WO2020182128A1 - 获取转子的不平衡量和平衡机的不平衡量的方法 - Google Patents

获取转子的不平衡量和平衡机的不平衡量的方法 Download PDF

Info

Publication number
WO2020182128A1
WO2020182128A1 PCT/CN2020/078644 CN2020078644W WO2020182128A1 WO 2020182128 A1 WO2020182128 A1 WO 2020182128A1 CN 2020078644 W CN2020078644 W CN 2020078644W WO 2020182128 A1 WO2020182128 A1 WO 2020182128A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
unbalance
angle
plane
balancing machine
Prior art date
Application number
PCT/CN2020/078644
Other languages
English (en)
French (fr)
Inventor
郭卫建
郭晓雯
Original Assignee
北京双元天衡检测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京双元天衡检测科技有限公司 filed Critical 北京双元天衡检测科技有限公司
Priority to EP20770170.7A priority Critical patent/EP3940361A4/en
Publication of WO2020182128A1 publication Critical patent/WO2020182128A1/zh
Priority to US17/447,024 priority patent/US11385121B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/22Determining imbalance by oscillating or rotating the body to be tested and converting vibrations due to imbalance into electric variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/02Details of balancing machines or devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/24Performing balancing on elastic shafts, e.g. for crankshafts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance
    • G01M1/32Compensating imbalance by adding material to the body to be tested, e.g. by correcting-weights

Definitions

  • the invention relates to a method for obtaining the unbalanced amount of a rotor and the unbalanced amount of a balancing machine.
  • the measured unbalance is the vector sum of the unbalance of the rotor and the unbalance of the balancing machine itself.
  • the unbalanced amount of the balancing machine includes the zero-point error of the balancing machine, the unbalanced amount of electrical compensation that may be applied in the measuring system of the balancing machine, and the unbalanced amount of the balancing machine fixture and driving parts mechanically connected with the measured rotor.
  • the balancing machine When the balancing machine measures the unbalanced amount of the rotor, it is necessary to support the rotor to form the rotation axis of the rotor, and to drive the rotor to achieve a certain rotation speed. There are two situations in which the balancing machine supports and drives the measured rotor:
  • the balancing machine when the balancing machine supports and drives the rotor, there is no mechanical part on the balancing machine that is rigidly connected with the measured rotor and rotates together, that is, a non-rigid connection.
  • a common example is that the horizontal balancing machine is supported by rollers The journal of the rotor is driven by a roller or a belt to rotate; a vertical air bearing balancer, which supports and drives the rotor through compressed air.
  • the balancing machine when the balancing machine supports and drives the rotor, there are mechanical parts on the balancing machine that are rigidly connected to the measured rotor and rotate together.
  • Common examples include the horizontal balancing machine using a drive shaft to drive the rotor to rotate; vertical balancing The machine clamp clamps the rotor and rotates together.
  • the unbalanced amount of the balancing machine refers to the zero-point error of the balancing machine and the unbalanced amount of electrical compensation that may be applied in the measuring system of the balancing machine, but there is no balancing machine fixture and mechanically connected to the measured rotor.
  • the amount of unbalance of the drive components refers to the zero-point error of the balancing machine and the unbalanced amount of electrical compensation that may be applied in the measuring system of the balancing machine, but there is no balancing machine fixture and mechanically connected to the measured rotor.
  • the existing technology for obtaining the unbalanced amount of the rotor and the unbalanced amount of the balancing machine is by changing the angle reference point on the rotor, or setting more than one angle reference point on the rotor.
  • the technical problem is that when changing the angle reference point on the rotor, there is always a certain quality due to the material used as the reference point. Changing the reference point will affect the imbalance of the rotor. In addition, changing the reference point needs to be done during the measurement process. Easy to make precise. Setting more than one reference point on the rotor may cause misuse of the reference point.
  • the purpose of the present invention is to provide a method for obtaining the unbalanced amount of the rotor and the unbalanced amount of the balancing machine using only one angle reference point made on the rotor.
  • Technical solution 1 provides a method for obtaining the unbalanced amount of the rotor, which is used to separate the unbalanced amount of the rotor from the unbalanced amount of the balancing machine.
  • the specific method is to set an angle reference point on the rotor, install an angle sensor on the balancer, its position on the balancer is the first position, and when the angle sensor is in the first position, it is The plane formed by the rotation axis of the rotor is the first position plane.
  • the unbalanced amount of the rotor is measured by the balancer, and the measured unbalanced amount is expressed as the first unbalanced amount of the measurement plane one perpendicular to the rotation axis; the angle sensor is moved from the first position To the second position on the balancing machine, when the angle sensor is in the second position, the plane formed by it and the axis of rotation of the rotor is a second position plane, and the second position plane is connected to the first position.
  • the angle ⁇ is formed between the position planes. Measure the unbalance of the rotor again, and the measured unbalance is the second unbalance of the measurement plane one.
  • Technical Solution 1 can select a measurement plane to indicate the unbalanced amount for a rotor with a small ratio of length to diameter.
  • Technical solution 2 is based on the method described in technical solution 1.
  • the specific method is that when the angle sensor is in the first position plane, when the balancer is used to measure the unbalance of the rotor, the measured unbalance is perpendicular to The axis of rotation is represented by two planes, that is, the first unbalance of the measurement plane 1 and the first unbalance of the measurement plane 2; when the angle sensor is in the second position plane, use the The balancer measures the unbalance of the rotor again, and the measured unbalance is expressed by the second unbalance of the measurement plane one and the second unbalance of the measurement plane two. According to this, vector calculation is used to obtain the unbalanced amount on the two measurement planes of the rotor.
  • Technical solution 2 is to select two measurement planes to indicate the unbalance of the rotor. For most rotors, two measurement planes can be used to more accurately represent the unbalance.
  • Technical solution 3 is based on the method described in technical solution 1 or 2, after the unbalance of the rotor is measured and calculated, the unbalance of the rotor is corrected to make the unbalance of the rotor equal to zero or less than the set value. In this way, a rotor with zero imbalance or less than the set value is obtained.
  • Technical Solution 4 provides a method for obtaining the unbalanced amount of the balancer, which is used to separate the unbalanced amount of the rotor from the unbalanced amount of the balancer, and select a measurement plane, the method is: set an angle reference on the rotor Point, the angle sensor is installed on the balancing machine, and its position on the balancing machine is the first position.
  • the angle sensor When the angle sensor is in the first position, the plane formed by the angle sensor and the rotation axis of the rotor is the first Position plane; use the balance machine to measure the unbalance of the rotor, and the measured unbalance is represented by the first unbalance of the measurement plane one perpendicular to the axis of rotation; the angle sensor is measured from the first One position moves to the second position on the balancer.
  • the plane formed by it and the rotation axis of the rotor is the second position plane, and the second position plane is The included angle ⁇ is formed between the first position planes; the unbalanced amount of the rotor is measured again, and the measured unbalanced amount is the second unbalanced amount of the measurement plane one; in the above two unbalanced measurement, the rotor The magnitude of the unbalance of the balancer has not changed, but the angle of the unbalance of the rotor has changed by the angle ⁇ relative to the angle reference point on the rotor. In addition, in the above two measurements, the magnitude and angle of the unbalance of the balancer itself are both There is no change. According to this, vector calculation is used to obtain the unbalanced amount of the balancing machine.
  • Technical solution 5 is based on the method described in technical solution 4, but two measurement planes for the unbalanced amount are selected, namely measurement plane 1 and measurement plane 2.
  • the method is: when the angle sensor is in the first position plane, when the balancer is used to measure the unbalance of the rotor, the measured unbalance is represented by two planes, that is, the first unevenness of the measurement plane one Measure and measure the first unbalance of plane two to represent; when the angle sensor is in the second position plane, use the balance machine to measure the unbalance of the rotor again, and the measured unbalance is expressed in the measurement plane The second unbalance amount of one and the second unbalance amount of the measurement plane two are expressed. Using vector calculation, the unbalanced amount on the two measuring planes of the balancing machine is obtained.
  • Technical solution 6 is based on the method described in technical solution 4 or 5, after obtaining the unbalanced amount of the balancing machine, electrically compensate the unbalanced amount of the balancing machine so that the unbalanced amount of the balancing machine is zero. In this way, a balancing machine with zero unbalance can be obtained.
  • Technical solution 7 is based on the method described in technical solution 6, when the second unbalance of the measurement plane one is equal to the first unbalance of the measurement plane one, and the angle differs by the included angle When ⁇ , it is determined that the unbalance of the balancer on the measurement plane 1 is zero; when the second unbalance of the measurement plane 2 is equal to the first unbalance of the measurement plane 2 , When the angle differs by the included angle ⁇ , it is determined that the unbalanced amount of the balancer on the second measurement plane is zero.
  • the invention only needs to make an angle reference point on the rotor, and obtain the unbalance amount of the rotor and the unbalance amount of the balance machine by changing the position of the angle sensor on the balancing machine.
  • the installation position of the angle sensor can be made accurately in advance, and the angle of the angle sensor can be changed accurately and easily.
  • Figure 1 shows the front view of the vertical balancer measuring compressor wheel.
  • Figure 2 shows a schematic top view of a vertical balancer measuring compressor wheel.
  • Figure 3 shows the unbalance measured.
  • Fig. 4 is a diagram showing the relationship between an unbalanced vibration voltage signal and a time signal of an angle sensor.
  • Figure 5 shows a vector diagram for solving the unbalanced amount of the rotor and the unbalanced amount of the balancing machine.
  • Fig. 6 is a diagram showing the relationship between the second unbalance amount and the first unbalance amount when the unbalance amount of the balancing machine is zero.
  • Figure 7 shows a schematic diagram of a horizontal balancing machine using rollers to support and drive the rotor, in which (a) is a front view and (b) is a side view.
  • FIG. 1 shows a schematic front view of a vertical balancer measuring a supercharger compressor wheel (compressor wheel for short).
  • the compressor wheel is sometimes also referred to as the rotor 3 below.
  • compressed air 8 is introduced, the end air bearing 4 blows air through a circle of small holes 5 to float the rotor 3, and the two exhaust holes 2 on the radial air bearing 1 blow air outward to support the inner hole of the rotor 3, forming
  • the axis of rotation of the rotor 3 is A1-A2.
  • the air bearing 1 and the air bearing 4 are installed on a vertical balancer swing frame 7, and the balancer swing frame 7 is connected with two sensors 6 for measuring vibration signals.
  • Figure 2 shows a schematic top view of a vertical balancer measuring compressor wheel.
  • the compressed air 10 drives the rotor 3 to rotate through the nozzle 9 installed on the balancer, the rotation angular velocity is ⁇ , and the rotation direction is shown by the arrow, that is, counterclockwise.
  • the rotation speed is generally relatively stable. In this embodiment, it is assumed that the rotation speed (or angular speed ⁇ ) of the rotor 3 is constant.
  • An unbalance angle reference point 12 is provided on the rotor 3.
  • An angle sensor 11 is installed on the balancing machine. At the start of the measurement, the angle sensor 11 is located at the first position Po1. When the angle sensor 11 is at the first position Po1 on the balancing machine, the plane formed by it and the rotation axis A1-A2 of the rotor 3 is recorded as the first position plane PM1 of the angle sensor. When the reference point 12 on the rotor 3 passes through the first position plane PM1 of the angle sensor 11, the angle sensor 11 detects the angle reference point 12 on the rotor 3 and generates an angle reference signal.
  • the angle reference signal is a pulse time signal.
  • the position of the reference point 12 on the rotor 3 is defined as the position where the unbalance angle of the rotor is 0 degrees. This angle definition can be achieved by calibrating the balancing machine.
  • FIG. 1 With reference to Figure 1, two planes perpendicular to the axis of rotation A1-A2 for measuring the unbalanced amount are selected on the rotor 3, which are called measuring plane one PL1 and measuring plane two PL2, respectively.
  • the unbalance amount of the rotor 3 is measured with a balance machine.
  • the measured unbalance is represented by the first unbalance U11 of the measurement plane PL1 and the first unbalance U21 of the measurement plane PL2.
  • the unbalance has size and angle.
  • the measured unbalance U11 and the unbalance U21 are the vector sum of the unbalance of the rotor 3 and the unbalance of the balancer.
  • (C) Move the angle sensor 11 on the balancing machine from the first position Po1 to the second position Po2 on the balancing machine.
  • the angle sensor 11 is at the second position Po2 on the balancing machine, the plane formed by the angle sensor 11 and the rotation axis A1-A2 of the rotor 3 is recorded as the second position plane PM2 of the angle sensor 11.
  • the angle sensor 11 detects the angle reference point 12 on the rotor 3 to generate an angle reference signal.
  • the angle between the second position plane PM2 of the angle sensor 11 and the first position plane PM1 of the angle sensor 11 may be any angle ⁇ .
  • the angle between the two planes in this embodiment is 60 degrees, that is, the angle between the second position plane PM2 and the first position plane PM1 is 60 degrees, and the second position plane PM2 is relative to the first position plane.
  • PM1 is in the opposite direction of rotation along the rotor.
  • the second unbalance amount U12 of the measurement plane one PL1 and the second unbalance amount U22 of the measurement plane two PL2 are mapped into plane coordinates, as shown in FIG. 3.
  • the vibration voltage signal measured by the vibration sensor 6 is a complete sine wave, and the period of the sine wave is recorded as T.
  • the maximum amplitude P1 of the positive vibration in the sine wave is the corresponding measured rotor unbalance vector, including size and angle.
  • the magnitude of the unbalance is determined by the magnitude of the vibration amplitude P1.
  • the angle sensor 11 on the balancer scans the reference point 12 on the rotor 3 once to give a pulse time reference signal.
  • the angle of the rotor unbalance is determined by the relative relationship between the time point of the pulse signal generated when the angle sensor 11 detects the angle reference point 12 on the rotor and the time point corresponding to the maximum amplitude P1 of the sine wave signal.
  • the time point when the angle sensor 11 detects the angle reference point 12 on the rotor 3 is T1, which corresponds to the maximum amplitude of the vibration signal P1
  • the time point on the time axis is T3, and the time interval between T3 and T1 is recorded as T 13.
  • T 13 is divided by the time of one revolution of the rotor, which is the sine wave period T, and then multiplied by 360 degrees, which is the measurement
  • the angle sensor 11 After the angle sensor 11 is moved from the first position Po1 on the balancing machine to the second position Po2 on the balancing machine, when the rotor 3 is rotating, the time point when the angle sensor 11 detects the angle reference point 12 on the rotor 3 is recorded as T2.
  • the angle sensor 11 Since the second position Po2 of the angle sensor 11 is 60 degrees opposite to the first position Po1 of the angle sensor 11 in the direction of rotation of the rotor, from a time point of view, the angle sensor 11 detects the angle reference on the rotor when the second position Po2 is The time at point 12 is earlier than the time when the angle sensor 11 detects the angle reference point 12 on the rotor when the angle sensor 11 is at the first position Po1, that is, point T2 is earlier than point T1 in time, and the earlier (advanced) time difference is recorded as T 21 .
  • the angle of the unbalanced amount of the rotor is the angle corresponding to the time between the time points T2 and T3.
  • the angle corresponding to the time between T2 and T3 is:
  • the unbalanced amount of the rotor 3 and the unbalanced amount of the balancer are calculated according to the vector solution method shown in Fig. 5.
  • the specific solution is to record the vector endpoint of the unbalance U11 as B1, and the vector endpoint of the unbalance U12 as B2.
  • Vector O1B3 is the magnitude and angle of the unbalance of the balancing machine
  • vector B3B1 is the magnitude and angle of the unbalance of the rotor 3 when the angle sensor 11 is at the first position Po1
  • vector B3B2 is the magnitude and angle of the rotor 3 when the angle sensor 11 is at the second position Po2.
  • Vector B3B2 and vector B3B1 are equal in size, and the angle difference is positive 60 degrees, that is, the angle of vector B3B2 is 60 degrees more than the angle of vector B3B1.
  • a simple method can be used to detect whether the unbalance of the balancer is zero, that is, move the angle sensor 11 in the opposite direction of the rotor rotation by a certain angle, if the angle sensor 11 changes its position before and after the measurement is The unbalance of the balancer is equal, but the angle is positive to increase the angle of the angle sensor, which proves that the unbalance of the balancer is zero.
  • FIG. 7 is a schematic diagram of the horizontal balancer measuring the unbalanced amount of the rotor.
  • the rotor 3 in Figure 7 is supported by the rollers on the balancing machine to support the journals 13 and 14 at both ends of the rotor.
  • the rollers on the balancing machine simultaneously drive the rotor 3 to rotate.
  • the direction of rotation is shown by the arrow in Figure 7 (b), which is counterclockwise.
  • the support mode of the horizontal balancer on the rotor can be bearing bush, roller, V-shaped block, etc.
  • the driving mode of the horizontal balancer on the rotor can be roller drive, belt drive, or air drive, but it should meet the conditions: balance When the machine is supporting the rotor and the balancing machine is driving the rotor, there is no mechanical part on the balancing machine that is mechanically connected with the rotor and rotates together.
  • An angle reference point 12 is provided on the rotor 3, and an angle sensor 11 is provided on the balancing machine, and its initial position is recorded as the first position Po1.
  • the implementation of obtaining the unbalanced amount of the rotor and the unbalanced amount of the balancing machine described above is to select two measurement planes of the rotor. For rotors with a relatively small ratio of length to diameter, they are generally called disk rotors, and only one plane can be used to measure the unbalance of the rotor.
  • the technical scheme of the present invention is also suitable for selecting a measurement plane to obtain the unbalanced amount of the rotor and the unbalanced amount of the balancing machine.
  • the balancing machine can be electrically compensated to make the balancing machine measure the zero point of the rotor unbalance accurately, so that the unbalanced machine after compensation, the unevenness of the balancing machine itself The measurement is zero, and the measured unbalance is the unbalance of the rotor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)

Abstract

一种获取转子的不平衡量和平衡机的不平衡量的方法,其中,获取转子的不平衡量的方法包括以下步骤:将平衡机上的角度传感器安装在平衡机上的第一位置,测量转子的不平衡量,测量得到测量平面一的第一不平衡量和测量平面二的第一不平衡量(B);将平衡机上的角度传感器从第一位置移动到平衡机上的第二位置(C),再次测量转子的不平衡量,得到平面一的第二不平衡量和平面二的第二不平衡量(D)。上述两次不平衡量测量中,转子的不平衡量的大小不变,但不平衡量的角度相对转子上的参考点改变了角度传感器所移动的角度(E);平衡机本身的不平衡量,大小和角度,都没有发生变化(G);利用矢量计算,求得转子的不平衡量(H)。采用该方法测量简单,检测精确。

Description

获取转子的不平衡量和平衡机的不平衡量的方法 技术领域
本发明涉及一种获取转子的不平衡量和平衡机的不平衡量的方法。
背景技术
平衡机在检测转子的不平衡量时,测量所得到的不平衡量是转子的不平衡量与平衡机本身的不平衡量的矢量和。平衡机的不平衡量包括平衡机的零点误差,平衡机测量系统中可能施加的电气补偿不平衡量,及与被测转子机械连接的平衡机夹具和驱动部件的不平衡量。
平衡机测量转子的不平衡量时,需要对转子进行支撑以形成转子的回转轴线,及对转子进行驱动以使转子达到一定的回转转速。平衡机对被测转子的支撑和驱动分为两种情况:
第一种情况,平衡机对转子进行支撑和驱动时,平衡机上没有任何机械件与被测转子刚性连接成一体并一起回转,即非刚性连接,常见的例子有,卧式平衡机用滚轮支撑转子的轴颈并用滚轮或是用皮带驱动转子回转;立式空气轴承平衡机,平衡机对转子的支撑和驱动通过压缩空气进行。
第二种情况,平衡机对转子支撑和驱动时,平衡机上有机械部件与被测转子刚性连接成一体并一起回转,常见的例子有,卧式平衡机用传动轴驱动转子回转;立式平衡机用夹具夹持转子并一起回转。
本发明只针对第一种情况。在第一种情况下,平衡机的不平衡量指的是平衡机的零点误差及平衡机测量系统中可能施加的电气补偿不平衡量,但不存在与被测转子机械连接成一体的平衡机夹具和驱动部件的不平衡量。
对应第一种情况,现有获取转子的不平衡量及平衡机的不平衡量 的技术,是通过改变转子上的角度参考点,或是在转子设置一个以上的角度参考点。其技术问题在于,改变转子上的角度参考点时,因做参考点的材料,总有一定的质量,改变参考点会影响转子的不平衡量,另外改变参考点需要在测量过程中进行,角度不容易做精确。在转子上设置一个以上的参考点时,可能引起参考点的误用。
发明内容
鉴于上述技术问题,本发明的目的是,提供只用一个在转子上做好的角度参考点,就能获取转子的不平衡量和平衡机的不平衡量的一种方法。
技术方案1中给出了一种获取转子的不平衡量的方法,用于将转子的不平衡量与平衡机的不平衡量分解开。具体方法为,在所述转子上设置角度参考点,所述平衡机上安装有角度传感器,其在所述平衡机上的位置为第一位置,所述角度传感器在所述第一位置时,其与所述转子的回转轴线形成的平面为第一位置平面。用所述平衡机测量所述转子的不平衡量,测量得到的不平衡量以垂直于所述回转轴线的测量平面一的第一次不平衡量来表示;将所述角度传感器从所述第一位置移动到平衡机上的第二位置,所述角度传感器在所述第二位置时,其与所述转子的所述回转轴线形成的平面为第二位置平面,所述第二位置平面与所述第一位置平面之间形成夹角α。再次测量所述转子的不平衡量,测量得到的不平衡量为所述测量平面一的第二次不平衡量。上述两次不平衡量测量中,所述转子的不平衡量的大小没有发生变化,但所述转子的不平衡量的角度相对转子上所述角度参考点改变了角度α,另外,以上两次测量中,平衡机本身的不平衡量的大小和角度均没有发生变化,据此,利用矢量计算,获得所述转子的不平衡量。
技术方案1能够针对长度与直径之比较小的转子,选用一个测量平面来表示其不平衡量。
技术方案2是基于技术方案1所述的方法,具体方法为,角度传 感器在所述第一位置平面时,用所述平衡机测量所述转子的不平衡量时,测量得到的不平衡量以垂直于所述回转轴线的两个平面来表示,即以测量平面一的第一次不平衡量和测量平面二的第一次不平衡量来表示;当角度传感器在所述第二位置平面时,用所述平衡机再次测量所述转子的不平衡量,测量得到的不平衡量以所述测量平面一的第二次不平衡量和所述测量平面二的第二次不平衡量来表示。据此,利用矢量计算,获得所述转子两个测量平面上的不平衡量。
技术方案2是选取两个测量平面来表示转子的不平衡量。对于大多数转子,选用两个测量平面更能准确表示其不平衡量。
技术方案3是基于技术方案1或2所述的方法,在测量计算得到转子的不平衡量后,对转子的不平衡量进行校正,使转子的不平衡量等于零或是小于设定值。这样就得到了不平衡量为零、或是不平衡量小于设定值的转子。
技术方案4给出了一种获取平衡机的不平衡量的方法,用于将转子的不平衡量与平衡机的不平衡量分解开,选取一个测量平面,方法为:在所述转子上设置角度参考点,所述平衡机上安装有角度传感器,其在所述平衡机上的位置为第一位置,所述角度传感器在所述第一位置时,其与所述转子的回转轴线形成的平面为第一位置平面;用所述平衡机测量所述转子的不平衡量,测量得到的不平衡量以垂直于所述回转轴线的测量平面一的第一次不平衡量来表示;将所述角度传感器从所述第一位置移动到平衡机上的第二位置,所述角度传感器在所述第二位置时,其与所述转子的所述回转轴线形成的平面为第二位置平面,所述第二位置平面与所述第一位置平面之间形成夹角α;再次测量所述转子的不平衡量,测量得到的不平衡量为所述测量平面一的第二次不平衡量;上述两次不平衡量测量中,所述转子的不平衡量的大小没有发生变化,但所述转子的不平衡量的角度相对转子上所述角度参考点改变了角度α,另外,以上两次测量中,平衡机本身的不平衡量的大小和角度均没有发生变化,据此,利用矢量计算,获得所述平衡机的不平衡量。
技术方案5,是基于技术方案4所述的方法,但不平衡量的测量平面选取两个,分别是测量平面一和测量平面二。方法为:角度传感器在所述第一位置平面时,用所述平衡机测量所述转子的不平衡量时,测量得到的不平衡量以两个平面来表示,即以测量平面一的第一次不平衡量和测量平面二的第一次不平衡量来表示;当角度传感器在所述第二位置平面时,用所述平衡机再次测量所述转子的不平衡量,测量得到的不平衡量以所述测量平面一的第二次不平衡量和所述测量平面二的第二次不平衡量来表示。利用矢量计算,获得所述平衡机两个测量平面上的不平衡量。
技术方案6是基于技术方案4或5所述的方法,在得到所述平衡机的不平衡量后,对所述平衡机的不平衡量进行电气补偿,使所述平衡机的不平衡量为零。由此能够得到不平衡量为零的平衡机。
技术方案7是基于技术方案6所述的方法,当所述测量平面一的所述第二不平衡量与所述测量平面一的所述第一次不平衡量的大小相等,角度相差所述夹角α时,则判断平衡机在所述测量平面一的不平衡量为零;当所述测量平面二的所述第二次不平衡量与所述测量平面二的所述第一次不平衡量的大小相等,角度相差所述夹角α时,则判断平衡机在所述测量平面二的不平衡量为零。
本发明只需要在转子上做一个角度参考点,通过改变平衡机上角度传感器的位置,获取转子的不平衡量和平衡机的不平衡量。角度传感器的安装位置,可以事先精确做好,改变角度传感器的角度,可以做的精确,且容易实现。
附图说明
图1所示为立式平衡机测量压气轮的主视示意图。
图2所示为立式平衡机测量压气轮的俯视示意图。
图3所示为测量得到的不平衡量。
图4为表示不平衡量振动电压信号与角度传感器的时间信号的关系的图。
图5所示为解算转子的不平衡量和平衡机的不平衡量的矢量图。
图6为表示平衡机不平衡量为零时,第二次不平衡量与第一次不平衡量的关系的图。
图7所示为一卧式平衡机用滚轮支撑并驱动转子的示意图,其中(a)为主视图,(b)为侧视图。
具体实施方式
下面,参照附图举例说明本发明的实施方式。为了便于说明,下述步骤基本上是按本发明的实施顺序排列的,但也有部分内容没有按顺序记载,如下步骤的顺序也并不是唯一的。而且下述步骤只为举例说明,并不都是必须的,只要能够实施本发明即可。本实施方式并不用于限定本发明的保护范围。
(A)图1所示为一个立式平衡机测量增压器压气轮(简称压气轮)的主视示意图。压气轮在下面有时也称作转子3。平衡机上有支撑转子3的径向空气轴承1,其上有水平布置的两排小孔2;平衡机上有端面空气轴承4,其上有垂直布置的一圈小孔5。当通入压缩空气8时,端面空气轴承4通过一圈小孔5吹出空气将转子3浮起,径向空气轴承1上的两排气孔2向外吹空气支撑转子3的内孔,形成转子3的回转轴线A1-A2。空气轴承1和空气轴承4安装在立式布置的平衡机摆架7上,平衡机摆架7联接两个测量振动信号的传感器6。
图2所示是立式平衡机测量压气轮的俯视示意图。压缩空气10通过安装在平衡机上的喷嘴9驱动转子3回转,回转角速度为ω,回转方向如箭头所示,即逆时针方向。设定转子3的不平衡量角度增加方向为顺时针方向,如转子3上所标出的角度沿顺时针方向增加。平衡机在测量转子3的不平衡量时,转速一般比较稳定,本实施方案中假设转子3的转速(或角速度ω)是恒定的。
在转子3上设置有不平衡量角度参考点12。平衡机上安装有角度传感器11。在开始测量时,角度传感器11位于第一位置Po1。当角度传感器11在平衡机上的第一位置Po1时,其与转子3的回转轴线 A1-A2形成的平面记为角度传感器的第一位置平面PM1。当转子3上的参考点12通过角度传感器11的第一位置平面PM1时,角度传感器11检测到转子3上的角度参考点12,产生一个角度参考信号。角度参考信号是一个脉冲时间信号。为方便说明,本实施方案中,将转子3上的参考点12所在位置,定义为转子的不平衡量角度为0度的位置。这样的角度定义是可以通过对平衡机的标定实现的。
(B)参考图1,在转子3上选择垂直于回转轴线A1-A2的两个测量不平衡量的平面,分别称作测量平面一PL1和测量平面二PL2。用平衡机测量转子3的不平衡量。测量得到的不平衡量以测量平面一PL1的第一次不平衡量U11和测量平面二PL2的第一次不平衡量U21来表示。不平衡量有大小和角度。
将不平衡量U11和不平衡量U21作图到平面坐标上,如图3所示。坐标的原点是测量所得不平衡量大小的零点,坐标的0度为转子的不平衡量的角度0度,即参考点12所在角度。
测量所得不平衡量U11和不平衡量U21是转子3的不平衡量与平衡机的不平衡量的矢量和。
(C)将平衡机上的角度传感器11从第一位置Po1移动到平衡机上的第二位置Po2。角度传感器11在平衡机上的第二位置Po2时,其与转子3的回转轴线A1-A2形成的平面记为角度传感器11的第二位置平面PM2。当转子3上的参考点12通过角度传感器11的第二位置平面PM2时,角度传感器11检测到转子3上的角度参考点12产生一个角度参考信号。
角度传感器11的第二位置平面PM2和角度传感器11的第一位置平面PM1之间的夹角,可以是任意角度α。作为例子,本实施方案中两个平面的夹角取60度,即第二位置平面PM2与第一位置平面PM1之间的夹角是60度,且第二位置平面PM2相对于第一位置平面PM1是在沿转子回转的反方向上。
(D)再次测量转子3的不平衡量,测量得到的不平衡量以测量平面一PL1的第二次不平衡量U12和测量平面二PL2的第二次不平 衡量U22来表示。将测量平面一PL1的第二次不平衡量U12、测量平面二PL2的第二次不平衡量U22做图到平面坐标中,如图3所示。
(E)上面两次不平衡量测量中,转子3的不平衡量的大小没有发生变化,但不平衡量的角度发生了变化,即不平衡量的角度相对转子上的角度参考点12发生了变化。参考图4,以测量平面一上的转子不平衡量角度的变化进行说明。图4中,横坐标为时间t,纵坐标为振动传感器6检测到的因转子的不平衡量产生的振动电压信号幅值。该振动幅值信号为一个正弦波。转子3每转动一圈(360度),振动传感器6测量得到的振动电压信号为一个完整的正弦波,记正弦波的周期为T。正弦波中的正向的振动最大幅值P1为对应测量得到的转子的不平衡量矢量,包括大小和角度。不平衡量的大小由振动幅值P1的大小决定。转子每转动一圈(360度),平衡机上的角度传感器11扫描转子3上的参考点12一次,给出一个脉冲时间参考信号。转子不平衡量的角度,由角度传感器11检测到转子上角度参考点12时产生的脉冲信号时间点与正弦波信号最大幅值P1点所对应的时间点的相对关系决定。在时间轴上一个正弦波中,平衡机上的角度传感器11在第一位置Po1时,角度传感器11检测到转子3上的角度参考点12时的时间点为T1,振动信号最大幅值P1所对应的在时间轴上的时间点为T3,T3与T1点之间的时间间隔记为T 13,T 13除以转子转动一周的时间亦即正弦波周期T,再乘以360度,即为测量得到的不平衡量相对于转子上的角度参考点12的角度,将此角度记为β,β=T 13/T*360,或是T 13=β/360*T。
把角度传感器11由平衡机上的第一位置Po1移动到平衡机上的第二位置Po2后,转子3在回转时,角度传感器11检测到转子3上的角度参考点12时的时间点记为T2。因角度传感器11的第二位置Po2相对于角度传感器11的第一位置Po1在转子转动方向的反方向60度,从时间上来看,角度传感器11在第二位置Po2时检测到转子上的角度参考点12的时间比角度传感器11在第一位置Po1时检测到转子上的角度参考点12的时间要早,即T2点在时间上早于T1点, 早(提前)的时间差记为T 21。这个提前的时间差是由于平衡机上的角度传感器11逆转子3的回转方向移动了60度造成的,即转子3在一圈中少转动60度造成的,T 21=60/360*T。当角度传感器11移动到平衡机上第二位置Po2位置后,转子的不平衡量的角度为时间点T2与T3之间的时间对应的角度。T2与T3之间的时间为T 13和T 21之和,即:T 13+T 21=β/360*T+60/360*T=(β+60)/360*T。
T2与T3之间的时间所对应的角度为:
(T 13+T 21)/T*360=β+60
即当平衡机上的角度传感器11移动到第二位置Po2后,测量得到的转子不平衡量的角度变为60+β度。
(F)在图2中,如果把平衡机上的角度传感器11沿转子3旋转的方向移动60度,角度传感器11在该位置检测到转子3上的角度参考点12的时间比角度传感器11在第一位置Po1点时检测到转子3上的角度参考点12的时间要晚,按上面的分析可知,这时转子的不平衡量角度变为β-60度。
上面的分析是在转子3的旋转方向与转子不平衡量角度增加方向相反的条件下得出的。当转子3的回转方向与转子的不平衡量角度增加方向相同时,在平衡机上沿转子回转方向的反方向移动角度传感器11一定角度时,转子不平衡量的角度变化为减少该一定角度,当在平衡机上沿转子回转方向移动角度传感器11一定角度时,转子不平衡量的角度变化为增加该一定角度。
(G)当平衡机上角度传感器11的位置改变时,平衡机本身的不平衡量,包括可能的电气补偿或是标定零点误差,其不平衡量的大小和角度都没有发生变化。这是因为平衡机本身的不平衡量不是机械不平衡量产生的能产生正弦振动信号的不平衡量,只是电气模拟量(或是数字量),其大小不会发生变化,其角度只与转子3上的参考点12关联,与振动传感器的振动电压信号没有关联,因而平衡机本身的不平衡量角度与角度传感器11的位置变化没有关系。
(H)基于上述的转子3的不平衡量角度的变化,按图5所示 的矢量解算方法,计算出转子3的不平衡量和平衡机的不平衡量。以测量平面一PL1为例,具体的解算办法为,记不平衡量U11的矢量端点为B1,不平衡量U12的矢量端点为B2,以B1点和B2点之间的连线为底边做一个等腰三角形,顶点为B3,顶角为60度,且B3B1矢量转到B3B2矢量时,在坐标系中是角度增加方向(图中,顺时针方向为不平衡量角度增加方向)。矢量O1B3为平衡机的不平衡量的大小和角度,矢量B3B1为角度传感器11在第一位置Po1时,转子3的不平衡量的大小和角度,矢量B3B2为角度传感器11在第二位置Po2时,转子3不平衡量的大小和角度。矢量B3B2与矢量B3B1大小相等,角度相差正60度,即矢量B3B2的角度比矢量B3B1的角度增加了60度。
(I)当平衡机的不平衡量为零时,测量平面一PL1上矢量O1B3为零,在图2所示的条件下,当把角度传感器11按转子的反方向移动60度角度时,转子3的不平衡量的大小不变,但方向正向增加了60度,如图6所示。由此原理,可以用一种简单的办法检测平衡机的不平衡量是否为零,即把角度传感器11按转子转动的反方向移动一定的角度,如果在角度传感器11变换位置之前与之后,测量得到的不平衡大小相等,但角度是正向增加了角度传感器移动的角度,则证明平衡机的不平衡量为零。
(J)图7所示为卧式平衡机测量转子的不平衡量示意图,图7中的转子3,由平衡机上的滚轮支撑转子两端的轴颈13和14,平衡机上的滚轮同时驱动转子3回转,回转方向如图7中(b)中箭头所示,即为逆时针方向。
卧式平衡机对转子的支撑方式可以是轴瓦、滚轮、V形块等方式,卧式平衡机对转子的驱动方式可以为滚轮驱动、皮带驱动、或是空气驱动等,但应满足条件:平衡机对转子支撑和平衡机对转子驱动时,平衡机上没有与转子机械连成一体并一起回转的机械件。
在转子3上设置有角度参考点12,平衡机上有角度传感器11,其开始时所在位置记为第一位置Po1。按上述同样的方法,移动平衡机上角度传感器11,并测量在移动前后的不平衡量,通过上述的矢量 运算得到转子的不平衡量和平衡机的不平衡量。
(K).上面所述的获取转子的不平衡量和平衡机的不平衡量的实施方案为选取转子的两个测量平面。对于长度相对直径之比比较小的转子,一般称为盘类转子,可以只用一个平面来测量转子的不平衡量。本发明的技术方案同样适合选取一个测量平面,获取转子的不平衡量和平衡机的不平衡量。
(L).用前述的方法测量得到平衡机本身的不平衡量后,可以对平衡机进行电气补偿,使平衡机测量转子不平衡量的零点准确,这样补偿过后的不平衡机,平衡机本身的不平衡量为零,其测量得到的不平衡量为转子的不平衡量。
(M)用前述的方法获得转子的不平衡量后,对转子的不平衡量进行校正,使转子的不平衡量等于零或是小于设定值。这样就得到了不平衡量为零、或是不平衡量小于设定值的转子。
以上说明了本发明的优选实施方式,本发明并不局限于上述实施方式。在本发明的技术思想上可以对本发明的实施方式进行任意的变形。

Claims (7)

  1. 一种获取转子的不平衡量的方法,用于将转子的不平衡量与平衡机的不平衡量分解开,其中,所述平衡机在对所述转子(3)进行支撑和驱动时,所述平衡机与被测的所述转子(3)为非刚性连接的方式,
    其特征在于,包括以下步骤:
    在所述转子(3)上设置角度参考点(12),所述平衡机上安装有角度传感器(11),其在所述平衡机上的位置为第一位置(Po1),所述角度传感器(11)在所述第一位置(Po1)时,其与所述转子的回转轴线(A1-A2)形成的平面为第一位置平面(PM1);
    用所述平衡机测量所述转子(3)的不平衡量,测量得到的不平衡量以垂直于所述回转轴线(A1-A2)的测量平面一(PL1)的第一次不平衡量(U11)来表示;
    将所述角度传感器(11)从所述第一位置(Po1)移动到平衡机上的第二位置(Po2),所述角度传感器(11)在所述第二位置(Po2)时,其与所述转子(3)的所述回转轴线(A1-A2)形成的平面为第二位置平面(PM2),所述第二位置平面(PM2)与所述第一位置平面(PM1)之间形成夹角(ɑ);
    再次测量所述转子(3)的不平衡量,测量得到的不平衡量为所述测量平面一(PL1)的第二次不平衡量(U12);
    上述两次不平衡量测量中,所述转子(3)的不平衡量的大小没有发生变化,但所述转子(3)的不平衡量的角度相对转子上所述角度参考点(12)改变了角度(ɑ),另外,以上两次测量中,平衡机本身的不平衡量的大小和角度均没有发生变化,据此,利用矢量计算,获得所述转子(3)的不平衡量。
  2. 根据权利要求1所述的方法,其特征在于,
    所述角度传感器在所述第一位置平面(PM1)时,用所述平衡机测量所述转子(3)的不平衡量时,测量得到的不平衡量以垂直于所 述回转轴线(A1-A2)的两个平面来表示,即以测量平面一(PL1)的第一次不平衡量(U11)和测量平面二(PL2)的第一次不平衡量(U21)来表示;
    当角度传感器在所述第二位置平面(PM2)时,用所述平衡机再次测量所述转子(3)的不平衡量,测量得到的不平衡量以所述测量平面一(PL1)的第二次不平衡量(U12)和所述测量平面二(PL2)的第二次不平衡量(U22)来表示。
  3. 根据权利要求1或2所述的方法,在获得所述转子的不平衡量后,对所述转子的不平衡量进行校正,使转子的不平衡量为零或小于设定值。
  4. 一种获取平衡机的不平衡量的方法,用于将转子的不平衡量与平衡机的不平衡量分解开,其中,所述平衡机在对所述转子(3)进行支撑和驱动时,所述平衡机与被测的所述转子(3)为非刚性连接的方式,
    其特征在于,包括以下步骤:
    在所述转子(3)上设置角度参考点(12),所述平衡机上安装有角度传感器(11),其在所述平衡机上的位置为第一位置(Po1),所述角度传感器(11)在所述第一位置(Po1)时,其与所述转子的回转轴线(A1-A2)形成的平面为第一位置平面(PM1);
    用所述平衡机测量所述转子(3)的不平衡量,测量得到的不平衡量以垂直于所述回转轴线(A1-A2)的测量平面一(PL1)的第一次不平衡量(U11)来表示;
    将所述角度传感器(11)从所述第一位置(Po1)移动到平衡机上的第二位置(Po2),所述角度传感器(11)在所述第二位置(Po2)时,其与所述转子(3)的所述回转轴线(A1-A2)形成的平面为第二位置平面(PM2),所述第二位置平面(PM2)与所述第一位置平面(PM1)之间形成夹角(ɑ);
    再次测量所述转子(3)的不平衡量,测量得到的不平衡量为所述测量平面一(PL1)的第二次不平衡量(U12);
    上述两次不平衡量测量中,所述转子(3)的不平衡量的大小没有发生变化,但所述转子(3)的不平衡量的角度相对转子上所述角度参考点(12)改变了角度(ɑ),另外,以上两次测量中,平衡机本身的不平衡量的大小和角度均没有发生变化,据此,利用矢量计算,获得所述平衡机的不平衡量。
  5. 根据权利要求4所述的方法,其特征在于,
    所述角度传感器在所述第一位置平面(PM1)时,用所述平衡机测量所述转子(3)的不平衡量时,测量得到的不平衡量以垂直于所述回转轴线(A1-A2)的两个平面来表示,即以测量平面一(PL1)的第一次不平衡量(U11)和测量平面二(PL2)的第一次不平衡量(U21)来表示;
    当所述角度传感器在所述第二位置平面(PM2)时,用所述平衡机再次测量所述转子(3)的不平衡量,测量得到的不平衡量以所述测量平面一(PL1)的第二次不平衡量(U12)和所述测量平面二(PL2)的第二次不平衡量(U22)来表示。
  6. 根据权利要求4或5所述的方法,其特征在于,
    在得到所述平衡机的不平衡量后,对所述平衡机的不平衡量进行电气补偿,使所述平衡机的不平衡量为零。
  7. 根据权利要求6所述的方法,其特征在于:
    当所述测量平面一(PL1)的所述第二不平衡量(U12)与所述测量平面一(PL1)的所述第一次不平衡量(U11)的大小相等,角度相差所述夹角(ɑ)时,则判断平衡机在所述测量平面一(PL1)的不平衡量为零;当所述测量平面二(PL2)的所述第二次不平衡量(U22)与所述测量平面二(PL2)的所述第一次不平衡量(U21)的大小相等,角度相差所述夹角(ɑ)时,则判断平衡机在所述测量平面二(PL2)的不平衡量为零。
PCT/CN2020/078644 2019-03-12 2020-03-10 获取转子的不平衡量和平衡机的不平衡量的方法 WO2020182128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20770170.7A EP3940361A4 (en) 2019-03-12 2020-03-10 ROTOR IMBALANCE AMOUNT ACQUISITION METHOD, AND BALANCING MACHINE IMBALANCE AMOUNT ACQUISITION METHOD
US17/447,024 US11385121B2 (en) 2019-03-12 2021-09-07 Method for acquiring unbalance of rotor and unbalance of balancing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910183704.XA CN110006590B (zh) 2019-03-12 2019-03-12 获取转子的不平衡量和平衡机的不平衡量的方法
CN201910183704.X 2019-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/447,024 Continuation US11385121B2 (en) 2019-03-12 2021-09-07 Method for acquiring unbalance of rotor and unbalance of balancing machine

Publications (1)

Publication Number Publication Date
WO2020182128A1 true WO2020182128A1 (zh) 2020-09-17

Family

ID=67166794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078644 WO2020182128A1 (zh) 2019-03-12 2020-03-10 获取转子的不平衡量和平衡机的不平衡量的方法

Country Status (4)

Country Link
US (1) US11385121B2 (zh)
EP (1) EP3940361A4 (zh)
CN (1) CN110006590B (zh)
WO (1) WO2020182128A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830263B2 (ja) * 2016-08-10 2021-02-17 国際計測器株式会社 動釣合い試験機
CN110006590B (zh) * 2019-03-12 2020-07-31 北京双元天衡检测科技有限公司 获取转子的不平衡量和平衡机的不平衡量的方法
CN111289180B (zh) * 2020-02-24 2022-03-29 杭州中豪电动科技有限公司 一种盘式电机转子盘立式去重动平衡的方法及设备
CN114646426B (zh) * 2022-03-21 2023-02-14 孝感松林智能计测器有限公司 一种非对称曲轴双补偿自动平衡去重的方法
CN116131559B (zh) * 2022-12-19 2024-01-02 中国航发沈阳发动机研究所 一种转子装配工艺及评价方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882730A (en) * 1972-10-16 1975-05-13 Renault Method of determining the correction components of the out-of-balance weight, making any angle between them, on a dynamic balancing machine
US5915274A (en) * 1996-06-21 1999-06-22 Hunter Engineering Company Method of correcting imbalance on a motor vehicle wheel
CN101846573A (zh) * 2010-05-19 2010-09-29 中国科学院电工研究所 一种测试不完整球形超导转子转动惯量的方法
CN102072797A (zh) * 2010-12-20 2011-05-25 深圳市元征软件开发有限公司 轮胎动平衡测量中的主轴不平衡量测量方法及轮胎平衡机
CN103776587A (zh) * 2014-01-28 2014-05-07 郭卫建 确定转子的不平衡量的方法
CN105021349A (zh) * 2015-05-19 2015-11-04 郭卫建 一种获取转子的不平衡量的方法
CN105738033A (zh) * 2016-03-22 2016-07-06 郭卫建 转子的不平衡量的获取方法
CN105953979A (zh) * 2016-04-29 2016-09-21 郭卫建 一种获取不平衡量砝码质心位置的方法
CN110006590A (zh) * 2019-03-12 2019-07-12 姜芳 获取转子的不平衡量和平衡机的不平衡量的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3040713C2 (de) * 1980-10-29 1986-04-03 Carl Schenck Ag, 6100 Darmstadt Vorrichtung zum Einstellen einer kraftmessenden Auswuchtmaschine
FR2522819B1 (fr) * 1982-01-13 1987-12-24 British Aerospace Essai de l'equilibrage d'un element rotatoire
DE3726024A1 (de) * 1987-08-05 1989-02-16 Hofmann Werkstatt Technik Vorrichtung zum umwuchtausgleich in zwei ebenen an einem rotor, insbesondere kraftfahrzeugrad
DE4238118C2 (de) * 1992-11-12 2002-12-05 Hofmann Maschinen Und Anlagenbau Gmbh Verfahren zum Messen von Ungleichförmigkeiten eines Luftreifens
KR100360342B1 (ko) * 2002-04-19 2002-11-13 박계정 밸런스 머신의 언밸런스 수정위치 및 수정량의 자동 보상방법
CN204788804U (zh) * 2015-05-19 2015-11-18 郭卫建 一种转子组合件
DE102018102751B3 (de) * 2018-02-07 2019-02-21 Schenck Rotec Gmbh Verfahren zur Messung der Unwucht wellenelastischer Rotoren mittels wegmessender Sensoren

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882730A (en) * 1972-10-16 1975-05-13 Renault Method of determining the correction components of the out-of-balance weight, making any angle between them, on a dynamic balancing machine
US5915274A (en) * 1996-06-21 1999-06-22 Hunter Engineering Company Method of correcting imbalance on a motor vehicle wheel
CN101846573A (zh) * 2010-05-19 2010-09-29 中国科学院电工研究所 一种测试不完整球形超导转子转动惯量的方法
CN102072797A (zh) * 2010-12-20 2011-05-25 深圳市元征软件开发有限公司 轮胎动平衡测量中的主轴不平衡量测量方法及轮胎平衡机
CN103776587A (zh) * 2014-01-28 2014-05-07 郭卫建 确定转子的不平衡量的方法
CN105021349A (zh) * 2015-05-19 2015-11-04 郭卫建 一种获取转子的不平衡量的方法
CN107478385A (zh) * 2015-05-19 2017-12-15 郭卫建 一种产生可溯源不平衡量的砝码的制作方法
CN105738033A (zh) * 2016-03-22 2016-07-06 郭卫建 转子的不平衡量的获取方法
CN105953979A (zh) * 2016-04-29 2016-09-21 郭卫建 一种获取不平衡量砝码质心位置的方法
CN110006590A (zh) * 2019-03-12 2019-07-12 姜芳 获取转子的不平衡量和平衡机的不平衡量的方法

Also Published As

Publication number Publication date
EP3940361A4 (en) 2022-12-14
US20210396621A1 (en) 2021-12-23
US11385121B2 (en) 2022-07-12
CN110006590B (zh) 2020-07-31
CN110006590A (zh) 2019-07-12
EP3940361A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2020182128A1 (zh) 获取转子的不平衡量和平衡机的不平衡量的方法
JP5288320B2 (ja) 高速回転体の回転バランス計測装置及び方法
CN105021349B (zh) 一种获取转子的不平衡量的方法
CN103115726B (zh) 一种基于应变的旋转零部件动平衡方法
CN106839968B (zh) 转子空间弯曲轴线测试系统及其测试方法
CN102072797A (zh) 轮胎动平衡测量中的主轴不平衡量测量方法及轮胎平衡机
CN107560585B (zh) 环抛中大尺寸修正盘表面形状误差的检测方法
CN108020409A (zh) 一种主轴回转误差的四点动态测量与分离方法
JP5418805B2 (ja) 回転体のアンバランス量算出方法及び装置
CN102564456A (zh) 一种三轴微型陀螺仪的测试装置及测试方法
WO2017162080A1 (zh) 转子的不平衡量的获取方法
CN107228614B (zh) 一种六缸曲轴相位角的检测装置及检测方法
TWM576517U (zh) Workpiece processing and detecting device
JPS6262238A (ja) 車両用車輪等をつりあい試験する方法と装置
TW201314190A (zh) 輪胎平衡試驗方法及輪胎平衡試驗機
CN108760118B (zh) 一种测量惯性平台台体质量不平衡力矩的装置及方法
CN109145505B (zh) 一种水轮发电机组运行摆度位移峰最大峰值准确计算方法
CN106442222A (zh) 一种血液粘度检测仪
JP3443719B2 (ja) 動バランス測定機
JP5257762B2 (ja) 高速回転体の回転バランス計測装置及び方法
CN112710428B (zh) 一种基于增材的动平衡校正方法及设备
CN202471088U (zh) 一种三轴微型陀螺仪的测试装置
JP4057987B2 (ja) 動釣合試験機
CN108981894A (zh) 一种同时考虑水轮机大轴公转与自转下运行摆度计算方法
Klyuchnikov VERIFICATION OF DYNAMIC BALANCING STAND ACCURACY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020770170

Country of ref document: EP

Effective date: 20211012