WO2020182132A1 - 一种激光器的驱动电路、驱动方法及激光雷达系统 - Google Patents

一种激光器的驱动电路、驱动方法及激光雷达系统 Download PDF

Info

Publication number
WO2020182132A1
WO2020182132A1 PCT/CN2020/078687 CN2020078687W WO2020182132A1 WO 2020182132 A1 WO2020182132 A1 WO 2020182132A1 CN 2020078687 W CN2020078687 W CN 2020078687W WO 2020182132 A1 WO2020182132 A1 WO 2020182132A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
preset time
switching element
circuit
energy storage
Prior art date
Application number
PCT/CN2020/078687
Other languages
English (en)
French (fr)
Inventor
胡小波
沈俭
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Publication of WO2020182132A1 publication Critical patent/WO2020182132A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the embodiments of the present application relate to laser radar technology, and in particular to a laser driving circuit, a driving method, and a laser radar system.
  • Lidar is a radar system that uses lasers to detect the target's position, speed and other characteristic quantities. Its working principle is to first launch a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal, and make appropriate After processing, the target's distance, azimuth, height, speed, posture, and even shape can be obtained.
  • the laser In order to improve the resolution of lidar, the laser is required to have a high emission frequency, and the peak power of each pulse cannot be reduced as the frequency increases.
  • the current semiconductor laser can achieve a transmission frequency of about 200kHz under the drive of an ordinary transmission circuit, while a realistic laser radar requires a transmission frequency of 500kHz to 1MHz.
  • a realistic laser radar In order to increase the transmission frequency of lidar, there are generally two ways in the prior art:
  • a laser driving circuit a driving method, and a laser radar system are provided.
  • an embodiment of the present application provides a laser drive circuit, including:
  • At least two charging and energy storage circuits At least two first switching elements, and a control circuit
  • the output ends of the at least two charging and energy storage circuits are electrically connected to the first ends of the at least two first switching elements in a one-to-one correspondence, and the second ends of each first switching element are electrically connected to the laser;
  • the input terminals of all charging and energy storage circuits and the control terminals of all first switching elements are electrically connected to the control circuit;
  • the control circuit is used to control each charging and energy storage circuit to charge for a first preset time, and sequentially control each of the first switching elements to turn on for a second preset time;
  • the charging start time of subsequent charging of the energy storage circuit is separated by a third preset time from the turn-on time or end time of the corresponding first switching element; or, the start time of charging of each charging energy storage circuit is the same.
  • the first switching element includes a transistor.
  • the charging and energy storage circuit includes a second switching element, an inductor, a diode, and a capacitor;
  • the control terminal of the second switching element is electrically connected with the control circuit, the first terminal of the second switching element is electrically connected with the first end of the inductor, and the second end of the second switching element is grounded;
  • the second end of the inductor is electrically connected to the first level input end, and the first end of the inductor is electrically connected to the anode of the diode;
  • the first end of the capacitor is electrically connected to the cathode of the diode, and the second end of the capacitor is grounded;
  • the cathode of the diode is electrically connected to the first end of the first switching element
  • the control end of the first switching element is connected to the control circuit; the second end of the first switching element is electrically connected to the anode of the laser.
  • the first preset time is greater than or equal to 3 ⁇ s
  • the second preset time is 10ns-50ns.
  • control circuit is a field programmable gate array.
  • the sum of the first preset time and the third preset time is less than the time interval between two adjacent conduction of the corresponding first switching element.
  • control circuit sequentially controls each of the first switching elements to be turned on at a first frequency for a second preset time
  • the first preset time, the first frequency, and the third preset time satisfy:
  • t 1 represents the first preset time
  • t 3 represents the third preset time
  • f represents the first frequency
  • N represents the number of the first switching elements
  • N is greater than or equal to 2. The integer.
  • an embodiment of the present application further provides a laser radar system, including: at least one laser unit, each of the laser units includes a laser and a driving circuit; the lasers are electrically connected to the driving circuits in a one-to-one correspondence;
  • the driving circuit includes:
  • At least two charging and energy storage circuits At least two first switching elements, and a control circuit
  • the output ends of the at least two charging and energy storage circuits are electrically connected to the first ends of the at least two first switching elements in a one-to-one correspondence, and the second ends of each first switching element are electrically connected to the laser;
  • the input terminals of all charging and energy storage circuits and the control terminals of all first switching elements are electrically connected to the control circuit;
  • the control circuit is used to control each charging and energy storage circuit to charge for a first preset time, and sequentially control each of the first switching elements to turn on for a second preset time;
  • the charging start time of subsequent charging of the energy storage circuit is separated by a third preset time from the turn-on time or end time of the corresponding first switching element; or, the start time of charging of each charging energy storage circuit is the same.
  • the first switching element includes a transistor.
  • the charging and energy storage circuit includes a second switching element, an inductor, a diode, and a capacitor;
  • the control terminal of the second switching element is electrically connected with the control circuit, the first terminal of the second switching element is electrically connected with the first end of the inductor, and the second end of the second switching element is grounded;
  • the second end of the inductor is electrically connected to the first level input end, and the first end of the inductor is electrically connected to the anode of the diode;
  • the first end of the capacitor is electrically connected to the cathode of the diode, and the second end of the capacitor is grounded;
  • the cathode of the diode is electrically connected to the first end of the first switching element
  • the control end of the first switching element is connected to the control circuit; the second end of the first switching element is electrically connected to the anode of the laser.
  • the first preset time is greater than or equal to 3 ⁇ s
  • the second preset time is 10ns-50ns.
  • control circuit is a field programmable gate array.
  • the sum of the first preset time and the third preset time is less than the time interval between two adjacent conduction of the corresponding first switching element.
  • control circuit sequentially controls each of the first switching elements to be turned on at a first frequency for a second preset time
  • the first preset time, the first frequency, and the third preset time satisfy:
  • t 1 represents the first preset time
  • t 3 represents the third preset time
  • f represents the first frequency
  • N represents the number of the first switching elements
  • N is greater than or equal to 2. The integer.
  • multiple laser units are included; the drive circuits in each laser unit share the same control circuit.
  • an embodiment of the present application also provides a laser driving method, which is applied to a driving circuit, and the driving circuit includes:
  • At least two charging and energy storage circuits At least two first switching elements, and a control circuit
  • the output ends of the at least two charging and energy storage circuits are electrically connected to the first ends of the at least two first switching elements in a one-to-one correspondence, and the second ends of each first switching element are electrically connected to the laser;
  • the input terminals of all charging and energy storage circuits and the control terminals of all first switching elements are electrically connected to the control circuit;
  • the control circuit is used to execute the driving method of the lidar
  • the method includes:
  • Step S1 Charge each charging and energy storage circuit for a first preset time
  • Step S2 sequentially controlling each first switching element to be turned on for a second preset time
  • the charging start time of subsequent charging of the energy storage circuit is separated by a third preset time from the corresponding first switching element conduction time or end time; or the charging start time of each charging energy storage circuit is the same.
  • it further includes: stopping the execution of step S1 and step S2 when the stop instruction is obtained.
  • control circuit sequentially controls each of the first switching elements to be turned on at a first frequency for a second preset time
  • the first preset time, the first frequency, and the third preset time satisfy:
  • t 1 represents the first preset time
  • t 3 represents the third preset time
  • f represents the first frequency
  • N represents the number of the first switching elements
  • N is greater than or equal to 2. The integer.
  • the first preset time is greater than or equal to 3 ⁇ s
  • the second preset time is 10ns-50ns.
  • the charging and energy storage circuit includes a second switching element, an inductor, a diode, and a capacitor;
  • t 4 ⁇ 500ns or t 5 ⁇ 500ns are optionally, t 4 ⁇ 500ns or t 5 ⁇ 500ns.
  • control circuit is a field programmable gate array.
  • FIG. 1 is a schematic structural diagram of a laser driving circuit provided by an embodiment of the present application.
  • FIG. 2 is a timing diagram of control signals of a laser driving circuit provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a charging and energy storage circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a laser driving method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a sequence of control signals in a laser driving method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a timing sequence of control signals in another laser driving method provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a laser driving circuit provided by an embodiment of the application.
  • the driving circuit provided by the embodiment of the present application includes at least two charging and accumulating circuits 10, at least two first switching elements 20, and a control circuit 30; wherein, the output terminal of the charging and accumulating circuit 10 and the first switching element
  • the first ends of 20 are electrically connected in a one-to-one correspondence, and the second ends of each first switching element 20 are electrically connected to the laser 40; the input ends of all the charging energy storage circuits 10 and the control ends of all the first switching elements 20 are
  • the control circuit 30 is electrically connected; the control circuit 30 is used to control each charging and storage circuit 10 to charge for a first preset time, and to sequentially control each first switching element 20 to be turned on for a second preset time; wherein, the subsequent charging and storage circuit 10
  • the charging start time of charging and the corresponding first switching element 20 turn-on time or end time are separated by a third preset time; or, the charging start time of each
  • the driving circuit shown in FIG. 1 exemplarily includes three charging and accumulating circuits 10 and three first switching elements 20.
  • the charging and accumulating circuit 10 and the first switching element can be designed according to actual needs.
  • the control circuit 30 may be a field programmable gate array (FPGA).
  • the charging time is not less than 3 ⁇ s.
  • Using the three-channel drive circuit shown in Figure 1 to transmit in turn can reduce the actual operating frequency of each channel to 200kHz, with a pulse interval of 5 ⁇ s, which can meet the charging time of 3 ⁇ s.
  • FIG. 2 shows a timing diagram of a control signal of a laser driving circuit provided by an embodiment of the application, where the first preset time t 1 may be 3 ⁇ s, and the second preset time t 2 may be set to 10 ns-50 ns. It is understandable that in specific implementation, all charging and energy storage circuits can be controlled to charge at the same time, and then the first switching element can be turned on in turn to make the pulse transmission frequency reach a higher frequency (for example, 600kHz).
  • a higher frequency for example, 600kHz
  • a plurality of charging energy storage circuits and first switching elements are connected in parallel between the same laser and the control circuit, and each charging energy storage circuit is charged for a first preset time through the control circuit, and each of them is controlled in turn.
  • the first switching element is turned on for a second preset time; wherein the subsequent charging start time of the charging energy storage circuit and the corresponding first switching element turn on time are separated by a third preset time; or, each charging energy storage circuit is charged
  • the initial time is the same.
  • the first switching element includes a transistor.
  • the first switching element may be a field-effect transistor, an insulated gate bipolar transistor (IGBT), or other transistor with a fast response switching function, which is quickly turned on and off under the control of the control circuit to increase the emission frequency of the laser.
  • IGBT insulated gate bipolar transistor
  • FIG. 3 is a schematic structural diagram of a charging and energy storage circuit provided by an embodiment of the application.
  • the charging and energy storage circuit 10 includes a second switching element 101, an inductor 102, a diode 103, and a capacitor 104; the control end of the second switching element 101 is electrically connected to the control circuit 30, and the second switching element 101
  • the first terminal is electrically connected to the first terminal of the inductor 102, and the second terminal of the second switching element 101 is grounded;
  • the second terminal of the inductor 102 is electrically connected to the first level input terminal Vss, and the first terminal of the inductor 102 is connected to the diode 103
  • the anode of the capacitor 104 is electrically connected; the first end of the capacitor 104 is electrically connected to the cathode of the diode 102, and the second end of the capacitor 104 is grounded;
  • the cathode of the diode 103 is electrically connected to the first end of the first switching element 20.
  • the second switching element 101 may be a triode
  • the input voltage of the first level input terminal Vss may be 5V
  • a resistor R may be connected in series between the control circuit 30 and the second switching element 101.
  • the working process of the charging and energy storage circuit provided by the embodiment is: when the control circuit 30 provides a charging signal, the second switching element 101 is turned on. Since the charging signal is an instantaneous high-current signal, it can be regarded as an AC signal. Energy is stored in the inductor 102. After the charging signal of the control circuit 30 is turned off, the second switching element 101 is turned off. The energy stored in the inductor 102 is charged to the capacitor 104 through the diode 103.
  • the energy stored in the inductor 102 will be All are transferred to the capacitor 104.
  • the control circuit 30 provides a turn-on signal to the first switching element 20, the second switching element 20 is turned on, the capacitor 104 is discharged, and the laser 40 emits light.
  • FIG. 4 is a schematic flowchart of a laser driving method provided by an embodiment of this application.
  • the driving method may be executed by any driving circuit provided in the above embodiments, and specifically includes the following steps:
  • Step S1 Charge each charging and energy storage circuit for a first preset time.
  • Step S2 sequentially controlling each first switching element to be turned on for a second preset time.
  • the charging start time of the subsequent charging of the energy storage circuit and the corresponding first switching element conduction time are separated by a third preset time; or the charging start time of each charging and energy storage circuit is the same.
  • FIG. 5 shows the timing of control signals in a laser driving method provided by an embodiment of the application.
  • Schematic diagram, the process of the driving method is:
  • the control circuit controls each charging and energy storage circuit to charge for a first preset time, for example, 3 ⁇ s, and then sends a turn-on signal to each first switching element at a frequency of 600kHz (interval 1.667 ⁇ s), and the turn-on signal lasts for a second preset time, For example, 10ns, after the first first switching element is turned on for the third preset time, the first charging and accumulating circuit is charged again for 3 ⁇ s, and after the second first switching element is turned off, the second charging and accumulating circuit is again charged.
  • the energy circuit is charged for 3 ⁇ s, and so on, so that the laser sends pulses at 600kHz.
  • a waiting time which will not be described in detail here.
  • control circuit sequentially controls each first switching element to be turned on at a first frequency for a second preset time
  • the first preset time, the first frequency, and the third preset time satisfy:
  • t 1 represents the first preset time
  • t 3 represents the third preset time
  • f represents the first frequency
  • N represents the number of first switching elements
  • N is an integer greater than or equal to 2.
  • the first charge in the timing diagram shown in Fig. 5 charges all the charging energy storage circuits at the same time.
  • the first two charging time intervals are not t 3.
  • the interval between the third charge and the previous charge is t 3 .
  • FIG. 6 is a schematic diagram of a timing diagram of a control signal in another laser driving method provided by an embodiment of the application, and the process of the driving method is:
  • the control circuit simultaneously charges each charging and storage circuit for a first preset time, for example, 3 ⁇ s, and then sends a turn-on signal to each first switching element at 600kHz (interval 1.667 ⁇ s), and the turn-on signal lasts for a second preset time, for example 10ns, so that the laser sends three pulses at 600kHz, and then the control circuit charges each charging energy storage circuit for the first preset time, and then sends three pulses at 600kHz. It is understandable that, in specific implementation, a delay waiting time needs to be designed to make the laser meet the heat dissipation requirements.
  • each charging and storage circuit is charged for a first preset time through a control circuit, and each first switching element is sequentially controlled to be turned on for a second preset time; wherein the subsequent charging of the charging and storage circuit starts The start time is separated from the turn-on time of the corresponding first switching element by a third preset time; or, the charging start time of each charging and storage circuit is the same, and the first preset time is sufficient to charge different charging and storage circuits. Time, and then time-sharing to control the conduction of each first switching element, thereby increasing the emission frequency of the laser while ensuring the pulse power, and solving the contradiction between the emission frequency and the emission power of the laser.
  • the driving method further includes: stopping the execution of step S1 and step S2 when the stop instruction is obtained.
  • the laser can continuously output pulsed lasers.
  • the lidar control system stops sending Command, when the control circuit receives the stop command, it stops pulse transmission.
  • the first preset time is greater than or equal to 3 ⁇ s
  • the second preset time is 10ns-50ns.
  • the first preset time is set to be greater than or equal to 3 ⁇ s
  • the second preset time is set to be 10ns-50ns.
  • the first preset time and the second preset time may be It can be flexibly set according to actual circuit parameters and time conditions, which is not limited in the embodiment of the present application.
  • the charging energy storage circuit includes a second switching element, an inductor, a diode, and a capacitor; if the charging start time of each charging energy storage circuit is the same; the charging end time of each charging energy storage circuit is T 1 ;
  • the conduction start time of the first switching element that is turned on is T 2 ;
  • T 2 -T 1 t 4 ;
  • the turn-on time interval is a third preset time;
  • the end time of charging of the first charging and storage circuit is T 3 ;
  • the turn-on start time of the first switching element electrically connected to the charging and storage circuit is T 4 ;
  • T 4- T 3 t 5 ; t 5 >0.
  • t 4 ⁇ 500ns or t 5 ⁇ 500ns.
  • the charging and accumulating circuit adopts an LC circuit. Since it takes a certain time for the inductor L to discharge, a preset time is required from the end of charging of the charging and accumulating circuit to when the first switching element is turned on. in this embodiment, the preset reservation time is provided (T 5 in FIG. 5, FIG. 6 t 4) is greater than or equal to 500ns.
  • the reserved preset time may be inconsistent.
  • the example in this embodiment is only illustrative, and the reserved preset time can be set according to actual requirements during specific design.
  • An embodiment of the present application also provides a laser radar system, including: at least one laser unit, each laser unit includes a laser and any laser drive circuit provided in the foregoing embodiments; the laser and the drive circuit are electrically connected in a one-to-one correspondence.
  • the lidar system provided by the embodiments of the present application includes any laser driving circuit provided in the above embodiments, it can execute any driving method provided in the above embodiments, and has the same or corresponding beneficial effects.
  • the lidar system includes multiple laser units, and the driving circuit in each laser unit shares the same control control circuit, so as to improve the integration of the circuit, which is beneficial to realize the miniaturization of the lidar.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器的驱动电路、驱动方法及激光雷达系统。其中驱动电路包括至少两个充电蓄能电路、至少两个第一开关元件及控制电路;充电蓄能电路的输出端与第一开关元件的第一端一一对应电连接,第一开关元件的第二端均与激光器电连接;充电蓄能电路的输入端及第一开关元件的控制端均与控制电路电连接;控制电路为各充电蓄能电路充电第一预设时间,并依次控制各第一开关元件导通第二预设时间;后续充电蓄能电路的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;或,各充电蓄能电路充电的起始时间均相同。

Description

一种激光器的驱动电路、驱动方法及激光雷达系统
相关申请的交叉引用
本申请要求于2019年3月14日提交中国专利局、申请号为201910195227.9、申请名称为“一种激光器的驱动电路、驱动方法及激光雷达系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及激光雷达技术,尤其涉及一种激光器的驱动电路、驱动方法及激光雷达系统。
背景技术
随着激光技术的发展,激光扫描技术越来越广泛地应用于测量、交通、驾驶辅助和移动机器人等领域。激光雷达是一种通过激光来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。
为了提高激光雷达的分辨率,要求激光器具有很高的发射频率,同时每个脉冲的峰值功率不能随着频率提高而降低。当前半导体激光器在普通发射电路驱动下能够实现200kHz左右的发射频率,而现实的激光雷达需求500kHz~1MHz的发射频率。为了提高激光雷达的发射频率,现有技术一般有两种方式:
1、修改驱动电路参数,使充电周期缩短,发射频率提高。因为充电时间缩短,蓄能不足,单个脉冲的功率很难提升。提高充电电压,使电路短时间内能够累积较大能量。电压提高增加电路中器件负荷,需要使用高耐压值器件。电路的可靠性会因此下降,而成本会提高。
2、使用多个激光器和多个驱动电路,用光纤将各个光脉冲合路。各个激光器一次发射实现高频发射。因为要使用多个激光器以及光合路器件,成本较高、体积偏大。
发明内容
根据本申请的各种实施例,提供一种激光器的驱动电路、驱动方法及激光雷达系统。
第一方面,本申请实施例提供一种激光器的驱动电路,包括:
至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
所述控制电路用于控制各个充电蓄能电路充电第一预设时间,并依次控制各个所述第一开关元件导通第二预设时间;
其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者,各个充电蓄能电路充电的起始时间均相同。
可选的,所述第一开关元件包括晶体管。
可选的,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
所述第二开关元件的控制端与所述控制电路电连接,所述第二开关元件的第一端与所述电感的第一端电连接,所述第二开关元件的第二端接地;
所述电感的第二端与第一电平输入端电连接,所述电感的第一端与所述二极管的正极电连接;
所述电容的第一端与所述二极管的负极电连接,所述电容的第二端接地;
所述二极管的负极与所述第一开关元件的第一端电连接;
所述第一开关元件的控制端与所述控制电路连接;所述第一开关元件的第二端与所述激光器的正极电连接。
可选的,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
可选的,所述控制电路为现场可编程门阵列。
可选的,所述第一预设时间和所述第三预设时间之和小于对应的第一开关元件相邻两次导通的时间间隔。
可选的,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
所述第一预设时间、所述第一频率与所述第三预设时间满足:
Figure PCTCN2020078687-appb-000001
其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
第二方面,本申请实施例还提供一种激光雷达系统,包括:至少一个激光 器单元,每个所述激光器单元包括一激光器以及驱动电路;所述激光器与所述驱动电路一一对应电连接;
所述驱动电路,包括:
至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
所述控制电路用于控制各个充电蓄能电路充电第一预设时间,并依次控制各个所述第一开关元件导通第二预设时间;
其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者,各个充电蓄能电路充电的起始时间均相同。
可选的,所述第一开关元件包括晶体管。
可选的,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
所述第二开关元件的控制端与所述控制电路电连接,所述第二开关元件的第一端与所述电感的第一端电连接,所述第二开关元件的第二端接地;
所述电感的第二端与第一电平输入端电连接,所述电感的第一端与所述二极管的正极电连接;
所述电容的第一端与所述二极管的负极电连接,所述电容的第二端接地;
所述二极管的负极与所述第一开关元件的第一端电连接;
所述第一开关元件的控制端与所述控制电路连接;所述第一开关元件的第 二端与所述激光器的正极电连接。
可选的,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
可选的,所述控制电路为现场可编程门阵列。
可选的,所述第一预设时间和所述第三预设时间之和小于对应的第一开关元件相邻两次导通的时间间隔。
可选的,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
所述第一预设时间、所述第一频率与所述第三预设时间满足:
Figure PCTCN2020078687-appb-000002
其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
可选的,包括多个激光器单元;各激光器单元中的驱动电路共用同一控制电路。
第三方面,本申请实施例还提供一种激光器的驱动方法,应用于驱动电路,所述驱动电路,包括:
至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
所述控制电路用于执行所述激光雷达的驱动方法;
所述方法包括:
步骤S1、为各个充电蓄能电路充电第一预设时间;
步骤S2、依次控制各个第一开关元件导通第二预设时间;
其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者各个充电蓄能电路充电的起始时间均相同。
可选的,还包括:获取到停止指令时,停止执行步骤S1和步骤S2。
可选的,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
所述第一预设时间、所述第一频率与所述第三预设时间满足:
Figure PCTCN2020078687-appb-000003
其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
可选的,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
可选的,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
若各个充电蓄能电路充电的起始时间均相同;各所述充电蓄能电路充电的结束时间为T 1;第一个导通的所述第一开关元件的导通起始时间为T 2;T 2-T 1=t 4;t 4﹥0;
若后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;第一个充电蓄能电路充电的结束时间为T 3;与该所述充电蓄能电路对应电连接的第一开关元件的导通起始时间为T 4;T 4-T 3=t 5;t 5﹥0。
可选的,t 4≥500ns或者t 5≥500ns。
可选的,所述控制电路为现场可编程门阵列。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是本申请实施例提供的一种激光器的驱动电路的结构示意图。
图2是本申请实施例提供的一种激光器的驱动电路的控制信号的时序图。
图3是本申请实施例提供的一种充电蓄能电路的结构示意图。
图4是本申请实施例提供的一种激光器的驱动方法的流程示意图。
图5是本申请实施例提供的一种激光器的驱动方法中控制信号的时序示意图。
图6是本申请实施例提供的另一种激光器的驱动方法中控制信号的时序示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需 要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请的中的具体含义。
图1所示为本申请实施例提供的一种激光器的驱动电路的结构示意图。参考图1,本申请实施例提供的驱动电路包括至少两个充电蓄能电路10、至少两个第一开关元件20以及控制电路30;其中,充电蓄能电路10的输出端与第一开关元件20的第一端一一对应电连接,每个第一开关元件20的第二端均与激光器40电连接;所有充电蓄能电路10的输入端以及所有第一开关元件20的控制端均与控制电路30电连接;控制电路30用于控制各个充电蓄能电路10充电第一预设时间,并依次控制各个第一开关元件20导通第二预设时间;其中,后续充电蓄能电路10充电的充电起始时刻与对应的第一开关元件20导通时刻或者结束时刻间隔第三预设时间;或者,各个充电蓄能电路10充电的起始时间均相同。
需要说明的是,图1中示出的驱动电路示例性的包括三个充电蓄能电路10和三个第一开关元件20,具体实施时,可以根据实际需求设计充电蓄能电路10和第一开关元件20的数量。控制电路30可以为现场可编程门阵列(FPGA)。
示例性的,以图1所示的驱动电路为例,如果需要达到脉冲发射频率600kHz,同时为保证脉冲功率,需要充电时间不小于3μs。采用单路驱动的方案,因每个脉冲间隔只有1/600000s=1.667μs,无法满足充电时间长度,输出的脉冲功率达不到要求。而采用图1所示的三路驱动电路轮流发射则可以将每一路的实际工作频率降低到200kHz,脉冲间隔5μs,能够满足3μs的充电时间。
图2所示为本申请实施例提供的一种激光器的驱动电路的控制信号的时序图,其中第一预设时间t 1可以为3μs,第二预设时间t 2可以设置为10ns~50ns。可以理解的是,在具体实施时,可以控制所有充电蓄能电路同时充电,然后依次打开第一开关元件,使脉冲发射频率达到较高的频率(例如600kHz),还需要在多次发射脉冲时设置延迟等待时间,以确保相邻两次发射的光束不会相互干扰,且有利于激光器达到散热要求;也可以在第一个第一开关信号关闭之后,立即对与之对应的充电蓄能电路进行充电,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔的第三预设时间与第一预设时间之和需要满足小于同一第一开关元件两次导通的时间间隔,以避免充电时间不足导致脉冲能量下降。
本实施例的技术方案,通过在同一个激光器和控制电路之间并联多个充电蓄能电路和第一开关元件,通过控制电路为各个充电蓄能电路充电第一预设时间,并依次控制各个第一开关元件导通第二预设时间;其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;或 者,各个充电蓄能电路充电的起始时间均相同,通过对不同的充电蓄能电路充电足够长的第一预设时间,然后分时控制各个第一开关元件导通,从而在保证脉冲功率的前提下提高激光器的发射频率,解决激光器发射频率与发射功率之间的矛盾。
在上述技术方案的基础上,可选的,第一开关元件包括晶体管。
示例性的,第一开关元件可以为场效应晶体管、绝缘栅双极晶体管(IGBT)等具有快速响应开关作用的晶体管,在控制电路的控制下快速打开和关闭,以提高激光器的发光频率。
图3所示为本申请实施例提供的一种充电蓄能电路的结构示意图。参考图3,可选的,充电蓄能电路10包括第二开关元件101、电感102、二极管103及电容104;第二开关元件101的控制端与控制电路30电连接,第二开关元件101的第一端与电感102的第一端电连接,第二开关元件101的第二端接地;电感102的第二端与第一电平输入端Vss电连接,电感102的第一端与二极管103的正极电连接;电容104的第一端与二极管102的负极电连接,电容104的第二端接地;二极管103的负极与第一开关元件20的第一端电连接。
可以理解的是,参考图3,第二开关元件101可以为三极管,第一电平输入端Vss的输入电压可以为5V,控制电路30与第二开关元件101之间还可以串联电阻R,本实施例提供的充电蓄能电路的工作过程为:控制电路30提供充电信号时,第二开关元件101导通,由于充电信号为一个瞬时的大电流信号,可以认为是交流信号,这个交流信号的能量储存在电感102中,控制电路30的充电信号关闭后,第二开关元件101截止,电感102中储存的能量经过二极管 103给电容104充电,由于二极管103单向导通,电感102储存的能量会全部转移到电容104上,当控制电路30提供给第一开关元件20提供导通信号时,第二开关元件20导通,电容104放电,使激光器40发光。
图4所示为本申请实施例提供的一种激光器的驱动方法的流程示意图,该驱动方法可以由上述实施例提供的任意一种驱动电路来执行,具体包括如下步骤:
步骤S1、为各个充电蓄能电路充电第一预设时间。
步骤S2、依次控制各个第一开关元件导通第二预设时间。
其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;或者各个充电蓄能电路充电的起始时间均相同。
示例性的,仍然以图1所示的驱动电路需要达到脉冲发射频率600kHz,单路驱动频率200kHz为例,图5所示为本申请实施例提供的一种激光器的驱动方法中控制信号的时序示意图,该驱动方法的过程为:
控制电路控制各个充电蓄能电路充电第一预设时间,例如3μs,然后以600kHz(间隔1.667μs)的频率依次向各个第一开关元件发送导通信号,导通信号持续第二预设时间,例如10ns,在第一个第一开关元件导通第三预设时间之后,再次为第一个充电蓄能电路充电3μs,在第二个第一开关元件关闭之后,再次为第二个充电蓄能电路充电3μs,依次类推,以使激光器以600kHz发送脉冲。具体实施时,为了防止激光器过热损坏,还需要设置等待时间,在此不再详述。
可选的,控制电路依次控制各个第一开关元件以第一频率导通第二预设时间;
第一预设时间、第一频率与第三预设时间满足:
Figure PCTCN2020078687-appb-000004
其中,t 1表示第一预设时间,t 3表示第三预设时间,f表示第一频率,N表示第一开关元件的数量,且N为大于或等于2的整数。
可以理解的是,上述示例中,t 1=3μs,N=3,f=600000Hz,需要使t 3<2μs以保证充电蓄能电路充电时间能够满足要求。需要说明的是,图5中所示的时序图中第一次充电为所有充电蓄能电路同时充电,对于第二个和第三个充电蓄能电路来说,前两次充电时间间隔不是t 3,从第三次充电开始与前面一次充电间隔t 3
图6所示为本申请实施例提供的另一种激光器驱动方法中控制信号的时序示意图,该驱动方法的过程为:
控制电路同时为各个充电蓄能电路充电第一预设时间,例如3μs,然后以600kHz(间隔1.667μs)依次向各个第一开关元件发送导通信号,导通信号持续第二预设时间,例如10ns,以使激光器以600kHz发送三个脉冲,然后控制电路再为各个充电蓄能电路充电第一预设时间,再以600kHz发送三个脉冲。可以理解的是,具体实施时,还需要设计延时等待时间,以使激光器满足散热要求。
本实施例的技术方案,通过控制电路为各个充电蓄能电路充电第一预设时间,并依次控制各个第一开关元件导通第二预设时间;其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;或者,各个充电蓄能电路充电的起始时间均相同,通过对不同的充电蓄能电路充电足够长的第一预设时间,然后分时控制各个第一开关元件导通,从而在保证脉冲功率的前提下提高激光器的发射频率,解决激光器发射频率与发射功率之 间的矛盾。
在上述技术方案的基础上,可选的,该驱动方法还包括:获取到停止指令时,停止执行步骤S1和步骤S2。
可以理解的是,当控制电路一直循环执行步骤S1和步骤S2时,可以使激光器连续输出脉冲激光,例如该驱动电路用于激光雷达时,当不需要探测目标时,激光雷达的控制系统发送停止指令,控制电路接收到停止指令时,停止脉冲发射。
可选的,第一预设时间大于或等于3μs,第二预设时间为10ns~50ns。
可以理解的是,在本实施例中,设置第一预设时间大于或等于3μs,第二预设时间为10ns~50ns,在其他实施例中,第一预设时间和第二预设时间可以根据实际电路参数和时间情况灵活设置,本申请实施例对此不作限定。
可选的,充电蓄能电路包括第二开关元件、电感、二极管及电容;若各个充电蓄能电路充电的起始时间均相同;各充电蓄能电路充电的结束时间为T 1;第一个导通的第一开关元件的导通起始时间为T 2;T 2-T 1=t 4;t 4﹥0;若后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;第一个充电蓄能电路充电的结束时间为T 3;与该充电蓄能电路对应电连接的第一开关元件的导通起始时间为T 4;T 4-T 3=t 5;t 5﹥0。可选的,t 4≥500ns或者t 5≥500ns。
可以理解的是,在本实施例中,充电蓄能电路采用LC电路,由于电感L放电需要一定时间,因此从充电蓄能电路充电结束到第一开关元件导通需要预留预设时间,在本实施例中,设置预留预设时间(图5中t 5,图6中t 4)大于或 等于500ns。
需要说明的是,由于电路参数不同,预留预设时间可能不一致,本实施例中举例只是示意性的,具体设计时可以根据实际需求设置预留预设时间。
本申请实施例还提供一种激光雷达系统,包括:至少一个激光器单元,每个激光器单元包括一激光器以及上述实施例提供的任意一种激光器的驱动电路;激光器和驱动电路一一对应电连接。
由于本申请实施例提供的激光雷达系统包括上述实施例提供的任意一种激光器的驱动电路,可以执行上述实施例提供的任意一种驱动方法,具备相同或相应的有益效果。
在其他的实施例中,激光雷达系统包括多个激光器单元,每个激光器单元中的驱动电路共用同一个控制控制电路,从而以提高电路的集成度,有利于实现激光雷达的小型化。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (22)

  1. 一种激光器的驱动电路,包括:
    至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
    其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
    所述控制电路用于控制各个充电蓄能电路充电第一预设时间,并依次控制各个所述第一开关元件导通第二预设时间;
    其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者,各个充电蓄能电路充电的起始时间均相同。
  2. 根据权利要求1所述的驱动电路,其特征在于,所述第一开关元件包括晶体管。
  3. 根据权利要求1所述的驱动电路,其特征在于,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
    所述第二开关元件的控制端与所述控制电路电连接,所述第二开关元件的第一端与所述电感的第一端电连接,所述第二开关元件的第二端接地;
    所述电感的第二端与第一电平输入端电连接,所述电感的第一端与所述二极管的正极电连接;
    所述电容的第一端与所述二极管的负极电连接,所述电容的第二端接地;
    所述二极管的负极与所述第一开关元件的第一端电连接;
    所述第一开关元件的控制端与所述控制电路连接;所述第一开关元件的第 二端与所述激光器的正极电连接。
  4. 根据权利要求1所述的驱动电路,其特征在于,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
  5. 根据权利要求1所述的驱动电路,其特征在于,所述控制电路为现场可编程门阵列。
  6. 根据权利要求1所述的驱动电路,其特征在于,所述第一预设时间和所述第三预设时间之和小于对应的第一开关元件相邻两次导通的时间间隔。
  7. 根据权利要求6所述的驱动电路,其特征在于,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
    所述第一预设时间、所述第一频率与所述第三预设时间满足:
    Figure PCTCN2020078687-appb-100001
    其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
  8. 一种激光雷达系统,包括:至少一个激光器单元,每个所述激光器单元包括一激光器以及驱动电路;所述激光器与所述驱动电路一一对应电连接;
    所述驱动电路,包括:
    至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
    其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
    所述控制电路用于控制各个充电蓄能电路充电第一预设时间,并依次控制 各个所述第一开关元件导通第二预设时间;
    其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者,各个充电蓄能电路充电的起始时间均相同。
  9. 根据权利要求8所述的激光雷达系统,其特征在于,所述第一开关元件包括晶体管。
  10. 根据权利要求8所述的激光雷达系统,其特征在于,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
    所述第二开关元件的控制端与所述控制电路电连接,所述第二开关元件的第一端与所述电感的第一端电连接,所述第二开关元件的第二端接地;
    所述电感的第二端与第一电平输入端电连接,所述电感的第一端与所述二极管的正极电连接;
    所述电容的第一端与所述二极管的负极电连接,所述电容的第二端接地;
    所述二极管的负极与所述第一开关元件的第一端电连接;
    所述第一开关元件的控制端与所述控制电路连接;所述第一开关元件的第二端与所述激光器的正极电连接。
  11. 根据权利要求8所述的激光雷达系统,其特征在于,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
  12. 根据权利要求8所述的激光雷达系统,其特征在于,所述控制电路为现场可编程门阵列。
  13. 根据权利要求8所述的激光雷达系统,其特征在于,所述第一预设时间和所述第三预设时间之和小于对应的第一开关元件相邻两次导通的时间间 隔。
  14. 根据权利要求13所述的激光雷达系统,其特征在于,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
    所述第一预设时间、所述第一频率与所述第三预设时间满足:
    Figure PCTCN2020078687-appb-100002
    其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
  15. 根据权利要求8所述的激光雷达系统,其特征在于,包括多个激光器单元;各激光器单元中的驱动电路共用同一控制电路。
  16. 一种激光器的驱动方法,应用于驱动电路,所述驱动电路,包括:
    至少两个充电蓄能电路、至少两个第一开关元件以及控制电路;
    其中,所述至少两个充电蓄能电路的输出端与所述至少两个第一开关元件的第一端一一对应电连接,每个第一开关元件的第二端均与激光器电连接;所有充电蓄能电路的输入端以及所有第一开关元件的控制端均与所述控制电路电连接;
    所述控制电路用于执行所述激光雷达的驱动方法;
    所述方法包括:
    步骤S1、为各个充电蓄能电路充电第一预设时间;
    步骤S2、依次控制各个第一开关元件导通第二预设时间;
    其中,后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻或者结束时刻间隔第三预设时间;或者各个充电蓄能电路充电的起始时间均相同。
  17. 根据权利要求16所述的驱动方法,其特征在于,还包括:获取到停止指令时,停止执行步骤S1和步骤S2。
  18. 根据权利要求16所述的驱动方法,其特征在于,所述控制电路依次控制各个所述第一开关元件以第一频率导通第二预设时间;
    所述第一预设时间、所述第一频率与所述第三预设时间满足:
    Figure PCTCN2020078687-appb-100003
    其中,t 1表示所述第一预设时间,t 3表示所述第三预设时间,f表示所述第一频率,N表示所述第一开关元件的数量,且N为大于或等于2的整数。
  19. 根据权利要求16所述的驱动方法,其特征在于,所述第一预设时间大于或等于3μs,所述第二预设时间为10ns~50ns。
  20. 根据权利要求16所述的驱动方法,其特征在于,所述充电蓄能电路包括第二开关元件、电感、二极管及电容;
    若各个充电蓄能电路充电的起始时间均相同;各所述充电蓄能电路充电的结束时间为T 1;第一个导通的所述第一开关元件的导通起始时间为T 2;T 2-T 1=t 4;t 4﹥0;
    若后续充电蓄能电路充电的充电起始时刻与对应的第一开关元件导通时刻间隔第三预设时间;第一个充电蓄能电路充电的结束时间为T 3;与该所述充电蓄能电路对应电连接的第一开关元件的导通起始时间为T 4;T 4-T 3=t 5;t 5﹥0。
  21. 根据权利要求20所述的驱动方法,其特征在于,t 4≥500ns或者t 5≥500ns。
  22. 根据权利要求16所述的驱动方法,其特征在于,所述控制电路为现场可编程门阵列。
PCT/CN2020/078687 2019-03-14 2020-03-11 一种激光器的驱动电路、驱动方法及激光雷达系统 WO2020182132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910195227.9A CN109728501A (zh) 2019-03-14 2019-03-14 一种激光器的驱动电路、驱动方法及激光雷达系统
CN201910195227.9 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020182132A1 true WO2020182132A1 (zh) 2020-09-17

Family

ID=66302416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078687 WO2020182132A1 (zh) 2019-03-14 2020-03-11 一种激光器的驱动电路、驱动方法及激光雷达系统

Country Status (2)

Country Link
CN (1) CN109728501A (zh)
WO (1) WO2020182132A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
CN110146868A (zh) * 2019-05-31 2019-08-20 深圳市速腾聚创科技有限公司 激光雷达系统和激光雷达回波信号的确定方法
CN110456374B (zh) * 2019-08-30 2021-07-06 上海禾赛科技股份有限公司 激光雷达的发射电路、激光雷达及激光雷达的测距方法
CN112782668A (zh) * 2019-11-07 2021-05-11 上海禾赛科技股份有限公司 多脉冲激光发射电路、激光雷达以及发射激光束的方法
EP4080696B1 (en) * 2019-12-20 2023-12-13 Suteng Innovation Technology Co., Ltd. Laser emission circuit and lidar
WO2021138774A1 (zh) * 2020-01-06 2021-07-15 深圳市大疆创新科技有限公司 多线激光器模块、激光雷达及可移动平台
CN111682399B (zh) * 2020-06-20 2021-07-20 深圳市灵明光子科技有限公司 激光发射器驱动电路、系统及高速光通信装置
CN112731342A (zh) * 2020-12-17 2021-04-30 武汉万集信息技术有限公司 用于多线激光雷达的驱动电路及激光发射模组
CN112821191A (zh) * 2020-12-31 2021-05-18 中国电子科技集团公司第十三研究所 半导体激光器驱动电路、多线激光器及多线激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449514A (zh) * 2015-12-29 2016-03-30 西安交通大学 基于rc电路的高重频短脉冲激光调制电路及其工作过程
CN108181621A (zh) * 2016-12-08 2018-06-19 北京万集科技股份有限公司 一种双激光驱动电路和扫描式激光雷达测距设备及方法
US10048358B2 (en) * 2016-12-30 2018-08-14 Panosense Inc. Laser power calibration and correction
CN207753293U (zh) * 2017-11-29 2018-08-21 武汉万集信息技术有限公司 一种并联式激光器驱动电路
CN109116331A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204858269U (zh) * 2015-07-29 2015-12-09 武汉万集信息技术有限公司 一种纳秒延时多脉冲发光的半导体激光器驱动电路
US10158211B2 (en) * 2015-09-22 2018-12-18 Analog Devices, Inc. Pulsed laser diode driver
CN205960420U (zh) * 2016-08-26 2017-02-15 北京万集科技股份有限公司 一种窄脉冲半导体激光器驱动电路
CN206412630U (zh) * 2016-12-01 2017-08-15 武汉万集信息技术有限公司 一种双脉冲控制的半导体激光器驱动电路
CN209913235U (zh) * 2019-03-14 2020-01-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路及激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449514A (zh) * 2015-12-29 2016-03-30 西安交通大学 基于rc电路的高重频短脉冲激光调制电路及其工作过程
CN108181621A (zh) * 2016-12-08 2018-06-19 北京万集科技股份有限公司 一种双激光驱动电路和扫描式激光雷达测距设备及方法
US10048358B2 (en) * 2016-12-30 2018-08-14 Panosense Inc. Laser power calibration and correction
CN207753293U (zh) * 2017-11-29 2018-08-21 武汉万集信息技术有限公司 一种并联式激光器驱动电路
CN109116331A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统

Also Published As

Publication number Publication date
CN109728501A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020182132A1 (zh) 一种激光器的驱动电路、驱动方法及激光雷达系统
CN1145252C (zh) 绝缘栅型半导体元件的栅极电路
CN104111462A (zh) 飞行时间照射电路
EP3461006B1 (en) Protection circuit, oscillation compensation circuit and power supply circuit in solid state pulse modulator
CN209913235U (zh) 一种激光器的驱动电路及激光雷达系统
EP3859393B1 (en) Light source system
EP4080696B1 (en) Laser emission circuit and lidar
US20230152463A1 (en) Light source system
US20220239063A1 (en) Laser emitting circuit and lidar
WO2013097299A1 (zh) 用于电压交替脉冲输出的设备和方法
US9831865B2 (en) RC-IGBT switching pulse control
EP2398135A2 (en) DC/DC power converter having active self driving synchronous rectification
CN216055673U (zh) 激光发射模块及激光雷达
WO2008099328A2 (en) Method to drive a high-voltage tube grid
US11152926B2 (en) Modulator for controlling current pulse and method thereof
JP6295268B2 (ja) 半導体駆動装置
CN115882734B (zh) 一种dab变换器的控制方法及相关组件
US20230006418A1 (en) Depth obtaining component and electronic device
WO2022261835A1 (zh) 光发射装置及其控制方法、测距装置、可移动平台
US11888414B2 (en) Driving circuit and driving method
WO2021051466A1 (zh) 激光发射电路和激光雷达
CN110456374A (zh) 激光雷达的发射电路、激光雷达及激光雷达的测距方法
CN215575642U (zh) 激光发射电路与激光雷达
CN112290910B (zh) 用于配变低压侧脉冲注入故障定位的倍压三角脉冲源电路
US20230318260A1 (en) Calibration apparatus, laser beam emission circuit and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769791

Country of ref document: EP

Kind code of ref document: A1