WO2020183555A1 - 光伝送装置および尤度生成回路 - Google Patents

光伝送装置および尤度生成回路 Download PDF

Info

Publication number
WO2020183555A1
WO2020183555A1 PCT/JP2019/009621 JP2019009621W WO2020183555A1 WO 2020183555 A1 WO2020183555 A1 WO 2020183555A1 JP 2019009621 W JP2019009621 W JP 2019009621W WO 2020183555 A1 WO2020183555 A1 WO 2020183555A1
Authority
WO
WIPO (PCT)
Prior art keywords
likelihood
signal
axis component
dimensional modulation
received signal
Prior art date
Application number
PCT/JP2019/009621
Other languages
English (en)
French (fr)
Inventor
小西 良明
石井 健二
吉田 英夫
杉原 隆嗣
吉田 剛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/009621 priority Critical patent/WO2020183555A1/ja
Priority to JP2019541813A priority patent/JP6633262B1/ja
Priority to EP19919078.6A priority patent/EP3926836B1/en
Priority to CN201980093476.5A priority patent/CN113519126A/zh
Publication of WO2020183555A1 publication Critical patent/WO2020183555A1/ja
Priority to US17/405,461 priority patent/US11736127B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/255Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with Low Density Parity Check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/612Coherent receivers for optical signals modulated with a format different from binary or higher-order PSK [X-PSK], e.g. QAM, DPSK, FSK, MSK, ASK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to an optical transmission device that performs soft determination decoding and a likelihood generation circuit used in the optical transmission device.
  • ultra-multi-level multi-level modulation methods such as 64QAM (Quadrature Amplitude Modulation), 128QAM and 256QAM, which could not be realized by conventional optical communication, have been developed.
  • the arrangement interval of signal points on the phase plane is narrow, and a high signal-to-noise ratio SNR (Signal Noise Ratio) is required to achieve the required transmission distance and signal speed.
  • SNR Signal-to-noise ratio
  • LDPC Low Density Parity Check
  • the error correction code there is a soft judgment decoding that also uses the analog information of the signal as a method of enhancing the performance, as opposed to the hard judgment decoding in which the received information series is judged by 1 or 0 and decoded.
  • the soft judgment decoding the likelihood indicating the certainty of the bit assigned to the signal point is calculated from the coordinates on the phase plane of the received signal, and error correction is performed.
  • Likelihood calculation in soft judgment decoding requires heavy arithmetic processing for quantized multi-bit information, and the circuit scale increases at the time of implementation. For this reason, conventionally, instead of this heavy arithmetic calculation processing, an approximation of a calculation formula used for likelihood calculation, a LUT (Look Up Table) that saves the likelihood calculated in advance and outputs a value by inputting coordinates, etc. A method of reducing the circuit scale by using the device has been adopted (see, for example, Patent Document 1).
  • Patent Document 1 uses bits hard-determined and decoded on the I (In-phase) axis and the Q (Quadranture-phase) axis on the phase plane from the received signal point, and the coordinates of the received signal point are set. Detects quadrants on the existing phase plane. Then, the method described in Patent Document 1 converts the primaryly obtained likelihood information into final likelihood information based on the quadrant information. As described above, in Patent Document 1, the range in which the likelihood value changes according to the received signal point is limited to only between adjacent signal points including the rigid determination threshold value, so that the likelihood generation circuit is described. It shows how to reduce the scale and size.
  • the LUT used for generating the likelihood is implemented so as to store and output the reception signal coordinates of the RAM (Random Access Memory) as an input address and the likelihood for the coordinates as RAM data on the circuit. .. Even in the circuit reduction method by the method using the LUT, there is a problem that the circuit scale becomes enormous especially in the ultra-multi-value modulation method when the LUTs for various modulation methods are individually arranged.
  • the present invention has been made to solve the above-mentioned problems, and provides an optical transmission device and a likelihood generation circuit capable of suppressing an increase in the circuit scale when performing likelihood generation using a LUT.
  • the purpose is to get.
  • the optical transmission device converts a received signal into an I-axis component signal, a Q-axis component signal, and a signal obtained by connecting an I-axis component signal and a Q-axis component signal on a phase plane.
  • the likelihood of the received signal is determined based on the mapping unit, the I-axis component signal converted by the symbol demapping unit, the Q-axis component signal, and the signal in which the I-axis component signal and the Q-axis component signal are connected.
  • the likelihood generation circuit includes an error correction decoding unit that performs soft determination decoding on the received signal based on the likelihood generated by the likelihood generation circuit, and the likelihood generation circuit generates the signal of the I-axis component.
  • a first one-dimensional modulation lookup table that outputs the first likelihood as an argument
  • a second one-dimensional modulation lookup table that outputs a second likelihood with the Q-axis component signal as an argument.
  • a two-dimensional modulation lookup table that generates a third likelihood by using a signal in which the signal of the I-axis component and the signal of the Q-axis component are concatenated as an argument, and the error correction decoding unit is the first.
  • the soft determination decoding is performed based on the likelihood, the second likelihood, and the third likelihood.
  • the likelihood generation circuit is a first one-dimensional modulation look that outputs a first likelihood with an I-axis component signal as an argument among signals obtained by converting a received signal into a signal on a phase plane.
  • a two-dimensional modulation lookup table that generates a third likelihood is used as an argument for a signal in which the I-axis component signal and the Q-axis component signal are concatenated. It has.
  • an optical transmission device and a likelihood generation circuit capable of suppressing an increase in circuit scale when likelihood generation is performed using a LUT.
  • FIG. 5 is a diagram showing the relationship between the I-axis direction of a signal point and the likelihood value with respect to the coding bit 0 (b0) of 128QAM in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the Q-axis direction of a signal point and the likelihood value with respect to the coding bit 1 (b1) of 128QAM in the first embodiment of the present invention. It is a figure which shows the likelihood value by the received signal point coordinates of the coding bit 2 (b2) of 128QAM in Embodiment 1 of this invention. It is a figure which shows the likelihood value by the received signal point coordinates of the coding bit 3 (b3) of 128QAM in Embodiment 1 of this invention.
  • Embodiment 1 of this invention It is a block diagram of the 32QAM likelihood generation LUT in Embodiment 1 of this invention. It is a block diagram which showed the case where each function of the optical transmission apparatus which concerns on Embodiment 1 of this invention is realized by the processing circuit which is a dedicated hardware. It is a block diagram which showed the case where each function of the optical transmission apparatus which concerns on Embodiment 1 of this invention is realized by the processing circuit provided with the processor and the memory.
  • FIG. 1 is a block diagram of a 128QAM likelihood generation circuit according to a first embodiment of the present invention.
  • the symbol mapping unit 12 determines the coordinates on the phase plane according to the coding bits output from the error correction coding unit 11, and transmits the mapped signal.
  • the signal transmitted through the transmission line channel 13 is a 6-bit resolution I-axis component signal, a 6-bit resolution Q-axis component signal, and a 6-bit decomposition obtained from the received signal point coordinates in the symbol demapping unit 14. Is converted into a signal in which the I-axis component and the Q-axis component of are connected.
  • the signal of the I-axis component with 6-bit resolution is input to the likelihood generation LUT15 for one-dimensional modulation.
  • the signal of the Q-axis component having 6-bit resolution is input to the likelihood generation LUT 16 for one-dimensional modulation.
  • a signal in which the I-axis component and the Q-axis component of the 6-bit decomposition are connected is input to the likelihood generation LUT17 for two-dimensional modulation.
  • the one-dimensional modulation likelihood generation LUT15 generates the likelihood of the coding bit 0 (b0) by using the signal of the I-axis component as an argument.
  • the one-dimensional modulation likelihood generation LUT 16 generates the likelihood of the coding bit 1 (b1) by using the signal of the Q-axis component as an argument.
  • the two-dimensional modulation likelihood generation LUT 17 generates the likelihood of the coding bit 6 (b6) from the coding bit 2 (b2) by taking a signal in which the I-axis component and the Q-axis component are connected as an argument.
  • the one-dimensional modulation likelihood generation LUT 15 corresponds to the one-dimensional modulation lookup table used to generate the first likelihood.
  • the one-dimensional modulation likelihood generation LUT 16 corresponds to a one-dimensional modulation lookup table used to generate a second likelihood.
  • the two-dimensional modulation likelihood generation LUT 17 corresponds to a two-dimensional modulation lookup table used to generate a third likelihood.
  • the likelihood generation LUT15 for one-dimensional modulation that generates the likelihood based on the signal converted by the symbol demapping unit 14, the likelihood generation LUT16 for one-dimensional modulation, and the likelihood generation LUT17 for two-dimensional modulation 3
  • One lookup table corresponds to the likelihood generation circuit.
  • the error correction decoding unit 18 performs soft determination decoding based on each likelihood value generated by the likelihood generation circuit including the three lookup tables.
  • FIG. 2 is an example of a constellation diagram showing the relationship between the 128QAM signal point and the assigned bits in the first embodiment of the present invention.
  • the 128QAM signal points are non-rectangular constellations that are not arranged in a square on the topological plane.
  • FIG. 3 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 0 (b0) in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the I-axis direction of the signal point and the likelihood value with respect to the coding bit 0 (b0) of 128QAM in the first embodiment of the present invention.
  • the shaded area of the constellation is the area where the likelihood value is positive. Since the coding bit 0 (b0) is allocated only in the I-axis direction of the signal point, it can be processed by the one-dimensional modulation LUT that generates the likelihood only with the coordinate information of one axis.
  • the likelihood value the larger the absolute value of the I-axis of the received signal point coordinates, the higher the likelihood value at which the coding bit is 1 or 0.
  • FIG. 5 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 1 (b1) in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the Q-axis direction of the signal point and the likelihood value with respect to the coding bit 1 (b1) of 128QAM in the first embodiment of the present invention.
  • the shaded area of the constellation is the area where the likelihood value is positive.
  • the coding bit 1 (b1) Since the coding bit 1 (b1) is allocated only in the Q-axis direction of the signal point, it can be processed by the one-dimensional modulation LUT that generates the likelihood only with the coordinate information of one axis like the coding bit 0. it can.
  • the likelihood value the larger the absolute value of the Q axis of the received signal point coordinates, the higher the likelihood value at which the coding bit is 1 or 0.
  • FIG. 7 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 2 (b2) in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 3 (b3) in the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 4 (b4) in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 5 (b5) in the first embodiment of the present invention.
  • FIG. 11 is a diagram showing a likelihood value based on the received signal point coordinates of the 128QAM coding bit 6 (b6) in the first embodiment of the present invention.
  • the shaded area of the constellation is the area where the likelihood value is positive.
  • FIG. 12 is a constellation diagram showing the relationship between the signal point of 64QAM and the assigned bits in the first embodiment of the present invention. As shown in FIG. 12, the signal point of 64QAM is a rectangular constellation arranged in a square on the phase plane.
  • FIG. 13 is a diagram showing the likelihood value of the 64QAM coding bit b0 (b0) in the received signal point coordinates in the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b1 (b1) of 64QAM in the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b2 (b2) of 64QAM in the first embodiment of the present invention.
  • FIG. 16 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b3 (b3) of 64QAM in the first embodiment of the present invention.
  • FIG. 17 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b4 (b4) of 64QAM in the first embodiment of the present invention.
  • FIG. 18 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b5 (b5) of 64QAM in the first embodiment of the present invention.
  • the coding bits b0 to b2 are allocated only in the I-axis direction of the signal point, they can be processed by the one-dimensional modulation LUT that generates the likelihood only with the coordinate information of one axis.
  • the coding bits b3 to b5 are allocated only in the Q-axis direction of the signal point, they are processed by the one-dimensional modulation LUT that generates the likelihood only with the coordinate information of one axis like the coding bits b0 to b2. can do.
  • FIG. 19 is a block diagram of the 64QAM likelihood generation LUT according to the first embodiment of the present invention.
  • the 6-bit resolution I-axis component obtained from the received signal point coordinates is input to the one-dimensional modulation likelihood generation LUT 121.
  • the Q-axis component with 6-bit resolution is input to the likelihood generation LUT 122 for one-dimensional modulation.
  • the one-dimensional modulation likelihood generation LUT121 has the likelihood of the coding bit 0 (b0), the coding bit 1 (b1), and the coding bit 2 (b2) based on the I-axis component having a 6-bit resolution.
  • the one-dimensional modulation likelihood generation LUT 122 has the likelihood of the coding bit 3 (b3), the coding bit 4 (b4), and the coding bit 5 (b5) based on the Q-axis component having a 6-bit resolution. To generate.
  • FIG. 20 is a constellation diagram showing the relationship between the signal point of 32QAM and the assigned bits in the first embodiment of the present invention. As shown in FIG. 20, the signal points of 32QAM are non-rectangular constellations that are not arranged in a square on the topological plane.
  • FIG. 21 is a diagram showing the likelihood value of the coded bit b0 (b0) of 32QAM according to the received signal point coordinates in the first embodiment of the present invention.
  • FIG. 22 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b1 (b1) of 32QAM in the first embodiment of the present invention.
  • FIG. 23 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b2 (b2) of 32QAM in the first embodiment of the present invention.
  • FIG. 24 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b3 (b3) of 32QAM in the first embodiment of the present invention.
  • FIG. 25 is a diagram showing a likelihood value based on the received signal point coordinates of the coded bit b4 (b4) of 32QAM in the first embodiment of the present invention.
  • the shaded area in FIGS. 21 to 25 indicates the region where the likelihood value is positive. As shown in FIGS. 21 to 25, there are signal points so that the determination cannot be made only by the information on the I axis or the information on the Q axis. Therefore, processing by a two-dimensional modulation LUT that generates a likelihood based on the coordinate information of the I-axis and the Q-axis is required.
  • FIG. 26 is a block diagram of the 32QAM likelihood generation LUT according to the first embodiment of the present invention.
  • a signal obtained by connecting the I-axis component and the Q-axis component with 6-bit resolution obtained from the received signal point coordinates is input to the likelihood generation LUT151 for two-dimensional modulation.
  • the likelihood generation LUT 151 for two-dimensional modulation has a coding bit 0 (b0), a coding bit 1 (b1), and a coding bit based on a signal in which the I-axis component and the Q-axis component having 6-bit resolution are concatenated.
  • the 32QAM likelihood generation LUT and the 64QAM likelihood generation LUT have the same configuration as the one-dimensional modulation likelihood generation LUT and the two-dimensional modulation likelihood generation LUT that constitute the 128QAM likelihood generation circuit, respectively. Therefore, the 32QAM likelihood generation circuit and the 64QAM likelihood generation circuit can be shared and used as the 128QAM likelihood generation circuit.
  • the higher-order non-rectangular QAM is composed of a one-dimensional modulation likelihood generation circuit and a two-dimensional modulation likelihood generation circuit.
  • the likelihood generation circuit used in the low-order non-rectangular QAM and the rectangular QAM can be shared with the likelihood generation circuit used in the high-order non-rectangular QAM.
  • a likelihood generation circuit capable of suppressing an increase in the circuit scale when performing likelihood generation using the LUT is realized.
  • Such a likelihood generation circuit can be applied to an optical transmission device that employs a non-rectangular multi-value modulation method of 8QAM or more.
  • FIG. 27 is a configuration diagram showing a case where each function of the optical transmission device according to the first embodiment of the present invention is realized by the processing circuit 1000 which is dedicated hardware.
  • FIG. 28 is a configuration diagram showing a case where each function of the optical transmission device according to the first embodiment of the present invention is realized by a processing circuit 2000 including a processor 2001 and a memory 2002.
  • the processing circuit 1000 may include, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). ), Or a combination of these.
  • the functions of the symbol demapping unit, the likelihood generation circuit, and the error correction / decoding unit that constitute the optical transmission device may be realized by individual processing circuits 1000, or the functions of each unit may be collectively implemented by the processing circuit 1000. It may be realized by.
  • the processing circuit is the processor 2001
  • the functions of the symbol decoding unit, the likelihood generation circuit, and the error correction / decoding unit are realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are written as programs and stored in memory 2002.
  • the processor 2001 realizes the functions of each part by reading and executing the program stored in the memory 2002. That is, the optical transmission device includes a memory 2002 for storing a program in which each processing step is eventually executed when executed by the processing circuit 2000.
  • the memory 2002 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory), and an EEPROM (Electrically).
  • volatile semiconductor memory is applicable.
  • magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like also fall under the category of memory 2002.
  • the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.
  • 11 error correction coding unit 12 symbol mapping unit, 13 transmission line channel, 14 symbol demapping unit, 15 I-axis component one-dimensional modulation likelihood generation LUT, 16 Q-axis component one-dimensional modulation likelihood generation LUT, 17 two-dimensional Modulation likelihood generation LUT, 18 error correction decoding unit, 121 I-axis component one-dimensional modulation likelihood generation LUT, 122 Q-axis component one-dimensional modulation likelihood generation LUT, 151 two-dimensional modulation likelihood generation LUT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

光伝送装置は、受信信号を位相平面上のI軸成分の信号、Q軸成分の信号、およびI軸成分の信号とQ軸成分の信号とを連接した信号に変換するシンボルデマッピング部と、受信信号に関する尤度を生成する尤度生成回路と、軟判定復号を実施する誤り訂正復号部とを備え、尤度生成回路は、I軸成分の信号を引数として、第1の尤度を出力する第1の1次元変調用ルックアップテーブルと、Q軸成分の信号を引数として、第2の尤度を出力する第2の1次元変調用ルックアップテーブルと、I軸成分の信号とQ軸成分の信号とを連接した信号を引数として、第3の尤度を生成する2次元変調用ルックアップテーブルとを有し、誤り訂正復号部は、第1の尤度、第2の尤度、および第3の尤度を元に軟判定復号を実施する。

Description

光伝送装置および尤度生成回路
 本発明は、軟判定復号を実施する光伝送装置、および光伝送装置に用いられる尤度生成回路に関する。
 近年、光伝送システムに適用される変調方式は、送信データのビットレート上昇に伴い、多値化が進んでいる。さらに、半導体製造プロセスの微細化による大規模デジタル回路の実現、並びに数十Gsps(sample per second)のサンプリング速度を有する超高速ADC(Analog Digital Converter)およびDAC(Digital Analog Converter)の登場により、複雑な光信号を生成および復調することが可能となっている。
 このため、64QAM(Quadrature Amplitude Modulation)、128QAMおよび256QAMといった、従来の光通信では実現できなかった超多値の多値変調方式が開発されている。
 これらの多値変調方式では、位相平面上での信号点の配置間隔が狭く、要求される伝送距離および信号速度を達成するためには、高い信号対雑音比SNR(Signal Noise Ratio)が必要となる。このSNRの不足を補うため、高速かつ高い符号化利得を得ることできるがLDPC(Low Density Parity Check)といった強力な誤り訂正符号の重要性が、より一層増している。従って、LDPCは、他の誤り訂正符号と組み合わせて、使用される。
 誤り訂正符号では、受信情報系列を1または0で判断して復号を行なう硬判定復号に対し、性能を強化する方法として、信号のアナログ情報も利用する軟判定復号がある。軟判定復号では、受信信号の位相平面上の座標から、信号点に割り当てられたビットの確からしさを示す尤度を算出し、誤り訂正を実施している。
 軟判定復号における尤度算出では、量子化した多ビット情報に対する重い算術演算処理が必要となり、実装時には回路規模が増大する。このため、従来から、この重い算術演算処理の代わりに、尤度算出に用いる演算式の近似化、あらかじめ演算した尤度を保存し座標を入力として値を出力させるLUT(Look Up Table)などを用いることにより、回路規模を削減する手法が取られている(例えば、特許文献1参照)。
 特許文献1に記載の方法は、受信した信号点から位相平面上のI(In-phase)軸、およびQ(Quadrature-phase)軸において硬判定復号したビットを利用し、受信信号点の座標が存在する位相平面上の象限を検出する。そして、特許文献1に記載の方法は、一次的に求められた尤度情報から、その象限情報を元に、最終的な尤度情報に変換する。このように、特許文献1には、受信信号点に応じて尤度の値が変化する範囲を、硬判定しきい値を含む隣接する信号点間のみに限定することにより、尤度生成回路の規模を削減し、小型化する方法が示されている。
国際公開第2008/038749号
 しかしながら、従来技術には、以下のような課題がある。
 デジタルコヒーレント技術の出現により、光通信システムにおいては、1チャネル単位あたりの伝送容量が1Tbpsを超えた大容量化が進められている。その結果、信号処理を行なうデジタル回路の回路規模は、LSI(Large Scale Integration)集積化の限界にまで近づいている。
 また、その一方で、データセンターなど光通信システムの適用領域の拡大により、QPSK(Quadrature Phase Shift Keying)から128QAMといった多種の変調方式による信号を同一LSIで送受信することが求められている。
 尤度生成を行なうために用いられるLUTは、回路上ではRAM(Random Access Memory)の受信信号座標を入力アドレスとして、当該座標に対する尤度をRAMのデータとして蓄積し、出力するように実装される。LUTを用いた方式による回路削減手法においても、多種の変調方式に対するLUTを個別に揃えた場合には、特に、超多値の変調方式において回路規模が膨大になるという問題がある。
 本発明は、前記のような課題を解決するためになされたものであり、LUTを用いて尤度生成を行う際の回路規模の増大を抑制することのできる光伝送装置および尤度生成回路を得ることを目的とする。
 本発明に係る光伝送装置は、受信信号を位相平面上のI軸成分の信号、Q軸成分の信号、およびI軸成分の信号とQ軸成分の信号とを連接した信号に変換するシンボルデマッピング部と、シンボルデマッピング部により変換されたI軸成分の信号、Q軸成分の信号、およびI軸成分の信号とQ軸成分の信号とを連接した信号に基づいて受信信号に関する尤度を生成する尤度生成回路と、尤度生成回路により生成された尤度を基に受信信号に対する軟判定復号を実施する誤り訂正復号部とを備え、尤度生成回路は、I軸成分の信号を引数として、第1の尤度を出力する第1の1次元変調用ルックアップテーブルと、Q軸成分の信号を引数として、第2の尤度を出力する第2の1次元変調用ルックアップテーブルと、I軸成分の信号とQ軸成分の信号とを連接した信号を引数として、第3の尤度を生成する2次元変調用ルックアップテーブルとを有し、誤り訂正復号部は、第1の尤度、第2の尤度、および第3の尤度を元に軟判定復号を実施するものである。
 本発明に係る尤度生成回路は、受信信号を位相平面上の信号に変換した信号のうち、I軸成分の信号を引数として、第1の尤度を出力する第1の1次元変調用ルックアップテーブルと、受信信号を位相平面上の信号に変換した信号のうち、Q軸成分の信号を引数として、第2の尤度を出力する第2の1次元変調用ルックアップテーブルと、受信信号を位相平面上の信号に変換した信号のうち、I軸成分の信号とQ軸成分の信号とを連接した信号を引数として、第3の尤度を生成する2次元変調用ルックアップテーブルとを有するものである。
 本発明によれば、LUTを用いて尤度生成を行う際の回路規模の増大を抑制することのできる光伝送装置および尤度生成回路を得ることができる。
本発明の実施の形態1に係る128QAM尤度生成回路の構成図である。 本発明の実施の形態1において、128QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図の一例である。 本発明の実施の形態1において、128QAMの符号化ビット0(b0)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット0(b0)に関する信号点のI軸方向と尤度値との関係を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット1(b1)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット1(b1)に関する信号点のQ軸方向と尤度値との関係を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット2(b2)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット3(b3)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット4(b4)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット5(b5)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、128QAMの符号化ビット6(b6)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図である。 本発明の実施の形態1において、64QAMの符号化ビットb0(b0)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの符号化ビットb1(b1)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの符号化ビットb2(b2)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの符号化ビットb3(b3)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの符号化ビットb4(b4)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、64QAMの符号化ビットb5(b5)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1における64QAM尤度生成LUTの構成図である。 本発明の実施の形態1において、32QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図である。 本発明の実施の形態1において、32QAMの符号化ビットb0(b0)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、32QAMの符号化ビットb1(b1)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、32QAMの符号化ビットb2(b2)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、32QAMの符号化ビットb3(b3)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1において、32QAMの符号化ビットb4(b4)の受信信号点座標による尤度値を示す図である。 本発明の実施の形態1における32QAM尤度生成LUTの構成図である。 本発明の実施の形態1に係る光伝送装置の各機能を専用のハードウェアである処理回路で実現する場合を示した構成図である。 本発明の実施の形態1に係る光伝送装置の各機能をプロセッサおよびメモリを備えた処理回路により実現する場合を示した構成図である。
 以下、本発明の光伝送装置および尤度生成回路の好適な実施の形態につき、図面を用いて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る128QAM尤度生成回路の構成図である。誤り訂正符号化部11から出力された符号化ビットに応じて、シンボルマッピング部12は、位相平面上での座標を決めて、マッピングされた信号を送信する。
 伝送路チャネル13を通じて伝送された信号は、シンボルデマッピング部14において、受信信号点座標から得られた6ビット分解能のI軸成分の信号、6ビット分解能のQ軸成分の信号、および6ビット分解のI軸成分およびQ軸成分を連接した信号に変換される。
 そして、6ビット分解能のI軸成分の信号は、1次元変調用尤度生成LUT15に入力される。また、6ビット分解能のQ軸成分の信号は、1次元変調用尤度生成LUT16に入力される。さらに、6ビット分解のI軸成分およびQ軸成分を連接した信号は、2次元変調用尤度生成LUT17に入力される。
 1次元変調用尤度生成LUT15は、I軸成分の信号を引数として、符号化ビット0(b0)の尤度を生成する。1次元変調用尤度生成LUT16は、Q軸成分の信号を引数として、符号化ビット1(b1)の尤度を生成する。さらに、2次元変調用尤度生成LUT17は、I軸成分およびQ軸成分を連接した信号を引数として、符号化ビット2(b2)から符号化ビット6(b6)の尤度を生成する。
 すなわち、1次元変調用尤度生成LUT15は、第1の尤度を生成するために用いられる1次元変調用ルックアップテーブルに相当する。また、1次元変調用尤度生成LUT16は、第2の尤度を生成するために用いられる1次元変調用ルックアップテーブルに相当する。さらに、2次元変調用尤度生成LUT17は、第3の尤度を生成するために用いられる2次元変調用ルックアップテーブルに相当する。
 また、シンボルデマッピング部14により変換された信号を元に、尤度を生成する1次元変調用尤度生成LUT15、1次元変調用尤度生成LUT16、および2次元変調用尤度生成LUT17の3つのルックアップテーブルは、尤度生成回路に相当する。
 そして、誤り訂正復号部18は、3つのルックアップテーブルを含む尤度生成回路で生成された各尤度値を元に、軟判定復号を実施する。
 図2は、本発明の実施の形態1において、128QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図の一例である。図2に示すように、128QAMの信号点は、位相平面上で正方形に配置されない非矩形のコンスタレーションとなる。
 図3は、本発明の実施の形態1において、128QAMの符号化ビット0(b0)の受信信号点座標による尤度値を示す図である。図4は、本発明の実施の形態1において、128QAMの符号化ビット0(b0)に関する信号点のI軸方向と尤度値との関係を示す図である。コンスタレーションの網掛け部分が、尤度値が正となる領域である。符号化ビット0(b0)は、信号点のI軸方向にのみ割り振られるため、1軸の座標情報のみで尤度を生成する1次元変調用LUTで処理することができる。尤度値は、受信信号点座標のI軸の絶対値が大きいほど、符号化ビットが1または0である尤度値が高くなる。
 図5は、本発明の実施の形態1において、128QAMの符号化ビット1(b1)の受信信号点座標による尤度値を示す図である。図6は、本発明の実施の形態1において、128QAMの符号化ビット1(b1)に関する信号点のQ軸方向と尤度値との関係を示す図である。コンスタレーションの網掛け部分が、尤度値が正となる領域である。
 符号化ビット1(b1)は、信号点のQ軸方向にのみ割り振られるため、符号化ビット0と同じく、1軸の座標情報のみで尤度を生成する1次元変調用LUTで処理することができる。尤度値は、受信信号点座標のQ軸の絶対値が大きいほど、符号化ビットが1または0である尤度値が高くなる。
 図7は、本発明の実施の形態1において、128QAMの符号化ビット2(b2)の受信信号点座標による尤度値を示す図である。図8は、本発明の実施の形態1において、128QAMの符号化ビット3(b3)の受信信号点座標による尤度値を示す図である。図9は、本発明の実施の形態1において、128QAMの符号化ビット4(b4)の受信信号点座標による尤度値を示す図である。
 図10は、本発明の実施の形態1において、128QAMの符号化ビット5(b5)の受信信号点座標による尤度値を示す図である。さらに、図11は、本発明の実施の形態1において、128QAMの符号化ビット6(b6)の受信信号点座標による尤度値を示す図である。
 コンスタレーションの網掛け部分が、尤度値が正となる領域である。これらの符号化ビットは、I軸の情報のみ、あるいはQ軸の情報のみでは判定ができないように、信号点に割り振られる。このため、I軸およびQ軸の座標情報を用いて尤度を生成する2次元変調用LUTでの処理が必要となる。
 図12は、本発明の実施の形態1において、64QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図である。図12に示すように、64QAMの信号点は、位相平面上で正方形に配置される矩形のコンスタレーションとなる。
 図13は、本発明の実施の形態1において、64QAMの符号化ビットb0(b0)の受信信号点座標による尤度値を示す図である。図14は、本発明の実施の形態1において、64QAMの符号化ビットb1(b1)の受信信号点座標による尤度値を示す図である。図15は、本発明の実施の形態1において、64QAMの符号化ビットb2(b2)の受信信号点座標による尤度値を示す図である。
 図16は、本発明の実施の形態1において、64QAMの符号化ビットb3(b3)の受信信号点座標による尤度値を示す図である。図17は、本発明の実施の形態1において、64QAMの符号化ビットb4(b4)の受信信号点座標による尤度値を示す図である。さらに、図18は、本発明の実施の形態1において、64QAMの符号化ビットb5(b5)の受信信号点座標による尤度値を示す図である。
 符号化ビットb0からb2は、信号点のI軸方向にのみ割り振られるため、1軸の座標情報のみで尤度を生成する1次元変調用LUTで処理することができる。一方、符号化ビットb3からb5は、信号点のQ軸方向にのみ割り振られるため、符号化ビットb0からb2と同じく、1軸の座標情報のみで尤度を生成する1次元変調用LUTで処理することができる。
 図19は、本発明の実施の形態1における64QAM尤度生成LUTの構成図である。受信信号点座標から得られた6ビット分解能のI軸成分が、1次元変調用尤度生成LUT121に入力される。一方、6ビット分解能のQ軸成分が、1次元変調用尤度生成LUT122に入力される。
 そして、1次元変調用尤度生成LUT121は、6ビット分解能のI軸成分に基づいて、符号化ビット0(b0)、符号化ビット1(b1)、および符号化ビット2(b2)の尤度を生成する。一方、1次元変調用尤度生成LUT122は、6ビット分解能のQ軸成分に基づいて、符号化ビット3(b3)、符号化ビット4(b4)、および符号化ビット5(b5)の尤度を生成する。
 図20は、本発明の実施の形態1において、32QAMの信号点と、割り当てられたビットとの関係を示すコンスタレーション図である。図20に示すように、32QAMの信号点は、位相平面上で正方形に配置されない非矩形のコンスタレーションとなる。
 図21は、本発明の実施の形態1において、32QAMの符号化ビットb0(b0)の受信信号点座標による尤度値を示す図である。図22は、本発明の実施の形態1において、32QAMの符号化ビットb1(b1)の受信信号点座標による尤度値を示す図である。図23は、本発明の実施の形態1において、32QAMの符号化ビットb2(b2)の受信信号点座標による尤度値を示す図である。
 図24は、本発明の実施の形態1において、32QAMの符号化ビットb3(b3)の受信信号点座標による尤度値を示す図である。さらに、図25は、本発明の実施の形態1において、32QAMの符号化ビットb4(b4)の受信信号点座標による尤度値を示す図である。
 図21~図25における網掛け部分が、尤度値が正となる領域を示している。図21~図25に示すように、I軸の情報のみ、またはQ軸の情報のみでは判定ができないように、信号点が存在する。このため、I軸およびQ軸の座標情報で尤度を生成する2次元変調用LUTでの処理が必要となる。
 図26は、本発明の実施の形態1における32QAM尤度生成LUTの構成図である。受信信号点座標から得られた6ビット分解能のI軸成分およびQ軸成分を連接した信号が、2次元変調用尤度生成LUT151に入力される。そして、2次元変調用尤度生成LUT151は、6ビット分解能のI軸成分およびQ軸成分を連接した信号に基づいて、符号化ビット0(b0)、符号化ビット1(b1)、符号化ビット2(b2)、符号化ビット3(b3)、および符号化ビット4(b4)の尤度を生成する。
 32QAM尤度生成LUTおよび64QAM尤度生成LUTは、各々128QAM尤度生成回路を構成する1次元変調用尤度生成LUTおよび2次元変調用尤度生成LUTと同じ構成である。このため、32QAM尤度生成回路および64QAM尤度生成回路は、共用化して、128QAM尤度生成回路として使用することが可能である。
 換言すると、本実施の形態1では、高次の非矩形QAMは、1次元変調用尤度生成回路と、2次元変調用尤度生成回路とにより構成されている。このような構成を採用することにより、低次の非矩形QAMおよび矩形QAMで使用する尤度生成回路を、高次の非矩形QAMで使用する尤度生成回路と共用化することができる。この結果、LUTを用いて尤度生成を行う際の回路規模の増大を抑制することのできる尤度生成回路が実現される。このような尤度生成回路は、8QAM以上の非矩形多値変調方式を採用する光伝送装置において、適用することができる。
 なお、上述した実施の形態1に係る光伝送装置における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。図27は、本発明の実施の形態1に係る光伝送装置の各機能を専用のハードウェアである処理回路1000で実現する場合を示した構成図である。また、図28は、本発明の実施の形態1に係る光伝送装置の各機能をプロセッサ2001およびメモリ2002を備えた処理回路2000により実現する場合を示した構成図である。
 処理回路が専用のハードウェアである場合、処理回路1000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。光伝送装置を構成するシンボルデマッピング部、尤度生成回路、および誤り訂正復号部における各部の機能それぞれを、個別の処理回路1000で実現してもよいし、各部の機能をまとめて処理回路1000で実現してもよい。
 一方、処理回路がプロセッサ2001の場合、シンボルデマッピング部、尤度生成回路、および誤り訂正復号部における各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ2002に格納される。
 プロセッサ2001は、メモリ2002に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、光伝送装置は、処理回路2000により実行されるときに、各処理ステップが結果的に実行されることになるプログラムを格納するためのメモリ2002を備える。
 これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリ2002は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ2002に該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。
 11 誤り訂正符号化部、12 シンボルマッピング部、13 伝送路チャネル、14 シンボルデマッピング部、15 I軸成分1次元変調尤度生成LUT、16 Q軸成分1次元変調尤度生成LUT、17 2次元変調尤度生成LUT、18 誤り訂正復号部、121 I軸成分1次元変調尤度生成LUT、122 Q軸成分1次元変調尤度生成LUT、151 2次元変調尤度生成LUT。

Claims (2)

  1.  受信信号を位相平面上のI軸成分の信号、Q軸成分の信号、および前記I軸成分の信号と前記Q軸成分の信号とを連接した信号に変換するシンボルデマッピング部と、
     前記シンボルデマッピング部により変換された前記I軸成分の信号、前記Q軸成分の信号、および前記I軸成分の信号と前記Q軸成分の信号とを連接した信号に基づいて前記受信信号に関する尤度を生成する尤度生成回路と、
     前記尤度生成回路により生成された前記尤度を基に前記受信信号に対する軟判定復号を実施する誤り訂正復号部と
     を備え、
     前記尤度生成回路は、
      前記I軸成分の信号を引数として、第1の尤度を出力する第1の1次元変調用ルックアップテーブルと、
      前記Q軸成分の信号を引数として、第2の尤度を出力する第2の1次元変調用ルックアップテーブルと、
      前記I軸成分の信号と前記Q軸成分の信号とを連接した信号を引数として、第3の尤度を生成する2次元変調用ルックアップテーブルと
     を有し、
     前記誤り訂正復号部は、前記第1の尤度、前記第2の尤度、および前記第3の尤度を元に前記軟判定復号を実施する
     光伝送装置。
  2.  受信信号を位相平面上の信号に変換した信号のうち、I軸成分の信号を引数として、第1の尤度を出力する第1の1次元変調用ルックアップテーブルと、
     前記受信信号を前記位相平面上の信号に変換した信号のうち、Q軸成分の信号を引数として、第2の尤度を出力する第2の1次元変調用ルックアップテーブルと、
     前記受信信号を前記位相平面上の信号に変換した信号のうち、前記I軸成分の信号と前記Q軸成分の信号とを連接した信号を引数として、第3の尤度を生成する2次元変調用ルックアップテーブルと
     を有する尤度生成回路。
PCT/JP2019/009621 2019-03-11 2019-03-11 光伝送装置および尤度生成回路 WO2020183555A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/009621 WO2020183555A1 (ja) 2019-03-11 2019-03-11 光伝送装置および尤度生成回路
JP2019541813A JP6633262B1 (ja) 2019-03-11 2019-03-11 光伝送装置および尤度生成回路
EP19919078.6A EP3926836B1 (en) 2019-03-11 2019-03-11 Optical transmission device and likelihood generation circuit
CN201980093476.5A CN113519126A (zh) 2019-03-11 2019-03-11 光传输装置和似然度生成电路
US17/405,461 US11736127B2 (en) 2019-03-11 2021-08-18 Optical transmission device and likelihood generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009621 WO2020183555A1 (ja) 2019-03-11 2019-03-11 光伝送装置および尤度生成回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/405,461 Continuation US11736127B2 (en) 2019-03-11 2021-08-18 Optical transmission device and likelihood generation circuit

Publications (1)

Publication Number Publication Date
WO2020183555A1 true WO2020183555A1 (ja) 2020-09-17

Family

ID=69166795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009621 WO2020183555A1 (ja) 2019-03-11 2019-03-11 光伝送装置および尤度生成回路

Country Status (5)

Country Link
US (1) US11736127B2 (ja)
EP (1) EP3926836B1 (ja)
JP (1) JP6633262B1 (ja)
CN (1) CN113519126A (ja)
WO (1) WO2020183555A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135193A (ja) * 2005-11-07 2007-05-31 Korea Electronics Telecommun 階層的変調信号の独立的ストリーム抽出及び軟判定装置並びにその方法
US20120307942A1 (en) * 2011-05-30 2012-12-06 Bae Ki Taek Apparatus and method for soft demapping
WO2014174862A1 (ja) * 2013-04-23 2014-10-30 日本電気株式会社 復調装置、復調方法および記録媒体
WO2015137049A1 (ja) * 2014-03-13 2015-09-17 三菱電機株式会社 尤度生成装置およびその方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675771B2 (en) 2006-09-29 2014-03-18 Nec Corporation Log likelihood ratio arithmetic circuit, transmission apparatus, log likelihood ratio arithmetic method, and program
WO2015125341A1 (ja) * 2014-02-24 2015-08-27 三菱電機株式会社 軟判定値生成装置及び軟判定値生成方法
JPWO2017158725A1 (ja) * 2016-03-15 2019-01-17 三菱電機株式会社 対数尤度比算出回路、受信装置および対数尤度比算出方法
CN109314530B (zh) * 2016-06-21 2022-07-05 日本电信电话株式会社 光接收机、光传输装置和光接收机用的方法
CN109644010B (zh) * 2016-09-01 2022-12-20 三菱电机株式会社 似然度生成装置、接收装置、似然度生成方法以及光传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135193A (ja) * 2005-11-07 2007-05-31 Korea Electronics Telecommun 階層的変調信号の独立的ストリーム抽出及び軟判定装置並びにその方法
US20120307942A1 (en) * 2011-05-30 2012-12-06 Bae Ki Taek Apparatus and method for soft demapping
WO2014174862A1 (ja) * 2013-04-23 2014-10-30 日本電気株式会社 復調装置、復調方法および記録媒体
WO2015137049A1 (ja) * 2014-03-13 2015-09-17 三菱電機株式会社 尤度生成装置およびその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOHI, KEISUKE ET AL.: "Impact of Quantization for M-ary QAM with Soft-Decision Error Correction", IEICE TECHNICAL REPORT, vol. 116, no. 112, June 2016 (2016-06-01), pages 43 - 48, XP055646784 *

Also Published As

Publication number Publication date
US11736127B2 (en) 2023-08-22
EP3926836A1 (en) 2021-12-22
CN113519126A (zh) 2021-10-19
EP3926836B1 (en) 2023-01-18
US20210384921A1 (en) 2021-12-09
JPWO2020183555A1 (ja) 2021-03-18
EP3926836A4 (en) 2022-03-02
JP6633262B1 (ja) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6420333B2 (ja) 不均一コンステレーションを利用した符号化変調装置
JP4572982B2 (ja) 対数尤度比演算回路、伝送装置及び対数尤度比演算方法、プログラム
US8397109B2 (en) Bit mapping/demapping method and apparatus for communication system
WO2019134681A1 (en) Probabilistically shaped multi-level pulse modulation with gray code mapping
US20170134193A1 (en) Soft decision value generating apparatus and method of generating soft decision value
CN110213193B (zh) 不等概高阶星座点设计方法与解映射方法
US10148390B2 (en) Rate adaptive turbo forward error correction
Bisplinghoff et al. Low-power, phase-slip tolerant, multilevel coding for M-QAM
CN107018113B (zh) 发射机、接收机和信号处理的方法
JP5976252B2 (ja) 尤度生成装置およびその方法
KR20070061283A (ko) 소프트 비트 매트릭 발생 장치 및 그 방법과 그를 이용한다치 레벨 qam 수신시스템
US11522635B2 (en) Device and method for transmitting data by using multilevel coding, and communication system
JP2005341574A (ja) Qpskまたはqamシンボルからなるビットシーケンスを復元する方法および回路構造
WO2020183555A1 (ja) 光伝送装置および尤度生成回路
US20230353282A1 (en) Data sending and receiving methods and terminals, system, electronic device and storage medium
CN117981228A (zh) 用于多维多级前向纠错编码和解码的系统和方法
EP2916507B1 (en) Method for digitally modulating a signal in a communication network
JP6075446B2 (ja) 復調装置、復調方法およびプログラム
JP2022027455A (ja) 通信装置、通信方法、および通信システム
KR100903876B1 (ko) 비트 대칭 그레이 코드를 이용하여 위상 편이 방식으로변조된 수신 심볼 신호를 비트 정보로 분할하는 방법 및 그장치
US8705662B2 (en) Soft decision method and associated signal receiving system
US7720165B2 (en) Demapper applied to quadrature amplitude modulation trellis coded modulation decoder and related method
JP3628311B2 (ja) ビタビ復号装置、通信システム及びビタビ復号方法
JP6731771B2 (ja) デマッピング処理回路、チップ、及び受信装置
JP2023079257A (ja) 符号化回路、復号化回路、符号化方法、および復号化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541813

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019919078

Country of ref document: EP

Effective date: 20210916