WO2021138774A1 - 多线激光器模块、激光雷达及可移动平台 - Google Patents

多线激光器模块、激光雷达及可移动平台 Download PDF

Info

Publication number
WO2021138774A1
WO2021138774A1 PCT/CN2020/070518 CN2020070518W WO2021138774A1 WO 2021138774 A1 WO2021138774 A1 WO 2021138774A1 CN 2020070518 W CN2020070518 W CN 2020070518W WO 2021138774 A1 WO2021138774 A1 WO 2021138774A1
Authority
WO
WIPO (PCT)
Prior art keywords
lasers
laser
circuit board
printed circuit
substrate
Prior art date
Application number
PCT/CN2020/070518
Other languages
English (en)
French (fr)
Inventor
张朝
熊小刚
杨子龙
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004409.4A priority Critical patent/CN113366336A/zh
Priority to PCT/CN2020/070518 priority patent/WO2021138774A1/zh
Publication of WO2021138774A1 publication Critical patent/WO2021138774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the embodiment of the present invention relates to the technical field of lasers, in particular to a multi-line laser module, a lidar and a movable platform.
  • the laser emission cannot exceed the energy value of the safety regulations, so as to ensure that even if the laser is incident It will not cause harm to the human body when it is in the eyes. Therefore, when designing the laser emission scheme, under the premise of being less than the safety limit, it is necessary to increase the peak power of the light as much as possible in order to achieve a longer detection range.
  • the embodiment of the present invention provides a multi-line laser module, a lidar and a movable platform to solve the above technical problems.
  • the first aspect of the present invention is to provide a multi-line laser module, including:
  • the laser device is arranged on the printed circuit board
  • a plurality of switching elements arranged on the printed circuit board, respectively coupled to the laser device, for controlling the laser device to emit a plurality of laser beams;
  • At least one capacitive element disposed on the printed circuit board, coupled to the laser device, and used to drive the laser device to emit multiple laser beams;
  • the laser device includes a plurality of lasers, the plurality of lasers form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers A switching element and a capacitive element coupled to at least one of the first lasers; the difference between the loop equivalent inductances corresponding to any two discharge loops is less than a preset value.
  • the second aspect of the present invention is to provide a laser radar, including:
  • a controller which is in communication connection with the multi-line laser module, and is used to control the multi-line laser module to emit laser beams;
  • the multi-line laser module includes:
  • the laser device is arranged on the printed circuit board
  • a plurality of switching elements arranged on the printed circuit board, respectively coupled to the laser device, for controlling the laser device to emit a plurality of laser beams;
  • At least one capacitive element disposed on the printed circuit board, coupled to the laser device, and used to drive the laser device to emit multiple laser beams;
  • the laser device includes a plurality of lasers, the plurality of lasers form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers A switching element and a capacitive element coupled to at least one of the first lasers; the difference between the loop equivalent inductances corresponding to any two discharge loops is less than a preset value.
  • the third aspect of the present invention is to provide a movable platform, including:
  • the multi-line laser module is arranged on the main body of the platform; the multi-line laser module includes:
  • the laser device is arranged on the printed circuit board
  • a plurality of switching elements arranged on the printed circuit board, respectively coupled to the laser device, for controlling the laser device to emit a plurality of laser beams;
  • At least one capacitive element disposed on the printed circuit board, coupled to the laser device, and used to drive the laser device to emit multiple laser beams;
  • the laser device includes a plurality of lasers, the plurality of lasers form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers A switching element and a capacitive element coupled to at least one of the first lasers; the difference between the loop equivalent inductances corresponding to any two discharge loops is less than a preset value.
  • the multi-line laser module, lidar, and movable platform provided by the embodiment of the present invention can ensure the accuracy and reliability of laser detection, and also help the laser to achieve a longer detection distance.
  • FIG. 1 is a schematic diagram of the circuit principle of a multi-line laser module provided by an embodiment of the present invention
  • FIG. 2 is a schematic timing diagram corresponding to a multi-line laser module provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the layout of base pads on a ceramic substrate of a multi-line laser device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a multi-line laser module provided by an embodiment of the present invention.
  • FIG. 5 is a top view of a multi-line laser module provided by an embodiment of the present invention.
  • FIG. 6 is a three-dimensional schematic diagram of the multi-line laser module in FIG. 5;
  • FIG. 7 is a schematic diagram of wiring on the circuit board of the corresponding main discharge loop of each laser unit provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a laminated design of a multi-line laser module on a printed circuit board according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a lidar provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • Multi-line laser module
  • Multi-line laser module 1002. Multi-line laser module.
  • the terms “installed”, “coupled”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” may be a fixed connection or a detachable connection. Or connected in one piece.
  • the element may be directly or indirectly electrically connected to the other element.
  • the specific meanings of the above-mentioned terms in the embodiments of the present invention can be understood according to specific situations.
  • the multi-line laser module (six-line laser module) including six lasers (for example, including six pulsed laser diodes (PLD)) as an example.
  • the working principle of the line laser module is described.
  • part of the drive circuit of the multi-line laser module is shown in Figure 1 to Figure 2. It should be noted that only the drive circuits of three lasers are shown in the figure.
  • the drive circuits of the other three lasers are the same as those of the above three.
  • the drive circuits of the lasers are the same and parallel.
  • the multi-line laser module includes:
  • the functional circuit is used to store energy, adjust the final energy charged into the capacitor through timing control, and ensure the normal operation of the drive circuit of the entire multi-line laser module, including: the inductor L1 in series with the power supply and the diode coupled to the inductor L1 D10, and the inductor L1 is connected to the cathode of the diode D10, and the anode of the diode D10 is grounded;
  • the drive circuit of the laser D3 includes: a power supply, an inductor L1 connected in series with the power supply, a diode D1 coupled to the inductor L1, a MOS tube Q1, a diode D2, and a laser D3 coupled to the diode D1.
  • the diode D1 is connected to the MOS tube Q1.
  • the drain is connected to the cathode of the laser D3, the anode of the laser D3 and the diode D2 are connected to a capacitor C1 at the same time, and the other end of the capacitor C1 and the source of the MOS transistor Q1 are grounded respectively;
  • the driving circuit of the laser D6 includes: a power supply, an inductor L1 in series with the power supply, a diode D4 coupled to the inductor L1, a MOS tube Q2, a diode D5, and a laser D6 coupled to the diode D4; the diode D4 is connected to the MOS tube Q2 respectively
  • the drain is connected to the cathode of the laser D6, the anode of the laser D6 and the diode D5 are connected to a capacitor C1 at the same time, and the other end of the capacitor C1 and the source of the MOS transistor Q2 are respectively grounded;
  • the driving circuit of the laser D9 includes: a power supply, an inductor L1 in series with the power supply, a diode D7 coupled to the inductor L1, a MOS tube Q3, a diode D8, and a laser D9 coupled to the diode D7.
  • the diode D7 is connected to the MOS tube Q3.
  • the drain is connected to the cathode of the laser D9, the anode of the laser D9 and the diode D8 are connected to a capacitor C1 at the same time, and the other end of the capacitor C1 and the source of the MOS transistor Q3 are respectively grounded;
  • the drive circuit of the laser D3, the drive circuit of the laser D6, and the drive circuit of the laser D9 are connected in parallel between the inductor L1 and the capacitor C1; it should be noted that the drive circuit of the laser D3, the drive circuit of the laser D6, and the laser
  • the drive circuit of D9 is only the drive circuit corresponding to the three lasers in the six-line laser module. It should also include three other drive circuits for the same three lasers.
  • the drive circuit is also connected in parallel between the inductor L1 and the capacitor C1. In order to drive the six lasers in the six-line laser module to emit laser beams outward.
  • the reset circuit includes: a power supply, an inductor L1 connected in series with the power supply, a diode D1 coupled to the inductor L1, a diode D2, a resistor R1, and a MOS transistor Q4, wherein the resistor R1 is connected to the drain of the MOS transistor Q4, and the MOS transistor The source of Q4 is grounded.
  • the discharge reset circuit includes a resistor C1, a resistor R1, and a MOS transistor Q4 connected in series in sequence, wherein the resistor R1 is connected to the drain of the MOS transistor Q4, and the source of the MOS transistor Q4 is grounded.
  • the working principle of the six-wire laser module is described.
  • the working process of the six-wire laser module can be reset process, charging process, energy transfer process and light emitting process.
  • the process of driving the laser D6 to emit the laser beam is taken as an example for description:
  • Reset process At t4, the reset signal is pulled high, MOS transistor Q4 is turned on, and the power supply V charges inductor L1 through diode D1, diode D2, resistor R1 and MOS transistor Q4; at this time, if there is electricity in capacitor C1, it can be passed The path formed by the capacitor C1, the resistor R1 and the MOS transistor Q4 performs discharge reset.
  • the start signal 2 is pulled high, the MOS transistor Q2 is turned on, and the power supply V simultaneously charges the inductor L1 through the inductor L1, the diode D4, the MOS transistor Q2 and the inductor charging path in the reset process.
  • the reset signal is pulled low, the MOS transistor Q4 is turned off, and only the inductor L1, the diode D4, and the MOS transistor Q2 remain in the charging path.
  • the start signal 2 is pulled high again, the MOS tube Q2 is turned on, and the voltage in the capacitor C1 drives the laser D6 to emit the laser beam through the path of the capacitor C1, the laser D6, and the MOS tube Q2.
  • the start signal 2 is pulled low, the MOS tube Q2 is turned off, and the laser D6 is driven to stop emitting the laser beam.
  • FIG. 3 is a schematic diagram of the layout of base pads on a ceramic substrate of a multi-line laser device according to an embodiment of the present invention.
  • the laser device may include multiple lasers arranged on the ceramic substrate 100, such as lasers D3, D6, and D9 as described in FIG. 1, and each laser has a P pole and an N pole.
  • N-pole pads 101, P-pole pads 102, and non-electrical pads 103 are distributed on the ceramic substrate 100.
  • the N poles of the lasers D3, D6, and D9 are connected to the N pole pad 101 through metal through holes, respectively; the P poles of the lasers D3, D6, and D9 are connected to the P pole pad 102 through bonding wires and metal through holes, respectively.
  • the pads (N-pole pad 101, P-pole pad 102, etc.) provided on the ceramic substrate 100 can define the placement position of the component. Therefore, in one embodiment, the P-pole pad 102 may be distributed on the left and/or right side of the N-pole pad 101 according to the position of the MOS transistor and the capacitor connected to the P-pole pad 102. It should be noted that the non-electrical pads 103 distributed at the four corners of the ceramic substrate 100 of the laser device function to make the entire laser device uniformly stressed, so that the entire laser device can be firmly welded to the printed circuit board.
  • FIG. 4 is a schematic structural diagram of a multi-line laser module according to an embodiment of the present invention.
  • a mirror 105 for reflecting the multiple laser beams is provided on one side of the multiple lasers 201, and the mirror 105 is provided on a substrate 104 (for example, a ceramic substrate).
  • the laser beam is reflected by the mirror 105, so that a predetermined angle is formed between the laser beam and the plane on which the printed circuit board is located.
  • the reflecting mirror 105 can be arranged on one side of the multiple lasers 201, for example, the reflecting mirror 105 is arranged on the left side of the laser 201; and the capacitive elements and switching elements connected to the multiple lasers 201 are uniformly arranged on the laser device.
  • the other three sides (upper side, lower side, and right side) effectively ensure the stable and reliable operation of multiple lasers 201.
  • a cap 106 for protecting a plurality of lasers 201 is provided on the substrate 104.
  • the tube cap 106 can be arranged on the substrate 104 and sleeved on the outside of the multiple lasers 201 and the reflector 105, so as to achieve effective protection of the multiple lasers 201, and can also ensure the area where the multi-line laser module is located.
  • the degree of cleanliness is beneficial to prolong the service life of the multi-line laser module.
  • the laser device in order to further improve the stability and reliability of the multi-line laser module, can be arranged on one side of the printed circuit board (for example, the front side or the back side), and the other side of the printed circuit board is provided with heat dissipation. Pieces.
  • multiple lasers 201 can be attached to the front surface of the printed circuit board by using the SMD packaging technology of grid array packaging LGA.
  • the tolerance range of the SMT process supported by this structure is +-0.05mm; in addition, ,
  • the switching elements and capacitor elements are also arranged on the front of the PCB board, and bright copper and a heat dissipation block can be arranged on the back area of the PCB board to dissipate the laser device through the heat dissipation block, thereby improving the stability and reliability of the laser device. Sex.
  • the multi-line laser module can ensure the light emission of multiple lasers in the multi-line laser module by designing the layout structure of each component in the multi-line laser module on the printed circuit board. The power is consistent, which is conducive to achieving longer distance detection.
  • FIG. 5 and FIG. 6 for the structure of the multi-line laser module.
  • Fig. 5 is a top view of a multi-line laser module provided by an embodiment of the present invention.
  • FIG. 6 is a three-dimensional schematic diagram of the multi-line laser module in FIG. 5.
  • the multi-line laser module may include:
  • the laser device 204 is arranged on the printed circuit board
  • a plurality of switching elements 202 are arranged on the printed circuit board, respectively coupled to the laser device 204, for controlling the laser device 204 to emit a plurality of laser beams;
  • At least one capacitive element 203 is arranged on the printed circuit board, coupled to the laser device 204, and used for driving the laser device 204 to emit multiple laser beams;
  • the laser device 204 includes a plurality of lasers 201, the plurality of lasers 201 form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers 201, and at least one The switching element and the capacitive element coupled to the first laser; the difference between the loop equivalent inductances of any two discharge loops is smaller than the preset value.
  • At least two discharge loops include one main discharge loop, that is, the laser device 204 may form at least one main discharge loop on the printed circuit board, and one main discharge loop may include the laser device 204
  • One or more lasers 201 for example, the main discharge loop corresponding to the laser 201 includes: the laser 201, a switching element 202 and a capacitive element 203 respectively coupled to the laser 201; any or at least two lasers among the multiple lasers 201 The difference of the loop equivalent inductance corresponding to the main discharge loop is smaller than the preset value.
  • the discharge loop formed by each laser 201 may include a main discharge loop and an auxiliary discharge loop.
  • the discharge loop formed by the laser 201 in addition to the capacitive element located in the main discharge loop, the discharge loop formed by the laser 201 also includes at least one capacitive element located in the auxiliary discharge loop.
  • the capacitive elements located in the auxiliary discharge loop corresponding to the laser 201 are also uniformly distributed around the laser device 204.
  • these capacitive elements in the auxiliary discharge loop are connected in parallel with the capacitive elements in the main discharge loop.
  • the capacitance values of all capacitors are equal, and the capacitors located around the laser device 204 are all in the discharge loop of the laser 201.
  • each laser 201 may include only one discharge loop.
  • the function and function of the discharge loop are the same as or similar to the above-mentioned main discharge loop. For the sake of brevity, I will not repeat it.
  • the multiple lasers 201 may refer to two or more lasers.
  • the multiple lasers 201 are arranged in the laser device 204, and the multiple lasers 201 may be arranged side by side in the laser. On the substrate of the device 204, this not only facilitates the layout design of the laser 201, but also facilitates the debugging and maintenance operations of the multi-line laser module, thereby helping to ensure the stable and reliable operation of the multi-line laser module.
  • multiple lasers 201 may include: two lasers, three lasers, and three lasers.
  • One laser, four lasers, six lasers or eight lasers, etc. it can be understood that different numbers of lasers 201 can correspond to different numbers of capacitive elements 203 and switching elements 202, and multiple switching elements 202 are associated with At least one capacitive element 203 can be uniformly arranged around the laser device 204.
  • the number of switching elements 202 is the same as the number of lasers 201 in the laser device 204, and the number of capacitive elements 203 can be less than, equal to, or greater than the number of lasers 201.
  • the number of capacitive elements 203 When the number is one, multiple lasers 201 are coupled to the same capacitive element 203; when the number of capacitive elements 203 is multiple, multiple lasers 201 can be respectively coupled to the capacitive element 203 in their respective loops.
  • At least one capacitive element 203 can correspond to multiple main discharge loops; those skilled in the art can determine the details of the laser 201, the switching element 202, and the capacitive element 203 according to specific application requirements and application scenarios.
  • the number of combinations is set as long as it can be ensured that the difference between the loop equivalent inductances of the main discharge loops corresponding to at least two lasers 201 among the plurality of lasers 201 is smaller than the preset value.
  • the equivalent inductance of the first loop is 1H
  • the equivalent inductance of the second loop is 0.8H.
  • the inductance difference between the equivalent inductances of the two loops is 0.2H, which is at the preset threshold. When it is 0.5H, the inductance difference 0.2H is less than the preset threshold 0.5H.
  • the loop equivalent inductance of the main discharge loop corresponding to any one of the multiple lasers 201 is equal to or similar to the loop equivalent inductance of the other main discharge loop. Equality can be achieved by adjusting and ensuring that the minimum loop area corresponding to the main discharge loop of any one laser 201 is equal or approximately equal to the minimum loop area corresponding to another main discharge loop. More preferably, more The loop equivalent inductance of the main discharge loop corresponding to any one of the lasers 201 is equal to or similar to the loop equivalent inductances of the main discharge loops corresponding to each of the other multiple lasers 201. equal.
  • the minimum loop area corresponding to the main discharge loop corresponding to any one laser 201 can be adjusted and guaranteed to be the same as the minimum loop area corresponding to the multiple main discharge loops corresponding to the other multiple lasers 201.
  • the areas are equal or approximately equal to achieve.
  • the minimum loop area corresponding to the main discharge loop in this embodiment refers to the area occupied by the main discharge loop on the printed circuit board and/or package substrate; and any one of the main discharge loops
  • the corresponding minimum loop area is approximately equal to the minimum loop area corresponding to the other main discharge loop, which is similar to the meaning of approximately equal described above. That is, the area difference between the minimum loop areas corresponding to at least two main discharge loops is less than or equal to the preset area threshold.
  • the shapes of the multiple main discharge loops are similar.
  • the entire main discharge loop composed of the capacitive element 203, the switching element 202 and the laser 201
  • the energy of the capacitive element 203 is constant, the luminous power of the laser 201 is constant, and the loss of the switching element 202 is constant
  • the entire main discharge loop The loop equivalent inductance (parasitic inductance) of the discharge loop determines the shape of the entire pulse of the laser. The larger the parasitic inductance, the slower the rising and falling edges of the loop current after the switching element 202 is turned on, and the greater the equivalent half-width.
  • the laser 201 can achieve longer-distance detection. Therefore, in order to achieve higher peak power, for the main discharge loop, it is hoped that the loop equivalent inductance corresponding to the main discharge loop should be as small as possible.
  • the layout of the components in the main discharge loop So that the smallest loop area of the main discharge loop is as small as possible, which is beneficial to the laser to achieve longer-distance detection.
  • the multiple lasers 201 in the laser device 204 arranged on the printed circuit board form at least one main discharge loop.
  • the design can make the loop equivalent inductance of the main discharge loop corresponding to any one of the lasers 201 and the loop equivalent inductance of the other main discharge loop equal or approximately equal, that is, The difference between the equivalent inductances of at least two main discharge loops is less than the preset value, which effectively ensures the consistency of the output power of the multiple lasers 201, thereby ensuring the consistency of the service life of the multiple lasers 201, and is also conducive to implementation Longer detection range.
  • the position of the switching elements in the main discharge loop on the circuit board is close to the main discharge loop. Capacitive element in.
  • a multi-line laser module in this embodiment may be a six-line laser module, that is, the laser device 204 may include six lasers 201; At this time, the at least one capacitive element 203 includes at least one of the following: six capacitive elements, twelve capacitive elements, and eighteen capacitive elements.
  • the six capacitive elements 203 may be evenly distributed in the driving circuit of each laser 201, that is, the driving circuit of each laser 201 may include one capacitive element 203;
  • the twelve capacitive elements are evenly distributed in the drive circuit of each laser 201, that is, the drive circuit of each laser 201 may include two parallel capacitive elements 203;
  • the eighteen capacitive elements 203 can be evenly distributed in the drive circuit of each laser 201, that is, the drive circuit of each laser 201 can include three capacitive elements connected in parallel. 203.
  • the multiple capacitive elements 203 may be equivalent capacitors and evenly surround the six lasers 201 to ensure that each laser 201 is connected to the nearest capacitive element.
  • the distance between 203 is approximately equal, so as to ensure that the loop equivalent inductance of the main discharge loop formed by each laser is relatively balanced. As shown in FIG.
  • a plurality of lasers 201 may be arranged on a printed circuit board through a substrate 104, that is, a plurality of lasers 201 may be arranged on a substrate 104, and a plurality of lasers 201 may be arranged on a printed circuit board through a substrate 104.
  • the substrate 104 may be a ceramic substrate, and The substrate 104 may be provided with a via for connecting to a printed circuit board.
  • At this time, at least one capacitive element 203 can be uniformly arranged at the top corner of the substrate 104, and the multiple switching elements 202 coupled to the multiple lasers 201 can be uniformly arranged around the substrate 104, thereby realizing multiple switching elements 202 and At least one capacitive element 203 is uniformly arranged around the multiple lasers 201, thereby effectively ensuring that the loop equivalent inductance of the main discharge loop corresponding to any one of the six lasers 201 is the same as that of the other six lasers.
  • the loop equivalent inductances of the multiple main discharge loops corresponding to 201 are equal.
  • the minimum loop area of the main discharge loop is small, which in turn facilitates the laser to achieve longer-distance detection.
  • the multi-line laser module can be designed for overall routing and stacking.
  • the drawings show six lasers 201, twelve capacitive elements 203, and six A schematic diagram of the layout of the multi-line laser module formed by the switching element 202.
  • the laser device 204 is located on the printed circuit board.
  • six lasers 201 are arranged side by side on a substrate, and are arranged on a printed circuit board through the substrate.
  • Twelve capacitive elements 203 are uniformly arranged at the four corner positions of the substrate, and six switching elements 202 are arranged respectively.
  • the multiple switching elements 202 and at least one capacitive element 203 are evenly arranged around the multiple lasers 201.
  • FIG. 7 is a schematic diagram of the wiring of the corresponding main discharge loop of each laser unit on the printed circuit board according to an embodiment of the present invention.
  • the main discharge loop corresponding to each laser 201 of the six lasers 201 on the printed circuit board is shown as the six circles in FIG. 7.
  • the charge in the capacitor reaches the bottom pad of the laser ceramic substrate from the VCC terminal through the PCB trace.
  • the substrate metal through hole to reach the P network pad on the top of the substrate. It reaches the P pole of the laser through the bonding wire, and reaches the N pole after flowing through the laser.
  • the PCB pad through the N-pole pad of the substrate and the metal through hole of the substrate, and then reaches the D pole (that is, the drain) of the MOS tube through the PCB trace. After that, the charge flows through the MOS tube, flows out from the S pole of the MOS tube, and finally returns to the GND terminal of the capacitor through the PCB trace.
  • the minimum loop area of the main discharge loop corresponding to each laser 201 is equal to the minimum loop area of at least one main discharge loop corresponding to other lasers 201, or the minimum loop area of at least two main discharge loops
  • the difference of the path area is less than the preset value, so as to realize and ensure that the loop equivalent inductance of the main discharge loop corresponding to any one of the six lasers 201 is the same as that of the multiple main discharge loops corresponding to the other six lasers 201.
  • the loop equivalent inductances of the discharge loops are equal, or the difference between the loop equivalent inductances of at least two main discharge loops is smaller than the preset value.
  • the minimum loop area of the main discharge loop is small, which in turn facilitates the laser to achieve longer-distance detection.
  • the ability to withstand the instantaneous current should be considered, and the drive loop of each laser 201 should be minimized, and the minimum drive loop corresponding to each laser 201 can be identified.
  • the thinner the stack the smaller the via inductance, which is more conducive to reducing the overall loop inductance; and, because the multiple capacitive elements 203 are connected in parallel, when the laser 201 in each loop emits light, At the moment when the switching element 202 is turned on, the smallest capacitor in the main discharge loop is discharged first, and the capacitors connected in parallel at other positions are then discharged through vias, power planes, and ground plane paths.
  • the printed circuit board can adopt a six-layer board design; As shown in FIG.
  • the stack of the six-wire laser module in this embodiment includes: a solder resist ink layer, a top layer, a ground layer, a signal layer, a power layer, and a bottom layer, and the material information corresponding to each of the above-mentioned layers And thickness information see the following table:
  • 1/2oz+plating in the above table refers to a half-ounce copper plate and electroplating layer to form a PCB board; 3313 refers to an insulating medium, and 3313 is a type of PP.
  • the multi-line laser module is a six-line laser module and the multi-line laser module includes a plurality of capacitive elements
  • another achievable layout structure is: six lasers are arranged on the substrate, and the multiple lasers The coupled switching elements are uniformly arranged at the top corners of the substrate, and at least one capacitive element is arranged around the substrate.
  • the difference from the above implementation is that the multiple switching elements are evenly arranged at the top corners of the substrate , And the capacitive element is arranged around the substrate. At this time, multiple switching elements and at least one capacitive element are uniformly arranged around the multiple lasers, and the main discharge corresponding to any one of the six lasers can be guaranteed.
  • the loop equivalent inductance corresponding to the loop is equal to the loop equivalent inductance of the multiple main discharge loops corresponding to the other six lasers, or the difference of the loop equivalent inductances corresponding to multiple lasers is less than the preset value. Set value.
  • the minimum loop area of the main discharge loop is small, which in turn facilitates the laser to achieve longer-distance detection.
  • the multi-line laser module in this embodiment can not only make the loop equivalent inductance of the main discharge loop corresponding to each laser correspond to the other six lasers through the above-mentioned layout structure, wiring design, and laminate design.
  • the loop equivalent inductances of the multiple main discharge loops are the same, or the difference of the loop equivalent inductances of the multiple lasers is less than the preset value; thereby effectively ensuring the distance detection process of the multi-line laser module
  • the multi-line laser module in this embodiment can also ensure that the loop equivalent inductance corresponding to each laser is relatively small, for example, the loop equivalent inductance is less than 2nH, etc., so there is It is beneficial to realize the multi-line laser module for longer-distance detection, and improves the practicability and reliability of the multi-line laser module.
  • the multi-line laser module may be a two-line laser. That is, the multiple lasers in this embodiment include two laser modules; at this time, at least one capacitive element includes a first capacitive element, the first capacitive element is arranged in the middle of the first area, and the first area is arranged on the two lasers. Two switching elements coupled with two lasers are respectively arranged on both sides of the first capacitive element.
  • the two lasers may be coupled to the same first capacitive element at the same time, and the first capacitive element drives the laser to emit a laser beam.
  • the first capacitive element can be arranged on one side of the two lasers, and the distance between the first capacitive element and the two lasers is the same, and the two switching elements can be arranged on both sides of the first capacitive element, thereby effectively achieving At least one capacitive element and multiple switching elements are arranged around the multiple lasers, and the loop equivalent inductance of the main discharge loop corresponding to one laser can be the same as that of the main discharge loop corresponding to another laser.
  • the loop equivalent inductance is equal.
  • the multi-line laser module in this embodiment includes two lasers, has a simple structure, is easy to implement, has a small size, is convenient to arrange the multi-line laser module, and is flexible and reliable in use, thereby expanding the application scenarios and scope of application of the multi-line laser module.
  • multiple switching elements can be MOS tubes, and, in order to ensure the quality and efficiency of the multi-line laser module, MOS is selected.
  • MOS When it is a tube, it can meet the following conditions: small size required to drive the MOS tube, fast switching speed, small resistance Rds(ON) between the drain and source, large pulse current, and withstand voltage to meet the capacitor energy storage requirements, such as:
  • the switching element in this embodiment can be selected as a gallium nitride GaN switch tube.
  • the following conditions can be met: zero DC bias characteristics, wide temperature stability, high insulation resistance, and a high capacitor self-resonant frequency.
  • the output power of the multi-line laser module will be limited to a fixed value, considering the output efficiency of the multi-line laser module, the withstand voltage value of the MOS tube, the consistency of the laser power, and the structure of the light block. Due to a series of factors such as the demand for power regulation, the value of the capacitive element can be several hundred picofarads to several nanofarads.
  • a plurality of lasers are arranged on the printed circuit board through the substrate, and the substrate is provided with vias for connecting to the printed circuit board.
  • the substrate may be a square substrate, a circular substrate, or a rectangular substrate, etc., which are more common.
  • the substrate may be a square substrate; when multiple lasers are arranged on the substrate, the structure of the substrate can effectively support the lasers and facilitate the adjustment of the layout of the lasers.
  • the substrate can also have the functions of conduction and heat dissipation, thereby The stability and reliability of laser work can be further improved.
  • the multiple lasers are arranged on the printed circuit board through the substrate, which not only realizes that the multiple lasers can be stably and effectively arranged on the printed circuit board, but also the substrate can also have the functions of conduction and heat dissipation, thereby further The stability and reliability of the laser operation are improved, thereby prolonging the service life of the multi-line laser module.
  • the distance between at least one capacitive element and adjacent elements meets a preset distance condition
  • the adjacent elements include at least the following One: capacitive element, switching element, laser; so that at least one main discharge loop is centered on multiple lasers and is evenly distributed around the multiple lasers.
  • the preset distance condition may include at least one of the following:
  • the distance between the capacitive element and the adjacent element can be controlled at 0.5mm.
  • the distance between the capacitive element corresponding to each laser and the laser to which the capacitive element is coupled is equal. Or, in the main discharge circuit, the difference between the distance between the capacitance element corresponding to each laser and the laser to which the capacitance element is coupled is within a predetermined threshold range.
  • the capacitive element includes two or more capacitors
  • the distance between the first capacitor and the corresponding switching element is the first distance
  • the second capacitor and the corresponding switching element The distance between is the second distance
  • the above-mentioned first distance is equal to the second distance.
  • the difference between the above-mentioned first distance and the second distance is within a predetermined threshold range.
  • the laser may be a pulsed laser diode die.
  • the pulsed laser diode die is an unpackaged pulsed laser diode composed of a crystal structure. Under normal circumstances, the size of the pulsed laser diode die is relatively small, so it is convenient to design the layout of the laser on the ceramic substrate.
  • multiple lasers are packaged together.
  • multiple lasers can be packaged on the same substrate, which facilitates the layout and routing design of multiple lasers, and can also make multiple lasers The layout and wiring on the printed circuit board are more even.
  • those skilled in the art can also package multiple lasers separately according to specific application requirements, that is, multiple lasers are not packaged together, which allows users to design separate layouts for multiple lasers, which satisfies users Make special layout and wiring requirements for a certain laser or certain lasers among multiple lasers.
  • the multiple switching elements and at least one capacitive element are distributed on both sides of the printed circuit board or only Distributed on one side of the printed circuit board.
  • multiple switching elements and at least one capacitive element are distributed on both sides of the printed circuit board, for example, multiple switching elements and lasers are distributed on the first surface of the printed circuit board, and at least one capacitive element is distributed on the printed circuit board.
  • the electrical connection relationship between the laser, the switching element and the capacitor element can be realized through the via hole located on the printed circuit board.
  • multiple switching elements and at least one capacitive element may also be distributed on only one side of the printed circuit board. In this case, the working quality and efficiency of the multi-line laser module can be effectively improved.
  • the positions of the multiple switching elements on the printed circuit board are determined by the positions of the pads of the multiple lasers; at least one The position of the capacitive element on the printed circuit board is determined by the positions of the pads of the multiple lasers.
  • multiple lasers can be arranged on the printed circuit board first, and at this time, the pads of multiple lasers can be obtained. Position, and then determine the position of the multiple switching elements on the printed circuit board based on the pad positions of the multiple lasers, and also determine the position of at least one capacitive element on the printed circuit board based on the pad positions of the multiple lasers, Therefore, the quality and efficiency of the electrical signal transmission between the laser, the switching element and the capacitive element can be ensured, and the stable and reliable operation of the multi-line laser module can be effectively ensured.
  • multiple angles are formed between the multiple laser beams emitted by multiple lasers and the plane where the printed circuit board is located.
  • the multiple laser beams emitted by the multiple lasers can be formed between the multiple laser beams and the plane where the printed circuit board is located.
  • Multiple included angles it can be understood that the multiple included angles formed between the multiple laser beams emitted by the multiple lasers and the plane where the printed circuit board is located may be the same or different, and the included angle may be an acute angle or an obtuse angle.
  • it can be realized by a substrate, that is, multiple lasers are arranged on the substrate, and then a preset angle is formed between the substrate and the printed circuit board; or, it can also be realized by a packaging structure for packaging multiple lasers. This is achieved by using the packaging structure to form multiple angles between the laser beam sent by the laser and the plane where the printed circuit board is located.
  • the multiple lasers when controlling multiple lasers to emit multiple laser beams, the multiple lasers emit light sequentially according to the positions of the multiple lasers.
  • the multiple lasers include a first laser, a second laser, and a third laser.
  • the first laser, the second laser, and the third laser are arranged in sequence.
  • the first The laser emits the laser beam first, then the second laser emits the laser beam, the third laser emits the laser beam last, and so on.
  • This method of emitting the laser beam effectively expands the working scene and application scope of the multi-line laser module, and further improves the practicability of the multi-line laser module.
  • the layout of multiple lasers, switching elements and capacitive elements on the printed circuit board is optimized, which meets the requirements of PCBA (Printed Circuit Board Assembly) under the premise of the production process, it can not only ensure that the loop equivalent inductance corresponding to the main discharge loop corresponding to any one of the multiple lasers corresponds to the multiple main discharge loops corresponding to the other multiple lasers.
  • the equivalent inductance of the main discharge loop of multiple lasers is the same, or the difference in the equivalent inductance of the main discharge loop of multiple lasers is less than the preset value; moreover, the loop corresponding to the main discharge loop composed of lasers, capacitive elements and switching elements can also be combined.
  • the equivalent inductance of the circuit is reduced as much as possible, so as to not only ensure the detection consistency of the multi-line laser module in the distance detection process, but also increase the peak power of the multi-line laser module, which is beneficial to the multi-line laser module to achieve farther
  • the distance detection further improves the practicability and applicable scope of the multi-line laser module.
  • FIG. 9 is a schematic structural diagram of a lidar provided by an embodiment of the present invention. referring to FIG. 9, as shown in FIG. 9, this embodiment provides a lidar, including:
  • the controller 901 is in communication connection with the multi-line laser module 902, and is used to control the multi-line laser module 902 to emit laser beams;
  • the multi-line laser module 902 includes:
  • the laser device is arranged on the printed circuit board
  • a plurality of switching elements are arranged on the printed circuit board, respectively coupled to the laser device, for controlling the laser device to emit a plurality of laser beams;
  • At least one capacitive element arranged on the printed circuit board, coupled to the laser device, for driving the laser device to emit multiple laser beams;
  • the laser device includes a plurality of lasers, the plurality of lasers form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers, coupled with at least one first laser Connected switching elements and capacitive elements; the difference between the loop equivalent inductances of any two discharge loops is less than the preset value.
  • At least two discharge loops can include at least one main discharge loop.
  • the difference between the loop equivalent inductances of the main discharge loops of any or at least two of the multiple lasers Less than the preset value.
  • a plurality of lasers are arranged side by side on the substrate.
  • a plurality of switching elements and at least one capacitive element are uniformly arranged around the laser device.
  • the multiple lasers include two lasers; at least one capacitive element includes a first capacitive element, the first capacitive element is arranged in the middle of the first area, and the first area is arranged on one side of the two lasers.
  • the two switching elements coupled with the two lasers are respectively arranged on both sides of the first capacitive element.
  • the plurality of lasers includes six lasers; at least one capacitive element includes at least one of the following: six capacitive elements, twelve capacitive elements, and eighteen capacitive elements.
  • six lasers are arranged on the substrate, at least one capacitive element is uniformly arranged at the top corner of the substrate, and a plurality of switching elements coupled to the plurality of lasers are uniformly arranged around the substrate; or,
  • Six lasers are arranged on the substrate, a plurality of switching elements coupled to the plurality of lasers are uniformly arranged at the top corners of the substrate, and at least one capacitive element is arranged around the substrate.
  • the plurality of switching elements are Mos tubes.
  • a plurality of lasers pass through a substrate on a printed circuit board, and the substrate is provided with via holes for connecting to the printed circuit board.
  • a reflecting mirror for reflecting the plurality of laser beams is provided on one side of the plurality of lasers, and the reflecting mirror is arranged on the substrate.
  • a cap for protecting multiple lasers is provided on the substrate.
  • a plurality of laser patches are packaged on one side of the printed circuit board, and the other side of the printed circuit board is provided with a heat sink.
  • the distance between at least one capacitive element and the adjacent element satisfies a preset distance condition
  • the adjacent element includes at least one of the following: a capacitive element, a switching element, and a laser; so that at least two discharge rings
  • the main discharge loop in the circuit is centered on multiple lasers and is evenly distributed around the multiple lasers.
  • the laser is a pulsed laser diode die.
  • multiple lasers are packaged together.
  • a plurality of switching elements and at least one capacitor element are distributed on both sides of the printed circuit board or only on one side of the printed circuit board.
  • At least one capacitive element corresponds to a plurality of main discharge loops.
  • the positions of the multiple switching elements on the printed circuit board are determined by the positions of the pads of the multiple lasers;
  • the position of the at least one capacitive element on the printed circuit board is determined by the positions of the pads of the multiple lasers.
  • multiple angles are formed between the multiple laser beams emitted by multiple lasers and the plane where the printed circuit board is located.
  • the multiple lasers emit light sequentially according to the positions of the multiple lasers.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. referring to FIG. 10, this embodiment provides a movable platform, which may include unmanned aerial vehicles, unmanned vehicles, Unmanned vehicles, manned aircraft or other movable equipment, etc. Specifically, the movable platform may include:
  • the multi-line laser module 1002 is arranged on the platform main body 1001; the multi-line laser module 1002 includes:
  • the laser device is arranged on the printed circuit board
  • a plurality of switching elements are arranged on the printed circuit board, respectively coupled to the laser device, for controlling the laser device to emit a plurality of laser beams;
  • At least one capacitive element arranged on the printed circuit board, coupled to the laser device, for driving the laser device to emit multiple laser beams;
  • the laser device includes a plurality of lasers, the plurality of lasers form at least two discharge loops on the printed circuit board, and each discharge loop includes: at least one first laser among the plurality of lasers, coupled with at least one first laser Connected switching elements and capacitive elements; the difference between the loop equivalent inductances of any two discharge loops is less than the preset value.
  • At least two discharge loops can include at least one main discharge loop.
  • the difference between the loop equivalent inductances of the main discharge loops of any or at least two of the multiple lasers Less than the preset value.
  • the movable platform provided in this embodiment can detect the surrounding environment, sense terrain information or obstacle position information, etc. through the multi-line laser module 1002 provided on the platform main body 1001. Because the multi-line laser module 1002 is detecting The consistency in the process is high, so that the accuracy and reliability of the detection information of the multi-line laser module 1002 can be ensured, thereby ensuring the safety and reliability of the movable platform.
  • a plurality of lasers are arranged side by side on the substrate.
  • a plurality of switching elements and at least one capacitive element are uniformly arranged around the laser device.
  • the multiple lasers include two lasers; at least one capacitive element includes a first capacitive element, the first capacitive element is arranged in the middle of the first area, and the first area is arranged on one side of the two lasers.
  • the two switching elements coupled with the two lasers are respectively arranged on both sides of the first capacitive element.
  • the plurality of lasers includes six lasers; at least one capacitive element includes at least one of the following: six capacitive elements, twelve capacitive elements, and eighteen capacitive elements.
  • six lasers are arranged on the substrate, at least one capacitive element is uniformly arranged at the top corner of the substrate, and a plurality of switching elements coupled to the laser are uniformly arranged around the substrate; or,
  • Six lasers are arranged on the substrate, a plurality of switching elements coupled to the plurality of lasers are uniformly arranged at the top corners of the substrate, and at least one capacitive element is arranged around the substrate.
  • the plurality of switching elements are Mos tubes.
  • a plurality of lasers are arranged on a printed circuit board through a substrate, and the substrate is provided with via holes for connecting to the printed circuit board.
  • a reflecting mirror for reflecting the plurality of laser beams is provided on one side of the plurality of lasers, and the reflecting mirror is arranged on the substrate.
  • a cap for protecting multiple lasers is provided on the substrate.
  • a plurality of laser patches are packaged on one side of the printed circuit board, and the other side of the printed circuit board is provided with a heat sink.
  • the distance between at least one capacitive element and the adjacent element satisfies a preset distance condition
  • the adjacent element includes at least one of the following: a capacitive element, a switching element, and a laser; so that at least two discharge rings
  • the main discharge loop in the circuit is centered on multiple lasers and is evenly distributed around the multiple lasers.
  • the laser is a pulsed laser diode die.
  • multiple lasers are packaged together.
  • a plurality of switching elements and at least one capacitor element are distributed on both sides of the printed circuit board or only on one side of the printed circuit board.
  • At least one capacitive element corresponds to a plurality of main discharge loops.
  • the positions of the multiple switching elements on the printed circuit board are determined by the positions of the pads of the multiple lasers;
  • the position of the at least one capacitive element on the printed circuit board is determined by the positions of the pads of the multiple lasers.
  • multiple angles are formed between the multiple laser beams emitted by multiple lasers and the plane where the printed circuit board is located.
  • the multiple lasers emit light sequentially according to the positions of the multiple lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种多线激光器模块(902,1002)、激光雷达及可移动平台。多线激光器模块(902,1002)包括:激光器器件(204),设置于印刷电路板上;多个开关元件(202),设置于印刷电路板上,分别耦接于激光器器件(204),用于控制激光器器件(204)发射多个激光束;至少一个电容元件(203),设置于印刷电路板上,耦接于激光器器件(204),用于驱动激光器器件(204)发射多个激光束;其中,激光器器件(204)包括多个激光器(201),多个激光器(201)在印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个激光器(201)中的至少一个第一激光器(201)、与至少一个第一激光器(201)耦接的开关元件(202)和电容元件(203);任意两个放电环路所对应的环路等效电感之间的差值小于预设值。

Description

多线激光器模块、激光雷达及可移动平台 技术领域
本发明实施例涉及激光器技术领域,尤其涉及一种多线激光器模块、激光雷达及可移动平台。
背景技术
在激光雷达、激光测距等领域,由于产品直接在现实生活场景中使用,而激光存在直接射入人眼的风险,因此,规定了激光发射不能超过安全规定的能量值,从而保证即使激光入射人眼的时候也不会造成人体的伤害。因此在对激光发射的方案进行设计时,在小于安规限制的前提下,需要尽可能地增大出光峰值功率,以便实现更远的探测距离。
然而,现有技术中的一些多线激光器模块,由于封装条件或者设计条件的限制,容易使得多线激光器模块在距离探测过程中的一致性较差,从而降低了激光器探测数据的准确可靠性,并且也不利于激光器实现更远的探测距离。
发明内容
本发明实施例提供了一种多线激光器模块、激光雷达及可移动平台,以解决上述技术问题。
本发明的第一方面是为了提供一种多线激光器模块,包括:
激光器器件,设置于印刷电路板上;
多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元 件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
本发明的第二方面是为了提供一种激光雷达,包括:
控制器,与多线激光器模块通信连接,用于控制所述多线激光器模块发射激光束;
所述多线激光器模块,包括:
激光器器件,设置于印刷电路板上;
多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
本发明的第三方面是为了提供一种可移动平台,包括:
平台主体;
多线激光器模块,设置于所述平台主体上;所述多线激光器模块包括:
激光器器件,设置于印刷电路板上;
多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
本发明实施例提供的多线激光器模块、激光雷达及可移动平台,可以保证激光器探测的准确可靠性,并且也有利于激光器实现更远的探测距离。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种多线激光器模块的电路原理示意图;
图2为本发明实施例提供的一种多线激光器模块对应的原理时序图;
图3为本发明实施例提供的一种多线激光器器件的陶瓷基板上的基底焊盘的布局示意图;
图4为本发明实施例提供的一种多线激光器模块的结构示意图;
图5为本发明实施例提供的一种多线激光器模块的俯视图;
图6为图5中的多线激光器模块的立体示意图;
图7为本发明实施例提供的各个激光单元的对应的主放电环路在电路板上的布线示意图;
图8为本发明实施例提供的一种多线激光器模块在印刷电路板上的叠层设计示意图;
图9为本发明实施例提供的一种激光雷达的结构示意图;
图10为本发明实施例提供的一种可移动平台的结构示意图。
图中,
100、陶瓷基板;
101、N极焊盘;
102、P极焊盘;
103、无电气属性焊盘;
104、基板;
105、反射镜;
106、管帽;
200、控制器;
201、激光器;
202、开关元件;
203、电容元件;
204、激光器器件;
901、控制器;
902、多线激光器模块;
1001、平台主体;
1002、多线激光器模块。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的描述中,术语“安装”、“耦接”、“连接”、“固定”等术语均应广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接。应当理解,当称一元件耦接到另一元件时,该元件可以是直接或者间接电连接至另一元件。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
在本发明实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。
本发明实施例的说明书和权利要求书的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤的过程或结构的装置不必限于清楚地列出的那些结构或步骤而是可包括没有清楚地列出的或对于这些过程或装置固有的其它步骤或结构。此外,在本发明实施例的描述中,“多个”的含义是至少两条,例如两条,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描 述的具体特征、结构、材料或者特点包含于本本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为了便于理解本发明实施例的技术方案,首先以多线激光器模块(六线激光器模块)包括六个激光器(例如,包括六个脉冲激光二极管(Pulsed Laser Diode,简称PLD))为例,对多线激光器模块的工作原理进行说明,然而,本领域技术人员可以了解,在不脱离本发明的精神和基本原理的基础上,包括其他数量的激光器的多线激光器模块的方案均落入本发明的保护范围。具体的,多线激光器模块的部分驱动电路如图1-图2所示,需要注意的是,图中仅画出了三个激光器的驱动电路,其他的三个激光器的驱动电路与上述三个激光器的驱动电路相同且并列。具体的,该多线激光器模块包括:
功能电路,用于储能,通过时序控制调整最终充电到电容中的能量,并保证整个多线激光器模块的驱动电路的正常工作,包括:与电源串联的电感L1、与电感L1耦接的二极管D10,并且,电感L1与二极管D10的负极相连,二极管D10的正极接地;
激光器D3的驱动电路,包括:电源、与电源串联的电感L1、与电感L1耦接的二极管D1、与二极管D1耦接的MOS管Q1、二极管D2和激光器D3,二极管D1分别与MOS管Q1的漏极、激光器D3的负极相连接,激光器D3的正极和二极管D2同时连接有电容C1,电容C1的另一端和MOS管Q1的源极分别接地;
激光器D6的驱动电路,包括:电源、与电源串联的电感L1、与电感L1耦接的二极管D4、与二极管D4耦接的MOS管Q2、二极管D5和激光器D6;二极管D4分别与MOS管Q2的漏极、激光器D6的负极相连接,激光器D6的正极和二极管D5同时连接有电容C1,电容C1的另一端和MOS管Q2的源极分别接地;
激光器D9的驱动电路,包括:电源、与电源串联的电感L1、与电感L1耦接的二极管D7、与二极管D7耦接的MOS管Q3、二极管D8和激光器D9,二极管D7分别与MOS管Q3的漏极、激光器D9的负极相连接,激光器D9的正极和二极管D8 同时连接有电容C1,电容C1的另一端和MOS管Q3的源极分别接地;
其中,激光器D3的驱动电路、激光器D6的驱动电路以及激光器D9的驱动电路并联连接在电感L1和电容C1之间;需要注意的是,上述的激光器D3的驱动电路、激光器D6的驱动电路以及激光器D9的驱动电路只是六线激光器模块中的三个激光器所对应的驱动电路,其应该还包括另外三个相同的三个激光器的驱动电路,该驱动电路同样并联在电感L1和电容C1之间,以实现驱动六线激光器模块中的六个激光器向外发射激光束。
复位电路,包括:电源、以及与电源串联连接的电感L1、与电感L1耦接的二极管D1、二极管D2、电阻R1和MOS管Q4,其中,电阻R1与MOS管Q4的漏极相连,MOS管Q4的源极接地。
放电复位电路,包括:依次串联连接的电阻C1、电阻R1和MOS管Q4,其中,电阻R1与MOS管Q4的漏极相连,MOS管Q4的源极接地。
基于上述电路原理图,对六线激光器模块的工作原理进行说明,参考附图2所对应的时序图可知,该六线激光器模块的工作过程可以复位过程、充电过程、能量转移过程和发光过程。具体的,以驱动激光器D6进行发射激光束的过程为例进行说明:
复位过程:在t4时刻,复位信号拉高,MOS管Q4导通,电源V通过二极管D1、二极管D2、电阻R1和MOS管Q4给电感L1充电;此时,如果电容C1中有电,可以通过电容C1、电阻R1和MOS管Q4所形成的路径进行放电复位。
充电过程:在t5时刻,启动信号2拉高,MOS管Q2导通,电源V通过电感L1、二极管D4、MOS管Q2和复位过程中的电感充电路径同时给电感L1进行充电。在t6时刻,复位信号拉低,MOS管Q4关闭,充电路径只剩下电感L1、二极管D4、MOS管Q2。
能量转移过程:在t7时刻,启动信号2信号拉低,MOS管Q2关闭,电感L1中储存的能量通过二极管D1、二极管D2转移到电容C1中。
发光过程:在t8时刻,启动信号2再次拉高,MOS管Q2导通,电容C1中的电压通过电容C1、激光器D6、MOS管Q2的路径驱动激光器D6发射激光束,在t9时刻(此时发光已结束),启动信号2拉低,MOS管Q2关闭,驱动激光器D6停止发射激光束。
在上述实现原理的基础上,请参考附图3。图3为本发明实施例提供的一种多线激光器器件的陶瓷基板上的基底焊盘的布局示意图。具体的,激光器 器件可以包括用于设置于陶瓷基板100上的多个激光器,如图1中所述的激光器D3、D6及D9等等,且每个激光器具有P极和N极,此时,在陶瓷基板100上分布有N极焊盘101、P极焊盘102、以及无电气属性焊盘103。其中,激光器D3、D6及D9的N极分别通过金属通孔连接于N极焊盘101;激光器D3、D6及D9的P极分别通过结合线和金属通孔连接于P极焊盘102。
可以理解的是,设置于陶瓷基板100上的焊盘(N极焊盘101、P极焊盘102等等)可以限定元器件的设置位置。因此,在一个实施例中,根据与P极焊盘102相连接MOS管和电容的位置,P极焊盘102可以分布在N极焊盘101的左侧和/或右侧。需要说明的是,分布于激光器器件的陶瓷基板100的四角处的无电气属性焊盘103的作用是使得整个激光器器件受力均匀,从而整个激光器器件能够稳固地焊接于印刷电路板上。
请参考附图4所示,图4为本发明实施例提供的一种多线激光器模块的结构示意图。为了能够保证多线激光器模块发射激光束,在多个激光器201的一侧,设置有用于对多个激光束进行反射的反射镜105,反射镜105设置于基板104(例如,陶瓷基板)上。在一个实施方式中,激光束通过反射镜105进行反射,以使得激光束与印刷电路板所在的平面之间形成预定的夹角。其中,反射镜105可以设置于多个激光器201的一侧,例如,反射镜105设置于激光器201的左侧;而与多个激光器201相连接的电容元件和开关元件均匀地设置于激光器器件的其他三侧(上侧、下侧和右侧),从而有效地保证了多个激光器201工作的稳定可靠性。
如图4所述,为了提高多线激光器模块的使用稳定可靠性,基板104上设置有用于保护多个激光器201的管帽106。
具体的,管帽106可以设置于基板104上,且套设在多个激光器201和反射镜105的外侧,从而可以实现对多个激光器201的有效保护,并且还可以保证多线激光器模块所在区域的清洁程度,有利于延长多线激光器模块的使用寿命。
在上述任意一个实施例的基础上,为了进一步提高多线激光器模块的工作稳定可靠性,激光器器件可以设置于印刷电路板的一面(例如,正面或背面),印刷电路板的另一面设置有散热件。
具体的,多个激光器201可以利用栅格阵列封装LGA的贴片封装技术贴在印刷电路板的正面,在具体实现时,该结构可以支持的贴片工艺的公差范围 为+-0.05mm;另外,将开关元件和电容元件也布置在PCB板的正面,而在PCB板的背面区域可以设置有亮铜和散热块,以通过散热块对激光器器件进行散热,从而提高了激光器器件工作的稳定可靠性。
本实施例提供了一种多线激光器模块,该多线激光器模块通过对多线激光器模块中的各个元器件在印刷电路板上的布局结构设计,可以保证多线激光器模块中多个激光器的发光功率一致,从而有利于实现更远的距离检测。具体的,该多线激光器模块的结构请参见图5和图6。图5为本发明实施例提供的一种多线激光器模块的俯视图。图6为图5中的多线激光器模块的立体示意图。具体的,该多线激光器模块可以包括:
激光器器件204,设置于印刷电路板上;
多个开关元件202,设置于印刷电路板上,分别耦接于激光器器件204,用于控制激光器器件204发射多个激光束;
至少一个电容元件203,设置于印刷电路板上,耦接于激光器器件204,用于驱动激光器器件204发射多个激光束;
其中,激光器器件204包括多个激光器201,多个激光器201在印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个激光器201中的至少一个第一激光器、与至少一个第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
需要注意的是,至少两个放电环路中包括一个主放电环路,也即激光器器件204在印刷电路板上可以形成至少一个主放电环路,一个主放电环路可以包括激光器器件204中的一个或多个激光器201;例如:与激光器201相对应的主放电环路包括:激光器201、分别与激光器201耦接的开关元件202和电容元件203;多个激光器201中任意或者至少两个激光器的主放电环路所对应的环路等效电感的差值小于预设值。
此外,根据本发明的一实施方式,每一个激光器201所形成的放电环路可以包括主放电环路和辅放电环路。针对每一个激光器201所形成的放电环路来说,除位于主放电环路中的电容元件之外,该激光器201所形成的放电环路还包括位于辅放电环路的至少一个电容元件。其中,位于对应于该激光器201的辅放电环路中的电容元件也均匀分布于激光器器件204的周围。并且,辅放电环路中的这些电容元件与主放电环路中的电容元件并联。在一个实施方式中,所有电容的电容值相等,并且位于激光器器件204周围的电容均在该激光器 201的放电环路中。
此外,根据本发明的另一实施方式,每一个激光器201可以仅包括一个放电环路。当每一个激光器201仅存在一个放电环路时,该放电环路的功能和作用和上述提到的主放电环路相同或相似。为求简洁,不再赘述。
多个激光器201可以是指两个或两个以上的激光器,为了保证多线激光器模块整体布局的质量和效率,在多个激光器201设置于激光器器件204中,多个激光器201可以并排设置于激光器器件204的基板上,这样不仅方便对激光器201进行布局布线设计,并且也方便对多线激光器模块进行调试和维护操作,从而有利于保证多线激光器模块工作的稳定可靠性。
另外,本实施例对于多个激光器201所包括的具体个数不做限定,本领域技术人员可以根据具体的应用需求和应用场景进行设置,例如:多个激光器201可以包括:两个激光器、三个激光器、四个激光器、六个激光器或者八个激光器等等,可以理解的是,不同个数的激光器201可以对应有不同个数的电容元件203和开关元件202,而多个开关元件202与至少一个电容元件203可以均匀的设置于激光器器件204的周围。一般情况下,开关元件202的个数与激光器器件204中的激光器201的个数相同,电容元件203的个数可以小于、等于或者大于激光器201的个数,具体的,在电容元件203的个数为一个时,多个激光器201与同一个电容元件203耦接;在电容元件203的个数为多个时,多个激光器201可以分别与各自环路中的电容元件203耦接,由上可知,对于电容元件203而言,至少一个电容元件203可以对应有多个主放电环路;本领域技术人员可以根据具体的应用需求和应用场景对激光器201、开关元件202、电容元件203的具体组合个数进行设置,只要能够保证多个激光器201中的至少两个激光器201对应的主放电环路所对应的环路等效电感的差值小于预设值。举例来说:第一环路等效电感为1H,第二环路等效电感为0.8H,此时,上述两个环路等效电感之间的电感差值为0.2H,在预设阈值为0.5H时,电感差值0.2H小于预设阈值0.5H。
此外,可以理解的是,本领域技术人员可以根据不同的应用场景和应用要求来确定不同的预设阈值,只要能够保证通过所设置的预设阈值,可以稳定的实现并保证对任意一个激光器201对应的主放电环路所对应的环路等效电感与其他多个激光器201对应的多个主放电环路所对应的环路等效电感之间近似相等的准确判断即可,在此不再赘述。
在具体实现时,为了能够保证多个激光器201中的任意一个激光器201对应的主放电环路所对应的环路等效电感与另一主放电环路所对应的环路等效电感相等或近似相等,可以通过调整并保证任意一个激光器201对应的主放电环路所对应的最小环路面积与另一主放电环路所对应的最小环路面积相等或近似相等来实现,较为优选的,多个激光器201中的任意一个激光器201对应的主放电环路所对应的环路等效电感与其他多个激光器201各自对应的多个主放电环路所对应的环路等效电感均相等或近似相等。根据本发明的一实施方式,可以通过调整并保证任意一个激光器201对应的主放电环路所对应的最小环路面积与其他多个激光器201对应的多个主放电环路所对应的最小环路面积均相等或近似相等来实现。需要注意的是,本实施例中的主放电环路所对应的最小环路面积是指主放电环路在印刷电路板和/或封装基板上所占的面积;而任意一个主放电环路所对应的最小环路面积与另一主放电环路所对应的最小环路面积近似相等与上文中描述的近似相等的含义类似。即至少两个主放电环路所对应的最小环路面积的面积差值小于或等于预设面积阈值。根据本发明的另一实施方式,多个主放电环路的形状是相似的。
进一步的,对电容元件203、开关元件202和激光器201组成的主放电环路而言,在电容元件203的能量一定、激光器201的发光功率一定、开关元件202的损耗一定的情况下,整个主放电环路的环路等效电感(寄生电感)决定了激光器的整个脉冲的形状,寄生电感越大,开关元件202开启后,环路电流的上升下降沿越缓慢,等效的半高宽越宽,激光器201的峰值功率就越低;而寄生电感越小,开关元件202开启后,环路电流的上升下降沿越陡,等效的半高宽越窄,激光器201的峰值功率越高,此时,激光器201可以实现更远距离的探测。因此,为了能够实现较高的峰值功率,对于主放电环路来说,希望主放电环路所对应的环路等效电感越小越好,在对主放电环路中的元件进行布局设计时,使得主放电环路的最小环路面积越小越好,进而有利于激光器实现更远距离的探测。
在本实施例提供的多线激光器模块中,设置于印刷电路板上的激光器器件204中的多个激光器201形成至少一个主放电环路,通过对激光器201、开关元件202和电容元件203的布局设计,可以使得多个激光器201中的任意一个激光器201对应的主放电环路所对应的环路等效电感与另一主放电环路所对应的环路等效电感相等或近似相等,即,至少两个主放电环路的等效电感的差 值小于预设值,有效地保证了多个激光器201出光功率的一致性,从而保证了多个激光器201使用寿命的一致性,也有利于实现更远的探测距离。需要说明的是,对于每一个激光器201对应的主放电环路来说,相比于辅放电环路中的开关元件,主放电环路中的开关元件在电路板上的位置靠近主放电环路中的电容元件。
在上述实施例的基础上,继续参考附图5和图6所示,本实施例中的一种多线激光器模块可以为六线激光器模块,也即激光器器件204可以包括六个激光器201;此时,至少一个电容元件203包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
其中,在至少一个电容元件203包括六个电容元件203时,六个电容元件203可以均匀分布在每个激光器201的驱动电路中,即每个激光器201的驱动电路中可以包括一个电容元件203;在至少一个电容元件203为十二个电容元件时,十二个电容元件均匀分布在每个激光器201的驱动电路中,即每个激光器201的驱动电路中可以包括两个并联的电容元件203;在至少一个电容元件203包括十八个电容元件203时,十八个电容元件203可以均匀分布在每个激光器201的驱动电路中,即每个激光器201的驱动电路可以包括三个并联的电容元件203。
具体的,在至少一个电容元件203的个数为多个时,多个电容元件203可以为等值电容,且均匀环绕在六个激光器201的周围,以保证每个激光器201与最近的电容元件203之间的距离近似相等,从而保证每个激光器所构成的主放电环路的环路等效电感比较均衡。如图5所示,在多个激光器201包括六个激光器201时,将包括六个激光器201或者多个激光器201的激光器器件204设置于印刷电路板上时,为了保证激光器201工作的稳定可靠性,多个激光器201可以通过基板104设置于印刷电路板上,即将多个激光器201设置于基板104上,通过基板104设置于印刷电路板上,具体的,基板104可以为陶瓷基板,并且,该基板104上可以设置有用于连接在印刷电路板上的过孔。此时,至少一个电容元件203可以均匀设置于基板104的顶角处,与多个激光器201耦接的多个开关元件202可以均匀设置于基板104的周围,从而实现了多个开关元件202与至少一个电容元件203均匀的设置于多个激光器201的周围,从而有效地保证了六个激光器201中的任意一个激光器201对应的主放电环路所对应的环路等效电感与其他六个激光器201对应的多个主放电环路所对应的环路等效电感相 等。在这些实施方式中,主放电环路的最小环路面积较小,进而有利于激光器实现更远距离的探测。
基于上述的布局结构,可以对多线激光器模块进行整体走线设计和叠层设计,如图附图5和图6所示,附图为六个激光器201、十二个电容元件203以及六个开关元件202所构成的多线激光器模块的布局示意图。激光器器件204位于印刷电路板上。在激光器器件204中,六个激光器201并排布置在基板上,通过基板布置在印刷电路板上,十二个电容元件203均匀设置于基板的四个顶角位置处,六个开关元件202分别设置于基板的三侧(上侧、下侧和右侧),从而实现了多个开关元件202与至少一个电容元件203均匀的设置于多个激光器201的周围。
请参考图7,图7为本发明实施例提供的各个激光单元的对应的主放电环路在印刷电路板上的布线示意图。通过走线设计之后,六个激光器201中每个激光器201在印刷电路板上对应的主放电环路如图7中的六个圈所示。具体地,在一个主放电环路中,电容中的电荷从VCC端通过PCB走线到达激光器陶瓷基板底部焊盘。然后通过基板金属通孔到达基板顶部P网络焊盘。通过键合线(bonding wire)达到激光器的P极,在流过激光器之后到达N极。进一步,通过基板的N极焊盘和基板金属通孔到达PCB焊盘,再通过PCB走线达到MOS管的D极(即,漏极)。之后,电荷流经MOS管,从MOS管的S极流出,通过PCB走线最终回到电容的GND端。
此时,每个激光器201所对应的主放电环路的最小环路面积与其他激光器201所对应的至少一个主放电环路的最小环路面积相等,或者至少两个主放电环路的最小环路面积的差值小于预设值,从而实现并保证了六个激光器201中的任意一个激光器201对应的主放电环路所对应的环路等效电感与其他六个激光器201对应的多个主放电环路所对应的环路等效电感相等,或至少两个主放电环路所对应的环路等效电感的差值小于预设值。在这些实施方式中,主放电环路的最小环路面积较小,进而有利于激光器实现更远距离的探测。
具体的,在对上述布局结构进行走线设计时,要考虑瞬间电流的承受能力,尽量使得每个激光器201的驱动环路最小,并可以标识出每个激光器201所对应的最小驱动环路。在进行叠层设计时,层叠越薄,过孔电感越小,更有利于减少整体环路电感;并且,由于多个电容元件203是并联的关系,每一环路中的激光器201发光时,在开关元件202打开的瞬间,主放电环路中最小 的电容首先放电,其他位置并联的电容随后通过过孔、电源平面、地平面路径进行放电,印刷电路板可以采用六层板设计;具体的,如图8所示,本实施例中的六线激光器模块的叠层包括:阻焊油墨层、顶层、地层、信号层、电源层以及底层,并且,上述每个叠层所对应的材料信息和厚度信息见下述表格:
Figure PCTCN2020070518-appb-000001
其中,上述表格中的“1/2oz+plating”是指以二分之一盎司的铜板与电镀层,形成PCB板;3313是指一种绝缘介质,其中3313是PP的一种型号。
相类似的,在多线激光器模块为六线激光器模块、且该多线激光器模块包括多个电容元件时,另一种可实现的布局结构为:六个激光器设置于基板上,与多个激光器耦接的多个开关元件均匀设置于基板的顶角处,至少一个电容元件设置于基板的周围,此时,与上述实现方式不同的是,多个开关元件均匀的设置于基板的顶角处,而电容元件设置于基板的周围,此时,同样实现了多个开关元件与至少一个电容元件均匀的设置于多个激光器的周围,并且可以保证六个激光器中的任意一个激光器对应的主放电环路所对应的环路等效电感与其他六个激光器对应的多个主放电环路所对应的环路等效电感相等,或者多个激光器所对应的环路等效电感的差值小于预设值。在这些实施方式中,主放电环路的最小环路面积较小,进而有利于激光器实现更远距 离的探测。
本实施例中的多线激光器模块,通过对上述布局结构、走线设计和叠层设计之后,不仅能够使得每个激光器所对应的主放电环路的环路等效电感与其他六个激光器对应的多个主放电环路所对应的环路等效电感相等,或者多个激光器所对应的环路等效电感的差值小于预设值;从而有效地保证了多线激光器模块在距离探测过程中的一致性;另外,本实施例中的多线激光器模块还能够保证了每个激光器所对应的环路等效电感均比较小,例如,环路等效电感均小于2nH等等,从而有利于实现多线激光器模块进行更远距离的探测,提高了多线激光器模块的实用性和可靠性。
根据本发明另一实施方式,多线激光器模块可以为两线激光器。即在本实施例中的多个激光器包括两个激光器模块;此时,至少一个电容元件包括一个第一电容元件,第一电容元件设置于第一区域的中部,第一区域设置于两个激光器的一侧,与两个激光器耦接的两个开关元件分别设置于所述第一电容元件的两侧。
具体的,在多线激光器模块单元包括两个激光器时,两个激光器可以同时耦接于同一个第一电容元件上,并由该第一电容元件驱动激光器发射激光束。此时,第一电容元件可以设置于两个激光器的一侧,且第一电容元件到两个激光器的距离相同,而两个开关元件可以设置于第一电容元件的两侧,从而有效地实现了至少一个电容元件和多个开关元件设置于多个激光器的周围,并且还可以一个激光器对应的主放电环路所对应的环路等效电感与另一个激光器对应的主放电环路所对应的环路等效电感相等。
本实施例中的多线激光器模块包括两个激光器,结构简单、实现容易,体积小,方便对多线激光器模块进行布置,使用灵活可靠,从而扩展了多线激光器模块的应用场景和适用范围。
在上述任意一个实施例的基础上,为了保证多线激光器模块的工作性能,具体设计时,多个开关元件可以为Mos管,并且,为了保证多线激光器模块工作的质量和效率,在选择MOS管时,可以满足以下条件:驱动MOS管的要求体积小、开关速度快、漏极与源极之间的电阻Rds(ON)小、脉冲电流大、耐压满足电容储能要求等,例如:本实施例中的开关元件可以选择为氮化镓GaN开关管。另外,在选择电容元件时,可以满足以下条件:零直流偏置特性、宽温度稳定性、高绝缘电阻、且电容自谐振频率要高。此外,在预设的安规限制 的条件下,多线激光器模块的出光功率会限制在一个固定值,考虑多线激光器模块的出光效率、MOS管耐压值、激光器功率一致性、结构挡光带来的功率调节需求等一系列因素,电容元件的取值可以在几百皮法到几纳法。
在上述任意一个实施例的基础上,为了保证激光器工作的稳定可靠性,本实施例中,多个激光器通过基板设置于印刷电路板上,基板上设置有用于连接在印刷电路板上的过孔。
其中,本实施例对于基板的具体形状结构不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:基板可以为方形基板、圆形基板或者矩形基板等等,较为常见的,基板可以为方形基板;在将多个激光器设置于基板上时,基板的结构可以实现对激光器有效支撑,便于对激光器的布局调整,并且,该基板还可以具有导电和散热的功能,从而可以进一步提高激光器工作的稳定可靠性。
本实施例中,通过基板将多个激光器设置于印刷电路板上,不仅实现了可以将多个激光器稳定有效地设置于印刷电路板上,并且,基板还可以具有导电和散热的功能,从而进一步提高激光器工作的稳定可靠性,从而延长了该多线激光器模块的使用寿命。
在上述任意一个实施例的基础上,本实施例中的多线激光器模块,对于电容元件而言,至少一个电容元件与相邻元件之间的距离满足预设距离条件,相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少一个主放电环路以多个激光器为圆心,且均匀分布于多个激光器的周围。
具体的,当对印刷电路板上的电容元件、开关元件和激光器器件进行布局布线设计时,为了保证各个元件工作的质量和效率,电容元件与相邻元件之间的距离要满足预设距离条件。该预设距离条件可以包括以下至少之一:
(a)在满足工艺设计的条件下,电容元件与相邻元件之间的距离越近越好,因为,器件间距越近,形成的最小环路面积越小,环路等效电感越小。
(b)电容元件与相邻元件之间的距离可以控制在0.5mm。
(c)在主放电回路中,每一个激光器对应的电容元件与该电容元件所耦接的激光器之间的距离相等。或者,在主放电回路中,每一个激光器对应的电容元件与该电容元件所耦接的激光器之间的距离之间的差值在一预定阈值范围内。
(d)在主放电回路中,若电容元件包括两个或两个以上的电容,则第一 电容与所对应的开关元件之间的距离为第一距离,第二电容与所对应的开关元件之间的距离为第二距离,上述的第一距离与第二距离相等。或者,上述的第一距离与第二距离之间的差值在一预定阈值范围内。
(e)主放电回路中的每一个激光器对应的第一电容元件与所对应的开关元件之间的距离和辅放电回路中的每一个激光器对应的第二电容元件与所对应的开关元件之间的距离相等。或者,上述距离之间的差值在一预定阈值范围内。
在上述任意一个实施例的基础上,激光器可以为脉冲激光二极管晶粒,具体的,脉冲激光二极管晶粒是由晶体结构构成的未封装的脉冲激光二极管。通常情况下,脉冲激光二极管晶粒的体积比较小,因此,方便对激光器在陶瓷基板上进行布局设计。
在上述任意一个实施例的基础上,多个激光器封装在一起,具体的,多个激光器可以封装在同一个基板上,这样可以方便对多个激光器进行布局布线设计,并且也可以使得多个激光器在印刷电路板上的布局布线更加均匀。
当然的,本领域技术人员也可以根据具体的应用需求将多个激光器进行分别封装,即多个激光器并没有封装在一起,这样可以使得用户对多个激光器进行单独的布局布线设计,满足了用户对多个激光器中的某个激光器或者某些激光器进行特殊的布局布线要求。
在上述任意一个实施例的基础上,在对多个开关元件和至少一个电容元件在印刷电路板上进行布局布线设计时,多个开关元件与至少一个电容元件分布于印刷电路板的两面或仅分布于印刷电路板的一面。
具体的,在将多个开关元件与至少一个电容元件分布于印刷电路板的两面时,例如:多个开关元件与激光器分布于印刷电路板的第一面,而至少一个电容元件分布于印刷电路板的第二面,此时,可以通过位于印刷电路板上的过孔实现激光器、开关元件与电容元件之间的电连接关系。
或者,多个开关元件与至少一个电容元件也可以仅分布于印刷电路板的一面,此时,可以有效地提高该多线激光器模块的工作质量和效率。
在上述任意一个实施例的基础上,在将开关元件和电容元件分别布置在印刷电路板上时,多个开关元件在印刷电路板上的位置由多个激光器的焊盘位置而确定;至少一个电容元件在印刷电路板上的位置由多个激光器的焊盘位置而确定。
具体的,在对多个激光器、多个开关元件和至少一个电容元件布置在印刷电路板上时,可以先将多个激光器布置在印刷电路板上,此时,可以获取多个激光器的焊盘位置,而后基于多个激光器的焊盘位置来确定多个开关元件在印刷电路板上的位置,并且也可以基于多个激光器的焊盘位置来确定至少一个电容元件在印刷电路板上的位置,从而可以保证激光器、开关元件和电容元件之间电信号传输的质量和效率,进而可以有效地保证多线激光器模块工作的稳定可靠性。
在上述任意一个实施例的基础上,多个激光器发射的多个激光束与印刷电路板所在的平面之间形成多个夹角。
在将多个激光器设置在印刷电路板上时,为了保证多个激光器能够稳定地向外发送多个激光束,可以使得多个激光器发射的多个激光束与印刷电路板所在的平面之间形成多个夹角,可以理解的是,多个激光器发射的多个激光束与印刷电路板所在平面之间形成的多个夹角可以相同或者不同,并且,该夹角可以为锐角或者钝角。具体实现时,可以通过基板来实现,即多个激光器设置于基板上,而后使得基板与印刷电路板之间形成预设的夹角;或者,也可以通过用于封装多个激光器的封装结构来实现,即通过封装结构来使得激光器发送的激光束与印刷电路板所在的平面之间形成多个夹角。
当然的,本领域技术人员也可以采用其他的方式来实现,只要能够实现多个激光器发射的多个激光束与印刷电路板所在的平面之间形成多个夹角即可,在此不再赘述。
在上述任意一个实施例的基础上,在控制多个激光器发射多个激光束时,多个激光器依据多个激光器的位置顺序依次发光。
举例来说:多个激光器包括第一激光器、第二激光器和第三激光器,第一激光器、第二激光器和第三激光器依次设置,在控制上述三个激光器发射多个激光束时,可以第一激光器先发射激光束,而后第二激光器发射激光束,第三激光器最后发射激光束,以此类推。此发射激光束的方式有效地拓展了多线激光器模块的工作场景和适用范围,进一步提高了多线激光器模块的实用性。
本实施例提供的多线激光器模块,在对多线激光器模块的驱动电路进行设计时,对多个激光器、开关元件和电容元件在印刷电路板上的布局进行了优化设计,在满足PCBA(Printed Circuit Board Assembly)生产工艺的前 提下,不仅可以保证多个激光器中的任意一个激光器对应的主放电环路所对应的环路等效电感与其他多个激光器对应的多个主放电环路所对应的环路等效电感相等,或者多个激光器的主放电环路等效电感的差值小于预设值;并且,还可以将激光器、电容元件和开关元件组成的主放电环路所对应的环路等效电感尽量降低,从而实现了不仅保证了多线激光器模块在距离探测过程中的检测一致性,并且还可以提高多线激光器模块的峰值功率,有利于多线激光器模块可以实现更远的距离检测,进而提高了该多线激光器模块的实用性和适用范围。
图9为本发明实施例提供的一种激光雷达的结构示意图;参考附图9所示,本实施例提供了一种激光雷达,包括:
控制器901,与多线激光器模块902通信连接,用于控制多线激光器模块902发射激光束;
多线激光器模块902,包括:
激光器器件,设置于印刷电路板上;
多个开关元件,设置于印刷电路板上,分别耦接于激光器器件,用于控制激光器器件发射多个激光束;
至少一个电容元件,设置于印刷电路板上,耦接于激光器器件,用于驱动激光器器件发射多个激光束;
其中,激光器器件包括多个激光器,多个激光器在印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个激光器中的至少一个第一激光器、与至少一个第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
需要注意的是,至少两个放电环路中可以至少包括一个主放电环路,此时,多个激光器中任意或者至少两个激光器的主放电环路所对应的环路等效电感的差值小于预设值。
在一个可实施的方式中,多个激光器并排设置于基板上。
在一个可实施的方式中,多个开关元件与至少一个电容元件均匀的设置于激光器器件的周围。
在一个可实施的方式中,多个激光器包括两个激光器;至少一个电容元件包括一个第一电容元件,第一电容元件设置于第一区域的中部,第一区域设置于两个激光器的一侧,与两个激光器耦接的两个开关元件分别设置于第 一电容元件的两侧。
在一个可实施的方式中,多个激光器包括六个激光器;至少一个电容元件包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
在一个可实施的方式中,六个激光器设置于基板上,至少一个电容元件均匀设置于基板的顶角处,与多个激光器耦接的多个开关元件均匀设置于基板的周围;或者,
六个激光器设置于基板上,与多个激光器耦接的多个开关元件均匀设置于基板的顶角处,至少一个电容元件设置于基板的周围。
在一个可实施的方式中,多个开关元件为Mos管。
在一个可实施的方式中,多个激光器通过基板于印刷电路板上,基板上设置有用于连接在印刷电路板上的过孔。
在一个可实施的方式中,在多个激光器的一侧,设置有用于对多个激光束进行反射的反射镜,反射镜设置于基板上。
在一个可实施的方式中,基板上设置有用于保护多个激光器的管帽。
在一个可实施的方式中,多个激光器贴片封装于印刷电路板的一面,印刷电路板的另一面设置有散热件。
在一个可实施的方式中,至少一个电容元件与相邻元件之间的距离满足预设距离条件,相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少两个放电环路中的主放电环路以多个激光器为圆心、且均匀分布于多个激光器的周围。
在一个可实施的方式中,激光器为脉冲激光二极管晶粒。
在一个可实施的方式中,多个激光器封装在一起。
在一个可实施的方式中,多个开关元件与至少一个电容元件分布于印刷电路板的两面或仅分布于印刷电路板的一面。
在一个可实施的方式中,至少一个电容元件对应多个主放电环路。
在一个可实施的方式中,多个开关元件在印刷电路板上的位置由多个激光器的焊盘位置而确定;
至少一个电容元件在印刷电路板上的位置由多个激光器的焊盘位置而确定。
在一个可实施的方式中,多个激光器发射的多个激光束与印刷电路板所在的平面之间形成多个夹角。
在一个可实施的方式中,多个激光器依据多个激光器的位置顺序依次发光。
图9所示激光雷达的实现原理、实现效果与上述图1-图8所示的多线激光器模块的实现原理、实现效果相类似,具体本实施例未详细描述的部分,可参考对图1-图8所示实施例的相关说明,在此不再赘述。
图10为本发明实施例提供的一种可移动平台的结构示意图;参考附图10所示,本实施例提供了一种可移动平台,该可移动平台可以包括无人机、无人车、无人车、载人飞行器或者其他可移动设备等等,具体的,该可移动平台可以包括:
平台主体1001;
多线激光器模块1002,设置于平台主体1001上;多线激光器模块1002包括:
激光器器件,设置于印刷电路板上;
多个开关元件,设置于印刷电路板上,分别耦接于激光器器件,用于控制激光器器件发射多个激光束;
至少一个电容元件,设置于印刷电路板上,耦接于激光器器件,用于驱动激光器器件发射多个激光束;
其中,激光器器件包括多个激光器,多个激光器在印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个激光器中的至少一个第一激光器、与至少一个第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
需要注意的是,至少两个放电环路中可以至少包括一个主放电环路,此时,多个激光器中任意或者至少两个激光器的主放电环路所对应的环路等效电感的差值小于预设值。
本实施例提供的可移动平台,通过设置于平台主体1001上的多线激光器模块1002,可以实现对周围环境的探测、感知地形信息或者障碍物方位信息等等,由于多线激光器模块1002在探测过程中的一致性较高,从而可以保证多线激光器模块1002探测信息的准确可靠性,进而保证了可移动平台的安全可靠性。
在一个可实施的方式中,多个激光器并排设置于基板上。
在一个可实施的方式中,多个开关元件与至少一个电容元件均匀的设置 于激光器器件的周围。
在一个可实施的方式中,多个激光器包括两个激光器;至少一个电容元件包括一个第一电容元件,第一电容元件设置于第一区域的中部,第一区域设置于两个激光器的一侧,与两个激光器耦接的两个开关元件分别设置于第一电容元件的两侧。
在一个可实施的方式中,多个激光器包括六个激光器;至少一个电容元件包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
在一个可实施的方式中,六个激光器设置于基板上,至少一个电容元件均匀设置于基板的顶角处,与激光器耦接的多个开关元件均匀设置于基板的周围;或者,
六个激光器设置于基板上,与多个激光器耦接的多个开关元件均匀设置于基板的顶角处,至少一个电容元件设置于基板的周围。
在一个可实施的方式中,多个开关元件为Mos管。
在一个可实施的方式中,多个激光器通过基板设置于印刷电路板上,基板上设置有用于连接在印刷电路板上的过孔。
在一个可实施的方式中,在多个激光器的一侧,设置有用于对多个激光束进行反射的反射镜,反射镜设置于基板上。
在一个可实施的方式中,基板上设置有用于保护多个激光器的管帽。
在一个可实施的方式中,多个激光器贴片封装于印刷电路板的一面,印刷电路板的另一面设置有散热件。
在一个可实施的方式中,至少一个电容元件与相邻元件之间的距离满足预设距离条件,相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少两个放电环路中的主放电环路以多个激光器为圆心、且均匀分布于多个激光器的周围。
在一个可实施的方式中,激光器为脉冲激光二极管晶粒。
在一个可实施的方式中,多个激光器封装在一起。
在一个可实施的方式中,多个开关元件与至少一个电容元件分布于印刷电路板的两面或仅分布于印刷电路板的一面。
在一个可实施的方式中,至少一个电容元件对应多个主放电环路。
在一个可实施的方式中,多个开关元件在印刷电路板上的位置由多个激光器的焊盘位置而确定;
至少一个电容元件在印刷电路板上的位置由多个激光器的焊盘位置而确定。
在一个可实施的方式中,多个激光器发射的多个激光束与印刷电路板所在的平面之间形成多个夹角。
在一个可实施的方式中,多个激光器依据多个激光器的位置顺序依次发光。
图10所示可移动平台的实现原理、实现效果与上述图1-图9所示的多线激光器模块的实现原理、实现效果相类似,具体本实施例未详细描述的部分,可参考对图1-图9所示实施例的相关说明,在此不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (57)

  1. 一种多线激光器模块,其特征在于,包括:
    激光器器件,设置于印刷电路板上;
    多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
    至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
    其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
  2. 根据权利要求1所述的多线激光器模块,其特征在于,多个所述激光器并排设置于基板上。
  3. 根据权利要求2所述的多线激光器模块,其特征在于,多个所述开关元件与至少一个所述电容元件均匀的设置于所述激光器器件的周围。
  4. 根据权利要求2所述的多线激光器模块,其特征在于,多个所述激光器包括两个激光器;至少一个所述电容元件包括一个第一电容元件,所述第一电容元件设置于第一区域的中部,所述第一区域设置于两个所述激光器的一侧,与两个所述激光器耦接的两个所述开关元件分别设置于所述第一电容元件的两侧。
  5. 根据权利要求2所述的多线激光器模块,其特征在于,多个所述激光器包括六个激光器;至少一个所述电容元件包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
  6. 根据权利要求5所述的多线激光器模块,其特征在于,六个所述激光器设置于基板上,至少一个所述电容元件均匀设置于基板的顶角处,与多个所述激光器耦接的多个所述开关元件均匀设置于所述基板的周围;或者,
    六个所述激光器设置于基板上,与多个所述激光器耦接的多个所述开关元件均匀设置于基板的顶角处,至少一个所述电容元件设置于所述基板的周围。
  7. 根据权利要求1所述的多线激光器模块,其特征在于,多个所述开关元件为MOS管。
  8. 根据权利要求2所述的多线激光器模块,其特征在于,所述基板上设置有用于连接在所述印刷电路板上的过孔。
  9. 根据权利要求8所述的多线激光器模块,其特征在于,在多个所述激光器的一侧,设置有用于对多个所述激光束进行反射的反射镜,所述反射镜设置于所述基板上。
  10. 根据权利要求6所述的多线激光器模块,其特征在于,所述基板上设置有用于保护多个所述激光器的管帽。
  11. 根据权利要求1所述的多线激光器模块,其特征在于,所述激光器器件设置于所述印刷电路板的一面,所述印刷电路板的另一面设置有散热件。
  12. 根据权利要求1所述的多线激光器模块,其特征在于,至少一个所述电容元件与相邻元件之间的距离满足预设距离条件,所述相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少一个所述至少两个放电环路中的主放电环路以多个所述激光器为圆心、且均匀分布于多个所述激光器的周围。
  13. 根据权利要求1所述的多线激光器模块,其特征在于,所述激光器为脉冲激光二极管晶粒。
  14. 根据权利要求1所述的多线激光器模块,其特征在于,多个所述激光器封装在一起。
  15. 根据权利要求1所述的多线激光器模块,其特征在于,多个所述开关元件与至少一个所述电容元件分布于所述印刷电路板的两面或仅分布于所述印刷电路板的一面。
  16. 根据权利要求1所述的多线激光器模块,其特征在于,至少一个所述电容元件对应多个放电环路。
  17. 根据权利要求1所述的多线激光器模块,其特征在于,
    多个所述开关元件在所述印刷电路板上的位置由多个所述激光器的焊盘位置而确定;
    至少一个所述电容元件在所述印刷电路板上的位置由多个所述激光器的焊盘位置而确定。
  18. 根据权利要求1所述的多线激光器模块,其特征在于,
    多个所述激光器发射的多个所述激光束与所述印刷电路板所在的平面之间形成多个夹角。
  19. 根据权利要求1所述的多线激光器模块,其特征在于,
    多个所述激光器依据多个所述激光器的位置顺序依次发光。
  20. 一种激光雷达,其特征在于,包括:
    控制器,与多线激光器模块通信连接,用于控制所述多线激光器模块发射激光束;
    所述多线激光器模块,包括:
    激光器器件,设置于印刷电路板上;
    多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
    至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
    其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
  21. 根据权利要求20所述的激光雷达,其特征在于,多个所述激光器并排设置于基板上。
  22. 根据权利要求21所述的激光雷达,其特征在于,多个所述开关元件与至少一个所述电容元件均匀的设置于所述激光器器件的周围。
  23. 根据权利要求21所述的激光雷达,其特征在于,多个所述激光器包括两个激光器;至少一个所述电容元件包括一个第一电容元件,所述第一电容元件设置于第一区域的中部,所述第一区域设置于两个所述激光器的一侧,与两个所述激光器耦接的两个所述开关元件分别设置于所述第一电容元件的两侧。
  24. 根据权利要求21所述的激光雷达,其特征在于,多个所述激光器包括六个激光器;至少一个所述电容元件包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
  25. 根据权利要求24所述的激光雷达,其特征在于,六个所述激光器设置于基板上,至少一个所述电容元件均匀设置于基板的顶角处,与多个所述激光器耦接的多个所述开关元件均匀设置于所述基板的周围;或者,
    六个所述激光器设置于基板上,与多个所述激光器耦接的多个所述开关 元件均匀设置于基板的顶角处,至少一个所述电容元件设置于所述基板的周围。
  26. 根据权利要求20所述的激光雷达,其特征在于,多个所述开关元件为Mos管。
  27. 根据权利要求21所述的激光雷达,其特征在于,所述基板上设置有用于连接在所述印刷电路板上的过孔。
  28. 根据权利要求27所述的激光雷达,其特征在于,在多个所述激光器的一侧,设置有用于对多个所述激光束进行反射的反射镜,所述反射镜设置于所述基板上。
  29. 根据权利要求25所述的激光雷达,其特征在于,所述基板上设置有用于保护多个所述激光器的管帽。
  30. 根据权利要求20所述的激光雷达,其特征在于,多个所述激光器贴片封装于所述印刷电路板的一面,所述印刷电路板的另一面设置有散热件。
  31. 根据权利要求20所述的激光雷达,其特征在于,至少一个所述电容元件与相邻元件之间的距离满足预设距离条件,所述相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少一个所述至少两个放电环路中的主放电环路以多个所述激光器为圆心、且均匀分布于多个所述激光器的周围。
  32. 根据权利要求20所述的激光雷达,其特征在于,所述激光器为脉冲激光二极管晶粒。
  33. 根据权利要求20所述的激光雷达,其特征在于,多个所述激光器封装在一起。
  34. 根据权利要求20所述的激光雷达,其特征在于,多个所述开关元件与至少一个所述电容元件分布于所述印刷电路板的两面或仅分布于所述印刷电路板的一面。
  35. 根据权利要求20所述的激光雷达,其特征在于,至少一个所述电容元件对应多个放电环路。
  36. 根据权利要求20所述的激光雷达,其特征在于,
    多个所述开关元件在所述印刷电路板上的位置由多个所述激光器的焊盘位置而确定;
    至少一个所述电容元件在所述印刷电路板上的位置由多个所述激光器的 焊盘位置而确定。
  37. 根据权利要求20所述的激光雷达,其特征在于,
    多个所述激光器发射的多个所述激光束与所述印刷电路板所在的平面之间形成多个夹角。
  38. 根据权利要求20所述的激光雷达,其特征在于,
    多个所述激光器依据多个所述激光器的位置顺序依次发光。
  39. 一种可移动平台,其特征在于,包括:
    平台主体;
    多线激光器模块,设置于所述平台主体上;所述多线激光器模块包括:
    激光器器件,设置于印刷电路板上;
    多个开关元件,设置于所述印刷电路板上,分别耦接于所述激光器器件,用于控制所述激光器器件发射多个激光束;
    至少一个电容元件,设置于所述印刷电路板上,耦接于所述激光器器件,用于驱动所述激光器器件发射多个激光束;
    其中,所述激光器器件包括多个激光器,多个所述激光器在所述印刷电路板上形成至少两个放电环路,每一个放电环路包括:多个所述激光器中的至少一个第一激光器、与至少一个所述第一激光器耦接的开关元件和电容元件;任意两个放电环路所对应的环路等效电感之间的差值小于预设值。
  40. 根据权利要求39所述的可移动平台,其特征在于,多个所述激光器并排设置于基板上。
  41. 根据权利要求40所述的可移动平台,其特征在于,多个所述开关元件与至少一个所述电容元件均匀的设置于所述激光器器件的周围。
  42. 根据权利要求40所述的可移动平台,其特征在于,多个所述激光器包括两个激光器;至少一个所述电容元件包括一个第一电容元件,所述第一电容元件设置于第一区域的中部,所述第一区域设置于两个所述激光器的一侧,与两个所述激光器耦接的两个所述开关元件分别设置于所述第一电容元件的两侧。
  43. 根据权利要求40所述的可移动平台,其特征在于,多个所述激光器包括六个激光器;至少一个所述电容元件包括以下至少之一:六个电容元件、十二个电容元件、十八个电容元件。
  44. 根据权利要求43所述的可移动平台,其特征在于,六个所述激光器 设置于基板上,至少一个所述电容元件均匀设置于基板的顶角处,与多个所述激光器耦接的多个所述开关元件均匀设置于所述基板的周围;或者,
    六个所述激光器设置于基板上,与多个所述激光器耦接的多个所述开关元件均匀设置于基板的顶角处,至少一个所述电容元件设置于所述基板的周围。
  45. 根据权利要求39所述的可移动平台,其特征在于,多个所述开关元件为Mos管。
  46. 根据权利要求40所述的可移动平台,其特征在于,所述基板上设置有用于连接在所述印刷电路板上的过孔。
  47. 根据权利要求46所述的可移动平台,其特征在于,在多个所述激光器的一侧,设置有用于对多个所述激光束进行反射的反射镜,所述反射镜设置于所述基板上。
  48. 根据权利要求44所述的可移动平台,其特征在于,所述基板上设置有用于保护多个所述激光器的管帽。
  49. 根据权利要求39所述的可移动平台,其特征在于,所述激光器器件设置于所述印刷电路板的一面,所述印刷电路板的另一面设置有散热件。
  50. 根据权利要求39所述的可移动平台,其特征在于,至少一个所述电容元件与相邻元件之间的距离满足预设距离条件,所述相邻元件包括以下至少之一:电容元件、开关元件、激光器;以使至少一个所述至少两个放电环路中的主放电环路以多个所述激光器为圆心、且均匀分布于多个所述激光器的周围。
  51. 根据权利要求39所述的可移动平台,其特征在于,所述激光器为脉冲激光二极管晶粒。
  52. 根据权利要求39所述的可移动平台,其特征在于,多个所述激光器封装在一起。
  53. 根据权利要求39所述的可移动平台,其特征在于,多个所述开关元件与至少一个所述电容元件分布于所述印刷电路板的两面或仅分布于所述印刷电路板的一面。
  54. 根据权利要求39所述的可移动平台,其特征在于,至少一个所述电容元件对应多个放电环路。
  55. 根据权利要求39所述的可移动平台,其特征在于,
    多个所述开关元件在所述印刷电路板上的位置由多个所述激光器的焊盘位置而确定;
    至少一个所述电容元件在所述印刷电路板上的位置由多个所述激光器的焊盘位置而确定。
  56. 根据权利要求39所述的可移动平台,其特征在于,
    多个所述激光器发射的多个所述激光束与所述印刷电路板所在的平面之间形成多个夹角。
  57. 根据权利要求39所述的可移动平台,其特征在于,
    多个所述激光器依据多个所述激光器的位置顺序依次发光。
PCT/CN2020/070518 2020-01-06 2020-01-06 多线激光器模块、激光雷达及可移动平台 WO2021138774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004409.4A CN113366336A (zh) 2020-01-06 2020-01-06 多线激光器模块、激光雷达及可移动平台
PCT/CN2020/070518 WO2021138774A1 (zh) 2020-01-06 2020-01-06 多线激光器模块、激光雷达及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070518 WO2021138774A1 (zh) 2020-01-06 2020-01-06 多线激光器模块、激光雷达及可移动平台

Publications (1)

Publication Number Publication Date
WO2021138774A1 true WO2021138774A1 (zh) 2021-07-15

Family

ID=76787717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070518 WO2021138774A1 (zh) 2020-01-06 2020-01-06 多线激光器模块、激光雷达及可移动平台

Country Status (2)

Country Link
CN (1) CN113366336A (zh)
WO (1) WO2021138774A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384934A (zh) * 2015-09-11 2017-02-08 北京特安电源科技有限公司 一种多路半导体激光器驱动电源的实现方法
CN206412631U (zh) * 2016-12-28 2017-08-15 上海道恒医疗科技股份有限公司 一种有关多个激光器同时工作的驱动电路
CN207753293U (zh) * 2017-11-29 2018-08-21 武汉万集信息技术有限公司 一种并联式激光器驱动电路
US10141716B1 (en) * 2013-09-30 2018-11-27 Waymo Llc Laser diode firing system
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
CN110073614A (zh) * 2016-08-30 2019-07-30 Macom技术解决方案控股公司 具有分布式架构的驱动器
CN110459955A (zh) * 2019-07-23 2019-11-15 天津大学 一种高大功率高重频的半导体激光器驱动电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040003A1 (zh) * 2016-08-31 2018-03-08 深圳市速腾聚创科技有限公司 三维激光雷达
CN108205124B (zh) * 2016-12-19 2024-05-10 武汉万集光电技术有限公司 一种基于微机电振镜的光学装置和激光雷达系统
JP7159224B2 (ja) * 2017-06-07 2022-10-24 上海禾賽科技有限公司 マルチラインレーダー
CN108061904B (zh) * 2017-12-29 2020-12-22 华为技术有限公司 多线激光雷达
CN110161512B (zh) * 2019-05-08 2021-08-17 深圳市速腾聚创科技有限公司 多线激光雷达
CN110333516B (zh) * 2019-07-09 2023-04-25 深圳市镭神智能系统有限公司 一种多线激光雷达
CN211826484U (zh) * 2020-01-06 2020-10-30 深圳市大疆创新科技有限公司 多线激光器模块、激光雷达及可移动平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141716B1 (en) * 2013-09-30 2018-11-27 Waymo Llc Laser diode firing system
CN106384934A (zh) * 2015-09-11 2017-02-08 北京特安电源科技有限公司 一种多路半导体激光器驱动电源的实现方法
CN110073614A (zh) * 2016-08-30 2019-07-30 Macom技术解决方案控股公司 具有分布式架构的驱动器
CN206412631U (zh) * 2016-12-28 2017-08-15 上海道恒医疗科技股份有限公司 一种有关多个激光器同时工作的驱动电路
CN207753293U (zh) * 2017-11-29 2018-08-21 武汉万集信息技术有限公司 一种并联式激光器驱动电路
CN109728501A (zh) * 2019-03-14 2019-05-07 深圳市镭神智能系统有限公司 一种激光器的驱动电路、驱动方法及激光雷达系统
CN110459955A (zh) * 2019-07-23 2019-11-15 天津大学 一种高大功率高重频的半导体激光器驱动电路

Also Published As

Publication number Publication date
CN113366336A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN211826484U (zh) 多线激光器模块、激光雷达及可移动平台
US7897980B2 (en) Expandable LED array interconnect
US8324722B2 (en) Packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity
CN107369657B (zh) 一种多区域并列排布的双面散热功率模块
EP2707646B1 (en) Low inductance light source module
US20240195147A1 (en) Laser pulse emitting integrated circuit module, a method of making thereof, and a laser pulse emitting system
US9331063B2 (en) Semiconductor device
EP3119168B1 (en) Aircraft led light unit
US11646547B2 (en) Light emitting device
WO2021138774A1 (zh) 多线激光器模块、激光雷达及可移动平台
KR101321812B1 (ko) 구동회로 및 전원회로 일체형 광 디바이스 및 이에 사용되는 광 디바이스 기판 제조 방법과 그 기판
JP7467657B2 (ja) 深度取得部品および電子デバイス
CN100417312C (zh) 具有改善散热结构的印刷电路板及电子装置
KR20220012816A (ko) 광원 시스템
WO2015124520A1 (en) Led circuit with surge protection
TW201311053A (zh) 固態發光裝置及其形成方法
CN111948625A (zh) 一种垂直腔面发射激光的集成芯片及激光发射器
KR102638854B1 (ko) 고전압, 고발열에 특화된 led 조명장치용 기판, 그를 가지는 led 조명장치
CN221009484U (zh) 一种光电器件的封装模块及光电模组
CN211260719U (zh) 一种电路板以及具有该电路板的灯具
KR101394478B1 (ko) 광 디바이스용 기판과 광 디바이스
US20210028226A1 (en) Semiconductor light emitting device
CN216217695U (zh) 一种开关电源模块的pcb结构及开关电源模块
US10928047B2 (en) Package structure and LED illumination module
CN217957361U (zh) 调光驱动模块以及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911447

Country of ref document: EP

Kind code of ref document: A1