WO2020186570A1 - 抗反射膜及其制作方法、显示面板 - Google Patents

抗反射膜及其制作方法、显示面板 Download PDF

Info

Publication number
WO2020186570A1
WO2020186570A1 PCT/CN2019/081668 CN2019081668W WO2020186570A1 WO 2020186570 A1 WO2020186570 A1 WO 2020186570A1 CN 2019081668 W CN2019081668 W CN 2019081668W WO 2020186570 A1 WO2020186570 A1 WO 2020186570A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
oligomer
manufacturing
film
azobenzene
Prior art date
Application number
PCT/CN2019/081668
Other languages
English (en)
French (fr)
Inventor
韦宏权
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020186570A1 publication Critical patent/WO2020186570A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to the field of display technology, in particular to an anti-reflection film, a manufacturing method thereof, and a display panel.
  • the moth-eye structure is a technology that uses a method different from LR processing and AG processing to further improve the visibility of bright areas. It can achieve super anti-reflection effect without using light interference. It is better than AG on the surface of objects that need anti-reflection treatment.
  • the structure in which the concave-convex patterns with nano-sized intervals below the visible light wavelength are arranged without gaps, due to the nano-sized effect, has ultra-low reflectivity, so that the light on the surface of the article can be almost completely reflected eliminate.
  • the methods of preparing moth-eye micro-nano structures on substrates mainly include electron beam etching, photolithography, nanoimprinting, and polymer copolymerization.
  • the above-mentioned etching, photolithography, and nanoimprinting methods are
  • the production process of the moth-eye micro/nano structure is complicated, the technical requirements are high, and the equipment cost is relatively expensive; and the polymer copolymerization method, as an emerging preparation process in recent years, although the production process is simple, it requires an annealing process. In this way, a micro-nano structured surface is obtained, but the annealing process usually takes a week or even a month to obtain a uniform micro-nano surface, and the production efficiency is greatly reduced.
  • the purpose of the present invention is to provide a method for manufacturing an anti-reflective film, which utilizes the microphase separation of the copolymer to make an anti-reflective film with a moth-eye structure, with simple process, low production cost and high production efficiency.
  • the object of the present invention is also to provide an anti-reflection film with a moth-eye structure with excellent anti-reflection properties and a simple manufacturing method.
  • Another object of the present invention is to provide a display panel which adopts the above-mentioned anti-reflection film and has an ultra-low reflectivity.
  • the present invention provides a manufacturing method of an anti-reflection film, which includes the following steps:
  • Step S1 Provide a substrate and a copolymer solution, and coat the surface of the substrate with the copolymer solution;
  • the copolymer solution includes a solvent and a copolymer, and the copolymer is formed by copolymerizing an azobenzene oligomer and a cyanobiphenyl oligomer, wherein the azobenzene oligomer has light responsiveness ;
  • Step S2 heating the copolymer solution on the surface of the substrate to volatilize the solvent in the copolymer solution to obtain a copolymer film;
  • the general structural formula of the copolymer is:
  • n 0-7
  • a and b are natural numbers, and a+b ⁇ 100.
  • the solvent in the copolymer solution is chloroform, tetrahydrofluoroan or toluene.
  • the heating temperature for heating the copolymer film is 40-100°C.
  • the ultraviolet light is polarized ultraviolet light
  • the wavelength of the ultraviolet light is 300-400 nm
  • the illuminance is 1-100 mW/cm 2
  • the irradiation time is 1-60 min.
  • the material of the substrate is glass, PET, PC or PI.
  • the present invention also provides an anti-reflective film, the surface of which has a micro-protrusion structure, and the material of the anti-reflective film includes a copolymer, and the copolymer is formed by copolymerizing an azobenzene oligomer and a cyanobiphenyl oligomer, wherein ,
  • the azobenzene-based oligomer has light responsiveness.
  • the general structural formula of the copolymer is:
  • n 0-7
  • a and b are natural numbers, and a+b ⁇ 100.
  • the present invention also provides a display panel including the anti-reflection film as described above.
  • the method for manufacturing the anti-reflective film of the present invention uses the microphase separation of a copolymer to form an anti-reflective film with a moth-eye structure.
  • the copolymer is copolymerized by two types of oligomers, one of which is It is a photo-responsive azobenzene oligomer, and the other is a non-photo-responsive cyanobiphenyl oligomer.
  • the method of production first forms a copolymer film on the surface of the substrate, and then the copolymer film Heating and ultraviolet light irradiation are carried out at the same time.
  • the azobenzene oligomer segment in the copolymer has the characteristics of light response, it will undergo a process of reorientation under ultraviolet light irradiation and become a vertical arrangement, while cyanobiphenyl
  • the oligomer-like segments do not change, and are arranged horizontally, causing the copolymer to undergo microphase separation, thereby forming a nano-sized micro-protruding structure on the surface of the copolymer film, and a moth eye with excellent anti-reflective properties can be obtained.
  • the structure of the anti-reflection film, and the use of the anti-reflection film to obtain a display panel with low reflectivity, the manufacturing method has simple process, low cost, no complicated and expensive equipment, and high production efficiency.
  • the material of the anti-reflection film of the present invention includes a copolymer formed by copolymerization of two types of oligomers, one of which is a light-responsive azobenzene oligomer, and the other is A non-photoresponsive cyanobiphenyl oligomer.
  • the anti-reflection film has a moth-eye structure with excellent anti-reflection properties and a simple manufacturing method.
  • the display panel of the present invention adopts the above-mentioned anti-reflection film and has an ultra-low reflectivity.
  • Figure 2-3 is a schematic diagram of step S3 of the method for manufacturing the anti-reflection film of the present invention.
  • the present invention provides a method for manufacturing an anti-reflection film, which includes the following steps:
  • Step S1 Provide a substrate and a copolymer solution, and coat the surface of the substrate with the copolymer solution.
  • the copolymer solution includes a solvent and a copolymer, and the copolymer is formed by copolymerizing azobenzene oligomer A and cyanobiphenyl oligomer B, that is, the general structural formula of the copolymer is a and b are natural numbers, and a+b ⁇ 100; wherein, the azobenzene oligomer A is a light-responsive oligomer, and the cyanobiphenyl oligomer B is a non-photo-responsive low Polymer.
  • n 0-3;
  • the general structural formula of the cyanobiphenyl oligomer B is:
  • n 0-7;
  • the solvent in the copolymer solution may be chloroform, tetrahydrofluorofuran, toluene, or the like.
  • the material of the substrate may be glass, or a transparent polymer material such as PET (polyethylene terephthalate), PC (polycarbonate) or PI (polyimide).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • Step S2 heating the copolymer solution on the surface of the substrate to volatilize the solvent in the copolymer solution to obtain a copolymer film.
  • the heating temperature for heating the copolymer solution is 70-220°C.
  • Step S3 the copolymer film is heated and simultaneously irradiated with ultraviolet light (UV).
  • the azobenzene oligomer segment in the copolymer is irradiated with ultraviolet light. Oriented arrangement.
  • the azobenzene oligomer A segment in the copolymer has the characteristics of light response, it will undergo a reorientation process under ultraviolet light irradiation and become a vertical arrangement, while the cyanobiphenyls
  • the oligomer B segment does not change and is arranged horizontally, so that the copolymer undergoes microphase separation, and a randomly uniformly distributed microprotrusion structure is formed on the surface of the copolymer film, resulting in a moth-eye structure with excellent anti-reflection properties The anti-reflective film.
  • a+b will have a variety of different random combinations, so that micro-protrusion structures with different refractive index gradients can be obtained, so that the anti-reflection film has ultra-low reflectivity and wide wavelength reflection.
  • the ultraviolet light is polarized ultraviolet light
  • the wavelength of the ultraviolet light is 300-400nm
  • the illuminance is 1-100mW/cm 2
  • the irradiation time is 1- 60min.
  • the present invention provides a method for manufacturing an anti-reflective film.
  • the anti-reflective film with a moth-eye structure is formed by using the microphase separation of a copolymer.
  • the copolymer is formed by copolymerizing two types of oligomers, one of which is light-responsive Type azobenzene oligomer, and the other is non-photoresponsive cyanobiphenyl oligomer.
  • a copolymer film is formed on the surface of the substrate.
  • the copolymer is copolymerized by two types of oligomers. One is a light-responsive azobenzene oligomer and the other is a non-light-responsive cyanobiphenyl oligomer.
  • the copolymer film is heated and irradiated with ultraviolet light at the same time. Since the azobenzene oligomer segment in the copolymer has the characteristics of light response, it will undergo a reorientation process under ultraviolet light irradiation and become a vertical arrangement, while the cyanobiphenyl oligomer segment does not The change occurs horizontally, so that the copolymer undergoes microphase separation, and a nano-sized microprotrusion structure is formed on the surface of the copolymer film. By adjusting the ratio of the two types of oligomers in the polymer, the microprotrusion can be obtained.
  • the refractive index changes in the depth of the structure to obtain an anti-reflection film with a moth-eye structure with excellent anti-reflection properties, and then transfer or attach the formed anti-reflection film to the surface of the display panel to obtain an ultra-low reflectance display
  • the manufacturing method has a simple process, low cost, no complicated and expensive equipment, and high production efficiency.
  • the general structural formula of the copolymer is:
  • the micro-protrusion structure is formed on the surface to obtain the anti-reflection film with the moth-eye structure of the present invention, and the manufacturing method is simple and easy to implement. Further, the anti-reflection film is applied to a display to obtain a display panel with ultra-low reflectivity.
  • the present invention also provides a display panel including the above-mentioned anti-reflection film.
  • the specific technical features of the anti-reflective film are the same as those of the above-mentioned embodiment, and will not be repeated here.
  • the display panel of the present invention uses the above-mentioned anti-reflective film with an excellent anti-reflective moth-eye structure, and therefore has an ultra-low reflectance.
  • the method for manufacturing the anti-reflective film of the present invention uses the microphase separation of the copolymer to form an anti-reflective film with a moth-eye structure.
  • the copolymer is formed by copolymerizing two types of oligomers, one of which is The photo-responsive azobenzene oligomer and the non-photo-responsive cyanobiphenyl oligomer.
  • the production method first forms a copolymer film on the surface of the substrate, and then simultaneously Heating and ultraviolet light irradiation, because the azobenzene oligomer segment in the copolymer has the characteristic of light response, it will undergo a process of reorientation under ultraviolet light irradiation and become a vertical arrangement, while the cyanobiphenyl
  • the oligomer segments remain unchanged and are arranged horizontally, allowing the copolymer to undergo microphase separation, thereby forming nano-sized micro-protrusions on the surface of the copolymer film, and a moth-eye structure with excellent anti-reflective properties can be obtained
  • the material of the anti-reflection film of the present invention includes a copolymer formed by copolymerization of two types of oligomers, one of which is a light-responsive azobenzene oligomer, and the other is A non-photoresponsive cyanobiphenyl oligomer.
  • the anti-reflection film has a moth-eye structure with excellent anti-reflection properties and a simple manufacturing method.
  • the display panel of the present invention adopts the above-mentioned anti-reflection film and has an ultra-low reflectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种抗反射膜及其制作方法、显示面板,通过利用共聚物的微相分离形成具有蛾眼结构的抗反射膜,该共聚物由光响应型的偶氮苯类低聚物和非光响应型的氰基联苯类低聚物共聚而成,首先在基板表面形成共聚物薄膜,然后对共聚物薄膜同时进行加热和紫外光照射,由于共聚物中的偶氮苯类低聚物链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚物链段则不发生变化,为水平排列,使得共聚物发生微相分离,从而在该共聚物薄膜表面形成纳米尺寸的微凸起结构,便可得到具有优异抗反射性的蛾眼结构的抗反射膜,进而利用该抗反射膜可得到具有低反射率的显示面板,该制作方法的工艺简单,成本低廉,无需复杂昂贵的设备,生产效率高。

Description

抗反射膜及其制作方法、显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种抗反射膜及其制作方法、显示面板。
背景技术
对于电子显示器的表面,要求其具有防损伤功能、防外光映入功能等各种功能,而作为实现防外光映入功能的方法,可以举出如下方法:在显示面板表面覆盖低反射(Low Reflection,LR)层,但是,由于不同层之间的反射作用不同,如LR层与空气,LR层与偏光片,显示面板上的反射光不会被LR层完全抵消。因此,仅通过进行LR处理,显示面板还是以一定的反射率反射周围光,因此,当光源映入显示面板中,将非常难以看清显示画面。因此,又需要进一步对显示面板进行防眩(Anti Glare,AG)处理,所述防眩处理是在显示面板表面形成细微的凹凸图案,用光的散射效果来防止外光映入,但AG处理又容易使显示变得模糊。
1967年Bernhard等人首次发现了蛾眼(Moth-eye)的微纳米结构,此类结构具有较好的抗反射特性,受到人们的广泛研究。蛾眼结构作为利用与LR处理和AG处理不同的方法进一步改善明亮处的视觉识别性的技术,无需使用光干涉就能够得到超防反射效果,是在需进行防反射处理的物品表面将比AG处理时更微细的、可见光波长以下的具有纳米尺寸的间隔的凹凸图案无间隙地排列的结构,由于其纳米尺寸的效应,具有超低的反射率,从而可以将该物品表面的光反射几乎完全消除。
目前在基板上制备蛾眼微纳米结构的方法主要由电子束刻蚀法、光刻法、纳米压印法和高分子共聚等方法,上述刻蚀法、光刻法、纳米压印法在制备蛾眼微纳米结构时生产工艺复杂,技术要求较高,而且需要较为昂贵的设备成本;而高分子共聚的方法,作为最近几年新兴的制备工艺,虽然生产工艺简单,但其需要退火过程,从而获得微纳米结构的表面,但通常退火过程需要持续一周,甚至一个月的时间,方可获得均一的微纳米表面,生产效率大大降低。
发明内容
本发明的目的在于提供一种抗反射膜的制作方法,利用共聚物的微相 分离制作具有蛾眼结构的抗反射膜,工艺简单,生产成本低,且生产效率高。
本发明的目的还在于提供一种抗反射膜,具有优异抗反射特性的蛾眼结构,且制作方法简单。
本发明的目的又在于提供一种显示面板,采用上述的抗反射膜,具有超低反射率。
为实现上述目的,本发明提供一种抗反射膜的制作方法,包括如下步骤:
步骤S1、提供基板及共聚物溶液,在所述基板表面涂覆共聚物溶液;
所述共聚物溶液包括溶剂及共聚物,所述共聚物由偶氮苯类低聚物和氰基联苯类低聚物共聚而成,其中,该偶氮苯类低聚物具有光响应性;
步骤S2、对所述基板表面的共聚物溶液进行加热,使该共聚物溶液中的溶剂挥发,得到共聚物薄膜;
步骤S3、对所述共聚物薄膜进行加热,并同时进行紫外光照射,此时共聚物的偶氮苯类低聚物链段在紫外光照射下定向排列,使得共聚物发生微相分离,从而在该共聚物薄膜表面形成微凸起结构,得到抗反射膜。
所述共聚物的结构通式为:
Figure PCTCN2019081668-appb-000001
其中,m为0-3,n为0-7,a、b为自然数,且a+b<100。
所述共聚物溶液中的溶剂为氯仿、四氢氟喃或甲苯。
所述步骤2中,对所述共聚物溶液进行加热的加热温度为70-220℃。
所述步骤S3中,对所述共聚物薄膜进行加热的加热温度为40-100℃。
所述步骤S3中,对所述共聚物薄膜进行紫外光照射时,紫外光为紫外线偏振光,紫外光波长为300-400nm,照度为1-100mW/cm 2,照射时间为1-60min。
所述基板的材料为玻璃、PET、PC或PI。
本发明还提供一种抗反射膜,其表面具有微凸起结构,其材料包括共聚物,所述共聚物由偶氮苯类低聚物和氰基联苯类低聚物共聚而成,其中,该偶氮苯类低聚物具有光响应性。
所述共聚物的结构通式为:
Figure PCTCN2019081668-appb-000002
其中,m为0-3,n为0-7,a、b为自然数,且a+b<100。
本发明还提供一种显示面板,包括如上所述的抗反射膜。
本发明的有益效果:本发明的抗反射膜的制作方法,通过利用共聚物的微相分离形成具有蛾眼结构的抗反射膜,该共聚物由两类低聚物共聚而成,其中一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,该制作方法首先在基板表面形成一种共聚物薄膜,然后对共聚物薄膜同时进行加热和紫外光照射,由于共聚物中的偶氮苯类低聚物链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚物链段则不发生变化,为水平排列,使得共聚物发生微相分离,从而在该共聚物薄膜表面形成纳米尺寸的微凸起结构,便可得到具有优异抗反射性的蛾眼结构的抗反射膜,进而利用该抗反射膜可得到具有低反射率的显示面板,该制作方法的工艺简单,成本低廉,无需复杂昂贵设备,生产效率高。本发明的抗反射膜,其材料包括由两类低聚物共聚而成的共聚物,该两类低聚物中的一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,该抗反射膜具有优异抗反射特性的蛾眼结构,且制作方法简单。本发明的显示面板,采用上述的抗反射膜,具有超低反射率。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明的抗反射膜的制作方法的结构示意图;
图2-3为本发明的抗反射膜的制作方法的步骤S3的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种抗反射膜的制作方法,包括如下步骤:
步骤S1、提供基板及共聚物溶液,在所述基板表面涂覆共聚物溶液。
所述共聚物溶液包括溶剂及共聚物,所述共聚物由偶氮苯类低聚物A和氰基联苯类低聚物B共聚而成,即共聚物的结构通式为
Figure PCTCN2019081668-appb-000003
a、b为自然数,且a+b<100;其中,该偶氮苯类低聚物A为光响应型的低聚物,而氰基联苯类低聚物B为非光响应型的低聚物。
进一步地,该偶氮苯类低聚物A的结构通式为:
Figure PCTCN2019081668-appb-000004
其中,m为0-3;
该氰基联苯类低聚物B的结构通式为:
Figure PCTCN2019081668-appb-000005
其中,n为0-7;
即该共聚物的结构通式具体为:
Figure PCTCN2019081668-appb-000006
具体地,所述共聚物溶液中的溶剂可以为氯仿、四氢氟喃或甲苯等。
具体地,所述基板的材料可以为玻璃,也可以为透明高分子材料如PET(聚对苯二甲酸乙二酯)、PC(聚碳酸酯)或PI(聚酰亚胺)。
步骤S2、对所述基板表面的共聚物溶液进行加热,使该共聚物溶液中的溶剂挥发,得到共聚物薄膜。
具体地,所述步骤2中,对所述共聚物溶液进行加热的加热温度为70-220℃。
步骤S3、如图2-3所示,对所述共聚物薄膜进行加热,并同时进行紫外光(UV)照射,所述共聚物内的偶氮苯类低聚物链段在紫外光照射下定向排列,此时,由于共聚物中的偶氮苯类低聚物A链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚 物B链段则不发生变化,为水平排列,从而使得共聚物发生微相分离,在该共聚物薄膜表面形成随机均匀分布的微凸起结构,得到具有优异抗反射特性的蛾眼结构的抗反射膜。
需要说明的是,通过在共聚物中选取多种不同分子量的偶氮苯类低聚物A,以及偶氮苯类低聚物A与氰基联苯类低聚物B的不同配比,即其化学通式中a+b会有多种不同的随机组合,从而可以获得具有不同折射率梯度的微凸起结构,使得该抗反射膜具有超低反射率和宽的波长反射。
具体地,所述步骤S3中,对所述共聚物薄膜进行加热的加热温度为40-100℃。
具体地,所述步骤S3中,对所述共聚物薄膜进行紫外光照射时,紫外光为紫外线偏振光,紫外光波长为300-400nm,照度为1-100mW/cm 2,照射时间为1-60min。
本发明提供了一种抗反射膜的制作方法,通过利用共聚物的微相分离形成具有蛾眼结构的抗反射膜,该共聚物由两类低聚物共聚而成,其中一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,首先在基板表面形成一种共聚物的薄膜,该共聚物由两类低聚物共聚而成,其中一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,然后对共聚物薄膜同时进行加热和紫外光照射,由于共聚物中的偶氮苯类低聚物链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚物链段则不发生变化,为水平排列,从而使得共聚物发生微相分离,在该共聚物薄膜表面形成纳米尺寸的微凸起结构,通过调节聚合物中两类低聚物的比例,可获得具有随微凸起结构深度变化的折射率,从而得到具有优异抗反射性的蛾眼结构的抗反射膜,进而将所形成的抗反射膜转移或贴附至显示面板表面,便可获得超低反射率的显示面板,该制作方法的工艺简单,成本低廉,无需复杂昂贵设备,生产效率高。
本发明还提供一种抗反射膜,其表面具有微凸起结构,其材料包括共聚物,所述共聚物由偶氮苯类低聚物和氰基联苯类低聚物共聚而成,其中,该偶氮苯类低聚物具有光响应性。
具体地,所述共聚物的结构通式为:
Figure PCTCN2019081668-appb-000007
其中,m为0-3,n为0-7,a、b为自然数,且a+b<100。
本发明的抗反射膜,其材料包括由两类低聚物共聚而成的共聚物,该两类低聚物中的一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,那么通过对该共聚物的薄膜同时进行加热和紫外光照射,由于共聚物中的偶氮苯类低聚物链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚物链段则不发生变化,为水平排列,使得共聚物发生微相分离,在该共聚物薄膜表面形成微凸起结构,便可得到本发明的具有蛾眼结构的抗反射膜,制作方法简单易行,进一步将该抗反射膜应用于显示器中,便可获得超低反射率的显示面板。
基于上述的抗反射膜,本发明还提供一种显示面板,包括如上所述的抗反射膜。所述抗反射膜的具体技术特征与上述实施例相同,在此不再赘述。
本发明的显示面板,采用上述具有优异抗反射性的蛾眼结构的抗反射膜,因此具有超低反射率。
综上所述,本发明的抗反射膜的制作方法,通过利用共聚物的微相分离形成具有蛾眼结构的抗反射膜,该共聚物由两类低聚物共聚而成,其中一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,该制作方法首先在基板表面形成一种共聚物薄膜,然后对共聚物薄膜同时进行加热和紫外光照射,由于共聚物中的偶氮苯类低聚物链段具有光响应的特性,会在紫外光照射下发生再定向的过程,变成垂直排列,而氰基联苯类低聚物链段则不发生变化,为水平排列,使得共聚物发生微相分离,从而在该共聚物薄膜表面形成纳米尺寸的微凸起结构,便可得到具有优异抗反射性的蛾眼结构的抗反射膜,进而利用该抗反射膜可得到具有低反射率的显示面板,该制作方法的工艺简单,成本低廉,无需复杂昂贵设备,生产效率高。本发明的抗反射膜,其材料包括由两类低聚物共聚而成的共聚物,该两类低聚物中的一种为光响应型的偶氮苯类低聚物,另一种为非光响应型的氰基联苯类低聚物,该抗反射膜具有优异抗反射特性的 蛾眼结构,且制作方法简单。本发明的显示面板,采用上述的抗反射膜,具有超低反射率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种抗反射膜的制作方法,包括如下步骤:
    步骤S1、提供基板及共聚物溶液,在所述基板表面涂覆共聚物溶液;
    所述共聚物溶液包括溶剂及共聚物,所述共聚物由偶氮苯类低聚物和氰基联苯类低聚物共聚而成,其中,该偶氮苯类低聚物具有光响应性;
    步骤S2、对所述基板表面的共聚物溶液进行加热,使该共聚物溶液中的溶剂挥发,得到共聚物薄膜;
    步骤S3、对所述共聚物薄膜进行加热,并同时进行紫外光照射,此时共聚物的偶氮苯类低聚物链段在紫外光照射下定向排列,使得共聚物发生微相分离,从而在该共聚物薄膜表面形成微凸起结构,得到抗反射膜。
  2. 如权利要求1所述的抗反射膜的制作方法,其中,所述共聚物的结构通式为:
    Figure PCTCN2019081668-appb-100001
    其中,m为0-3,n为0-7,a、b为自然数,且a+b<100。
  3. 如权利要求1所述的抗反射膜的制作方法,其中,所述共聚物溶液中的溶剂为氯仿、四氢氟喃或甲苯。
  4. 如权利要求2所述的抗反射膜的制作方法,其中,所述步骤2中,对所述共聚物溶液进行加热的加热温度为70-220℃。
  5. 如权利要求2所述的抗反射膜的制作方法,其中,所述步骤S3中,对所述共聚物薄膜进行加热的加热温度为40-100℃。
  6. 如权利要求2所述的抗反射膜的制作方法,其中,所述步骤S3中,对所述共聚物薄膜进行紫外光照射时,紫外光为紫外线偏振光,紫外光波长为300-400nm,照度为1-100mW/cm 2,照射时间为1-60min。
  7. 如权利要求1所述的抗反射膜的制作方法,其中,所述基板的材料为玻璃、PET、PC或PI。
  8. 一种抗反射膜,其表面具有微凸起结构,其材料包括共聚物,所述共聚物由偶氮苯类低聚物和氰基联苯类低聚物共聚而成,其中,该偶氮苯 类低聚物具有光响应性。
  9. 如权利要求8所述的抗反射膜,其中,所述共聚物的结构通式为:
    Figure PCTCN2019081668-appb-100002
    其中,m为0-3,n为0-7,a、b为自然数,且a+b<100。
  10. 一种显示面板,包括如权利要求8所述的抗反射膜。
PCT/CN2019/081668 2019-03-21 2019-04-08 抗反射膜及其制作方法、显示面板 WO2020186570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910219069.6A CN109971017B (zh) 2019-03-21 2019-03-21 抗反射膜及其制作方法、显示面板
CN201910219069.6 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020186570A1 true WO2020186570A1 (zh) 2020-09-24

Family

ID=67079938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081668 WO2020186570A1 (zh) 2019-03-21 2019-04-08 抗反射膜及其制作方法、显示面板

Country Status (2)

Country Link
CN (1) CN109971017B (zh)
WO (1) WO2020186570A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727919A (ja) * 1993-07-09 1995-01-31 Fuji Photo Film Co Ltd 光学補償シート及びその製造方法、並びにそれを用いた液晶表示素子
CN1660784A (zh) * 2004-12-12 2005-08-31 安徽大学 含共轭苯乙炔基团的偶氮苯衍生物、用途及其制备方法
CN1813205A (zh) * 2003-09-12 2006-08-02 日东电工株式会社 制备各向异性膜的方法
CN105137640A (zh) * 2015-10-12 2015-12-09 浙江工业大学 一种光响应可拉伸液晶光散射显示屏及其制备方法
CN106565613A (zh) * 2016-10-25 2017-04-19 上海交通大学 液晶单元协同偶氮取向的聚酰亚胺定向膜及其制备方法
CN108485682A (zh) * 2018-04-28 2018-09-04 湘潭大学 一种通过特殊棒状分子或其聚合物调控液晶分子取向的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749668A (zh) * 2013-12-30 2015-07-01 鸿富锦精密工业(深圳)有限公司 反射膜及该反射膜的制作方法
CN108484825B (zh) * 2018-05-08 2020-05-26 济南大学 可逆光控疏水性偶氮苯类含氟共聚物及其膜制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727919A (ja) * 1993-07-09 1995-01-31 Fuji Photo Film Co Ltd 光学補償シート及びその製造方法、並びにそれを用いた液晶表示素子
CN1813205A (zh) * 2003-09-12 2006-08-02 日东电工株式会社 制备各向异性膜的方法
CN1660784A (zh) * 2004-12-12 2005-08-31 安徽大学 含共轭苯乙炔基团的偶氮苯衍生物、用途及其制备方法
CN105137640A (zh) * 2015-10-12 2015-12-09 浙江工业大学 一种光响应可拉伸液晶光散射显示屏及其制备方法
CN106565613A (zh) * 2016-10-25 2017-04-19 上海交通大学 液晶单元协同偶氮取向的聚酰亚胺定向膜及其制备方法
CN108485682A (zh) * 2018-04-28 2018-09-04 湘潭大学 一种通过特殊棒状分子或其聚合物调控液晶分子取向的方法

Also Published As

Publication number Publication date
CN109971017B (zh) 2020-08-04
CN109971017A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
TWI639024B (zh) 積層體之製造方法、積層體、偏光板、影像顯示裝置及影像顯示裝置之可見性改善方法
TWI449964B (zh) An optical film and a method for manufacturing the same, and an anti-glare polarizing element and a display device using the same
US20150123911A1 (en) Index matching and touch panel improvements in display devices
TWI446368B (zh) A transparent conductive element, an input device, and a display device
US20090231714A1 (en) Transparent anti-reflective article and method of fabricating same
TWI480572B (zh) A transparent conductive element, an input device, and a display device
JP2010015109A (ja) 光学フィルムおよびその製造方法、防眩性偏光子、ならびに表示装置
Kim Effective graded refractive-index anti-reflection coating for high refractive-index polymer ophthalmic lenses
KR20100082733A (ko) 광학 소자 및 그 제조 방법, 원반 및 그 제조 방법, 및 표시 장치
TWI693538B (zh) 觸控面板、顯示裝置及光學片與光學片之篩選方法及光學片之製造方法
CN110850606A (zh) 一种基于相变材料的动态可调结构色器件及其制备方法
TWI618952B (zh) 偏光板、光學構件套組及觸控輸入式圖像顯示裝置
CN107561611B (zh) 一种蓝宝石基板的表面图案化加工方法
CN110183113A (zh) 防眩光玻璃的制备方法
CN110114698A (zh) 反射型扩散板、显示装置、投影装置及照明装置
US20200159058A1 (en) Substrate
JP2016012095A (ja) ギラツキ低減アンチグレアフィルムおよびその作製方法
Chen et al. Omnidirectional/unidirectional antireflection-switchable structures inspired by dragonfly wings
WO2020186570A1 (zh) 抗反射膜及其制作方法、显示面板
CN105022193B (zh) 显示面板
CN108445556A (zh) 抗反射基板及其制作方法
KR20120114975A (ko) 반사방지 필름 제조용 주형의 제조방법, 및 그 주형을 이용한 반사방지 필름의 제조방법
US11747700B2 (en) Superomniphobic, flexible and rigid substrates with high transparency and adjustable haze for optoelectronic application
US8736797B2 (en) Biaxial retardation film and fabrication method thereof
KR20160099451A (ko) 매크로 프리패턴을 이용한 투명전극 및 수직 배향형 액정표시소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920342

Country of ref document: EP

Kind code of ref document: A1