WO2020182191A1 - 电化学储能装置 - Google Patents

电化学储能装置 Download PDF

Info

Publication number
WO2020182191A1
WO2020182191A1 PCT/CN2020/079031 CN2020079031W WO2020182191A1 WO 2020182191 A1 WO2020182191 A1 WO 2020182191A1 CN 2020079031 W CN2020079031 W CN 2020079031W WO 2020182191 A1 WO2020182191 A1 WO 2020182191A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
energy storage
storage device
electrochemical energy
inner cavity
Prior art date
Application number
PCT/CN2020/079031
Other languages
English (en)
French (fr)
Inventor
王中旭
齐巍
汪颖
王晓莹
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to JP2020517481A priority Critical patent/JP2021518032A/ja
Priority to US16/955,248 priority patent/US20210218093A1/en
Priority to EP20712430.6A priority patent/EP3731327A4/en
Publication of WO2020182191A1 publication Critical patent/WO2020182191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage devices, in particular to an electrochemical energy storage device.
  • An object of the present application is to propose an electrochemical energy storage device, which has the advantages of high safety and strong reliability.
  • the electrochemical energy storage device includes a housing, the housing includes a first side wall and a second side wall opposite to each other, and is provided with an inner cavity for accommodating the electric core, and the inner cavity is located in the Between the first side wall and the second side wall, at least one of the first side wall and the second side wall is provided with a reinforcing layer.
  • a reinforcing layer is provided on at least one of the first side wall and the second side wall, and the reinforcing layer can increase the structural strength of the housing.
  • the reinforcing layer has a protective effect on the shell, thereby avoiding short circuit of the electrochemical energy storage device or leakage of electrolyte, thereby improving the safety and reliability of the electrochemical energy storage device.
  • the electrochemical energy storage device further includes a battery cell, the tabs of the battery core protrude from the first side wall into the cavity, and the reinforcing layer is provided on the second side wall.
  • the reinforcing layer is provided on a surface of the second side wall close to the inner cavity.
  • the reinforcing layer is provided on a surface of the second side wall away from the inner cavity.
  • the reinforcement layer is provided on a surface of the first side wall away from the inner cavity.
  • the housing has a third side wall, the third side wall is adjacent to the second side wall, and the reinforcement layer is provided on the third side wall away from the The surface of the cavity.
  • the reinforcing layer is a polymer layer.
  • the reinforcing layer is adhesive paper.
  • the width of the cell is L1
  • the length of the reinforcing layer in the width direction of the cell is L2, where L2 ⁇ 0.5L1.
  • the electrochemical energy storage device is a battery.
  • Fig. 1 is a schematic structural diagram of an electrochemical energy storage device according to a first embodiment of the present application
  • Figure 2 is a schematic structural diagram of an electrochemical energy storage device according to a second embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an electrochemical energy storage device according to a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electrochemical energy storage device according to a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electrochemical energy storage device according to Embodiment 5 of the present application.
  • Fig. 6 is a schematic structural diagram of an electrochemical energy storage device according to a sixth embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electrochemical energy storage device according to a seventh embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an electrochemical energy storage device according to an eighth embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of an electrochemical energy storage device according to a ninth embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of an electrochemical energy storage device according to a tenth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electrochemical energy storage device according to Embodiment 11 of the present application.
  • the electrochemical energy storage device 100 according to an embodiment of the present application is described below with reference to the drawings. It should be understood that the following description is only an exemplary description, rather than a specific limitation to the application.
  • the electrochemical energy storage device 100 includes a housing 1 and a battery cell 3.
  • the housing 1 includes a first side wall 11, a second side wall 12, and a third side wall 13, wherein the first side wall 11 and the second side wall The two side walls 12 are opposite, the third side wall 13 is adjacent to the second side wall 12, the housing 1 is provided with an inner cavity 14 for accommodating the cell 3, and the inner cavity 14 is located in the first side wall 11 and the second side wall 12 In between, at least one of the first side wall 11 and the second side wall 12 is provided with a reinforcing layer 2.
  • the reinforcement layer 2 can improve the structural strength of the housing 1. When the electrochemical energy storage device 100 is dropped or collided, the reinforcement layer 2 has a protective effect on the housing 1, thereby preventing the electrochemical energy storage device 100 from short-circuiting or electrolyte damage. External leakage can improve the safety and reliability of the electrochemical energy storage device 100.
  • the external impact force received by the electrochemical energy storage device is prone to cracking or damage to the shell, causing electrolyte leakage, and the external impact force is also It may cause collisions between the internal electrolyte and the shell and between the pole pieces and the shell, causing damage to the shell, and affecting the safety and reliability of the electrochemical energy storage device.
  • the structural strength of the housing 1 can be improved, so that the safety and reliability of the electrochemical energy storage device 100 Sex is improved.
  • the reinforcing layer 2 is provided on the surface of the first side wall 11 close to the inner cavity 14. Therefore, the structural strength of the side of the first side wall 11 close to the inner cavity 14 can be improved, and the ability of the first side wall 11 to resist the impact of the electrolyte is increased.
  • the tab 31 of the battery cell 3 protrudes from the inner cavity 14 from the first side wall 11, and the reinforcing layer 2 is provided on the second side wall 12.
  • the reinforcing layer 2 can improve the structural strength of the second side wall 12 and can prevent the second side wall 12 from cracking.
  • the reinforcement layer 2 is provided at the second side wall 12, and the accommodating space for accommodating the reinforcement layer 2 is easier to design and manufacture, and the processing cost can be reduced.
  • the reinforcement layer 2 is provided with a through hole for the tab 31 to pass through.
  • the cell 3 includes a pole piece and a diaphragm, and the pole piece includes a cathode piece and an anode piece.
  • the diaphragm is located between the cathode piece and the anode piece and is made by winding or lamination.
  • a polyethylene porous film can be used as a substrate first, and a raising agent can be used to pretreat the substrate surface at a certain temperature to increase the surface tension of the substrate, and then the inorganic oxide can be oxidized.
  • the solution of material (alumina, silicon oxide, etc.) and organic polymer (polyvinylidene fluoride) is uniformly coated on the surface of the substrate to form a diaphragm.
  • the anode sheet, the cathode sheet and the diaphragm are wound into a bare cell in order.
  • the bare cell and the electrolyte are built into the shell 1.
  • the electrolyte infiltrates the bare cell to form the cell 3, and finally the cell 3 is formed by hot pressing. A bonding force is created between the pole piece and the diaphragm.
  • the reinforcing layer 2 is provided on the surface of the second side wall 12 close to the inner cavity 14. It is understandable that the reinforcing layer 2 can improve the structural strength of the side of the second side wall 12 close to the inner cavity 14 so that the ability of the second side wall 12 to resist the impact of the electrolyte is improved, thereby avoiding leakage of the electrolyte.
  • the reinforcing layer 2 is provided on the surface of the second side wall 12 away from the inner cavity 14. It is understandable that the reinforcing layer 2 can improve the structural strength of the outer surface of the second side wall 12, increase the ability of the second side wall 12 to resist external impact, and prevent the second side wall 12 from cracking.
  • the housing 1 has a third side wall 13, the third side wall 13 is adjacent to the second side wall 12, and the reinforcing layer 2 is provided on the surface of the third side wall 13 away from the inner cavity 14.
  • the reinforcement layer 2 has a protective effect on the third side wall 13 of the housing 1.
  • the housing 1 includes a first side wall 11, a second side wall 12, and two third side walls 13.
  • the first side wall 11 and the second side wall 12 are arranged opposite to each other, and the two third side walls 13 Relatively arranged, one end of the third side wall 13 on the left is connected to one end of the first side wall 11, the other end of the third side wall 13 on the left is connected to one end of the second side wall 12, and the third side on the right
  • One end of the wall 13 is connected to the other end of the first side wall 11, and the other end of the third side wall 13 on the right is connected to the other end of the second side wall 12.
  • the surface of the third side wall 13 on the left side away from the cavity 14 and the surface of the third side wall 13 on the right side away from the cavity 14 are both provided with a reinforcing layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components use the same reference numerals, as shown in FIG. 2. The difference is that only the surface of the first side wall 11 close to the cavity 14 and the second The surface of the side wall 12 close to the cavity 14, the surface of the third side wall 13 on the left away from the cavity 14 and the surface of the third side wall 13 on the right away from the cavity 14 are provided with a reinforcing layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components use the same reference numerals, as shown in FIG. 3, the difference is that only the surface of the first side wall 11 close to the cavity 14 and the second The surface of the side wall 12 close to the cavity 14, the surface of the second side wall 12 away from the cavity 14, and the surface of the third side wall 13 on the left side away from the cavity 14 are provided with a reinforcing layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 4, the difference is that only the surface of the first side wall 11 close to the cavity 14 and the first The surface of the side wall 11 away from the inner cavity 14, the surface of the second side wall 12 close to the inner cavity 14, and the surface of the second side wall 12 away from the inner cavity 14 are provided with a reinforcing layer 2.
  • a reinforcing layer 2 is provided on the surface of the first side wall 11 away from the inner cavity 14, which can improve the structural strength of the outer surface of the first side wall 11 and increase the ability of the first side wall 11 to resist external impact.
  • the structure of this embodiment is approximately the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 5, the difference is that only the surface of the first side wall 11 close to the cavity 14 and the second The surface of the side wall 12 close to the inner cavity 14 and the surface of the second side wall 12 away from the inner cavity 14 are provided with a reinforcing layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 6, except that only the surface of the first side wall 11 close to the cavity 14 and the second The surface of the side wall 12 close to the cavity 14 is provided with a reinforcing layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 8, except that only the surface of the first side wall 11 away from the inner cavity 14 is provided with a reinforcement Layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 9, the difference is that only the surface of the third side wall 13 on the left side away from the inner cavity 14 And the surface of the third side wall 13 on the right side away from the cavity 14 is provided with a reinforcing layer 2.
  • the structure of this embodiment is approximately the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 10, the difference is that only the surface of the second side wall 12 close to the cavity 14 is provided with a reinforcement Layer 2.
  • the structure of this embodiment is roughly the same as that of the first embodiment, wherein the same components are given the same reference numerals, as shown in FIG. 11, the difference is that only the surface of the first side wall 11 close to the cavity 14 is provided with a reinforcement Layer 2.
  • the electrochemical energy storage device 100 in the embodiments of the present application may also have the following features:
  • the reinforcing layer 2 is a polymer layer.
  • the manufacturing process of the polymer layer is relatively mature, the manufacturing cost is low, the chemical properties of the polymer layer are relatively stable, it is not easy to be corroded by acid and alkali, and the service life is long.
  • the polymer layer may be ethylene-acetic acid copolymer (EVA) hot melt adhesive, polyamide (PA) hot melt adhesive, polyurethane (PU) hot melt adhesive, polyurethane, epoxy resin, polyacrylate, polyurea Or polycarbonate.
  • the polymer layer may be one of the above materials, or a mixture of several materials.
  • the physical heating method can control the heating temperature at 60-160°C, preferably the heating temperature is 80-100°C, and the response time can be controlled at 1-30 min, preferably, the response time is 1-4 min.
  • adhesive glue is applied to the surface of the first side wall 11 close to the inner cavity 14 to form a polymer on the surface of the first side wall 11 close to the inner cavity 14.
  • the viscous force of the above-mentioned polymer layer can improve the integrity of the pole pieces, the diaphragm and the housing 1, prevent internal short circuits caused by the mutual sliding of the pole pieces and internal short circuits caused by the shrinkage of the diaphragm, and at the same time can prevent the housing 1 crack.
  • adhesive glue is applied to the surface of the second side wall 12 close to the inner cavity 14 to form a height on the surface of the second side wall 12 close to the inner cavity 14.
  • using the viscous force of the above-mentioned polymer layer can improve the integrity between the diaphragm and the housing 1, prevent internal short circuits caused by the shrinkage of the diaphragm, and also prevent the housing 1 from cracking.
  • the electrochemical energy storage device also includes a working chamber, and the outer shell is located in the working chamber.
  • the electrochemical energy storage device is dropped or impacted, collisions between the outer shell and the working chamber are prone to cause cracking and damage of the outer shell.
  • adhesive glue is applied to the surface of the third side wall 13 away from the inner cavity 14 to form a polymer on the surface of the third side wall 13 away from the inner cavity 14.
  • the use of the viscous force of the above-mentioned polymer layer can improve the integrity of the shell 1 and the working chamber, and can prevent the shell 1 from cracking caused by the collision of the shell 1 and the working chamber.
  • the adhesive glue is applied to the surface of the first side wall 11 away from the inner cavity 14 to form a height on the surface of the first side wall 11 away from the inner cavity 14.
  • using the viscous force of the above-mentioned polymer layer can improve the integration of the housing 1 and the working chamber, and can prevent the shell 1 from cracking caused by the collision of the housing 1 and the working chamber.
  • adhesive glue is applied to the surface of the second side wall 12 away from the inner cavity 14 to form a height on the surface of the second side wall 12 away from the inner cavity 14.
  • using the viscous force of the above-mentioned polymer layer can improve the integration of the housing 1 and the working chamber, and can prevent the shell 1 from cracking caused by the collision of the housing 1 and the working chamber.
  • the reinforcing layer 2 is adhesive paper.
  • Adhesive tape has the advantages of simple structure, easy assembly and low cost.
  • the adhesive tape may be a single-sided adhesive tape or a double-sided adhesive tape.
  • the width of the cell 3 is L1 (refer to FIGS. 6 and 9), and the length of the reinforcing layer 2 in the width direction of the cell 3 is L2 (refer to FIGS. 6 and 9), where L2 ⁇ 0.5L1.
  • the length L2 of the reinforcing layer 2 in the width direction of the cell 3 can be 0.6L1, 0.7L1, 0.8L1, 0.9L1, or L1.
  • the length L2 of the reinforcing layer 2 in the width direction of the cell 3 can be based on The model, size and application environment are designed and manufactured.
  • the electrochemical energy storage device 100 is a battery. It is understandable that the battery has the advantages of being easy to carry and easy to transport. At the same time, the application environment of the battery is relatively diverse, and the demand for the battery is relatively wide. Alternatively, the battery may be a primary battery or a secondary battery. Of course, this application is not limited to this, and the electrochemical device may also be a capacitor.
  • the electrochemical energy storage device 100 in some of the foregoing embodiments and the energy storage device without the reinforcement layer 2 in the related art were tested.
  • the realization conditions are as follows: the electrochemical energy storage device 100 in the above-mentioned embodiment and the energy storage device without the reinforcement layer 2 in the related art are respectively put into a drum for testing, and the rotation speed of the drum is 3-4 laps/min. The height is 1m, each time the experimental drum rotates a total of 250 revolutions. At the 75th, 150th, and 250th revolutions, the measured voltage and internal resistance are taken out. After the drop, the battery core 3 is static at room temperature for 72h, and the voltage is measured every 24h. It is recorded that after 72 hours, based on the initial voltage, the voltage drop of the electrochemical energy storage device 100 is less than 30 mv, and the proportion of cracks is counted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种电化学储能装置(100),包括外壳(1),外壳(1)包括相对的第一侧壁(11)及第二侧壁(12),且设有用以容置电芯(3)的内腔(14),内腔(3)位于第一侧壁(11)及第二侧壁(12)之间,第一侧壁(11)和第二侧壁(12)中的至少一者设置有加强层(2)。该电化学储能装置(100),第一侧壁(11)和第二侧壁(12)中的至少一者上设置加强层(2),加强层(2)可以提升外壳(1)的结构强度,当电化学储能装置(100)发生跌落或者碰撞时,加强层(2)对外壳(1)具有保护作用,由此可以避免电化学储能装置(100)出现短路或者电解液的外泄,从而可以提升电化学储能装置(100)的安全性和可靠性。

Description

电化学储能装置 技术领域
本申请涉及储能装置领域,尤其是涉及一种电化学储能装置。
背景技术
相关技术中,电化学储能装置(例如锂电池)在使用过程中,当电化学储能装置发生跌落或者磕碰时,容易造成电化学储能装置的Pocket(包装袋)的龟裂,影响电化学储能装置工作的安全性和可靠性。
发明内容
本申请的一个目的在于提出一种电化学储能装置,所述电化学储能装置具有安全性高和可靠性强的优点。
根据本申请实施例的电化学储能装置,包括外壳,所述外壳包括相对的第一侧壁及第二侧壁,且设有用以容置电芯的内腔,所述内腔位于所述第一侧壁及第二侧壁之间,所述第一侧壁和所述第二侧壁中的至少一者设置有加强层。
根据本申请实施例的电化学储能装置,第一侧壁和第二侧壁中的至少一者上设置加强层,加强层可以提升外壳的结构强度,当电化学储能装置发生跌落或者碰撞时,加强层对外壳具有保护作用,由此可以避免电化学储能装置出现短路或者电解液的外泄,从而可以提升电 化学储能装置的安全性和可靠性。
根据本申请的一些实施例,所述电化学储能装置还包括电芯,所述电芯的极耳从所述第一侧壁伸出内腔,所述加强层设于所述第二侧壁。
在本申请的一些实施例中,所述加强层设于所述第二侧壁的靠近所述内腔的表面。
在本申请的一些实施例中,所述加强层设于所述第二侧壁的远离所述内腔的表面。
在本申请的一些实施例中,所述加强层设于所述第一侧壁的远离所述内腔的表面。
在本申请的一些实施例中,所述外壳具有第三侧壁,所述第三侧壁与所述第二侧壁相邻,所述加强层设于所述第三侧壁的远离所述内腔的表面。
根据本申请的一些实施例,所述加强层为高分子层。
根据本申请的一些实施例,所述加强层为胶纸。
在本申请的一些实施例中,所述电芯的宽度为L1,所述加强层在电芯宽度方向的长度为L2,其中,L2≥0.5L1。
根据本申请的一些实施例,所述电化学储能装置为电池。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例一的电化学储能装置的结构示意图;
图2是根据本申请实施例二的电化学储能装置的结构示意图;
图3是根据本申请实施例三的电化学储能装置的结构示意图;
图4是根据本申请实施例四的电化学储能装置的结构示意图;
图5是根据本申请实施例五的电化学储能装置的结构示意图;
图6是根据本申请实施例六的电化学储能装置的结构示意图;
图7是根据本申请实施例七的电化学储能装置的结构示意图;
图8是根据本申请实施例八的电化学储能装置的结构示意图;
图9是根据本申请实施例九的电化学储能装置的结构示意图;
图10是根据本申请实施例十的电化学储能装置的结构示意图;
图11是根据本申请实施例十一的电化学储能装置的结构示意图。
主要元件符号说明
电化学储能装置            100
外壳                      1
第一侧壁                  11
第二侧壁                  12
第三侧壁                  13
内腔                       14
加强层                     2
电芯                       3
极耳                       31
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述根据本申请实施例的电化学储能装置100。值得理解的是,下述描述仅是示例性说明,而不是对本申请的具体限制。
实施例一
如图1所示,电化学储能装置100包括外壳1和电芯3,外壳1包括第一侧壁11、第二侧壁12和第三侧壁13,其中,第一侧壁11和第二侧壁12相对,第三侧壁13与第二侧壁12相邻,外壳1设有用以容置电芯3的内腔14,内腔14位于第一侧壁11及第二侧壁12之间,第一侧壁11和第二侧壁12中的至少一者设置有加强层2。
加强层2可以提升外壳1的结构强度,当电化学储能装置100发生跌落或者碰撞时,加强层2对外壳1具有保护作用,由此可以避免电化学储能装置100出现短路或者电解液的外泄,从而可以提升电化学储能装置100的安全性和可靠性。
相关技术中,电化学储能装置发生跌落或者撞击时,电化学储能装置接受到的外部的冲击力,容易出现外壳的龟裂或者破损,造成电解液的泄漏,同时外部的冲击力还有可能造成内部的电解液与外壳以及极片与外壳之间发生碰撞,造成外壳的破损,影响电化学储能装置的安全性和可靠性。而在本申请中,通过在第一侧壁11和第二侧壁12中的至少一者设置有加强层2,可以提升外壳1的结构强度,使得电化学储能装置100的安全性和可靠性得到提升。
如图1所示,加强层2设于第一侧壁11的靠近内腔14的表面。由此,可以提升第一侧壁11的靠近内腔14一侧的结构强度,增加了第一侧壁11抵抗电解液冲击的能力。
如图1所示,电芯3的极耳31从第一侧壁11伸出内腔14,加强层2设于第二侧壁12。可以理解的是,加强层2可以提升第二侧壁12的结构强度,可以避免第二侧壁12发生龟裂。此外,将加强层2设在第二侧壁12处,用于容纳加强层2的容纳空间更容易设计和制造,可以减少加工的成本。优选地,加强层2上设有用于极耳31穿过的贯穿孔。
需要说明的是,电芯3包括极片和隔膜,极片又包括阴极片和阳极片,隔膜位于阴极片和阳极片之间,并通过卷绕或者叠片的方式制成。具体地,电芯3在制造时,首先可以使用聚乙烯多孔膜作为基材,并使用起毛剂在一定温度下对基材进行表面预处理,以增大基材表面的张力,然后将无机氧化物(氧化铝、氧化硅等)和有 机聚合物(聚偏氟乙烯)溶液,均匀涂布在基材的表面,以制成隔膜。
随后,将阳极片、阴极片和隔膜按照次序卷绕成裸电芯,裸电芯和电解液内置与外壳1内,电解液浸润裸电芯形成电芯3,最后通过热压等方式,使极片与隔膜之间产生粘结力。
如图1所示,加强层2设于第二侧壁12的靠近内腔14的表面。可以理解的是,加强层2可以提升第二侧壁12的靠近内腔14一侧的结构强度,使得第二侧壁12抵抗电解液冲击的能力得到提升,从而避免电解液发生泄漏。
如图1所示,加强层2设于第二侧壁12的远离内腔14的表面。可以理解的是,加强层2可以提升第二侧壁12的外表面的结构强度,增加了第二侧壁12抵抗外部冲击的能力,避免第二侧壁12出现龟裂。
如图1所示,外壳1具有第三侧壁13,第三侧壁13与第二侧壁12相邻,加强层2设于第三侧壁13的远离内腔14的表面。加强层2对外壳1的第三侧壁13具有保护作用,通过在第三侧壁13的远离内腔14的表面设置加强层2,可以避免第三侧壁13处出现电解液的外泄,从而可以进一步提升电化学储能装置100的安全性和可靠性。
如图1所示,外壳1包括第一侧壁11、第二侧壁12和两个第三侧壁13,第一侧壁11和第二侧壁12相对设置,两个第三侧壁13相对设置,左侧的第三侧壁13的一端与第一侧壁11的一端连接,左侧的第三侧壁13的 另一端与第二侧壁12的一端连接,右侧的第三侧壁13的一端与第一侧壁11的另一端连接,右侧的第三侧壁13的另一端与第二侧壁12的另一端连接。
其中,左侧的第三侧壁13的远离内腔14的表面和右侧的第三侧壁13的远离内腔14的表面均设置有加强层2。
实施例二
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图2所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面、第二侧壁12的靠近内腔14的表面、左侧的第三侧壁13的远离内腔14的表面和右侧的第三侧壁13的远离内腔14的表面设有加强层2。
实施例三
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图3所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面、第二侧壁12的靠近内腔14的表面、第二侧壁12的远离内腔14的表面和左侧的第三侧壁13的远离内腔14的表面设有加强层2。
实施例四
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图4所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面、第一侧壁11的远离内腔14的表面、第二侧壁12的靠近内腔14的表面和第二侧壁12的远离内腔14的表面设有加强层2。
其中,在第一侧壁11的远离内腔14的表面设有加 强层2,可以提升第一侧壁11的外表面的结构强度,增加了第一侧壁11抵抗外部冲击的能力。
实施例五
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图5所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面、第二侧壁12的靠近内腔14的表面和第二侧壁12的远离内腔14的表面设有加强层2。
实施例六
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图6所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面和第二侧壁12的靠近内腔14的表面设有加强层2。
实施例七
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图7所示,不同之处在于,仅第二侧壁12的远离内腔14的表面设有加强层2。
实施例八
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图8所示,不同之处在于,仅第一侧壁11的远离内腔14的表面设有加强层2。
实施例九
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图9所示,不同之处在于,仅左侧的第三侧壁13的远离内腔14的表面和右侧的第三侧壁13的远离内腔14的表面设有加强层2。
实施例十
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图10所示,不同之处在于,仅第二侧壁12的靠近内腔14的表面设有加强层2。
实施例十一
本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,如图11所示,不同之处在于,仅第一侧壁11的靠近内腔14的表面设有加强层2。
值得理解的是,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
另外,上述实施例仅是示例性说明,在本申请实施例的电化学储能装置100还可以具有如下特征:
根据本申请的一些实施例,加强层2为高分子层。高分子层的制造工艺相对成熟,制造成本较低,高分子层的化学性质也较为稳定,不易被酸碱腐蚀,且使用寿命较长。
可选地,高分子层可以为乙烯-乙酸共聚物(EVA)热熔胶、聚酰胺(PA)热熔胶、聚氨酯(PU)热熔胶、聚氨酯、环氧树脂、聚丙烯酸酯、聚脲或聚碳酸酯。乙烯-乙酸共 聚物(EVA)热熔胶、聚酰胺(PA)热熔胶、聚氨酯(PU)热熔胶、聚氨酯、环氧树脂、聚丙烯酸酯、聚脲、聚碳酸酯经过物理受热或化学聚合后具有较强的粘性。具体地,高分子层可以是上述材料中的一种,也可以是其中几种材料的混合。
其中,物理加热方法可以将加热温度控制在60-160℃,优选地,加热温度为80-100℃,响应时间可以控制在1-30min,优选地,响应时间为1-4min。
相关技术中,电化学储能装置在发生跌落或者撞击时,电化学储能装置内部的极片之间容易发生相对的滑动造成内部短路。此外,电化学储能装置的电解液也会冲击隔膜,容易发生隔膜的收缩造成内部的短路。
如图1所示,在本申请的一个示例中,在第一侧壁11的靠近内腔14的表面涂抹粘接胶,以在第一侧壁11的靠近内腔14的表面上形成高分子层,利用上述高分子层的粘性力可以提升极片、隔膜和外壳1之间的一体性,防止极片相互滑动造成的内部短路和隔膜收缩造成的内部短路,同时还可以避免外壳1发生龟裂。
如图7所示,在本申请的另一个示例中,在第二侧壁12的靠近内腔14的表面涂抹粘接胶,以在第二侧壁12的靠近内腔14的表面上形成高分子层,利用上述高分子层的粘性力可以提升隔膜和外壳1之间的一体性,防止隔膜收缩造成的内部短路,同时还可以避免外壳1发生龟裂。
相关技术中,电化学储能装置还包括工作仓,外壳位于工作仓内,电化学储能装置在发生跌落或者撞击时, 外壳与工作仓之间容易发生碰撞,造成外壳的龟裂破损。
如图3所示,在本申请的一个示例中,在第三侧壁13的远离内腔14的表面涂抹粘接胶,以在第三侧壁13的远离内腔14的表面上形成高分子层,利用上述高分子层的粘性力可以提升外壳1与工作仓的一体性,可以防止因外壳1与工作仓碰撞造成的外壳1龟裂的问题。
如图8所示,在本申请的另一个示例中,在第一侧壁11的远离内腔14的表面涂抹粘接胶,以在第一侧壁11的远离内腔14的表面上形成高分子层,利用上述高分子层的粘性力可以提升外壳1与工作仓的一体性,可以防止因外壳1与工作仓碰撞造成的外壳1龟裂的问题。
如图10所示,在本申请的又一个示例中,在第二侧壁12的远离内腔14的表面涂抹粘接胶,以在第二侧壁12的远离内腔14的表面上形成高分子层,利用上述高分子层的粘性力可以提升外壳1与工作仓的一体性,可以防止因外壳1与工作仓碰撞造成的外壳1龟裂的问题。
根据本申请的一些实施例,加强层2为胶纸。胶纸具有结构简单、易于装配和成本低廉的优点。可选地,胶纸可以为单面胶纸或者双面胶纸。
在本申请的一些实施例中,电芯3的宽度为L1(参照图6和图9),加强层2在电芯3宽度方向的长度为L2(参照图6和图9),其中,L2≥0.5L1。由此,可以提升加强层2对外壳1的保护效果,进一步提升电化学储能装置100的可靠性和安全性。
例如,加强层2在电芯3宽度方向的长度L2可以为0.6L1、0.7L1、0.8L1、0.9L1或L1,具体地,加强层 2在电芯3宽度方向的长度L2可以根据电芯3的型号、尺寸和应用的环境设计制造。
根据本申请的一些实施例,电化学储能装置100为电池。可以理解的是,电池具有易于携带和易于运输的优点,同时电池的应用环境也相对多样,电池的需求也相对广泛。可选地,电池可以为一次电池或二次电池。当然本申请不限于此,电化学装置也可以为电容器。
需要说明的是,电芯3在和外壳1装配完成后,还需要通过充电化成、负压抽气和容量测试等工序才能完成制造,随后可以将装有电芯3的外壳1放入工作仓内,从而完成电化学储能装置100的组装。
将部分上述实施例中的电化学储能装置100与相关技术中的未设置加强层2的储能装置(对比例一)进行了测试实验。实现条件如下:将上述实施例中的电化学储能装置100与相关技术中的未设置加强层2的储能装置分别放入滚筒中进行测试,滚筒的转速为3-4圈/min,滚动高度为1m,每次实验滚筒共计旋转250圈,在第75圈、150圈和250圈的时候取出测量电压和内阻,跌落结束后取下电芯3常温静止72h,每24h测一次电压并记录,72h后以初始电压为基准,电化学储能装置100的电压降小于30mv的合格,同时统计出现龟裂口的比例。
具体实验结果,如表1所示:
  电压降通过率 龟裂口出现比例
对比例一 10/20 18/20
实施例一 20/20 0/20
实施例二 20/20 2/20
实施例三 20/20 3/20
实施例四 20/20 0/20
实施例五 19/20 5/20
实施例六 18/20 18/20
实施例七 12/20 18/20
实施例八 11/20 7/20
实验研究发现,在外壳1的第一侧壁11的靠近内腔14的一侧设置加强层2,可以显著的提升电化学储能装置100的电压降的通过率;在第一侧壁11、第二侧壁12或者第三侧壁13的远离内腔14的一侧设置加强层2,可以显著的降低电化学储能装置100的龟裂口出现比例。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请,因此依本申请所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种电化学储能装置,包括外壳,所述外壳包括相对的第一侧壁及第二侧壁,且设有用以容置电芯的内腔,所述内腔位于所述第一侧壁及第二侧壁之间,其特征在于,所述第一侧壁和所述第二侧壁中的至少一者设置有加强层。
  2. 根据权利要求1所述的电化学储能装置,其特征在于,还包括电芯,所述电芯的极耳从所述第一侧壁伸出内腔,所述加强层设于所述第二侧壁。
  3. 根据权利要求2所述的电化学储能装置,其特征在于,所述加强层设于所述第二侧壁的靠近所述内腔的表面。
  4. 根据权利要求2所述的电化学储能装置,其特征在于,所述加强层设于所述第二侧壁的远离所述内腔的表面。
  5. 根据权利要求2-4任一项所述的电化学储能装置,其特征在于,所述加强层设于所述第一侧壁的远离所述内腔的表面。
  6. 根据权利要求2-4任一项所述的电化学储能装置,其特征在于,所述外壳具有第三侧壁,所述第三侧壁与所述第二侧壁相邻,所述加强层设于所述第三侧壁的远离所述内腔的表面。
  7. 根据权利要求1所述的电化学储能装置,其特征在于,所述加强层为高分子层。
  8. 根据权利要求1所述的电化学储能装置,其特征在于,所述加强层为胶纸。
  9. 根据权利要求2所述的电化学储能装置,其特征在于,所述电芯的宽度为L1,所述加强层在电芯宽度方向的长度为L2,其中,L2≥0.5L1。
  10. 根据权利要求1所述的电化学储能装置,其特征在于,所述电化学储能装置为电池。
PCT/CN2020/079031 2019-03-14 2020-03-12 电化学储能装置 WO2020182191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020517481A JP2021518032A (ja) 2019-03-14 2020-03-12 電気化学エネルギー貯蔵装置
US16/955,248 US20210218093A1 (en) 2019-03-14 2020-03-12 Electrochemical energy storage device
EP20712430.6A EP3731327A4 (en) 2019-03-14 2020-03-12 DEVICE FOR ELECTROCHEMICAL ELECTRICITY STORAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920325989.1U CN209487571U (zh) 2019-03-14 2019-03-14 电化学储能装置
CN201920325989.1 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020182191A1 true WO2020182191A1 (zh) 2020-09-17

Family

ID=68134422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079031 WO2020182191A1 (zh) 2019-03-14 2020-03-12 电化学储能装置

Country Status (5)

Country Link
US (1) US20210218093A1 (zh)
EP (1) EP3731327A4 (zh)
JP (1) JP2021518032A (zh)
CN (1) CN209487571U (zh)
WO (1) WO2020182191A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209487571U (zh) * 2019-03-14 2019-10-11 宁德新能源科技有限公司 电化学储能装置
CN113097609A (zh) * 2021-03-30 2021-07-09 东莞新能安科技有限公司 电化学装置及应用其的电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170019A (zh) * 2011-03-31 2011-08-31 东莞新能源电子科技有限公司 软包装锂离子电池
CN205050949U (zh) * 2015-10-20 2016-02-24 山东精工电子科技有限公司 锂离子电池
CN205122651U (zh) * 2015-11-02 2016-03-30 宁德新能源科技有限公司 软包装锂离子电池
CN207705280U (zh) * 2017-07-29 2018-08-07 深圳格林德能源有限公司 一种阻燃软包装动力电池结构
CN108807809A (zh) * 2017-05-04 2018-11-13 宁德新能源科技有限公司 电芯及储能装置
CN209487571U (zh) * 2019-03-14 2019-10-11 宁德新能源科技有限公司 电化学储能装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109667A (ja) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp 非水電解質電池及びその製造方法
KR100614373B1 (ko) * 2004-09-24 2006-08-21 삼성에스디아이 주식회사 강도 강화층이 형성된 리튬 폴리머 전지 및 그 제조 방법
JP4793497B2 (ja) * 2010-03-12 2011-10-12 ソニー株式会社 電池パック
JP5973765B2 (ja) * 2012-03-30 2016-08-23 積水化成品工業株式会社 輸送機の内装材および内装材の設置方法
JP6027268B2 (ja) * 2013-11-27 2016-11-16 エルジー・ケム・リミテッド 二次電池用ポーチ及びこれを含む二次電池
KR102248598B1 (ko) * 2014-02-05 2021-05-06 삼성에스디아이 주식회사 커브드 이차 전지 및 이의 제조 방법
JP6109792B2 (ja) * 2014-08-06 2017-04-05 本田技研工業株式会社 バッテリパック及び電動車両
WO2016080401A1 (ja) * 2014-11-18 2016-05-26 三菱レイヨン株式会社 金属板の補修方法、及び鋳型の製造方法
KR101883536B1 (ko) * 2015-04-29 2018-07-30 주식회사 엘지화학 파우치형 이차전지 및 그 제조방법
EP3297058A4 (en) * 2015-05-12 2019-01-16 Olympus Corporation BATTERY ASSEMBLY FOR MEDICAL APPARATUS, AND MEDICAL APPARATUS UNIT
WO2016192051A1 (zh) * 2015-06-03 2016-12-08 宁德新能源科技有限公司 电化学储能装置
JP2017222314A (ja) * 2016-06-17 2017-12-21 株式会社フジクラ 車載バッテリ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170019A (zh) * 2011-03-31 2011-08-31 东莞新能源电子科技有限公司 软包装锂离子电池
CN205050949U (zh) * 2015-10-20 2016-02-24 山东精工电子科技有限公司 锂离子电池
CN205122651U (zh) * 2015-11-02 2016-03-30 宁德新能源科技有限公司 软包装锂离子电池
CN108807809A (zh) * 2017-05-04 2018-11-13 宁德新能源科技有限公司 电芯及储能装置
CN207705280U (zh) * 2017-07-29 2018-08-07 深圳格林德能源有限公司 一种阻燃软包装动力电池结构
CN209487571U (zh) * 2019-03-14 2019-10-11 宁德新能源科技有限公司 电化学储能装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731327A4 *

Also Published As

Publication number Publication date
JP2021518032A (ja) 2021-07-29
CN209487571U (zh) 2019-10-11
EP3731327A4 (en) 2021-04-21
US20210218093A1 (en) 2021-07-15
EP3731327A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
TWI479725B (zh) 分隔器及含有此分隔器之電化學裝置
KR101407772B1 (ko) 전극조립체 및 그를 이용한 이차전지
JP6575136B2 (ja) 固体電池及びそれを用いた組電池
KR101913383B1 (ko) 전기화학적 에너지 저장 장치
WO2020182191A1 (zh) 电化学储能装置
JP5918840B2 (ja) リチウム電池
CN102893427B (zh) 隔膜及包含该隔膜的电化学装置
ES2931901T3 (es) Conjunto de electrodos
JP4949146B2 (ja) 改善された安全性を有する二次電池
CN103545559A (zh) 一种叠片式锂离子电池
CN1943073A (zh) 电池用安全元件和具有该元件的电池
KR101239622B1 (ko) 안전성이 향상된 원통형 이차전지
JP2017182945A (ja) 全固体リチウムイオン二次電池
KR20130085324A (ko) 배터리 셀용 보강물 및 배터리 셀
JP2018085245A (ja) 電池用短絡試験装置及び電池の短絡試験方法
CN111211357A (zh) 一种卷绕电芯
CN109167099B (zh) 一种高安全的电池及其制备方法
JP2016514354A (ja) 電極板、電極板を形成する方法、及び電極板を含むリチウム電池コアを形成する方法
WO2023039820A1 (zh) 一种胶纸、包含该胶纸的电化学装置和电子装置
TWI462380B (zh) 電芯及其製造方法
CN105390751A (zh) 一种安全性高的软包装锂离子电池芯及其制备方法
CN108493360B (zh) 铝塑膜及其制备方法、用途与包含其的二次电池
WO2017177946A1 (zh) 一种安全性能高的可穿戴柔性电池及其制造工艺
KR102142673B1 (ko) 전기화학소자용 전극 조립체 및 상기 전극 조립체를 포함하는 파우치형 전지
CN212277261U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020517481

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020712430

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE