | |
CN112175667A (zh) | 一种混合油加氢微界面强化反应系统及方法 | |
AU2020102485A4 (en) | Micro-interface strengthening reaction system and method for preparing ship fuel by means of heavy oil hydrogenation | |
WO2020186638A1 (zh) | 一种重油加氢微界面强化悬浮床反应系统及方法 | |
CN111686651A (zh) | 一种微界面强化悬浮床加氢反应系统及方法 | |
CN112175664A (zh) | 一种航空煤油加氢微界面强化反应系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19920235 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19920235 Country of ref document: EP Kind code of ref document: A1 |