WO2020181941A1 - 背光源及制备方法、背光模组以及显示装置 - Google Patents

背光源及制备方法、背光模组以及显示装置 Download PDF

Info

Publication number
WO2020181941A1
WO2020181941A1 PCT/CN2020/074701 CN2020074701W WO2020181941A1 WO 2020181941 A1 WO2020181941 A1 WO 2020181941A1 CN 2020074701 W CN2020074701 W CN 2020074701W WO 2020181941 A1 WO2020181941 A1 WO 2020181941A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective metal
metal layer
reflective
layer
substrate
Prior art date
Application number
PCT/CN2020/074701
Other languages
English (en)
French (fr)
Inventor
张冰
耿霄霖
韩波
高亮
高露
汤海
秦建伟
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020181941A1 publication Critical patent/WO2020181941A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present disclosure relates to the field of display technology, in particular, to a backlight source and a manufacturing method, a backlight module and a display device.
  • the backlight module in the liquid crystal display device is an important part of the display device.
  • the light source in the current backlight module is mainly composed of a light emitting diode (Light Emitting Diode, LED) array, which is divided into two types: a direct type and an edge type.
  • the Mini LED surface light source has a smaller chip size, and the distance between two adjacent chips is also smaller.
  • HDR high dynamic range
  • Mini LED backlights can provide a uniform light-emitting surface light source by matching optical structures such as diffusion films, quantum dot (QD) films, and composite prisms.
  • the reflectivity of the current Mini LED-based backlight source is low, only about 80%, which causes the mini LED surface light source to have low light efficiency and high power consumption.
  • the reflectivity of the bottom of the lamp panel can be improved by plating a metal film (such as Ag), the metal film with high reflectivity such as Ag has poor stability and is easily damaged by water and oxygen, so it is difficult to maintain a high level in actual use. Reflectivity.
  • a backlight source in one aspect of the present disclosure, includes: a substrate; a plurality of micro light emitting diodes located on the substrate; and a reflective structure, the reflective structure is located at the gap between the plurality of micro light emitting diodes, the reflective structure includes a reflective metal layer, And a dielectric layer sealing the reflective metal layer.
  • the reflective metal layer is formed of Ag, and the thickness of the reflective metal layer is 150-200 nm.
  • the dielectric layer at least includes: a silicon dioxide sublayer and an aluminum oxide sublayer arranged in a stack, the silicon dioxide sublayer is close to the reflective metal layer and covers the reflective metal
  • the thickness of the silicon dioxide sublayer is 180-210nm; the aluminum oxide sublayer covers the silicon dioxide sublayer and is away from the reflective metal layer.
  • the thickness of the aluminum oxide sub-layer is 40-70 nm on the side surface and sidewall.
  • the backlight further includes: a sacrificial metal block, the sacrificial metal block is located at the sidewall of the reflective metal and is in contact with the reflective metal layer, and the dielectric layer covers the sacrificial metal The surface of the block not in contact with the substrate and the reflective metal layer.
  • the sacrificial metal block is formed of Zn.
  • the reflective metal layer is in contact with the substrate, and the dielectric layer covers a surface of the reflective metal layer that is not in contact with the substrate.
  • the plurality of micro light emitting diodes are arranged in an array.
  • the reflective structure includes a plurality of hollow areas, and the plurality of micro light emitting diodes are respectively arranged in the plurality of hollow areas.
  • the dielectric layer and the micro light emitting diode are spaced apart on the substrate.
  • the dielectric layer is formed of a transparent inorganic material.
  • the backlight source is a direct type backlight source for a display device.
  • a backlight module in another aspect of the present disclosure, includes the direct type backlight source described above. Therefore, the backlight module has all the features of the direct-type backlight described above, and will not be repeated here.
  • a method of preparing a backlight includes: forming a reflective structure on a substrate, the reflective structure including a reflective metal layer, and a dielectric layer covering and sealing the reflective metal layer, the reflective structure having a hollow area; and arranging at the hollow area Micro LED.
  • forming the reflective structure includes: depositing reflective metal on the substrate, and removing the reflective metal corresponding to the hollow area by a patterning process to form the reflective metal layer; A dielectric material is deposited on the side of the substrate with the reflective metal layer, and the dielectric material corresponding to the hollowed-out area is removed by a patterning process to form the dielectric layer.
  • forming the reflective structure includes: depositing a sacrificial metal on the substrate, and using a patterning process to form an annular sacrificial metal block surrounding the hollow area; and forming the sacrificial metal on the substrate A reflective metal is deposited on one side of the block, and the reflective metal corresponding to the hollow area is removed by a patterning process to form the reflective metal layer; a dielectric material is deposited on the side of the substrate with the reflective metal layer , And remove the dielectric material corresponding to the hollowed-out area through a patterning process to form the dielectric layer.
  • the method further includes: annealing the substrate.
  • the backlight source is a direct type backlight source for a display device.
  • a display device in yet another aspect of the present disclosure, includes the direct type backlight source described above. Therefore, the display device has all the features of the direct-type backlight described above.
  • Fig. 1 shows a schematic structural diagram of a direct type backlight according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic structural diagram of a direct type backlight according to another embodiment of the present disclosure
  • FIG. 3 shows a top view of a direct type backlight according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic flow chart of a method for preparing a direct type backlight according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic flowchart of a part of a method for manufacturing a direct type backlight according to an embodiment of the present disclosure
  • Fig. 6 shows a schematic flow chart of a method for preparing a direct type backlight according to an embodiment of the present disclosure
  • Fig. 7 shows a schematic flowchart of a part of a method for manufacturing a direct type backlight according to an embodiment of the present disclosure.
  • Fig. 8 shows a schematic structural diagram of a direct type backlight according to another embodiment of the present disclosure.
  • the present disclosure proposes a direct type backlight for a display device.
  • the direct type backlight includes: a substrate 100 and a plurality of micro light emitting diodes 200 arranged on the substrate 100, and the plurality of micro light emitting diodes 200 are arranged in an array.
  • a reflective structure 300 is provided in the gap between the plurality of micro light emitting diodes 200.
  • the reflective structure 300 includes a reflective metal layer 310 and a dielectric layer 320 sealing the reflective metal layer 310.
  • the direct-lit backlight has at least one of the advantages of high reflectivity, high luminous efficiency, low power consumption, and good stability.
  • the size of the micro light-emitting diode 200 on the substrate 100 of the present disclosure is extremely small, only about 10-50 microns.
  • the distance between the micro light emitting diode arrays is also small. Therefore, compared with an edge-lit backlight using a conventional light emitting diode, it is difficult to use a conventional reflective film layer to improve the light output efficiency of the backlight.
  • photosensitive inks Although it is possible to form photosensitive inks through technologies such as screen printing to improve the light extraction efficiency of the backlight, this type of backlight also only has a reflectivity of about 80%, and the accuracy does not meet the requirements, causing the chip pad area (with micro-luminescence) The area of the diode 200) is covered with photosensitive ink.
  • reflective metal has high reflectivity, it is difficult to ensure the durability of the metal layer only by depositing a metal layer to increase the reflectivity: metals with high reflection efficiency (such as Ag, etc.) are easy to use in actual use.
  • the medium is corroded by water and oxygen in the environment, and oxidation and other reactions occur, so it is difficult to maintain a high reflectivity for a long time.
  • the reflective structure 300 has a laminated structure, which can be easily formed by deposition materials and patterning processes, so it is suitable for a backlight source of a micro light emitting diode array with a small size and a small pitch. As a result, the durability of the reflective structure can be improved while ensuring that the reflective structure has a high reflectivity.
  • the reflective metal layer 310 may be formed of Ag, or may also be formed of any one of metals such as Al, Au, Cu, Cr, Pt.
  • Metal Ag has a high reflectivity, and the film structure can be easily formed by methods such as evaporation.
  • the thickness of the reflective metal layer 310 may be 150-200 nm. For example, it can be 160 nm, 170 nm, 180 nm, 190 nm, and so on. When the thickness of the reflective metal layer is within the above range, a better reflectivity can be obtained, which is beneficial to further improve the light extraction efficiency of the direct backlight.
  • the dielectric layer 320 covers the reflective metal layer 310 and seals the reflective metal layer 310 inside the dielectric layer 320.
  • the dielectric layer 320 covers the surface of the reflective metal layer 310 away from the substrate 100 and the sidewalls of the reflective metal layer 310.
  • the reflective metal layer 310 can be sealed by the dielectric layer 320 to isolate the corrosion of the metal reflective layer 310 by water and oxygen in the environment, so that the durability of the reflective structure 300 can be improved.
  • the material of the dielectric layer 320 is not particularly limited. For example, it may be a transparent inorganic material with a certain transmittance.
  • the inorganic film layer can be used to isolate the water and oxygen in the environment, and on the other hand, the coverage of the dielectric layer 320 will not affect the emission of the light reflected by the metal reflective layer 310.
  • the dielectric layer 320 formed of an inorganic material can also prevent the reflective metal layer 310 from contacting the chip traces of the micro light emitting diode 200, and can achieve insulation between the reflective metal layer 310 and the micro light emitting diode 200 or the connecting traces.
  • the dielectric layer 320 may include a plurality of stacked structures.
  • the dielectric layer 320 may include at least a silicon dioxide sublayer 10 and an aluminum oxide sublayer 20 that are stacked.
  • the silicon dioxide sub-layer 10 is arranged close to the reflective metal layer.
  • the silicon dioxide sub-layer 10 covers the surface of the reflective metal layer 310 on the side away from the substrate and the sidewall of the reflective metal layer 310 to seal the reflective metal layer 310.
  • the aluminum oxide sublayer 20 covers the silicon dioxide sublayer 10, that is, the aluminum oxide sublayer 20 covers the surface of the silicon dioxide sublayer 10 away from the reflective metal layer 310, and the sidewalls of the silicon dioxide sublayer 10 , To seal the silicon dioxide sublayer.
  • multilayer packaging of the reflective metal layer 310 can be implemented, so that the sealing performance and durability of the reflective structure 300 can be further improved.
  • the above-mentioned structure can also improve the transmittance of the dielectric layer, thereby further improving the light extraction efficiency of the backlight.
  • the thickness of the aluminum oxide sub-layer 20 may be 40-70 nm, and the thickness of the silicon dioxide sub-layer 10 may be 180-210 nm. After the silicon dioxide sublayer 10 and the aluminum oxide sublayer 20 with a thickness within the above range are laminated, a combined film structure capable of improving the blue reflectivity can be formed, thereby helping to improve the light extraction efficiency of the backlight.
  • the dielectric layer 320 is a laminated structure of inorganic material sublayer/inorganic material layer sublayer.
  • the material of the inorganic material sublayer may also be silicon monoxide or magnesium fluoride.
  • the dielectric layer 320 may also be a laminated structure of an inorganic material sublayer/organic material sublayer, wherein the material of the inorganic material sublayer may be similarly the aforementioned silica, Aluminum oxide, silicon monoxide, magnesium fluoride, etc., and the material of the organic material sublayer can be polymethyl methacrylate, polystyrene, or the like.
  • the dielectric layer 320 may at least include a silicon dioxide sub-layer 10 and polymethyl methacrylate 20' which are laminated. Among them, the silicon dioxide sub-layer 10 is arranged close to the reflective metal layer.
  • the silicon dioxide sub-layer 10 covers the surface of the reflective metal layer 310 on the side away from the substrate and the sidewall of the reflective metal layer 310 to seal the reflective metal layer 310.
  • Polymethyl methacrylate 20' covers the silicon dioxide sub-layer 10, that is, polymethyl methacrylate 20' covers the surface of the silicon dioxide sub-layer 10 away from the reflective metal layer 310, and the surface of the silicon dioxide sub-layer 10 Sidewalls to seal the silicon dioxide sublayer.
  • multilayer packaging of the reflective metal layer 310 can also be implemented, so that the sealing performance and durability of the reflective structure 300 can be further improved.
  • the backlight may further include a sacrificial metal block.
  • the sacrificial metal block 30 is located at the sidewall of the reflective metal layer 310, and the dielectric layer covers the sacrificial metal block 30.
  • the specific composition, shape, and number of the sacrificial metal blocks 30 are not particularly limited, as long as the chemical properties of the sacrificial metal blocks 30 are more active than the reflective metal layer 310 and are in contact with the reflective metal layer 310.
  • the sacrificial metal block 30 may be made of Zn whose thickness is similar or equal to that of the reflective metal layer 310.
  • the reflective structure 300 is located at the gap between the plurality of micro light emitting diodes 200, and the plurality of micro light emitting diodes 200 are arranged in an array on the substrate 100. Therefore, the reflective structure 300 may be a film structure having hollow regions arranged in an array, and the plurality of light-emitting diodes 200 are respectively disposed in the plurality of hollow regions of the reflective structure 300. Referring to FIG. 3, the reflective structure 300 can cover all areas on the substrate 100 except the area where the micro light emitting diode 200 needs to be provided, so that the light emitted by the micro light emitting diode 200 can be better reflected.
  • the area of the hollow area of the reflective structure 300 can be larger than the area of the micro light emitting diode 200, so a certain margin can be reserved for the arrangement of the micro light emitting diode 200, and the micro light emitting diode 200 and the dielectric layer 320 can be arranged at intervals.
  • the sacrificial metal block 30 may be a ring structure surrounding the hollow area shown in FIG. 3. Therefore, the reflective metal layer can be better protected.
  • the direct type backlight with the above structure can have a higher reflectivity, and the reflectivity can reach more than 96%. Moreover, due to the configuration of the dielectric layer and other structures, the backlight can remain stable for a long time, alleviating the problem of rapid decline in reflectivity of the backlight during actual use.
  • the present disclosure provides a backlight module.
  • the backlight module includes the direct type backlight source described above. Therefore, the backlight module has all the features and advantages of the direct-type backlight described above, and will not be repeated here. In general, the backlight module has at least one of the advantages of higher light extraction efficiency, better stability, and lower power consumption.
  • the backlight module may also have an optical module and other structures.
  • the backlight module may further include structures such as diffusion films, quantum dot films, composite prisms and the like.
  • the present disclosure proposes a method of manufacturing a direct type backlight for a display device.
  • the method can easily obtain a direct backlight, and the prepared backlight has at least one of the advantages of higher light extraction efficiency, better stability, and lower power consumption.
  • the direct type backlight source prepared by this method may be the direct type backlight source described above. Specifically, referring to FIG. 4, the method includes:
  • a reflective structure is first formed on the substrate.
  • the reflective structure may have the same features as the reflective structure described above, and will not be repeated here.
  • the reflective structure may include a reflective metal layer, and a dielectric layer sealing the reflective metal layer.
  • the reflective structure has a hollow area for accommodating the micro light emitting diode. Since the micro light-emitting diodes arranged in the subsequent steps are arranged in an array on the substrate, the hollow areas of the reflective structure can also be arranged in an array.
  • the plurality of light emitting diodes 200 are respectively arranged in a plurality of hollow areas of the reflective structure 300.
  • forming a reflective structure may include the following steps:
  • a reflective metal film layer 310' can be deposited on the substrate in this step, and then the reflective metal corresponding to the hollowed-out area is removed by a patterning process to form a reflective metal layer.
  • a mask 50A can be provided on the reflective metal film layer 310' to remove the reflective metal layer 310' outside the area covered by the mask 50A by etching.
  • the mask 50A may be formed by coating photoresist and exposing it. After the reflective metal layer 310 is formed, the mask 50A is removed to proceed to subsequent steps.
  • S120 Depositing a dielectric material on the substrate, and removing the dielectric material corresponding to the hollow area to obtain a dielectric layer.
  • a dielectric material is deposited on the side of the substrate with a reflective metal layer, and the dielectric material corresponding to the hollowed-out area is removed through a patterning process to obtain a dielectric layer covering the reflective metal layer.
  • the dielectric layer obtained in this step may have the same structure and features as the dielectric layer of the direct-lit backlight described above, which will not be repeated here.
  • the dielectric layer needs to cover and seal the reflective metal layer. Therefore, the mask used when forming the dielectric layer needs to enable the remaining dielectric layer material after etching to cover the surface of the reflective metal layer and Side wall.
  • the dielectric layer may include a plurality of stacked sub-layer structures.
  • it may include a sub-layer of silicon dioxide and a sub-layer of aluminum oxide.
  • the detailed structure of the silicon dioxide sublayer and the aluminum oxide sublayer the detailed description has been made above, and will not be repeated here. Referring to parts (b) to (e) in FIG.
  • the step of forming the dielectric layer may specifically include: first, the reflective metal layer 310 is formed SiO 2 is deposited on the entire surface of the substrate 100 to form a silicon dioxide layer 10 ′, and then the position corresponding to the hollowed-out area (that is, the position where the micro light emitting diode is set in the subsequent step) can be coated and exposed to form a mask 50B.
  • the SiO 2 outside the area covered by the mask 50B is etched away, and then a de-glue process is performed to remove the mask 50B, and the fabrication of the silicon dioxide sublayer 10 is completed.
  • the entire first layer is deposited Al 2 O 3 is formed on the substrate Al 100 2 O 3 layer 20 ', and then using a patterning process to form an aluminum oxide sublayer 20.
  • the width of the silicon dioxide sub-layer 10 formed after etching is greater than the width of the reflective metal layer 310
  • the width of the aluminum oxide sub-layer 20 formed after etching is greater than the width of the silicon dioxide sub-layer 10
  • the two-layer etching width The increase of ⁇ can isolate the reflective metal layer 310, which can prevent the penetration of water and oxygen to a certain extent.
  • micro light-emitting diodes are arranged in the hollow area of the reflection structure formed in the front to obtain a direct type backlight.
  • the structure of the formed backlight can be as shown in part (f) of FIG. 6.
  • the micro-light-emitting diodes are arranged, which can prevent the operation during the formation of the reflective structure from affecting the performance of the micro-light-emitting diode.
  • the specific operation of setting the micro light emitting diode 200 in this step is not particularly limited, and those skilled in the art can make a selection according to actual needs.
  • a plurality of micro light emitting diodes 200 may be transferred to the substrate 100 in batches.
  • One micro LED 200 can be transferred at a time, or multiple micro LEDs 200 can be transferred at a time.
  • the method may further include a step of forming a sacrificial metal.
  • the principle, structure, and chemical composition of the sacrificial metal have been described in detail above and will not be repeated here.
  • the operation of forming the sacrificial metal may be performed before forming the reflective metal layer.
  • the stability and durability of the prepared reflective structure can be further improved.
  • the sacrificial metal 30' can be formed on the substrate 100 first by evaporation or the like.
  • Zn can be evaporated to form the sacrificial metal 30'.
  • a mask 50C formed of photoresist is set, and the sacrificial metal 30' outside the area covered by the mask 50C is etched and removed to obtain a sacrificial metal block 30.
  • the reflective metal film layer 310' can be directly deposited by evaporation, and the thickness of the plating layer is the same as that of the sacrificial metal block 30, and the formed structure can be as shown in part (b) of FIG. 7.
  • the mask 50C and the reflective metal material above the mask 50C can be removed by developing or plasma method, etc. (in this plasma method, for example, the above-mentioned semiconductor structure can be placed in a stripper.
  • the ashing gas is dissociated into plasma under the action of the energy of the radio frequency voltage, and the plasma reacts with the mask 50C formed by the photoresist, thereby removing the mask 50C, and incidentally Ground the reflective metal material above the mask 50C is removed from the semiconductor structure including the substrate 100, the sacrificial metal block 30, and the reflective metal film layer 310' directly in contact with the substrate 100).
  • a mask 50A can be provided on the reflective metal film layer 310' and the sacrificial metal block 30 corresponding to the non-hollowed area, and the area covered by the mask 50A can be removed by etching.
  • the other reflective metal layer film layer 310 ′ forms the reflective metal layer 310.
  • the mask 50A may be formed by coating photoresist and exposing it. After the reflective metal layer 310 is formed, the mask 50A is removed, and then the subsequent preparation of the dielectric layer can be performed.
  • an annealing treatment operation may be further included.
  • annealing treatment can not only improve the bonding force between the reflective metal layer and the substrate, but also help improve the surface flatness of the reflective metal layer.
  • the reflectivity of the reflective metal layer can be further improved.
  • the annealing treatment may be performed in an N 2 atmosphere at 200°C.
  • the present disclosure proposes a display device.
  • the backlight module of the display device includes the direct type backlight source described above. Therefore, the display device has all the features and advantages of the direct-lit backlight as described above, and will not be repeated here. In general, the display device has at least one of the advantages of higher light extraction efficiency, better stability, and lower power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本公开涉及背光源及制备方法、背光模组以及显示装置。该背光源包括:基板;位于所述基板上的多个微发光二极管;以及反射结构,所述反射结构位于多个所述微发光二极管之间的间隙处,所述反射结构包括反射金属层、以及密封所述反射金属层的介质层。

Description

背光源及制备方法、背光模组以及显示装置
相关申请的交叉引用
本申请主张在2019年3月12日在中国提交的中国专利申请No.201910183390.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,具体地,涉及背光源及制备方法、背光模组以及显示装置。
背景技术
液晶显示装置中的背光模组是显示装置的重要组成部分。目前的背光模组中的光源,主要是由发光二极管(Light Emitting Diode,LED)阵列组成的,分为直下式和侧入式两种类型。其中,Mini LED面光源具有更小的芯片尺寸,相邻两个芯片之间的间距也更小,作为下一代显示产品,通过对面光源分区,能够实现高动态范围(High Dynamic Range,HDR)显示。与侧入式背光源相比,Mini LED背光源通过搭配扩散膜、量子点(Quantum Dot,QD)膜、复合棱镜等光学结构,可提供出光均匀的面光源。然而目前基于Mini LED的背光源的反射率较低,只有80%左右,造成mini LED面光源光效偏低,功耗偏高。虽然通过镀制金属薄膜(如Ag)能够提升灯板底部反射率,但Ag等反射率较高的金属薄膜稳定性较差,容易被水氧破坏,因此难以在实际使用过程中维持较高的反射率。
因此,目前的直下式背光源及制备方法、背光模组以及显示装置仍有待改进。
发明内容
在本公开的一个方面,提出了一种背光源。该背光源包括:基板;位于所述基板上的多个微发光二极管;以及反射结构,所述反射结构位于多个所述微发光二极管之间的间隙处,所述反射结构包括反射金属层、以及密封所 述反射金属层的介质层。
根据本公开的实施例,反射金属层由Ag形成,所述反射金属层的厚度为150-200nm。
根据本公开的实施例,所述介质层至少包括:层叠设置的二氧化硅亚层以及三氧化二铝亚层,所述二氧化硅亚层靠近所述反射金属层,并覆盖所述反射金属层远离所述基板一侧的表面以及侧壁,所述二氧化硅亚层的厚度为180-210nm;所述三氧化二铝亚层覆盖所述二氧化硅亚层远离所述反射金属层一侧的表面以及侧壁,所述三氧化二铝亚层的厚度为40-70nm。
根据本公开的实施例,该背光源进一步包括:牺牲金属块,所述牺牲金属块位于所述反射金属的侧壁处并与所述反射金属层相接触,所述介质层覆盖所述牺牲金属块的不与所述基板和反射金属层接触的表面。
根据本公开的实施例,所述牺牲金属块由Zn形成。
根据本公开的实施例,所述反射金属层与所述基板相接触,并且所述介质层覆盖在所述反射金属层的不与所述基板接触的表面上。
根据本公开的实施例,所述多个微发光二极管呈阵列排布。
根据本公开的实施例,所述反射结构包括多个镂空区域,所述多个微发光二极管分别设置在所述多个镂空区域中。
根据本公开的实施例,所述介质层与所述微发光二极管在所述基板上间隔设置。
根据本公开的实施例,所述介质层由透明的无机材料形成。
根据本公开的实施例,所述背光源为用于显示装置的直下式背光源。
在本公开的另一个方面,提出了一种背光模组。该背光模组包括前面所述的直下式背光源。由此,该背光模组具有前面描述的直下式背光源所具有的全部特征,在此不再赘述。
在本公开的又一个方面,提出了一种制备背光源的方法。该方法包括:在基板上形成反射结构,所述反射结构包括反射金属层,以及包覆并密封所述反射金属层的介质层,所述反射结构具有镂空区域;以及在所述镂空区域处设置微发光二极管。
根据本公开的实施例,形成所述反射结构包括:在所述基板上沉积反射 金属,并利用构图工艺去除与所述镂空区域对应的所述反射金属,以形成所述反射金属层;在所述基板上具有所述反射金属层的一侧沉积介质材料,并通过构图工艺去除与所述镂空区域对应的所述介质材料,以形成所述介质层。
根据本公开的实施例,形成所述反射结构包括:在所述基板上沉积牺牲金属,并利用构图工艺形成环绕所述镂空区域的环形的牺牲金属块;在所述基板形成有所述牺牲金属块的一侧沉积反射金属,并利用构图工艺去除与所述镂空区域对应的所述反射金属,以形成所述反射金属层;在所述基板上具有所述反射金属层的一侧沉积介质材料,并通过构图工艺去除与所述镂空区域对应的所述介质材料,以形成所述介质层。
根据本公开的实施例,形成所述反射金属层之后,形成所述介质层之前,所述方法进一步包括:对所述基板进行退火处理。
根据本公开的实施例,所述背光源为用于显示装置的直下式背光源。
在本公开的又一个方面,提出了一种显示装置。所述显示装置的背光模组包括前面所述的直下式背光源。由此,该显示装置具有前面描述的直下式背光源所具有的全部特征。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本公开一个实施例的直下式背光源的结构示意图;
图2显示了根据本公开另一个实施例的直下式背光源的结构示意图;
图3显示了根据本公开一个实施例的直下式背光源的俯视图;
图4显示了根据本公开一个实施例的制备直下式背光源的方法的流程示意图;
图5显示了根据本公开一个实施例的制备直下式背光源的部分方法的流程示意图;
图6显示了根据本公开一个实施例的制备直下式背光源的方法的流程示意图;
图7显示了根据本公开一个实施例的制备直下式背光源的部分方法的流 程示意图;以及
图8显示了根据本公开另一个实施例的直下式背光源的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或包括相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种用于显示装置的直下式背光源。参考图1,该直下式背光源包括:基板100,以及设置在基板100上的多个微发光二极管200,多个微发光二极管200呈阵列排布。多个微发光二极管200之间的间隙处,具有反射结构300。反射结构300包括反射金属层310,以及密封反射金属层310的介质层320。该直下式背光源具有反射率高、发光效率高、功耗低、稳定性好等优点的至少之一。
为了方便理解,下面首先对该直下式背光源能够实现反射率高、发光效率高、功耗低、稳定性好等优点的原理进行简单说明:
与相关技术中的发光二极管相比,本公开基板100上的微发光二极管200的尺寸极小,仅在10-50微米左右。相应地,微发光二极管阵列之间的距离也较小。因此,与采用常规发光二极管的侧入式背光源相比,难以采用常规的反射膜层提高背光源的出光效率。虽然可以通过诸如丝网印刷等技术形成感光油墨提升背光源的出光效率,但该类型的背光源也仅具有80%左右的反射率,且精度达不到要求,造成芯片pad区域(具有微发光二极管200的区域)被感光油墨覆盖。反射金属虽然具有较高的反射率,但仅通过沉积金属层提高反射率的方式,又难以保证金属层的耐久度:具有较高的反射效率的金属(如Ag等),容易在实际使用过程中被环境中的水氧腐蚀发生氧化等反应,因此难以长时间的保持较高的反射率。根据本公开实施例的背光源,通过在反射金属层上设置用于密封该反射金属层的介质层的方式,可保护反射金属层,提高反射结构的耐久度。并且,反射结构300具有层叠的结构,可以较为方便地通过沉积材料和构图工艺形成,因此适用于尺寸小、间距小的 微发光二极管阵列的背光源。由此,可以在保证反射结构具有较高的反射率的同时,提高反射结构的耐久度。
下面根据本公开的具体实施例,对该直下式背光源的各个结构进行详细描述:
根据本公开的实施例,反射金属层310可以是由Ag形成的,或者也可以是由Al、Au、Cu、Cr、Pt等金属中的任一种形成的。金属Ag具有较高的反射率,可通过诸如蒸镀等方式简便地形成膜层结构。根据本公开的实施例,反射金属层310的厚度可以为150-200nm。例如,可以为160nm、170nm、180nm、190nm等。当反射金属层的厚度在上述范围内时,可以获得较好的反射率,由此,有利于进一步提高该直下式背光源的出光效率。
根据本公开的实施例,介质层320覆盖反射金属层310,并将反射金属层310密封在介质层320内部。也即是说,介质层320覆盖反射金属层310远离基板100一侧的表面,以及反射金属层310的侧壁。由此,可利用介质层320对反射金属层310进行密封,隔绝环境中的水氧对金属反射层310的腐蚀,从而可以提高反射结构300的耐久度。介质层320的材料不受特别限制,例如,可以为具有一定透过率的透明的无机材料。由此,一方面可利用无机膜层隔绝环境中的水氧,另一方面,不会由于介质层320的覆盖,而影响金属反射层310反射的光线的射出。并且,无机材料形成的介质层320还可以防止反射金属层310与微发光二极管200的芯片走线之间接触,可实现反射金属层310与微发光二极管200或是连接走线之间的绝缘。
根据本公开的一些具体实施例,介质层320可包括多个层叠结构。例如,参考图2,介质层320可至少包括层叠设置的二氧化硅亚层10以及三氧化二铝亚层20。其中,二氧化硅亚层10靠近反射金属层设置。根据本公开的实施例,二氧化硅亚层10覆盖反射金属层310远离所述基板一侧的表面以及反射金属层310的侧壁,以对反射金属层310进行密封。三氧化二铝亚层20覆盖二氧化硅亚层10,即三氧化二铝亚层20覆盖二氧化硅亚层10远离反射金属层310一侧的表面,以及二氧化硅亚层10的侧壁,以对二氧化硅亚层进行密封。由此,可实现对反射金属层310进行多层封装,从而可以进一步提升该反射结构300的密封性能以及耐久度。另一方面,通过调节层叠的二氧化 硅以及三氧化二铝的厚度,上述结构还可以起到提升介质层透射率的作用,从而有利于进一步提高该背光源的出光效率。
根据本公开的一些具体实施例,三氧化二铝亚层20的厚度可以为40-70nm,二氧化硅亚层10的厚度可为180-210nm。厚度在上述范围内的二氧化硅亚层10与三氧化二铝亚层20层叠之后,可构成能够提升蓝光反射率的组合膜层结构,从而有利于提升该背光源的出光效率。
在上述实施例中,所述介质层320为无机材料亚层/无机材料层亚层层叠的结构。无机材料亚层的材料除了上述的二氧化硅或三氧化二铝之外,还可以为一氧化硅或氟化镁等。
此外,在本公开的另外一些实施例中,所述介质层320也可以为无机材料亚层/有机材料亚层层叠的结构,其中无机材料亚层的材料可以类似地为上述的二氧化硅、三氧化二铝、一氧化硅或氟化镁等,而该有机材料亚层的材料可以为聚甲基丙烯酸甲酯、或聚苯乙烯等。例如,参考图8,介质层320可至少包括层叠设置的二氧化硅亚层10以及聚甲基丙烯酸甲酯20’。其中,二氧化硅亚层10靠近反射金属层设置。根据本公开的实施例,二氧化硅亚层10覆盖反射金属层310远离所述基板一侧的表面以及反射金属层310的侧壁,以对反射金属层310进行密封。聚甲基丙烯酸甲酯20’覆盖二氧化硅亚层10,即聚甲基丙烯酸甲酯20’覆盖二氧化硅亚层10远离反射金属层310一侧的表面,以及二氧化硅亚层10的侧壁,以对二氧化硅亚层进行密封。由此,也可实现对反射金属层310进行多层封装,从而可以进一步提升该反射结构300的密封性能以及耐久度。
根据本公开的实施例,为了进一步提高该背光源的耐久度,使其在使用过程中可在较长时间内均保持初始的高反射率,该背光源可进一步包括牺牲金属块。具体地,参考图2,牺牲金属块30位于反射金属层310的侧壁处,且介质层覆盖牺牲金属块30。牺牲金属块30的具体组成和形状、数量均不受特别限制,只要牺牲金属块30的化学性质较反射金属层310更为活泼,且与反射金属层310相接触即可。由此,可进一步提高反射金属层的耐久度,缓解由于水氧腐蚀而造成的反射率下降。例如,根据本公开的一些实施例,牺牲金属块30可以是由厚度与反射金属层310的厚度相似甚至相等的Zn构 成的。
如前所述,反射结构300位于多个微发光二极管200之间的间隙处,而多个微发光二极管200在基板100上是呈阵列排布的。因此,反射结构300可以为具有阵列排布的镂空区域的膜层结构,所述多个发光二极管200分别设置在反射结构300的多个镂空区域中。参考图3,反射结构300可覆盖基板100上需要设置微发光二极管200的区域以外的全部区域,由此可更好地反射微发光二极管200发出的光。反射结构300的镂空区域的面积可大于微发光二极管200的面积,由此可为微发光二极管200的设置预留一定的余量,所述微发光二极管200与所述介质层320可以间隔设置。当该反射结构300中具有牺牲金属块30时,牺牲金属块30可以为环绕图3中所示出的镂空区域的环形结构。由此,可更好地对反射金属层进行保护。
根据本公开的实施例,具有上述结构的直下式背光源可具有较高的反射率,反射率可以达到96%以上。并且,由于介质层等结构的设置,该背光源可长期保持稳定,缓解该背光源在实际使用过程中反射率快速下降的问题。
在本公开的另一个方面,本公开提出了一种背光模组。根据本公开的实施例,该背光模组包括前面所述的直下式背光源。由此,该背光模组具有前面描述的直下式背光源所具有的全部特征以及优点,在此不再赘述。总的来说,该背光模组具有出光效率较高、稳定性较好、功耗较低等优点的至少之一。
根据本公开的具体实施例,该背光模组除去前面描述的直下式背光源之外,还可具有光学模组等结构。例如,该背光模组可进一步包括诸如扩散膜、量子点膜、复合棱镜等结构。
在本公开的又一个方面,本公开提出了一种制备用于显示装置的直下式背光源的方法。该方法可简便地获得直下式背光源,制备的背光源具有出光效率较高、稳定性较好、功耗较低等优点的至少之一。根据本公开的实施例,该方法制备的直下式背光源可以为前面描述的直下式背光源。具体地,参考图4,该方法包括:
S100:在基板上形成反射结构,所述反射结构具有镂空区域
根据本公开的实施例,在该步骤中,首先在基板上形成反射结构。该反 射结构可以具有与前面描述的反射结构相同的特征,在此不再赘述。具体地,该反射结构可包括反射金属层,以及密封反射金属层的介质层。并且,反射结构中具有用于容纳微发光二极管的镂空区域。由于后续步骤中设置的微发光二极管在基板上是阵列排布的,因此反射结构的镂空区域也可呈阵列排布。该多个发光二极管200分别设置在反射结构300的多个镂空区域中。
根据本公开的实施例,参考图5,形成反射结构可包括以下步骤:
S110:在所述基板上沉积反射金属,去除与所述镂空区域对应的反射金属以形成反射金属层
根据本公开的实施例,在该步骤中可在基板上沉积反射金属膜层310’,随后利用构图工艺去除与镂空区域对应的反射金属,形成反射金属层。具体地,参考图6中的(a)以及(b)部分,可以通过在反射金属膜层310’上设置掩膜50A,刻蚀去除掩膜50A覆盖区域以外的反射金属层膜层310’。掩膜50A可以是通过涂覆光刻胶并曝光形成的。形成反射金属层310之后,去除掩膜50A即可进行后续步骤。
S120:在所述基板上沉积介质材料,去除与镂空区域对应的介质材料,以获得介质层。
根据本公开的实施例,在该步骤中,在基板上具有反射金属层的一侧沉积介质材料,并通过构图工艺去除与镂空区域对应的介质材料,以获得覆盖反射金属层的介质层。由此,可简便地获得反射结构。该步骤中获得的介质层,可具有与前面描述的直下式背光源的介质层相同的结构以及特征,在此不再赘述。本领域技术人员能够理解的是,介质层需要覆盖并密封反射金属层,因此,在形成介质层时所采用的掩膜,需要使得刻蚀后剩余的介质层材料能够覆盖反射金属层的表面以及侧壁。
根据本公开一些具体的实施例,介质层可包括多个层叠的亚层结构。例如,可包括二氧化硅亚层和三氧化二铝亚层。关于二氧化硅亚层和三氧化二铝亚层的详细结构,前面已经进行了详细的描述,在此不再赘述。参考图6中的(b)~(e)部分,当介质层包括二氧化硅亚层和三氧化二铝亚层时,形成介质层的步骤可具体包括:首先,在形成有反射金属层310的基板100上整面沉积SiO 2形成二氧化硅层10’,然后可在与镂空区域相对应处(即后续 步骤中设置微发光二极管的位置)涂胶曝光,形成掩膜50B。将掩膜50B覆盖区域以外的SiO 2刻蚀掉,而后进行去胶处理以去除掩膜50B,完成二氧化硅亚层10的制作。类似地,形成二氧化硅亚层10之后,首先在基板100上整层沉积Al 2O 3形成Al 2O 3层20’,再利用构图工艺,形成三氧化二铝亚层20。刻蚀后形成的二氧化硅亚层10的宽度大于反射金属层310的宽度,刻蚀后形成的三氧化二铝亚层20的宽度大于二氧化硅亚层10的宽度,两层刻蚀宽度的增加实现了对反射金属层310的隔离,可在一定程度上杜绝水氧的渗透。
S200:在所述镂空区域处设置多个微发光二极管
根据本公开的实施例,在该步骤中,在前面形成的反射结构的镂空区域中设置微发光二极管,以获得直下式背光源。形成的背光源的结构可以如图6中的(f)部分所示出的。形成反射结构之后再进行微发光二极管的设置,可以防止形成反射结构过程中的操作对微发光二极管的性能造成影响。
根据本公开的实施例,该步骤中设置微发光二极管200的具体操作不受特别限制,本领域技术人员可根据实际需要进行选择。例如,多个微发光二极管200可以是分批转移至基板100上的。每次可转移一个微发光二极管200,也可以每次转移多个微发光二极管200。
根据本公开的实施例,为了进一步提高利用该方法制备的背光源的耐久度,该方法中还可以包括形成牺牲金属的步骤。关于牺牲金属发挥作用的原理、结构、化学组成,前面已经进行了详细的描述,在此不再赘述。形成牺牲金属的操作可以在形成反射金属层之前进行。由此,可进一步提高制备的反射结构的稳定性以及耐久度。具体地,参考图7的(a)部分,可以首先通过蒸镀等方式,在基板100上形成牺牲金属30’,例如,可蒸镀Zn以形成牺牲金属30’。随后,设置光刻胶形成的掩膜50C,并刻蚀去除掩膜50C覆盖区域以外的牺牲金属30’,获得牺牲金属块30。随后,无需去除掩膜50C,可直接蒸镀形成反射金属膜层310’,镀层厚度与牺牲金属块30的厚度相同,形成的结构可如图7中的(b)部分所示。随后,可通过显影或等离子体法等方式,去除掩膜50C,以及掩膜50C上方的反射金属材料(在该等离子体法中,例如,可将上述半导体结构置于去胶机内。在所述去胶机内,在射频电压的能量的作用下将灰化气体解离为等离子体,所述等离子体和由光刻胶形 成的掩膜50C发生反应,从而将掩膜50C去除,并且顺带地将位于该掩膜50C上方的反射金属材料从包括基板100、牺牲金属块30以及与基板100直接接触的反射金属膜层310’的半导体结构上移除)。随后,参考图7中的(c)以及(d)部分,可以通过在对应于非镂空区域的反射金属膜层310’和牺牲金属块30上设置掩膜50A,刻蚀去除掩膜50A覆盖区域以外的反射金属层膜层310’,以形成反射金属层310。掩膜50A可以是通过涂覆光刻胶并曝光形成的。形成反射金属层310之后,去除掩膜50A,随后即可进行后续的介质层的制备。
根据本公开的实施例,为了提高金属材料(反射金属层以及牺牲金属块)与基板100之间的结合力,在进行介质层的制备之前,还可以进一步包括退火处理的操作。发明人发现,对于反射金属层而言,退火处理不仅可以提升反射金属层与基板的结合力,还有利于提高反射金属层的表面平整度。由此,可进一步提高反射金属层的反射率。具体地,退火处理可以是在200℃的N 2氛围下进行的。本领域技术人员能够理解的是,当该背光源具有牺牲金属块时,退火处理可以是对牺牲金属块以及反射金属层进行的。
在本公开的又一个方面,本公开提出了一种显示装置。根据本公开的实施例,所述显示装置的背光模组包括前面所述的直下式背光源。由此,该显示装置具有前面描述的直下式背光源所具有的全部特征以及优点,在此不再赘述。总的来说,该显示装置具有出光效率较高、稳定性较好、功耗较低等优点的至少之一。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以 及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种背光源,包括:
    基板;
    位于所述基板上的多个微发光二极管;以及
    反射结构,所述反射结构位于多个所述微发光二极管之间的间隙处,所述反射结构包括反射金属层、以及密封所述反射金属层的介质层。
  2. 根据权利要求1所述的背光源,其中,反射金属层由Ag形成,所述反射金属层的厚度为150-200nm。
  3. 根据权利要求1所述的背光源,其中,所述介质层至少包括:层叠设置的二氧化硅亚层以及三氧化二铝亚层,其中
    所述二氧化硅亚层靠近所述反射金属层,并覆盖所述反射金属层远离所述基板一侧的表面以及侧壁,所述二氧化硅亚层的厚度为180-210nm;
    所述三氧化二铝亚层覆盖所述二氧化硅亚层远离所述反射金属层一侧的表面以及侧壁,所述三氧化二铝亚层的厚度为40-70nm。
  4. 根据权利要求1-3任一项所述的背光源,进一步包括:
    牺牲金属块,所述牺牲金属块位于所述反射金属层的侧壁处并与所述反射金属层相接触,所述介质层覆盖所述牺牲金属块的不与所述基板和反射金属层接触的表面。
  5. 根据权利要求4所述的背光源,其中,所述牺牲金属块由Zn形成。
  6. 根据权利要求1所述的背光源,其中,所述反射金属层与所述基板相接触,并且所述介质层覆盖在所述反射金属层的不与所述基板接触的表面上。
  7. 根据权利要求1中任一项所述的背光源,其中,所述多个微发光二极管呈阵列排布。
  8. 根据权利要求1所述的背光源,其中,所述反射结构包括多个镂空区域,所述多个微发光二极管分别设置在所述多个镂空区域中。
  9. 根据权利要求1所述的背光源,其中,所述介质层与所述微发光二极管在所述基板上间隔设置。
  10. 根据权利要求1所述的背光源,其中,所述介质层由透明的无机材 料形成。
  11. 根据权利要求1所述的背光源,其中,所述背光源为用于显示装置的直下式背光源。
  12. 一种背光模组,包括权利要求1-11任一项所述的背光源。
  13. 一种制备背光源的方法,包括:
    在基板上形成反射结构,所述反射结构包括反射金属层,以及包覆并密封所述反射金属层的介质层,所述反射结构具有镂空区域;以及
    在所述镂空区域处设置微发光二极管。
  14. 根据权利要求13所述的方法,其中,形成所述反射结构包括:
    在所述基板上沉积反射金属,并利用构图工艺去除与所述镂空区域对应的所述反射金属,以形成所述反射金属层;
    在所述基板上具有所述反射金属层的一侧沉积介质材料,并通过构图工艺去除与所述镂空区域对应的所述介质材料,以形成所述介质层。
  15. 根据权利要求13所述的方法,其中,形成所述反射结构包括:
    在所述基板上沉积牺牲金属,并利用构图工艺形成环绕所述镂空区域的环形的牺牲金属块;
    在所述基板形成有所述牺牲金属块的一侧沉积反射金属,并利用构图工艺去除与所述镂空区域对应的所述反射金属,以形成所述反射金属层;
    在所述基板上具有所述反射金属层的一侧沉积介质材料,并通过构图工艺去除与所述镂空区域对应的所述介质材料,以形成所述介质层。
  16. 根据权利要求14或者15所述的方法,其中,形成所述反射金属层之后,形成所述介质层之前,所述方法进一步包括:对所述基板进行退火处理。
  17. 根据权利要求13所述的方法,其中,所述背光源为用于显示装置的直下式背光源。
  18. 一种显示装置,所述显示装置的背光模组包括权利要求1-11任一项所述的背光源。
PCT/CN2020/074701 2019-03-12 2020-02-11 背光源及制备方法、背光模组以及显示装置 WO2020181941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910183390.3 2019-03-12
CN201910183390.3A CN109709722A (zh) 2019-03-12 2019-03-12 直下式背光源及制备方法、背光模组以及显示装置

Publications (1)

Publication Number Publication Date
WO2020181941A1 true WO2020181941A1 (zh) 2020-09-17

Family

ID=66266725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074701 WO2020181941A1 (zh) 2019-03-12 2020-02-11 背光源及制备方法、背光模组以及显示装置

Country Status (2)

Country Link
CN (1) CN109709722A (zh)
WO (1) WO2020181941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935853A (zh) * 2022-06-30 2022-08-23 苏州华星光电技术有限公司 背光模组及其制备方法和显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置
CN110275352B (zh) * 2019-06-28 2021-12-03 武汉华星光电技术有限公司 背光模块及其透光率的调控方法
CN112698528A (zh) * 2019-10-22 2021-04-23 京东方科技集团股份有限公司 一种背光模组及显示装置
CN112820752B (zh) * 2019-11-15 2023-01-03 云谷(固安)科技有限公司 微发光二极管阵列基板及微发光二极管的转移方法
WO2021104445A1 (zh) 2019-11-29 2021-06-03 海信视像科技股份有限公司 一种显示装置
CN111028714A (zh) * 2019-12-26 2020-04-17 惠州市华星光电技术有限公司 一种背板结构以及显示装置
WO2021248970A1 (zh) * 2020-06-10 2021-12-16 海信视像科技股份有限公司 一种显示装置
CN115373175B (zh) * 2021-05-20 2024-06-18 华为技术有限公司 背光模组的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864305B1 (ko) * 2007-10-02 2008-10-20 윤태식 발광소자를 이용한 하이브리드 표시 장치
CN107797334A (zh) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元
CN109037271A (zh) * 2018-08-16 2018-12-18 京东方科技集团股份有限公司 光学器件及其制造方法、显示装置
CN109148670A (zh) * 2016-08-30 2019-01-04 开发晶照明(厦门)有限公司 Led倒装芯片封装基板和led封装结构
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081509A (ko) * 2007-03-05 2008-09-10 삼성전기주식회사 백색 led를 이용한 면광원 및 이를 구비한 lcd백라이트 유닛
CN207705197U (zh) * 2017-11-23 2018-08-07 华灿光电(浙江)有限公司 一种发光二极管芯片阵列、显示面板
CN108761909A (zh) * 2018-05-28 2018-11-06 武汉华星光电技术有限公司 一种led面光源及其制备方法、显示面板
CN108983497A (zh) * 2018-08-27 2018-12-11 上海中航光电子有限公司 Mini LED背光源及其制备方法和背光源模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864305B1 (ko) * 2007-10-02 2008-10-20 윤태식 발광소자를 이용한 하이브리드 표시 장치
CN109148670A (zh) * 2016-08-30 2019-01-04 开发晶照明(厦门)有限公司 Led倒装芯片封装基板和led封装结构
CN107797334A (zh) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元
CN109037271A (zh) * 2018-08-16 2018-12-18 京东方科技集团股份有限公司 光学器件及其制造方法、显示装置
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935853A (zh) * 2022-06-30 2022-08-23 苏州华星光电技术有限公司 背光模组及其制备方法和显示装置
CN114935853B (zh) * 2022-06-30 2023-12-29 苏州华星光电技术有限公司 背光模组及其制备方法和显示装置

Also Published As

Publication number Publication date
CN109709722A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020181941A1 (zh) 背光源及制备方法、背光模组以及显示装置
CN109791939B (zh) 微发光二极管显示面板、微发光二极管显示装置和制造微发光二极管显示面板的方法
US20080164807A1 (en) Component Based on Organic Light-Emitting Diodes and Method For Producing the Same
US20100019269A1 (en) Light-emitting device and method of manufacturing the same
TWI683157B (zh) 顯示面板及其製造方法
US20120273751A1 (en) Light emitting device and a manufacturing method thereof
JP2009111323A (ja) 発光素子及びその製造方法
JP2007208041A (ja) 半導体装置及び半導体装置の製造方法
WO2024098972A1 (zh) Micro LED微显示芯片及其制造方法
WO2020238397A1 (zh) 显示面板及其制造方法、显示装置
US20240128403A1 (en) Micro light emitting element and its preparation method
CN114256391A (zh) 显示基板的制作方法、显示基板及显示装置
CN111129062B (zh) Led显示模组、led显示屏及制作方法
CN110320702B (zh) 基板及其制备方法、显示面板
CN108051951B (zh) Led光源、背光模组及液晶显示装置
CN114551680A (zh) 一种倒装发光二极管芯片及制备方法
KR20050050049A (ko) 마이크로렌즈가 집적화된 유기전계발광소자 및 그 제조방법
CN116960253B (zh) 一种倒装发光二极管芯片及其制备方法
US20230369546A1 (en) Light source device and manufacturing method of light source device
TW201703291A (zh) 基板與其製造方法、發光元件與其製造方法以及具有該基板或發光元件之裝置
CN106898618B (zh) 一种固态光源的制备方法和固态光源
TWI838712B (zh) 減少次像素干擾的微型led以及製造方法
TWI820785B (zh) 發光元件面板
JP7296482B2 (ja) 発光ダイオード及びその製造方法
CN109755368A (zh) 一种发光二极管芯片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769170

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20769170

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2022

122 Ep: pct application non-entry in european phase

Ref document number: 20769170

Country of ref document: EP

Kind code of ref document: A1