WO2013097299A1 - 用于电压交替脉冲输出的设备和方法 - Google Patents

用于电压交替脉冲输出的设备和方法 Download PDF

Info

Publication number
WO2013097299A1
WO2013097299A1 PCT/CN2012/001753 CN2012001753W WO2013097299A1 WO 2013097299 A1 WO2013097299 A1 WO 2013097299A1 CN 2012001753 W CN2012001753 W CN 2012001753W WO 2013097299 A1 WO2013097299 A1 WO 2013097299A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid state
power supply
voltage pulse
time
state switches
Prior art date
Application number
PCT/CN2012/001753
Other languages
English (en)
French (fr)
Inventor
刘耀红
唐传祥
闫忻水
贾玮
高建军
刘晋升
印炜
刘西颖
史浩
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to JP2014549300A priority Critical patent/JP6031532B2/ja
Priority to EP12862988.8A priority patent/EP2800267B1/en
Priority to US14/116,074 priority patent/US9843313B2/en
Priority to KR1020147018541A priority patent/KR101613537B1/ko
Publication of WO2013097299A1 publication Critical patent/WO2013097299A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/64Generators producing trains of pulses, i.e. finite sequences of pulses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/077Charge pumps of the Schenkel-type with parallel connected charge pump stages

Definitions

  • the present invention generally relates to voltage alternate pulse output.
  • the present invention relates to dual (multiple) voltage alternate pulse output techniques for solid state pulse modulated power supplies based on the MARX generator principle. Background technique
  • the MARX generator is a way to implement a pulse-modulated power supply. It is a device that uses capacitors to charge in parallel and then discharge in series. The MARX generator achieves narrow pulses in the nanosecond range and very high pulse frequencies.
  • Solid-state pulse-modulated power supplies are power supplies that are pulse-modulated with solid-state switches, such as IGBTs (Insulated Gate Bipolar Transistors).
  • Modulators currently commonly used in the field of dual-energy accelerators are mostly linear modulators.
  • alternating dual-energy pulsed power can be supplied by adjusting the charging voltage of two adjacent pulses.
  • the accelerators using solid-state pulse modulators are mostly single-energy accelerators, and the solid-state pulse-modulated power supplies based on the M A RX generator principle currently applied to linear accelerators generally adopt the working mode in which each IGBT is simultaneously triggered.
  • the present invention provides an apparatus and method for outputting alternating voltage pulses by alternately triggering packets.
  • a high voltage pulse modulation power supply based on group alternate triggering
  • a high voltage pulse modulation power supply further includes a step-down device that separately supplies power to
  • a method for group alternately triggering a high voltage pulse modulated power supply comprising a plurality of solid state switches
  • the method comprising the steps of: dividing the plurality of solid state switches into At least two groups; providing a trigger signal to the plurality of solid state switches at time t1 to simultaneously turn on the plurality of solid state switches; and providing a trigger signal to a set of solid state switches of the at least two sets of solid state switches at time t2 , in order to turn on the set of solid state switches, wherein time t1 and time t2 alternate.
  • the method also separately supplies power to one or more of the plurality of solid state switches.
  • a dual (multiple) voltage alternate output is implemented on a solid pulsed power supply based on the MARX generator principle for use in an alternate dual energy outgoing linear linac.
  • a single-energy accelerator can be applied to achieve dual (multiple) voltage alternate output by group alternate triggering.
  • FIG. 1 is a schematic diagram of a high voltage pulse modulation power supply based on a MARX generator
  • FIG. 2 is a schematic diagram of an operation timing of a high voltage pulse modulation power supply based on a MARX generator
  • FIG. 3 is a schematic diagram of a high voltage pulse modulation power supply according to an embodiment of the present invention
  • 4 is a schematic diagram of the operation timing of a high voltage pulse modulation power supply according to an embodiment of the present invention.
  • FIG. 5 is a schematic illustration of a high voltage pulse modulated power supply in accordance with a preferred embodiment of the present invention. detailed description
  • FIG. 1 is a schematic diagram of the high voltage pulse modulation power supply based on the MARX generator.
  • PS is a high-power DC stabilized power supply, which is a power supply for a high-voltage pulse-modulated power supply, and a power supply voltage Vin.
  • Ml ⁇ Mm are m IGBT module units.
  • Tng(l) ⁇ Trig(m) is the trigger signal corresponding to the IGBT module group.
  • Vout is the output voltage of the high voltage pulse modulation power supply.
  • FIG. 2 is a schematic diagram of the operation timing of a high voltage pulse modulation power supply based on the MARX generator. As shown in FIG. 2, when the triggering time t arrives, a trigger signal Trig is generated.
  • the high-voltage pulse-modulating power supply based on the MARX generator principle uses a solid-state switch (such as an IGBT) to simultaneously trigger the trigger signal Trig to obtain a high output terminal voltage. Voh.
  • FIG. 3 is a schematic diagram of a high voltage pulse modulated power supply in accordance with an embodiment of the present invention.
  • the high voltage pulse modulation power supply shown in FIG. 3 is, for example, a typical high voltage pulse modulation power supply based on MARX generator as described in FIG. 1, wherein m flip-flops 1...trigger n, flip-flop n+1...
  • the flip-flop m provides a trigger signal Tng(l)...Trig(n), Trig(n+l)...Tng(m) 0 for the high voltage pulse modulated power supply.
  • the flip-flop 1 ⁇ flip-flop m can be divided into two groups: Trigger 1 ⁇ Trigger n and Trigger n+1 ⁇ Trigger m.
  • the flip-flops 1 - the trigger m can be divided into more than two groups.
  • Trigger 1 to Trigger m are controlled by the timing control module.
  • the timing control module controls the trigger signals Trig(l) ⁇ Tng(m) generated by the flip-flops 1 ⁇ m to group the m IGBT module units in the high voltage pulse modulation power supply.
  • flip-flops 1 - flip-flops m are divided into two groups: flip-flop 1 ⁇ flip-flop n and flip-flop n+1 - flip-flop m.
  • the timing control module controls the trigger 1 to the trigger m to simultaneously generate the trigger signals Tng(l) ⁇ Tng(m), so that the two sets of IGBT modules M1 to Mm corresponding to the two sets of flip-flops are simultaneously triggered.
  • Voh m* Vin.
  • the timing control module controls the first group of flip-flops 1 ⁇ n to generate a first set of trigger signals Trig(l) ⁇ Trig(n), and controls the second group of flip-flops n+1 ⁇ m to not generate a trigger signal. No. so that the first group of IGBT modules M1 to Mn corresponding to the first group of trigger signals Trig(l) ⁇ Trig(n) are triggered and the second group of IGBT modules Mn corresponding to the second group of flip-flops n+1 ⁇ m +l ⁇ Mm does not trigger, get low output voltage Vol:
  • the timing control module controls the second set of flip-flops n+1 ⁇ m to generate a second set of trigger signals Tng(n+1) ⁇ Tig(m), and controls the first set of flip-flops l ⁇ n not Generating a trigger signal such that the first group of IGBT modules M1 to Mn corresponding to the first group of trigger signals Trig(l) ⁇ Trig(n) are not triggered but the second group corresponding to the second group of flip-flops n+1 ⁇ m IGBT module Mn+1 ⁇ Mm trigger, get low output voltage Vol':
  • Time tl and t2 alternate, forming a dual voltage pulse power supply with an output voltage Voh alternating with Vol or Vol'.
  • the trigger 1 ⁇ trigger m can be divided into more than two groups, such as three groups.
  • the timing controller can control all three sets of flip-flops to generate a trigger signal at time t1, control two sets of triggers of the three sets of flip-flops to generate a trigger signal at time t2, and control the remaining set of flip-flops to generate no trigger signal, and At time t3, one of the three sets of flip-flops is controlled to generate a trigger signal and the other two sets of flip-flops are controlled to generate no trigger signal, thereby controlling the corresponding IGBT module and obtaining high, medium and low output terminal voltages.
  • tl, t2 and t3 alternately appear, forming a three-voltage pulse power supply with alternating high, medium and low output voltages.
  • Fig. 3 illustrates an example of a high voltage pulse modulation power supply in accordance with the present invention
  • MARX generator-based solid-state pulse modulation power supply shown in Figure 3 is only one way to implement a high voltage pulse modulation power supply.
  • the invention can be used with any trigger-based high voltage pulse modulated power supply.
  • the solid state switch in a high voltage pulse modulated power supply is not limited to an IGBT (Insulated Gate Bipolar Transistor) type solid state switch, but may be any device and device suitable for use as a solid state switch.
  • IGBT Insulated Gate Bipolar Transistor
  • Trigger 1 ⁇ Trigger m are divided into two groups: Trigger 1 ⁇ Trigger n and Trigger n + l ⁇ Trigger m.
  • the trigger signal TngA is generated.
  • the IGBT modules M1 to Mm corresponding to all the flip-flops 1 to m in the high-voltage pulse-modulated power supply are simultaneously triggered by the trigger signal TrigA to obtain a high output terminal voltage Voh.
  • the trigger time t2 is reached When the signal is generated, the trigger signal TngB is generated.
  • the IGBT modules M1 to Mn corresponding to the first group of flip-flops l ⁇ n in the high-voltage pulse-modulated power supply are triggered by the trigger signal TrigB, and the other IGBT modules Mn+1 to Mm are not triggered, which is low.
  • the output voltage Voh, or the IGBT module Mn+1 ⁇ Mm corresponding to the second group of flip-flops n+1 ⁇ m in the M high-voltage pulse modulation power supply is triggered by the trigger signal TngB and the other IGBT modules M1 ⁇ Mn are not triggered, A low output voltage Voh' (not shown) is obtained.
  • FIG. 5 is a schematic illustration of a high voltage pulse modulated power supply in accordance with a preferred embodiment of the present invention.
  • the high-voltage pulse-modulated power supply shown in FIG. Based on the addition of a step-down device.
  • the high voltage pulse modulation power supply shown in Figure 5 is an alternating dual voltage output.
  • a step-down device is added to the modulating power supply, and the voltage-reducing device alone supplies power to the mth IGBT module unit.
  • the buck device receives an input voltage Vin from a high-power DC stabilized power supply, and after step-down processing, supplies an input voltage Vin' to the mth IGBT module unit.
  • the flip-flops ⁇ flip-flops m are divided into two groups: flip-flops ⁇ ⁇ flip-flops n and flip-flops n+1 ⁇ flip-flops m.
  • the timing control module controls the trigger 1 to the trigger m to simultaneously generate the trigger signals Trig(l) ⁇ Trig(m), so that the two sets of IGBT modules M1 to Mm corresponding to the two sets of flip-flops are simultaneously triggered, wherein
  • the IGBT module Mm is separately powered by the step-down device, resulting in a high output voltage Voh:
  • Voh (w - 1) * Vin + Vin'.
  • the timing control module controls the first set of flip-flops 1 ⁇ n to generate a first set of trigger signals Trig(l) ⁇ Tng(n), and controls the second set of flip-flops n+1 ⁇ m to not generate a trigger signal.
  • the second group of IGBT modules Mn+1 corresponding to the second group of flip-flops n+l ⁇ m are triggered by the first group of IGBT modules M1 - Mn corresponding to the first set of trigger signals Trig(l) ⁇ Trig(n) ⁇ Mm does not trigger, get low output voltage Vol:
  • the timing control module controls the second set of flip-flops n+1 ⁇ m to generate a second set of trigger signals Trig(n+l) ⁇ Trig(m), and controls the first set of flip-flops l ⁇ n not Generating a trigger signal such that the first group of IGBT modules M1 to Mn corresponding to the first group of trigger signals Trig(l) ⁇ Trig(n) are not triggered but the second group corresponding to the second group of flip-flops n+1 ⁇ m IGBT module Mn+1 ⁇ Mm trigger, where IGBT module Mm is stepped down by separate device Power supply, get low output voltage Vol':
  • VoV (w - « - 1) * Vin + Vin'.
  • Time tl and t2 alternately appear to form a dual voltage pulsed power supply with an output voltage Voh and Vol or Vol' or alternating.
  • the input voltage Vin' is separately supplied to the mth IGBT module unit by the step-down device, and the output voltage Voh and Vol or Vol' can be precisely controlled.
  • the buck device can separately supply any one or more of the m IGBT module cells to accurately control the output voltage.
  • the single-energy accelerator can be applied to realize dual (multiple) voltage alternate output by using the present invention for outputting alternating voltage pulses by group alternate triggering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Particle Accelerators (AREA)
  • Dc-Dc Converters (AREA)
  • Logic Circuits (AREA)

Abstract

一种用于电压交替脉冲输出的设备和方法,该设备包括:直流稳压电源(PS)、多个固态开关(Q?)、与多个固态开关对应的多个触发器以及时序控制模块;其中,每个触发器为对应的固态开关提供触发信号,以导通该对应的固态开关,多个触发器被分成至少两组;时序控制模块在时刻t1控制多个触发器产生触发信号,以便同时导通多个固态开关,并且在时刻t2控制至少两组触发器中的一组产生触发信号,以便导通与这一组触发器对应的固态开关,时刻t1和时刻t2交替出现。通过分组交替触发可以将单能加速器应用于实现双/多电压交替输出。

Description

用于电压交替脉沖输出的设备和方法 技术领域
本发明一般地涉及电压交替脉沖输出。 具体地, 本发明涉及在基 于 MARX发生器原理的固态脉沖调制电源上实现双 (多) 电压交替脉 沖输出技术。 背景技术
MARX 发生器是实现脉沖调制电源一种方式, 是一种利用电容并 联充电再串联放电的装置。 MARX 发生器可实现纳秒级的窄脉冲和很 高的脉沖频率。 固态脉沖调制电源是以固态开关, 比如 IGBT (绝缘栅 双极晶体管) 进行脉沖调制的电源。
目前普遍应用于双能加速器领域的调制器多为线性调制器。 在线 性调制器中, 可以通过调整相邻两脉冲的充电电压实现交替双能脉沖 供电。 而利用固态脉沖调制器的加速器多为单能加速器, 并且目前应 用于直线加速器的基于 M A RX发生器原理的固态脉冲调制电源一般均 采用各 IGBT同时触发的工作方式。
因此, 存在一种需求, 要求在以基于 MARX发生器原理的固态脉 沖调制电源上实现双 (多 ) 电压交替输出, 将其用于交替双能出束的 电子直线加速器上。 发明内容
本发明提供一种用于通过分组交替触发来输出电压交替脉沖的设 备和方法。
根据本发明的一个方面, 提供了一种基于分组交替触发的高压脉 沖调制电源, 包括: 直流稳压电源, 用于为高压脉沖调制电源的供电; 多个固态开关; 与所述多个固态开关对应的多个触发器, 其中每个触 发器为对应的固态开关提供触发信号, 以导通该对应的固态开关, 其 中所述多个触发器被分成至少两组的触发器; 时序控制模块, 在时刻 t l 控制所述多个触发器产生触发信号, 以便同时导通所述多个固态开关, 并且在时刻 t2控制所述至少两组触发器中的一组产生触发信号,以便导 通与这一组触发器对应的固态开关, 其中时刻 tl和时刻 t2交替出现。 根据本发明的另一个方面, 高压脉沖调制电源还包括降压装置, 该降压装置单独为所述多个固态开关中的一个或多个供电
根据本发明的又一个方面, 提供了一种用于分组交替触发高压脉 沖调制电源的方法, 所述高压脉沖调制电源包括多个固态开关, 该方 法包括步骤: 将所述多个固态开关分为至少两组; 在时刻 tl向所述多个 固态开关提供触发信号, 以同时导通所述多个固态开关; 和在时刻 t2 向所述至少两组固态开关中的一组固态开关提供触发信号, 以便导通 这一组固态开关, 其中时刻 tl和时刻 t2交替出现。
根据本发明的又一个方面, 该方法还单独为所述多个固态开关中 的一个或多个供电。
在本发明的一个优选实施例中, 在以基于 MARX发生器原理的固 态脉沖调制电源上实现双 (多 ) 电压交替输出, 将其用于交替双能出 束的电子直线加速器上。
利用本发明, 通过分组交替触发就能够将单能加速器应用于实现 双 (多) 电压交替输出。 附图说明
为了更完整地理解对本发明, 现在结合附图对随后的说明书进行 描述, 其中:
图 1是基于 MARX发生器的高压脉沖调制电源原理示意图; 图 2是基于 MARX发生器的高压脉沖调制电源工作时序示意图; 图 3是根据本发明的一个实施例的高压脉沖调制电源的示意图; 图 4 是根据本发明的一个实施例的高压脉冲调制电源工作时序示 意图; 和
图 5 是根据本发明的一个优选实施例的高压脉沖调制电源原理示 意图。 具体实施方式
本发明所讨论的图 1 到 5 以及用于描述该专利文档中的本发明的 原理的各种实施例仅仅是说明的目的, 而不应当被理解为以任何方式 来限制本发明的范围。 本领域技术人员将理解本发明的原理能以任何 类型的适当布置的设备或系统来实现。 图 】是基于 MARX发生器的高压脉沖调制电源原理示意图。 图中 PS为大功率直流稳压电源, 是高压脉沖调制电源的供电电源, 电源电 压 Vin。 Ml ~ Mm是 m个 IGBT模块单元。 Tng(l) ~ Trig(m)是 IGBT 模块组对应的触发信号。 Vout是高压脉沖调制电源的输出端电压。
在两次触发的间隔期, PS通过充电电感 L及二极管为 IGBT模块 单元中的电容 C 充电, 形成一个并联充电的电容阵列, 并在下一个触 发来临之前使电容 C上的电压保持为 Vin。 当触发来临时, 各个 IGBT 模块导通, 模块上的电容 C通过各 IGBT模块单元形成一个串联的放 电回路, 此时高压脉沖调制电源的输出电压 Vout = n*Vin,其中 n 为当 前时刻导通的 IGBT模块的个数。
图 2是基于 MARX发生器的高压脉沖调制电源工作时序示意图。 如图 2所示, 当触发时刻 t到来时产生触发信号 Trig, 基于 MARX发 生器原理的高压脉沖调制电源采用各固态开关 (如 IGBT) 由触发信号 Trig同时触发的方式, 得到高的输出端电压 Voh。
图 3 是根据本发明的一个实施例的高压脉沖调制电源的示意图。 图 3 中所示的高压脉沖调制电源例如是如图 1 所述的典型基于 MARX 发生器的高压脉沖调制电源, 其中 m 个触发器 1...触发器 n、 触发器 n+1...触发器 m 为高压脉沖调制电源提供触发信号 Tng(l)...Trig(n)、 Trig(n+l)...Tng(m)0 在一个优选实施例中, 触发器 1 ~触发器 m可以 被分成两组: 触发器 1 ~触发器 n和触发器 n+1 ~触发器 m。 在另外的 优选实施例中, 触发器 1 ~触发器 m可以被分成两个以上的组。 触发 器 1〜触发器 m 受到时序控制模块的控制。 时序控制模块控制触发器 1 ~m产生的触发信号 Trig(l)~Tng(m),以便分组导通高压脉沖调制电 源中的 m个 IGBT模块单元。
在一个优选实施例中,触发器 1 ~触发器 m被分成两组:触发器 1 ~ 触发器 n和触发器 n+1〜触发器 m。 在时刻 tl 时, 时序控制模块控制 触发器 1〜触发器 m同时产生触发信号 Tng(l)~Tng(m), 以使得与两 组触发器对应的两组 IGBT模块 Ml ~ Mm被同时触发, 得到高的输出 端电压 Voh:
Voh = m* Vin。
在时刻 t2时,时序控制模块控制第一组触发器 1 ~n产生第一组触 发信号 Trig(l)~Trig(n),并且控制第二组触发器 n+1 ~m不产生触发信 号 ,以使得与第一组触发信号 Trig(l ) ~ Trig(n)对应的第一组 IGBT模块 Ml ~Mn 触发而与第二组触发器 n+1 ~m 对应的第二组 IGBT 模块 Mn+l ~Mm不触发, 得到低的输出端电压 Vol:
Vol = ,? * Vin。
或者, 在时刻 t2 时, 时序控制模块控制第二组触发器 n+1 ~m产 生第二组触发信号 Tng(n+1)~ Trig(m), 并且控制第一组触发器 l ~n 不产生触发信号, 以使得与第一组触发信号 Trig(l)~Trig(n)对应的第 一组 IGBT模块 Ml ~Mn不触发而与第二组触发器 n+1 ~m对应的第二 组 IGBT模块 Mn+1 ~ Mm触发, 得到低的输出端电压 Vol':
Vo/'=(n— " Vin。
时刻 tl 和 t2交替出现, 构成输出电压 Voh与 Vol或与 Vol'交替 变化的双电压脉沖电源。
在另外的优选实施例中, 触发器 1 ~触发器 m可以被分成两个以 上的组, 比如三组。 时序控制器可以在时刻 tl控制所有三组触发器产 生触发信, 在时刻 t2控制三组触发器中的两组触发器产生触发信号并 控制剩下的一组触发器不产生触发信号, 并且在时刻 t3控制三组触发 器中的一组触发器产生触发信号并控制其他两组触发器不产生触发信 号, 由此控制对应的 IGBT模块, 并得到高、 中、 低的输出端电压。 时 刻 tl、 t2和 t3交替出现, 构成高、 中、 低的输出端电压交替变化的三 电压脉沖电源。 本领域技术人员在以上实施例的教导下, 可以容易得 知如何将触发器分成多组, 并实现多电压交替脉沖输出。
尽管图 3 说明了根据本发明的高压脉沖调制电源的一个例子, 但 可对图 3做出各种改变。 图 3所示的基于 MARX发生器的固态脉沖调 制电源仅仅是实现高压脉沖调制电源一种方式。 实际上, 本发明可用 于任何基于触发的高压脉沖调制电源。 此外, 高压脉沖调制电源中的 固态开关不仅限于 IGBT (绝缘栅双极晶体管)型固态开关, 而可以是 任何适于用作固态开关的器件和装置。
图 4 是根据本发明的一个实施例的高压脉沖调制电源工作时序示 意图。 触发器 1 ~触发器 m被分成两组: 触发器 1 ~触发器 n和触发器 n+l ~触发器 m。 当触发时刻 U到来时产生触发信号 TngA, 高压脉沖 调制电源中与所有触发器 1 ~ m对应的 IGBT模块 Ml ~ Mm通过触发 信号 TrigA被同时触发, 得到高的输出端电压 Voh。 当触发时刻 t2到 来时产生触发信号 TngB, 高压脉沖调制电源中与第一组触发器 l ~n 对应的 IGBT模块 Ml ~Mn通过触发信号 TrigB被触发而其他的 IGBT 模块 Mn+1 ~ Mm不被触发,得到低的输出端电压 Voh, 或者 M高压脉 冲调制电源中与第二组触发器 n+1 ~m对应的 IGBT模块 Mn+1 ~ Mm 通过触发信号 TngB被触发而其他的 IGBT模块 Ml ~ Mn不触发, 得 到低的输出端电压 Voh' (未示出) 。
图 5 是根据本发明的一个优选实施例的高压脉冲调制电源原理示 意图。 当在基于 MARX发生器的高压脉沖调制电源中, IGBT模块的 数量比较少或者交替输出电压精度要求比较高时, 为了能精确控制输 出端电压 Voh和 Vol, 在图 3所示的高压脉沖调制电源的基础上增加 了一个降压装置。 作为了一个优选实施例, 图 5 所示的高压脉沖调制 电源为交替双电压输出。 在该调制电源中增加了一个降压装置, 该降 压装置单独例如为第 m个 IGBT模块单元供电。 如图 5所示, 该降压 装置接收来自大功率直流稳压电源的输入电压 Vin, 经过降压处理后, 向第 m个 IGBT模块单元提供输入电压 Vin'。
在该优选实施例中, 触发器〗 ~触发器 m被分成两组: 触发器】 ~ 触发器 n和触发器 n+1 ~触发器 m。 在时刻 tl 时, 时序控制模块控制 触发器 1〜触发器 m同时产生触发信号 Trig(l)~Trig(m), 以使得与两 组触发器对应的两组 IGBT模块 Ml ~Mm同时触发, 其中 IGBT模块 Mm被降压装置单独供电, 从而得到高的输出端电压 Voh:
Voh = (w - 1) * Vin + Vin'。
在时刻 t2时,时序控制模块控制第一组触发器 1 ~n产生第一组触 发信号 Trig(l)~Tng(n),并且控制第二组触发器 n+1 ~m不产生触发信 号,以使得与第一组触发信号 Trig(l) ~ Trig(n)对应的第一组 IGBT模块 Ml - Mn 触发而与第二组触发器 n+l ~m 对应的第二组 IGBT 模块 Mn+1 ~ Mm不触发, 得到低的输出端电压 Vol:
Vol - Vin
或者, 在时刻 t2时, 时序控制模块控制第二组触发器 n+1 ~m产 生第二组触发信号 Trig(n+l)~Trig(m), 并且控制第一组触发器 l ~n 不产生触发信号, 以使得与第一组触发信号 Trig(l)~Trig(n)对应的第 一组 IGBT模块 Ml ~Mn不触发而与第二组触发器 n+1 ~m对应的第二 组 IGBT模块 Mn+1 ~ Mm触发, 其中 IGBT模块 Mm被降压装置单独 供电, 得到低的输出端电压 Vol':
VoV = (w - « - 1) * Vin + Vin'。
时刻 tl和 t2交替出现,构成输出电压 Voh与 Vol或与 Vol'或交替 变化的双电压脉沖电源。
通过降压装置调整为第 m 个 IGBT 模块单元单独提供输入电压 Vin', 能精确控制输出电压 Voh与 Vol或 Vol'。
在其他的优选实施例中, 降压装置可以单独为 m个 IGBT模块单 元中的任意一个或多个供电, 以便能精确控制输出电压。
综上可知, 利用本发明所提供的用于通过分组交替触发来输出电 压交替脉沖, 可将单能加速器应用于实现双 (多) 电压交替输出。
尽管已经为呈现本发明的基本结构的目的说明了结构的某些构 造, 但是本领域技术人员将理解其他仍然落在本发明所附的权利要求 的范围内的变型也是可能的。 尽管本发明已经根据当前被认为是最实 用和优选的实施例来描述, 仍然可以理解, 本发明不限于所公开的实 施例, 相反, 其旨在覆盖包括在所附权利要求的精神和范围内的各种 修改和等效方案。

Claims

权 利 要 求
1 . 一种基于分组交替触发的高压脉沖调制电源, 包括:
直流稳压电源, 用于为高压脉冲调制电源的供电;
多个固态开关;
与所述多个固态开关对应的多个触发器, 其中每个触发器为对应 的固态开关提供触发信号, 以导通该对应的固态开关, 其中所述多个 触发器被分成至少两组的触发器;
时序控制模块, 在时刻 tl控制所述多个触发器产生触发信号, 以便 同时导通所述多个固态开关,并且在时刻 t2控制所述至少两组触发器中 的一组产生触发信号, 以便导通与这一组触发器对应的固态开关, 其 中时刻 tl和时刻 t2交替出现。
2. 如权利要求 1所述的高压脉沖调制电源, 还包括: 降压装置, 该 降压装置单独为所述多个固态开关中的一个或多个供电。
3. 如权利要求 1或 2所述的高压脉沖调制电源, 其中所述高压脉沖 调制电源是基于 MARX发生器的固态脉沖调制电源。
4. 如权利要求 3所述的高压脉沖调制电源, 其中所述固态开关是 IGBT模块。
5. 一种用于分组交替触发高压脉沖调制电源的方法, 所述高压脉 冲调制电源包括多个固态开关, 该方法包括步骤:
将所述多个固态开关分为至少两组;
在时刻 tl向所述多个固态开关提供触发信号,以同时导通所述多个 固态开关;
在时刻 t2向所述至少两组固态开关中的一组固态开关提供触发信 号, 以便导通这一组固态开关,
其中时刻 tl和时刻 t2交替出现。
6. 如权利要求 5所述的方法, 还包括步骤: 单独为所述多个固态开 关中的一个或多个供电。
7. 如权利要求 5或 6所述的方法, 其中所述高压脉沖调制电源是基 于 MARX发生器的固态脉沖调制电源。
8. 如权利要求 7所述的方法, 其中所述固态开关是 IGBT模块。
PCT/CN2012/001753 2011-12-31 2012-12-28 用于电压交替脉冲输出的设备和方法 WO2013097299A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014549300A JP6031532B2 (ja) 2011-12-31 2012-12-28 電圧交番パルスの出力に用いられるデバイス及び方法
EP12862988.8A EP2800267B1 (en) 2011-12-31 2012-12-28 Device and method for use in alternating-voltage pulse output
US14/116,074 US9843313B2 (en) 2011-12-31 2012-12-28 Apparatus and method for voltage alternating pulse output
KR1020147018541A KR101613537B1 (ko) 2011-12-31 2012-12-28 고압 펄스 변조 전원 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110457579.0 2011-12-31
CN2011104575790A CN102545687A (zh) 2011-12-31 2011-12-31 用于电压交替脉冲输出的设备和方法

Publications (1)

Publication Number Publication Date
WO2013097299A1 true WO2013097299A1 (zh) 2013-07-04

Family

ID=46351800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001753 WO2013097299A1 (zh) 2011-12-31 2012-12-28 用于电压交替脉冲输出的设备和方法

Country Status (6)

Country Link
US (1) US9843313B2 (zh)
EP (1) EP2800267B1 (zh)
JP (1) JP6031532B2 (zh)
KR (1) KR101613537B1 (zh)
CN (1) CN102545687A (zh)
WO (1) WO2013097299A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545846B (zh) * 2011-12-31 2015-11-25 同方威视技术股份有限公司 用于控制脉冲输出的设备和方法
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
DE102014113963A1 (de) * 2014-09-26 2016-03-31 Karlsruher Institut für Technologie Marxgenerator zur Erzeugung einer Pulsspannung
RU2636108C1 (ru) * 2017-02-14 2017-11-20 Михаил Владимирович Ефанов Генератор высоковольтных импульсов
CN107835002B (zh) 2017-09-20 2024-03-12 同方威视技术股份有限公司 固态脉冲调制器中的保护电路、振荡补偿电路和供电电路
CN109448951B (zh) * 2018-11-24 2021-03-26 芜湖国睿兆伏电子有限公司 一种固态脉冲调制器的去磁电路
CN110289832B (zh) * 2019-06-28 2023-06-02 四川英杰电气股份有限公司 一种固态调制器
CN113659864A (zh) * 2021-08-13 2021-11-16 四川英杰电气股份有限公司 一种多脉冲输出固态调制器电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155180A (zh) * 1995-12-27 1997-07-23 林中才 脉冲变压的电容技术
JP2005237147A (ja) * 2004-02-20 2005-09-02 Rikogaku Shinkokai 回生磁気エネルギーを利用した高電圧パルス発生装置
CN102067449A (zh) * 2008-06-23 2011-05-18 斯堪的诺维亚系统公司 功率开关分组
WO2011146498A2 (en) * 2010-05-17 2011-11-24 Rafael Development Corporation, Ltd. Configurable pulse generator
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
CN202406058U (zh) * 2011-12-31 2012-08-29 同方威视技术股份有限公司 用于电压交替脉冲输出的设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119283A (en) 1991-06-10 1992-06-02 General Electric Company High power factor, voltage-doubler rectifier
US7855904B2 (en) * 2005-03-17 2010-12-21 Los Alamos National Security, Llc Apparatus for producing voltage and current pulses
JP2006304586A (ja) 2005-03-25 2006-11-02 Mitsubishi Electric Corp 直流電源装置
JP4803665B2 (ja) * 2006-06-27 2011-10-26 東芝三菱電機産業システム株式会社 高電圧パルス発生装置
US20110215791A1 (en) * 2010-03-02 2011-09-08 Duly Research Inc. Compensation schemes for the voltage droop of solid-state Marx modulators
US20120326528A1 (en) * 2010-03-02 2012-12-27 Ping Chen Compenstation scheme for the voltage droop of solid-state marx modulators
US9024478B2 (en) * 2011-03-03 2015-05-05 Massachusetts Institute Of Technology Photovoltaic energy extraction with multilevel output DC-DC switched capacitor converters
CN102545846B (zh) * 2011-12-31 2015-11-25 同方威视技术股份有限公司 用于控制脉冲输出的设备和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155180A (zh) * 1995-12-27 1997-07-23 林中才 脉冲变压的电容技术
JP2005237147A (ja) * 2004-02-20 2005-09-02 Rikogaku Shinkokai 回生磁気エネルギーを利用した高電圧パルス発生装置
CN102067449A (zh) * 2008-06-23 2011-05-18 斯堪的诺维亚系统公司 功率开关分组
WO2011146498A2 (en) * 2010-05-17 2011-11-24 Rafael Development Corporation, Ltd. Configurable pulse generator
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
CN202406058U (zh) * 2011-12-31 2012-08-29 同方威视技术股份有限公司 用于电压交替脉冲输出的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800267A4 *

Also Published As

Publication number Publication date
EP2800267B1 (en) 2022-02-09
CN102545687A (zh) 2012-07-04
KR101613537B1 (ko) 2016-04-19
JP6031532B2 (ja) 2016-11-24
US20140077619A1 (en) 2014-03-20
EP2800267A4 (en) 2016-06-29
US9843313B2 (en) 2017-12-12
JP2015507912A (ja) 2015-03-12
EP2800267A1 (en) 2014-11-05
KR20140119694A (ko) 2014-10-10

Similar Documents

Publication Publication Date Title
WO2013097299A1 (zh) 用于电压交替脉冲输出的设备和方法
Redondo et al. Generalized solid-state Marx modulator topology
JP5951042B2 (ja) パルス出力を制御するためのデバイス及び方法
Zabihi et al. A solid-state Marx generator with a novel configuration
US20190229615A1 (en) Resonant pulsed voltage multiplier and capacitor charger
CN108322198B (zh) 一种双极性高压脉冲电源的控制系统及方法
CN101247092A (zh) 用于并联式电源供应器的切换控制器
US20170373672A1 (en) Generator of powerful nanosecond pulses (variants)
He et al. 10-MHz high-power pulse generator on boost module
CN105007063B (zh) 一种基于Marx电路的空间对称型高压纳秒脉冲源
CN111510014A (zh) 一种高电压脉冲发生电路
Canacsinh et al. New solid-state Marx topology for bipolar repetitive high-voltage pulses
US11152926B2 (en) Modulator for controlling current pulse and method thereof
CN113381740A (zh) 一种用于等离子体放电的紧凑型混合式隔离Marx脉冲发生器
Appiah et al. Compact design of high voltage switch for pulsed power applications
JP2018074622A (ja) パルス電源装置およびパルス発生方法
Jiang et al. MHz pulsed power generator using MOSFET
Jang et al. A comparative study of the gate driver circuits for series stacking of semiconductor switches
JP2019022274A (ja) 直流電圧変換回路及びその制御方法
CN113302827B (zh) 一种多相信号控制电路及方法
CN202406058U (zh) 用于电压交替脉冲输出的设备
Wojtkowski Automotive LED Lighting with Software PWM Generators
CN104702134A (zh) 控制同步整流器的方法、控制电路及其功率转换器
RU2682015C1 (ru) Генератор импульсных напряжений
Tripathi et al. Design and development of 50 V, 300 A pulse power supply for solid state RF amplifiers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012862988

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14116074

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018541

Country of ref document: KR

Kind code of ref document: A