WO2020177674A1 - 信息发送、信息接收方法及装置 - Google Patents

信息发送、信息接收方法及装置 Download PDF

Info

Publication number
WO2020177674A1
WO2020177674A1 PCT/CN2020/077485 CN2020077485W WO2020177674A1 WO 2020177674 A1 WO2020177674 A1 WO 2020177674A1 CN 2020077485 W CN2020077485 W CN 2020077485W WO 2020177674 A1 WO2020177674 A1 WO 2020177674A1
Authority
WO
WIPO (PCT)
Prior art keywords
long training
sequence
target
training sequence
ppdu
Prior art date
Application number
PCT/CN2020/077485
Other languages
English (en)
French (fr)
Inventor
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020177674A1 publication Critical patent/WO2020177674A1/zh
Priority to US17/466,637 priority Critical patent/US20210399930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2085Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states with more than one phase shift per symbol period
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for sending and receiving information.
  • wireless local area networks full English name: wireless local area networks, English abbreviation: WLAN
  • IEEE Institute of Electrical and Electronics Engineers
  • the 802.11a/b/g standard began.
  • IEEE 802.11n standard and the IEEE 802.11ac standard to the IEEE 802.11ax standard under discussion, each generation of the standard will provide a new physical layer protocol data unit (full English name: physical protocol data unit, English abbreviation: PPDU) format, in order to support better information transmission function through the new PPDU format.
  • PPDU physical layer protocol data unit
  • the PPDU includes a preamble part and a data part.
  • the preamble part includes the short training field (English name: short training field, English abbreviation: STF), long training field (English name: long training field, English abbreviation: LTF), and signaling field (English name: signal field, English abbreviation) : SIG).
  • STF short training field
  • LTF long training field
  • SIG signaling field
  • the data part includes the information that needs to be transmitted.
  • the information sending device In the process of information transmission, the information sending device generates a PPDU in the corresponding PPDU format according to the PPDU format specified by the WLAN standard, and sends the PPDU.
  • the information receiving device receives the data unit, it will read the preamble part of the PPDU, determine the format of the PPDU according to the preamble part of the PPDU, and decode the data part of the PPDU according to the WLAN standard corresponding to the PPDU format. Process.
  • next-generation WLAN standard With the advent of the next-generation WLAN standard, there is an urgent need to provide a new PPDU format for the next-generation WLAN standard to ensure that the PPDU format can be determined when the new PPDU format is received, so as to follow the PPDU format Corresponding to the WLAN standard, the PPDU is further processed to meet the information transmission requirements of the next-generation WLAN standard.
  • the embodiments of the present application provide a method and device for information transmission and information reception, which can solve the technical problem that a new PPDU format is urgently needed in the related art to meet the information transmission requirements of the next generation WLAN standard.
  • the technical solution is as follows:
  • an information sending method including:
  • a physical layer protocol data unit PPDU is generated, the PPDU includes a target long training sequence, the target long training sequence is orthogonal to the long training sequence of the traditional format or orthogonal to the long training sequence of high throughput; the PPDU is sent.
  • the method provided in this embodiment provides a new PPDU format, and the long training sequence in the new format PPDU is orthogonal to the long training sequence in the traditional format or orthogonal to the long training sequence with high throughput.
  • the format of the PPDU can be automatically detected through this long training sequence, so that the PPDU can be further processed according to the WLAN standard corresponding to the format of the PPDU.
  • the target long training field is read, the PPDU format can be detected. Compared with the method of detecting the PPDU format by reading the signaling field, it saves the time for detecting the PPDU format and improves the detection of the PPDU format. The efficiency can be completed as soon as possible.
  • the PPDU format provided in this embodiment can be distinguished from the PPDU format of each previous generation of WLAN standards, ensuring the accuracy of identifying the PPDU format, and avoiding the PPDU format from the previous PPDU format.
  • the format of the PPDU of the WLAN standard is confused, thereby meeting the information transmission requirements of the next generation WLAN standard.
  • the target long training sequence is obtained by splicing at least two P 32 sequences, the P 32 sequence and the upper half of the traditional format long training sequence or the high throughput long training sequence Orthogonal and orthogonal to the lower half of the long training sequence of the traditional format or the long training sequence of high throughput;
  • the expression of the P 32 sequence is as follows:
  • the target long training sequence is a linear combination of at least two P 32 sequences
  • the coefficient of each P 32 sequence is 1 or -1.
  • the number of P 32 sequences in the target long training sequence is determined according to the bandwidth of the PPDU.
  • the target long training sequence can be a linear combination of two P32 sequences; if the bandwidth is (20*N)MHz, the target long training sequence is (2* N) A linear combination of P 32 sequences.
  • N is a positive integer greater than 1.
  • one or more positions in one or more P 32 sequences in the target long training sequence have been filled in, and the blanking refers to replacing the value of 0 in the P 32 sequence It is 1 or -1.
  • the middle position of the P 32 sequence in the target long training sequence is filled in.
  • the achieved effect can at least include: the middle position of the P 32 sequence is originally the position corresponding to the DC component under the bandwidth of 1 MHz (full English name: mega hertz, English abbreviation: MHz), and the position of the P 32 sequence The middle position was originally set to 0 to remove the DC component in the spectrum.
  • the position corresponding to the DC component has been switched from the middle position of the P 32 sequence to other positions. If the middle position of the P 32 sequence is still set to 0, it will cause a waste of spectrum resources.
  • 32 through the intermediate position of P sequence complementary empty, subcarrier 32 may be utilized an intermediate position P of the sequence, thus saving spectrum resources.
  • the edge position of the P 32 sequence in the target long training sequence is filled in.
  • the edge position is any one or a combination of P 32 (-15), P 32 (-14), P 32 (14), and P 32 (15).
  • the achieved effect may at least include: the edge position of the P 32 sequence is originally a position corresponding to the edge subcarrier under the 1 MHz bandwidth, and the edge position of the P 32 sequence is originally set to 0 to avoid adjacent band interference.
  • the edge position of the P 32 sequence is originally set to 0 to avoid adjacent band interference.
  • part of the edge position of the P 32 sequence has been switched from the position corresponding to the edge subcarrier to the position around the middle position of the target long training sequence. If the edge position of the P 32 sequence is still set to 0, it will cause the spectrum Waste.
  • Through 32 of the edge position P fill empty sequence may be utilized subcarriers edge position P 32 of the sequence, thus saving spectrum resources.
  • the expression of the target long training sequence is any one of the following:
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),1,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 represents a target long training sequence of length 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 0 -1 -1 -1 1 -1 1 1 1 -1 0 0]
  • p 32 (-16, -1) means that the value of p 32 is from -16 to the serial number a value of -1
  • p 32 (1,13) in p 32 represents a value from 1 to the number of sequence number values 13
  • p 32 (-13, -1) indicates the number of values p 32 from -13 to The value of the sequence number is -1
  • p 32 (1, 15) represents the value of the sequence number 1 to the value of the sequence number 15 in p 32 .
  • the expression of the target long training sequence is:
  • L k [a 1 L 64 ,a 2 L 64 , whila k L 64 ];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),1,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L k represents the target long training sequence
  • k is the ratio of the bandwidth of the PPDU to 20 MHz
  • k is a positive integer greater than or equal to 1
  • a 1 , a 2 , and a k are -1 or 1
  • L 64 represents the length Is the target long training sequence of 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 0 -1 -1 -1 1 -1 -1 1 1 1 1 -1 0 0]
  • p 32 (-16, -1) represents the value of p 32 from the value of -16 to the value of -1
  • p 32 (1, 13) represents the value of p 32 from the value of sequence number 1 to the value of sequence number 13
  • p 32 (-13, -1) represents the value of p 32 from the value of sequence number -13 to the value of sequence number -1
  • P 32 (1, 15) represents
  • the achieved effects may at least include: support for information transmission scenarios in multiple bandwidths, and improve flexibility.
  • the target long training sequence is in the target long training field of the PPDU, and the formula of the signal in the target long training field is as follows:
  • r EHT-GF-LTF represents signal
  • t time
  • i TX represents the index of the antenna
  • i TX is a positive integer greater than or equal to 1
  • STS represents space-time stream
  • * represents multiplication
  • N STS space-time stream Number
  • N SR represents the index of the highest data subcarrier among all data subcarriers of the target long training field
  • exp() represents the index
  • ⁇ k represents the phase rotation factor
  • P EHT-LTF represents the mapping matrix of the target long training field
  • Q k represents the precoding matrix of the k-th subcarrier
  • k is a positive integer
  • ⁇ F represents the target long training field
  • T GI represents the guard interval.
  • the modulation mode of the first symbol after the target long training field in the PPDU is orthogonal binary phase shift keying (full English name: Quadrature binary phase shift keying, English abbreviation: QBPSK).
  • the effect achieved can at least include: on the basis of distinguishing the PPDU format from other PPDU formats through the target long training sequence, by designing the modulation mode of the first symbol as QBPSK, Expand the difference between the PPDU format and other PPDU formats, so that the PPDU format can be further determined according to whether the modulation mode of the first symbol after the target long training field is QBPSK, so as to help detect the PPDU format and improve the detection of the PPDU format. accuracy.
  • the PPDU includes a target signaling field
  • the target signaling field is the first field after the target long training field
  • the information bandwidth of the target signaling field is greater than 20 MHz
  • the information Bandwidth refers to the basic bandwidth for carrying information encoding.
  • the effect achieved can at least include: by expanding the information bandwidth of the target signaling field from 20 MHz to greater than 20 MHz, so that the information carried by a single symbol can be doubled, so that the information of the target signaling field is sent For information, the number of symbols that need to be occupied can be doubled, thereby greatly improving the efficiency of transmitting the information of the target signaling field.
  • an information receiving method includes:
  • the training sequence is orthogonal to the long training sequence of the traditional format or orthogonal to the long training sequence of high throughput.
  • the method provided in this embodiment provides a new PPDU format, and the long training sequence in the new format PPDU is orthogonal to the long training sequence in the traditional format or orthogonal to the long training sequence with high throughput.
  • the format of the PPDU can be automatically detected through this long training sequence, so that the PPDU can be further processed according to the WLAN standard corresponding to the format of the PPDU.
  • the PPDU format can be detected. Compared with the method of detecting the PPDU format by reading the signaling field, it saves the time for detecting the PPDU format and improves the detection of the PPDU format. The efficiency can be completed as soon as possible.
  • the PPDU format provided in this embodiment can be distinguished from the PPDU format of each previous generation of WLAN standards, ensuring the accuracy of identifying the PPDU format, and avoiding the PPDU format from the previous PPDU format.
  • the format of the PPDU of the WLAN standard is confused, thereby meeting the information transmission requirements of the next-generation WLAN standard.
  • determining that the data unit is a physical layer protocol data unit PPDU with a preset format includes: a long training sequence in the data unit and The pre-stored target long training sequence is cross-correlated to obtain a first result.
  • the pre-stored target long training sequence is orthogonal to the traditional format long training sequence or the high-throughput long training sequence; when the first result is greater than the first
  • the threshold is set, it is determined that the data unit is a physical layer protocol data unit PPDU of the preset format.
  • determining that the data unit is a physical layer protocol data unit PPDU with a preset format includes: a long training sequence in the data unit and The pre-stored target long training sequence is cross-correlated to obtain the first result.
  • the pre-stored target long training sequence is orthogonal to the traditional format long training sequence or the high-throughput long training sequence; the long training sequence in the data unit Perform cross-correlation with the traditional format long training sequence or the high-throughput long training sequence to obtain a second result; when the first result and the second result conform to a predetermined size relationship, the data unit is determined Is the physical layer protocol data unit PPDU in the preset format.
  • the preset magnitude relationship is that the first result is greater than or equal to the second result; or, the preset magnitude relationship is that the first result is greater than the product of the second result and the preset coefficient.
  • the method further includes: acquiring the signal-to-interference and noise ratio of at least one subcarrier of the target long training field of the data unit, where the target long training field includes A long training sequence; according to the signal to interference and noise ratio of the at least one subcarrier, a target subcarrier is selected from the at least one subcarrier, and the target subcarrier meets the second condition; the long training sequence in the data unit is
  • the cross-correlation of the pre-stored target long training sequence includes: performing cross-correlation between the long training sequence in the data unit and the pre-stored target long training sequence according to the target subcarrier; the long training sequence in the data unit
  • the cross-correlation with the long training sequence in the traditional format or the long training sequence with high throughput includes: according to the target subcarrier, the long training sequence in the data unit and the long training sequence in the traditional format or high The long training sequence of the throughput rate is cross-correlated.
  • the method further includes: obtaining a first sequence according to the target subcarrier, where the first sequence is a sequence carried by the target subcarrier in the long training sequence;
  • the cross-correlation between the long training sequence in the data unit and the prestored target long training sequence includes: obtaining a second sequence according to the first sequence, where the second sequence is The sequence whose position in the target long training sequence corresponds to the first sequence; the first sequence and the second sequence are cross-correlated; the long training sequence in the data unit is based on the target subcarrier
  • the cross-correlation with the long training sequence in the traditional format or the long training sequence with high throughput includes: obtaining a third sequence according to the first sequence, the third sequence being the long training sequence in the traditional format or The sequence whose position corresponds to the first sequence in the long training sequence with high throughput;
  • the target long training sequence is obtained by splicing at least two P 32 sequences, the P 32 sequence and the upper half of the traditional format long training sequence or the high throughput long training sequence Orthogonal and orthogonal to the lower half of the long training sequence of the traditional format or the long training sequence of high throughput;
  • the expression of the P 32 sequence is as follows:
  • the target long training sequence is a linear combination of at least two P 32 sequences
  • the coefficient of each P 32 sequence is 1 or -1.
  • the number of P 32 sequences in the target long training sequence is determined according to the bandwidth of the PPDU.
  • the target long training sequence can be a linear combination of two P32 sequences; if the bandwidth is (20*N)MHz, the target long training sequence is (2* N) A linear combination of P 32 sequences.
  • N is a positive integer greater than 1.
  • one or more positions in one or more P 32 sequences in the target long training sequence have been filled in, and the blanking refers to replacing the value of 0 in the P 32 sequence It is 1 or -1.
  • the middle position of the P 32 sequence in the target long training sequence is filled in.
  • the achieved effect can at least include: the middle position of the P 32 sequence was originally the position corresponding to the DC component under the 1MHz bandwidth, and the middle position of the P 32 sequence was originally set to 0 to remove the DC component in the spectrum. .
  • the position corresponding to the DC component has been switched from the middle position of the P 32 sequence to other positions. If the middle position of the P 32 sequence is still set to 0, it will cause a waste of spectrum resources.
  • 32 through the intermediate position of P sequence complementary empty, subcarrier 32 may be utilized an intermediate position P of the sequence, thus saving spectrum resources.
  • the edge position of the P 32 sequence in the target long training sequence is filled in.
  • the edge position is any one or a combination of P 32 (-15), P 32 (-14), P 32 (14), and P 32 (15).
  • the achieved effect may at least include: the edge position of the P 32 sequence is originally a position corresponding to the edge subcarrier under the 1 MHz bandwidth, and the edge position of the P 32 sequence is originally set to 0 to avoid adjacent band interference.
  • the edge position of the P 32 sequence is originally set to 0 to avoid adjacent band interference.
  • part of the edge position of the P 32 sequence has been switched from the position corresponding to the edge subcarrier to the position around the middle position of the target long training sequence. If the edge position of the P 32 sequence is still set to 0, it will cause the spectrum Waste.
  • Through 32 of the edge position P fill empty sequence may be utilized subcarriers edge position P 32 of the sequence, thus saving spectrum resources.
  • the expression of the target long training sequence is any one of the following:
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),x2,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)]
  • L 64 represents the target long training sequence with a length of 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 0 -1 -1 -1 1 -1 1 1 1 -1 0 0]
  • p 32 (-16, -1) represents the value of p 32 from -16 to Reference value -1
  • p 32 (1,13) in p 32 represents a value from 1 to the number of sequence number values
  • p 32 (-13, -1) indicates the number of the p 32 -13 From the value to the value of the sequence number -1
  • p 32 (1, 15) represents the value of the sequence number 1 to the value 15 in the p 32 .
  • the expression of the target long training sequence is:
  • L k [a 1 L 64 ,a 2 L 64 , whila k L 64 ];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),1,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L k represents the target long training sequence
  • k is the ratio of the bandwidth of the PPDU to 20 MHz
  • k is a positive integer greater than or equal to 1
  • a 1 , a 2 and a k are -1 or 1
  • L 64 Represents a target long training sequence of length 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 0 -1 -1 -1 1 -1 -1 1 1 1 1 -1 0 0]
  • p 32 (-16, -1) represents the value of p 32 from the value of -16 to the value of -1
  • P 32 (1, 13) represents the value of p 32 from the value of sequence number 1 to the value of sequence number 13
  • p 32 (-13, -1) represents the value of p 32 from the value of sequence number -13 to the value of sequence number -1 value
  • p 32 (1,15) indicates
  • the target long training sequence is in the target long training field of the PPDU, and the formula of the signal in the target long training field is as follows:
  • r EHT-GF-LTF represents signal
  • t time
  • i TX represents the index of the antenna
  • i TX is a positive integer greater than or equal to 1
  • STS represents space-time stream
  • * represents multiplication
  • N STS space-time stream Number
  • N SR represents the index of the highest data subcarrier among all data subcarriers of the target long training field
  • exp() represents the index
  • ⁇ k represents the phase rotation factor
  • P EHT-LTF represents the mapping matrix of the target long training field
  • Q k represents the precoding matrix of the k-th subcarrier
  • k is a positive integer
  • ⁇ F represents the target long training field
  • T GI represents the guard interval.
  • the modulation mode of the first symbol after the target long training field in the PPDU is quadrature binary phase shift keying QBPSK
  • the target long training field includes a long training sequence.
  • the PPDU includes a target signaling field
  • the target signaling field is the first field after the target long training field
  • the information bandwidth of the target signaling field is greater than 20 MHz
  • the information The bandwidth refers to the basic bandwidth of the carrier information encoding
  • the target long training field includes the long training sequence.
  • the step of determining that the format of the PPDU is a preset format can be replaced with: when the data unit meets the When the first condition and the modulation mode of the first symbol after the target length training field of the data unit is QBPSK, it is determined that the data unit is a physical layer protocol data unit PPDU with a preset format, and the target length
  • the training field includes a long training sequence.
  • the effect achieved can at least include: on the basis of distinguishing the PPDU format from other PPDU formats through the target long training sequence, by designing the modulation mode of the first symbol as QBPSK, The difference between the PPDU format and other PPDU formats is expanded, so that the PPDU format can be further determined according to whether the modulation mode of the first symbol after the target long training field is QBPSK, thereby improving the accuracy of detecting the PPDU format.
  • an information sending method includes:
  • the PPDU includes a target long training field, the target long training field includes the long training sequence of the PPDU, and the modulation mode of the first symbol after the target long training field is orthogonal binary phase shift keying QBPSK, the second symbol after the target long training field meets the third condition; sending the PPDU;
  • the third condition is: the second symbol is the same as the first symbol; or, the third condition is: the content of the second symbol is the same as the content of the first symbol Same, and the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and the interleaver used by the second symbol is different from the interleaver used by the first symbol; or, The third condition is: the content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and The first symbol is interleaved, and the second symbol is not interleaved; or, the third condition is: the modulation mode of the second symbol is binary phase shift keying BPSK.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the second symbol after the target long training field meets the third condition.
  • the phase of the first symbol after the target length training field and whether the second symbol meets the third condition can be used to automatically detect the format of the PPDU, and when the target length is read
  • the PPDE format can be detected at the second symbol after the training field, saving time and overhead.
  • the PPDU includes a target short training field, the target short training field includes a short training sequence, and the target short training field is a short training field in a traditional format;
  • the effect achieved can at least include: by designing the field carrying the short training sequence in the PPDU as the short training field in the traditional format, it is possible to avoid modifying the short training field in the traditional format and then performing the operation on the received data unit.
  • the target long training field is a long training field in a traditional format
  • the effect achieved can at least include: by designing the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid modifying the long training field in the traditional format, and then performing the processing on the received data unit.
  • an information receiving method includes:
  • the PPDU includes a target long training field, and the target long training field includes a long training sequence of the PPDU; when the modulation mode of the first symbol after the target long training field is orthogonal binary phase shift When QBPSK is keyed and the second symbol after the target long training field meets the third condition, it is determined that the format of the PPDU is a preset format; wherein, the third condition is: the second symbol and The first symbol is the same; or, the third condition is: the content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as that of the first symbol.
  • the modulation mode of one symbol is the same, and the interleaver used by the second symbol is different from the interleaver used by the first symbol; or, the third condition is: the content of the second symbol is The content of the first symbol is the same, and the modulation method of the second symbol is the same as the modulation method of the first symbol, and the first symbol is interleaved, and the second symbol is Without interleaving; or, the third condition is: the modulation mode of the second symbol is binary phase shift keying BPSK.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the second symbol after the target long training field meets the third condition.
  • the phase of the first symbol after the target length training field and whether the second symbol meets the third condition can be used to automatically detect the format of the PPDU, and when the target length is read
  • the PPDE format can be detected at the second symbol after the training field, saving time and overhead.
  • the method before the determining that the format of the PPDU is a preset format, the method further includes: using a first interleaver to de-interleave the first symbol to obtain first data; Use a second interleaver to de-interleave the second symbol to obtain second data.
  • the second interleaver is different from the first interleaver; when the first data and the second data are different At the same time, it is determined that the interleaver used by the second symbol is different from the interleaver used by the first symbol; or, the first symbol is de-interleaved to obtain the first data; when the first data When the same as the second symbol, it is determined that the first symbol has undergone interleaving and the second symbol has not undergone interleaving.
  • the PPDU includes a target short training field, the target short training field includes a short training sequence, and the target short training field is a short training field in a traditional format;
  • the effect achieved can at least include: by designing the field carrying the short training sequence in the PPDU as the short training field in the traditional format, it is possible to avoid modifying the short training field in the traditional format and then performing the operation on the received data unit.
  • the target long training field is a long training field in a traditional format.
  • the effect achieved can at least include: by designing the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid modifying the long training field in the traditional format, and then performing the processing on the received data unit.
  • an information sending method includes:
  • the PPDU includes a target long training field, the target long training field includes the long training sequence of the PPDU, and the modulation mode of the first symbol after the target long training field is orthogonal binary phase shift keying QBPSK, the first symbol includes characteristic information, and the characteristic information is used to indicate that the format of the PPDU is a preset format; and the PPDU is sent.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the first symbol includes characteristic information.
  • the PPDU format can be automatically detected through the phase and characteristic information of the first symbol after the target long training field, and the first symbol after the target long training field is read With one symbol, the PPDU format can be detected, which saves the time for detecting the PPDU format and improves the efficiency of detecting the PPDU format.
  • the characteristic information is carried on a signature field of the first symbol, and the signature field is a field located at a preset position in the first symbol.
  • the PPDU includes a short training field in a traditional format
  • the effect achieved can at least include: by designing the field carrying the short training sequence in the PPDU as the short training field in the traditional format, it is possible to avoid modifying the short training field in the traditional format and then performing the operation on the received data unit.
  • the target long training field is a long training field in a traditional format
  • the effect achieved can at least include: by designing the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid modifying the long training field in the traditional format, and then performing the processing on the received data unit.
  • an information receiving method including:
  • the PPDU includes a target long training field, and the target long training field includes a long training sequence of the PPDU; when the modulation mode of the first symbol after the target long training field is orthogonal binary phase shift When QBPSK is keyed and the first symbol includes characteristic information, it is determined that the format of the PPDU is a preset format, and the characteristic information is used to indicate that the format of the PPDU is the preset format.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the first symbol includes characteristic information.
  • the PPDU format can be automatically detected through the phase and feature information of the first symbol after the target long training field, and when the first symbol after the target long training field is read, the PPDU can be detected The format saves the time for detecting the PPDU format and improves the efficiency of detecting the PPDU format.
  • the method before the determining that the format of the PPDU is a preset format, the method further includes: determining a signature field from the first symbol, where the signature field is the first A field located at a preset position in the symbol; obtaining the characteristic information from the signature field.
  • the PPDU includes a short training field in a traditional format
  • the effect achieved can at least include: by designing the field carrying the short training sequence in the PPDU as the short training field in the traditional format, it is possible to avoid modifying the short training field in the traditional format and then performing the operation on the received data unit.
  • the target long training field is a long training field in a traditional format
  • the effect achieved can at least include: by designing the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid modifying the long training field in the traditional format, and then performing the processing on the received data unit.
  • an information sending device configured to execute the information sending method in each of the foregoing aspects or any possible implementation manner of each aspect.
  • the device includes a module for executing the information sending method in each of the foregoing aspects or any possible implementation manner of each aspect.
  • an information receiving device which is used to implement the above aspects or the information receiving method in any possible implementation manner of each aspect.
  • the device includes a module for executing the information receiving method in each of the foregoing aspects or any possible implementation manner of each aspect.
  • an information sending device which includes: a transceiver and a processor;
  • the processor is configured to call from the memory and run the instructions stored in the memory to generate a PPDU, the PPDU including a target long training sequence, the target long training sequence is orthogonal to the traditional format long training sequence or is related to high throughput
  • the long training sequence is orthogonal;
  • the processor is further configured to control the transceiver to send the PPDU.
  • the information sending device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • the expression of the target long training sequence is any one of the following:
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),1,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 represents the target long training sequence of length 64, x1 is -1 or 1, x2 is -1,
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 0 -1 -1 -1 1 -1 -1 1 1 1 -1 0 0]
  • p 32 (-16, -1) indicates the number of values p 32 from -16 to -1 sequence number value
  • p 32 (1,13) in p 32 represents a value from 1 to No. serial No. 13 value
  • p 32 (-13, -1) indicates the number of values p 32 from -13 to -1 sequence number value
  • p 32 (1,15) in p 32 represents a value from 1 to the number of number The value of 15.
  • the expression of the target long training sequence is any one of the following:
  • L k [a 1 L 64 ,a 2 L 64 , whila k L 64 ];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)];
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),1,p 32 (1 , 15)];
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)];
  • L k represents the target long training sequence
  • k is the ratio of the bandwidth of the PPDU to 20 MHz
  • k is a positive integer greater than or equal to 1
  • a 1 , a 2 , and a k are -1 or 1
  • L 64 represents the length Is the target long training sequence of 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 [0 0 0 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 0 -1 -1 -1 1 -1 -1 1 1 1 1 -1 0 0]
  • p 32 (-16, -1) represents the value of p 32 from the value of -16 to the value of -1
  • p 32 (1, 13) represents the value of p 32 from the value of sequence number 1 to the value of sequence number 13
  • p 32 (-13, -1) represents the value of p 32 from the value of sequence number -13 to the value of sequence number -1
  • P 32 (1, 15) represents
  • the target long training sequence is in the target long training field of the PPDU, and the formula of the signal in the target long training field is as follows:
  • r EHT-GF-LTF represents signal
  • t time
  • i TX represents the index of the antenna
  • i TX is a positive integer greater than or equal to 1
  • STS represents space-time stream
  • * represents multiplication
  • N STS space-time stream Number
  • N SR represents the index of the highest data subcarrier among all data subcarriers of the target long training field
  • exp() represents the index
  • ⁇ k represents the phase rotation factor
  • P EHT-LTF represents the mapping matrix of the target long training field
  • Q k represents the precoding matrix of the k-th subcarrier
  • k is a positive integer
  • ⁇ F represents the target long training field
  • T GI represents the guard interval.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK.
  • the PPDU includes a target signaling field
  • the target signaling field is the first field after the target long training field
  • the information bandwidth of the target signaling field is greater than 20 MHz
  • the information Bandwidth refers to the basic bandwidth for carrying information encoding.
  • an information receiving device which includes: a transceiver and a processor;
  • the processor is used to call and run the instructions stored in the memory from the memory to control the transceiver to receive the data unit;
  • the processor is configured to, when the long training sequence in the data unit meets the first condition, determine that the data unit is a physical layer protocol data unit PPDU with a preset format, where the PPDU includes a target long training sequence, and the target
  • the long training sequence is orthogonal to the long training sequence of the traditional format or orthogonal to the long training sequence of high throughput.
  • the information sending device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • the processor is used to perform cross-correlation between the long training sequence in the data unit and the pre-stored target long training sequence to obtain the first result.
  • the pre-stored target long training sequence is compared with the traditional format. Long training sequences or long training sequences with high throughput are orthogonal; when the first result is greater than a first threshold, it is determined that the data unit is a physical layer protocol data unit PPDU in the preset format.
  • the processor is used to perform cross-correlation between the long training sequence in the data unit and the pre-stored target long training sequence to obtain the first result.
  • the pre-stored target long training sequence is compared with the traditional format.
  • the long training sequence or the long training sequence with high throughput is orthogonal; the long training sequence in the data unit is cross-correlated with the long training sequence in the traditional format or the long training sequence with high throughput to obtain the second result; when When the first result and the second result conform to a preset size relationship, it is determined that the data unit is a physical layer protocol data unit PPDU of the preset format.
  • the preset magnitude relationship is that the first result is greater than or equal to the second result; or,
  • the predetermined magnitude relationship is that the first result is greater than the product of the second result and the predetermined coefficient.
  • the processor is configured to obtain the signal-to-interference and noise ratio of at least one subcarrier of the target long training field of the data unit, and the target long training field includes a long training sequence; A signal-to-interference-to-noise ratio of one subcarrier, selecting a target subcarrier from the at least one subcarrier, and the target subcarrier meets the second condition;
  • the processor is configured to perform cross-correlation between the long training sequence in the data unit and the pre-stored target long training sequence according to the target subcarrier; and according to the target subcarrier, The long training sequence in the data unit is cross-correlated with the long training sequence in the traditional format or the long training sequence with high throughput.
  • the processor is configured to obtain a first sequence according to the target subcarrier, where the first sequence is a sequence carried by the target subcarrier in the long training sequence; according to the The first sequence is to obtain a second sequence, where the second sequence is a sequence whose position in the target long training sequence corresponds to the first sequence; the first sequence and the second sequence are cross-correlated;
  • the processor is configured to obtain a third sequence according to the first sequence, where the third sequence is the position and the position in the long training sequence in the traditional format or the long training sequence with high throughput.
  • the sequence corresponding to the first sequence; the first sequence and the third sequence are cross-correlated.
  • an information sending device which includes: a transceiver and a processor;
  • the processor is configured to call and run instructions stored in the memory from the memory to generate a PPDU, the PPDU includes a target long training field, the target long training field includes a long training sequence of the PPDU, and the target long training
  • the modulation mode of the first symbol after the field is quadrature binary phase shift keying QBPSK, and the second symbol after the target long training field meets the third condition;
  • the processor is further configured to control the transceiver to send the PPDU.
  • the information sending device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory memory, such as a read-only memory, which can be integrated with the processor on the same chip, or can be set on different chips.
  • the setting method of the memory and the processor is not limited.
  • an information receiving device which includes: a transceiver and a processor;
  • the processor is configured to call and run the instructions stored in the memory from the memory to control the transceiver to receive the data unit;
  • the processor is also configured to: when the modulation mode of the first symbol after the target long training field of the data unit is quadrature binary phase shift keying QBPSK, and the second symbol after the target long training field conforms to In the third condition, it is determined that the format of the PPDU is a preset format, and the target long training field includes a long training sequence;
  • the third condition is: the second symbol is the same as the first symbol; or,
  • the third condition is: the content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and The interleaver used by the second symbol is different from the interleaver used by the first symbol; or,
  • the third condition is: the content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and The first symbol has been interleaved, and the second symbol has not been interleaved; or,
  • the third condition is: the modulation mode of the second symbol is binary phase shift keying BPSK.
  • the processor is further configured to control the transceiver to receive the PPDU.
  • the information receiving device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory memory, such as a read-only memory, which can be integrated with the processor on the same chip, or can be set on different chips.
  • the setting method of the memory and the processor is not limited.
  • an information sending device which includes: a transceiver and a processor;
  • the processor is configured to call and run instructions stored in the memory from the memory to generate a PPDU, the PPDU includes a target long training field, the target long training field includes a long training sequence of the PPDU, and the target long training
  • the modulation mode of the first symbol after the field is quadrature binary phase shift keying QBPSK, and the first symbol includes characteristic information, and the characteristic information is used to indicate that the format of the PPDU is a preset format;
  • the processor is further configured to control the transceiver to send the PPDU.
  • the information sending device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory memory, such as a read-only memory, which can be integrated with the processor on the same chip, or can be set on different chips.
  • the setting method of the memory and the processor is not limited.
  • an information receiving device which includes: a transceiver and a processor;
  • the processor is configured to call and run the instructions stored in the memory from the memory to control the transceiver to receive the data unit;
  • the processor is further configured to determine that when the modulation mode of the first symbol after the target long training field of the data unit is QBPSK and the second symbol after the target long training field meets the third condition,
  • the format of the PPDU is a preset format, and the target long training field includes a long training sequence;
  • the information receiving device further includes a memory, and the memory is used to store instructions.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory may be a non-transitory memory, such as a read-only memory, which may be integrated with the processor on the same chip, or may be separately provided on different chips.
  • a non-transitory memory such as a read-only memory
  • the embodiment of the present application has implications for the type of memory and The setting method of the memory and the processor is not limited.
  • the characteristic information is carried on a signature field of the first symbol, and the signature field is a field located at a preset position in the first symbol.
  • the PPDU includes a short training field in a traditional format
  • the third condition is: the second symbol is the same as the first symbol; or,
  • the third condition is: the content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and The interleaver used by the second symbol is different from the interleaver used by the first symbol; or, the third condition is: the content of the second symbol is the same as the content of the first symbol, And the modulation mode of the second symbol is the same as the modulation mode of the first symbol, and the first symbol has been interleaved, and the second symbol has not been interleaved; or, the third symbol
  • the modulation mode of the second symbol is binary phase shift keying BPSK.
  • an information transmission system includes an information sending device for implementing each of the above aspects or any possible method of each aspect, and an information sending device for implementing each of the above aspects or any of the methods.
  • a possible method of information receiving device is provided.
  • a computer program product comprising: computer program code, when the computer program code is run by a computer, the computer executes the information sending method and information in the above aspects At least one of the receiving methods.
  • a computer-readable medium for storing a computer program, the computer program including instructions for executing at least one of the information sending method and the information receiving method in the above aspects.
  • a chip including a processor, configured to call and execute instructions stored in the memory from the memory, so that the device installed with the chip executes the information sending method and information in the above aspects. At least one of the receiving methods.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor and the memory are connected by an internal connection path, and the The processor is configured to execute the code in the memory, and when the code is executed, the processor is configured to execute at least one of the information sending method and the information receiving method in the foregoing aspects.
  • Fig. 1 is an architecture diagram of an implementation environment provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an information sending device or an information receiving device provided by an embodiment of the present application
  • FIG. 3 is a flowchart of an example of information transmission provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the format of a PPDU provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PPDU format provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a target long training sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a target long training sequence provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of an example of information transmission provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a PPDU format provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a PPDU format provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of an example of information transmission provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a PPDU format provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a PPDU format provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an information sending device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application.
  • Fig. 1 is an architecture diagram of an implementation environment provided by an embodiment of this application.
  • the implementation environment may include one or more access points (full English name: access point, English abbreviation: AP) 101 and one or more sites (English Full name: station, English abbreviation: STA) 102.
  • the access point 101 can be an information sending device or an information receiving device provided in the following embodiment
  • the station 102 can also be an information sending device or an information receiving device provided in the following embodiment.
  • the implementation environment may be an environment that does not need to consider backward compatibility.
  • traditional equipment may not exist in the implementation environment.
  • the implementation environment is inside a certain enterprise or park; for another example, the implementation environment is an exclusive villa.
  • the operating frequency band of each device in the implementation environment may be different from that of traditional devices.
  • FIG. 2 is a schematic structural diagram of an information sending device or an information receiving device provided by an embodiment of the present application.
  • the information sending device or the information receiving device 200 may have relatively large differences due to different configurations or performance, and may include a processor (English Full name: central processing units, English abbreviation: CPU) 201, memory 202, and transceiver 203. Instructions are stored in the memory 202, and the processor 201 is used to call and run the instructions stored in the memory 202 from the memory 202 to execute steps 301, 304, and 304 in the information sending method and the information receiving method provided in the following embodiments.
  • a processor English Full name: central processing units, English abbreviation: CPU
  • step 801, step 804, step 1101, step 1104, the processor is further configured to control the transceiver 203 to execute step 302, step 303, step 802, step 803, step 1102, step 1103 in the following embodiments At least one of.
  • the processor 201, the memory 202, and the transceiver 203 may be connected through a bus, and can communicate through the bus.
  • the information sending device or the information receiving device 200 may also include other components for realizing device functions, which will not be repeated here.
  • FIG. 3 is a flowchart of an example of information transmission provided by an embodiment of the present application.
  • the example of information transmission includes an information sending method executed by an information sending device and an information receiving method executed by an information receiving device. As shown in FIG. 3, the method includes The following steps 301 to 304:
  • the information sending device generates a PPDU.
  • the PPDU may include a target short training field, a target long training field, a target signaling field, and a data field.
  • the target short training field, the target long training field, and the target signaling field may be located in the header of the PPDU, and the data field may be located after the target signaling field.
  • the target short training field may be the first field of the PPDU
  • the target long training field may be the second field of the PPDU
  • the target signaling field may be the third field of the PPDU.
  • M in Figure 4 represents the number of symbols in the target signaling field, and M is a positive integer. It should be noted that the PPDU provided in this embodiment may include fields not shown in FIG. 4, and details are not described herein.
  • each field of the preamble part of the PPDU provided in this embodiment is prefixed with a "target" prefix, and the preamble part is short
  • the field where the training sequence is located is called the target short training field
  • the field where the long training sequence in the preamble part is called the target long training field
  • the field where the transmission rate and length of the preamble part is called the target signaling field.
  • Target is only a prefix used to distinguish descriptions.
  • the word "target” can be replaced with the prefix of the field in the preamble part of any generation of WLAN standards after 802.11ax.
  • target can be replaced with extremely high throughput greenfield (English name: extremely high throughput greenfield, English abbreviation: GF-EHT), extremely high throughput rate (English name: extremely high throughput, English abbreviation: EHT), extremely High throughput rate (English name: extremely throughput, English abbreviation: XT), ultra-high throughput rate (English name: ultra high throughput, English abbreviation: UHT), etc.
  • the target short training field can be called GF-EHT STF
  • the target long training field can be called GF-EHT LTF
  • the target signaling field can be called GF-EHT SIG.
  • target can be replaced with traditional format (English full name: legacy, English abbreviation: L-), etc., then the target short training field can be called L-STF, and the target signaling field can be called L-SIG.
  • L-STF the target short training field
  • L-SIG the target signaling field
  • the word "target” can be replaced with other vocabulary according to the specific WLAN standard. The possible terms are not named here.
  • the PPDU may include GF-EHT STF, GF-EHT LTF, GF-EHT SIG, and data fields.
  • EHT-SIG-A0 in Figure 5 represents the first symbol in EHT-SIG
  • EHT-SIG-A1-M represents the second symbol in EHT-SIG to the M-th symbol in EHT-SIG
  • M is a positive integer.
  • the GF-EHT LTF in Figure 5 includes two parts. One part of the GF-EHT LTF is located before the GF-EHT SIG and is used to detect the format of the PPDU based on channel estimation. The target long training sequence is in this part of the GF-EHT LTF in. Another part of GF-EHT LTF is located after GF-EHT SIG. This other part includes N symbols for channel estimation, and N is a positive integer.
  • Target short training field the field where the short training sequence is located.
  • the target short training field may include two symbols.
  • the target short training field may include the first symbol and the second symbol in the PPDU, where the symbol may be orthogonal frequency division multiplexing (full English name: Quadrature frequency division) Multiplexing (abbreviation: OFDM) symbol.
  • the duration of the target short training field may be 8 microseconds (English: microsecond, abbreviated as ⁇ s).
  • the target short training field may belong to the preamble part of the PPDU.
  • the target short training field may be the first field of the PPDU.
  • the target short training field can be used for the information receiving device to discover the PPDU.
  • the function of the target short training field may include automatic gain control (English full name: automatic gain control, English abbreviation: AGC), diversity selection, timing acquisition, receiver coarse frequency acquisition, etc.
  • Short training sequence also called Sk sequence
  • k is the length of the sequence
  • k is a positive integer.
  • the short training sequence may be a short training sequence included in a traditional short training field (English full name: legacy short training field, English abbreviation: L-STF), namely, an L-STF sequence.
  • the information sending device may store the short training sequence in advance, so as to generate the signal of the target short training field according to the short training sequence, and send the signal of the target short training field.
  • the short training sequence may include multiple values, and each value may be 1, -1, 0, (1+j), (-1-j), and so on.
  • the L-STF sequence can be as shown in the following equation (1):
  • phase rotation and shifting can be performed based on the above formula (1) to obtain L-STF sequences in other bandwidths, which will not be repeated here.
  • the length of the short training sequence can be an integer multiple of 64. Specifically, if the bandwidth is 20MHz, the length of the short training sequence can be 64; if the bandwidth is greater than 20MHz, the length of the short training sequence can be the ratio of the bandwidth to 20MHz.
  • the period of the short training sequence may be 0.8 ⁇ s, and the short training sequence may have 10 periods.
  • the short training sequences can be carried on multiple subcarriers of the target short training field to obtain frequency domain signals; inverse Fourier transform is performed on the frequency domain signals , Get the time domain signal; send the time domain signal through the transceiver.
  • the process of using a short training sequence to generate a signal may include phase rotation, inserting a guard interval, using a window function for windowing, applying a cyclic shift, etc., which will not be repeated here.
  • the formula for the signal of the target short training field can be the following formula (2):
  • r EHT-GF-STF means signal
  • t means time
  • i TX means antenna index
  • i TX means a positive integer greater than or equal to 1
  • STS means space-time stream
  • * means multiplication
  • NSTS space-time stream number
  • N SR represents the index of the highest data subcarrier among all data subcarriers of the target short training field
  • exp() represents the index
  • ⁇ k represents a phase rotation factor
  • P EHT-LTF represents a mapping matrix target short training fields
  • Q k denotes a precoding matrix of the k th subcarrier
  • ⁇ F represents a subcarrier target short training field of spacing.
  • the target long training field includes a long training sequence. This long training sequence is also called L k sequence, where k is the sequence length, and k is a positive integer.
  • the long training sequence in the embodiment of FIG. 3 is the target long training sequence.
  • the target long training field may include two symbols.
  • the target long training field may include the third symbol and the fourth symbol in the PPDU. Wherein, the symbol may be an OFDM symbol.
  • the duration of the target long training field can be 8 ⁇ s.
  • the target long training field may belong to the preamble part of the PPDU.
  • the target long training field can be the second field of the PPDU.
  • the target long training field can be called GF-EHT-LTF.
  • the target long training field can be used for the information receiving device to detect the PPDU format.
  • the function of the target long training field may also include channel estimation and accurate frequency acquisition of the receiver, etc., which will not be repeated here.
  • Target long training sequence The target long training sequence is orthogonal to the traditional format long training sequence or the high throughput long training sequence.
  • the information sending device may pre-store the target long training sequence, so as to generate the signal of the target long training field according to the target long training sequence, and send the signal of the target long training field.
  • the target long training sequence can include multiple values, and each value can be 1, -1, or 0.
  • the length of the target long training sequence may be an integer multiple of 64, and the length of the target long training sequence may refer to the number of values in the target long training sequence.
  • the length of the target long training sequence can be 64; if the bandwidth is greater than 20MHz, the length of the target long training sequence can be 64*(bandwidth/20MHz), "*" means product, and "/" means Division operation.
  • the period of the target long training sequence may be 3.2 ⁇ s, and the target long training sequence may have 2 periods.
  • the long training sequence in the traditional format may be a long training sequence included in the long training field (full English name: legacy long training field, English abbreviation: L-LTF) in the traditional format, that is, the L-LTF sequence.
  • the long training sequence in the traditional format can include multiple values, and each value can be 1, -1, or 0.
  • the length of the long training sequence in the traditional format may be an integer multiple of 64, and the length of the long training sequence in the traditional format may refer to the number of values in the long training sequence in the traditional format.
  • L-LTF 64 represents a long training sequence in a traditional format, and its length is 64.
  • the above formula (3) is taken as an example when the bandwidth is 20MHz. If the bandwidth is not 20MHz, the above formula (3) can be used as the basis. According to the bandwidth, the above formula ( 3) Move to obtain a long training sequence in a traditional format under other bandwidths. In addition, the above formula (3) can be filled in according to requirements, and the filled-in sequence is used as a long training sequence in a traditional format.
  • the long training sequence with high throughput rate may be the long training sequence included in the high throughput long training field (full English name: high throughput long training field, English abbreviation: HT-LTF), namely the HT-LTF1 sequence.
  • a long training sequence with a high throughput rate can include multiple values, and each value can be 1, -1, or 0.
  • the length of the high-throughput long training sequence may be an integer multiple of 64, and the length of the high-throughput long training sequence may refer to the number of values in the high-throughput long training sequence.
  • the expression of the long training sequence with high throughput rate can be the following equation (4):
  • HT-LTF 64 represents a long training sequence with high throughput, and its length is 64.
  • the above formula (4) is an example of the bandwidth of 20MHz. If the bandwidth is not 20MHz, the above formula (4) can be used as the basis. According to the bandwidth, the above formula ( 4) Move to obtain a long training sequence with high throughput under other bandwidths. In addition, according to requirements, the above formula (4) can be filled in, and the filled-in sequence can be regarded as a long training sequence with high throughput.
  • the orthogonality between the target long training sequence and the traditional format long training sequence or the high throughput long training sequence can mean that the target long training sequence is strictly positive with the traditional format long training sequence or the high throughput long training sequence. Interaction can also mean that the target long training sequence is quasi-orthogonal to the traditional format long training sequence or the high throughput long training sequence.
  • the strict orthogonality between the target long training sequence and the traditional format long training sequence or the high throughput long training sequence means that the cross-correlation result of the target long training sequence and the traditional format long training sequence or the high throughput long training sequence is zero.
  • the target long training sequence and the traditional format long training sequence or the high throughput long training sequence quasi-orthogonal means that the cross correlation result of the target long training sequence and the traditional format long training sequence or the high throughput long training sequence is less than the preset Threshold
  • the preset threshold may be a value close to 0, for example, the preset threshold may be 0.1.
  • the target long training sequence can be obtained by splicing at least two P 32 sequences.
  • the target long training sequence may be a linear combination of at least two P 32 sequences, and the coefficient of each P 32 sequence may be 1 or -1.
  • the number of P 32 sequences in the target long training sequence can be determined according to the bandwidth of the PPDU. For example, if the bandwidth is 20MHz, the target long training sequence can be a linear combination of 2 P 32 sequences; if the bandwidth is (20*N) MHz, the target long training sequence can be a linear combination of (2*N) P 32 sequences . Among them, N is a positive integer greater than 1.
  • the P 32 sequence can be orthogonal to the upper half of the traditional format long training sequence or the high throughput long training sequence, and the P 32 sequence can be orthogonal to the traditional format long training sequence or the lower half of the high throughput long training sequence Partially orthogonal.
  • the length of the P 32 sequence is 32, that is, it includes 32 values.
  • the expression of the P 32 sequence can be the following formula (5).
  • each value in the P 32 sequence can correspond to a serial number, and the serial number is used to identify the corresponding value.
  • P 32 (M) can represent the value of sequence number M in the P 32 sequence
  • P 32 (M: N) can represent the value of sequence number M to the value of sequence number N in the P 32 sequence, where M and N is an integer, and M is less than N.
  • the sequence number of each value in the P 32 sequence can be -16, -15,...,0,1,2,...,15.
  • the first value from the left in the P 32 sequence The sequence number can be -16, the sequence number of the second value from the left in the P 32 sequence can be -15, the sequence number of the third value from the left in the P 32 sequence can be -14, and so on, the sequence number of the value in the middle of the P 32 sequence can be is 0, the first value of the sequence number value to the right of P sequence 32 may be an intermediate, the first sequence number value of the right side of the intermediate value P may be 32 1 sequences, 32 sequences from the right in a P The sequence number of the value can be -16.
  • one or more positions in one or more P 32 sequences in the target long training sequence may be filled.
  • the blanking means replacing the value of 0 in the P 32 sequence with 1 or -1.
  • the middle position of the P 32 sequence in the target long training sequence may be filled.
  • This intermediate position can be denoted as P 32 (0).
  • the expression of the target long training sequence can be shown in FIG. 6. In Figure 6, position 1 and position 2 are positions that have been filled.
  • the effects achieved can at least include: the middle position of the P 32 sequence was originally the position corresponding to the DC component under the 1MHz bandwidth, and the middle position of the P 32 sequence was originally set to 0 to remove the spectrum. ⁇ DC component.
  • the position corresponding to the DC component has been switched from the middle position of the P 32 sequence to other positions. For example, in Figure 6, the position corresponding to the DC component has been switched from position 1 and position 2 to position 3. After the position corresponding to the DC component has been switched, if the middle position of the P 32 sequence is still set to 0, it will cause a waste of spectrum resources.
  • subcarrier 32 may be utilized an intermediate position P of the sequence, thus saving spectrum resources.
  • Figure 6 by setting the value corresponding to position 1 and position 2 from 0 to 1, thereby filling in the space of position 1 and position 2, the two subcarriers corresponding to position 1 and position 2 can be used, thereby Save the spectrum resources of two subcarriers.
  • the edge position of the P 32 sequence in the target long training sequence may be filled.
  • the edge position can be any one or a combination of P 32 (-15), P 32 (-14), P 32 (14), and P 32 (15).
  • the target long training sequence is a linear combination of two P 32 sequences, use -1 to fill the gaps of P 32 (14) and P 32 (-14), and use 1 pair of P 32 (15) and P 32 ( -15) Fill in the gap, the expression of the target long training sequence can be shown in Figure 7.
  • the position 4 in Figure 7 is P 32 (14) that has been filled in, and the position 5 in Figure 7 is the fill in P 32 (-14), the position 6 in Fig. 7 is P 32 (15) after filling, and the position 7 in Fig. 7 is P 32 (-15) after filling.
  • the effects achieved can at least include: the original edge position of the P 32 sequence is the position corresponding to the edge sub-carrier under the 1MHz bandwidth, and the original edge position of the P 32 sequence is originally set to 0 to avoid accidents. With interference.
  • part of the edge position of the P 32 sequence has been switched from the position corresponding to the edge subcarrier to the position around the middle position of the target long training sequence. For example, in Figure 7, for positions 4 and 6, These two positions were originally the two positions on the right edge of the P 32 sequence.
  • the expression of the target long training sequence can be any of the following equations (6) to (18):
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (10)
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)]; (11)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (12)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (13)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),x2,p 32 (1 , 15)]; (14)
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)]; (15)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)]; (16)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)]; (17)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)]; (18)
  • L 64 represents the target long training sequence with a length of 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 (-16, -1) represents the value of p 32 from the sequence number -16 to the sequence number- value is 1
  • p 32 (1,13) in p 32 represents a value from 1 to the number of sequence number values
  • p 32 (-13, -1) indicates the number of values p 32 from -13 to No.
  • p 32 (1,15) in p 32 represents a value from 1 to the number of sequence number values 15.
  • -p 32 means to invert each value in the p 32 sequence. For example, for the value of sequence number M in the p 32 sequence, if p 32 (M) is 1, then -p 32 (M) is -1; if p 32 (M) is -1, then -p 32 ( M) is 1; if p 32 (M) is 0, then -p 32 (M) is 0.
  • M is an integer, the minimum value of M can be -16, and the maximum value of M can be 15.
  • the above equations (6) to (18) are based on the case of a bandwidth of 20MHz. If the bandwidth is not 20MHz, the above equations (6) to (18) can be used as the basis. For the size of the bandwidth, the above equations (6) to (18) are moved to obtain the target long training sequence under other bandwidths. In addition, according to requirements, the above equations (6) to (18) can be filled in, and the filled sequence is used as the target long training sequence.
  • the expression of the target long training sequence can be the following equation (19):
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),-1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (10)
  • L 64 [p 32 (-16,-1),x1,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),x2,p 32 ( 1, 15)]; (11)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (12)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),x2,p 32 (1, 15)]; (13)
  • L 64 [p 32 (-16, -1),x1,p 32 (1,13),0,0,0,0,0,p 32 (-13,-1),x2,p 32 (1 , 15)]; (14)
  • L 64 [p 32 (-16, -1), 0, p 32 (1, 13), -1, 1, 0, -1, -1, p 32 (-13, -1), 0, p 32 (1, 15)]; (15)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,1,p 32 (-13,-1),0,p 32 ( 1, 15)]; (16)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,-1,0,1,-1,p 32 (-13,-1),0,p 32 (1, 15)]; (17)
  • L 64 [p 32 (-16,-1),0,p 32 (1,13),1,1,0,-1,-1,p 32 (-13,-1),0,p 32 (1, 15)]; (18)
  • L k represents the target long training sequence
  • k represents the length of the target long training sequence
  • k is the ratio of the bandwidth of the PPDU to 20MHz
  • k is a positive integer greater than or equal to 3
  • a 1 , a 2 , and a k are -1
  • L 64 represents a target long training sequence with a length of 64
  • x1 is -1 or 1
  • x2 is -1
  • p 32 (-16, -1) represents the value of p 32 from the sequence number -16 to the sequence number a value of -1
  • p 32 (1,13) in p 32 represents a value from 1 to the number of sequence number values
  • p 32 (-13, -1) indicates the number of values p 32 from -13 to Reference value -1
  • the target long training sequence can be carried on multiple subcarriers of the target long training field to obtain a frequency domain signal; inverse Fourier is performed on the frequency domain signal The leaf transforms to obtain the time domain signal; the time domain signal is sent through the transceiver.
  • the value can be carried on one subcarrier.
  • the value of sequence number k in the target long training sequence can be carried on the subcarrier of sequence number k, where k is an integer.
  • the subcarrier is an empty subcarrier.
  • X1 is carried on the subcarrier with sequence number -14, and the value from sequence number 1 to sequence number 13 in the p 32 sequence is carried on the subcarrier with sequence number -13 to sequence number -1.
  • 0 is carried on the subcarrier with sequence number 0
  • -1 is carried on the subcarrier with sequence number 1
  • -1 is carried on the subcarrier with sequence number 2
  • the sequence number in the p 32 sequence is-
  • the value of 13 to the value of sequence number -1 is carried on the subcarrier of sequence number 3 to the subcarrier of sequence number
  • x2 is carried on the subcarrier of sequence number 16 and the value of sequence number 1 in the p 32 sequence
  • the values up to the sequence number 15 are carried on the subcarriers with the sequence number 17 to the subcarriers with the sequence number 31 respectively.
  • the process of using the target long training sequence to generate a signal may include phase rotation, inserting a guard interval, using a window function for windowing, applying a cyclic shift, etc., which will not be repeated here.
  • the formula for the signal of the target long training field can be the following formula (20):
  • r EHT-GF-LTF means signal
  • t means time
  • i TX means antenna index
  • i TX means a positive integer greater than or equal to 1
  • STS means space-time stream
  • * means multiplication
  • NSTS space-time stream number
  • N SR represents the index of the highest data subcarrier among all data subcarriers of the target long training field
  • exp() represents the index
  • Duration represents the cyclic shift
  • ⁇ k represents a phase rotation factor
  • P EHT-LTF represents a mapping matrix target long training field
  • Q k denotes a precoding matrix of the k th subcarrier
  • ⁇ F represents the pitch subcarrier certain long training field .
  • the modulation mode of the first symbol after the target long training field in the PPDU may be quadrature binary phase shift keying (English full name: Quadrature binary phase shift keying, English abbreviation: QBPSK).
  • QBPSK has a phase rotation of 90 degrees relative to BPSK.
  • the modulation order of QBPSK and BPSK is the same; for BPSK, the constellation diagram of BPSK includes two constellation points, both of which are located on the I axis, and one is located on the negative semi-axis of the I axis, indicating 0 , The other is located on the positive semi-axis of the I axis, which represents 1.
  • the constellation diagram of QBPSK includes two constellation points, both of which are located on the Q axis, and one is located on the negative semi-axis of the Q axis, which represents 0, the other is located on the positive semi-axis of the Q axis, representing 1; therefore, the constellation diagram of QBPSK can be regarded as a constellation diagram obtained by rotating the constellation diagram of BPSK by 90 degrees.
  • the effect achieved can at least include: on the basis of distinguishing the format of the PPDU from other PPDU formats through the target long training sequence, through the modulation method of the first symbol Designed as QBPSK, it can expand the difference between the PPDU format and other PPDU formats, so that the information receiving device can further determine the PPDU format according to whether the modulation mode of the first symbol after the target long training field is QBPSK, thereby helping information reception
  • the device detects the format of the PPDU to improve the accuracy of the information receiving device in detecting the format of the PPDU.
  • the information bandwidth of the target signaling field in the PPDU is greater than 20 MHz, and the information bandwidth refers to the basic bandwidth that carries information encoding.
  • the information bandwidth can be used as the basic information unit, and each information bandwidth is independently coded. If the bandwidth of the PPDU is greater than the information bandwidth, the information will be copied and transmitted on a different frequency with the information bandwidth as a unit.
  • the achieved effect can at least include: traditional format signaling field (full English name: legacy signaling field, English abbreviation: L-SIG), very high throughput signaling
  • the information bandwidth of field A full English name: very high throughput signal field A, abbreviation: VHT-SIGA
  • efficient signaling field A full English name: high efficient signal field A, abbreviation: HE-SIGA
  • the information carried by a single symbol can be doubled. Therefore, the number of symbols that need to be occupied when sending the information of the target signaling field can be The multiple reduction, thereby greatly improving the efficiency of transmitting the information of the target signaling field. For example, if the information bandwidth of the target signaling field is 40MHz, the information carried by a single symbol can be doubled, and then the number of symbols that need to be occupied when sending the information of the target signaling field can be doubled.
  • the information sending device sends a PPDU.
  • the information receiving device receives the data unit.
  • the information receiving device may receive the target short training field of the data unit, and find the data unit according to the target short training field of the data unit.
  • the way in which the information receiving apparatus receives the target short training field may be the same as the way in which it receives the short training field in the traditional format.
  • the information receiving device may store the auto-correlation algorithm and/or cross-correlation algorithm used when receiving the short training field in the traditional format, and use the auto-correlation algorithm and/or cross-correlation algorithm to receive the target short training field.
  • the information receiving device may receive the target long training field of the data unit, and obtain the long training sequence from the target long training field of the data unit, so as to perform the following steps according to the long training sequence.
  • the information receiving device determines that the data unit is a PPDU with a preset format.
  • the first condition is used to judge whether the long training sequence is the target long training sequence in the PPDU with the preset format.
  • the information receiving device can judge whether the long training sequence in the data unit meets the first condition, and when the long training sequence in the data unit meets the In the first condition, it is determined that the data unit is a PPDU with a preset format.
  • step 304 may include any one of the following implementation manner 1 to implementation manner 2.
  • Implementation mode 1 The long training sequence in the data unit of the information receiving device is cross-correlated with the pre-stored target long training sequence to obtain the first result.
  • the information receiving device can determine whether the first result is greater than the first threshold; when the first result is greater than the first result A threshold value indicates that the first result is large enough, that is, the correlation between the long training sequence in the received data unit and the target long training sequence is sufficiently high, so the long training sequence in the received data unit is the target long training sequence If the probability is high enough, the information receiving device determines that the data unit is a PPDU with a preset format.
  • the first condition is that the first result is greater than the first threshold.
  • the first threshold may be pre-stored in the information receiving device. For example, if the first result is normalized to a value between 0 and 1, the first threshold may be 0.9, 0.99, or the like.
  • Implementation mode two can include the following (2.1) to (2.3):
  • the long training sequence in the data unit of the information receiving device is cross-correlated with the pre-stored target long training sequence to obtain the first result.
  • the information receiving device can pre-store the pre-stored target long training sequence.
  • the information receiving device can read the pre-stored target long training sequence locally, so as to use the pre-stored target long training sequence to execute (2.1).
  • the first result refers to the result obtained after the long training sequence in the received data unit and the target long training sequence are cross-correlated.
  • Cross-correlation can verify the degree of correlation between the two sequences, so the larger the first result, the higher the correlation between the long training sequence and the target long training sequence, that is, the long training sequence and the target long training sequence.
  • the stronger the orthogonality is, the higher the probability that the long training sequence is the target long training sequence, the higher the probability that the data unit is a PPDU with a preset format.
  • the long training sequence in the data unit of the information receiving device is cross-correlated with the long training sequence in the traditional format or the long training sequence with high throughput to obtain the second result.
  • the long training sequence in the traditional format or the long training sequence with high throughput can be stored in the information receiving device in advance.
  • the information receiving device can read the long training sequence in the traditional format or the long training sequence with high throughput rate locally, so as to use the long training sequence in the traditional format or the long training sequence with high throughput rate to execute (2.2 ).
  • the second result refers to the result of cross-correlation between the long training sequence in the received data unit and the long training sequence in the traditional format or the long training sequence with high throughput.
  • the smaller the second result the lower the correlation between the long training sequence and the long training sequence in the traditional format or the long training sequence with high throughput, that is, the weaker the orthogonality between the long training sequence and the target long training sequence Therefore, the higher the probability that the long training sequence is the target long training sequence, the higher the probability that the data unit is a PPDU with a preset format.
  • (2.1) and (2.2) may specifically include the following steps one to four:
  • Step 1 The information receiving device obtains the signal to interference and noise ratio of at least one subcarrier of the target long training field.
  • the signal-to-interference-to-noise ratio is the ratio of signal to interference plus noise (full English name: signal to interference plus noise ratio, English abbreviation: SINR).
  • the signal-to-interference-to-noise ratio is the quotient obtained by taking the strength of the useful signal as the dividend, taking the sum of the intensities of the interference signal and the noise signal as the divisor, and dividing the dividend by the divisor.
  • the target long training field may include two symbols, and each symbol may include multiple subcarriers, and the information receiving device may obtain the signal-to-interference-to-noise ratio of each subcarrier of each symbol in the two symbols, as used in the following step two The signal to interference noise ratio.
  • Step 2 The information receiving device selects a target subcarrier from at least one subcarrier according to the signal to interference and noise ratio of the at least one subcarrier.
  • the target subcarrier is a subcarrier that meets the second condition.
  • the information receiving device can determine whether the signal to interference and noise ratio of the subcarrier meets the second condition, and when the signal to interference and noise ratio of the subcarrier meets the second condition, select the subcarrier Is the target subcarrier.
  • the second condition may include any of the following conditions (1) to (2):
  • the information receiving device can determine whether the signal-to-interference and noise ratio of the sub-carrier is greater than the signal-to-interference and noise ratio threshold.
  • the interference-to-noise ratio is greater than the signal-to-interference and noise ratio threshold, the subcarrier is selected as the target subcarrier.
  • the signal-to-interference and noise ratio threshold may be pre-stored in the information receiving device, and the specific value of the signal-to-interference and noise ratio threshold may be set according to requirements, which is not limited in this embodiment.
  • the information receiving device can sort at least one sub-carrier in descending order of the signal-to-interference and noise ratio according to the signal-to-interference and noise ratio of each sub-carrier, and select the top Set the number of subcarriers as the target subcarrier.
  • the preset number of digits may be pre-stored in the information receiving device, the preset number of digits may be a positive integer, and the specific value of the preset number of digits may be set according to requirements, which is not limited in this embodiment.
  • the information receiving device may obtain the first sequence according to the target subcarrier.
  • the first sequence is the sequence carried by the target subcarrier in the long training sequence.
  • the information receiving apparatus can obtain the value carried by the subcarrier to obtain M values, and the information receiving apparatus can M values are used as the first sequence.
  • M values correspond to M subcarriers one-to-one, and M is a positive integer.
  • the 64 subcarriers of the target long training field are 64 subcarriers
  • the 64 subcarriers are from the subcarrier with the sequence number -32 to the subcarrier with the sequence number 31, and the target subcarrier is among the 64 subcarriers
  • the 40 subcarriers are from the subcarrier with sequence number -20 to the subcarrier with sequence number 19.
  • the information receiving device can obtain the value carried by the subcarrier with the sequence number -20, the value carried by the subcarrier with the sequence number -19, and the value carried by the subcarrier with the sequence number -19, to obtain 40 values, These 40 values are used as the first sequence.
  • Step 3 The information receiving device performs cross-correlation between the long training sequence and the target long training sequence according to the target subcarrier to obtain the first result.
  • step three may include the following steps 3.1 to 3.2:
  • Step 3.1 The information receiving device obtains the second sequence according to the first sequence.
  • the second sequence is a sequence whose position in the target long training sequence corresponds to the first sequence.
  • Lx the long training sequence in the received data unit
  • L 1 the target long training sequence
  • L 1 the first sequence obtained according to the target subcarrier
  • the second sequence can be Is L 1 (k1, k2).
  • Lx (k1, k2) represents Lx sequence number is the value of k1 to Lx sequence number is the value of k2
  • L 1 (k1, k2) represents L 1 serial number value of k1 to L 1 in the sequence number value of k2
  • K1 is an integer
  • k2 is an integer.
  • the first sequence is Lx(-20, 19)
  • Step 3.2 The first sequence and the second sequence of the information receiving device are cross-correlated to obtain the first result.
  • Step 4 The information receiving device performs cross-correlation of the long training sequence with the traditional format long training sequence or the high throughput long training sequence according to the target subcarrier, and obtains the second result.
  • step four may include the following steps 4.1 to 4.2:
  • Step 4.1 The information receiving device obtains the third sequence according to the first sequence.
  • the third sequence is a sequence whose position corresponds to the first sequence in a long training sequence with a traditional format or a long training sequence with a high throughput rate.
  • Lx the long training sequence in the received data unit
  • L 2 the long training sequence in the traditional format or the long training sequence with high throughput rate
  • the first sequence obtained from the target subcarrier is Lx( k1, k2)
  • the second sequence can be L 2 (k1, k2).
  • Lx (k1, k2) represents Lx sequence number is the value of k1 to Lx sequence number is the value of k2
  • L 2 (k1, k2) represents L 2 in the sequence number value to L 2 in the number k1 to the value of k2
  • K1 is an integer
  • k2 is an integer.
  • the first sequence is Lx(-20,19)
  • Step 4.2 The first sequence and the third sequence of the information receiving device are cross-correlated to obtain the second result.
  • the information receiving device determines that the data unit is a PPDU with a preset format.
  • the information receiving device can determine whether the first result and the second result meet the first condition based on the first result and the second result. When the first result and the second result meet the preset magnitude relationship, the information receiving device can determine that the data unit is PPDU with preset format. When the first result and the second result do not meet the first condition, the information receiving apparatus may determine that the format of the PPDU is not a preset format.
  • the preset magnitude relationship may be that the first result is greater than or equal to the second result, and the information receiving device may determine whether the first result is greater than the second result.
  • the information The receiving device may determine that the data unit is a PPDU with a preset format.
  • the information receiving apparatus may determine that the format of the PPDU is not a preset format.
  • the preset magnitude relationship may be that the first result is greater than the product of the second result and the preset coefficient, and the information receiving device may obtain the product of the second result and the preset coefficient, and determine the first Whether the result is greater than the product, and when the first result is greater than the product, the information receiving device determines that the data unit is a PPDU with a preset format. When the first result is not greater than the product, the information receiving apparatus may determine that the format of the PPDU is not a preset format.
  • the preset coefficient can be set according to requirements, for example, it can be a value close to 1, and the specific value of the preset coefficient is not limited in this embodiment.
  • the preset format may be a high-throughput PPDU format.
  • the preset format may be the PPDU format provided by the 802.11ax next-generation standard.
  • the preset format may be called an extremely high throughput (English full name: extremely high throughput, English abbreviation: EHT) format.
  • EHT extremely high throughput
  • the preset format has other names than the EHT format.
  • the preset format may also be called extremely high throughput rate (English full name: extremely throughput, English abbreviation: XT), ultra high throughput rate (English full name: ultra high throughput, English abbreviation: UHT), etc.
  • the preset format may be called the green field (full English name: green field, English abbreviation: GF) format, and the green field format refers to a PPDU format beginning with a high-throughput preamble.
  • the information receiving device can execute (2.1) and then (2.2); the information receiving device can also execute (2.2) and then (2.1); the information receiving device can also execute (2.1) and (2.2), this embodiment does not limit the timing of (2.1) and (2.2).
  • the information receiving device After the information receiving device determines that the data unit is the PPDU of the preset format, the information receiving device can further process the PPDU according to the WLAN standard corresponding to the preset format, so as to meet the information transmission requirements corresponding to the WLAN standard.
  • the WLAN standard corresponding to the preset format may include an analysis method, a receiving rate, etc.
  • the information receiving device may parse the data field of the PPDU according to the analysis method.
  • the information receiving device may receive the target of the data unit according to the receiving rate. For the part after the long training field, this embodiment does not limit the processing flow after the information receiving device determines the format of the PPDU.
  • the above step 304 can be replaced with: when the data unit meets the first condition and the modulation mode of the first symbol after the target long training field of the data unit is QBPSK, determining The data unit is a physical layer protocol data unit PPDU with a preset format, and the target long training field includes a long training sequence.
  • the information receiving device can read the first symbol after the target long training field and determine whether the modulation mode of the first symbol is QBPSK. When the data unit meets the first condition and the modulation mode of the first symbol is QBPSK, the information receiving device determines that the data unit is a PPDU with a preset format.
  • the information receiving apparatus determines that the format of the PPDU is not a preset format.
  • the information receiving device may first determine whether the modulation mode of the first symbol after the target long training field is QBPSK, and when the modulation mode of the first symbol is QBPSK, then determine whether the data unit meets the first condition.
  • the information receiving device may also first determine whether the data unit meets the first condition, and when determining whether the data unit meets the first condition, then determine whether the modulation mode of the first symbol after the target long training field is QBPSK.
  • the information receiving device can also judge whether the data unit meets the first condition and whether the modulation mode of the first symbol after the target long training field is QBPSK in parallel.
  • This embodiment does not limit the time sequence of the two judgment steps.
  • this replacement method and step 304 are two parallel methods, and this embodiment does not limit whether to perform this replacement method or to perform step 304.
  • the information receiving apparatus may stop receiving the data unit, or the information The receiving device may determine that the format of the PPDU is a format other than the preset format, and continue to determine which format of the PPDU is other than the preset format.
  • the process of the information receiving device determining the format of the PPDU may include: the information receiving device reads the first symbol after the target long training field , To determine whether the modulation mode of the first symbol is QBPSK, when the modulation mode of the first symbol is QBPSK, the information receiving device determines that the format of the PPDU is high throughput greenfield (full English name: high throughput greenfield, English abbreviation: HT-GF) format; when the modulation mode of the first symbol is not QBPSK, the information receiving device determines that the format of the PPDU is not the HT-GF format, and the information receiving device continues to determine the second symbol and the second symbol after the target long training field Whether the first symbol is the same, and determine whether the length field in the target signaling field is divisible by 3; when the second symbol is the same as the first symbol, and the length field is not divisible by 3, the information receiving device determines the
  • the information receiving device determines that the format of the PPDU is the HT-MF format; when the modulation symbol of the second symbol is When the modulation mode of the PPDU is BPSK and the modulation mode of the third symbol is QBPSK, the information receiving device determines that the format of the PPDU is the VHT format; when the information receiving device executes the above process, it determines that the format of the PPDU is not the HT-GF format, HE When any one of the format, the HT-MF format, and the VHT format, the information receiving device determines that the format of the PPDU is the Non-HT format.
  • this embodiment can be applied to a scenario where an access point communicates with an access point.
  • the information sending device and the information receiving device in steps 301 to 304 above can be access points; this embodiment can also be It is applied to the scenario where the station communicates with the station.
  • the information sending device and the information receiving device in the above step 301 to step 304 may be a station; this embodiment can also be applied to the scenario where the access point communicates with the station, the above steps 301 to
  • the information sending device in step 304 may be an access point, and the information receiving device may be a station, or the information sending device in steps 301 to 304 may be a station, and the information receiving device may be an access point.
  • the information sending device can also be other logical functional entities in the WLAN, and the information receiving device can also be other logical functional entities in the WLAN. This embodiment does not limit the specific forms of the information sending device and the information receiving device.
  • the method provided in this embodiment provides a new PPDU format, and the long training sequence in the new format PPDU is orthogonal to the long training sequence in the traditional format or orthogonal to the long training sequence with high throughput.
  • the format of the PPDU can be automatically detected through this long training sequence, so that the PPDU can be further processed according to the WLAN standard corresponding to the format of the PPDU.
  • the target long training field is read, the PPDU format can be detected. Compared with the method of detecting the PPDU format by reading the signaling field, it saves the time for detecting the PPDU format and improves the detection of the PPDU format. The efficiency can be completed as soon as possible.
  • the PPDU format provided in this embodiment can be distinguished from the PPDU format of each previous generation of WLAN standards, ensuring the accuracy of identifying the PPDU format, and avoiding the PPDU format from the previous PPDU format.
  • the format of the PPDU of the WLAN standard is confused, thereby meeting the information transmission requirements of the next-generation WLAN standard.
  • a new PPDU format can be provided by means of phase rotation and additional features, and at the same time, the function of automatically detecting the PPDU format can be realized, which is described in detail in the embodiment in FIG. 8 below.
  • the embodiment in FIG. 8 focuses on the differences from the embodiment in FIG. 3, and for the same content as in FIG. 3, please refer to the embodiment in FIG. 3, and details are not described in the embodiment in FIG.
  • FIG. 8 is a flowchart of an information transmission example provided by an embodiment of the present application.
  • the information transmission example includes an information sending method executed by an information sending device and an information receiving method executed by an information receiving device. As shown in FIG. 8, the method includes The following steps 801 to 804:
  • the information sending device generates a PPDU.
  • the PPDU may include a target short training field and a target long training field, and the target long training field of the PPDU has at least two symbols after it.
  • FIG. 9 shows a schematic diagram of the format of the PPDU.
  • the ellipsis in FIG. 9 indicates other symbols included in the PPDU although not shown, and the specific symbols represented by the ellipsis are not limited in this embodiment.
  • the target short training field in the embodiment of FIG. 8 may be a short training field in a traditional format
  • the target long training field in the embodiment of FIG. 8 may be a long training field in a traditional format.
  • the field after the target long training field can be the very high throughput signaling field
  • the first symbol after the target long training field can be the first symbol of the very high throughput signaling field
  • the second symbol after the target long training field The symbol may be the second symbol of the very high throughput signaling field.
  • M in FIG. 10 represents the number of symbols in the very high throughput signaling field, and M is a positive integer.
  • the field carrying the short training sequence in the PPDU as the short training field of the traditional format, it is possible to avoid the impact of the coarse synchronization of frequency and time on the received data unit after the short training field of the traditional format is modified.
  • the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid the influence of the coarse synchronization of frequency and time on the received data unit after the long training field in the traditional format is modified.
  • the target short training field in the embodiment of FIG. 8 may also be a field used to carry short training sequences in any generation of WLAN standards after 802.11ax
  • the target long training field in the embodiment of FIG. 8 may also be after 802.11ax.
  • the embodiment of FIG. 8 does not limit the format of the target short training field and the format of the target long training field.
  • the first symbol after the target long training field The modulation mode of the first symbol after the target long training field can be QBPSK.
  • the first symbol after the target long training field may be the fifth OFDM symbol of the PPDU.
  • the duration of the first symbol after the target long training field may be 4us.
  • the first symbol after the target long training field may be the first symbol of the target signaling field.
  • the first symbol after the target long training field can be marked as EHT-SIG-A0, EHT represents the preset format, SIG represents the target signaling field, A represents the symbol, and A0 represents the first symbol.
  • the second symbol after the target long training field meets the third condition.
  • the second symbol after the target long training field may be the sixth OFDM symbol of the PPDU.
  • the duration of the second symbol after the target long training field may be 4 ⁇ s.
  • the second symbol after the target long training field may be the second symbol of the target signaling field.
  • the first symbol after the target long training field can be marked as EHT-SIG-A1, EHT represents the preset format, SIG represents the target signaling field, A represents the symbol, and A1 represents the second symbol.
  • the third condition can be any one of the following third condition (1) to third condition (4):
  • the third condition (1) The second symbol is the same as the first symbol.
  • the second symbol can be exactly the same as the first symbol, that is, the characteristics of each dimension of the second symbol can be the same as the characteristics of each dimension of the first symbol .
  • the characteristic dimensions of the symbol as content, modulation method, and interleaver as an example, the content of the second symbol can be the same as the content of the first symbol, and the modulation method of the second symbol can be the same as that of the first symbol.
  • the interleaver used by the second symbol is the same as the interleaver used by the first symbol.
  • the symbol may also have features of other dimensions, which will not be repeated here.
  • the third condition (2) The content of the second symbol is the same as the content of the first symbol, and the modulation method of the second symbol is the same as that of the first symbol, and the interleaver used in the second symbol is the same as that of the first symbol.
  • the interleaver used for the first symbol is different.
  • the first symbol can be interleaved by the first interleaver, and the second symbol can be interleaved by the second interleaver.
  • the first interleaver can be any interleaver, and the second interleaver can be interleaved with the first interleaver.
  • the interleaver is different.
  • the modulation method of the second symbol is QBPSK.
  • the features of other dimensions of the second symbol and the features of other dimensions of the first symbol can be designed as one or more of the same or one or more The differences can be specifically designed according to requirements. This embodiment does not limit the characteristics of the second symbol in other dimensions and the characteristics of the first symbol in other dimensions.
  • the third condition (3) The content of the second symbol is the same as the content of the first symbol, and the modulation mode of the second symbol is the same as that of the first symbol, and the first symbol is interleaved, and The second symbol is not interleaved.
  • the modulation method of the second symbol is QBPSK.
  • the features of other dimensions of the second symbol and the features of other dimensions of the first symbol can be designed as one or more of the same or one or more The differences can be specifically designed according to requirements. This embodiment does not limit the characteristics of the second symbol in other dimensions and the characteristics of the first symbol in other dimensions.
  • the third condition (4) The modulation mode of the second symbol is BPSK.
  • the features of other dimensions of the second symbol and the features of other dimensions of the first symbol can be designed to be one or more the same or one or more different. Designed according to requirements, this embodiment does not limit the characteristics of other dimensions of the second symbol and the characteristics of other dimensions of the first symbol.
  • the information sending device sends a PPDU.
  • the information receiving device receives the data unit.
  • the information receiving apparatus determines that the data unit is a PPDU with a preset format.
  • the information receiving device can read the first symbol after the target long training field and the second symbol after the target long training field, determine whether the modulation mode of the first symbol is QBPSK, and determine whether the modulation mode of the first symbol is QBPSK. Whether the two symbols meet the third condition, when the modulation mode of the first symbol is QBPSK and the second symbol meets the third condition, the information receiving device determines that the data unit is a PPDU with a preset format. In addition, when the modulation mode of the first symbol after the target long training field is not QBPSK, or the second symbol after the target long training field does not meet the third condition, the information receiving apparatus may determine that the format of the PPDU is not a preset format .
  • the information receiving device can first determine whether the modulation method of the first symbol is QBPSK, and when the modulation method of the first symbol is QBPSK, then determine whether the second symbol meets the third condition; the information receiving device can also be used in parallel To determine whether the modulation mode of the first symbol is QBPSK and whether the second symbol meets the third condition, the order of the determination is not limited in this embodiment.
  • step 804 may be: the information receiving device may determine whether the modulation mode of the first symbol after the target long training field is QBPSK; when the modulation mode of the first symbol For QBPSK, the information receiving device compares the second symbol after the target long training field with the first symbol after the target long training field; when the second symbol is the same as the first symbol, the information receiving device determines The data unit is a PPDU with a preset format.
  • step 804 may be: the information receiving device may determine whether the modulation mode of the first symbol after the target long training field is QBPSK; when the modulation mode of the first symbol When it is QBPSK, compare the content of the second symbol after the target long training field with the content of the first symbol after the target long training field; when the content of the second symbol is the same as the content of the first symbol , Judge whether the interleaver used by the second symbol is different from the interleaver used by the first symbol, or whether the second symbol is not interleaved and the first symbol is interleaved, when the interleaver used by the second symbol is The interleaver used for the first symbol is different, or when the second symbol is not interleaved and the first symbol is interleaved, the information receiving device determines that the data unit is a PPDU with a preset format.
  • the above process of judging that the interleaver used by the second symbol is different from the interleaver used by the first symbol may include the following steps 1 to 3:
  • Step 1 The information receiving device uses the first interleaver to de-interleave the first symbol to obtain first data.
  • the first data refers to data obtained after the first symbol is deinterleaved.
  • Step 2 The information receiving device uses a second interleaver to de-interleave the second symbol to obtain second data.
  • the second interleaver is different from the first interleaver.
  • the second data refers to data obtained after the second symbol is deinterleaved.
  • the information receiving device can perform step one first, and then step two; the information receiving device can also perform step two first, and then step one; the information receiving device can also perform step one and step two in parallel.
  • the embodiment does not limit the timing of step one and step two.
  • Step 3 When the first data and the second data are the same, the information receiving device determines that the interleaver used by the second symbol is different from the interleaver used by the first symbol.
  • the information receiving device may compare the first data with the second data. When the first data and the second data are the same, the information receiving device determines that the interleaver used by the second symbol is different from the interleaver used by the first symbol.
  • the process of judging that the first symbol has undergone interleaving and the second symbol has not undergone interleaving may include the following steps A to B:
  • Step A The information receiving device deinterleaves the first symbol to obtain the first data.
  • Step B When the first data is the same as the second symbol, the information receiving device determines that the first symbol has undergone interleaving and the second symbol has not undergone interleaving.
  • the information receiving device may compare the first data with the second symbol. When the first data is the same as the second symbol, the information receiving device determines that the first symbol has been interleaved and the second symbol has not been interleaved.
  • step 804 may be: the information receiving device may determine whether the modulation method of the first symbol after the target long training field is QBPSK; when the modulation method of the first symbol When it is QBPSK, the information receiving device determines whether the modulation mode of the second symbol after the target long training field is BPSK; when the modulation mode of the second symbol is BPSK, the information receiving device determines that the data unit is a PPDU with a preset format.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the second symbol after the target long training field meets the third condition.
  • the PPDU format can be automatically detected by the phase of the first symbol after the target long training field and whether the second symbol meets the third condition, and the second symbol after the target long training field can be read.
  • the PPDE format is detected, saving time and overhead.
  • a new PPDU format can be provided by means of phase rotation and signature fields, and at the same time, the function of automatically detecting the PPDU format can be realized, which is described in detail in the embodiment in FIG. 11 below.
  • the embodiment in FIG. 11 focuses on the differences from the embodiment in FIG. 3, and for the same content as in FIG. 3, please refer to the embodiment in FIG. 3, and details are not repeated in the embodiment in FIG.
  • FIG. 11 is a flowchart of an information transmission example provided by an embodiment of the present application.
  • the information transmission example includes an information sending method executed by an information sending device and an information receiving method executed by an information receiving device. As shown in FIG. 11, the method includes The following steps 1101 to 1104:
  • the information sending device generates a PPDU.
  • the PPDU may include a target short training field and a target long training field, and the target long training field of the PPDU has at least one symbol after it.
  • Fig. 12 shows a schematic diagram of the format of the PPDU.
  • the ellipsis in Fig. 12 indicates other symbols included in the PPDU although not shown. This embodiment does not limit the specific symbols indicated by the ellipsis.
  • the target short training field in the embodiment in FIG. 11 may be a short training field in a traditional format
  • the target long training field in the embodiment in FIG. 11 may be a long training field in a traditional format.
  • the field after the target long training field can be the very high throughput signaling field
  • the first symbol after the target long training field can be the first symbol of the very high throughput signaling field
  • the second symbol after the target long training field The symbol may be the second symbol of the very high throughput signaling field.
  • M in FIG. 13 represents the number of symbols in the very high throughput signaling field, and M is a positive integer.
  • the field carrying the short training sequence in the PPDU as the short training field of the traditional format, it is possible to avoid the impact of the coarse synchronization of frequency and time on the received data unit after the short training field of the traditional format is modified.
  • the field carrying the long training sequence in the PPDU as the long training field in the traditional format, it is possible to avoid the influence of the coarse synchronization of frequency and time on the received data unit after the long training field in the traditional format is modified.
  • the target short training field in the embodiment of FIG. 11 may also be a field used to carry short training sequences in any generation of WLAN standards after 802.11ax
  • the target long training field in the embodiment of FIG. 11 may also be a field after 802.11ax.
  • the embodiment of FIG. 11 does not specifically limit the format of the target short training field and the format of the target long training field.
  • the first symbol after the target long training field The modulation mode of the first symbol after the target long training field is QBPSK, and the first symbol includes feature information.
  • the first symbol after the target long training field may be the fifth OFDM symbol of the PPDU.
  • the duration of the first symbol after the target long training field may be 4us.
  • the first symbol after the target long training field can be marked as EHT-SIG-A0, EHT represents the preset format, EHT-SIG represents the target signaling field, A represents the symbol, and A0 represents the first symbol.
  • the characteristic information is used to indicate that the format of the PPDU is a preset format.
  • the feature information can be any combination of numbers, letters, or characters.
  • the characteristic information may be the American Standard Code for Information Interchange (English full name: American standard code for information interchange, English abbreviation: ASCII) value of "N".
  • ASCII American Standard Code for Information Interchange
  • the characteristic information may be an identifier of a preset format, and the identifier of the preset format is used to uniquely determine the format of the PPDU, for example, may be a name, number, etc. of the preset format.
  • the information sending device may pre-store the characteristic information so as to use the characteristic information to generate the first symbol after the target long training field including the characteristic information, and send the first symbol after the target long training field including the characteristic information.
  • the PPDU of the preset format can be distinguished from other PPDU formats. Therefore, the information receiving device can determine that the data unit is the PPDU of the preset format instead of the HT by identifying the characteristic information. GF format or other formats.
  • the feature information may be carried on the signature field of the first symbol after the target long training field, and the signature field is a field located at a preset position in the first symbol.
  • the preset position may be stored in the information sending device in advance.
  • the preset position can be any position from the first position of the first symbol to the last position of the first symbol, and the value of the preset position is not limited in this embodiment.
  • the information sending device sends a PPDU.
  • the information receiving device receives the data unit.
  • the information receiving device determines that the data unit is a PPDU with a preset format.
  • the information receiving device can read the first symbol after the target long training field, determine whether the first symbol after the target long training field is QBPSK, and determine whether the first symbol is QBPSK. Whether each symbol includes characteristic information, when the modulation mode of the first symbol after the target long training field is QBPSK and the first symbol includes characteristic information, the information receiving apparatus can determine that the data unit is a PPDU with a preset format. In addition, when the modulation mode of the first symbol after the target long training field is not QBPSK, or the first symbol does not include characteristic information, the information receiving apparatus may determine that the format of the PPDU is not a preset format.
  • the format of the PPDU can be detected.
  • the time to complete the detection can be advanced by one symbol, thereby shortening the time for detecting the PPDU format and improving the efficiency of detecting the PPDU format, so that the corresponding PPDU format can be followed in advance
  • further processing such as parsing the PPDU is performed, thereby increasing the speed of processing the PPDU.
  • the information receiving device can first determine whether the modulation method of the first symbol is QBPSK, and when the modulation method of the first symbol is QBPSK, then determine whether the first symbol includes characteristic information; the information receiving device also It can firstly determine whether the first symbol includes characteristic information, and when the first symbol includes characteristic information, then determine whether the modulation mode of the first symbol is QBPSK; the information receiving device can also determine the modulation of the first symbol in parallel Whether the mode is QBPSK and whether the first symbol includes characteristic information, this embodiment does not limit the order of judgment by the information receiving device.
  • the information receiving device may determine the signature field from the first symbol after the target long training field, and obtain the characteristic information from the signature field.
  • the information receiving device may store a preset position in advance, and according to the preset position, determine the field located at the preset position from the first symbol as the signature field.
  • the method provided in this embodiment provides a new PPDU format.
  • the modulation mode of the first symbol after the target long training field in the PPDU is QBPSK, and the first symbol includes characteristic information.
  • the PPDU format can be automatically detected through the phase and feature information of the first symbol after the target long training field, and when the first symbol after the target long training field is read, the PPDU can be detected The format saves the time for detecting the PPDU format and improves the efficiency of detecting the PPDU format.
  • FIG. 14 is a schematic structural diagram of an information sending device provided by an embodiment of the present application. As shown in FIG. 14, the device includes:
  • the generating module 1401 is used to perform any one of step 301, step 801, and step 1101; the sending module 1402 is used to perform any one of step 302, step 802, and step 1102.
  • the information sending device provided in the embodiment of FIG. 14 sends information
  • only the division of the above-mentioned functional modules is used as an example.
  • the above-mentioned functions can be allocated by different functional modules as needed. , That is, divide the internal structure of the information sending device into different functional modules to complete all or part of the functions described above.
  • the information sending device provided in the foregoing embodiment and the information sending method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • the device 1400 here is embodied in the form of a functional module.
  • module can refer to application specific integrated circuits (ASICs), electronic circuits, processors for executing one or more software or firmware programs (such as shared processors, proprietary processors, or group Processor, etc.) and memory, merge logic circuits and/or other suitable components that support the described functions.
  • ASICs application specific integrated circuits
  • the information sending device 1400 may be used to execute each process and/or step corresponding to the information sending device in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the device 1400 of each of the above solutions has the function of realizing the corresponding steps executed by the information sending device in the above method; this function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the sending module can be replaced by a transmitter, such as the generating module can be replaced by a processor, and the transceiver operations and related processing in each method embodiment can be performed respectively operating.
  • FIG. 15 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application. As shown in FIG. 15, the device includes:
  • the receiving module 1501 is used to perform step 303; the first determining module 1503 is used to perform step 304.
  • the device further includes: an acquisition module, which is used to acquire the signal-to-interference and noise ratio of the subcarrier; a selection module, which is used to select the target subcarrier;
  • the training sequence is cross-correlated with the target long training sequence; according to the target subcarrier, the long training sequence is cross-correlated with the traditional format long training sequence or the high throughput long training sequence.
  • the obtaining module is used to obtain the first sequence according to the target subcarrier; the cross-correlation module 1502 is used to: obtain the second sequence according to the first sequence; perform the first sequence and the second sequence Cross-correlation; obtain the third sequence according to the first sequence; perform cross-correlation between the first sequence and the third sequence.
  • the device further includes a second determining module, which is used when the long training sequence in the data unit meets the first condition and the modulation mode of the first symbol after the target long training field When it is QBPSK, the data unit is determined to be a PPDU with a preset format.
  • the device further includes a third determining module for performing step 804.
  • the device further includes a fourth determining module, configured to perform step 1104.
  • the information receiving device provided in the embodiment of FIG. 15 receives information
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated by different functional modules as needed.
  • the information receiving device provided in the foregoing embodiment and the information receiving method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • the device 1500 here is embodied in the form of a functional module.
  • module can refer to application-specific integrated circuits (ASICs), electronic circuits, processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups). Processor, etc.) and memory, merge logic circuits and/or other suitable components that support the described functions.
  • ASICs application-specific integrated circuits
  • the apparatus 1500 may be specifically the information receiving apparatus in the above-mentioned embodiment, and the apparatus 1500 may be used to execute each process and/or corresponding to the information receiving apparatus in the above-mentioned method embodiment. Steps, in order to avoid repetition, will not be repeated here.
  • the device 1500 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the information receiving device in the foregoing method; this function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the receiving module can be replaced by a receiver, such as a cross-correlation module and a determination module, etc., can be replaced by a processor to perform the transceiver operations in each method embodiment respectively And related processing operations.
  • the present application also provides an information transmission system, which includes the information sending device provided in the above embodiment in FIG. 14 and further includes the information receiving device provided in the above embodiment in FIG. 15.
  • a computer program product includes: computer program code, when the computer program code is run by a computer, the computer executes the information sending method and the information receiving method described above. At least one.
  • a computer-readable medium for storing a computer program, the computer program including instructions for executing at least one of the above-mentioned information sending method and information receiving method.
  • the computer-readable medium can be read-only memory (full English name: read-only memory, abbreviation: ROM), random access memory (full English name: random access memory, abbreviation: RAM), read-only optical disk (full English name: RAM) : Compact disc read-only memory, English abbreviation: CD-ROM), magnetic tape, floppy disk and optical data storage device, etc.
  • the present application also provides a chip, including a processor, configured to call and execute instructions stored in the memory from the memory, so that the device installed with the chip executes the above-mentioned information sending method and information At least one of the receiving methods.
  • the present application also provides a chip, including: an input interface, an output interface, a processor, and a memory, the input interface, output interface, the processor, and the memory are connected through an internal connection path
  • the processor is configured to execute the code in the memory, and when the code is executed, the processor is configured to execute at least one of the foregoing information sending method and information receiving method.
  • the computer program product includes one or more computer program instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program instructions can be passed from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (DVD), or a semiconductor medium (for example, a solid state hard disk).
  • multiple in this application means two or more than two, for example, multiple data packets refer to two or more data packets.

Abstract

本申请提供了一种信息发送、信息接收方法及装置,属于通信技术领域。本申请提供了一种新的PPDU格式,这种新格式的PPDU中的长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。通过这种长训练序列,能够自动检测出PPDU的格式,以便按照该PPDU的格式对应的网络标准,对PPDU进行进一步处理。并且,在读取到目标长训练字段时,即可检测出PPDU的格式,节约了检测PPDU格式的时间,提高检测PPDU格式的效率,可以尽早地完成检测PPDU格式的任务。

Description

信息发送、信息接收方法及装置
本申请要求于2019年3月6日提交的申请号为201910169504.9、发明名称为“信息发送、信息接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种信息发送、信息接收方法及装置。
背景技术
随着通信技术的发展,无线局域网(英文全称:wireless local area networks,英文简称:WLAN)标准不断演进,从美国电气和电子工程师协会(英文全称:the institute of electrical and electronics engineers,英文简称:IEEE)802.11a/b/g标准开始,历经IEEE 802.11n标准、IEEE 802.11ac标准,到目前讨论中的IEEE 802.11ax标准,每一代标准都会提供新的物理层协议数据单元(英文全称:physical protocol data unit,英文简称:PPDU)格式,以便通过新的PPDU格式,支持更优的信息传输功能。
PPDU包括前导码部分以及数据部分。前导码部分包括短训练字段(英文全称:short training field,英文简称:STF)、长训练字段(英文全称:long training field,英文简称:LTF)以及信令字段(英文全称:signal field,英文简称:SIG)。STF中有短训练序列,LTF中有长训练序列,SIG中有数据部分的传输速率以及PPDU的长度。数据部分包括需要传输的信息。
在信息传输的过程中,信息发送装置会按照WLAN标准规定的PPDU格式,生成相应PPDU格式的PPDU,发送PPDU。信息接收装置接收到数据单元时,会读取PPDU的前导码部分,根据PPDU的前导码部分,确定PPDU的格式,按照该PPDU格式对应的WLAN标准,对PPDU的数据部分进行解码等进一步的处理流程。
随着下一代WLAN标准的来临,亟需为下一代WLAN标准提供一种新的PPDU格式,保证接收到这种新的PPDU格式的PPDU时,能够确定出PPDU的格式,以便按照该PPDU的格式对应的WLAN标准,对PPDU进行进一步处理,从而满足下一代WLAN标准的信息传输需求。
发明内容
本申请实施例提供了一种信息发送、信息接收方法及装置,能够解决相关技术中亟需一种新的PPDU格式以满足下一代WLAN标准的信息传输需求的技术问题。所述技术方案如下:
第一方面,提供了一种信息发送方法,所述方法包括:
生成物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交;发送所述PPDU。
本实施例提供的方法,提供了一种新的PPDU格式,这种新格式的PPDU中的长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。当接收到这种格式的PPDU时,能够通过这种长训练序列,能够自动检测出PPDU的格式,以便按照该PPDU的格式对应的WLAN标准,对PPDU进行进一步处理。并且,在读取到目标长训练字段时,即 可检测出PPDU的格式,相对于通过读取信令字段来检测PPDU的格式的方法来说,节约了检测PPDU格式的时间,提高检测PPDU格式的效率,可以尽早的完成检测。并且,通过这种新的长训练序列,本实施例提供的PPDU格式能够与以往的每一代WLAN标准的PPDU格式区分开来,保证识别该PPDU格式的精确性,避免将该PPDU格式与以往的WLAN标准的PPDU的格式混淆,从而满足了下一代WLAN标准的信息传输需求。
在一种可能的实现中,所述目标长训练序列通过至少两个P 32序列拼接得到,所述P 32序列与所述传统格式的长训练序列或高吞吐率的长训练序列的上半部分正交且与所述传统格式的长训练序列或高吞吐率的长训练序列的下半部分正交;
在一种可能的实现中,所述P 32序列的表达式如下:
p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0];
在一种可能的实现中,所述目标长训练序列为至少两个P 32序列的线性组合;
在一种可能的实现中,每个P 32序列的系数为1或-1。
在一种可能的实现中,所述目标长训练序列中P 32序列的数量根据PPDU的带宽确定。
在一种可能的实现中,如果带宽为20MHz,所述目标长训练序列可以为2个P 32序列的线性组合;如果带宽为(20*N)MHz,所述目标长训练序列为(2*N)个P 32序列的线性组合。其中,N为大于1的正整数。
在一种可能的实现中,所述目标长训练序列中一个或多个P 32序列中的一个或多个位置经过了补空,所述补空是指将P 32序列中为0的值替换为1或-1。
在一种可能的实现中,所述目标长训练序列中P 32序列的中间位置经过了补空。
通过这种可选实施方式,达到的效果至少可以包括:P 32序列的中间位置原本为1兆赫兹(英文全称:mega hertz,英文简称:MHz)带宽下直流分量对应的位置,P 32序列的中间位置原本置为0是为了去掉频谱中的直流分量。而构建目标长训练序列时,直流分量对应的位置已经从P 32序列的中间位置切换为其他位置,如果P 32序列的中间位置仍然置为0,会造成频谱资源的浪费。通过对P 32序列的中间位置补空,可以利用P 32序列的中间位置的子载波,从而节约频谱资源。
在一种可能的实现中,所述目标长训练序列中P 32序列的边缘位置经过了补空。
在一种可能的实现中,所述边缘位置为P 32(-15)、P 32(-14)、P 32(14)、P 32(15)中的任意一项或多项的组合。
通过这种可选实施方式,达到的效果至少可以包括:P 32序列的边缘位置原本为1MHz带宽下边缘子载波对应的位置,P 32序列的边缘位置原本置为0是为了避免临带干扰。而构建目标长训练序列时,P 32序列的部分边缘位置已经从边缘子载波对应的位置切换为目标长训练序列中间位置左右的位置,如果P 32序列的边缘位置仍然置为0,会造成频谱的浪费。而通过对P 32序列的边缘位置补空,可以利用P 32序列的边缘位置的子载波,从而节约频谱资源。
在一种可能的实现中,如果带宽等于20MHz,所述目标长训练序列的表达式为下述任一项:
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
其中,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
在一种可能的实现中,如果带宽大于20MHz,所述目标长训练序列的表达式为:
L k=[a 1L 64,a 2L 64,……a kL 64];
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
其中,L k表示目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
通过这种可选实施方式,达到的效果至少可以包括:可以支持多种带宽下的信息传输场景,提高了灵活性。
在一种可能的实现中,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
Figure PCTCN2020077485-appb-000001
其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
Figure PCTCN2020077485-appb-000002
表示目标长训练字段的有能量的子载波的数量,
Figure PCTCN2020077485-appb-000003
表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
Figure PCTCN2020077485-appb-000004
表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
在一种可能的实现中,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控(英文全称:Quadrature binary phase shift keying,英文简称:QBPSK)。
通过这种可选实施方式,达到的效果至少可以包括:在通过目标长训练序列将PPDU的格式与其他PPDU格式区别开来的基础上,通过将第一个符号的调制方式设计为QBPSK,可以扩大PPDU的格式与其他PPDU格式的区别性,使得可以根据目标长训练字段之后的第一个符号的调制方式是否为QBPSK,进一步确定PPDU的格式,从而帮助检测PPDU的格式,提高检测PPDU格式的准确性。
在一种可能的实现中,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽。
通过这种可选实施方式,达到的效果至少可以包括:通过将目标信令字段的信息带宽从20MHz扩大至大于20MHz,使得单个符号承载的信息可以成倍的增加,因此发送目标信令字段的信息时,需要占用的符号数量可以成倍的减少,从而极大地提高了传输目标信令字段的信息的效率。
第二方面,提供了一种信息接收方法,所述方法包括:
接收数据单元;当所述数据单元中的长训练序列符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。
本实施例提供的方法,提供了一种新的PPDU格式,这种新格式的PPDU中的长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。通过这种格式的PPDU,能够通过这种长训练序列,能够自动检测出PPDU的格式,以便按照该PPDU的格式对应的WLAN标准,对PPDU进行进一步处理。并且,在读取到目标长训练字段时,即可检测出PPDU的格式,相对于通过读取信令字段来检测PPDU的格式的方法来说,节约了检测PPDU格式 的时间,提高检测PPDU格式的效率,可以尽早的完成检测。并且,通过这种新的长训练序列,本实施例提供的PPDU格式能够与以往的每一代WLAN标准的PPDU格式区分开来,保证识别该PPDU格式的精确性,避免将该PPDU格式与以往的WLAN标准的PPDU的格式混淆,从而满足了下一代WLAN标准的信息传输需求。
在一种可能的实现中,所述当所述数据单元符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,包括:所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;当所述第一结果大于第一阈值时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
在一种可能的实现中,所述当所述数据单元符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,包括:所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果;当所述第一结果以及所述第二结果符合预设大小关系时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
在一种可能的实现中,所述预设大小关系为第一结果大于或等于第二结果;或者,所述预设大小关系为第一结果大于第二结果与预设系数之间的乘积。
在一种可能的实现中,所述接收数据单元之后,所述方法还包括:获取所述数据单元的目标长训练字段的至少一个子载波的信干噪比,所述目标长训练字段中包括长训练序列;根据所述至少一个子载波的信干噪比,从所述至少一个子载波中选取目标子载波,所述目标子载波符合第二条件;所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,包括:根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关;所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,包括:根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关。
在一种可能的实现中,所述方法还包括:根据所述目标子载波,获取第一序列,所述第一序列为所述长训练序列中通过所述目标子载波承载的序列;所述根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关,包括:根据所述第一序列,获取第二序列,所述第二序列为所述目标长训练序列中位置与所述第一序列对应的序列;所述第一序列与所述第二序列进行互相关;所述根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,包括:根据所述第一序列,获取第三序列,所述第三序列为所述传统格式的长训练序列或高吞吐率的长训练序列中位置与所述第一序列对应的序列;
所述第一序列与所述第三序列进行互相关。在一种可能的实现中,所述目标长训练序列通过至少两个P 32序列拼接得到,所述P 32序列与所述传统格式的长训练序列或高吞吐率的长训练序列的上半部分正交且与所述传统格式的长训练序列或高吞吐率的长训练序列的下半部分正交;
在一种可能的实现中,所述P 32序列的表达式如下:
p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0];
在一种可能的实现中,所述目标长训练序列为至少两个P 32序列的线性组合;
在一种可能的实现中,每个P 32序列的系数为1或-1。
在一种可能的实现中,所述目标长训练序列中P 32序列的数量根据PPDU的带宽确定。
在一种可能的实现中,如果带宽为20MHz,所述目标长训练序列可以为2个P 32序列的线性组合;如果带宽为(20*N)MHz,所述目标长训练序列为(2*N)个P 32序列的线性组合。其中,N为大于1的正整数。
在一种可能的实现中,所述目标长训练序列中一个或多个P 32序列中的一个或多个位置经过了补空,所述补空是指将P 32序列中为0的值替换为1或-1。
在一种可能的实现中,所述目标长训练序列中P 32序列的中间位置经过了补空。
通过这种可选实施方式,达到的效果至少可以包括:P 32序列的中间位置原本为1MHz带宽下直流分量对应的位置,P 32序列的中间位置原本置为0是为了去掉频谱中的直流分量。而构建目标长训练序列时,直流分量对应的位置已经从P 32序列的中间位置切换为其他位置,如果P 32序列的中间位置仍然置为0,会造成频谱资源的浪费。通过对P 32序列的中间位置补空,可以利用P 32序列的中间位置的子载波,从而节约频谱资源。
在一种可能的实现中,所述目标长训练序列中P 32序列的边缘位置经过了补空。
在一种可能的实现中,所述边缘位置为P 32(-15)、P 32(-14)、P 32(14)、P 32(15)中的任意一项或多项的组合。
通过这种可选实施方式,达到的效果至少可以包括:P 32序列的边缘位置原本为1MHz带宽下边缘子载波对应的位置,P 32序列的边缘位置原本置为0是为了避免临带干扰。而构建目标长训练序列时,P 32序列的部分边缘位置已经从边缘子载波对应的位置切换为目标长训练序列中间位置左右的位置,如果P 32序列的边缘位置仍然置为0,会造成频谱的浪费。而通过对P 32序列的边缘位置补空,可以利用P 32序列的边缘位置的子载波,从而节约频谱资源。
在一种可能的实现中,如果带宽等于20MHz,所述目标长训练序列的表达式为下述任一项:
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)]
其中,L 64表示长度为64的所述目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为 -16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
在一种可能的实现中,如果带宽大于20MHz,所述目标长训练序列的表达式为:
L k=[a 1L 64,a 2L 64,……a kL 64];
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
其中,L k表示所述目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
在一种可能的实现中,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
Figure PCTCN2020077485-appb-000005
其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
Figure PCTCN2020077485-appb-000006
表示目标长训练字段的有能量的子载波的数量,
Figure PCTCN2020077485-appb-000007
表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
Figure PCTCN2020077485-appb-000008
表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个 子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
在一种可能的实现中,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述目标长训练字段中包括长训练序列。
在一种可能的实现中,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽,所述目标长训练字段中包括所述长训练序列。
在一种可能的实现中,所述当所述第一结果以及所述第二结果符合第一条件时,确定所述PPDU的格式为预设格式的步骤可以替换为:当所述数据单元符合所述第一条件,且所述数据单元的目标长训练字段之后的第一个符号的调制方式为QBPSK时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述目标长训练字段中包括长训练序列。
通过这种可选实施方式,达到的效果至少可以包括:在通过目标长训练序列将PPDU的格式与其他PPDU格式区别开来的基础上,通过将第一个符号的调制方式设计为QBPSK,可以扩大PPDU的格式与其他PPDU格式的区别性,使得可以根据目标长训练字段之后的第一个符号的调制方式是否为QBPSK,进一步确定PPDU的格式,从而提高检测PPDU格式的准确性。
第三方面,提供了一种信息发送方法,所述方法包括:
生成PPDU,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列,所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述目标长训练字段之后的第二个符号符合第三条件;发送所述PPDU;
其中,所述第三条件为:所述第二个符号与所述第一个符号相同;或者,所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第二个符号采用的交织器与所述第一个符号采用的交织器不同;或者,所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第一个符号经过了交织,且所述第二个符号未经过交织;或者,所述第三条件为:所述第二个符号的调制方式为二进制相移键控BPSK。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK,目标长训练字段之后的第二个符号符合第三条件。当接收到这种PPDU格式的PPDU时,可以通过目标长训练字段之后的第一个符号的相位以及第二个符号是否符合第三条件,自动检测PPDU的格式,并且,在读取到目标长训练字段之后的第二个符号时即可检测出PPDE格式,节省了时间开销。
在一种可能的实现中,所述PPDU包括目标短训练字段,所述目标短训练字段包括短训练序列,所述目标短训练字段是传统格式的短训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
在一种可能的实现中,所述目标长训练字段是传统格式的长训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载长训练序列的 字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的精确同步时产生的影响。
第四方面,提供了一种信息接收方法,所述方法包括:
接收数据单元,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列;当所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,且所述目标长训练字段之后的第二个符号符合第三条件时,确定所述PPDU的格式为预设格式;其中,所述第三条件为:所述第二个符号与所述第一个符号相同;或者,所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第二个符号采用的交织器与所述第一个符号采用的交织器不同;或者,所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第一个符号经过了交织,且所述第二个符号未经过交织;或者,所述第三条件为:所述第二个符号的调制方式为二进制相移键控BPSK。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK,目标长训练字段之后的第二个符号符合第三条件。当接收到这种PPDU格式的PPDU时,可以通过目标长训练字段之后的第一个符号的相位以及第二个符号是否符合第三条件,自动检测PPDU的格式,并且,在读取到目标长训练字段之后的第二个符号时即可检测出PPDE格式,节省了时间开销。
在一种可能的实现中,所述确定所述PPDU的格式为预设格式之前,所述方法还包括:使用第一交织器,对所述第一个符号进行解交织,得到第一数据;使用第二交织器,对所述第二个符号进行解交织,得到第二数据,所述第二交织器与所述第一交织器不同;当所述第一数据和所述第二数据相同时,确定所述第二个符号采用的交织器和所述第一个符号采用的交织器不同;或者,对所述第一个符号进行解交织,得到第一数据;当所述第一数据与所述第二个符号相同时,确定所述第一个符号经过了交织且所述第二个符号未经过交织。
在一种可能的实现中,所述PPDU包括目标短训练字段,所述目标短训练字段包括短训练序列,所述目标短训练字段是传统格式的短训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
在一种可能的实现中,所述目标长训练字段是传统格式的长训练字段。
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载长训练序列的字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的精确同步时产生的影响。
第五方面,提供了一种信息发送方法,所述方法包括:
生成PPDU,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列,所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述第一个符号包括特征信息,所述特征信息用于指示PPDU的格式为预设格式;发送所述PPDU。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第 一个符号的调制方式为QBPSK,且第一个符号包括特征信息。当接收到这种PPDU格式的PPDU时,可以通过目标长训练字段之后的第一个符号的相位以及特征信息,能够自动检测出PPDU的格式,并且,在读取到目标长训练字段之后的第一个符号时,即可检测出PPDU的格式,节省了检测PPDU格式的时间,提高了检测PPDU格式的效率。
在一种可能的实现中,所述特征信息承载在所述第一个符号的签名字段上,所述签名字段为所述第一个符号中位于预设位置的字段。
在一种可能的实现中,所述PPDU包括传统格式的短训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
在一种可能的实现中,所述目标长训练字段是传统格式的长训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载长训练序列的字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的精确同步时产生的影响。
第六方面,提供了一种信息接收方法,所述方法包括:
接收数据单元,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列;当所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,且所述第一个符号包括特征信息时,确定所述PPDU的格式为预设格式,所述特征信息用于指示所述PPDU的格式为所述预设格式。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK,且第一个符号包括特征信息。可以通过目标长训练字段之后的第一个符号的相位以及特征信息,能够自动检测出PPDU的格式,并且,在读取到目标长训练字段之后的第一个符号时,即可检测出PPDU的格式,节省了检测PPDU格式的时间,提高了检测PPDU格式的效率。
在一种可能的实现中,所述确定所述PPDU的格式为预设格式之前,所述方法还包括:从所述第一个符号中确定签名字段,所述签名字段为所述第一个符号中位于预设位置的字段;从所述签名字段中,获取所述特征信息。
在一种可能的实现中,所述PPDU包括传统格式的短训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
在一种可能的实现中,所述目标长训练字段是传统格式的长训练字段;
通过这种可选实施方式,达到的效果至少可以包括:通过将PPDU中承载长训练序列的字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
第七方面,提供了一种信息发送装置,用于执行上述各个方面或各个方面任意可能的实现方式中的信息发送方法。具体地,该装置包括用于执行上述各个方面或各个方面的任一种可能的实现方式中的信息发送方法的模块。
第八方面,提供了一种信息接收装置,用于执行上述各个方面或各个方面任意可能的实 现方式中的信息接收方法。具体地,该装置包括用于执行上述各个方面或各个方面的任一种可能的实现方式中的信息接收方法的模块。
第九方面,提供了一种信息发送装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以生成PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交;
所述处理器还用于控制所述收发器发送所述PPDU。
在一种可能的实现中,所述信息发送装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现中,如果带宽等于20MHz,所述目标长训练序列的表达式为下述任一项:
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
其中,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,
p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
在一种可能的实现中,如果带宽大于20MHz,所述目标长训练序列的表达式为下述任一项:
L k=[a 1L 64,a 2L 64,……a kL 64];
L 64=[p 32,p 32];
L 64=[p 32,-p 32];
L 64=[-p 32,p 32];
L 64=[-p 32,-p 32];
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
其中,L k表示目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
在一种可能的实现中,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
Figure PCTCN2020077485-appb-000009
其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
Figure PCTCN2020077485-appb-000010
表示目标长训练字段的有能量的子载波的数量,
Figure PCTCN2020077485-appb-000011
表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
Figure PCTCN2020077485-appb-000012
表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
在一种可能的实现中,所述PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK。
在一种可能的实现中,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽。
第十方面,提供了一种信息接收装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以控制所述收发器接收数 据单元;
所述处理器用于当所述数据单元中的长训练序列符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。
在一种可能的实现中,所述信息发送装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现中,所述处理器用于所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;当所述第一结果大于第一阈值时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
在一种可能的实现中,所述处理器用于所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果;当所述第一结果以及所述第二结果符合预设大小关系时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
在一种可能的实现中,所述预设大小关系为第一结果大于或等于第二结果;或者,
所述预设大小关系为第一结果大于第二结果与预设系数之间的乘积。
在一种可能的实现中,所述处理器用于获取所述数据单元的目标长训练字段的至少一个子载波的信干噪比,所述目标长训练字段中包括长训练序列;根据所述至少一个子载波的信干噪比,从所述至少一个子载波中选取目标子载波,所述目标子载波符合第二条件;
在一种可能的实现中,所述处理器用于根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关;根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关。
在一种可能的实现中,所述处理器用于根据所述目标子载波,获取第一序列,所述第一序列为所述长训练序列中通过所述目标子载波承载的序列;根据所述第一序列,获取第二序列,所述第二序列为所述目标长训练序列中位置与所述第一序列对应的序列;所述第一序列与所述第二序列进行互相关;
在一种可能的实现中,所述处理器用于根据所述第一序列,获取第三序列,所述第三序列为所述传统格式的长训练序列或高吞吐率的长训练序列中位置与所述第一序列对应的序列;所述第一序列与所述第三序列进行互相关。
第十一方面,提供了一种信息发送装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以生成PPDU,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列,所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述目标长训练字段之后的第二个符号符合第三条件;
所述处理器还用于控制所述收发器发送所述PPDU。
在一种可能的实现中,所述信息发送装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性存储器,例如只读存储器,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十二方面,提供了一种信息接收装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以控制所述收发器接收数据单元;
所述处理器还用于当所述数据单元的目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,且所述目标长训练字段之后的第二个符号符合第三条件时,确定所述PPDU的格式为预设格式,所述目标长训练字段中包括长训练序列;
其中,所述第三条件为:所述第二个符号与所述第一个符号相同;或者,
所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第二个符号采用的交织器与所述第一个符号采用的交织器不同;或者,
所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第一个符号经过了交织,且所述第二个符号未经过交织;或者,
所述第三条件为:所述第二个符号的调制方式为二进制相移键控BPSK。
所述处理器还用于控制所述收发器接收所述PPDU。
在一种可能的实现中,所述信息接收装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性存储器,例如只读存储器,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十三方面,提供了一种信息发送装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以生成PPDU,所述PPDU包括目标长训练字段,所述目标长训练字段包括所述PPDU的长训练序列,所述目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述第一个符号包括特征信息,所述特征信息用于指示PPDU的格式为预设格式;
所述处理器还用于控制所述收发器发送所述PPDU。
在一种可能的实现中,所述信息发送装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性存储器,例如只读存储器,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及 存储器与处理器的设置方式不做限定。
第十四方面,提供了一种信息接收装置,该装置包括:收发器和处理器;
处理器用于从存储器中调用并运行所述存储器中存储的指令,以控制所述收发器接收数据单元;
所述处理器还用于当所述数据单元的目标长训练字段之后的第一个符号的调制方式为QBPSK,且所述目标长训练字段之后的第二个符号符合第三条件时,确定所述PPDU的格式为预设格式,所述目标长训练字段中包括长训练序列;
在一种可能的实现中,所述信息接收装置,还包括存储器,所述存储器用于存储指令。
在一种可能的实现中,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性存储器,例如只读存储器,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实现中,所述特征信息承载在所述第一个符号的签名字段上,所述签名字段为所述第一个符号中位于预设位置的字段。
在一种可能的实现中,所述PPDU包括传统格式的短训练字段;
其中,所述第三条件为:所述第二个符号与所述第一个符号相同;或者,
所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第二个符号采用的交织器与所述第一个符号采用的交织器不同;或者,所述第三条件为:所述第二个符号的内容与所述第一个符号的内容相同,且所述第二个符号的调制方式与所述第一个符号的调制方式相同,且所述第一个符号经过了交织,且所述第二个符号未经过交织;或者,所述第三条件为:所述第二个符号的调制方式为二进制相移键控BPSK。
第十五方面,提供了一种信息传输系统,该系统包括用于实现上述各个方面或各个方面的任一种可能实现的方法的信息发送装置,以及用于实现上述各个方面或各个方面的任一种可能实现的方法的信息接收装置。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各个方面中的信息发送方法以及信息接收方法中的至少一项。
第十七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的信息发送方法以及信息接收方法中的至少一项的指令。
第十八方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的设备执行上述各个方面中的信息发送方法以及信息接收方法中的至少一项。
第十九方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各个方面中的信息发送方法以及信息接收方法中的至少一项。
附图说明
图1是本申请实施例提供的一种实施环境的架构图;
图2是本申请实施例提供的一种信息发送装置或信息接收装置的结构示意图;
图3是本申请实施例提供的一种信息传输示例的流程图;
图4是本申请实施例提供的一种PPDU的格式示意图;
图5是本申请实施例提供的一种PPDU的格式示意图;
图6是本申请实施例提供的一种目标长训练序列的示意图;
图7是本申请实施例提供的一种目标长训练序列的示意图;
图8是本申请实施例提供的一种信息传输示例的流程图;
图9是本申请实施例提供的一种PPDU的格式示意图;
图10是本申请实施例提供的一种PPDU的格式示意图;
图11是本申请实施例提供的一种信息传输示例的流程图;
图12是本申请实施例提供的一种PPDU的格式示意图;
图13是本申请实施例提供的一种PPDU的格式示意图;
图14是本申请实施例提供的一种信息发送装置的结构示意图;
图15是本申请实施例提供的一种信息接收装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例提供的一种实施环境的架构图,该实施环境可以包括一个或多个接入点(英文全称:access point,英文简称:AP)101以及一个或多个站点(英文全称:station,英文简称:STA)102,接入点101可以是下述实施例提供的信息发送装置或信息接收装置,站点102也可以是下述实施例提供的信息发送装置或信息接收装置。其中,该实施环境可以是无需考虑后向兼容的环境。在一个示例性场景中,该实施环境可以不存在传统设备,比如说,该实施环境是某个企业或园区内部;又比如说,该实施环境是独家别墅。在另一个示例性场景中,该实施环境中的每个设备的工作频段可以和传统设备不同。
图2是本申请实施例提供的一种信息发送装置或信息接收装置的结构示意图,该信息发送装置或信息接收装置200可因配置或性能不同而产生比较大的差异,可以包括处理器(英文全称:central processing units,英文简称:CPU)201和存储器202以及收发器203。该存储器202中存储有指令,处理器201用于从存储器202中调用并运行存储器202中存储的指令,以执行下述实施例提供的信息发送方法以及信息接收方法中的步骤301、步骤304、步骤801、步骤804、步骤1101、步骤1104中的任意一项,处理器还用于控制收发器203执行下述实施例中的步骤302、步骤303、步骤802、步骤803、步骤1102、步骤1103中的至少一项。处理器201、存储器202以及收发器203可以通过总线连接,能够通过总线进行通信。当然,该信息发送装置或信息接收装置200还可以包括其他用于实现设备功能的部件,在此不做赘述。
图3是本申请实施例提供的一种信息传输示例的流程图,该信息传输示例包括信息发送装置执行的信息发送方法以及信息接收装置执行的信息接收方法,如图3所示,该方法包括以下步骤301至步骤304:
301、信息发送装置生成PPDU。
参见图4,PPDU可以包括目标短训练字段、目标长训练字段、目标信令字段以及数据字段。目标短训练字段、目标长训练字段以及目标信令字段可以位于PPDU的头部,数据字段可以位于目标信令字段之后。在一种可能的实现中,目标短训练字段可以是PPDU的第一个字段,目标长训练字段可以是PPDU的第二个字段,目标信令字段可以是PPDU的第三个字段。图4中的M表示目标信令字段的符号数量,M为正整数。需要说明的是,本实施例提供的PPDU可以包括图4未示出的字段,在此不做赘述。
需要说明的一点是,为了与non-HT格式的PPDU的前导码部分区分描述,将本实施例提供的PPDU的前导码部分的每个字段冠以“目标”的前缀,将前导码部分中短训练序列所在的字段称为目标短训练字段,将前导码部分中长训练序列所在的字段称为目标长训练字段,将前导码部分传输速率和长度所在的字段称为目标信令字段。“目标”仅是一个用于区分描述的前缀,“目标”这个词可以替换为802.11ax之后的任一代WLAN标准中前导码部分中字段的前缀。例如,“目标”可以替换为极高吞吐率绿野(英文全称:extremely high throughput greenfield,英文简称:GF-EHT)、极高吞吐率(英文全称:extremely high throughput,英文简称:EHT)、极高吞吐率(英文全称:extremely throughput,英文简称:XT)、超高吞吐率(英文全称:ultra high throughput,英文简称:UHT)等。以“目标”替换为GF-EHT为例,目标短训练字段可以叫做GF-EHT STF,目标长训练字段可以叫做GF-EHT LTF,目标信令字段可以叫做GF-EHT SIG。又如,“目标”可以替换为传统格式的(英文全称:legacy,英文简称:L-)等,则目标短训练字段可以叫做L-STF,目标信令字段可以叫做L-SIG,当然,“目标”这个词可以根据具体的WLAN标准替换为其他词汇,在此不对可能的术语命名一一举例。
以“目标”替换为“GF-EHT”为例,参见图5,PPDU可以包括GF-EHT STF、GF-EHT LTF、GF-EHT SIG以及数据字段。其中,图5中的EHT-SIG-A0表示EHT-SIG中的第一个符号,EHT-SIG-A1-M表示EHT-SIG中的第二个符号至EHT-SIG中的第M个符号,M为正整数。图5中的GF-EHT LTF包括两部分,GF-EHT LTF的一部分位于GF-EHT SIG之前,用于在信道估计的基础上检测PPDU的格式,目标长训练序列在GF-EHT LTF的这一部分中。GF-EHT LTF的另一部分位于GF-EHT SIG之后,这另一部分包括N个符号,用于信道估计,N为正整数。
目标短训练字段:为短训练序列所在的字段。目标短训练字段可以包括两个符号,例如,目标短训练字段可以包括PPDU中的第1个符号以及第2个符号,其中,该符号可以是正交频分复用(英文全称:Quadrature frequency division multiplexing,英文简称:OFDM)符号。目标短训练字段的时长可以是8微秒(英文:microsecond,简称:μs)。目标短训练字段可以属于PPDU的前导码部分。目标短训练字段可以是PPDU的第一个字段。目标短训练字段可以用于供信息接收装置发现PPDU。具体来说,目标短训练字段的功能可以包括自动增益控制(英文全称:automatic gain control,英文简称:AGC)、分集选择、定时捕获和接收机粗略频率捕获等。
短训练序列:也称S k序列,k为序列的长度,k为正整数。短训练序列可以为传统格式的短训练字段(英文全称:legacy short training field,英文简称:L-STF)包括的短训练序列,即L-STF序列。信息发送装置可以预先存储该短训练序列,以便根据该短训练序列,生成目标短训练字段的信号,发送目标短训练字段的信号。短训练序列可以包括多个值,每个值可以是1、-1、0、(1+j)以及(-1-j)等。
如果带宽为20MHz,L-STF序列可以如下式(1)所示:
Figure PCTCN2020077485-appb-000013
如果带宽为40MHz或其他带宽,可以以上式(1)为基础进行相位旋转、搬移,得到其他带宽下的L-STF序列,在此不做赘述。
短训练序列的长度可以为64的整数倍。具体来说,如果带宽为20MHz,短训练序列的长度可以为64;如果带宽大于20MHz,短训练序列的长度可以为带宽与20MHz的比值。短训练序列的周期可以是0.8μs,短训练序列可以具有10个周期。
关于使用短训练序列生成信号的方式,在一种可能的实现中,可以将短训练序列承载在目标短训练字段的多个子载波上,得到频域信号;对频域信号进行逆傅里叶变换,得到时域信号;通过收发器发送时域信号。当然,使用短训练序列生成信号的过程可以包括相位旋转、插入保护间隔、使用窗函数进行加窗处理、施加循环位移等,在此不做赘述。
在一种可能的实现中,目标短训练字段的信号的公式可以为下式(2):
Figure PCTCN2020077485-appb-000014
其中,r EHT-GF-STF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,NSTS表示空时流个数,
Figure PCTCN2020077485-appb-000015
表示目标短训练字段的有能量的子载波的数量,
Figure PCTCN2020077485-appb-000016
表示目标短训练字段的窗函数,N SR表示目标短训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
Figure PCTCN2020077485-appb-000017
表示循环位移的时短,γ k表示相位旋转因子,P EHT-LTF表示目标短训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,Δ F表示目标短训练字段的子载波的间距。
目标长训练字段:目标长训练字段包括长训练序列。该长训练序列也称L k序列,k为序列长度,k为正整数。图3实施例中的长训练序列为目标长训练序列。目标长训练字段可以包括两个符号,例如,目标长训练字段可以包括PPDU中的第3个符号以及第4个符号。其中,该符号可以是OFDM符号。目标长训练字段的时长可以是8μs。目标长训练字段可以属于PPDU的前导码部分。目标长训练字段可以是PPDU的第二个字段。目标长训练字段可以称为GF-EHT-LTF。目标长训练字段可以用于供信息接收装置检测PPDU的格式。另外,目标长训练字段的功能还可以包括信道估计和接收机精确频率捕获等,在此不做赘述。
目标长训练序列:目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交。信息发送装置可以预先存储该目标长训练序列,以便根据该目标长训练序列,生成目标长训练字段的信号,发送目标长训练字段的信号。目标长训练序列可以包括多个值,每个值可以是1、-1或0。目标长训练序列的长度可以为64的整数倍,该目标长训练序列的长度可以指目标长训练序列中值的数量。具体来说,如果带宽为20MHz,目标长训练序列的长度可以为64;如果带宽大于20MHz,目标长训练序列的长度可以为64*(带宽/20MHz),“*”表 示乘积,“/”表示除运算。目标长训练序列的周期可以是3.2μs,目标长训练序列可以具有2个周期。
传统格式的长训练序列可以为传统格式的长训练字段(英文全称:legacy long training field,英文简称:L-LTF)包括的长训练序列,即L-LTF序列。传统格式的长训练序列可以包括多个值,每个值可以是1、-1或0。传统格式的长训练序列的长度可以为64的整数倍,该传统格式的长训练序列的长度可以指传统格式的长训练序列中值的数量。
如果带宽等于20MHz,传统格式的长训练序列的表达式可以为下式(3):
Figure PCTCN2020077485-appb-000018
其中,L-LTF 64表示传统格式的长训练序列,其长度为64。
需要说明的一点是,上式(3)是以带宽为20MHz的情况为例进行举例说明的,如果带宽的大小不是20MHz,可以以上式(3)为基础,根据带宽的大小,对上式(3)进行搬移,得到其他带宽下的传统格式的长训练序列。另外,可以根据需求,对上式(3)进行补空,将补空后的序列作为传统格式的长训练序列。
高吞吐率的长训练序列可以为高吞吐率的长训练字段(英文全称:high throughput long training field,英文简称:HT-LTF)包括的长训练序列,即HT-LTF1序列。高吞吐率的长训练序列可以包括多个值,每个值可以是1、-1或0。高吞吐率的长训练序列的长度可以为64的整数倍,该高吞吐率的长训练序列的长度可以指高吞吐率的长训练序列中值的数量。
如果带宽等于20MHz,高吞吐率的长训练序列的表达式可以为下式(4):
Figure PCTCN2020077485-appb-000019
其中,HT-LTF 64表示高吞吐率的长训练序列,其长度为64。
需要说明的一点是,上式(4)是以带宽为20MHz的情况为例进行举例说明的,如果带宽的大小不是20MHz,可以以上式(4)为基础,根据带宽的大小,对上式(4)进行搬移,得到其他带宽下的高吞吐率的长训练序列。另外,可以根据需求,对上式(4)进行补空,将补空后的序列作为高吞吐率的长训练序列。
需要说明的一点是,目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交可以指目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列严格正交,也可以指目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列准正交。目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列严格正交是指目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列的互相关结果为0。目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列准正交是指目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列的互相关结果小于预设门限,该预设门限可以是趋近于0的数值,举例来说,该预设门限可以是0.1。
在一种可能的实现中,目标长训练序列可以通过至少两个P 32序列拼接得到。具体来讲,目标长训练序列可以为至少两个P 32序列的线性组合,每个P 32序列的系数可以为1或-1。目标长训练序列中P 32序列的数量可以根据PPDU的带宽确定。例如,如果带宽为20MHz,目标长训练序列可以为2个P 32序列的线性组合;如果带宽为(20*N)MHz,目标长训练序列可以为(2*N)个P 32序列的线性组合。其中,N为大于1的正整数。
P 32序列可以与传统格式的长训练序列或高吞吐率的长训练序列的上半部分正交,并且,P 32序列可以与传统格式的长训练序列或高吞吐率的长训练序列的下半部分正交。P 32序列的长度为32,即包括32个值。P 32序列的表达式可以为下式(5)。
p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0];(5)
其中,P 32序列中的每个值可以对应一个序号,序号用于标识对应的值。举例来说,P 32(M)可以表示P 32序列中序号为M的值,P 32(M:N)可以表示P 32序列中序号为M的值至序号为N的值,其中,M和N为整数,且M小于N。示例性地,P 32序列中每个值的序号可以依次为-16,-15,…,0,1,2,…,15,在这个例子中,P 32序列中左数第一个值的序号可以为-16,P 32序列左数第二个值的序号可以为-15,P 32序列左数第三个值的序号可以为-14,依次类推,P 32序列中间的值的序号可以为0,P 32序列中间的值的右边的第一个值的序号可以为1,P 32序列中间的值的右边的第一个值的序号可以为1,P 32序列中右数第一个值的序号可以为-16。
可选地,目标长训练序列中一个或多个P 32序列中的一个或多个位置可以经过了补空。该补空是指将P 32序列中为0的值替换为1或-1。
在一种可能的实现中,目标长训练序列中P 32序列的中间位置可以经过了补空。该中间位置可以记为P 32(0)。示例性地,如果目标长训练序列为2个P 32序列的线性组合,采用1对P 32序列的中间位置补空,目标长训练序列的表达式可以如图6所示。在图6中,位置1以及位置2为经过了补空的位置。
通过对P 32序列的中间位置补空,达到的效果至少可以包括:P 32序列的中间位置原本为1MHz带宽下直流分量对应的位置,P 32序列的中间位置原本置为0是为了去掉频谱中的直流分量。而构建目标长训练序列时,直流分量对应的位置已经从P 32序列的中间位置切换为其他位置,例如在图6中,直流分量对应的位置已经从位置1和位置2切换为位置3,而在直流分量对应的位置已经切换后,如果P 32序列的中间位置仍然置为0,会造成频谱资源的浪费。通过对P 32序列的中间位置补空,可以利用P 32序列的中间位置的子载波,从而节约频谱资源。例如,在图6中,通过将位置1和位置2对应的值从0置为1,从而对位置1和位置2进行补空,可以将位置1和位置2对应的两个子载波利用起来,从而节约两个子载波的频谱资源。
在一种可能的实现中,目标长训练序列中P 32序列的边缘位置可以经过了补空。该边缘位置可以为P 32(-15)、P 32(-14)、P 32(14)、P 32(15)中的任意一项或多项的组合。示例性地,如果目标长训练序列为2个P 32序列的线性组合,采用-1对P 32(14)以及P 32(-14)补空,采用1对P 32(15)以及P 32(-15)补空,目标长训练序列的表达式可以如图7所示,图7中的位置4为经过了补空的P 32(14),图7中的位置5为经过了补空的P 32(-14),图7中的位置6为经过了补空的P 32(15),图7中的位置7为经过了补空的P 32(-15)。
通过对P 32序列的边缘位置补空,达到的效果至少可以包括:P 32序列的边缘位置原本为1MHz带宽下边缘子载波对应的位置,P 32序列的边缘位置原本置为0是为了避免临带干扰。而构建目标长训练序列时,P 32序列的部分边缘位置已经从边缘子载波对应的位置切换为目标长训练序列中间位置左右的位置,例如在图7中,对于位置4和位置6来说,这两个位置原本是P 32序列中右侧边缘的两个位置,而构建目标长训练序列时,这两个位置切换为目标长训练序列的中间位置左边的两个位置;对于位置7和位置5来说,这两个位置原本是P 32序列中左侧边缘的两个位置,而构建目标长训练序列时,这两个位置切换为目标长训练序列的中间 位置右边的两个位置;那么,如果P 32序列的边缘位置仍然置为0,会造成频谱的浪费。而通过对P 32序列的边缘位置补空,可以利用P 32序列的边缘位置的子载波,从而节约频谱资源。例如在图7中,通过将位置4、位置5和位置7对应的值从0置为-1,将位置6对应的值从0置为1,从而对位置4、位置5、位置6和位置7进行补空,可以将位置4、位置5、位置6和位置7对应的四个子载波利用起来,从而节约四个子载波的频谱资源。
在一种可能的实现中,如果带宽等于20MHz,目标长训练序列的表达式可以为下式(6)至(18)中的任一项:
L 64=[p 32,p 32];(6)
L 64=[p 32,-p 32];(7)
L 64=[-p 32,p 32];(8)
L 64=[-p 32,-p 32];(9)
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];(10)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];(11)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];(12)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];(13)
L 64=[p 32(-16,-1),x1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),x2,p 32(1,15)];(14)
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];(15)
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];(16)
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];(17)
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];(18)
其中,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
需要说明的一点是,-p 32表示对p 32序列中的每一个值进行取反。例如,对于p 32序列中序号为M的值来说,如果p 32(M)为1,则-p 32(M)为-1;如果p 32(M)为-1,则-p 32(M)为1;如果p 32(M)为0,则-p 32(M)为0。其中,M为整数,M的最小值可以是-16,M的最大值可以是15。
需要说明的一点是,上式(6)至(18)是以带宽为20MHz的情况为例进行举例说明的,如果带宽的大小不是20MHz,可以以上式(6)至(18)为基础,根据带宽的大小,对上式(6)至(18)进行搬移,得到其他带宽下的目标长训练序列。另外,可以根据需求,对上式(6)至(18)进行补空,将补空后的序列作为目标长训练序列。
在一种可能的实现中,如果带宽大于20MHz,目标长训练序列的表达式可以为下式(19):
L k=[a 1L 64,a 2L 64,……a kL 64];(19)
L 64=[p 32,p 32];(6)
L 64=[p 32,-p 32];(7)
L 64=[-p 32,p 32];(8)
L 64=[-p 32,-p 32];(9)
L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];(10)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];(11)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];(12)
L 64=[p 32(-16,-1),x1,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];(13)
L 64=[p 32(-16,-1),x1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),x2,p 32(1,15)];(14)
L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];(15)
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];(16)
L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];(17)
L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];(18)
其中,L k表示目标长训练序列,k表示目标长训练序列的长度,k为PPDU的带宽与20MHz的比值,k为大于或等于3的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0]。
关于使用目标长训练序列生成信号的方式,在一种可能的实现中,可以将目标长训练序列承载在目标长训练字段的多个子载波上,得到频域信号;对频域信号进行逆傅里叶变换,得到时域信号;通过收发器发送时域信号。
具体来说,对于目标长训练序列中的每个值,可以将该值承载在一个子载波上。例如,可以将目标长训练序列中序号为k的值承载在序号为k的子载波上,该k为整数。其中,如果目标长训练序列中的任一值为0,则将值承载在子载波上后,该子载波为空子载波。
举例来说,目标长训练序列的表达式可以为L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)],该目标长训练序列可以通过64个子载波承载。以这64个子载波的序号分别为-32至31为例,可以将p 32序列中序号为-16的值至序号为-1的值分别承载在序号为-32的子载波至序号为-15的子载波上,将x1承载在序号为-14的子载波上,将p 32序列中序号为1的值至序号为13的值分别承载在序号为-13的子载波至序号为-1的子载波上,将0承载在序号为0的子载波上,将-1承载在序号为1的子载波上,将-1承载在序号为2的子载波上,将p 32序列中序号为-13的值至序号为-1的值分别承载在序号为3的子载波至序号为15的子载波上,将x2承载在序号为16的子载波上,将p 32序列中序号为1的值至序号为15的值分别承载在序号为17的子载波至序号为31的子载波上。
当然,使用目标长训练序列生成信号的过程可以包括相位旋转、插入保护间隔、使用窗函数进行加窗处理、施加循环位移等,在此不做赘述。
在一种可能的实现中,目标长训练字段的信号的公式可以为下式(20):
Figure PCTCN2020077485-appb-000020
其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,NSTS表示空时流个数,
Figure PCTCN2020077485-appb-000021
表示目标长训练字段的有能量的子载波的数量,
Figure PCTCN2020077485-appb-000022
表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
Figure PCTCN2020077485-appb-000023
表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,Δ F表示目标长训练字段的子载波的间距。
在一种可能的实现中,PPDU中目标长训练字段之后的第一个符号的调制方式可以为正交二进制相移键控(英文全称:Quadrature binary phase shift keying,英文简称:QBPSK)。QBPSK相对于BPSK来说具有90度的相位旋转。具体来说,QBPSK和BPSK的调制阶数相同;对于BPSK来说,BPSK的星座图包括两个星座点,这两个星座点均位于I轴上,一个位于I轴的负半轴,表示0,另一个位于I轴的正半轴,表示1;对于QBPSK来说,QBPSK的星座图包括两个星座点,这两个星座点均位于Q轴上,一个位于Q轴的负半轴,表示0,另一个位于Q轴的正半轴,表示1;因此,QBPSK的星座图可以视为对BPSK的星座图经过90度旋转后得到的星座图。
通过将第一个符号的调制方式设计为QBPSK,达到的效果至少可以包括:在通过目标长训练序列将PPDU的格式与其他PPDU格式区别开来的基础上,通过将第一个符号的调制方式设计为QBPSK,可以扩大PPDU的格式与其他PPDU格式的区别性,使得信息接收装置可以根据目标长训练字段之后的第一个符号的调制方式是否为QBPSK,进一步确定PPDU的格式,从而帮助信息接收装置检测PPDU的格式,提高信息接收装置检测PPDU格式的准确性。
可选地,PPDU中目标信令字段的信息带宽大于20MHz,信息带宽是指承载信息编码的基本带宽。在生成目标信令字段的过程中,可以将信息带宽作为基本信息单位,每个信息带宽独立编码。如果PPDU的带宽大于信息带宽,则在不同的频率上,以信息带宽为单位,对信息进行复制传输。
通过将目标信令字段的信息带宽设计为大于20MHz,达到的效果至少可以包括:传统格式的信令字段(英文全称:legacy signal field,英文简称:L-SIG)、非常高吞吐率的信令字段A(英文全称:very high throughput signal field A,英文简称:VHT-SIGA)、高效信令字段A(英文全称:high efficient signal field A,英文简称:HE-SIGA)的信息带宽都等于20MHz,那么,在发送这几种信令字段的信息时,单个符号承载的信息较少,需要占用的符号数量较多,因此传输这几种信令字段的信息的效率较低。而本实施例中,通过将目标信令字段的信息带宽从20MHz扩大至大于20MHz,使得单个符号承载的信息可以成倍的增加,因此发送目标信令字段的信息时,需要占用的符号数量可以成倍的减少,从而极大地提高了传输目标信令字段的信息的效率。例如,如果目标信令字段的信息带宽为40MHz,则单个符号承载的 信息可以增加一倍,那么发送目标信令字段的信息时,需要占用的符号数量可以减少一倍。
302、信息发送装置发送PPDU。
303、信息接收装置接收数据单元。
信息接收装置可以接收数据单元的目标短训练字段,根据数据单元的目标短训练字段,发现数据单元。其中,信息接收装置接收目标短训练字段的方式可以和接收传统格式的短训练字段的方式相同。例如,信息接收装置可以存储接收传统格式的短训练字段时使用的自相关算法和/或互相关算法,使用该自相关算法和/或互相关算法,接收目标短训练字段。另外,信息接收装置可以接收数据单元的目标长训练字段,从数据单元的目标长训练字段中,获取长训练序列,以便根据该长训练序列执行下述步骤。
304、当数据单元中的长训练序列符合第一条件时,信息接收装置确定数据单元为预设格式的PPDU。
第一条件用于判断长训练序列是否为预设格式的PPDU中的目标长训练序列,信息接收装置可以判断数据单元中的长训练序列是否符合第一条件,当数据单元中的长训练序列符合第一条件时,确定数据单元为预设格式的PPDU。作为示例,步骤304可以包括下述实现方式一至实现方式二中的任意一项。
实现方式一、信息接收装置数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,信息接收装置可以判断第一结果是否大于第一阈值;当第一结果大于第一阈值时,表明第一结果足够大,即接收到的数据单元中的长训练序列与目标长训练序列的相关度足够高,因此接收到的数据单元中的长训练序列是目标长训练序列的概率足够高,则信息接收装置确定数据单元为预设格式的PPDU。
其中,在实现方式一中,第一条件为第一结果大于第一阈值。第一阈值可以预先存储在信息接收装置中,例如,如果第一结果归一化为0至1之间的数值,则第一阈值可以为0.9、0.99等。
实现方式二、可以包括下述(2.1)至(2.3):
(2.1)信息接收装置数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果。
信息接收装置可以预先存储该预存的目标长训练序列,当接收到数据单元时,信息接收装置可以从本地读取预存的目标长训练序列,以便使用预存的目标长训练序列执行(2.1)。
第一结果是指接收到的数据单元中的长训练序列与目标长训练序列进行互相关后得到的结果。互相关可以校验两个序列之间的相关程度,因此第一结果越大,表明该长训练序列与目标长训练序列的相关度越高,也即是,该长训练序列与目标长训练序列的正交性越强,因此该长训练序列是目标长训练序列的概率越高,那么数据单元是预设格式的PPDU的概率越高。
(2.2)信息接收装置数据单元中的长训练序列与传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果。
传统格式的长训练序列或高吞吐率的长训练序列可以预先存储在信息接收装置中。当接收到数据单元时,信息接收装置可以从本地读取该传统格式的长训练序列或高吞吐率的长训练序列,以便使用传统格式的长训练序列或高吞吐率的长训练序列执行(2.2)。
第二结果是指接收到的数据单元中的长训练序列与传统格式的长训练序列或高吞吐率的 长训练序列进行互相关后得到的结果。第二结果越小,表明长训练序列与传统格式的长训练序列或高吞吐率的长训练序列的相关度越低,也即是,该长训练序列与目标长训练序列的正交性越弱,因此该长训练序列是目标长训练序列的概率越高,那么数据单元是预设格式的PPDU的概率越高。
在一种可能的实现中,(2.1)以及(2.2)具体可以包括下述步骤一至步骤四:
步骤一、信息接收装置获取目标长训练字段的至少一个子载波的信干噪比。
信干噪比即信号与干扰加噪声比(英文全称:signal to interference plus noise ratio,英文简称:SINR)。信干噪比为以有用信号的强度为被除数,以干扰信号与噪声信号的强度的和值为除数,对该被除数与该除数相除后得到的商。其中,目标长训练字段可以包括两个符号,每个符号可以包括多个子载波,信息接收装置可以获取两个符号中每个符号的每个子载波的信干噪比,作为下述步骤二中使用的信干噪比。
步骤二、信息接收装置根据至少一个子载波的信干噪比,从至少一个子载波中选取目标子载波。
目标子载波为符合第二条件的子载波。对于至少一个子载波中的每个子载波,信息接收装置可以判断该子载波的信干噪比是否符合第二条件,当该子载波的信干噪比符合第二条件时,将该子载波选取为目标子载波。
第二条件可以包括下述条件(1)至条件(2)中的任一项:
条件(1)信干噪比大于信干噪比阈值。
在第二条件为条件(1)的情况下,对于至少一个子载波中的每个子载波,信息接收装置可以判断该子载波的信干噪比是否大于信干噪比阈值,当子载波的信干噪比大于信干噪比阈值时,将该子载波选取为目标子载波。其中,信干噪比阈值可以预先存储在信息接收装置中,信干噪比阈值的具体数值可以根据需求设置,本实施例对此不做限定。
条件(2)信干噪比排在前预设位数。
在第二条件为条件(2)的情况下,信息接收装置可以根据每个子载波的信干噪比,对至少一个子载波按照信干噪比从大到小的顺序排序,选取排在前预设位数的子载波,作为目标子载波。其中,该预设位数可以预先存储在信息接收装置中,预设位数可以为正整数,预设位数的具体数值可以根据需求设置,本实施例对此不做限定。
当选取目标子载波后,信息接收装置可以根据目标子载波,获取第一序列。第一序列为长训练序列中通过目标子载波承载的序列。在一种可能的实现中,如果目标子载波为M个子载波,对于M个子载波中的每个子载波,信息接收装置可以获取该子载波承载的值,得到M个值,信息接收装置可以将该M个值作为第一序列。其中,M个值和M个子载波一一对应,M为正整数。
在一个示例性场景中,如果目标长训练字段的子载波为64个子载波,这64个子载波是序号为-32的子载波至序号为31的子载波,而目标子载波为这64个子载波中的40个子载波,这40个子载波是序号为-20的子载波至序号为19的子载波。在这种场景中,信息接收装置可以获取序号为-20的子载波承载的值、序号为-19的子载波承载的值直至序号为-19的子载波承载的值,得到40个值,将这40个值作为第一序列。
步骤三、信息接收装置根据目标子载波,长训练序列与目标长训练序列进行互相关,得到第一结果。
在一种可能的实现中,步骤三可以包括下述步骤3.1至步骤3.2:
步骤3.1信息接收装置根据第一序列,获取第二序列。
第二序列为目标长训练序列中位置与第一序列对应的序列。示例性地,如果接收到的数据单元中的长训练序列记为Lx,目标长训练序列记为L 1,根据目标子载波获取的第一序列为Lx(k1,k2),则第二序列可以为L 1(k1,k2)。其中,Lx(k1,k2)表示Lx中序号为k1的值至Lx中序号为k2的值,L 1(k1,k2)表示L 1中序号为k1的值至L 1中序号为k2的值,k1为整数,k2为整数。
例如,如果第一序列为Lx(-20,19),可以获取目标长训练序列中序号为-20的值至19的值,得到L 1(-20)、L 1(-19)、L 1(-18)至L 1(19),即L 1(-20,19),可以将L 1(-20,19)作为第二序列。
步骤3.2信息接收装置第一序列与第二序列进行互相关,得到第一结果。
步骤四、信息接收装置根据目标子载波,长训练序列与传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果。
在一种可能的实现中,步骤四可以包括下述步骤4.1至步骤4.2:
步骤4.1信息接收装置根据第一序列,获取第三序列。
第三序列为传统格式的长训练序列或高吞吐率的长训练序列中位置与第一序列对应的序列。示例性地,如果接收到的数据单元中的长训练序列记为Lx,传统格式的长训练序列或高吞吐率的长训练序列记为L 2,根据目标子载波获取的第一序列为Lx(k1,k2),则第二序列可以为L 2(k1,k2)。其中,Lx(k1,k2)表示Lx中序号为k1的值到Lx中序号为k2的值,L 2(k1,k2)表示L 2中序号为k1的值至L 2中序号为k2的值,k1为整数,k2为整数。
例如,如果第一序列为Lx(-20,19),可以获取传统格式的长训练序列或高吞吐率的长训练序列中序号为-20的值至19的值,得到L 2(-20)、L 2(-19)、L 2(-18)至L 2(19),即L 2(-20,19),可以将L 2(-20,19)作为第三序列。
步骤4.2信息接收装置第一序列与第三序列进行互相关,得到第二结果。
(2.3)当第一结果以及第二结果符合预设大小关系时,信息接收装置确定数据单元为预设格式的PPDU。
信息接收装置可以根据第一结果以及第二结果,判断第一结果以及第二结果是否符合第一条件,当第一结果以及第二结果符合预设大小关系时,信息接收装置可以确定数据单元为预设格式的PPDU。第一结果以及第二结果不符合第一条件时,信息接收装置可以确定PPDU的格式不为预设格式。
在一种可能的实现中,该预设大小关系可以为第一结果大于或等于第二结果,信息接收装置可以判断第一结果是否大于第二结果,当第一结果大于第二结果时,信息接收装置可以确定数据单元为预设格式的PPDU。当第一结果不大于第二结果时,信息接收装置可以确定PPDU的格式不为预设格式。
在另一种可能的实现中,该预设大小关系可以为第一结果大于第二结果与预设系数之间的乘积,信息接收装置可以获取第二结果与预设系数的乘积,判断第一结果是否大于该乘积,当第一结果大于乘积时,信息接收装置确定数据单元为预设格式的PPDU。当第一结果不大于乘积时,信息接收装置可以确定PPDU的格式不为预设格式。其中,该预设系数可以根据需求设置,例如可以为接近于1的数值,本实施例对预设系数的具体取值不做限定。
预设格式可以为高吞吐率的PPDU格式。在一种可能的实现中,该预设格式可以为802.11ax的下一代标准提供的PPDU格式。该预设格式可以称为极高吞吐率(英文全称:extremely high throughput,英文简称:EHT)格式。当然,该预设格式具有EHT格式以外的其他名称。例如,该预设格式也可以称为极高吞吐率(英文全称:extremely throughput,英文简称:XT)、超高吞吐率(英文全称:ultra high throughput,英文简称:UHT)等。该预设格式可以称为绿野(英文全称:green field,英文简称:GF)格式,该绿野格式是指以高吞吐率的前导码开头的PPDU格式。
需要说明的一点是,信息接收装置可以先执行(2.1),再执行(2.2);信息接收装置也可以先执行(2.2)再执行(2.1);信息接收装置也可以并行地执行(2.1)以及(2.2),本实施例对(2.1)以及(2.2)的时序不做限定。
当信息接收装置确定数据单元为预设格式的PPDU以后,信息接收装置即可按照预设格式对应的WLAN标准,对PPDU进行进一步处理,从而满足该WLAN标准对应的信息传输需求。其中,该预设格式对应的WLAN标准可以包括解析方式、接收速率等,信息接收装置可以按照该解析方式,解析PPDU的数据字段,另外,信息接收装置可以按照该接收速率,接收数据单元的目标长训练字段之后的部分,本实施例对信息接收装置确定PPDU的格式以后的处理流程不做限定。
可选地,上述步骤304的步骤可以替换为:当所述数据单元符合所述第一条件,且所述数据单元的目标长训练字段之后的第一个符号的调制方式为QBPSK时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述目标长训练字段中包括长训练序列。具体来讲,信息接收装置可以读取目标长训练字段之后的第一个符号,判断第一个符号的调制方式是否为QBPSK。当数据单元符合所述第一条件且第一个符号的调制方式为QBPSK时,信息接收装置确定数据单元为预设格式的PPDU。当数据单元不符合所述第一条件或第一个符号的调制方式不为QBPSK时,信息接收装置确定PPDU的格式不为预设格式。其中,信息接收装置可以先判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK,当第一个符号的调制方式为QBPSK时,再判断数据单元是否符合第一条件。信息接收装置也可以先判断数据单元是否符合第一条件,当判断数据单元是否符合第一条件时,再判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK。信息接收装置也可以并行地判断数据单元是否符合第一条件、判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK,本实施例对两种判断步骤的时间顺序步骤不做限定。另外,这种替换方式与步骤304为两种并列的方式,本实施例对执行这种替换方式,还是执行步骤304不做限定。
可选地,当数据单元符合所述第一条件时,如果信息接收装置确定目标长训练字段之后的第一个符号的调制方式不为QBPSK时,信息接收装置可以停止接收数据单元,或者,信息接收装置可以确定PPDU的格式是预设格式以外的其他格式,继续判断PPDU的格式是预设格式以外的哪一种格式。在一种可能的实现中,当信息接收装置确定PPDU的格式不为预设格式时,信息接收装置确定PPDU的格式的过程可以包括:信息接收装置读取目标长训练字段之后的第一个符号,判断第一个符号的调制方式是否为QBPSK,当第一个符号的调制方式为QBPSK时,则信息接收装置确定PPDU的格式为高吞吐率绿野(英文全称:high throughput greenfield,英文简写:HT-GF)格式;当第一个符号的调制方式不为QBPSK时,则信息接收装置确定PPDU的格式不是HT-GF格式,则信息接收装置继续判断目标长训练字 段之后的第二个符号和第一个符号是否相同,并判断目标信令字段中的长度字段是否被3整除;当第二个符号和第一个符号相同,且长度字段不被3整除时,则信息接收装置确定PPDU的格式为高效(英文全称:high efficient,英文简写:HE)格式;另外,当第二个符号和第一个符号不同时,信息接收装置确定PPDU的格式不是HE格式,或者,当第二个符号和第一个符号相同,且长度字段被3整除时,信息接收装置确定PPDU的格式不是HE格式,则信息接收装置继续判断PPDU的格式为高吞吐率混合(英文全称:high throughput mixed,英文简写:HT-MF)格式、非常高吞吐率(英文全称:very high throughput,英文简写:VHT)格式还是非-高吞吐率(英文全称:non-high throughput,英文简写:Non-HT)格式;信息接收装置判断第二个符号的调制方式是否为QBPSK或者BPSK,当第二个符号的调制方式为QBPSK时,则信息接收装置确定PPDU的格式为HT-MF格式;当第二个符号的调制符号的调制方式为BPSK,且第三个符号的调制方式为QBPSK时,则信息接收装置确定PPDU的格式为VHT格式;当信息接收装置执行上述流程,确定PPDU的格式不为HT-GF格式、HE格式、HT-MF格式、VHT格式中的任一项时,则信息接收装置确定PPDU的格式为Non-HT格式。
需要说明的一点是,本实施例可以应用于接入点与接入点进行通信的场景,上述步骤301至步骤304中的信息发送装置和信息接收装置可以为接入点;本实施例也可以应用于站点与站点进行通信的场景,上述步骤301至步骤304中的信息发送装置和信息接收装置可以为站点;本实施例也可以应用于接入点与站点进行通信的场景,上述步骤301至步骤304中的信息发送装置可以为接入点,信息接收装置可以为站点,或者,上述步骤301至步骤304中的信息发送装置可以为站点,信息接收装置可以为接入点。当然,信息发送装置也可以是WLAN中的其他逻辑功能实体,信息接收装置也可以是WLAN中的其他逻辑功能实体,本实施例对信息发送装置和信息接收装置的具体形态不做限定。
本实施例提供的方法,提供了一种新的PPDU格式,这种新格式的PPDU中的长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。当接收到这种格式的PPDU时,能够通过这种长训练序列,能够自动检测出PPDU的格式,以便按照该PPDU的格式对应的WLAN标准,对PPDU进行进一步处理。并且,在读取到目标长训练字段时,即可检测出PPDU的格式,相对于通过读取信令字段来检测PPDU的格式的方法来说,节约了检测PPDU格式的时间,提高检测PPDU格式的效率,可以尽早的完成检测。并且,通过这种新的长训练序列,本实施例提供的PPDU格式能够与以往的每一代WLAN标准的PPDU格式区分开来,保证识别该PPDU格式的精确性,避免将该PPDU格式与以往的WLAN标准的PPDU的格式混淆,从而满足了下一代WLAN标准的信息传输需求。
在一种可能的实现中,可以通过相位旋转以及额外特征的方式,提供一种新的PPDU格式,同时实现自动检测PPDU格式的功能,以下通过图8实施例进行详细描述。需要说明的是,图8实施例着重描述与图3实施例的区别之处,而与图3同理的内容还请参见图3实施例,在图8实施例中不做赘述。
图8是本申请实施例提供的一种信息传输示例的流程图,该信息传输示例包括信息发送装置执行的信息发送方法以及信息接收装置执行的信息接收方法,如图8所示,该方法包括以下步骤801至804:
801、信息发送装置生成PPDU。
PPDU可以包括目标短训练字段以及目标长训练字段,PPDU的目标长训练字段之后至少具有两个符号。参见图9,其示出了PPDU的格式示意图,图9的省略号表示虽未示出而PPDU包括的其他符号,本实施例对省略号表示的具体符号不做限定。
在一种可能的实现中,参见图10,图8实施例中的目标短训练字段可以是传统格式的短训练字段,图8实施例中的目标长训练字段可以是传统格式的长训练字段,目标长训练字段之后的字段可以是极高吞吐率信令字段,目标长训练字段之后的第一个符号可以是极高吞吐率信令字段的第一个符号,目标长训练字段之后的第二个符号可以是极高吞吐率信令字段的第二个符号,图10中的M表示极高吞吐率信令字段的符号数量,M为正整数。
通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。通过将PPDU中承载长训练序列的字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
当然,图8实施例中的目标短训练字段也可以是802.11ax之后的任一代WLAN标准中用于承载短训练序列的字段,图8实施例中的目标长训练字段也可以是802.11ax之后的任一代WLAN标准中用于承载长训练序列的字段,图8实施例对目标短训练字段的格式以及目标长训练字段的格式均不做限定。
目标长训练字段之后的第一个符号:目标长训练字段之后的第一个符号的调制方式可以为QBPSK。目标长训练字段之后的第一个符号可以是PPDU的第5个OFDM符号。目标长训练字段之后的第一个符号的时长可以是4us。目标长训练字段之后的第一个符号可以为目标信令字段的第一个符号。目标长训练字段之后的第一个符号可以记为EHT-SIG-A0,EHT表示预设格式,SIG表示目标信令字段,A表示符号,A0表示第一个符号。
目标长训练字段之后的第二个符号:目标长训练字段之后的第二个符号符合第三条件。目标长训练字段之后的第二个符号可以是PPDU的第6个OFDM符号。目标长训练字段之后的第二个符号的时长可以是4μs。目标长训练字段之后的第二个符号可以为目标信令字段的第二个符号。目标长训练字段之后的第一个符号可以记为EHT-SIG-A1,EHT表示预设格式,SIG表示目标信令字段,A表示符号,A1表示第二个符号。
第三条件可以为下述第三条件(1)至第三条件(4)中的任意一项:
第三条件(1):第二个符号与第一个符号相同。
在第三条件(1)中,第二个符号可以与第一个符号完全相同,也即是,第二个符号的每个维度的特征可以和第一个符号的每个维度的特征均相同。以符号的特征的维度是内容、调制方式、交织器为例,第二个符号的内容可以与第一个符号的内容相同,第二个符号的调制方式可以与第一个符号的调制方式相同,第二个符号采用的交织器与第一个符号采用的交织器相同,当然,符号还可以具有其他维度的特征,在此不做一一赘述。
第三条件(2):第二个符号的内容与第一个符号的内容相同,且第二个符号的调制方式与第一个符号的调制方式相同,且第二个符号采用的交织器与第一个符号采用的交织器不同。
在第三条件(2)中,第一个符号可以采用第一交织器交织,第二个符号可以采用第二交织器交织,第一交织器可以是任意交织器,第二交织器与第一交织器不同。第二个符号的调制方式是QBPSK。另外,对于内容、调制方式、交织器以外的其他维度的特征来说,第二个符号的其他维度的特征和第一个符号的其他维度的特征可以设计为一个或多个相同或一个或 多个不同,具体可以根据需求设计,本实施例对第二个符号的其他维度的特征和第一个符号的其他维度的特征不做限定。
第三条件(3):第二个符号的内容与第一个符号的内容相同,且第二个符号的调制方式与第一个符号的调制方式相同,且第一个符号经过了交织,且第二个符号未经过交织。
在第三条件(3)中,第二个符号的调制方式是QBPSK。另外,对于内容、调制方式、是否交织以外的其他维度的特征来说,第二个符号的其他维度的特征和第一个符号的其他维度的特征可以设计为一个或多个相同或一个或多个不同,具体可以根据需求设计,本实施例对第二个符号的其他维度的特征和第一个符号的其他维度的特征不做限定。
第三条件(4):第二个符号的调制方式为BPSK。
另外,对于调制方式以外的其他维度的特征来说,第二个符号的其他维度的特征和第一个符号的其他维度的特征可以设计为一个或多个相同或一个或多个不同,具体可以根据需求设计,本实施例对第二个符号的其他维度的特征和第一个符号的其他维度的特征不做限定。
802、信息发送装置发送PPDU。
803、信息接收装置接收数据单元。
804、当目标长训练字段之后的第一个符号的调制方式为QBPSK,且目标长训练字段之后的第二个符号符合第三条件时,信息接收装置确定数据单元为预设格式的PPDU。
在一种可能的实现中,信息接收装置可以读取目标长训练字段之后的第一个符号以及目标长训练字段之后的第二个符号,判断第一个符号的调制方式是否为QBPSK、判断第二个符号是否符合第三条件,当第一个符号的调制方式为QBPSK,且第二个符号符合第三条件时,信息接收装置确定数据单元为预设格式的PPDU。另外,当目标长训练字段之后的第一个符号的调制方式不为QBPSK,或者目标长训练字段之后的第二个符号不符合第三条件时,信息接收装置可以确定PPDU的格式不是预设格式。
其中,信息接收装置可以先判断第一个符号的调制方式是否为QBPSK,当第一个符号的调制方式为QBPSK时,再判断第二个符号是否符合第三条件;信息接收装置也可以并行地判断第一个符号的调制方式是否为QBPSK以及第二个符号是否符合第三条件,本实施例对判断的顺序不做限定。
以第三条件为上述第三条件(1)为例,步骤804可以为:信息接收装置可以判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK;当第一个符号的调制方式为QBPSK时,信息接收装置对目标长训练字段之后的第二个符号与目标长训练字段之后的第一个符号进行比对;当第二个符号与第一个符号相同时,信息接收装置确定数据单元为预设格式的PPDU。
以第三条件为上述第三条件(2)为例,步骤804可以为:信息接收装置可以判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK;当第一个符号的调制方式为QBPSK时,对目标长训练字段之后的第二个符号的内容与目标长训练字段之后的第一个符号的内容进行比对;当第二个符号的内容与第一个符号的内容相同时,判断第二个符号采用的交织器与第一个符号采用的交织器是否不同,或者判断第二个符号是否未经过交织且第一个符号经过交织,当第二个符号采用的交织器与第一个符号采用的交织器不同,或者当第二个符号是否未经过交织且第一个符号经过交织时,信息接收装置确定数据单元为预设格式的PPDU。
在一种可能的实现中,上述判断第二个符号采用的交织器和第一个符号采用的交织器不 同的过程可以包括下述步骤一至步骤三:
步骤一、信息接收装置使用第一交织器,对第一个符号进行解交织,得到第一数据。
其中,第一数据是指第一符号经过解交织后的得到的数据。
步骤二、信息接收装置使用第二交织器,对第二个符号进行解交织,得到第二数据,第二交织器与第一交织器不同。
其中,第二数据是指第二符号经过解交织后的得到的数据。
需要说明的一点是,信息接收装置可以先执行步骤一,再执行步骤二;信息接收装置也可以先执行步骤二,再执行步骤一;信息接收装置也可以并行地执行步骤一以及步骤二,本实施例对步骤一以及步骤二的时序不做限定。
步骤三、当第一数据和第二数据相同时,信息接收装置确定第二个符号采用的交织器和第一个符号采用的交织器不同。
信息接收装置可以对第一数据与第二数据进行比对,当第一数据与第二数据相同时,信息接收装置确定第二个符号采用的交织器和第一个符号采用的交织器不同。
在一种可能的实现中,判断第一个符号经过了交织且第二个符号未经过交织的过程可以包括下述步骤A至步骤B:
步骤A、信息接收装置对第一个符号进行解交织,得到第一数据。
步骤B、当第一数据与第二个符号相同时,信息接收装置确定第一个符号经过了交织且第二个符号未经过交织。
信息接收装置可以对第一数据与第二个符号进行比对,当第一数据与第二个符号相同时,信息接收装置确定第一个符号经过了交织且第二个符号未经过交织。
以第三条件为上述第三条件(3)为例,步骤804可以为:信息接收装置可以判断目标长训练字段之后的第一个符号的调制方式是否为QBPSK;当第一个符号的调制方式为QBPSK时,信息接收装置判断目标长训练字段之后的第二个符号的调制方式是否为BPSK;当第二个符号的调制方式为BPSK时,信息接收装置确定数据单元为预设格式的PPDU。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK,目标长训练字段之后的第二个符号符合第三条件。可以通过目标长训练字段之后的第一个符号的相位以及第二个符号是否符合第三条件,自动检测PPDU的格式,并且,在读取到目标长训练字段之后的第二个符号时即可检测出PPDE格式,节省了时间开销。
在一种可能的实现中,可以通过相位旋转以及签名字段的方式,提供一种新的PPDU格式,同时实现自动检测PPDU格式的功能,以下通过图11实施例进行详细描述。需要说明的是,图11实施例着重描述与图3实施例的区别之处,而与图3同理的内容还请参见图3实施例,在图11实施例中不做赘述。
图11是本申请实施例提供的一种信息传输示例的流程图,该信息传输示例包括信息发送装置执行的信息发送方法以及信息接收装置执行的信息接收方法,如图11所示,该方法包括以下步骤1101至1104:
1101、信息发送装置生成PPDU。
PPDU可以包括目标短训练字段以及目标长训练字段,PPDU的目标长训练字段之后至少具有一个符号。参见图12,其示出了PPDU的格式示意图,图12的省略号表示虽未示出而 PPDU包括的其他符号,本实施例对省略号表示的具体符号不做限定。
在一种可能的实现中,参见图13,图11实施例中的目标短训练字段可以是传统格式的短训练字段,图11实施例中的目标长训练字段可以是传统格式的长训练字段,目标长训练字段之后的字段可以是极高吞吐率信令字段,目标长训练字段之后的第一个符号可以是极高吞吐率信令字段的第一个符号,目标长训练字段之后的第二个符号可以是极高吞吐率信令字段的第二个符号,图13中的M表示极高吞吐率信令字段的符号数量,M为正整数。
通过将PPDU中承载短训练序列的字段设计为传统格式的短训练字段,可以避免修改传统格式的短训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。通过将PPDU中承载长训练序列的字段设计为传统格式的长训练字段,可以避免修改传统格式的长训练字段后,对接收数据单元进行频率和时间的粗同步时产生的影响。
当然,图11实施例中的目标短训练字段也可以是802.11ax之后的任一代WLAN标准中用于承载短训练序列的字段,图11实施例中的目标长训练字段也可以是802.11ax之后的任一代WLAN标准中用于承载长训练序列的字段,图11实施例对目标短训练字段的格式以及目标长训练字段的格式均不做具体限定。
目标长训练字段之后的第一个符号:目标长训练字段之后的第一个符号的调制方式为QBPSK,第一个符号包括特征信息。目标长训练字段之后的第一个符号可以是PPDU的第5个OFDM符号。目标长训练字段之后的第一个符号的时长可以是4us。目标长训练字段之后的第一个符号可以记为EHT-SIG-A0,EHT表示预设格式,EHT-SIG表示目标信令字段,A表示符号,A0表示第一个符号。
特征信息用于指示PPDU的格式为预设格式。特征信息可以是数字、字母或字符的任意组合。举例来说,特征信息可以是“N”的美国信息交换标准代码(英文全称:American standard code for information interchange,英文简称:ASCII)值。在一种可能的实现中,特征信息可以为预设格式的标识,该预设格式的标识用于唯一确定PPDU的格式,例如可以是预设格式的名称、编号等。
信息发送装置可以预先存储特征信息,以便使用特征信息,生成包括特征信息的目标长训练字段之后的第一个符号,发送包括特征信息的目标长训练字段之后的第一个符号。通过在第一个符号中携带特征信息,能够将预设格式的PPDU与其他格式的PPDU格式区别开来,因此信息接收装置通过识别特征信息,可以确定数据单元为预设格式的PPDU而不是HT GF格式或者其他格式。
在一种可能的实现中,特征信息可以承载在目标长训练字段之后的第一个符号的签名字段上,签名字段为第一个符号中位于预设位置的字段。该预设位置可以预先存储在信息发送装置中。该预设位置可以是第一个符号的第一个位置至第一个符号的最后一个位置中的任意位置,本实施例对预设位置的取值不做限定。
1102、信息发送装置发送PPDU。
1103、信息接收装置接收数据单元。
1104、当目标长训练字段之后的第一个符号的调制方式为QBPSK,且第一个符号包括特征信息时,信息接收装置确定数据单元为预设格式的PPDU。
在一种可能的实现中,信息接收装置可以接收到数据单元后,可以读取目标长训练字段之后的第一个符号,判断目标长训练字段之后的第一个符号是否为QBPSK、判断第一个符号 是否包括特征信息,当目标长训练字段之后的第一个符号的调制方式为QBPSK,且第一个符号包括特征信息时,信息接收装置可以确定数据单元为预设格式的PPDU。另外,当目标长训练字段之后的第一个符号的调制方式不为QBPSK,或者第一个符号不包括特征信息时,信息接收装置可以确定PPDU的格式不为预设格式。
通过图11实施例提供的PPDU格式以及格式检测方法,读取到目标长训练字段后的第一个符号时,即可检测出PPDU的格式,相对于图8实施例中读取目标长训练字段后的第二个符号时检测出PPDU的格式来说,完成检测的时间可以提前一个符号,从而缩短了检测PPDU格式的时间,提高了检测PPDU格式的效率,从而可以提前按照该PPDU格式对应的WLAN标准,对PPDU进行解析等进一步处理,从而提高了处理PPDU的速度。
需要说明的一点是,信息接收装置可以先判断第一个符号的调制方式是否为QBPSK,当第一个符号的调制方式为QBPSK时,再判断第一个符号是否包括特征信息;信息接收装置也可以先判断第一个符号是否包括特征信息,当第一个符号是否包括特征信息时,再判断第一个符号的调制方式是否为QBPSK;信息接收装置也可以并行地判断第一个符号的调制方式是否为QBPSK以及第一个符号是否包括特征信息,本实施例对信息接收装置判断的顺序不做限定。
关于获取特征信息的过程,在一种可能的实现中,信息接收装置可以从目标长训练字段之后的第一个符号中确定签名字段,从签名字段中,获取特征信息。其中,关于确定签名字段的过程,信息接收装置可以预先存储预设位置,根据预设位置,从第一个符号中确定位于预设位置的字段,作为签名字段。
本实施例提供的方法,提供了一种新的PPDU格式,PPDU中目标长训练字段之后的第一个符号的调制方式为QBPSK,且第一个符号包括特征信息。可以通过目标长训练字段之后的第一个符号的相位以及特征信息,能够自动检测出PPDU的格式,并且,在读取到目标长训练字段之后的第一个符号时,即可检测出PPDU的格式,节省了检测PPDU格式的时间,提高了检测PPDU格式的效率。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
图14是本申请实施例提供的一种信息发送装置的结构示意图,如图14所示,该装置包括:
生成模块1401,用于执行步骤301、步骤801、步骤1101中的任意一项;发送模块1402,用于执行步骤302、步骤802、步骤1102中的任意一项。
需要说明的一点是,图14实施例提供的信息发送装置在发送信息时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将信息发送装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的信息发送装置与信息发送方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
应理解,这里的装置1400以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,信息发送装置1400可以用 于执行上述方法实施例中与信息发送装置对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1400具有实现上述方法中信息发送装置执行的相应步骤的功能;该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,如生成模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
图15是本申请实施例提供的一种信息接收装置的结构示意图,如图15所示,该装置包括:
接收模块1501,用于执行步骤303;第一确定模块1503,用于执行步骤304。
在一种可能的实现中,装置还包括:获取模块,用于获取子载波的信干噪比;选取模块,用于选取目标子载波;互相关模块1502,用于根据目标子载波,对长训练序列与目标长训练序列进行互相关;根据目标子载波,对长训练序列与传统格式的长训练序列或高吞吐率的长训练序列进行互相关。
在一种可能的实现中,获取模块,用于根据目标子载波,获取第一序列;互相关模块1502,用于:根据第一序列,获取第二序列;对第一序列与第二序列进行互相关;根据第一序列,获取第三序列;对第一序列与第三序列进行互相关。
在一种可能的实现中,该装置还包括第二确定模块,第二确定模块用于当数据单元中的长训练序列符合第一条件,且目标长训练字段之后的第一个符号的调制方式为QBPSK时,确定数据单元为预设格式的PPDU。
在一种可能的实现中,该装置还包括第三确定模块,用于执行步骤804。
在一种可能的实现中,该装置还包括第四确定模块,用于执行步骤1104。
需要说明的一点是,图15实施例提供的信息接收装置在接收信息时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将信息接收装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的信息接收装置与信息接收方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
应理解,这里的装置1500以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1500可以具体为上述实施例中的信息接收装置,装置1500可以用于执行上述方法实施例中与信息接收装置对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1500具有实现上述方法中信息接收装置执行的相应步骤的功能;该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块;例如接收模块可以由接收机替代,如互相关模块以及确定模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
上述所有可选技术方案,可采用任意结合形成本申请的可选实施例,在此不再一一赘述。
在一个示例性实施例中,本申请还提供了一种信息传输系统,该系统包括上述图14实施例提供的信息发送装置,另外还包括上述图15实施例提供的信息接收装置。
在一个示例性实施例中,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被计算机运行时,使得该计算机执行上述信息发送方法以及信息接收方法中的至少一项。
在一个示例性实施例中,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述信息发送方法以及信息接收方法中的至少一项的指令。例如,计算机可读介质可以是只读存储器(英文全称:read-only memory,英文简称:ROM)、随机存取存储器(英文全称:random access memory,英文简称:RAM)、只读光盘(英文全称:compact disc read-only memory,英文简称:CD-ROM)、磁带、软盘和光数据存储设备等。
在一个示例性实施例中,本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行该存储器中存储的指令,使得安装有该芯片的设备执行上述信息发送方法以及信息接收方法中的至少一项。
在一个示例性实施例中,本申请还提供了一种芯片,包括:输入接口、输出接口、处理器和存储器,该输入接口、输出接口、该处理器以及该存储器之间通过内部连接通路相连,该处理器用于执行该存储器中的代码,当该代码被执行时,该处理器用于执行上述信息发送方法以及信息接收方法中的至少一项。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘)等。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中术语“多个”的含义是指两个或两个以上,例如,多个数据包是指两个或两个以上的数据包。
本申请中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,本领域技术人员可以理解,“第一”“第二”等字样不对数量和执行顺序进行限定。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种信息发送方法,其特征在于,所述方法包括:
    生成物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交;
    发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,如果带宽等于20兆赫兹MHz,所述目标长训练序列的表达式为下述任一项:
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)]
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L 64表示长度为64的所述目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  3. 根据权利要求1所述的方法,其特征在于,如果带宽大于20兆赫兹MHz,所述目标长训练序列的表达式为:
    L k=[a 1L 64,a 2L 64,……a kL 64];
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L k表示目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  4. 根据权利要求1至3中任意一项所述的方法,其特征在于,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
    Figure PCTCN2020077485-appb-100001
    其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
    Figure PCTCN2020077485-appb-100002
    表示目标长训练字段的有能量的子载波的数量,
    Figure PCTCN2020077485-appb-100003
    表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
    Figure PCTCN2020077485-appb-100004
    表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
  5. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK。
  6. 根据权利要求1至4中任意一项所述的方法,其特征在于,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽。
  7. 一种信息接收方法,其特征在于,所述方法包括:
    接收数据单元;
    当所述数据单元中的长训练序列符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。
  8. 根据权利要求7所述的方法,其特征在于,所述当所述数据单元符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,包括:
    所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;
    当所述第一结果大于第一阈值时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
  9. 根据权利要求7所述的方法,其特征在于,所述当所述数据单元符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,包括:
    所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与传统格式的长训练序列或高吞吐率的长训练序列正交;
    所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果;
    当所述第一结果以及所述第二结果符合预设大小关系时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
  10. 根据权利要求9所述的方法,其特征在于,
    所述预设大小关系为第一结果大于或等于第二结果;或者,
    所述预设大小关系为第一结果大于第二结果与预设系数之间的乘积。
  11. 根据权利要求9或10所述的方法,其特征在于,所述接收数据单元之后,所述方法还包括:
    获取所述数据单元的目标长训练字段的至少一个子载波的信干噪比,所述目标长训练字段中包括长训练序列;
    根据所述至少一个子载波的信干噪比,从所述至少一个子载波中选取目标子载波,所述目标子载波符合第二条件;
    所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,包括:
    根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关;
    所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,包括:
    根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据所述目标子载波,获取第一序列,所述第一序列为所述长训练序列中通过所述目标子载波承载的序列;
    所述根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关,包括:
    根据所述第一序列,获取第二序列,所述第二序列为所述目标长训练序列中位置与所述第一序列对应的序列;
    所述第一序列与所述第二序列进行互相关;
    所述根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,包括:
    根据所述第一序列,获取第三序列,所述第三序列为所述传统格式的长训练序列或高吞 吐率的长训练序列中位置与所述第一序列对应的序列;
    所述第一序列与所述第三序列进行互相关。
  13. 根据权利要求7至12中任意一项所述的方法,其特征在于,如果带宽等于20兆赫兹MHz,所述目标长训练序列的表达式为下述任一项:
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L 64表示长度为64的所述目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  14. 根据权利要求7至12中任意一项所述的方法,其特征在于,如果带宽大于20兆赫兹MHz,所述目标长训练序列的表达式为:
    L k=[a 1L 64,a 2L 64,……a kL 64];
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L k表示所述目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  15. 根据权利要求7至14中任意一项所述的方法,其特征在于,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
    Figure PCTCN2020077485-appb-100005
    其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
    Figure PCTCN2020077485-appb-100006
    表示目标长训练字段的有能量的子载波的数量,
    Figure PCTCN2020077485-appb-100007
    表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
    Figure PCTCN2020077485-appb-100008
    表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
  16. 根据权利要求7至15中任意一项所述的方法,其特征在于,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述目标长训练字段中包括长训练序列。
  17. 根据权利要求7至15中任意一项所述的方法,其特征在于,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽,所述目标长训练字段中包括所述长训练序列。
  18. 根据权利要求7至17中任意一项所述的方法,其特征在于,所述当所述数据单元符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU的步骤可以替换为:
    当所述数据单元符合所述第一条件,且所述数据单元的目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述目标长训练字段中包括长训练序列。
  19. 一种信息发送装置,其特征在于,所述装置包括:
    生成模块,用于生成物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交;
    发送模块,用于发送所述PPDU。
  20. 根据权利要求19所述的装置,其特征在于,如果带宽等于20兆赫兹MHz,所述目 标长训练序列的表达式为下述任一项:
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  21. 根据权利要求19所述的装置,其特征在于,如果带宽大于20兆赫兹MHz,所述目标长训练序列的表达式为:
    L k=[a 1L 64,a 2L 64,……a kL 64];
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L k表示目标长训练序列,k为所述PPDU的带宽与20MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0], p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  22. 根据权利要求19至20中任意一项所述的装置,其特征在于,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
    Figure PCTCN2020077485-appb-100009
    其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
    Figure PCTCN2020077485-appb-100010
    表示目标长训练字段的有能量的子载波的数量,
    Figure PCTCN2020077485-appb-100011
    表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
    Figure PCTCN2020077485-appb-100012
    表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
  23. 根据权利要求19至21中任意一项所述的装置,其特征在于,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK。
  24. 根据权利要求19至21中任意一项所述的装置,其特征在于,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽。
  25. 一种信息接收装置,其特征在于,所述装置包括:
    接收模块,用于接收数据单元;
    第一确定模块,用于当所述数据单元中的长训练序列符合第一条件时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述PPDU包括目标长训练序列,所述目标长训练序列与传统格式的长训练序列正交或者与高吞吐率的长训练序列正交。
  26. 根据权利要求25所述的装置,其特征在于,所述第一确定模块包括:
    互相关子模块,用于所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列正交;
    确定子模块,用于当所述第一结果大于第一阈值时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
  27. 根据权利要求25所述的装置,其特征在于,所述第一确定模块包括:
    互相关子模块,用于所述数据单元中的长训练序列与预存的目标长训练序列进行互相关,得到第一结果,所述预存的目标长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列正交;所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关,得到第二结果;
    确定子模块,用于当所述第一结果以及所述第二结果符合预设大小关系时,确定所述数据单元为所述预设格式的物理层协议数据单元PPDU。
  28. 根据权利要求27所述的装置,其特征在于,
    所述预设大小关系为第一结果大于或等于第二结果;或者,
    所述预设大小关系为第一结果大于第二结果与预设系数之间的乘积。
  29. 根据权利要求27或28所述的装置,其特征在于,所述装置还包括:
    获取模块,用于获取所述数据单元的目标长训练字段的至少一个子载波的信干噪比,所述目标长训练字段中包括长训练序列;
    选取模块,用于根据所述至少一个子载波的信干噪比,从所述至少一个子载波中选取目标子载波,所述目标子载波符合第二条件;
    所述互相关子模块,用于根据所述目标子载波,所述数据单元中的长训练序列与所述预存的目标长训练序列进行互相关;根据所述目标子载波,所述数据单元中的长训练序列与所述传统格式的长训练序列或高吞吐率的长训练序列进行互相关。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    获取模块,用于根据所述目标子载波,获取第一序列,所述第一序列为所述长训练序列中通过所述目标子载波承载的序列;
    所述互相关子模块,用于根据所述第一序列,获取第二序列,所述第二序列为所述目标长训练序列中位置与所述第一序列对应的序列;所述第一序列与所述第二序列进行互相关;根据所述第一序列,获取第三序列,所述第三序列为所述传统格式的长训练序列或高吞吐率的长训练序列中位置与所述第一序列对应的序列;所述第一序列与所述第三序列进行互相关。
  31. 根据权利要求25至30中任意一项所述的装置,其特征在于,如果带宽等于20兆赫兹MHz,所述目标长训练序列的表达式为下述任一项:
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)]
    其中,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32 中从序号为1的值至序号为15的值。
  32. 根据权利要求25至30中任意一项所述的装置,其特征在于,如果带宽大于20兆赫兹MHz,所述目标长训练序列的表达式为:
    L k=[a 1L 64,a 2L 64,……a kL 64];
    L 64=[p 32,p 32];
    L 64=[p 32,-p 32];
    L 64=[-p 32,p 32];
    L 64=[-p 32,-p 32];
    L 64=[p 32(-16,-1),x1,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),x1,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),x2,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),1,p 32(1,13),0,0,0,0,0,p 32(-13,-1),1,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),-1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,-1,0,1,-1,p 32(-13,-1),0,p 32(1,15)];
    L 64=[p 32(-16,-1),0,p 32(1,13),1,1,0,-1,-1,p 32(-13,-1),0,p 32(1,15)];
    其中,L k表示所述目标长训练序列,k为所述PPDU的带宽与20兆赫兹MHz的比值,k为大于或等于1的正整数,a 1、a 2、a k为-1或1,L 64表示长度为64的目标长训练序列,x1为-1或1,x2为-1,p 32=[0 0 0 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 0 0],p 32(-16,-1)表示p 32中从序号为-16的值至序号为-1的值,p 32(1,13)表示p 32中从序号为1的值至序号为13的值,p 32(-13,-1)表示p 32中从序号为-13的值至序号为-1的值,p 32(1,15)表示p 32中从序号为1的值至序号为15的值。
  33. 根据权利要求25至32中任意一项所述的装置,其特征在于,所述目标长训练序列在所述PPDU的目标长训练字段中,所述目标长训练字段的信号的公式如下:
    Figure PCTCN2020077485-appb-100013
    其中,r EHT-GF-LTF表示信号,t表示时间,i TX表示天线的索引,i TX为大于或等于1的正整数,STS表示空时流,*表示相乘,N STS表示空时流个数,
    Figure PCTCN2020077485-appb-100014
    表示目标长训练字段的有能量的子载波的数量,
    Figure PCTCN2020077485-appb-100015
    表示目标长训练字段的窗函数,N SR表示目标长训练字段的所有数据子载波中最高的数据子载波的索引,exp()表示求指数,
    Figure PCTCN2020077485-appb-100016
    表示循环位移的时长,γ k表示相位旋转因子,P EHT-LTF表示目标长训练字段的映射矩阵,Q k表示 第k个子载波的预编码矩阵,k为正整数,Δ F表示目标长训练字段的子载波的间距,T GI表示保护间隔。
  34. 根据权利要求25至33中任意一项所述的装置,其特征在于,所述PPDU中目标长训练字段之后的第一个符号的调制方式为正交二进制相移键控QBPSK,所述目标长训练字段中包括长训练序列。
  35. 根据权利要求25至33中任意一项所述的装置,其特征在于,所述PPDU包括目标信令字段,所述目标信令字段为目标长训练字段之后的第一个字段,所述目标信令字段的信息带宽大于20MHz,所述信息带宽是指承载信息编码的基本带宽,所述目标长训练字段中包括所述长训练序列。
  36. 根据权利要求25至35中任意一项所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于当所述数据单元符合所述第一条件,且所述数据单元的目标长训练字段之后的第一个符号的调制方式为QBPSK时,确定所述数据单元为预设格式的物理层协议数据单元PPDU,所述目标长训练字段中包括长训练序列。
PCT/CN2020/077485 2019-03-06 2020-03-02 信息发送、信息接收方法及装置 WO2020177674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/466,637 US20210399930A1 (en) 2019-03-06 2021-09-03 Information sending and receiving methods and apparatuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910169504.9 2019-03-06
CN201910169504.9A CN111669783B (zh) 2019-03-06 2019-03-06 信息发送、信息接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/466,637 Continuation US20210399930A1 (en) 2019-03-06 2021-09-03 Information sending and receiving methods and apparatuses

Publications (1)

Publication Number Publication Date
WO2020177674A1 true WO2020177674A1 (zh) 2020-09-10

Family

ID=72337681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077485 WO2020177674A1 (zh) 2019-03-06 2020-03-02 信息发送、信息接收方法及装置

Country Status (3)

Country Link
US (1) US20210399930A1 (zh)
CN (1) CN111669783B (zh)
WO (1) WO2020177674A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068147A1 (en) * 2020-09-30 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access point, station, and information transmission method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339893A (zh) * 2020-09-29 2022-04-12 华为技术有限公司 物理层协议数据单元ppdu传输方法及相关装置
CN114660584A (zh) * 2020-12-23 2022-06-24 华为技术有限公司 一种数据传输方法及装置
CN115967413A (zh) * 2021-10-13 2023-04-14 华为技术有限公司 一种传输物理层协议数据单元的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832480A (zh) * 2005-02-16 2006-09-13 美国博通公司 在多入多出通信系统中传递信息的方法和系统
US20110249660A1 (en) * 2010-04-08 2011-10-13 Lg Electronics Inc. Method for transmitting ppdu in wireless local area network and apparatus for the same
CN105637780A (zh) * 2013-11-19 2016-06-01 英特尔Ip公司 用于高效wi-fi(hew)通信的无线设备和方法以及逐块正交的训练序列
CN106605382A (zh) * 2014-08-27 2017-04-26 Lg 电子株式会社 在无线通信系统中的发送数据的方法及用于其装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681757B2 (en) * 2009-11-09 2014-03-25 Lg Electronics Inc. Method and apparatus for transmitting PLCP frame in wireless local area network system
US9344238B2 (en) * 2013-04-15 2016-05-17 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US10194006B2 (en) * 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
EP3197114B1 (en) * 2014-08-06 2022-01-19 Huawei Technologies Co., Ltd. Method and apparatus for transmitting uplink information in multi-user multiple-input multiple-output system
JP6753858B2 (ja) * 2015-02-04 2020-09-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける多重ユーザ送受信のための方法及びこのための装置
CN107409432B (zh) * 2015-05-13 2020-10-09 华为技术有限公司 传输数据的方法、接收端设备和发送端设备
US10285149B2 (en) * 2015-06-15 2019-05-07 Qualcomm Incorporated Orthogonal training field sequences for phase tracking
US10470050B2 (en) * 2016-11-16 2019-11-05 Apple Inc. License assisted access uplink communication with Wi-Fi preamble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832480A (zh) * 2005-02-16 2006-09-13 美国博通公司 在多入多出通信系统中传递信息的方法和系统
US20110249660A1 (en) * 2010-04-08 2011-10-13 Lg Electronics Inc. Method for transmitting ppdu in wireless local area network and apparatus for the same
CN105637780A (zh) * 2013-11-19 2016-06-01 英特尔Ip公司 用于高效wi-fi(hew)通信的无线设备和方法以及逐块正交的训练序列
CN106605382A (zh) * 2014-08-27 2017-04-26 Lg 电子株式会社 在无线通信系统中的发送数据的方法及用于其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068147A1 (en) * 2020-09-30 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access point, station, and information transmission method

Also Published As

Publication number Publication date
CN111669783B (zh) 2024-04-23
CN111669783A (zh) 2020-09-15
US20210399930A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2020177674A1 (zh) 信息发送、信息接收方法及装置
JP7308917B2 (ja) 通信方法、通信装置、及び通信デバイス
EP2266275B1 (en) Pilot design using Costas arrays
CN112491518B (zh) 与传统无线通信终端共存的无线通信方法和无线通信终端
US8265200B2 (en) Method and system for receiver synchronization
US11277293B2 (en) Transmission method and transmission apparatus for packet format detection
PH12014502158B1 (en) Frame formats and timing parameters in sub-1 ghz networks
EP2302856B1 (en) Preamble code configuration method and cell search method
US20110222519A1 (en) Phase Rotating Method and Wireless Local Area Network Device
WO2012112973A1 (en) Data transmission coexistence using constant symbol duration within television white space channels
KR102104947B1 (ko) 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
WO2012112972A1 (en) Data transmission coexistence within television white space channels
EP3965349A1 (en) Signal processing method and apparatus, and communication device
US8867675B1 (en) Low bandwidth PHY with frequency offset constraints
US10999108B2 (en) Wireless communication method, apparatus, and system
GB2565342A (en) Pilot signals
CN106572042B (zh) 传输数据的方法和设备
CN107735995B (zh) 一种数据检测方法和装置
JP7407267B2 (ja) データ送信及び受信方法並びに装置
US20240007223A1 (en) Preamble with detectable wlan version identification
JP2023535779A (ja) 物理層プロトコルデータユニットを伝送するための方法及び装置
CN107872868B (zh) 信号处理的方法、设备和系统
CN117044141A (zh) 用于新空口的经不同分量载波的同时pucch和pusch传输
KR20240054418A (ko) 통신 방법, 통신 장치 및 통신 디바이스
CN116916459A (zh) 一种参考信号传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766523

Country of ref document: EP

Kind code of ref document: A1