WO2020179266A1 - 駆動制御装置 - Google Patents

駆動制御装置 Download PDF

Info

Publication number
WO2020179266A1
WO2020179266A1 PCT/JP2020/002244 JP2020002244W WO2020179266A1 WO 2020179266 A1 WO2020179266 A1 WO 2020179266A1 JP 2020002244 W JP2020002244 W JP 2020002244W WO 2020179266 A1 WO2020179266 A1 WO 2020179266A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
idling
control device
determination unit
frequency component
Prior art date
Application number
PCT/JP2020/002244
Other languages
English (en)
French (fr)
Inventor
健太 前田
絢也 高橋
重幸 野々村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020179266A1 publication Critical patent/WO2020179266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive control device that controls the torque of a drive device (engine, motor, etc.) for accelerating and decelerating a vehicle such as an automobile.
  • a drive device engine, motor, etc.
  • Patent Document 1 The prior art described in Patent Document 1 is a method of determining whether the fluctuation of the rotation speed (rotation speed) of the drive device is due to twisting or slipping, and erroneously determines that the tire adhesive state is an idling state. It is a technology that solves problems.
  • the estimated rotation speed equivalent value estimated using the transfer characteristic between the torque and the rotation speed of the drive device in consideration of the torsional rigidity and the actual rotation speed equivalent value are used. The slip is determined based on the comparison.
  • the present invention has been made in view of the above circumstances, and an object thereof is to prevent the tire adhesion state from being erroneously determined to be an idling state, while the tire is in an idling state at an early stage. It is to provide a drive control device capable of making the above determination.
  • a drive control device controls a torque of the drive device by using a torque command value of the drive device that gives a driving force to a vehicle and a rotation speed of the drive device.
  • a frequency component extraction unit that extracts at least one frequency component of the rotational speed of the drive device and the torque of the drive device, and an idling determination unit that determines whether or not the wheels of the vehicle are idling based on the frequency component. And, it is characterized by having.
  • the idling state of the wheel is appropriately determined by changing the frequency component of the rotational speed of the drive device, and the tire is actually in the idling state while preventing the tire adhesive state from being erroneously determined as the idling state. It becomes possible to quickly determine that it has become and suppress the idling.
  • FIG. 6 is an explanatory view showing a frictional force model of FIG. It is explanatory drawing which showed the physical model of the drive part of the vehicle carrying Example 1 of the drive control apparatus which concerns on this invention. It is a block diagram which showed the structure of Example 1 of the drive control apparatus which concerns on this invention.
  • Example 1 which is an example of the drive control device of the present invention will be described with reference to FIGS. 1 to 11 (b).
  • FIG. 1 is an explanatory diagram showing the overall configuration of a vehicle 21 as a control target that is equipped with the drive control device 1 in the first embodiment of the drive control device according to the present invention.
  • the FL wheel means the left front wheel
  • the FR wheel means the right front wheel
  • the RL wheel means the left rear wheel
  • the RR wheel means the right rear wheel.
  • Each FL wheel, FR wheel, RL wheel, and RR wheel means the road surface and ground contact (adhesion).
  • Tires 20FL, 20FR, 20RL, 20RR are mounted.
  • the vehicle 21 is equipped with a motor 22 as a driving device for generating a driving torque (driving force) for controlling the acceleration / deceleration of the vehicle 21 in the traveling direction
  • the drive control device 1 is a battery mounted on the vehicle body (not shown).
  • the drive torque generated by the motor 22 is transmitted to the left and right drive shafts 24L and 24R via the differential gear 23, and is transmitted to the front left and right tires 20FL and 20FR directly connected to the drive shafts 24L and 24R.
  • the control device 1 accelerates / decelerates the vehicle 21.
  • an electric vehicle equipped with the motor 22 has been described here, an engine may be used as a driving device (driving source) instead of the motor. Further, although the vehicle has been described here as a front-wheel drive vehicle, it may be a rear-wheel drive vehicle or a four-wheel drive vehicle.
  • the vehicle 21 also includes a steering control mechanism 30 for controlling the traveling direction, a brake control mechanism 33, and a travel control device 25 that calculates a command value to the drive control device 1. Further, the vehicle 21 controls the steering control device 28 that controls the steering control mechanism 30 based on the command value from the travel control device 25 and the brake control mechanism 33 based on the command value to distribute the braking force of each wheel. And a braking control device 35 for adjusting.
  • the drive control device 1 is a power semiconductor (for example, an IGBT) that controls the current of the motor 22 by switching, a CPU, a ROM, a RAM, and an input / output device for controlling switching of the power semiconductor. Have.
  • the drive control flow described with reference to FIG. 6 and the like is stored in the ROM.
  • the drive control device 1 is based on the torque command value 2 received from the travel control device 25 and the motor rotation angle 60 and the motor rotation speed 61 acquired by the rotation angle sensor 51 attached to the motor 22. (See FIG. 6)
  • the motor torque to be generated is calculated, and the power semiconductor is switched so as to obtain the motor torque to control the current flowing through the motor 22.
  • the driver boosts the pedaling force on the brake pedal 32 with a brake booster (not shown) if necessary, and the master cylinder (not shown) responds to the force.
  • Generate hydraulic pressure The generated hydraulic pressure is supplied to the wheel cylinders 36FL, 36FR, 36RL, and 36RR provided on each wheel via the brake control mechanism 33.
  • Each of the wheel cylinders 36FL to 36RR is composed of a cylinder, a piston, a pad, a disc rotor, etc., which are not shown.
  • the hydraulic fluid supplied from the master cylinder propels the piston, and the pad connected to the piston presses the disc rotor. To be done.
  • the disc rotor is rotating together with the wheels.
  • the braking torque acting on the disc rotor becomes the braking force acting between the wheels and the road surface.
  • the braking force can be generated on each wheel according to the driver's operation of the brake pedal.
  • it is not always necessary to mount a brake booster or a master cylinder, and if the brake pedal 32 and the brake control mechanism 33 are directly connected and the driver depresses the brake pedal 32. It may be a mechanism in which the brake control mechanism 33 operates directly.
  • the braking control device 35 has, for example, a CPU, a ROM, a RAM, and an input/output device.
  • the braking control device 35 includes, for example, a combine sensor 34 capable of detecting longitudinal acceleration, lateral acceleration, and yaw rate, wheel speed sensors 31FL, 31FR, 31RL, 31RR installed on each wheel, and a steering control device 28 described later.
  • the sensor signal from the steering wheel angle detection device 41, the braking force command value from the traveling control device 25, and the like are input.
  • the output of the braking control device 35 is connected to a brake control mechanism 33 having a pump and a control valve (not shown) so that an arbitrary braking force can be generated on each wheel independently of the driver's operation of the brake pedal.
  • the present embodiment is not limited to the braking control device 35, and other actuators such as a brake-by-wire may be used.
  • the steering control device 28 controls the steering motor 29 to generate an assist torque.
  • the steering control device 28 is not shown in detail in FIG. 1, it also has, for example, a CPU, a ROM, a RAM, and an input / output device, like the braking control device 35.
  • the steering control mechanism 30 moves and the front wheels (FL wheels, FR wheels) are cut by the resultant force of the steering torque of the driver and the assist torque of the steering motor 29.
  • the reaction force from the road surface is transmitted to the steering control mechanism 30 according to the turning angle of the front wheels, and is transmitted to the driver as the road surface reaction force.
  • the vehicle 21 equipped with the drive control device 1 of the present embodiment does not necessarily need to be equipped with the steering torque detection device 27, and when the driver operates the steering wheel 26, the steering control device 28 does not operate and the assist operation is performed.
  • a mechanism that does not generate torque may be used.
  • the steering control device 28 can control the steering control mechanism 30 by generating torque by the steering motor 29 independently of the driver's steering operation. Therefore, the travel control device 25 can control the front wheels to an arbitrary turning angle by communicating the steering force command value to the steering control device 28, and automatically steers in the automatic driving in which the driver does not operate. Is responsible for doing.
  • the present embodiment is not limited to the steering control device 28, and other actuators such as steer-by-wire may be used.
  • the stroke amount of the accelerator pedal 37 of the driver is detected by the stroke sensor 38 and input to the drive control device 1 (via the travel control device 25).
  • the drive control device 1 also has, for example, a CPU, a ROM, a RAM, and an input/output device like the braking control device 35.
  • the drive control device 1 controls the motor torque of the motor 22 according to the depression amount of the accelerator pedal 37, for example.
  • the vehicle 21 can be accelerated in accordance with the driver's operation of the accelerator pedal. Further, the drive control device 1 can control the motor torque of the motor 22 independently of the accelerator operation of the driver.
  • the travel control device 25 transmits a torque command value (also referred to as an acceleration command value) to the drive control device 1 to generate an arbitrary acceleration in the vehicle 21 (controlling the motor torque of the motor 22). It plays a role of automatically accelerating in automatic driving where the driver does not operate.
  • the vehicle 21 equipped with the drive control device 1 of the present embodiment does not necessarily have to be an electric vehicle whose main drive device is an electric motor, and the main drive device may be an engine.
  • the drive control device 1 calculates the throttle opening degree according to the depression amount of the accelerator pedal 37 and controls the engine operating state so as to realize the throttle opening degree.
  • the traveling control device 25 determines the command value (brake force command value, steering force command value, torque command value (acceleration command) based on signals obtained from various sensors and the like provided in the vehicle 21. Value)), and the calculated command values (brake force command value, steering force command value, torque command value (acceleration command value)) are used for each control device (braking control device 35, steering control device 28, drive control device 1). ), the braking force of the vehicle 21, the front wheel turning angle, the acceleration, etc. can be controlled, and the running state of the vehicle 21 can be arbitrarily controlled.
  • the vehicle 21 equipped with the steering wheel 26, the accelerator pedal 37, and the brake pedal 32 is described, but the vehicle may not be equipped with these input devices.
  • the vehicle is a fully autonomous vehicle that does not require a driver's operation, a remote vehicle that receives a travel command remotely, and travels.
  • the drive shaft connected to the drive wheel connected to the motor 22 and driven to rotate is installed on the drive shaft 24, and the tire mounted on the drive wheel is installed on the tire 20 and the drive wheel.
  • the wheel speed sensor is referred to as a wheel speed sensor 31.
  • FIG. 2A shows the component configuration of the drive unit.
  • the drive torque generated in the motor 22 is transmitted to the differential gear 23 via the reduction gear 52, the drive torque is distributed to the left and right wheels by the differential gear 23, and then transmitted to the tire 20 via the drive shaft 24.
  • FIG. 2B shows a physical model of the drive unit.
  • the drive unit has two inertias, a motor 22 and a tire 20, and can be represented by a physical model of a two-inertial system in which a spring called a drive shaft 24 is connected between them.
  • the tire 20 comes into contact with the road surface, and a non-linear frictional force is generated between the tire 20 and the road surface as described later (see FIG. 4B).
  • This frequency varies depending on the shape of the tire 20 and the drive shaft 24 configured in the vehicle 21, that is, depending on the vehicle type, and for example, FIG. 3A,
  • vibration of about 4 Hz is generated when the tire is adhered (see the vibration waveform 61 (a) of FIG. 3 (a)), and vibration of about 12 Hz is generated when the tire is idling (FIG. 3 (a).
  • Vibration waveform 61(b) of b) Vibration waveform 61(b) of b)
  • FIG. 4A is a conceptual diagram showing a physical model of a drive unit of a tri-inertial system including the inertia of the vehicle 21.
  • FIG. 2B there are two inertias, the motor 22 and the tire 20, and a spring called the drive shaft 24 is connected between them.
  • a relationship of friction characteristic 62 between the tire 20 and the road surface is generated between the tire 20 and the vehicle 21.
  • FIG. 4B shows the characteristic of the friction characteristic 62, that is, the friction force model between the tire 20 and the vehicle 21.
  • the vertical axis represents the force in the rotational direction (driving force 63) generated in the tire 20 so as to drive the vehicle 21, and the horizontal axis represents the slip ratio 64 which is the ratio of the speed difference between the tire 20 and the vehicle body.
  • the driving stiffness is large as shown by the dotted line 65(a), and as the slip ratio 64 is large and the tire slip region is approached, the driving stiffness becomes small as shown by the dotted line 65(b). Then, when the tire 20 is in a completely idling state, the driving stiffness becomes 0.
  • FIG. 5 is a Bode diagram showing how the frequency characteristic of the motor rotation speed changes depending on the magnitude of the driving stiffness.
  • the frequency characteristics 66(a) and 66(b) represent the frequency characteristics of the motor rotation speed in the adhesive state
  • the frequency characteristics 66(c) and 66(d) represent the frequency characteristics of the motor rotation speed in the idling state.
  • the driving stiffness has a relationship of 66(a)>66(b)>66(c)>66(d). It can be seen from FIG. 5 that the resonance frequency (the frequency at which the amplitude of the frequency characteristic has a peak in FIG. 5) intermittently exists near 4 Hz or 12 Hz, and does not change continuously due to a change in driving stiffness.
  • the drive control device 1 determines the slip state of the tire 20 due to the resonance frequency change.
  • FIG. 6 is a block diagram showing a part of the configuration of the drive control device according to the first embodiment of the present invention.
  • the drive control device 1 is composed of at least a torque command acquisition unit 3, a rotation speed calculation unit 4, a frequency component extraction unit 5, an idling determination unit 6, and a torque determination unit 7. There is.
  • the torque command acquisition unit 3 receives a torque command value (command value for causing the motor 22 to generate a motor torque to generate a predetermined acceleration in the vehicle 21) 2 from the travel control device 25.
  • the torque command value 2 is received as a positive value for accelerating the vehicle 21 when the driver depresses the accelerator pedal 37, and when the driver does not depress the accelerator pedal 37 or depresses the brake pedal 32, for example. If it is, it is received as a negative value corresponding to regenerative braking or engine braking.
  • digital communication such as CAN (Control Area Network) is generally used.
  • the rotation speed calculation unit 4 time-differentiates the motor rotation angle 60 acquired by the rotation angle sensor 51 attached to the motor 22 (calculates the amount of change per unit time) to calculate the motor rotation speed 61.
  • the rotation angle sensor 51 a sensor such as an encoder or a resolver that can acquire the absolute angle of the motor 22 is generally used.
  • the frequency component extraction unit 5 extracts a specific frequency component from the motor rotation speed 61 calculated by the rotation speed calculation unit 4. For example, as shown in FIGS. 3(a) and 3(b), in a control target having a resonance frequency of about 4 Hz when the tire adheres and about 12 Hz when the tire slips, both the frequency component of 12 Hz or both the frequency components of 4 Hz and 12 Hz are generated. Extract.
  • FIG. 7A and 7B are explanatory diagrams showing an example of the operation of the frequency component extraction unit 5.
  • FIG. 7A shows an example of temporal changes in the motor rotation speed and the vehicle speed.
  • the resonance frequency is about 8 Hz, and when the tire idles. Shows the case of a vehicle having a resonance frequency of about 6 Hz.
  • the horizontal axis represents the time, and the vertical axis represents the motor rotation speed 61 and the vehicle speed 67 (specifically, the speed converted into the rotation direction of the vehicle speed).
  • FIG. 7A shows an example of temporal changes in the motor rotation speed and the vehicle speed.
  • the resonance frequency is about 8 Hz
  • the tire idles Shows the case of a vehicle having a resonance frequency of about 6 Hz.
  • the horizontal axis represents the time
  • the vertical axis represents the motor rotation speed 61 and the vehicle speed 67 (specifically, the speed converted into the rotation direction of the vehicle speed).
  • the motor torque is generated in steps from the time point of 0.5 seconds, the vehicle 21 starts accelerating, and the pulsation (resonance) of the motor rotation speed 61 is generated.
  • the road surface becomes slippery from the time point of 3 seconds, the tire 20 spins idle, and the motor rotation speed 61 and the vehicle speed 67 deviate from each other.
  • FIG. 7B shows the frequency component extraction value (output of the bandpass filter) of the motor rotation speed when the bandpass filter is used as the frequency component extraction method.
  • the frequency component extraction unit 5 calculates and compares the outputs of the two bandpass filters having the cutoff frequency of the resonance frequency at the time of tire adhesion and tire idling in the time waveform. Then, the difference in amplitude is calculated.
  • the amplitude of the component of the frequency f is obtained in the motor rotation speed ⁇ .
  • the Fourier transform calculates the amplitude of vibration when the motor rotation speed ⁇ vibrates at the relevant frequency f, while it is almost 0 when the motor rotation speed ⁇ vibrates at a frequency different from the relevant frequency f. It has the feature of calculating the amplitude of. Therefore, in this method, as in the method using the bandpass filter, the difference between the two Fourier transform results (amplitude) in which the resonance frequency at the time of tire adhesion and tire idling is the frequency f may be calculated. You may calculate the amplitude by performing only the Fourier transform with the resonance frequency at the time of idling as the frequency f.
  • the idling determination by the idling determination unit 6 described later is not limited to the bandpass filter and the Fourier transform, and any method that can extract a predetermined frequency component can be applied.
  • the idling determination unit 6 is based on the frequency component of the motor rotation speed 61 extracted by the frequency component extraction unit 5, that is, when a predetermined frequency component of the motor rotation speed 61 is detected, or when the predetermined frequency of the motor rotation speed 61 is detected. Based on the comparison between the component and another frequency component different from the predetermined frequency component, it is determined whether the tire 20 is in the adhesive state or the idling state, and the idling determination result 70 is output. As described above, when calculating the difference between the resonance frequency components at the time of tire adhesion and the tire idling by using a band pass filter, Fourier transform, etc., the idling determination unit 6 determines that the resonance frequency component at the time of tire idling is the tire adhesion.
  • the idling determination unit 6 determines that the tire 20 is idling after 3.1 seconds when the frequency component extraction value 68(b) is larger than the frequency component extraction value 68(a). Further, as described above, when the amplitude is calculated by the Fourier transform with the resonance frequency at the time of tire idling as the frequency f, the idling determination unit 6 determines that the tire 20 is in the idling state when the amplitude exceeds a predetermined value. .. In the example of FIG.
  • the idling state of the tire 20 can be determined by setting the predetermined value to about 5 rad/s, for example.
  • the idling determination result 70 by the idling determination unit 6 may be represented by a binary number where, for example, adhesion is 0 and idling is 1, or 0 (complete adhesion) to 1 (idling) is continuously set according to the estimated slip ratio of the tire. It may be expressed as a value.
  • the torque determination unit 7 corrects the torque based on the torque command value 2 from the torque command acquisition unit 3, the motor rotation angle 60, the motor rotation speed 61 from the rotation speed calculation unit 4, and the idling determination result 70 from the idling determination unit 6.
  • the value 71 is calculated (detailed later).
  • the torque determination unit 7 corrects the torque command value 2 by the torque correction value 71 (in other words, the torque correction value 71 is added to the torque command value 2) final motor torque (may be simply referred to as motor torque. ) 72 is calculated, the power semiconductor is switched so that the motor 22 generates the final motor torque 72, and the current flowing through the motor 22 is controlled.
  • the motor 22 is a permanent magnet synchronous motor
  • vector control based on the motor rotation angle 60 is generally performed.
  • the motor rotation angle 60 of the motor 22 is acquired by the rotation angle sensor 51 attached to the motor 22 and input to the rotation speed calculation unit 4 of the drive control device 1.
  • 8A to 8C show examples of the time response of the motor torque 72 including (adding) the motor rotation speed 61, the idling determination result 70, and the torque correction value 71, respectively.
  • the tire 20 After that, at time 73(b), the tire 20 returns to a slippery road surface, but the tire 20 whose idling speed has increased its rotation speed does not immediately become sticky and remains idly while it is rapidly decelerated to the same speed as the vehicle body speed. Subsequently, the pulsation (resonance) frequency of the motor rotation speed 61 remains high. After that, at time 73 (c), the rotation speed of the tire 20 becomes the same as the vehicle body speed, and when the adhesive state is restored, the pulsation (resonance) frequency of the motor rotation speed 61 finally returns to the frequency before time 73 (a). ..
  • the idling determination unit 6 determines that the tire 20 is running between the time 73(a) and the time 73(c) by the method described above, as shown in FIG. 8(b). It is determined and detected that the vehicle is idling. As a result, the torque determination unit 7 calculates the negative torque correction value 71 between the time 73(a) and the time 73(c) as shown in FIG. The torque 72 is lower (decreased) than the torque command value 2. In other words, the absolute value of the final motor torque 72 in this section is small. As a result, an increase in the motor rotation speed 61 of the motor 22 in this section, that is, idling is suppressed.
  • FIGS. 9 (a) to 9 (c) show an example of the time response of the motor torque 72 including (adding) the motor rotation speed 61, the idling determination result 70, and the torque correction value 71, respectively.
  • the idling determination unit 6 determines that the tire 20 is running between the time 73(a) and the time 73(c) by the method described above, as shown in FIG. 9(b). Judges and detects that the vehicle is idling. As a result, the torque determination unit 7 calculates a positive torque correction value 71 between the time 73 (a) and the time 73 (c) as shown in FIG. 9 (c), so that the final motor in this section The torque 72 is higher than the torque command value 2 (the absolute value of the final motor torque 72 is small) (increased). As a result, the decrease of the motor rotation speed 61 of the motor 22 in this section, that is, the idling is suppressed.
  • FIGS. 10(a) to 11(b) A further specific example of the method of calculating the torque correction value 71 by the torque determination unit 7 will be described with reference to FIGS. 10(a) to 11(b).
  • the behavior during vehicle acceleration will be described here. As described above, the behavior during vehicle deceleration is the opposite of the behavior during vehicle acceleration and the torque correction value.
  • FIGS. 10(a) to 10(c) and FIGS. 11(a) and 11(b) show a method for simultaneously preventing the idling of the tire 20 and the resonance of the motor rotation speed 61.
  • the torque determination unit 7 calculates only the torque correction value 71 for suppressing the resonance while the idling determination unit 6 determines that the tire 20 is in an adhesive state, and the idling determination unit 6 causes the tire 20 to idle. While the state is determined, the torque determination unit 7 calculates the torque correction value 71 that satisfies both idling prevention and resonance suppression.
  • 10 (a) to 10 (c) show that the absolute value of the average value of the torque correction value 71 is reduced at the time of adhesion determination, and the absolute value of the average value of the torque correction value 71 is increased at the time of idling determination to correct the motor torque 72.
  • An example of a method of calculating the torque correction value 71 in the case of performing is shown.
  • the tire 20 is determined to be in an adhesive state.
  • the torque correction value 71 generates a torque having a phase opposite to the pulsation of the motor rotation speed 61.
  • the average value 74 of the torque correction value 71 is almost 0, as shown in FIG. 10(c).
  • the tire 20 is determined to be in the idling state, and the average value 74 of the torque correction values 71 is calculated in the negative direction as shown in FIG. 10(c). That is, focusing on the average value 74 of the torque correction value 71, when the tire 20 is determined to be in the idling state, the average value 74 of the torque correction value 71 is compared to the case where the tire 20 is determined to be in the adhesive state.
  • the feature is that the absolute value becomes large.
  • FIGS. 11A and 11B show a case where the torque correction value 71 is set within a predetermined range at the time of sticking determination, and the torque correction value 71 is set beyond the predetermined range at the time of idling determination to correct the motor torque 72.
  • An example of a method for calculating the torque correction value 71 will be described. The behavior in this method is the same as in FIG. 10A, and as shown in FIG. 11A, it is determined that the tire 20 is in the idling state after the time 73 (b). At this time, as shown in FIG. 11B, the torque determination unit 7 suppresses the torque correction value 71 within the limit value 75 before the time 73 (b) when the tire 20 is determined to be in the adhesive state.
  • the torque correction value 71 is calculated regardless of the limit value 75 (that is, exceeding the limit value 75).
  • the limit value 75 in the positive direction and the limit value 75 in the negative direction of the torque correction value 71 are set to be substantially the same. Accordingly, these limit values may be set to different values (width).
  • the torque determination unit 7 can calculate the torque correction value 71 suitable for preventing the idling of the tire 22 from the idling determination result 70 from the idling determination unit 6, and so on.
  • the final motor torque 72 is calculated by correcting the torque command value 2 in consideration of 71, and the acceleration of the vehicle 21 (from the motor 22 to the vehicle 21) is controlled by controlling the current flowing through the motor 22 using the final motor torque 72.
  • the driving force applied to the motor can be properly controlled.
  • the drive control device 1 of the first embodiment it is determined whether or not the tire 20 is in the idling state based on the change in the resonance frequency of the motor rotation speed 61 of the motor 22 without using the information on the vehicle speed. It is possible to prevent the erroneous determination of the idling determination and perform the idling determination at an earlier stage.
  • Example 2 which is another example of the drive control device of the present invention, will be described with reference to FIGS. 12 to 13 (c).
  • the same parts as in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the idling of the tire 20 is determined from the frequency fluctuation of the motor rotation speed 61 of the motor 22 as the drive device, but at the same time, the torque correction methods shown in FIGS. 10A to 10C are used. It is possible that the resonance phenomenon itself of the motor rotation speed 61 can be suppressed. In this case, if the resonance of the motor rotation speed 61 does not occur, the idling of the tire 20 may not be determined.
  • the torque correction value 71 for suppressing the resonance of the motor rotation speed 61 has the same frequency component as the resonance frequency of the motor rotation speed 61. Therefore, instead of the motor rotation speed 61, the idling determination of the tire 20 may be performed based on the frequency component of the torque correction value 71.
  • FIG. 12 is a block diagram showing a part of the configuration of the second embodiment of the drive control device according to the present invention.
  • the drive control device 1 includes at least a torque command acquisition unit 3, a rotation speed calculation unit 4, a torque determination unit 101, a frequency component extraction unit 5, and a slip determination unit 6. There is. Since the torque command acquisition unit 3 and the rotation speed calculation unit 4 are the same as those in the above-described first embodiment, description thereof will be omitted.
  • the torque determination unit 101 calculates the torque correction value 71 so as to suppress the resonance of the motor rotation speed 61 from the rotation speed calculation unit 4. Then, the torque determination unit 101 calculates the final motor torque 72 in which the torque command value 2 from the torque command acquisition unit 3 is corrected by the torque correction value 71, and the power is set so that the motor 22 generates the final motor torque 72. The semiconductor is switched to control the current flowing through the motor 22.
  • the motor rotation angle 60 of the motor 22 is acquired by the rotation angle sensor 51 attached to the motor 22 and input to the rotation speed calculation unit 4 of the drive control device 1.
  • the frequency component extraction unit 5 extracts a specific frequency component of the torque correction value 71 calculated by the torque determination unit 101.
  • the frequency component of the final motor torque 72 obtained by correcting the torque command value 2 from the torque command acquisition unit 3 by the torque correction value 71 may be extracted. Since the method for extracting the frequency component here is the same as that in the first embodiment, the description thereof will be omitted.
  • the idling determination unit 6 determines whether the tire 20 is in the adhesive state or the idling state based on the torque correction value 71 extracted by the frequency component extraction unit 5 or the frequency component of the final motor torque 72, and determines whether the tire 20 is in the adhesive state or the idling state.
  • the idling determination result 70 is output. Since the idling determination method here is the same as that of the above-described first embodiment, the description thereof will be omitted.
  • FIGS. 13(a) to 13(c) An example of the behavior of the drive control device 1 according to the second embodiment will be described with reference to FIGS. 13(a) to 13(c).
  • FIGS. 13(a) to 13(c) an example of extracting the frequency component of the torque correction value 71 will be described.
  • 13(a) and 13(b) respectively show an example of temporal changes in the motor rotation speed 61 and the torque correction value 71.
  • the pulsation of the motor rotation speed 61 due to resonance is smaller in this embodiment than in FIG. 10A. This is because, as shown in FIG. 13B, the torque correction value 71 is calculated by the torque determination unit 101 so as to suppress the resonance of the motor rotation speed 61.
  • the frequency component extraction unit 5 of the second embodiment extracts the frequency component of the torque correction value 71 as shown in FIG. 13B, as described above.
  • the pulsation frequency of the torque correction value 71 increases from the time point 73 (b).
  • the frequency component extraction unit 5 extracts such a change in the resonance frequency of the torque correction value 71, and the idling determination unit 6 is based on the change, as shown in FIG. 13 (c), after the time 73 (b). I have made a slip decision.
  • the second embodiment by performing the idling determination from the frequency component of the torque correction value 71 calculated by the torque determination unit 101, even when the resonance of the motor rotation speed 61 is suppressed, the accurate idling is performed. It becomes possible to make a judgment.
  • Example 3 which is another example of the drive control device of the present invention, will be described with reference to FIG.
  • the same parts as those in Examples 1 and 2 are designated by the same reference numerals and the description thereof will be omitted.
  • FIG. 14 is a block diagram showing a part of the configuration of the third embodiment of the drive control device according to the present invention.
  • the idling determination transmission unit 102 for transmitting the idling determination result 70 by the idling determination unit 6 is added to the traveling control device 25 which is the upper controller in addition to the above second embodiment. is there.
  • the traveling control device 25, which is a host controller is shown in a block diagram.
  • the idling determination transmitting unit 102 transmits the idling determination result 70 calculated by the idling determination unit 6 to the traveling control device 25, and the idling determination receiving unit 103 of the traveling control device 25 receives the idling determination result 70. To do.
  • the traveling control device 25 calculates the positive torque command value 2 for accelerating the vehicle 21 when the driver depresses the accelerator pedal 37, and when the driver does not depress the accelerator pedal 37, for example.
  • a torque command calculation unit 104 that calculates a negative torque command value 2 corresponding to regenerative braking or engine braking is provided.
  • the torque command calculation unit 104 determines that the idling determination result 70 is idling.
  • the torque command value 2 is automatically corrected/calculated in order to suppress the idling of the tire 20. Since the correction method here is almost the same as that of the first and second embodiments, the description thereof will be omitted. Then, the torque command value 2 calculated by the torque command calculation unit 104 in this manner is transmitted to (the torque command acquisition unit 3 of) the drive control device 1.
  • digital communication such as CAN (Control Area Network) is generally used.
  • the idling suppression of the tire 20 is performed more effectively by transmitting the idling determination result 70 by the idling determination unit 6 to the outside (for example, the traveling control device 25 which is the upper controller). Is possible.
  • an electric vehicle also referred to as an electric vehicle powered by an electric drive motor
  • the power is transmitted through a thin shaft such as a drive shaft. It is applicable as long as the vehicle is transmitted to the tire.
  • the invention can be applied to engine vehicles, hybrid vehicle construction machines (mine dump trucks, etc.), and small mobility such as single-seat small vehicles.
  • the electric motors may be mounted independently on the left and right, and each may transmit the power to the left and right wheels through the shaft.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them with, for example, an integrated circuit.
  • the above-described respective configurations, functions and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files that implement each function can be placed in a memory, a storage device such as a hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are shown on the product. In reality, it may be considered that almost all the configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

車両に駆動力を与える駆動装置のトルク指令値と前記駆動装置の回転速度を用いて前記駆動装置のトルクを制御する駆動制御装置であって、前記駆動装置の回転速度と前記駆動装置のトルクの少なくとも一つの周波数成分を抽出する周波数成分抽出部と、前記周波数成分に基づき、前記車両の車輪の空転有無を判定する空転判定部と、を有する。これにより、タイヤ粘着状態を空転状態と誤判定することを防ぎつつ、タイヤが実際に空転状態になったことを早期に判定することのできる駆動制御装置を提供する。

Description

駆動制御装置
 本発明は、自動車等の車両の加減速を行うための駆動装置(エンジン、モータ等)のトルクを制御する駆動制御装置に関する。
 従来、車載の駆動装置からドライブシャフトを介して車輪及び該車輪に設けられたタイヤに動力が伝達される車両において、ドライブシャフトのねじれによる共振の影響を考慮しつつ、車輪及び該車輪に設けられたタイヤ(本明細書では、これらを纏めて車輪ということがある)の空転状態(以下、スリップということがある)を判定して空転抑圧する駆動制御技術が知られている(例えば、特許文献1参照)。
特開2012-29473号公報
 特許文献1に記載の従来技術は、駆動装置の回転速度(回転数)変動がねじれに起因するものかスリップに起因するものかを判定する手法であり、タイヤ粘着状態を空転状態と誤判定する問題を解決する技術である。しかしながら、特許文献1に記載の従来技術は、ねじれ剛性を考慮した駆動装置のトルクと回転数との間の伝達特性を用いて推定した推定回転数相当値と、実際の回転数相当値との比較に基づいて、スリップを判定する。そのため、滑りやすい路面でタイヤが直ちに空転状態になった際、空転開始直後の回転速度変動をねじれに起因すると判定する可能性があり、実際にタイヤ空転状態と判定するまでに時間を要する可能性がある。
 本発明は、前記事情に鑑みてなされたものであって、その目的とするところは、タイヤ粘着状態を空転状態と誤判定することを防ぎつつ、タイヤが実際に空転状態になったことを早期に判定することのできる駆動制御装置を提供することにある。
 上記目的を達成するために、本発明に係る駆動制御装置は、車両に駆動力を与える駆動装置のトルク指令値と前記駆動装置の回転速度を用いて前記駆動装置のトルクを制御する駆動制御装置であって、前記駆動装置の回転速度と前記駆動装置のトルクの少なくとも一つの周波数成分を抽出する周波数成分抽出部と、前記周波数成分に基づき、前記車両の車輪の空転有無を判定する空転判定部と、を有することを特徴としている。
 本発明によれば、駆動装置の回転速度の周波数成分が変化することで車輪の空転状態を適切に判定し、タイヤ粘着状態を空転状態と誤判定することを防ぎつつ、タイヤが実際に空転状態になったことを早期に判定して空転抑圧することが可能となる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る駆動制御装置の実施例1を搭載した車両の全体構成を示した説明図である。 本発明に係る駆動制御装置の実施例1を搭載した車両の駆動部を示した説明図であり、(a)はその部品構成、(b)はその物理モデルを示した説明図である。 本発明に係る駆動制御装置の実施例1を搭載した車両の駆動部の物理現象を示した説明図であり、(a)はタイヤ粘着時のモータ回転速度、(b)はタイヤ空転時のモータ回転速度を示した説明図である。 本発明に係る駆動制御装置の実施例1を搭載した車両の駆動部の物理現象を示した説明図であり、(a)は車両を含む駆動部の物理モデル、(b)はタイヤと車両間の摩擦力モデルを示した説明図である。 本発明に係る駆動制御装置の実施例1を搭載した車両の駆動部の物理モデルを示した説明図である。 本発明に係る駆動制御装置の実施例1の構成を示したブロック図である。 本発明に係る駆動制御装置の実施例1の周波数成分抽出部5の動作例を示した説明図であり、(a)はモータ回転速度と車両速度の比較例、(b)はモータ回転速度の周波数成分抽出例を示した説明図である。 本発明に係る駆動制御装置の実施例1のトルク決定部7の動作例を示した説明図であり、(a)はモータ回転速度、(b)は空転判定結果、(c)は最終モータトルクの時間応答を示した説明図である。 本発明に係る駆動制御装置の実施例1のトルク決定部7の動作例を示した説明図であり、(a)はモータ回転速度、(b)は空転判定結果、(c)は最終モータトルクの時間応答を示した説明図である。 本発明に係る駆動制御装置の実施例1のトルク決定部7の動作例を示した説明図であり、(a)はモータ回転速度、(b)はトルク補正値、(c)はトルク補正値の平均値の時間応答を示した説明図である。 本発明に係る駆動制御装置の実施例1のトルク決定部7の動作例を示した説明図であり、(a)は空転判定結果、(b)はトルク補正値の時間応答を示した説明図である。 本発明に係る駆動制御装置の実施例2の構成を示したブロック図である。 本発明に係る駆動制御装置の実施例2のトルク決定部101及び空転判定部6の動作例を示した説明図であり、(a)はモータ回転速度、(b)はトルク補正値、(c)は空転判定結果の時間応答を示した説明図である。 本発明に係る駆動制御装置の実施例3の構成を示したブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(実施例1)
 まず初めに、本発明の駆動制御装置の一例である実施例1について、図1乃至図11(b)を用いて説明する。
 図1は、本発明に係る駆動制御装置の実施例1のうち、駆動制御装置1を搭載した制御対象としての車両21の全体構成を示した説明図である。FL輪は左前輪、FR輪は右前輪、RL輪は左後輪、RR輪は右後輪をそれぞれ意味し、それぞれのFL輪、FR輪、RL輪、RR輪に、路面と接地(粘着)するタイヤ20FL、20FR、20RL、20RRが装着されている。
 車両21は、車両21の進行方向の加減速度を制御するための駆動トルク(駆動力)を発生させる駆動装置としてのモータ22を搭載し、駆動制御装置1は、車体に搭載したバッテリ(不図示)から電力を受けて、モータ22の電流を制御してトルク指令値(後で説明)に従った駆動トルクを発生させる。モータ22で発生した駆動トルクは、デファレンシャルギア23を介して左右のドライブシャフト24L、24Rに伝達され、各ドライブシャフト24L、24Rに直結した前輪左右のタイヤ20FL、20FRに伝達されることで、駆動制御装置1は、車両21を加減速させる。なお、ここではモータ22を搭載した電動車両として説明したが、モータの代わりにエンジンを駆動装置(駆動源)としても良い。また、ここでは前輪駆動の車両として説明したが、後輪駆動や四輪駆動としても良い。
 また、車両21は、進行方向を制御するためのステアリング制御機構30、ブレーキ制御機構33、駆動制御装置1への指令値を演算する走行制御装置25を備える。また、車両21は、走行制御装置25からの指令値に基づき上記ステアリング制御機構30を制御する操舵制御装置28と、当該指令値に基づき上記ブレーキ制御機構33を制御し、各輪のブレーキ力配分を調整する制動制御装置35を備える。
 駆動制御装置1は、図1に詳細に示していないが、モータ22の電流をスイッチングにより制御するパワー半導体(例えばIGBT)、パワー半導体のスイッチングを制御するためのCPU、ROM、RAM及び入出力装置を有する。上記ROMには、図6等を用いて説明する駆動制御のフローが記憶されている。詳細は後述するが、駆動制御装置1は、走行制御装置25から受信したトルク指令値2と、モータ22に取り付けられた回転角センサ51により取得したモータ回転角60およびモータ回転速度61とに基づき(図6参照)、発生させるべきモータトルクを演算し、前記モータトルクとなるようパワー半導体をスイッチングしてモータ22に流れる電流を制御する。
 次に、車両21のブレーキの動作について説明する。ドライバが車両21を運転している状態では、ドライバがブレーキペダル32を踏む踏力を、必要であればブレーキブースタ(不図示)で倍力し、マスタシリンダ(不図示)によって、その力に応じた油圧を発生させる。発生した油圧は、ブレーキ制御機構33を介して、各輪に設けられたホイルシリンダ36FL、36FR、36RL、36RRに供給される。ホイルシリンダ36FL~36RRは、不図示のシリンダ、ピストン、パッド、ディスクロータ等から構成されており、マスタシリンダから供給された作動液によってピストンが推進され、ピストンに連結されたパッドがディスクロータに押圧される。尚、ディスクロータは、車輪とともに回転している。そのため、ディスクロータに作用したブレーキトルクは、車輪と路面との間に作用するブレーキ力となる。以上により、ドライバのブレーキペダル操作に応じて、各輪に制動力を発生させることができる。なお、本実施例の駆動制御装置1を搭載した車両21において、ブレーキブースタやマスタシリンダを搭載する必要は必ずしもなく、ブレーキペダル32とブレーキ制御機構33を直結させ、ドライバがブレーキペダル32を踏めば直接ブレーキ制御機構33が動作する機構であっても良い。
 制動制御装置35は、図1に詳細に示していないが、例えばCPU、ROM、RAM、及び入出力装置を有する。制動制御装置35には、例えば、前後加速度、横加速度、ヨーレートを検出可能なコンバインセンサ34、各輪に設置された車輪速センサ31FL、31FR、31RL、31RR、後述する操舵制御装置28を介したハンドル角検出装置41からのセンサ信号、上述の走行制御装置25からのブレーキ力指令値などが入力されている。また、制動制御装置35の出力は、不図示のポンプ、制御バルブを有するブレーキ制御機構33に接続されており、ドライバのブレーキペダル操作とは独立に、各輪に任意の制動力を発生させることができる。走行制御装置25が、制動制御装置35にブレーキ力指令値を通信することで、車両21に任意のブレーキ力を発生させることができ、ドライバの操作が生じない自動運転においては自動的に制動を行う役割を担っている。但し、本実施例は、上記制動制御装置35に限定されるものではなく、ブレーキバイワイヤ等のほかのアクチュエータを用いてもよい。
 次に、車両21のステアリングの動作について説明する。ドライバが車両21を運転している状態では、ドライバがハンドル26を介して入力した操舵トルクとハンドル角をそれぞれ操舵トルク検出装置27とハンドル角検出装置41で検出し、それらの情報に基づいて、操舵制御装置28は、操舵用モータ29を制御してアシストトルクを発生させる。なお、操舵制御装置28も、図1に詳細に示していないが、制動制御装置35と同様に、例えばCPU、ROM、RAM、及び入出力装置を有する。上記ドライバの操舵トルクと操舵用モータ29によるアシストトルクの合力により、ステアリング制御機構30が可動し、前輪(FL輪、FR輪)が切られる。一方で、前輪の切れ角に応じて、路面からの反力がステアリング制御機構30に伝わり、路面反力としてドライバに伝わる構成となっている。なお、本実施例の駆動制御装置1を搭載した車両21において、操舵トルク検出装置27を搭載する必要は必ずしもなく、ドライバがハンドル26を操作する際には操舵制御装置28が動作せず、アシストトルクが発生しない(いわゆるオモステの)機構であっても良い。
 操舵制御装置28は、ドライバのステアリング操作とは独立に、操舵用モータ29によりトルクを発生させ、ステアリング制御機構30を制御することができる。従って、走行制御装置25は、操舵制御装置28に操舵力指令値を通信することで、前輪を任意の切れ角に制御することができ、ドライバの操作が生じない自動運転においては自動的に操舵を行う役割を担っている。但し、本実施例は、上記操舵制御装置28に限定されるものではなく、ステアバイワイヤ等のほかのアクチュエータを用いてもよい。
 次に、車両21のアクセルの動作について説明する。ドライバのアクセルペダル37の踏み込み量はストロークセンサ38で検出され、(走行制御装置25を介して)駆動制御装置1に入力される。尚、駆動制御装置1も、図1に詳細に示していないが、制動制御装置35と同様に、例えばCPU、ROM、RAM、及び入出力装置を有する。駆動制御装置1は、例えば上記アクセルペダル37の踏み込み量に応じてモータ22のモータトルクを制御する。以上により、ドライバのアクセルペダル操作に応じて車両21を加速させることができる。また、駆動制御装置1は、ドライバのアクセル操作とは独立にモータ22のモータトルクを制御することができる。従って、走行制御装置25は、駆動制御装置1にトルク指令値(加速指令値ともいう)を通信することで、(モータ22のモータトルクを制御して)車両21に任意の加速度を発生させることができ、ドライバの操作が生じない自動運転においては自動的に加速を行う役割を担っている。なお、本実施例の駆動制御装置1を搭載した車両21は、主要駆動装置が電気モータである電動車両である必要は必ずしもなく、主要駆動装置がエンジンであっても良い。この場合、駆動制御装置1は、上記アクセルペダル37の踏み込み量に応じてスロットル開度を算出し、前記スロットル開度を実現するようにエンジン運転状態を制御する。
 前述したように、本実施例では、走行制御装置25は、車両21に配備された各種センサ等から得られる信号に基づき指令値(ブレーキ力指令値、操舵力指令値、トルク指令値(加速指令値))を演算し、演算した指令値(ブレーキ力指令値、操舵力指令値、トルク指令値(加速指令値))を各制御装置(制動制御装置35、操舵制御装置28、駆動制御装置1)に送信することで、車両21のブレーキ力、前輪切れ角、加速度などを制御し、車両21の走行状態を任意に制御することができる。
 なお、以上の説明では、ハンドル26、アクセルペダル37、ブレーキペダル32を搭載した車両21を述べたが、これら入力装置が設置されていない車両であっても良い。この場合、本車両は、ドライバの操作が生じない完全自動運転車、遠隔で走行指令を受けて走行する遠隔運転車などとなる。
 以下、説明を簡素化するために、モータ22に連結されて回転駆動される駆動輪に連結されるドライブシャフトをドライブシャフト24、駆動輪に装着されるタイヤをタイヤ20、駆動輪に設置される車輪速センサを車輪速センサ31と記載する。
 図2(a)、(b)を用いて、モータ22、デファレンシャルギア23、ドライブシャフト24などからなる前記車両21の駆動部について説明する。図2(a)は、駆動部の部品構成を示す。モータ22において発生した駆動トルクは、減速機52を経由してデファレンシャルギア23に伝達され、デファレンシャルギア23により駆動トルクが左右輪に配分されたうえで、ドライブシャフト24を介してタイヤ20に伝達される。図2(b)は、駆動部の物理モデルを示す。駆動部は、図2(b)に示す通り、モータ22、タイヤ20という二つの慣性があり、その間をドライブシャフト24というバネが連結するという二慣性系の物理モデルで表すことが可能である。また、本図では示していないが、タイヤ20は路面と接触し、タイヤ20と路面との間では後述の通り非線形の摩擦力が生じる(図4(b)参照)。
 このような二慣性系の構成において、モータ22のトルクが急激に変動した場合、図3(a)、(b)に示すようなモータ回転速度61の振動が発生する。図3(a)、(b)は、横軸に時刻、縦軸にモータ回転速度61を示したものであり、図3(a)、(b)に示す例では、0.5秒時点からモータ22にステップ状のトルクを発生させている。その結果、0.5秒時点からモータ回転速度61が振動している。この現象は、ドライブシャフト24がバネとして働くことから発生する共振現象である。その際のモータ回転速度61の振動周波数は、タイヤ20が路面に対して粘着しているか、空転しているかによって変動することが知られている。この周波数は、車両21に構成されているタイヤ20やドライブシャフト24の形状によって、すなわち車種によって異なり、例えば図3(a)、
(b)に示す例では、タイヤ粘着時に4Hz程度の振動が発生し(図3(a)の振動波形61(a)参照)、タイヤ空転時には12Hz程度の振動が発生している(図3(b)の振動波形61(b)参照)。
 図4(a)、(b)を用いて、上記のような振動周波数の変動が生じるメカニズムを説明する。図4(a)は、車両21の慣性を含んだ三慣性系の駆動部の物理モデルを示す概念図である。ここでは図2(b)と同様に、モータ22、タイヤ20という二つの慣性があり、その間をドライブシャフト24というバネが連結する。さらに、タイヤ20と車両21の間には、タイヤ20と路面間の摩擦特性62の関係が生じる。図4(b)は、その摩擦特性62の特徴、すなわちタイヤ20と車両21間の摩擦力モデルを示す。ここで、縦軸は車両21を駆動させるようにタイヤ20に発生する回転方向の力(駆動力63)、横軸はタイヤ20と車体との速度差の割合であるスリップ率64を表している。車両の速度をV、タイヤの回転速度をω、タイヤ半径をR、微小な正数をεとおけば、スリップ率λは、次の数式1の通り定義される。
  [数1]
    λ=(Rω-V)/max(Rω,V,ε)
 タイヤ20と車両21間に速度差が生じない時、RωとVは等しいことからλは0となり、この時、図4(b)の通りタイヤ20に駆動力63は発生しない。一方、タイヤ20に駆動力63が発生する時、タイヤ20が路面に対して粘着状態であっても、タイヤ20のゴムの弾性変形により車両21とタイヤ20の間で微小な速度差が生じる。スリップ率64が小さい領域では、スリップ率64と駆動力63の間にほぼ線形な関係があることが知られており、この関係(図4(b)における摩擦特性62の傾き)は一般にドライビングスティフネスと呼ばれる。スリップ率64が小さいタイヤ粘着領域では点線65(a)に示すようにドライビングスティフネスは大きく、スリップ率64が大きくタイヤ空転領域に近づくほど点線65(b)に示すようにドライビングスティフネスは小さくなる。そして、タイヤ20が完全空転状態になると、ドライビングスティフネスは0となる。
 タイヤ20が粘着状態になるとき、すなわちドライビングスティフネスが十分大きい領域では、タイヤ20と車両21はほぼ直結状態となっており、駆動部の物理モデルは、モータ22とタイヤ20+車両21の間の二慣性系となる。一方、タイヤ20が空転してドライビングスティフネスが0となると、タイヤ20と車両21との間の摩擦特性62が切り離されることになり、駆動部の物理モデルは、図2(b)に示すようにモータ22とタイヤ20の間の二慣性系となる。このように、タイヤ20の粘着・空転状態により、タイヤ20側の慣性の大きさが変わることが、図3(a)、(b)に示したような共振周波数の変動の原因である。
 図5は、ドライビングスティフネスの大きさによって、モータ回転速度の周波数特性がどのように変化するかを表すボーデ線図である。ここでは、周波数特性66(a)及び66(b)が粘着状態のモータ回転速度の周波数特性を表しており、周波数特性66(c)及び66(d)は空転状態のモータ回転速度の周波数特性を表す。また、ドライビングスティフネスは、66(a)>66(b)>66(c)>66(d)という関係になっている。図5より、共振周波数(図5において周波数特性の振幅がピークとなる周波数)は4Hz付近または12Hz付近に断続的に存在し、ドライビングスティフネスの変化によって連続的に変化するわけではないことが分かる。
 したがって、本実施例では、このメカニズムに着目して、駆動制御装置1にて共振周波数変化によるタイヤ20のスリップ状態判定を行う。
 図6は、本発明に係る駆動制御装置の実施例1の構成の一部を示すブロック図である。図6に示される実施例1では、駆動制御装置1は、少なくとも、トルク指令取得部3、回転速度算出部4、周波数成分抽出部5、空転判定部6、及びトルク決定部7から構成されている。
 トルク指令取得部3は、走行制御装置25からトルク指令値(車両21に所定の加速度を発生させるためにモータ22にモータトルクを発生させるための指令値)2を受信する。トルク指令値2は、例えばドライバがアクセルペダル37を踏んでいるときは車両21を加速させるための正の値として受信され、ドライバがアクセルペダル37を踏んでいないとき、もしくはブレーキペダル32を踏んでいるときは、回生ブレーキあるいはエンジンブレーキに相当する負の値として受信される。走行制御装置25からトルク指令値2を受信する方法は、一般にCAN(Controller Area Network)などのデジタル通信が用いられる。
 回転速度算出部4は、モータ22に取り付けられた回転角センサ51により取得したモータ回転角60を時間微分(単位時間あたりの変化量を算出)し、モータ回転速度61を算出する。回転角センサ51は、一般にエンコーダ、レゾルバなど、モータ22の絶対角度が取得可能なセンサが用いられる。
 周波数成分抽出部5は、回転速度算出部4で算出したモータ回転速度61から、特定の周波数成分を抽出する。例えば図3(a)、(b)に示すように、タイヤ粘着時に4Hz程度、タイヤ空転時に12Hz程度の共振周波数となる制御対象では、12Hzの周波数成分、あるいは4Hzと12Hzの周波数成分の両方を抽出する。
 図7(a)、(b)は、周波数成分抽出部5の動作の一例を示す説明図である。図7(a)はモータ回転速度と車両速度の時間変化の一例を示したもので、ここでは図3(a)、(b)と異なり、タイヤ粘着時は8Hz程度の共振周波数、タイヤ空転時は6Hz程度の共振周波数の車両の場合を示している。横軸は時刻、縦軸はモータ回転速度61および車両速度67(詳しくは、車両速度の回転方向に換算した速度)を示す。図7(a)に示す例では、0.5秒の時点からモータトルクがステップ状に発生し、車両21は加速を開始するとともに、モータ回転速度61の脈動(共振)が生じている。そして、3秒の時点から路面が滑りやすくなっており、タイヤ20が空転するとともにモータ回転速度61と車両速度67に乖離が生じている。
 図7(b)は、周波数成分抽出方法としてバンドパスフィルタを用いた場合のモータ回転速度の周波数成分抽出値(バンドパスフィルタの出力)を示す。バンドパスフィルタB(s)は、例えばカットオフ周波数ω0、ラプラス演算子s、尖鋭度Qを用いて、次の数式2の通り得られる。
  [数2]
    B(s)=(ω0s/Q)/(s^2+ω0s/Q+ω0^2)
 ここではQ=1として、ω0=37.7rad/s(=6Hz)とした場合の周波数成分抽出値68(a)、ω0=50.3rad/s(=8Hz)とした場合の周波数成分抽出値68(b)との比較を行っている。図7(b)より、3秒より前のタイヤ粘着時には、ω0=6Hzとした場合の周波数成分抽出値68(a)の振幅が、ω0=8Hzとした場合の周波数成分抽出値68(b)の振幅より大きくなっている。一方、3秒以降のタイヤ空転時には、逆にω0=6Hzとした場合の周波数成分抽出値68(a)よりω0=8Hzとした場合の周波数成分抽出値68(b)の方が振幅が大きい。このように、周波数成分抽出部5は、バンドパスフィルタを用いる場合、時間波形のうち、タイヤ粘着時、タイヤ空転時の共振周波数をカットオフ周波数に持つ2つのバンドパスフィルタの出力を算出・比較し、その振幅の差異を算出する。
 前記バンドパスフィルタに代えて、周波数成分抽出部5にフーリエ変換を利用する方法もある。フーリエ変換F(f)は、例えば抽出する周波数f、積分記号∫、周波数成分を抽出する対象となるモータ回転速度ωの時間幅T、ネイピア数e、円周率π、虚数単位i、時刻tを用いて、次の数式3の通り得られる。
  [数3]
    F(f)=∫^T_0{ω(t)e^(-2πift/T)}dt
 フーリエ変換を用いると、モータ回転速度ωの中で、当該の周波数fの成分の振幅が得られる。フーリエ変換は、モータ回転速度ωが当該の周波数fで振動している場合は振動の振幅が算出され、一方でモータ回転速度がω当該の周波数fとは異なる周波数で振動する場合にはほぼ0の振幅を算出するという特徴がある。従って、この方法では、バンドパスフィルタを用いた方法と同様、タイヤ粘着時、タイヤ空転時の共振周波数を周波数fとする2つのフーリエ変換結果(振幅)の差異を算出しても良いし、タイヤ空転時の共振周波数を周波数fとするフーリエ変換のみを行い、その振幅を算出しても良い。
 なお、後述する空転判定部6での空転判定は、バンドパスフィルタやフーリエ変換のみに限ったものではなく、所定周波数成分が抽出できる方法であれば、如何なるものでも適用可能である。
 空転判定部6は、周波数成分抽出部5により抽出されたモータ回転速度61の周波数成分に基づき、すなわち、モータ回転速度61の所定の周波数成分を検知した場合、またはモータ回転速度61の所定の周波数成分と該所定の周波数成分とは異なる別の周波数成分との比較に基づいて、タイヤ20が粘着状態にあるか空転状態にあるかを判定し、その空転判定結果70を出力する。前述の通り、バンドパスフィルタやフーリエ変換などを用いて、タイヤ粘着時、タイヤ空転時の共振周波数成分の差異を算出する場合、空転判定部6は、タイヤ空転時の共振周波数成分がタイヤ粘着時の共振周波数成分より大きい場合に空転と判定する。例えば図7(b)では、空転判定部6は、周波数成分抽出値68(b)が周波数成分抽出値68(a)より大きい3.1秒以降でタイヤ20が空転状態と判定する。また、前述の通り、タイヤ空転時の共振周波数を周波数fとするフーリエ変換で振幅を算出する場合、空転判定部6は、その振幅が所定値を超えた場合にタイヤ20が空転状態と判定する。図7(a)の例では、共振の振幅が10rad/s程度となっていることから、例えば所定値として5rad/s程度に設定することで、タイヤ20の空転状態を判定できる。空転判定部6による空転判定結果70は、例えば粘着を0、空転を1とする二進数で表してもよいし、タイヤの推定スリップ率に応じて0(完全粘着)~1(空転)の連続値として表してもよい。
 トルク決定部7は、トルク指令取得部3からのトルク指令値2、モータ回転角60、回転速度算出部4からのモータ回転速度61、空転判定部6からの空転判定結果70に基づき、トルク補正値71を算出する(後で詳述)。そして、トルク決定部7は、トルク指令値2をトルク補正値71の分だけ補正した(言い換えれば、トルク指令値2にトルク補正値71を加味した)最終モータトルク(単にモータトルクということがある)72を算出し、モータ22が最終モータトルク72を発生させるようにパワー半導体をスイッチングしてモータ22に流れる電流を制御する。この時、モータ22が永久磁石同期モータの場合、モータ回転角60に基づくベクトル制御を行うことが一般的である。
 モータ22のモータ回転角60は、モータ22に取り付けられた回転角センサ51により取得され、駆動制御装置1の回転速度算出部4に入力される。
 図8(a)~(c)を用いて、トルク決定部7が前記空転判定結果70に基づきモータトルク72をトルク指令値2から変動させるトルク補正値71を算出する方法の一例を説明する。図8(a)~(c)はそれぞれ、モータ回転速度61、空転判定結果70、トルク補正値71を含む(加味した)モータトルク72の時間応答の一例を示したものである。まず、モータ回転速度61を示した図8(a)に着目すると、時刻73(a)から滑りやすい路面に突入してタイヤ20が空転状態となり、モータ回転速度61の上昇率(加速度)が増大するとともに脈動(共振)周波数が大きくなっている。その後、時刻73(b)で滑りにくい路面に戻るが、空転して回転速度が増大したタイヤ20はすぐには粘着状態にならず、車体速度と同じ速度まで急激に減速する間は空転状態が続き、モータ回転速度61の脈動(共振)周波数は引き続き大きいままである。その後、時刻73(c)でタイヤ20の回転速度が車体速度と同じになり、粘着状態が回復すると、ようやくモータ回転速度61の脈動(共振)周波数は時刻73(a)より以前の周波数に戻る。
 このようなモータ回転速度61が検出されると、空転判定部6は、前述の方法により、図8(b)に示す通り、時刻73(a)から時刻73(c)の間でタイヤ20が空転状態であると判定・検知する。その結果、トルク決定部7は、図8(c)のように、時刻73(a)から時刻73(c)の間で、負のトルク補正値71を算出することで、この区間の最終モータトルク72がトルク指令値2より低くなっている(減少されている)。言い換えれば、この区間の最終モータトルク72の絶対値が小さくなっている。これにより、この区間のモータ22のモータ回転速度61の上昇すなわち空転が抑圧される。
 図8(a)~(c)は、車両21が加速時(トルク指令値2が正値)の場合について述べたが、車両21が減速中(トルク指令値2が負値)の場合は、モータトルクの補正方向が逆となる。図9(a)~(c)を用いて、減速時のトルク補正値71を算出する方法の一例を説明する。図9(a)~(c)はそれぞれ、モータ回転速度61、空転判定結果70、トルク補正値71を含む(加味した)モータトルク72の時間応答の一例を示したものである。まず、モータ回転速度61を示した図9(a)に着目すると、時刻73(a)から滑りやすい路面に突入してタイヤ20が空転状態となり、モータ回転速度61が大きく減少するとともに脈動(共振)周波数が大きくなっている。その後、時刻73(b)で滑りにくい路面に戻るが、空転して回転速度が減少したタイヤ20はすぐには粘着状態にならず、車体速度と同じ速度まで急激に加速する間は空転状態が続き、モータ回転速度61の脈動(共振)周波数は引き続き大きいままである。その後、時刻73(c)でタイヤ20の回転速度が車体速度と同じになり、粘着状態が回復すると、ようやくモータ回転速度61の脈動(共振)周波数は時刻73(a)より以前の周波数に戻る。
 このようなモータ回転速度61が検出されると、空転判定部6は、前述の方法により、図9(b)に示す通り、時刻73(a)から時刻73(c)の間でタイヤ20が空転状態であると判定・検知する。その結果、トルク決定部7は、図9(c)のように、時刻73(a)から時刻73(c)の間で、正のトルク補正値71を算出することで、この区間の最終モータトルク72がトルク指令値2より高く(最終モータトルク72の絶対値が小さく)なっている(増加されている)。これにより、この区間のモータ22のモータ回転速度61の減少すなわち空転が抑圧される。
 図10(a)乃至図11(b)を用いて、トルク決定部7によるトルク補正値71の算出方法の更なる具体例を説明する。なお、ここでは車両加速時の挙動について述べる。前述の通り、車両減速時の挙動は、車両加速時の挙動とトルク補正値の正負が逆となる。
 図10(a)~(c)および図11(a)、(b)は、タイヤ20の空転防止とモータ回転速度61の共振を同時に抑える方法を示す。本手法では、空転判定部6がタイヤ20が粘着状態と判定している間は、トルク決定部7は、共振を抑圧するトルク補正値71のみを算出し、空転判定部6がタイヤ20が空転状態と判定している間は、トルク決定部7は、空転防止と共振抑圧の両方を満たすトルク補正値71を算出する。
 図10(a)~(c)は、粘着判定時にはトルク補正値71の平均値の絶対値を小さくし、空転判定時にはトルク補正値71の平均値の絶対値を大きくしてモータトルク72を補正する場合の、トルク補正値71を算出する方法の一例を示す。図中、時刻73(a)の時点では、タイヤ20は粘着状態と判定されている。この時、トルク補正値71はモータ回転速度61の脈動と逆位相のトルクを発生させている。この区間(時刻73(b)まで)においては、図10(c)に示すように、トルク補正値71の平均値74はほぼ0となる。時刻73(b)以降、タイヤ20が空転状態と判定されており、図10(c)に示すように、トルク補正値71の平均値74は負の方向に算出されている。すなわち、トルク補正値71の平均値74に着目すれば、タイヤ20が粘着状態と判定された場合に比べて、タイヤ20が空転状態と判定された場合は、トルク補正値71の平均値74の絶対値が大きくなることが特徴である。
 本手法に基づけば、タイヤ20の粘着・空転にかかわらず共振によるモータ回転速度61の脈動を抑圧可能であり、かつタイヤ空転時にはタイヤ20の空転を抑圧可能である。
 図11(a)、(b)は、粘着判定時にはトルク補正値71を所定の範囲内に収め、空転判定時にはトルク補正値71を所定の範囲を超えて設定してモータトルク72を補正する場合の、トルク補正値71を算出する方法の一例を示す。本手法での挙動は、図10(a)と同様であり、図11(a)に示すように、時刻73(b)以降、タイヤ20が空転状態と判定されている。この時、図11(b)に示すように、トルク決定部7は、タイヤ20が粘着状態と判定されている時刻73(b)以前は、トルク補正値71を制限値75以内に抑える一方、タイヤ20が空転状態と判定されている時刻73(b)以降は制限値75にかかわらず(つまり、制限値75を超えて)、トルク補正値71を算出する。なお、図11(b)に示す例では、トルク補正値71の正の方向の制限値75と負の方向の制限値75とが略同じに設定されているが、要求されるモータトルク等に応じて、これらの制限値を異なる値(幅)に設定してもよい。
 本手法により、タイヤ粘着時には「トルク指令値2の通り、あるいはトルク指令値2に近いモータトルク72を発生させる」という駆動制御装置1本来の役割を優先させ、タイヤ空転時には(トルク指令値2にかかわらず)タイヤ空転状態の抑圧を優先させることが可能となる。
 以上のような手法を用いることにより、トルク決定部7は、空転判定部6からの空転判定結果70などから、タイヤ22の空転防止に好適なトルク補正値71を算出できるので、そのトルク補正値71を加味してトルク指令値2を補正して最終モータトルク72を算出し、その最終モータトルク72を用いてモータ22に流れる電流を制御することで、車両21の加速度(モータ22から車両21に与えられる駆動力)を適正に制御することができる。
 このように、本実施例1の駆動制御装置1によれば、モータ22のモータ回転速度61の共振周波数の変化に基づき、車両速度の情報を用いずにタイヤ20が空転状態か否かを判定可能であり、空転判定の誤判定を防ぎつつ、より早い段階での空転判定を行うことが可能となる。
(実施例2)
 次に、本発明の駆動制御装置の他例である実施例2について、図12乃至図13(c)を用いて説明する。なお、上記の実施例1と同様の部分は、同様の符号を付して説明を省略する。
 上記の実施例1では、駆動装置としてのモータ22のモータ回転速度61の周波数変動からタイヤ20の空転を判定したが、同時に、図10(a)~(c)に示すトルク補正方法を用いると、モータ回転速度61の共振現象自体を抑圧できる可能性がある。この場合、モータ回転速度61の共振が発生しないと、タイヤ20の空転判定ができない可能性がある。一方、車両21自体でモータ回転速度61の共振を抑えるトルク制御を行う場合、モータ回転速度61の共振を抑えるためのトルク補正値71には、モータ回転速度61の共振周波数と同じ周波数成分が乗ることから、モータ回転速度61の代わりにトルク補正値71の周波数成分から、タイヤ20の空転判定を行うという構成であっても良い。
 図12は、本発明に係る駆動制御装置の実施例2の構成の一部を示すブロック図である。図12に示される実施例2では、駆動制御装置1は、少なくとも、トルク指令取得部3、回転速度算出部4、トルク決定部101、周波数成分抽出部5、及び空転判定部6から構成されている。トルク指令取得部3、回転速度算出部4は、上記の実施例1と同様であるため、説明を省略する。
 本実施例において、トルク決定部101は、回転速度算出部4からのモータ回転速度61の共振を抑えるようにトルク補正値71を算出する。そして、トルク決定部101は、トルク指令取得部3からのトルク指令値2をトルク補正値71の分だけ補正した最終モータトルク72を算出し、モータ22が最終モータトルク72を発生させるようにパワー半導体をスイッチングしてモータ22に流れる電流を制御する。
 モータ22のモータ回転角60は、モータ22に取り付けられた回転角センサ51により取得され、駆動制御装置1の回転速度算出部4に入力される。
 周波数成分抽出部5は、トルク決定部101で算出したトルク補正値71の特定の周波数成分を抽出する。もしくは、トルク指令取得部3からのトルク指令値2をトルク補正値71の分だけ補正した最終モータトルク72の周波数成分を抽出しても良い。ここでの周波数成分の抽出方法は、上記の実施例1と同様であるため、説明を省略する。
 また、空転判定部6は、周波数成分抽出部5により抽出されたトルク補正値71または最終モータトルク72の周波数成分に基づき、タイヤ20が粘着状態にあるか空転状態にあるかを判定し、その空転判定結果70を出力する。ここでの空転判定方法は、上記の実施例1と同様であるため、説明を省略する。
 図13(a)~(c)を用いて、実施例2の駆動制御装置1の挙動例を説明する。ここではトルク補正値71の周波数成分を抽出する例について説明する。図13(a)及び図13(b)はそれぞれ、モータ回転速度61及びトルク補正値71の時間変化の一例を示したものである。図13(a)に示すように、図10(a)と比べて、本実施例では、共振に起因するモータ回転速度61の脈動が小さくなっている。これは、図13(b)に示すように、モータ回転速度61の共振を抑えるようにトルク補正値71がトルク決定部101にて算出されることによる。例えば時刻73(a)と時刻73(c)に注目すると、それぞれの時点の状態に応じて異なるトルク補正値が算出されている。このようなトルク補正値71がトルク決定部101にて算出されることにより、タイヤ20の空転に起因するモータ回転速度変化だけでなく、共振に起因するモータ回転速度変化も抑圧することから、モータ回転速度61の脈動が抑圧されている。このような場合、実施例1のようにモータ回転速度61の周波数成分を抽出しても、正しくタイヤ20の空転判定が行えない可能性がある。
 そこで、実施例2の周波数成分抽出部5は、上述したように、図13(b)に示すようなトルク補正値71の周波数成分を抽出する。図13(b)の例では、時刻73(b)の時点からトルク補正値71の脈動周波数が増加している。周波数成分抽出部5は、このようなトルク補正値71の共振周波数の変化を抽出し、空転判定部6は、前記変化に基づき、図13(c)に示すように、時刻73(b)以降で空転判定を行っている。
 このように、本実施例2では、トルク決定部101で算出したトルク補正値71の周波数成分から空転判定を行うことにより、モータ回転速度61の共振が抑圧されてしまう場合においても、正確な空転判定を行うことが可能となる。
(実施例3)
 次に、本発明の駆動制御装置の他例である実施例3について、図14を用いて説明する。なお、上記の実施例1、2と同様の部分は、同様の符号を付して説明を省略する。
 例えば以上で説明した実施例2において、空転判定部6による空転判定結果70を外部に送信する構成となっていても良い。図14は、本発明に係る駆動制御装置の実施例3の構成の一部を示すブロック図である。図14に示される実施例3は、上記の実施例2に、上位コントローラである走行制御装置25に対し、空転判定部6による空転判定結果70を送信する空転判定送信部102を加えた構成である。ここでは上位コントローラである走行制御装置25をブロック図に記載している。
 本実施例において、空転判定送信部102は、空転判定部6が算出した空転判定結果70を走行制御装置25に伝送し、走行制御装置25の空転判定受信部103が前記空転判定結果70を受信する。
 走行制御装置25は、先述の通り、例えばドライバがアクセルペダル37を踏んでいるときは車両21を加速させるための正のトルク指令値2を算出し、ドライバがアクセルペダル37を踏んでいないとき、もしくはブレーキペダル32を踏んでいるときは、回生ブレーキあるいはエンジンブレーキに相当する負のトルク指令値2を算出するトルク指令算出部104を備える。また、走行制御装置25において、空転判定受信部103が駆動制御装置1(の空転判定送信部102)から空転判定結果70を受信した場合、トルク指令算出部104は、その空転判定結果70が空転状態である場合は、タイヤ20の空転を抑圧するために自動的にトルク指令値2を補正・算出する。なお、ここでの補正方法は、上記の実施例1、2とほぼ同様であるため、説明を省略する。そして、このようにトルク指令算出部104にて算出されたトルク指令値2が、駆動制御装置1(のトルク指令取得部3)に送信されることになる。走行制御装置25と駆動制御装置1の間の通信は、一般にCAN(Controller Area Network)などのデジタル通信が用いられる。
 このように、本実施例では、空転判定部6による空転判定結果70を外部(例えば、上位コントローラである走行制御装置25)に送信することにより、より効果的にタイヤ20の空転抑圧を行うことが可能となる。
 なお、空転判定部6による空転判定結果70を外部に送信する構成は、実施例1にも同様に適用可能であることは当然である。
 以上で説明した実施例1~3において、電気駆動モータを動力源とする電動車両(電気自動車ともいう)を例にとって説明したが、本発明は、動力がドライブシャフトのような細いシャフトを介してタイヤに伝達される車両であれば適用可能である。例えば、エンジン車、ハイブリッド自動車建設機械(鉱山ダンプなど)、一人乗り小型自動車のような小型モビリティなどへも適用可能である。また、デファレンシャルギアを介して動力を左右輪に分配する形でなく、左右独立に電気モータを搭載し、それぞれがシャフトを通じて左右輪に動力を伝達する形であっても良い。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1   駆動制御装置
 2   トルク指令値
 3   トルク指令取得部
 4   回転速度算出部
 5   周波数成分抽出部
 6   空転判定部
 7   トルク決定部
 20(20FL、20FR、20RL、20RR) タイヤ
 21  車両
 22  モータ(駆動装置)
 23  デファレンシャルギア
 24(24L、24R) ドライブシャフト
 25  走行制御装置
 26  ハンドル
 27  操舵トルク検出装置
 28  操舵制御装置
 29  操舵用モータ
 30  ステアリング制御機構
 31(31FL、31FR、31RL、31RR) 車輪速センサ
 32  ブレーキペダル
 33  ブレーキ制御機構
 34  コンバインセンサ
 35  制動制御装置
 36FL、36FR、36RL、36RR ホイルシリンダ
 37  アクセルペダル
 38  ストロークセンサ
 41  ハンドル角検出装置
 51  モータの回転角センサ
 52  減速機
 60  モータ回転角
 61  モータ回転速度
 70  空転判定結果
 71  トルク補正値
 72  最終モータトルク
 101 トルク決定部(実施例2)
 102 空転判定送信部(実施例3)
 103 空転判定受信部(実施例3)
 104 トルク指令算出部(実施例3)

Claims (10)

  1.  車両に駆動力を与える駆動装置のトルク指令値と前記駆動装置の回転速度を用いて前記駆動装置のトルクを制御する駆動制御装置であって、
     前記駆動装置の回転速度と前記駆動装置のトルクの少なくとも一つの周波数成分を抽出する周波数成分抽出部と、
     前記周波数成分に基づき、前記車両の車輪の空転有無を判定する空転判定部と、を有することを特徴とする駆動制御装置。
  2.  前記駆動制御装置は、前記トルク指令値と前記駆動装置の回転速度、及び前記空転判定部の判定結果に基づいて前記駆動装置のトルクを決定するトルク決定部を有し、
     前記トルク決定部は、前記空転判定部の判定結果が空転状態である場合、そうでない場合に比べて、前記トルクを前記トルク指令値から変動させるトルク補正値の変動幅を大きくすることを特徴とする請求項1に記載の駆動制御装置。
  3.  前記空転判定部は、所定の周波数成分を検知した場合、または所定の周波数成分と該所定の周波数成分とは異なる周波数成分との比較に基づいて、前記空転有無を判定することを特徴とする請求項1に記載の駆動制御装置。
  4.  前記トルク決定部は、前記空転判定部が前記空転を検知した場合、前記車両が加速の時は前記トルクを減少させ、前記車両が減速の時は前記トルクを増加させることを特徴とする請求項2に記載の駆動制御装置。
  5.  前記トルク決定部は、前記空転判定部が前記空転を検知した場合、前記空転判定部が前記空転を検知しなかった場合に比べて、前記トルク補正値の平均値の絶対値を大きくすることを特徴とする請求項2に記載の駆動制御装置。
  6.  前記トルク決定部は、前記空転判定部が前記空転を検知しなかった場合は前記トルク補正値を所定値以内とし、前記空転判定部が前記空転を検知した場合は前記トルク補正値を前記所定値を超えて設定して前記トルクを補正することを特徴とする請求項2に記載の駆動制御装置。
  7.  前記周波数成分抽出部は、バンドパスフィルタを用いて時間波形のうち所定周波数成分を算出することを特徴とする請求項1に記載の駆動制御装置。
  8.  前記周波数成分抽出部は、フーリエ変換を用いて所定周波数成分の振幅を算出することを特徴とする請求項1に記載の駆動制御装置。
  9.  前記空転判定部による前記空転状態の判定結果を外部に送信する空転判定送信部をさらに備えることを特徴とする請求項1に記載の駆動制御装置。
  10.  前記外部は、前記車両の走行状態を制御するために前記駆動装置の前記トルク指令値を算出する走行制御装置であり、
     前記走行制御装置は、前記空転判定部による前記空転状態の判定結果を用いて前記トルク指令値を算出することを特徴とする請求項9に記載の駆動制御装置。
PCT/JP2020/002244 2019-03-07 2020-01-23 駆動制御装置 WO2020179266A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041097 2019-03-07
JP2019041097A JP7245674B2 (ja) 2019-03-07 2019-03-07 駆動制御装置

Publications (1)

Publication Number Publication Date
WO2020179266A1 true WO2020179266A1 (ja) 2020-09-10

Family

ID=72336951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002244 WO2020179266A1 (ja) 2019-03-07 2020-01-23 駆動制御装置

Country Status (2)

Country Link
JP (1) JP7245674B2 (ja)
WO (1) WO2020179266A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213399A1 (de) * 2021-11-29 2023-06-01 Zf Friedrichshafen Ag Verfahren und Steuereinrichtung zum Steuern eines Abtriebsmoments
JP2024073921A (ja) * 2022-11-18 2024-05-30 日立Astemo株式会社 駆動制御装置、駆動制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216003A (ja) * 1985-07-11 1987-01-24 Mitsubishi Electric Corp 電気車の制御装置
JP2012249523A (ja) * 2010-01-20 2012-12-13 Railway Technical Research Institute 空転滑走発生検出方法及び電動機制御装置
JP2017022870A (ja) * 2015-07-10 2017-01-26 Ntn株式会社 スリップ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216003A (ja) * 1985-07-11 1987-01-24 Mitsubishi Electric Corp 電気車の制御装置
JP2012249523A (ja) * 2010-01-20 2012-12-13 Railway Technical Research Institute 空転滑走発生検出方法及び電動機制御装置
JP2017022870A (ja) * 2015-07-10 2017-01-26 Ntn株式会社 スリップ制御装置

Also Published As

Publication number Publication date
JP7245674B2 (ja) 2023-03-24
JP2020145863A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
US10486547B2 (en) Device and method for controlling electric vehicle with torque command and vibration suppression control
EP3050765B1 (en) Control device for electric vehicle
US9931962B2 (en) Control device for electric vehicle and control method for electric vehicle
JP3098958B2 (ja) アンチロックブレーキ制御装置
US8328690B2 (en) Braking/driving force control apparatus for vehicle
JP2013163422A (ja) 車両運動制御装置及び車両運動制御方法
JP6898843B2 (ja) 電動車両の制御装置、制御方法および制御システム
US9950697B2 (en) Braking-driving force control system and braking-driving force control method
WO2020179266A1 (ja) 駆動制御装置
CN109415052B (zh) 车辆的驾驶辅助装置
WO2018230341A1 (ja) 車両制御装置
JP6600850B2 (ja) 車両制御装置及び車両制御方法
CN104768838A (zh) 转向控制装置
CN106114287B (zh) 一种电动汽车防滑控制系统及控制方法
JP6149941B2 (ja) 車両用旋回走行制御装置、車両用旋回走行制御方法
CN113428152B (zh) 车辆控制方法、装置及计算机可读存储介质
WO2016092586A1 (ja) 制駆動力制御装置及び制駆動力制御方法
WO2021090612A1 (ja) 駆動制御装置
WO2020179267A1 (ja) 駆動制御装置
JP3885420B2 (ja) 車両用走行制御装置
KR20120124899A (ko) Abs 작동시 진동 저감을 위한 모터 제어 방법
JP6318795B2 (ja) 車両用旋回走行制御装置、車両用旋回走行制御方法
WO2021205711A1 (ja) 駆動制御装置および駆動制御方法
JP2016190607A (ja) 車両の制御装置
WO2024106314A1 (ja) 駆動制御装置、駆動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767337

Country of ref document: EP

Kind code of ref document: A1