WO2020179460A1 - 制御装置、制御方法、及びプログラム - Google Patents

制御装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2020179460A1
WO2020179460A1 PCT/JP2020/006650 JP2020006650W WO2020179460A1 WO 2020179460 A1 WO2020179460 A1 WO 2020179460A1 JP 2020006650 W JP2020006650 W JP 2020006650W WO 2020179460 A1 WO2020179460 A1 WO 2020179460A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
wind
control device
wind speed
predetermined time
Prior art date
Application number
PCT/JP2020/006650
Other languages
English (en)
French (fr)
Inventor
辰吾 鶴見
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN202080017687.3A priority Critical patent/CN113508077A/zh
Priority to JP2021503952A priority patent/JP7400801B2/ja
Priority to US17/310,836 priority patent/US20220128996A1/en
Publication of WO2020179460A1 publication Critical patent/WO2020179460A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • G05D1/0204Control of position or course in two dimensions specially adapted to aircraft to counteract a sudden perturbation, e.g. cross-wind, gust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/35UAVs specially adapted for particular uses or applications for science, e.g. meteorology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W2001/003Clear air turbulence detection or forecasting, e.g. for aircrafts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W2001/006Main server receiving weather information from several sub-stations

Definitions

  • the present disclosure relates to a control device, a control method, and a program.
  • Patent Document 1 discloses a technique for spraying fertilizer or the like on a field using an airplane body. In addition, it is generally performed to image a wide range from the air using a drone equipped with an image pickup device.
  • the air vehicle When working with an air vehicle, it is important that the air vehicle stably stays in a predetermined place during the operation, or that the air vehicle stably fly along a predetermined trajectory. So, for example, if the position of the flying vehicle changes due to strong winds, etc., using a GNSS (Global Navigation Satellite System) sensor, etc., a technology to automatically return the flying vehicle to the position before the strong wind, etc. Has been developed.
  • GNSS Global Navigation Satellite System
  • a receiving unit that receives a wind velocity vector at an arbitrary time measured by at least one or more external anemometers, and a wind force applied to a moving body after a predetermined time based on the received wind velocity vector.
  • a control device including a wind speed prediction unit that predicts the wind speed and a control unit that controls the drive of the moving body based on the predicted wind speed is provided.
  • the wind speed vector at an arbitrary time measured by at least one or more external anemometers is received, and based on the received wind speed vector by the arithmetic unit, after a predetermined time.
  • a control method is provided that includes predicting the wind force applied to the moving body and controlling the driving of the moving body based on the predicted wind speed.
  • the computer is configured to receive a wind speed vector measured by at least one or more external anemometers at an arbitrary time, and a predetermined time after a predetermined time based on the received wind speed vector.
  • a program is provided that functions as a wind speed prediction unit that predicts the wind force applied to the moving body and a control unit that controls the driving of the moving body based on the predicted wind speed.
  • FIG. 1 is an explanatory diagram showing an example of a moving body controlled by the control device according to the present embodiment.
  • a flying body will be illustrated as an example of a moving body, but the moving body controlled by the control device according to the present embodiment is not limited to such an example.
  • the moving body controlled by the control device does not have to fly.
  • the control device controls the position and attitude of the first moving body 10 to fly. Specifically, the control device according to the present embodiment performs a work on a wide range from the air based on the wind velocity vector measured by the second moving body 20 including the anemometer. The position and posture of the moving body 10 are controlled. The control device according to the present embodiment may further control the position and orientation of the second moving body 20 provided with the anemometer.
  • the first moving body 10 is, for example, a flying body such as a helicopter or a multicopter that is provided with an image pickup device 30 and flies by a rotary wing.
  • the first moving body 10 can image a wide area from the air using, for example, the imaging device 30.
  • the first moving body 10 may be provided with a device other than the image pickup device 30 as long as the work is performed on a wide area from the air.
  • the first moving body 10 may include a measuring device for measuring a wide range of terrain from the air, or a spraying device for spraying a liquid or a solid over a wide range from the air.
  • the first moving body 10 works on a wide area from the air, it is important that the position and posture are stable. Specifically, it is important that the first moving body 10 flies without disturbing its position and attitude as much as possible even when it receives a sudden strong wind or the like.
  • the second mobile body 20 is, for example, a helicopter or a multicopter that is equipped with an anemometer and flies by a rotor like the first mobile body 10.
  • the second moving body 20 measures the wind velocity vector at the position of the second moving body 20 using an anemometer.
  • the control device predicts the wind force to be applied to the first moving body 10 after a predetermined time based on the wind speed vector measured by the second moving body 20, and the first one is based on the predicted wind power. Control the moving body 10. According to this, the control device can generate a propulsive force for canceling the wind force applied to the first moving body 10 in the first moving body 10, so that the position and orientation of the first moving body 10 are It is possible to suppress being disturbed by a disturbance such as a strong wind.
  • the control device according to the present embodiment may be a control unit provided in the first mobile body 10.
  • the control device according to the present embodiment may be an information processing device capable of wirelessly communicating with the first mobile body 10 and the second mobile body 20.
  • FIG. 2 is a block diagram illustrating a functional configuration of the control device according to the present embodiment.
  • the control device 100 includes a target value generation unit 110, a position control unit 121, a posture control unit 123, a drive control unit 130, a sensor unit 141, and a position/posture. It includes an estimation unit 143, a wind speed sensor unit 151, a reception unit 153, a wind power prediction unit 155, and an FF control unit 157.
  • the target value generation unit 110 generates target values for the position and posture of the first moving body 10. Specifically, the target value generation unit 110 is based on a movement instruction transmitted from a transmitter that wirelessly controls the first mobile body 10 or a movement plan generated inside the first mobile body 10. A target value of the position and orientation of the first moving body 10 is generated. For example, the target value generation unit 110 generates a target value of x, y, z coordinates (that is, position) of the first moving body 10 and a target value of yaw angle (that is, posture) at a predetermined time. Good.
  • the position control unit 121 generates an instruction value for controlling the position of the first moving body 10, and further generates a target value for the posture angle of the first moving body 10. Specifically, the position control unit 121 calculates and calculates an error between the target value of the position and orientation of the first moving body 10 and the estimated value of the position and orientation of the first moving body 10. An instruction value for controlling the position and attitude for correcting the error and a target value for the attitude angle are generated. For example, the position control unit 121 indicates a value to a drive unit (not shown) for controlling the x, y, z coordinates (that is, position) and yaw angle (that is, posture) of the first moving body 10. And the target values of the roll angle and the pitch angle (that is, the posture angle) of the first moving body 10 may be generated.
  • the attitude control unit 123 generates an instruction value for controlling the attitude angle and the attitude angular velocity of the first moving body 10. Specifically, the posture control unit 123 calculates an error between the target value of the posture angle of the first moving body 10 and the estimated value of the posture angle of the first moving body 10, and calculates the calculated error. An instruction value for controlling the attitude angle for correction is generated. In addition, the posture control unit 123 calculates and calculates an error between the target value of the posture angular velocity of the first moving body 10 and the estimated value of the posture angular velocity of the first moving body 10, similarly to the posture angle. An instruction value for controlling the posture angular velocity for correcting the error is generated.
  • the attitude control unit 123 provides an instruction value to a drive unit (not shown) for controlling the roll angle and pitch angle (that is, attitude angle) of the first moving body 10, and a roll angular velocity and pitch angular velocity (that is, posture angle). That is, an instruction value to a drive unit (not shown) for controlling the posture angular velocity may be generated.
  • the sensor unit 141 senses the state of the first moving body 10. Specifically, the sensor unit 141 senses information regarding the position and orientation of the first moving body 10.
  • the sensor unit 141 is, for example, various cameras such as an RGB camera, a gray scale camera, a stereo camera, a depth camera, an infrared camera, or a ToF (Time of Flight) camera, an IMU (Inertial Measurement Unit), a pressure sensor, a magnetic sensor or a GNSS.
  • a (Global Navigation Satellite System) sensor may be provided. It goes without saying that the sensor unit 141 may include a plurality of sensors.
  • the position/orientation estimation unit 143 estimates the position and orientation of the first moving body 10 based on the information on the position and orientation of the first moving body 10 sensed by the sensor unit 141. Specifically, the position/orientation estimation unit 143 estimates the position/orientation, velocity, and angular velocity of the first moving body 10 by integrating observation values obtained by a plurality of sensors included in the sensor unit 141. For example, the position / attitude estimation unit 143 may estimate the position / attitude, speed, and angular velocity of the first moving body 10 by using a Kalman filter.
  • the wind speed sensor unit 151 measures the wind speed vector in the first moving body 10. Specifically, the wind speed sensor unit 151 may measure the wind strength and the wind direction in the first moving body 10. For example, the wind speed sensor unit 151 may be an anemometer mounted on the first moving body 10.
  • the receiving unit 153 receives at least one piece of information regarding the wind speed vector observed by the anemometer outside the first moving body 10. Specifically, the receiving unit 153 provides information on the wind speed vector measured by the anemometer from the second moving body 20 existing around the first moving body 10 or the anemometer provided in the observation device. Is received. For example, the receiving unit 153 obtains information on the wind strength and direction measured by the anemometer provided on the second moving body 20, information on the position and orientation of the second moving body 20, and a wind speed vector. Information regarding the measured time may be received from the second mobile body 20. The receiving unit 153 may receive information on the wind speed vector from the second mobile body 20 or the anemometer provided in the observation device, for example, by wireless communication by a known method. Further, the receiving unit 153 may receive information about the wind speed vector measured by a plurality of anemometers at different positions.
  • the wind force predicting unit 155 predicts the wind force applied to the first moving body 10 after a predetermined time, based on the wind speed vector observed by the anemometer outside the first moving body 10. Specifically, the wind force predicting unit 155 predicts the wind force applied to the first moving body 10 after a predetermined time based on the wind speed vector measured by the anemometer of the second moving body 20.
  • the wind power prediction unit 155 performs a fluid simulation using wind speed vectors measured by a plurality of anemometers outside the first moving body 10, so that the wind force applied to the first moving body 10 after a predetermined time is applied. May be predicted.
  • the fluid simulation can be performed by numerically solving the Navier-Stokes equation, the continuity equation, other energy equations, Maxwell's equations, and the like.
  • the wind power prediction unit 155 further uses the information on the structure of the environment around the first moving body 10 to increase the size of the wind speed vector around the first moving body 10 as shown in FIG. You may create the heat map which mapped the height and the direction.
  • FIG. 3 is a schematic diagram showing an example of a heat map representing a wind speed vector at each position in a predetermined environment. According to this, the wind power prediction unit 155 can accurately predict the wind speed vector after a predetermined time at the position of the first moving body 10, so that the wind force applied to the first moving body 10 after a predetermined time is accurately predicted. Can be predicted.
  • the wind power prediction unit 155 assumes that the wind corresponding to the wind speed vector measured by the anemometer with the first moving body 10 as the leeward propagates to the first moving body 10.
  • the wind force applied to the first moving body 10 may be predicted after time.
  • the wind power prediction unit 155 can predict the wind power to be applied to the first moving body 10 after a predetermined time more easily than the fluid simulation even when the observation results of the computational resources and the wind speed vector are small. ..
  • FIG. 4 is an explanatory diagram illustrating a method of predicting the wind speed vector in the first moving body 10 from the wind speed vector in the second moving body 20.
  • the wind power prediction unit 155 determines that the wind speed vector of the second moving body 20 with the first moving body 10 as the leeward propagates to the first moving body 10 after a predetermined time.
  • the wind velocity vector in the first moving body 10 after the elapse of time may be predicted.
  • the wind force prediction unit 155 calculates the angle ⁇ formed by the vector Vr connecting the first moving body 10 and the second moving body 20 and the wind speed vector Vs observed by the second moving body 20. To do. Next, the wind force predicting unit 155 determines that the wind velocity vector of the second moving body 20 having the smallest angle ⁇ among the second moving bodies 20 having the distance to the first moving body 10 within a predetermined range. May be used to predict the wind speed vector in the first moving body 10 after a predetermined time. Alternatively, the wind power prediction unit 155 may predict the wind speed vector in the first moving body 10 after a predetermined time by using the wind speed vector of the second moving body 20 having the smallest angle ⁇ .
  • the wind force predicting unit 155 predicts the wind speed vector in the first moving body 10 after a predetermined time by using the wind speed vector of the second moving body 20 having the shortest distance from the first moving body 10. Good.
  • the wind power prediction unit 155 uses the wind speed vector of the second moving body 20 having the shortest distance to the first moving body 10 among the second moving bodies 20 having an angle ⁇ within a predetermined range.
  • the wind velocity vector in the first moving body 10 after a predetermined time may be predicted.
  • the wind speed vector VM in the first moving body 10 after a predetermined time t can be predicted by adding the wind speed vector Vm and the wind speed vector Vs of the second moving body 20 by the following equation 1. ..
  • the wind force predicting unit 155 predicts the wind velocity vector in the first moving body 10 after a predetermined time by a simpler method without performing a complicated fluid simulation, and after the predetermined time, the first moving body 10 is predicted.
  • the wind force on 10 can be predicted.
  • the FF control unit 157 generates an instruction value for generating a propulsive force (not shown) for canceling the wind force applied to the first moving body 10 after a predetermined time. Specifically, the FF control unit 157 cancels the wind force applied to the first moving body 10 predicted by the wind force prediction unit 155, and drives a propulsive force for maintaining the position and posture of the first moving body 10. Generates an instruction value to be generated. That is, the FF control unit 157 performs, on the drive unit, feedforward control for canceling out the wind force predicted to be applied to the first moving body 10 in advance.
  • the drive control unit 130 controls a drive unit (not shown) that drives the first moving body 10. Specifically, the drive control unit 130 controls the drive unit based on the values indicated by the FF control unit 157, the position control unit 121, and the attitude control unit 123, thereby controlling the position and attitude of the first moving body 10. To control. For example, the drive control unit 130 sets the instruction values for controlling the x, y, z coordinates, the yaw angle, the roll angle, the pitch angle, the roll angular velocity, and the pitch angular velocity to the instruction values for canceling the wind force after a predetermined time. The position and orientation of the first moving body 10 may be controlled by controlling the motor, the actuator, or the like based on the indicated value to which the above is added.
  • control device 100 since the wind force applied to the first moving body 10 can be predicted in advance, the driving of the first moving body 10 is fed so that the position and the posture do not change due to the wind force. Forward control is possible.
  • FIG. 5 is a flowchart illustrating an operation flow of the control device 100 according to the present embodiment.
  • the control device 100 estimates the position and posture of the first moving body 10 based on the information sensed by the sensor unit 141 (S101).
  • the control device 100 determines whether the wind speed information including the wind speed vector in the second moving body 20 has been received from the second moving body 20 via the receiving unit 153 (S103).
  • the control device 100 causes the wind speed sensor unit 151 to measure the wind speed information including the wind speed vector in the first moving body 10 (S105). ..
  • the wind force predicting unit 155 causes the wind velocity vector in the first moving body 10, the wind velocity vector in the second moving body 20, information on the position and orientation of the first moving body 10, and the first moving body 10. Based on the information regarding the position and posture of the moving body 20 of 2, the wind force applied to the first moving body 10 after a predetermined time is calculated (S107). Next, the control device 100 calculates the propulsive force for canceling the disturbance caused by the wind force on the first moving body 10 after a predetermined time by the FF control unit 157 (S109).
  • the control device 100 causes the FF control unit 157 to disturb the first moving body 10 after a predetermined time due to the wind power.
  • the propulsive force for canceling is set to zero (S111).
  • control device 100 causes the drive control unit 130 to set a command value for controlling the position and orientation of the first moving body 10 to a command value for generating a propulsive force that cancels the wind force after a predetermined time.
  • the drive unit of the first moving body 10 is controlled based on the added command value (S113).
  • the control device 100 can predict the wind force in the first moving body 10 after a predetermined time based on the wind speed vector measured by the second moving body 20. Therefore, the control device 100 can control the drive of the first moving body 10 so as to maintain the position and attitude with respect to the applied wind power.
  • FIG. 6A is an explanatory diagram showing an example in which a plurality of second moving bodies 20 including an anemometer cause a first moving body 10 including an imaging device 30 to perform stable flight
  • FIG. 6B is an explanatory diagram showing an example in which a first moving body 10 including an anemometer 30 performs stable flight. It is explanatory drawing which shows an example in which a plurality of first moving bodies 10 provided with an image pickup apparatus 30 perform stable flight with each other.
  • the control device 100 arranges a plurality of second mobile bodies 20 having an anemometer around the first mobile body 10 including the image pickup device 30, and the plurality of second mobile bodies.
  • the position and orientation of the first moving body 10 may be stabilized by measuring the wind velocity vector at 20.
  • the control device 100 arranges a plurality of second moving bodies 20 each having an anemometer so as to surround the first moving body 10 so that the wind direction is constantly changed to the first moving body 20.
  • the first moving body 10 can be located leeward of the second moving body 20. According to this, the control device 100 can measure the wind speed vector by the second moving body 20 on the windward side of the first moving body 10 with respect to the wind in any wind direction. The wind force applied to the first moving body 10 after the elapse of time can be predicted with high accuracy.
  • the control device 100 measures the wind velocity vector by the plurality of first moving bodies 10 including the imaging device 30 and the anemometer, and shares the measured wind velocity vector with each other. The position and orientation of the first moving body 10 may be stabilized.
  • the first moving body 10 may be provided with an anemometer for controlling the position and attitude. Therefore, by sharing the measured wind speed vector among the plurality of first moving bodies 10, the control device 100 can use the plurality of first moving bodies 20 without using the second moving body 20 for measuring the wind speed vector. It is possible to stably control the position and posture of the moving body 10. According to this, the control device 100 can improve the efficiency of energy consumption in the first mobile body 10 and the second mobile body 20.
  • FIG. 7A is an explanatory diagram showing an arrangement example of the first moving body 10 and the second moving body 20
  • FIG. 7B is an arrangement of the first moving body 10 and the plurality of second moving bodies 20. It is explanatory drawing which shows an example.
  • the control device 100 may control the arrangement of the second moving body 20 so that the first moving body 10 is always located leeward of the second moving body 20. Specifically, the control device 100 controls the arrangement of the second moving body 20 so that the first moving body 10 is always present in the direction of the wind speed vector Vw measured by the second moving body 20. You may. According to this, the control device 100 can predict the wind force applied to the first moving body 10 after a predetermined time with higher accuracy, based on the wind velocity vector Vw measured by the second moving body 20. become able to.
  • the control device 100 controls the arrangement of the second moving bodies 20 so that the plurality of second moving bodies 20 are located on the opposite sides of the first moving body 10 therebetween. May be. Specifically, the control device 100 controls the arrangement of the second moving body 20 so that the second moving body 20 is always present on the windward side and the leeward side of the first moving body 10. Good.
  • the second mobile body 20A is always present on the windward side of the first mobile body 10 in the direction of the wind speed vector Vw measured by the first mobile body 10, and the first movement
  • the arrangement of the second moving bodies 20A and 20B may be controlled so that the second moving body 20B is always present on the leeward side of the body 10. According to this, the control device 100 can ensure that the second moving body 20 is always on the windward side of the first moving body 10 even when the wind direction suddenly changes. Therefore, the control device 100 can more smoothly control the arrangement of the second moving body 20 with respect to the first moving body 10.
  • the control device 100 further uses information on the position, imaging direction, angle of view, and the like of the first mobile body 10 to bring the second moving body to the angle of view of the imaging device 30 of the first moving body 10.
  • the arrangement of the second moving body 20 may be controlled so that 20 does not enter. Further, the position of the second moving body 20 may be controlled by the second moving body 20 itself instead of the control device 100.
  • FIG. 8 is an explanatory diagram illustrating an observation machine including an anemometer for measuring a wind speed vector.
  • the control device 100 determines the wind force applied to the first moving body 10 after a predetermined time based on the wind velocity vector measured by the anemometer provided in the observation device 40 whose position is fixed. You may predict. That is, even if the wind speed vector used for predicting the wind force applied to the first moving body 10 by the control device 100 is measured by an anemometer provided in a movable device such as the second moving body 20. Of course, it may be measured by an anemometer provided in a device whose position is fixed, such as the observation device 40. The control device 100 can be used for predicting the wind force applied to the first moving body 10 regardless of the wind speed vector whose measurement position and measurement time are specified.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the control device 100 according to the present embodiment.
  • the control device 100 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, a host bus 905, a bridge 907, an external bus 906, and an interface 908. It includes an input device 911, an output device 912, a storage device 913, a drive 914, a connection port 915, and a communication device 916.
  • the control device 100 may include a processing circuit such as an electric circuit, a DSP (Digital Signal Processor), or an ASIC (Application Specific Integrated Circuit) instead of the CPU 901 or together with the CPU 901.
  • a processing circuit such as an electric circuit, a DSP (Digital Signal Processor), or an ASIC (Application Specific Integrated Circuit) instead of the CPU 901 or together with the CPU 901.
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls the overall operation in the control device 100 according to various programs. Further, the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs used by the CPU 901, operation parameters, and the like.
  • the RAM 903 temporarily stores a program used in the execution of the CPU 901, parameters that appropriately change in the execution, and the like. Even if the CPU 901 executes the functions of the target value generation unit 110, the position control unit 121, the attitude control unit 123, the drive control unit 130, the position/orientation estimation unit 143, the wind force prediction unit 155, and the FF control unit 157, for example. Good.
  • the CPU 901, ROM 902, and RAM 903 are connected to each other by a host bus 905 including a CPU bus and the like.
  • the host bus 905 is connected to an external bus 906 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 907.
  • the host bus 905, the bridge 907, and the external bus 906 do not necessarily have to be separately configured, and these functions may be implemented on one bus.
  • the input device 911 is a device in which information is input by a user such as a mouse, keyboard, touch panel, buttons, microphone, switch, or lever. Further, the input device 911 may include, for example, an input control circuit that generates an input signal based on the information input by the user using the above input means. Further, the input device 911 may include a sensor and a circuit that observe the state of the environment or the moving body and generate a detection signal based on the observation result. The input device 911 may execute the functions of the sensor unit 141 and the wind speed sensor unit 151, for example.
  • the output device 912 is a device capable of visually or audibly notifying the user of information.
  • the output device 912 is, for example, a display device such as a CRT (Cathode Ray Tube) display device, a liquid crystal display device, a plasma display device, an EL (Electro Luminescence) display device, a laser projector, an LED (Light Emitting Diode) projector, or a lamp.
  • a display device such as a CRT (Cathode Ray Tube) display device, a liquid crystal display device, a plasma display device, an EL (Electro Luminescence) display device, a laser projector, an LED (Light Emitting Diode) projector, or a lamp.
  • a display device such as a CRT (Cathode Ray Tube) display device, a liquid crystal display device, a plasma display device, an EL (Electro Luminescence) display device, a laser projector, an LED (Light Emitting Diode) project
  • the output device 912 may output the results obtained by various processes by the control device 100, for example. Specifically, the output device 912 may visually display the results obtained by various processes by the control device 100 in various formats such as texts, images, tables, and graphs. Alternatively, the output device 912 may convert an audio signal such as voice data or acoustic data into an analog signal and output it audibly.
  • the storage device 913 is a device for storing data formed as an example of a storage unit of the control device 100.
  • the storage device 913 may be realized by, for example, a magnetic storage device such as a HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 913 may include a storage medium, a recording device that records data in the storage medium, a reading device that reads data from the storage medium, and a deletion device that deletes data recorded in the storage medium.
  • the storage device 913 may store programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the drive 914 is a reader / writer for a storage medium, and is built in or externally attached to the control device 100.
  • the drive 914 reads out the information recorded in the removable storage medium such as the mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 903.
  • the drive 914 can also write information in a removable storage medium.
  • connection port 915 is an interface connected to an external device.
  • the connection port 915 is a connection port capable of transmitting data with an external device, and may be, for example, USB (Universal Serial Bus).
  • the communication device 916 is, for example, an interface formed of a communication device or the like for connecting to the network 920.
  • the communication device 916 may be, for example, a wired or wireless LAN (Local Area Network), LTE (Long Term Evolution), Bluetooth (registered trademark), or WUSB (Wireless USB) communication card.
  • the communication device 916 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various kinds of communication.
  • the communication device 916 can send and receive signals and the like to and from the Internet or other communication devices according to a predetermined protocol such as TCP / IP.
  • the communication device 916 may execute the function of the reception unit 153, for example.
  • the network 920 is a wired or wireless transmission path for information.
  • the network 920 may include the Internet, a public line network such as a telephone line network or a satellite communication network, various LAN (Local Area Network) including Ethernet (registered trademark), or WAN (Wide Area Network).
  • the network 920 may include a dedicated line network such as IP-VPN (Internet Protocol-Virtual Private Network).
  • control device 100 It is also possible to create a computer program for hardware such as the CPU, ROM, and RAM built in the control device 100 to exert the same functions as the respective configurations of the control device 100 according to the above-described embodiment. Is. It is also possible to provide a storage medium in which the computer program is stored.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure can exert other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • the wind force predicting unit predicts a wind force applied to the moving body after a predetermined time, further based on a wind speed vector measured by an internal anemometer provided in the moving body, (1) or (2) above.
  • the wind force predicting unit predicts a wind force applied to the moving body after a predetermined time, based on the wind speed vector measured by the external anemometer existing within a predetermined distance from the moving body, (5) Alternatively, the control device according to (6).
  • the control device according to (8), wherein the other moving body is controlled so that the moving body exists in a leeward direction.
  • the other moving body provided with the external anemometer is a plurality, The control device according to (8), wherein the other moving body is controlled so as to be positioned on opposite sides of the moving body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Wind Motors (AREA)

Abstract

少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、を備える、制御装置。

Description

制御装置、制御方法、及びプログラム
 本開示は、制御装置、制御方法、及びプログラムに関する。
 近年、ドローン等の小型の飛行体を用いて、空中から広範囲の領域に対して効率的に作業を行うことが検討されている。
 例えば、以下の特許文献1には、飛行機体を用いて圃場に肥料等を散布する技術が開示されている。また、撮像装置を搭載したドローン等を用いて、空中から広範囲を撮像することも一般的に行われている。
 飛行体を用いて作業を行う場合、作業中に、飛行体を所定の場所に安定して留まらせること、又は飛行体を所定の軌道に沿って安定して飛行させることが重要となる。そこで、例えば、強風などによって、ホバリング中の飛行体の位置が変わってしまった場合に、GNSS(Global Navigation Satellite System)センサ等を用いて、強風前の位置に飛行体を自動的に戻す技術などが開発されている。
特開2018-127076号公報
 しかし、上述した技術では、強風時に、飛行体の位置及び姿勢が一時的に不安定になることを防ぐことは困難であった。そのため、突発的な強風を受けた場合でも、飛行体を可能な限り安定した位置及び姿勢に留まらせることを可能とする技術が求められていた。
 本開示によれば、少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、を備える、制御装置が提供される。
 また、本開示によれば、少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信することと、演算装置によって、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測することと、予測された前記風力に基づいて、前記移動体の駆動を制御することと、を含む、制御方法が提供される。
 さらに、本開示によれば、コンピュータを、少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、として機能させる、プログラムが提供される。
本開示の一実施形態に係る制御装置によって制御される移動体の一例を示す説明図である。 同実施形態に係る制御装置の機能構成を説明するブロック図である。 所定の環境の各位置における風速ベクトルを表すヒートマップの一例を示す模式図である。 第2の移動体における風速ベクトルから、第1の移動体における風速ベクトルを予測する方法を説明する説明図である。 同実施形態に係る制御装置の動作の流れを説明するフローチャート図である。 風速計を備える複数の第2の移動体によって、撮像装置を備える第1の移動体に安定した飛行を行わせる例を示す説明図である。 風速計及び撮像装置を備える複数の第1の移動体にて相互に安定した飛行を行わせる例を示す説明図である。 第1の移動体、及び第2の移動体の配置例を示す説明図である。 第1の移動体、及び複数の第2の移動体の配置例を示す説明図である。 風速ベクトルを測定する風速計を備える観測機を説明する説明図である。 同実施形態に係る制御装置のハードウェア構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.制御装置の概要
 2.制御装置の構成
 3.制御装置の動作
 4.バリエーション
 5.ハードウェア構成
 <1.制御装置の概要>
 まず、図1を参照して、本開示の一実施形態に係る制御装置の概要について説明する。図1は、本実施形態に係る制御装置によって制御される移動体の一例を示す説明図である。
 なお、以下では、移動体の一例として飛行体を例示するが、本実施形態に係る制御装置にて制御される移動体は、かかる例示に限定されない。制御装置にて制御される移動体は、飛行していなくともよい。
 図1に示すように、本実施形態に係る制御装置は、飛行する第1の移動体10の位置及び姿勢を制御する。具体的には、本実施形態に係る制御装置は、風速計を備えた第2の移動体20にて測定された風速ベクトルに基づいて、空中から広範囲の領域に対して作業を行う第1の移動体10の位置及び姿勢を制御する。なお、本実施形態に係る制御装置は、風速計を備えた第2の移動体20の位置及び姿勢もさらに制御してもよい。
 第1の移動体10は、例えば、撮像装置30を備え、回転翼によって飛行するヘリコプター又はマルチコプター等の飛行体である。第1の移動体10は、例えば、撮像装置30を用いて、広範囲の領域を空中から撮像することができる。
 ただし、第1の移動体10は、空中から広範囲の領域に対して作業を行うものであれば、撮像装置30以外の装置を備えていてもよい。例えば、第1の移動体10は、空中から広範囲の地形を測定する測定装置、又は空中から広範囲の領域に液体又は固体を散布する散布装置を備えていてもよい。
 第1の移動体10は、空中から広範囲の領域に対して作業を行うため、位置及び姿勢が安定していることが重要となる。具体的には、第1の移動体10は、突発的な強風等を受けた場合でも、位置及び姿勢を可能な限り乱されずに飛行することが重要となる。
 第2の移動体20は、例えば、風速計を備え、第1の移動体10と同様に回転翼によって飛行するヘリコプター又はマルチコプター等の飛行体である。第2の移動体20は、風速計を用いて第2の移動体20の位置における風速ベクトルを測定する。
 本実施形態に係る制御装置は、第2の移動体20にて測定された風速ベクトルに基づいて、所定時間後に第1の移動体10に加わる風力を予測し、予測した風力に基づいて第1の移動体10を制御する。これによれば、制御装置は、第1の移動体10に加わる風力を打ち消すような推進力を第1の移動体10に生じさせることができるため、第1の移動体10の位置及び姿勢が強風等の外乱によって乱されることを抑制することができる。
 本実施形態に係る制御装置は、第1の移動体10に備えられた制御ユニットであってもよい。または、本実施形態に係る制御装置は、第1の移動体10、及び第2の移動体20と無線通信することが可能な情報処理装置であってもよい。
 <2.制御装置の構成>
 続いて、図2~図4を参照して、上記で概要を説明した本実施形態に係る制御装置の構成について、具体的に説明する。以下では、本実施形態に係る制御装置は、第1の移動体10に備えられており、第1の移動体10の駆動全般を制御するものとして説明を行う。図2は、本実施形態に係る制御装置の機能構成を説明するブロック図である。
 図2に示すように、本実施形態に係る制御装置100は、目標値生成部110と、位置制御部121と、姿勢制御部123と、駆動制御部130と、センサ部141と、位置・姿勢推定部143と、風速センサ部151と、受信部153と、風力予測部155と、FF制御部157と、を備える。
 目標値生成部110は、第1の移動体10の位置及び姿勢の目標値を生成する。具体的には、目標値生成部110は、第1の移動体10を無線操縦する送信機から送信された移動指示、又は第1の移動体10の内部で生成された移動計画に基づいて、第1の移動体10の位置及び姿勢の目標値を生成する。例えば、目標値生成部110は、所定時刻における第1の移動体10のx、y、z座標(すなわち、位置)の目標値と、ヨー角(すなわち、姿勢)の目標値とを生成してもよい。
 位置制御部121は、第1の移動体10の位置を制御する指示値を生成し、さらに第1の移動体10の姿勢角の目標値を生成する。具体的には、位置制御部121は、第1の移動体10の位置及び姿勢の目標値と、第1の移動体10の位置及び姿勢の推定値との間の誤差を算出し、算出した誤差を補正するための位置及び姿勢の制御の指示値と、姿勢角の目標値とを生成する。例えば、位置制御部121は、第1の移動体10のx、y、z座標(すなわち、位置)及びヨー角(すなわち、姿勢)を制御するための駆動部(図示せず)への指示値と、第1の移動体10のロール角及びピッチ角(すなわち、姿勢角)の目標値とを生成してもよい。
 姿勢制御部123は、第1の移動体10の姿勢角、及び姿勢角速度の制御の指示値を生成する。具体的には、姿勢制御部123は、第1の移動体10の姿勢角の目標値と、第1の移動体10の姿勢角の推定値との間の誤差を算出し、算出した誤差を補正するための姿勢角の制御の指示値を生成する。また、姿勢制御部123は、姿勢角と同様に、第1の移動体10の姿勢角速度の目標値と、第1の移動体10の姿勢角速度の推定値との間の誤差を算出し、算出した誤差を補正するための姿勢角速度の制御の指示値を生成する。例えば、姿勢制御部123は、第1の移動体10のロール角及びピッチ角(すなわち、姿勢角)を制御するための駆動部(図示せず)への指示値と、ロール角速度及びピッチ角速度(すなわち、姿勢角速度)を制御するための駆動部(図示せず)への指示値とを生成してもよい。
 センサ部141は、第1の移動体10の状態をセンシングする。具体的には、センサ部141は、第1の移動体10の位置及び姿勢に関する情報をセンシングする。センサ部141は、例えば、RGBカメラ、グレースケールカメラ、ステレオカメラ、デプスカメラ、赤外線カメラ、若しくはToF(Time of Flight)カメラ等の各種カメラ、IMU(Inertial Measurement Unit)、気圧センサ、磁気センサ又はGNSS(Global Navigation Satellite System)センサを備えていてもよい。なお、センサ部141は、複数のセンサを備えていてもよいことは言うまでもない。
 位置・姿勢推定部143は、センサ部141にてセンシングされた第1の移動体10の位置及び姿勢に関する情報に基づいて、第1の移動体10の位置及び姿勢を推定する。具体的には、位置・姿勢推定部143は、センサ部141が備える複数のセンサによる観測値を統合することで、第1の移動体10の位置・姿勢、速度、及び角速度を推定する。例えば、位置・姿勢推定部143は、カルマンフィルタを用いることで、第1の移動体10の位置・姿勢、速度、及び角速度を推定してもよい。
 風速センサ部151は、第1の移動体10における風速ベクトルを測定する。具体的には、風速センサ部151は、第1の移動体10における風の強さ及び風向きを測定してもよい。例えば、風速センサ部151は、第1の移動体10に搭載された風向風速計であってもよい。
 受信部153は、第1の移動体10の外部の風速計にて観測された風速ベクトルに関する情報を少なくとも1つ以上受信する。具体的には、受信部153は、第1の移動体10の周囲に存在する第2の移動体20又は観測機に備えられた風速計から、該風速計にて測定された風速ベクトルに関する情報を少なくとも1つ以上受信する。例えば、受信部153は、第2の移動体20に備えられた風速計にて測定された風の強さ及び風向きに関する情報、第2の移動体20の位置及び姿勢に関する情報、並びに風速ベクトルを測定した時刻に関する情報を第2の移動体20から受信してもよい。受信部153は、例えば、公知の方式による無線通信によって、第2の移動体20又は観測機に備えられた風速計から風速ベクトルに関する情報を受信してもよい。また、受信部153は、異なる位置の複数の風速計にて測定された風速ベクトルに関する情報をそれぞれ受信してもよい。
 風力予測部155は、第1の移動体10の外部の風速計にて観測された風速ベクトルに基づいて、所定時間後に第1の移動体10に加わる風力を予測する。具体的には、風力予測部155は、第2の移動体20の風速計にて測定された風速ベクトルに基づいて、所定時間後に第1の移動体10に加わる風力を予測する。
 例えば、風力予測部155は、第1の移動体10の外部の複数の風速計にて測定された風速ベクトルを用いて流体シミュレーションを行うことで、所定時間後に第1の移動体10に加わる風力を予測してもよい。流体シミュレーションは、ナビエ-ストークス方程式と連続の式、その他エネルギーの式、及びマクスウェルの方程式等を連立させて数値的に解くことで行うことができる。
 このような場合、風力予測部155は、第1の移動体10の周囲の環境の構造に関する情報をさらに用いることで、図3に示すような第1の移動体10の周囲の風速ベクトルの大きさ及び方向をマッピングしたヒートマップを作成してもよい。図3は、所定の環境の各位置における風速ベクトルを表すヒートマップの一例を示す模式図である。これによれば、風力予測部155は、第1の移動体10の位置における所定時間後の風速ベクトルを正確に予測することができるため、所定時間後に第1の移動体10に加わる風力を正確に予測することができる。
 または、風力予測部155は、第1の移動体10を風下とする風速計にて測定された風速ベクトルに対応する風が第1の移動体10に伝搬していくと仮定することで、所定時間後に第1の移動体10に加わる風力を予測してもよい。このような場合、風力予測部155は、計算資源、及び風速ベクトルの観測結果が少ない場合でも、流体シミュレーションよりも簡便に、所定時間後に第1の移動体10に加わる風力を予測することができる。
 以下では、かかる風力予測部155による簡便な風力の予測方法について図4を参照して説明する。図4は、第2の移動体20における風速ベクトルから、第1の移動体10における風速ベクトルを予測する方法を説明する説明図である。
 図4に示すように、風力予測部155は、第1の移動体10を風下とする第2の移動体20の風速ベクトルが所定時間後に第1の移動体10に伝搬すると仮定して、所定時間後の第1の移動体10における風速ベクトルを予測してもよい。
 具体的には、風力予測部155は、第1の移動体10及び第2の移動体20を結ぶベクトルVrと、第2の移動体20にて観測した風速ベクトルVsとがなす角度θを計算する。次に、風力予測部155は、第1の移動体10との距離が所定の範囲内となる第2の移動体20の中で、角度θが最も小さくなる第2の移動体20の風速ベクトルを用いて、所定時間後の第1の移動体10における風速ベクトルを予測してもよい。または、風力予測部155は、角度θが最も小さくなる第2の移動体20の風速ベクトルを用いて、所定時間後の第1の移動体10における風速ベクトルを予測してもよい。
 もしくは、風力予測部155は、第1の移動体10との距離が最も短い第2の移動体20の風速ベクトルを用いて、所定時間後の第1の移動体10における風速ベクトルを予測してもよい。または、風力予測部155は、角度θが所定の範囲内である第2の移動体20の中で第1の移動体10との距離が最も短い第2の移動体20の風速ベクトルを用いて、所定時間後の第1の移動体10における風速ベクトルを予測してもよい。
 例えば、第1の移動体10の風速ベクトルVmと垂直であり、かつ第1の移動体10を面内に含む平面Pmと、第2の移動体20の風速ベクトルVsと垂直であり、かつ第2の移動体20を面内に含む平面Psとの距離Drが5mであるとする。また、第2の移動体20の風速ベクトルVsの風速を10m/sであるとする。
 このとき、第2の移動体20の風速ベクトルVsが第1の移動体10に伝搬する際にかかる時間Tは、T=5(m)/10(m/s)=0.5(s)と仮定することができる。したがって、所定時間t後の第1の移動体10における風速ベクトルVMは、風速ベクトルVmと、第2の移動体20の風速ベクトルVsとを以下の式1によって足し合わせることで予測することができる。
  VM=Vm×(1-t/T)+Vs×t/T(ただし、t≦T) ・・・式1
 したがって、例えば、t=0.1である場合、風力予測部155は、0.1秒後の第1の移動体10における風速ベクトルVMを、VM=0.8Vm+0.2Vsと予測することができる。
 これによれば、風力予測部155は、複雑な流体シミュレーションを行わずとも、所定時間後の第1の移動体10における風速ベクトルをより簡便な方法で予測し、所定時間後に第1の移動体10に加わる風力を予測することができる。
 FF制御部157は、所定時間後に第1の移動体10に加わる風力を打ち消す推進力を第1の移動体10の駆動部(図示せず)に発生させるための指示値を生成する。具体的には、FF制御部157は、風力予測部155にて予測された第1の移動体10に加わる風力を打ち消し、第1の移動体10の位置及び姿勢を維持する推進力を駆動部に発生させるための指示値を生成する。すなわち、FF制御部157は、駆動部に対して、第1の移動体10に加わると予測される風力を前もって打ち消すフィードフォワード(feedforward)制御を行う。
 駆動制御部130は、第1の移動体10を駆動させる駆動部(図示せず)を制御する。具体的には、駆動制御部130は、FF制御部157、位置制御部121及び姿勢制御部123からの指示値に基づいて駆動部を制御することで、第1の移動体10の位置及び姿勢を制御する。例えば、駆動制御部130は、x、y、z座標、ヨー角、ロール角、ピッチ角、ロール角速度、及びピッチ角速度を制御するための指示値に、所定時間後の風力を打ち消すための指示値を加えた指示値に基づいて、モータ又はアクチュエータ等を制御することで、第1の移動体10の位置及び姿勢を制御してもよい。
 以上の構成を備える制御装置100によれば、第1の移動体10に加わる風力をあらかじめ予測することができるため、風力によって位置及び姿勢が変化しないように第1の移動体10の駆動をフィードフォワード制御することができる。
 <3.制御装置の動作>
 次に、図5を参照して、本実施形態に係る制御装置100の動作について説明する。図5は、本実施形態に係る制御装置100の動作の流れを説明するフローチャート図である。
 図5に示すように、まず、制御装置100は、センサ部141にてセンシングされた情報に基づいて、第1の移動体10の位置及び姿勢を推定する(S101)。次に、制御装置100は、受信部153を介して、第2の移動体20における風速ベクトルを含む風速情報を第2の移動体20から受信したか否かを判断する(S103)。第2の移動体20から風速情報を受信した場合(S103/Yes)、制御装置100は、風速センサ部151にて、第1の移動体10における風速ベクトルを含む風速情報を測定する(S105)。
 続いて、制御装置100は、風力予測部155にて、第1の移動体10における風速ベクトル、第2の移動体20における風速ベクトル、第1の移動体10の位置及び姿勢に関する情報、及び第2の移動体20の位置及び姿勢に関する情報に基づいて、所定時間後の第1の移動体10に加わる風力を算出する(S107)。次に、制御装置100は、FF制御部157にて、所定時間後の第1の移動体10に対する風力による外乱を打ち消すための推進力を算出する(S109)。一方、第2の移動体20から風速情報を受信していない場合(S103/No)、制御装置100は、FF制御部157にて、所定時間後の第1の移動体10に対する風力による外乱を打ち消すための推進力をゼロに設定する(S111)。
 その後、制御装置100は、駆動制御部130にて、第1の移動体10の位置及び姿勢を制御するための指令値に、所定時間後の風力を打ち消す推進力を発生させるための指令値を加えた指令値に基づいて、第1の移動体10の駆動部を制御する(S113)。
 以上の動作の流れによれば、制御装置100は、第2の移動体20にて測定された風速ベクトルに基づいて、所定時間後の第1の移動体10における風力を予測することができる。したがって、制御装置100は、加えられた風力に対して位置及び姿勢を維持するように第1の移動体10の駆動を制御することが可能になる。
 <4.バリエーション>
 次に、図6A~図8を参照して、本実施形態に係る制御装置100による制御のバリエーションについて説明する。
 まず、図6A及び図6Bを参照して、本実施形態に係る制御装置100によって駆動が制御される第1の移動体10と、制御装置100の制御に用いられる風速ベクトルを観測する風速計を備える第2の移動体20との関係のバリエーションについて説明する。図6Aは、風速計を備える複数の第2の移動体20によって、撮像装置30を備える第1の移動体10に安定した飛行を行わせる例を示す説明図であり、図6Bは、風速計及び撮像装置30を備える複数の第1の移動体10にて相互に安定した飛行を行わせる例を示す説明図である。
 図6Aに示すように、制御装置100は、撮像装置30を備える第1の移動体10の周囲に風速計を備えた複数の第2の移動体20を配置し、複数の第2の移動体20にて風速ベクトルを測定することで、第1の移動体10の位置及び姿勢を安定化させてもよい。
 第1の移動体10は、空中から撮像という作業を行うため、突発的な強風等に対しても安定した位置及び姿勢を維持することが重要となる。そこで、制御装置100は、第1の移動体10の周囲を囲むように風速計を備えた第2の移動体20を複数配置することで、風向きが時々刻々に変化した場合でも、常に、第1の移動体10が第2の移動体20の風下に位置するようにすることができる。これによれば、制御装置100は、どのような風向きの風に対しても、第1の移動体10の風上の第2の移動体20にて風速ベクトルを測定することができるため、所定時間後の第1の移動体10に加わる風力を高い精度で予測することができる。
 図6Bに示すように、制御装置100は、撮像装置30及び風速計を備える複数の第1の移動体10にて風速ベクトルを測定し、測定された風速ベクトルを相互に共有することで、第1の移動体10の位置及び姿勢を安定させてもよい。
 第1の移動体10は、位置及び姿勢の制御のために風速計を備えていることがある。そこで、測定された風速ベクトルを複数の第1の移動体10の間で共有することによって、制御装置100は、風速ベクトルを測定する第2の移動体20を用いずとも、複数の第1の移動体10の位置及び姿勢を安定に制御することが可能となる。これによれば、制御装置100は、第1の移動体10、及び第2の移動体20におけるエネルギー消費の効率を向上させることができる。
 次に、図7A及び図7Bを参照して、本実施形態に係る制御装置100による第1の移動体10、及び第2の移動体20の配置の制御のバリエーションについて説明する。図7Aは、第1の移動体10、及び第2の移動体20の配置例を示す説明図であり、図7Bは、第1の移動体10、及び複数の第2の移動体20の配置例を示す説明図である。
 図7Aに示すように、制御装置100は、第2の移動体20の風下に第1の移動体10が常に存在するように、第2の移動体20の配置を制御してもよい。具体的には、制御装置100は、第2の移動体20にて測定された風速ベクトルVwの方向に第1の移動体10が常に存在するように、第2の移動体20の配置を制御してもよい。これによれば、制御装置100は、第2の移動体20にて測定された風速ベクトルVwに基づいて、所定時間後の第1の移動体10に加わる風力をより高い精度で予測することができるようになる。
 図7Bに示すように、制御装置100は、複数の第2の移動体20が第1の移動体10を挟んで互いに反対側に位置するように、第2の移動体20の配置を制御してもよい。具体的には、制御装置100は、第1の移動体10の風上、及び風下のそれぞれに第2の移動体20が常に存在するように、第2の移動体20の配置を制御してもよい。
 例えば、制御装置100は、第1の移動体10にて測定された風速ベクトルVwの方向に、第1の移動体10の風上側に第2の移動体20Aが常に存在し、第1の移動体10の風下側に第2の移動体20Bが常に存在するように、第2の移動体20A、20Bの配置を制御してもよい。これによれば、制御装置100は、風向きが突発的に変化した場合でも、第1の移動体10の風上に第2の移動体20が常に存在するようにすることができる。したがって、制御装置100は、第1の移動体10に対する第2の移動体20の配置をより円滑に制御することができる。
 なお、制御装置100は、第1の移動体10の位置、撮像方向、及び画角等に関する情報をさらに用いることで、第1の移動体10の撮像装置30の画角に第2の移動体20が入り込まないように第2の移動体20の配置を制御してもよい。また、第2の移動体20の位置は、制御装置100ではなく、第2の移動体20自身にて制御されてもよい。
 続いて、図8を参照して、本実施形態に係る制御装置100において、第1の移動体10に加わる風力の予測に用いられる風速ベクトルを取得する風速計のバリエーションについて説明する。図8は、風速ベクトルを測定する風速計を備える観測機を説明する説明図である。
 図8に示すように、制御装置100は、位置が固定された観測機40に備えられた風速計にて測定された風速ベクトルに基づいて、所定時間後に第1の移動体10に加わる風力を予測してもよい。すなわち、制御装置100にて第1の移動体10に加わる風力の予測に用いられる風速ベクトルは、第2の移動体20のような移動可能な装置に設けられた風速計にて測定されてもよく、観測機40のような位置が固定された装置に設けられた風速計にて測定されてもよい。制御装置100は、測定位置、及び測定時刻が特定された風速ベクトルであればどのような風速ベクトルであっても、第1の移動体10に加わる風力の予測に用いることができる。
 <5.ハードウェア構成>
 続いて、図9を参照して、本実施形態に係る制御装置100のハードウェア構成について説明する。図9は、本実施形態に係る制御装置100のハードウェア構成の一例を示すブロック図である。
 図9に示すように、制御装置100は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、RAM(Random Access Memory)903、ホストバス905、ブリッジ907、外部バス906、インタフェース908、入力装置911、出力装置912、ストレージ装置913、ドライブ914、接続ポート915、及び通信装置916を備える。制御装置100は、CPU901に替えて、又はCPU901と共に、電気回路、DSP(Digital Signal Processor)、又はASIC(Application Specific Integrated Circuit)等の処理回路を備えてもよい。
 CPU901は、演算処理装置、及び制御装置として機能し、各種プログラムに従って制御装置100内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラム及び演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラム、及びその実行において適宜変化するパラメータ等を一時記憶する。CPU901は、例えば、目標値生成部110、位置制御部121、姿勢制御部123、駆動制御部130、位置・姿勢推定部143、風力予測部155、及びFF制御部157の機能を実行してもよい。
 CPU901、ROM902、及びRAM903は、CPUバスなどを含むホストバス905により相互に接続されている。ホストバス905は、ブリッジ907を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス906に接続されている。なお、ホストバス905、ブリッジ907、及び外部バス906は、必ずしも分離構成されなくともよく、1つのバスにこれらの機能が実装されてもよい。
 入力装置911は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等のユーザによって情報が入力される装置である。さらに、入力装置911は、例えば、上記の入力手段を用いてユーザにより入力された情報に基づいて入力信号を生成する入力制御回路などを含んでもよい。また、入力装置911は、環境又は移動体の状態を観測し、観測結果に基づいて検出信号を生成するセンサ及び回路を含んでもよい。入力装置911は、例えば、センサ部141、及び風速センサ部151の機能を実行してもよい。
 出力装置912は、情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置である。出力装置912は、例えば、CRT(Cathode Ray Tube)ディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、EL(ElectroLuminescence)ディスプレイ装置、レーザープロジェクタ、LED(Light Emitting Diode)プロジェクタ、又はランプ等の表示装置であってもよく、スピーカ、又はヘッドホン等の音声出力装置等であってもよい。
 出力装置912は、例えば、制御装置100による各種処理にて得られた結果を出力してもよい。具体的には、出力装置912は、制御装置100による各種処理にて得られた結果を、テキスト、イメージ、表、又はグラフ等の様々な形式で視覚的に表示してもよい。または、出力装置912は、音声データ又は音響データ等のオーディオ信号をアナログ信号に変換して聴覚的に出力してもよい。
 ストレージ装置913は、制御装置100の記憶部の一例として形成されたデータ格納用の装置である。ストレージ装置913は、例えば、HDD(Hard Disk Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により実現されてもよい。例えば、ストレージ装置913は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出装置、及び記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。ストレージ装置913は、CPU901が実行するプログラム、各種データ及び外部から取得した各種のデータ等を格納してもよい。
 ドライブ914は、記憶媒体用リーダライタであり、制御装置100に内蔵又は外付けされる。ドライブ914は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM903に出力する。また、ドライブ914は、リムーバブル記憶媒体に情報を書き込むことも可能である。
 接続ポート915は、外部機器と接続されるインタフェースである。接続ポート915は、外部機器とのデータ伝送可能な接続口であり、例えばUSB(Universal Serial Bus)であってもよい。
 通信装置916は、例えば、ネットワーク920に接続するための通信デバイス等で形成されたインタフェースである。通信装置916は、例えば、有線若しくは無線LAN(Local Area Network)、LTE(Long Term Evolution)、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード等であってもよい。また、通信装置916は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデム等であってもよい。通信装置916は、例えば、インターネット、又は他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。通信装置916は、例えば、受信部153の機能を実行してもよい。
 なお、ネットワーク920は、情報の有線又は無線の伝送路である。例えば、ネットワーク920は、インターネット、電話回線網若しくは衛星通信網などの公衆回線網、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、又はWAN(Wide Area Network)などを含んでもよい。また、ネットワーク920は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。
 なお、制御装置100に内蔵されるCPU、ROM、及びRAMなどのハードウェアに対して、上述した本実施形態に係る制御装置100の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供することが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、
 受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、
 予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、
を備える、制御装置。
(2)
 前記制御部は、前記風力を打ち消すように前記移動体の駆動を制御する、前記(1)に記載の制御装置。
(3)
 前記風力予測部は、前記移動体に設けられた内部風速計にて測定された風速ベクトルにさらに基づいて、所定時間後の前記移動体に加わる風力を予測する、前記(1)又は(2)に記載の制御装置。
(4)
 前記風力予測部は、前記移動体の周囲の環境情報にさらに基づいて、所定時間後の前記移動体に加わる風力を予測する、前記(1)~(3)のいずれか一項に記載の制御装置。
(5)
 前記風力予測部は、異なる位置に設けられた複数の前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、前記(1)~(4)のいずれか一項に記載の制御装置。
(6)
 前記風力予測部は、前記移動体を風下とする前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、前記(5)に記載の制御装置。
(7)
 前記風力予測部は、前記移動体から所定の距離内に存在する前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、前記(5)又は(6)に記載の制御装置。
(8)
 前記外部風速計は、前記移動体と異なる他の移動体に設けられる、前記(1)~(7)のいずれか一項に記載の制御装置。
(9)
 前記他の移動体は、前記移動体が風下方向に存在するように制御される、前記(8)に記載の制御装置。
(10)
 前記外部風速計が設けられた前記他の移動体は、複数であり、
 前記他の移動体は、前記移動体を挟んで互いに反対側にそれぞれ位置するように制御される、前記(8)に記載の制御装置。
(11)
 前記他の移動体は、前記移動体の風上方向、及び風下方向にそれぞれ位置するように制御される、前記(10)に記載の制御装置。
(12)
 前記移動体は、回転翼によって飛行する飛行体である、前記(1)~(11)のいずれか一項に記載の制御装置。
(13)
 前記移動体は、撮像装置を備える、前記(1)~(12)のいずれか一項に記載の制御装置。
(14)
 少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信することと、
 演算装置によって、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測することと、
 予測された前記風力に基づいて、前記移動体の駆動を制御することと、
を含む、制御方法。
(15)
 コンピュータを、
 少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、
 受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、
 予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、
として機能させる、プログラム。
 10   第1の移動体
 20   第2の移動体
 30   撮像装置
 40   観測機
 100  制御装置
 110  目標値生成部
 121  位置制御部
 123  姿勢制御部
 130  駆動制御部
 141  センサ部
 143  位置・姿勢推定部
 151  風速センサ部
 153  受信部
 155  風力予測部
 157  FF制御部

Claims (15)

  1.  少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、
     受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、
     予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、
    を備える、制御装置。
  2.  前記制御部は、前記風力を打ち消すように前記移動体の駆動を制御する、請求項1に記載の制御装置。
  3.  前記風力予測部は、前記移動体に設けられた内部風速計にて測定された風速ベクトルにさらに基づいて、所定時間後の前記移動体に加わる風力を予測する、請求項1に記載の制御装置。
  4.  前記風力予測部は、前記移動体の周囲の環境情報にさらに基づいて、所定時間後の前記移動体に加わる風力を予測する、請求項1に記載の制御装置。
  5.  前記風力予測部は、異なる位置に設けられた複数の前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、請求項1に記載の制御装置。
  6.  前記風力予測部は、前記移動体を風下とする前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、請求項5に記載の制御装置。
  7.  前記風力予測部は、前記移動体から所定の距離内に存在する前記外部風速計にて測定された前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する、請求項5に記載の制御装置。
  8.  前記外部風速計は、前記移動体と異なる他の移動体に設けられる、請求項1に記載の制御装置。
  9.  前記他の移動体は、前記移動体が風下方向に存在するように制御される、請求項8に記載の制御装置。
  10.  前記外部風速計が設けられた前記他の移動体は、複数であり、
     前記他の移動体は、前記移動体を挟んで互いに反対側にそれぞれ位置するように制御される、請求項8に記載の制御装置。
  11.  前記他の移動体は、前記移動体の風上方向、及び風下方向にそれぞれ位置するように制御される、請求項10に記載の制御装置。
  12.  前記移動体は、回転翼によって飛行する飛行体である、請求項1に記載の制御装置。
  13.  前記移動体は、撮像装置を備える、請求項1に記載の制御装置。
  14.  少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信することと、
     演算装置によって、受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測することと、
     予測された前記風力に基づいて、前記移動体の駆動を制御することと、
    を含む、制御方法。
  15.  コンピュータを、
     少なくとも1つ以上の外部風速計にて測定された任意の時刻の風速ベクトルを受信する受信部と、
     受信した前記風速ベクトルに基づいて、所定時間後の移動体に加わる風力を予測する風力予測部と、
     予測された前記風力に基づいて、前記移動体の駆動を制御する制御部と、
    として機能させる、プログラム。
PCT/JP2020/006650 2019-03-06 2020-02-19 制御装置、制御方法、及びプログラム WO2020179460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080017687.3A CN113508077A (zh) 2019-03-06 2020-02-19 控制装置、控制方法和程序
JP2021503952A JP7400801B2 (ja) 2019-03-06 2020-02-19 制御装置、制御方法、及びプログラム
US17/310,836 US20220128996A1 (en) 2019-03-06 2020-02-19 Control apparatus, control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040544 2019-03-06
JP2019-040544 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179460A1 true WO2020179460A1 (ja) 2020-09-10

Family

ID=72337923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006650 WO2020179460A1 (ja) 2019-03-06 2020-02-19 制御装置、制御方法、及びプログラム

Country Status (4)

Country Link
US (1) US20220128996A1 (ja)
JP (1) JP7400801B2 (ja)
CN (1) CN113508077A (ja)
WO (1) WO2020179460A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030988A (ja) * 2003-07-09 2005-02-03 East Japan Railway Co 風速予測システムおよび風速予測方法
JP2010096593A (ja) * 2008-10-15 2010-04-30 Japan Weather Association 風予測装置及びプログラム
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
CN107077153A (zh) * 2017-01-22 2017-08-18 深圳市大疆创新科技有限公司 可移动装置的控制方法、控制系统、和可移动装置
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機
JP2018034691A (ja) * 2016-08-31 2018-03-08 シャープ株式会社 基地局装置、通知システム及び通知方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813297A (en) * 1956-05-07 1959-05-13 Franklin Institute A system for alleviating the effects of gusts on aircraft
US5645248A (en) * 1994-08-15 1997-07-08 Campbell; J. Scott Lighter than air sphere or spheroid having an aperture and pathway
JPH08166465A (ja) * 1994-12-12 1996-06-25 East Japan Railway Co 風速予測方法及びその風速予測方法に基づく交通手段運行方法
FR2733042B1 (fr) * 1995-04-13 1997-05-23 Thomson Csf Procede et dispositif d'essaimage de drones sur des trajectoires courbes autour d'un ou plusieurs points de reference
US6254034B1 (en) * 1999-09-20 2001-07-03 Howard G. Carpenter Tethered aircraft system for gathering energy from wind
US6937937B1 (en) * 2004-05-28 2005-08-30 Honeywell International Inc. Airborne based monitoring
JP4474275B2 (ja) * 2004-12-24 2010-06-02 富士重工業株式会社 無人ヘリコプタを用いた薬剤散布システム
US8744738B2 (en) * 2007-09-28 2014-06-03 The Boeing Company Aircraft traffic separation system
US8774987B2 (en) * 2007-12-17 2014-07-08 The Boeing Company Vertical gust suppression system for transport aircraft
WO2011151893A1 (ja) * 2010-06-01 2011-12-08 トヨタ自動車株式会社 経路探索装置
US8185331B2 (en) * 2011-09-02 2012-05-22 Onsemble LLC Systems, methods and apparatus for indexing and predicting wind power output from virtual wind farms
CN104318067A (zh) * 2014-09-29 2015-01-28 中国商用飞机有限责任公司 基于能量管理的风切变探测方法及装置
FR3036475B1 (fr) * 2015-05-22 2018-08-10 Flying Whales Aeronef et procede de stabilisation d'un aeronef
CN105388535B (zh) * 2015-11-11 2017-12-12 上海埃威航空电子有限公司 基于现有机载设备的航空气象风观测方法
JP2018077626A (ja) * 2016-11-08 2018-05-17 Necソリューションイノベータ株式会社 飛行制御装置、飛行制御方法、及びプログラム
JP6473979B2 (ja) * 2017-06-09 2019-02-27 国立研究開発法人宇宙航空研究開発機構 着陸判断支援システム、着陸判断支援方法、及び着陸判断支援プログラム
US11402855B2 (en) * 2017-07-21 2022-08-02 Nec Corporation Processing device, drive control device, data processing method, and storage medium for attitude control of moving body based on wind conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030988A (ja) * 2003-07-09 2005-02-03 East Japan Railway Co 風速予測システムおよび風速予測方法
JP2010096593A (ja) * 2008-10-15 2010-04-30 Japan Weather Association 風予測装置及びプログラム
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
JP2017206066A (ja) * 2016-05-16 2017-11-24 株式会社プロドローン 薬液散布用無人航空機
JP2018034691A (ja) * 2016-08-31 2018-03-08 シャープ株式会社 基地局装置、通知システム及び通知方法
CN107077153A (zh) * 2017-01-22 2017-08-18 深圳市大疆创新科技有限公司 可移动装置的控制方法、控制系统、和可移动装置

Also Published As

Publication number Publication date
CN113508077A (zh) 2021-10-15
JP7400801B2 (ja) 2023-12-19
JPWO2020179460A1 (ja) 2020-09-10
US20220128996A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
US11787543B2 (en) Image space motion planning of an autonomous vehicle
US10435176B2 (en) Perimeter structure for unmanned aerial vehicle
CN108827306A (zh) 一种基于多传感器融合的无人机slam导航方法及系统
JP6785385B2 (ja) 周辺デバイスの視覚的追跡
US11818463B2 (en) Counter-balancing vibrations from a vehicle for stabilizing image capture
JP2009173263A (ja) 無人航空機(uav)によって移動目標物を自律的に追跡するための方法及びシステム
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
JP2018200732A (ja) 移動体制御装置、移動体制御方法、移動体制御プログラム及び記録媒体
JP2006306254A (ja) 自動飛行制御装置、自動飛行制御方法及び自動飛行制御プログラム
WO2020179460A1 (ja) 制御装置、制御方法、及びプログラム
JP2022015978A (ja) 無人航空機の制御方法、無人航空機、および、無人航空機の制御プログラム
CN112154480B (zh) 可移动平台的定位方法、装置、可移动平台及存储介质
WO2020062255A1 (zh) 拍摄控制方法和无人机
JP6778067B2 (ja) 雲位置推定装置、雲位置推定方法及び雲位置推定プログラム
JP2020012774A (ja) 建造物の測定方法
US20220309699A1 (en) Information processing apparatus, information processing method, program, and information processing system
JP6934116B1 (ja) 航空機の飛行制御を行う制御装置、及び制御方法
WO2022158387A1 (ja) 移動体、情報処理方法及びコンピュータプログラム
JP6227950B2 (ja) センサの指向制御方法と装置
WO2021005942A1 (ja) 無人飛行体
US20240228035A1 (en) Image Space Motion Planning Of An Autonomous Vehicle
WO2021006134A1 (ja) 情報処理装置、情報処理方法、プログラムおよびカメラモジュール
WO2021053715A1 (ja) 制御システムおよび制御方法
WO2021038622A1 (ja) 無人移動体の制御システムおよび無人移動体の制御方法
JP2024016373A (ja) 対象設備の診断方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766364

Country of ref document: EP

Kind code of ref document: A1