WO2020177317A1 - 一种故障点位置的判断方法、装置及光伏系统 - Google Patents

一种故障点位置的判断方法、装置及光伏系统 Download PDF

Info

Publication number
WO2020177317A1
WO2020177317A1 PCT/CN2019/108771 CN2019108771W WO2020177317A1 WO 2020177317 A1 WO2020177317 A1 WO 2020177317A1 CN 2019108771 W CN2019108771 W CN 2019108771W WO 2020177317 A1 WO2020177317 A1 WO 2020177317A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
test signal
unit
characteristic information
photovoltaic unit
Prior art date
Application number
PCT/CN2019/108771
Other languages
English (en)
French (fr)
Inventor
马迅
顾桂磊
水伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19918167.8A priority Critical patent/EP3780386A4/en
Priority to AU2019433018A priority patent/AU2019433018B2/en
Priority to JP2021549854A priority patent/JP7259069B2/ja
Publication of WO2020177317A1 publication Critical patent/WO2020177317A1/zh
Priority to US17/088,023 priority patent/US11632077B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This application relates to the field of power electronics technology, and in particular to a method, device and photovoltaic system for determining the location of a fault point.
  • a photovoltaic system can consist of at least one photovoltaic string and at least one inverter.
  • each photovoltaic string is connected in parallel with the inverter, each photovoltaic string contains at least one photovoltaic unit, and each photovoltaic unit is connected in series.
  • Each photovoltaic unit may include at least one photovoltaic module and a photovoltaic module controller.
  • the photovoltaic module controller is used to control the output voltage and output current of the photovoltaic unit.
  • the structure of a photovoltaic system may be as shown in FIG. 1.
  • the photovoltaic system shown in Figure 1 contains two photovoltaic strings, and each photovoltaic string contains sixteen photovoltaic units.
  • Each photovoltaic unit contains an optimizer for DC/DC conversion of the direct current output by the photovoltaic module to output direct current with adjustable voltage and current, so as to maximize the output power of the photovoltaic unit.
  • the inverter and the photovoltaic unit and the adjacent photovoltaic units are connected through terminals. If the terminals are loose or poorly connected, a disconnection fault will occur between the two photovoltaic units (that is, two photovoltaic units). The electrical connection between the units is disconnected).
  • a disconnection fault occurs between photovoltaic unit #4 and photovoltaic unit #5, and the photovoltaic string and the inverter cannot form a current loop, which affects the photovoltaic system. The normal operation of the string. In the prior art, manual troubleshooting is usually required. Since photovoltaic units are generally laid on the roof and the number of photovoltaic units contained in a photovoltaic string is large, the investigation workload is large and the efficiency is low.
  • the embodiments of the present application provide a method, a device and a photovoltaic system for determining the location of a fault point, which are used to accurately and efficiently determine the location of the fault point when a disconnection fault occurs in the photovoltaic system.
  • the embodiments of the present application provide a method for determining the location of a fault point, which is applied to a photovoltaic system.
  • the photovoltaic system includes at least one inverter and at least one photovoltaic unit, and the photovoltaic unit includes at least one photovoltaic component and one photovoltaic component.
  • the controller and the method include the following steps: the inverter sends a first test signal to at least one photovoltaic unit; the inverter acquires characteristic information of the first test signal fed back by the at least one photovoltaic unit; and the inverter responds to the at least one first test signal
  • the characteristic information is sorted by absolute value or relative value, and the fault point in the photovoltaic system is determined according to the sorting result.
  • the photovoltaic module controller can be an optimizer or a shutdown device.
  • the inverter sends the first test signal to at least one photovoltaic unit, so that the at least one photovoltaic unit can measure the first test signal.
  • the characteristic information of the first test signal fed back by at least one photovoltaic unit presents a different trend from that in the normal working state, so the inverter obtains the first test signal fed back by the photovoltaic unit
  • the absolute value or relative value of the characteristic information of the first test signal fed back by the photovoltaic unit can be sorted to determine the fault point in the photovoltaic system.
  • the characteristic information of the first test signal includes but is not limited to the following: signal strength information of the first test signal; impedance information of the first test signal.
  • the first test signal may be a PLC communication signal.
  • the method provided in the first aspect can be implemented with the aid of the original communication protocol between the photovoltaic units and between the inverter and the photovoltaic unit.
  • the inverter obtains the characteristic information of the first test signal fed back by at least one photovoltaic unit, which can be specifically implemented in the following two ways:
  • the inverter receives the characteristic information of at least one first test signal sent by at least one photovoltaic unit.
  • the inverter receives the characteristic information of the at least one first test signal sent by at least one third photovoltaic unit, and all or part of the photovoltaic units in the at least one third photovoltaic unit are used to feed back the first test signal to the at least one fourth photovoltaic unit The characteristic information is forwarded.
  • the inverter may directly receive the characteristic information of the first test signal from at least one photovoltaic unit, or the third photovoltaic unit may forward the characteristic information of the first test signal fed back by other photovoltaic units.
  • the inverter determines the fault point in the photovoltaic system according to the sorting result, which can be specifically implemented in the following manner: the inverter determines the absolute value or the characteristic information of the first test signal fed back by the first photovoltaic unit The relative value is the smallest or the largest; the inverter determines that the fault point in the photovoltaic system is located between the first photovoltaic unit and the second photovoltaic unit, and the second photovoltaic unit is the photovoltaic unit adjacent to the first photovoltaic unit.
  • the solar panels in the photovoltaic unit have distributed capacitance to ground, and there is also distributed capacitance to ground between cables. If the photovoltaic system is disconnected and the normal signal path is cut off, the first test signal will return to the reference ground through the distributed capacitance of the solar panel to the ground and the distributed capacitance of the cables to the ground. Since the photovoltaic unit closest to the disconnection point has the smallest total capacitance to the ground, the photovoltaic unit has the largest AC impedance and the weakest signal strength. With the above solution, the fault point in the photovoltaic system can be determined according to the absolute value or the relative value of the characteristic information of the first test signal (for example, AC impedance information or signal strength information).
  • the characteristic information of the first test signal for example, AC impedance information or signal strength information
  • the inverter may send the second test signal to at least one photovoltaic unit.
  • Test signal the frequency of the second test signal is different from the frequency of the first test signal; the inverter obtains the characteristic information of the second test signal fed back by at least one photovoltaic unit; the inverter performs the characteristic information of the at least one second test signal Absolute value or relative value sorting, according to the sorting result to determine the fault point in the photovoltaic system.
  • the inverter can send a second test at another frequency point Signal for the photovoltaic unit to measure the characteristics of the second test signal, and then, the inverter can sort and determine the fault point in the photovoltaic unit according to the absolute value or relative value of the characteristic information of the second test signal.
  • a disconnection fault in the photovoltaic system can be determined in various ways, and then the method for determining the location of the fault point provided in the first aspect is used to determine the location of the fault point.
  • the inverter Before the inverter sends the first test signal to the at least one photovoltaic unit, the inverter determines that the current signal and/or voltage signal of the at least one photovoltaic unit is abnormal.
  • the inverter Before the inverter sends the first test signal to the at least one photovoltaic unit, the inverter determines that an arc is generated in the photovoltaic system.
  • the inverter After the inverter obtains the characteristic information of the first test signal fed back by the at least one photovoltaic unit, the inverter determines that a disconnection fault occurs in the photovoltaic system according to the characteristic information of the first test signal fed back by the at least one photovoltaic unit.
  • the characteristic information of the first test signal fed back by the photovoltaic unit after receiving the characteristic information of the first test signal fed back by the photovoltaic unit, it can be determined that a disconnection fault has occurred in the photovoltaic system, and then the characteristic information of the first test signal fed back by at least one photovoltaic unit can be analyzed to determine the specific The disconnection position.
  • the embodiments of the present application provide a method for determining the location of a fault point, which is applied to a photovoltaic system.
  • the photovoltaic system includes at least one inverter and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic component and one photovoltaic component A controller, the method includes: the photovoltaic module controller receives the first test signal sent by the inverter; the photovoltaic module controller measures the first test signal to obtain the characteristic information of the first test signal; The device feeds back the characteristic information of the first test signal.
  • the photovoltaic module controller can also be used to perform other operations performed by the photovoltaic unit in the method provided in the first aspect, which will not be repeated here.
  • an embodiment of the present application provides a method for determining the location of a fault point.
  • the method is applied to a photovoltaic system.
  • the photovoltaic system includes at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic module and a photovoltaic module controller.
  • the method includes :
  • the fifth photovoltaic unit of the at least one photovoltaic unit sends a first test signal to at least one other photovoltaic unit of the at least one photovoltaic unit except the fifth photovoltaic unit;
  • the fifth photovoltaic unit acquires characteristic information of the first test signal fed back by at least one other photovoltaic unit;
  • the fifth photovoltaic unit sorts the characteristic information of the at least one first test signal by absolute value or relative value, and determines the fault point in the photovoltaic system according to the sorting result.
  • the characteristic information of the first test signal includes one or more of the following: signal strength information of the first test signal; impedance information of the first test signal.
  • an embodiment of the present application provides a method for determining the location of a fault point.
  • the method is applied to a photovoltaic system.
  • the photovoltaic system includes at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic module and a photovoltaic module controller.
  • the method includes : The photovoltaic module controller receives the first test signal sent by the fifth photovoltaic unit of the at least one photovoltaic unit; the photovoltaic module controller measures the first test signal to obtain the characteristic information of the first test signal; the photovoltaic module controller sends the Five photovoltaic units feed back the characteristic information of the first test signal.
  • the embodiments of the present application provide a device for determining the location of a fault point, which is applied to a photovoltaic system.
  • the photovoltaic system includes at least one device for determining the location of a fault point and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic module and A photovoltaic module controller, the device comprising: a sending unit for sending a first test signal to at least one photovoltaic unit; a receiving unit for acquiring characteristic information of the first test signal fed back by at least one photovoltaic unit; a processing unit for In order to sort the characteristic information of the at least one first test signal by absolute value or relative value, the fault point in the photovoltaic system is determined according to the sorting result.
  • the characteristic information of the first test signal may include one or more of the following: signal strength information of the first test signal; impedance information of the first test signal.
  • the photovoltaic module controller can be an optimizer or a shutdown device.
  • the processing unit determines the fault point in the photovoltaic system according to the sorting result, it is specifically used to determine the minimum or maximum absolute value or relative value of the characteristic information of the first test signal fed back by the first photovoltaic unit ; Determine that the fault point in the photovoltaic system is located between the first photovoltaic unit and the second photovoltaic unit, and the second photovoltaic unit is a photovoltaic unit adjacent to the first photovoltaic unit.
  • the receiving unit when it obtains the characteristic information of the first test signal fed back by the at least one photovoltaic unit, it is specifically used to: receive the characteristic information of the at least one first test signal sent by the at least one photovoltaic unit; or, Receive characteristic information of at least one first test signal sent by at least one third photovoltaic unit, and use all or part of the photovoltaic units in at least one third photovoltaic unit to feed back characteristic information of the first test signal to at least one fourth photovoltaic unit Forward it.
  • the processing unit is further configured to: after the sending unit sends the first test signal to the at least one photovoltaic unit, determine that the characteristic information of the first test signal fed back by the at least one photovoltaic unit is not obtained; Used for: sending a second test signal to at least one photovoltaic unit, the frequency of the second test signal is different from the frequency of the first test signal; the receiving unit is further used for: acquiring characteristic information of the second test signal fed back by the at least one photovoltaic unit; The processing unit is further used for: sorting the characteristic information of the at least one second test signal by absolute value or relative value, and determining the fault point in the photovoltaic system according to the sorting result.
  • the processing unit is further configured to: before the sending unit sends the first test signal to the at least one photovoltaic unit, determine that the current signal and/or voltage signal of the at least one photovoltaic unit is abnormal; or, determine that the photovoltaic system is An arc is generated.
  • the processing unit is further configured to: after the receiving unit obtains the characteristic information of the first test signal fed back by the at least one photovoltaic unit, determine the photovoltaic system according to the characteristic information of the first test signal fed back by the at least one photovoltaic unit A disconnection fault occurred during
  • the first test signal may be a PLC communication signal.
  • an embodiment of the present application provides a device for determining the location of a fault point.
  • the device is applied to a photovoltaic system.
  • the photovoltaic system includes at least one inverter and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic component and at least one fault.
  • a device for judging the position of a point comprising: a receiving unit for receiving the first test signal sent by the inverter; a processing unit for measuring the first test signal to obtain characteristic information of the first test signal; a sending unit , Used to feed back the characteristic information of the first test signal to the inverter.
  • an embodiment of the present application provides a device for determining the location of a fault point, and the device for determining the location of a fault point is applied to a photovoltaic system.
  • the structure of the device for determining the location of the fault point includes a processor and a memory, and the processor is configured to support the device to execute the method of the first aspect, the method of the second aspect, the method of the third aspect, and the method of the fourth aspect. The corresponding function.
  • the memory is coupled with the processor, and stores the program instructions and data necessary for the device for judging the location of the fault point.
  • the structure of the device for determining the location of the fault point further includes a communication interface for communicating with other equipment.
  • an embodiment of the present application provides a photovoltaic system, including: at least one inverter and at least one photovoltaic unit, the photovoltaic unit including at least one photovoltaic module and a photovoltaic module controller;
  • the photovoltaic unit sends the first test signal; at least one photovoltaic unit is used to feed back characteristic information of the first test signal to the inverter; the inverter is also used to perform absolute value or relative value on the characteristic information of the at least one first test signal The value is sorted, and the fault point in the photovoltaic system is determined according to the sorting result.
  • the inverter can also be used to implement the solutions provided by the different design methods in the first aspect
  • the photovoltaic unit can also be used to implement the solutions provided by the different design methods in the second aspect , I won’t repeat it here.
  • Figure 1 is a schematic diagram of the structure of a photovoltaic system provided in the prior art
  • Figure 2 is a schematic structural diagram of a photovoltaic system provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a method for determining the location of a fault point provided by an embodiment of the application
  • Figure 4 is a schematic structural diagram of another photovoltaic system provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of another method for determining the location of a fault point provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of the first device for determining the location of a fault point provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a second device for determining the location of a fault point provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a third device for determining the location of a fault point provided by an embodiment of the application.
  • Fig. 9 is a schematic structural diagram of a third photovoltaic system provided by an embodiment of the application.
  • the photovoltaic system includes at least one inverter (shown as one in FIG. 2) and at least one photovoltaic unit, at least one photovoltaic unit is connected in series; at least one photovoltaic unit Each photovoltaic unit in includes at least one photovoltaic module and a photovoltaic module controller.
  • the input end of the photovoltaic module controller is connected with the photovoltaic module, and is used to adjust the output voltage and output current of the photovoltaic module.
  • the photovoltaic component controller is also connected to two photovoltaic units adjacent to the photovoltaic unit where the photovoltaic component controller is located to realize the connection between the photovoltaic units.
  • the photovoltaic module controller may be an optimizer for realizing the adjustment of output voltage and output current to maximize the output power of the photovoltaic unit; the photovoltaic module controller may also be a shut-off device for switching on Or turn off the output of the photovoltaic unit.
  • the direct current output by the photovoltaic module is output after DC/DC conversion by the photovoltaic module controller.
  • Multiple photovoltaic units all output DC power to the inverter, and the AC power obtained after the inverter performs DC/AC conversion on the DC power can be output to the grid as mains power.
  • At least one photovoltaic unit connected in series may be regarded as a photovoltaic string, and may also be referred to as a DC high-voltage string.
  • the photovoltaic system can include one photovoltaic string or multiple photovoltaic strings.
  • Figure 2 only uses one photovoltaic string as an example for illustration. When the photovoltaic system contains multiple photovoltaic strings, the multiple photovoltaic strings are connected in parallel.
  • information can be transmitted between the inverter and each photovoltaic unit as well as between the photovoltaic units through the power line communication (PLC) protocol for business queries and commands.
  • PLC power line communication
  • Information interaction operations such as control.
  • the inverter can be used as the PLC communication host, and the photovoltaic module controller can be used as the PLC communication slave.
  • the inverter and photovoltaic units as well as between adjacent photovoltaic units are connected through terminals. If the terminals are loose or poorly connected, it will happen between the two photovoltaic units. Disconnection fault.
  • the existing technology is used to manually investigate the location of the fault point, which has a large workload and low efficiency, and it is difficult to accurately and efficiently determine the location of the fault point.
  • the embodiments of the present application provide a method, a device and a photovoltaic system for determining the location of a fault point, which are used to accurately and efficiently determine the location of the fault point when a disconnection fault occurs in the photovoltaic system.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • FIG. 3 is a schematic flowchart of a method for determining the location of a fault point provided in an embodiment of this application.
  • This method can be applied to the photovoltaic system shown in FIG. 2, which includes at least one inverter and at least one photovoltaic unit; each photovoltaic unit includes at least one photovoltaic component and a photovoltaic component controller.
  • the photovoltaic module controller may be an optimizer used to adjust the output voltage and output current of the photovoltaic unit, and may also be a shut-off device used to open or close the output of the photovoltaic unit.
  • the method includes the following steps.
  • the inverter sends a first test signal to at least one photovoltaic unit.
  • the first test signal is used for at least one photovoltaic unit to measure the first test signal.
  • the photovoltaic unit can measure the signal strength or impedance of the first test signal.
  • the meaning of the inverter sending the first test signal to at least one photovoltaic unit may mean that after the inverter sends the first test signal, at least one photovoltaic unit connected in series can receive the first test signal. After each photovoltaic unit receives the first test signal, it can measure the received first test signal, obtain the characteristic information of the first test signal, and report it to the inverter. Specifically, the first test signal can be measured by the photovoltaic module controller in the photovoltaic unit. The specific measurement method is the prior art, which will not be repeated here.
  • the first test signal may be a direct current signal or an alternating current signal.
  • the first test signal may be a PLC communication signal.
  • the first test signal may be a signal in the PLC communication frequency band during PLC communication between the inverter and the photovoltaic unit, or may be a signal outside the PLC communication frequency band.
  • a signal in the frequency band of 75kHz to 148.5kHz is usually used.
  • the frequency of the first test signal can be located at 75kHz Between ⁇ 148.5kHz, it can also be a certain frequency outside the frequency range, for example, it can be 150kHz.
  • the inverter when the inverter sends the first test signal, the inverter can continuously send the test signal (PLC communication signal) of a certain frequency point or certain frequency points defined in advance for a period of time.
  • the PLC module in the photovoltaic module controller of the unit can measure the received first test signal.
  • the inverter acquires characteristic information of the first test signal fed back by at least one photovoltaic unit.
  • the characteristic information of the first test signal includes but is not limited to the signal strength information of the first test signal and the impedance information of the first test signal.
  • the inverter may acquire the characteristic information of the first test signal fed back by at least one photovoltaic unit in S302, two of which are listed below.
  • the inverter may receive the characteristic information of the at least one first test signal sent by at least one photovoltaic unit.
  • each photovoltaic unit has the ability to communicate with the inverter, and when each photovoltaic unit feeds back the characteristic information of the first test signal, the signal strength can ensure that the inverter can receive To the characteristic information of the first test signal. At this time, each photovoltaic unit sends the characteristic information of the first test signal to the inverter.
  • the inverter receives the characteristic information of at least one first test signal sent by at least one third photovoltaic unit, and all or part of the photovoltaic units in the at least one third photovoltaic unit are used to feed back at least one fourth photovoltaic unit The characteristic information of the first test signal is forwarded.
  • each photovoltaic unit has the ability to communicate with the inverter
  • the fourth photovoltaic unit sends the characteristic information of the first test signal
  • the signal strength cannot guarantee that the inverter can receive
  • the feedback result of the fourth photovoltaic unit (that is, the characteristic information of the first test signal fed back by the fourth photovoltaic unit) needs to be forwarded via all or part of the at least one third photovoltaic unit. That is, the fourth photovoltaic unit sends the characteristic information of the first test signal to the third photovoltaic unit, and the third photovoltaic unit reports it to the inverter.
  • one third photovoltaic unit can forward the feedback result, or multiple third photovoltaic units can forward the feedback result, and which one or several third photovoltaic units are used.
  • the feedback result of the fourth photovoltaic unit or units may be forwarded according to specific circumstances, which is not specifically limited in the embodiment of the present application.
  • the inverter sorts the characteristic information of the at least one first test signal by absolute value or relative value, and determines the fault point in the photovoltaic system according to the sorting result.
  • the inverter may sort the absolute value or relative value of the characteristic information of the first test signal. Then, in S303, the inverter Determining the fault point in the photovoltaic system according to at least one can be specifically implemented in the following manner: the inverter determines that the absolute value or the relative value of the characteristic information of the first test signal fed back by the first photovoltaic unit is the smallest (for example, the signal of the first test signal) The absolute value or relative value of the intensity information is the smallest), or the inverter determines that the absolute value or the relative value of the characteristic information of the first test signal fed back by the first photovoltaic unit is the largest (for example, the absolute value of the impedance information of the first test signal or the The relative value is the largest); the inverter determines that the fault point in the photovoltaic system is located between the first photovoltaic unit and the second photovoltaic unit, and the second photovolta
  • the solar panels in the photovoltaic unit have distributed capacitance to ground, and there is also distributed capacitance to ground between cables. If a wire break occurs between two photovoltaic units and the normal signal path is cut off, the first test signal will flow back to the reference ground through the distributed capacitance of the solar panel to the ground and the distributed capacitance between the cables. Since the photovoltaic unit closest to the disconnection point has the smallest total capacitance to the ground, the photovoltaic unit has the largest AC impedance and the weakest signal strength.
  • the absolute value or relative value of the signal intensity of the first test signal measured by the first photovoltaic unit is the smallest, since there are two photovoltaic units adjacent to the first photovoltaic unit, it is necessary to determine the two Which of the photovoltaic units has a disconnection fault with the first photovoltaic unit.
  • the inverter can determine the connection between the second photovoltaic unit connected to the output terminal of the first photovoltaic unit and the first photovoltaic unit A disconnection fault occurs; if the photovoltaic module controller measures the signal strength at the front end of the photovoltaic unit, the inverter can determine that the second photovoltaic unit connected to the input of the first photovoltaic unit is disconnected from the first photovoltaic unit Line failure.
  • the photovoltaic unit before the disconnection point should be the photovoltaic unit with the weakest signal strength measured in at least one photovoltaic unit. Therefore, it can be judged that a disconnection fault occurs between the second photovoltaic unit and the first photovoltaic unit connected to the output terminal of the first photovoltaic unit (the photovoltaic unit with the weakest measured signal strength).
  • the photovoltaic unit after the disconnection point should be the photovoltaic unit with the weakest measured signal strength among at least one photovoltaic unit. Therefore, it can be judged that a disconnection fault occurs between the second photovoltaic unit and the first photovoltaic unit connected to the input end of the first photovoltaic unit (the photovoltaic unit with the weakest measured signal strength).
  • a disconnection fault occurs between photovoltaic unit #4 and photovoltaic unit #5, the signal path is disconnected between photovoltaic unit #4 and photovoltaic unit #5, and the inverter sends While the first test signal flows through the inverter ⁇ PV unit #1...PV unit #4, it will also pass through the ground distributed capacitance between the cables, the ground distributed capacitance of photovoltaic unit #1, and the ground distributed capacitance of photovoltaic unit #2.
  • the distributed capacitance to ground, the distributed capacitance to ground of photovoltaic unit #3, and the distributed capacitance to ground of photovoltaic unit #4 flow back to the reference ground.
  • the photovoltaic module controller in each photovoltaic unit measures the signal strength of the first test signal at the end of the photovoltaic unit. It is not difficult to see from Fig. 4 that since there are no other photovoltaic units after photovoltaic unit #4, the current flowing through photovoltaic unit #4 is the smallest, and the signal intensity measured by photovoltaic unit #4 is the weakest. In the same way, in the path of inverter ⁇ PV unit #16 ⁇ PV unit #15...PV unit #5, the current flowing through PV unit #5 is the smallest, and the signal strength measured by PV unit #5 is the weakest.
  • the photovoltaic module controller in each photovoltaic unit tests the signal strength at the end of the photovoltaic unit.
  • the inverter can determine that the signal strength measured by photovoltaic unit #4 is the weakest, photovoltaic unit #3 and photovoltaic The signal strength of cell #5 is also weak. Then, the inverter can determine that a disconnection fault occurs between the photovoltaic unit #4 and the photovoltaic unit #5 connected to the output terminal of the photovoltaic unit #4.
  • the inverter executes S301 to send the first test signal to at least one photovoltaic unit, if the inverter determines that the characteristic information of the first test signal fed back by the at least one photovoltaic unit is not obtained; then the inverter The second test signal can be sent to at least one photovoltaic unit, and the frequency of the second test signal is different from the frequency of the first test signal; the inverter obtains the characteristic information of the second test signal fed back by the at least one photovoltaic unit; The characteristic information of a second test signal is sorted by absolute value or relative value, and the fault point in the photovoltaic system is determined according to the sorting result.
  • the inverter sends the first test signal, because the signal strength of the first test signal is weak, it is difficult for one or several photovoltaic units in at least one photovoltaic unit to measure the characteristic information of the first test signal. Or the characteristic information of the first test signal measured by multiple photovoltaic units are very close, so that it is difficult for the inverter to distinguish the characteristic information of the first test signal fed back by the photovoltaic unit, the inverter can send another frequency point The second test signal is used by the photovoltaic unit to measure the characteristics of the second test signal. Then, the inverter can sort the fault points in the photovoltaic unit according to the absolute value or relative value of the characteristic information of the second test signal.
  • the inverter can send a second test signal of 150kHz, and sort according to the absolute value or relative value of the characteristic information of the second test signal to determine the photovoltaic The point of failure in the system.
  • the inverter can determine that the photovoltaic system has a disconnection fault, and then execute the methods described in S301 to S303 above to determine that the disconnection has occurred. The location of the line fault.
  • the output current value of a photovoltaic unit becomes abnormally small, it can be determined that a disconnection fault has occurred in the photovoltaic system.
  • the inverter can determine that the photovoltaic system has a disconnection fault, and then execute the methods described in S301 to S303 above to determine the location of the disconnection fault.
  • an arc-fault circuit-interrupter can be provided in the system.
  • the AFCI can identify the arc and cut off the power supply when there is an arc.
  • the inverter can determine the arcing in the system through the operation of the AFCI to cut off the power supply, and then determine the disconnection fault of the photovoltaic system.
  • the inverter may determine that a disconnection fault occurs in the photovoltaic system according to the characteristic information of the first test signal fed back by the at least one photovoltaic unit.
  • the inverter may send a first test signal, and determine the photovoltaic system according to the absolute value or relative value of the characteristic information of the first test signal fed back by at least one photovoltaic unit A disconnection fault has occurred. After a disconnection fault occurs in the photovoltaic system, the absolute or relative value of the characteristic information measured by the photovoltaic unit closer to the disconnection point is smaller (or larger). If the inverter determines that the characteristic information of the first test signal shows the above trend, it can be determined that a disconnection fault has occurred in the photovoltaic system.
  • the inverter can also pre-store the characteristic information of the first test signal received by each photovoltaic unit under the normal working state of the photovoltaic system as a reference basis for judging whether a disconnection fault has occurred, and then according to normal operation The characteristic information of the first test signal received by each photovoltaic unit in the state is compared with the characteristic information of the first test signal received by each photovoltaic unit at the current moment to determine whether a disconnection fault occurs in the photovoltaic system.
  • the method shown in FIG. 3 may also be executed by a photovoltaic unit in the photovoltaic system.
  • the photovoltaic system includes at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic component and a photovoltaic component controller.
  • the method includes: The fifth photovoltaic unit in the at least one photovoltaic unit sends a first test signal to at least one other photovoltaic unit except the fifth photovoltaic unit; the fifth photovoltaic unit obtains characteristic information of the first test signal fed back by at least one other photovoltaic unit; The fifth photovoltaic unit sorts the characteristic information of the at least one first test signal by absolute value or relative value, and determines the fault point in the photovoltaic system according to the sorting result.
  • the characteristic information of the first test signal includes one or more of the following: signal strength information of the first test signal; impedance information of the first test signal.
  • the photovoltaic module controller receives the first test signal sent by the fifth photovoltaic unit of the at least one photovoltaic unit; the photovoltaic module controller measures the first test signal to obtain the characteristics of the first test signal Information: The photovoltaic module controller feeds back the characteristic information of the first test signal to the fifth photovoltaic unit.
  • the inverter sends the first test signal to at least one photovoltaic unit, so that the at least one photovoltaic unit can measure the first test signal.
  • the characteristic information of the first test signal fed back by at least one photovoltaic unit presents a different trend from that in the normal working state, so the inverter obtains the first feedback from at least one photovoltaic unit.
  • the fault point in the photovoltaic system can be determined according to the absolute value or the relative value of the characteristic information of the first test signal fed back by at least one photovoltaic unit.
  • an embodiment of the present application also provides a method for determining the location of a fault point.
  • the method is applied to a photovoltaic system.
  • the photovoltaic system includes at least one inverter and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic module and a photovoltaic system.
  • Component controller Referring to Figure 5, the method includes the following steps.
  • S501 The photovoltaic module controller receives the first test signal sent by the inverter.
  • the photovoltaic module controller measures the first test signal, and obtains characteristic information of the first test signal.
  • S503 The photovoltaic module controller feeds back the characteristic information of the first test signal to the inverter.
  • the photovoltaic module controller can also be used to perform other operations performed by the photovoltaic unit in the method example provided in FIG. 3, which will not be repeated here.
  • an embodiment of the present application also provides a device for determining the location of a fault point.
  • the device is applied to a photovoltaic system.
  • the photovoltaic system includes at least one device for judging the location of a fault point and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic component and a photovoltaic component controller.
  • the device 600 for determining the location of the fault point includes:
  • the sending unit 601 is configured to send a first test signal to at least one photovoltaic unit.
  • the receiving unit 602 is configured to obtain characteristic information of the first test signal fed back by at least one photovoltaic unit.
  • the processing unit 603 is configured to sort the characteristic information of the at least one first test signal by absolute value or relative value, and determine the fault point in the photovoltaic system according to the sorting result.
  • the photovoltaic module controller can be an optimizer or a shutdown device.
  • the characteristic information of the first test signal may include one or more of the following: signal strength information of the first test signal; impedance information of the first test signal.
  • the first test signal may be a PLC communication signal.
  • the processing unit 603 is specifically configured to: determine that the absolute value or relative value of the characteristic information of the first test signal fed back by the first photovoltaic unit is the smallest, or determine the first The absolute value or the relative value of the characteristic information of the first test signal fed back by a photovoltaic unit is the largest; it is determined that the fault point in the photovoltaic system is located between the first photovoltaic unit and the second photovoltaic unit, and the second photovoltaic unit is the same as the first photovoltaic unit. Adjacent photovoltaic unit.
  • the receiving unit 602 acquires the characteristic information of the first test signal fed back by the at least one photovoltaic unit, it is specifically configured to: receive the characteristic information of the at least one first test signal sent by the at least one photovoltaic unit; or, receive at least one The characteristic information of the at least one first test signal sent by the third photovoltaic unit, and all or part of the photovoltaic units in the at least one third photovoltaic unit are used to forward the characteristic information of the first test signal fed back by the at least one fourth photovoltaic unit.
  • the processing unit 603 is further configured to: after the sending unit 601 sends the first test signal to the at least one photovoltaic unit, determine that the characteristic information of the first test signal fed back by the at least one photovoltaic unit is not obtained; the sending unit 601 also uses In: sending a second test signal to at least one photovoltaic unit, the frequency of the second test signal is different from the frequency of the first test signal; the receiving unit 602 is further configured to: obtain characteristic information of the second test signal fed back by the at least one photovoltaic unit; The processing unit 603 is further configured to: sort the absolute value or relative value of the characteristic information of the at least one second test signal, and determine the fault point in the photovoltaic system according to the sorting result.
  • the processing unit 603 is further configured to: before the sending unit 601 sends the first test signal to the at least one photovoltaic unit, determine that the current signal and/or voltage signal of the at least one photovoltaic unit is abnormal; or, determine that the photovoltaic system is An arc is generated.
  • the processing unit 603 is further configured to: after the receiving unit 602 obtains the characteristic information of the first test signal fed back by the at least one photovoltaic unit, determine according to the characteristic information of the first test signal fed back by the at least one photovoltaic unit A disconnection fault occurred in the photovoltaic system.
  • each functional unit in each embodiment of this application It can be integrated in a processor, it can be a separate physical presence, or two or more units can be integrated in a module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a terminal device (which may be a personal computer, a mobile phone, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the inverter may be presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the device 600 for determining the location of the fault point shown in FIG. 6 can be used to perform the method shown in FIG. 3, and the implementation and technical effects of the device 600 shown in FIG. 6 that are not described in detail can be seen in FIG. 3 The description in the method for determining the location of the fault point will not be repeated here.
  • a device for determining the location of a fault point in an embodiment of the present application is applied to a photovoltaic system.
  • the photovoltaic system includes at least one inverter and at least one photovoltaic unit; the photovoltaic unit includes at least one photovoltaic component and at least one fault.
  • Point location judgment device Referring to FIG. 7, the device 700 for determining the location of the fault point includes: a receiving unit 701 for receiving a first test signal sent by the inverter; a processing unit 702 for measuring the first test signal to obtain the first test signal Characteristic information; the sending unit 703 is used to feed back the characteristic information of the first test signal to the inverter.
  • the device 700 for determining the location of the fault point shown in FIG. 7 can be used to execute the method shown in FIG. 5, and the implementation and technical effects not described in detail in the device 700 shown in FIG. 7 can be seen in FIG. The description in the method for determining the location of the fault point will not be repeated here.
  • the device 600 for determining the location of the fault point shown in FIG. 6 or the device 700 for determining the location of the fault point shown in FIG. 7 may adopt the form shown in FIG. 8.
  • the device 800 for determining the location of the fault point as shown in FIG. 8 includes at least one processor 801, a memory 802, and optionally, a communication interface 803.
  • the memory 802 may be a volatile memory, such as random access memory; the memory may also be a non-volatile memory, such as read-only memory, flash memory, hard disk drive (HDD) or solid-state drive (solid-state drive, SSD) or the memory 802 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 802 may be a combination of the above-mentioned memories.
  • connection medium between the processor 801 and the memory 802 is not limited in the embodiment of the present application.
  • the memory 802 and the processor 801 are connected through a bus 804 in the figure.
  • the bus 804 is represented by a thick line in the figure.
  • the connection modes between other components are only illustratively described, and are not cited Is limited.
  • the bus 804 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 8 to represent, but it does not mean that there is only one bus or one type of bus.
  • the processor 801 may have a data transceiving function, and can communicate with other devices (such as a photovoltaic unit or an inverter).
  • an independent data transceiving module such as a communication interface 803, can also be provided for transceiving data. ;
  • the processor 801 communicates with other devices (such as photovoltaic units or inverters), data can be transmitted through the communication interface 803.
  • the processor 801 in FIG. 8 can execute instructions by calling the computer stored in the memory 802, so that the inverter can execute the method provided in any of the foregoing method embodiments .
  • the functions/implementation processes of the sending unit, the receiving unit, and the processing unit in FIG. 6 can all be implemented by the processor 801 in FIG. 8 calling a computer execution instruction stored in the memory 802.
  • the function/implementation process of the processing unit in FIG. 6 may be implemented by the processor 801 in FIG. 8 calling computer execution instructions stored in the memory 802
  • the function/implementation process of the sending unit and the receiving unit in FIG. 6 may be implemented by The communication interface 803 in FIG. 8 is implemented.
  • the functions/implementation processes of the sending unit, the receiving unit, and the processing unit in FIG. 7 can all be implemented by the processor 801 in FIG. 8 calling a computer execution instruction stored in the memory 802.
  • the function/implementation process of the processing unit in FIG. 7 may be implemented by the processor 801 in FIG. 8 calling a computer execution instruction stored in the memory 802
  • the function/implementation process of the sending unit and the receiving unit in FIG. 7 may be implemented by The communication interface 803 in FIG. 8 is implemented.
  • the device 800 for determining the location of a fault point shown in FIG. 8 can be used to execute the method shown in FIG. 3, and can also be regarded as the same device as the device for determining location of a fault point 600 shown in FIG.
  • the device for determining the location of the fault point shown in FIG. 8 800 can also be used to execute the method shown in FIG. 5, and can also be regarded as the same equipment as the device 700 for determining the location of the fault point shown in FIG. 7.
  • the implementation and technical effects of the device 800 shown in FIG. 8 are not described in detail. Refer to the related description in the method for determining the location of the fault point shown in FIG. 5, which is not repeated here.
  • an embodiment of the present application also provides a photovoltaic system. See FIG. 9.
  • the photovoltaic system has at least one inverter (one is taken as an example in FIG. 9) and at least one photovoltaic unit.
  • the photovoltaic unit includes at least one PV modules and a PV module controller.
  • the inverter is used to send the first test signal to at least one photovoltaic unit; the photovoltaic unit is used to feed back characteristic information of the first test signal to the inverter; the inverter is also used to measure the characteristic information of at least one first test signal Perform absolute value or relative value sorting, and determine the fault point in the photovoltaic system according to the sorting result.
  • the inverter can also be used to perform other operations performed by the inverter in the method for determining the location of the fault point shown in Figure 3, and the photovoltaic unit can also be used to perform the steps shown in Figure 5.
  • Other operations performed by the photovoltaic module controller in the method for determining the location of the fault point will not be repeated here.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Locating Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种故障点位置的判断方法、装置及光伏系统,用以在光伏系统发生断线故障的情况下,准确、高效地判断故障点的位置。该方法应用于光伏系统,光伏系统包含至少一个逆变器以及至少一个光伏单元,每个光伏单元包含至少一个光伏组件以及一个光伏组件控制器;该方法包括:逆变器向至少一个光伏单元发送第一测试信号(S301);逆变器获取至少一个光伏单元反馈的第一测试信号的特征信息(S302);逆变器对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点(S303)。

Description

一种故障点位置的判断方法、装置及光伏系统
相关申请的交叉引用
本申请要求在2019年03月01日提交中国国家知识产权局、申请号为201910157197.2、申请名称为“一种故障点位置的判断方法、装置及光伏系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种故障点位置的判断方法、装置及光伏系统。
背景技术
通常,光伏系统可以由至少一个光伏组串和至少一个逆变器组成。其中,每个光伏组串均与逆变器并联,每个光伏组串包含至少一个光伏单元,每个光伏单元串联连接。每个光伏单元中可以包括至少一个光伏组件以及一个光伏组件控制器,光伏组件控制器用于对该光伏单元的输出电压和输出电流等进行控制。
示例性地,一种光伏系统的结构可以如图1所示。在图1所示的光伏系统中包含两个光伏组串,每个光伏组串中包含十六个光伏单元。每个光伏单元中包含一个优化器,用于对光伏组件输出的直流电进行DC/DC变换,以输出电压和电流可调的直流电,从而使得光伏单元的输出功率达到最大。
通常,逆变器与光伏单元之间以及相邻的光伏单元之间均是通过端子连接的,若端子出现松动或接触不良的现象,两个光伏单元间会发生断线故障(即两个光伏单元间的电气连接断开),例如图1所示的光伏系统中,光伏单元#4和光伏单元#5之间发生断线故障,光伏组串与逆变器无法形成电流回路,影响该光伏组串的正常工作。现有技术中,通常需要人工排查故障点。由于光伏单元一般铺设在屋顶且一个光伏组串中包含的光伏单元的数量较多,因而排查工作量大、效率低。
因此,亟需一种故障点位置的判断方案,从而在光伏单元间发生断线故障的情况下,准确、高效地判断故障点的位置。
发明内容
本申请实施例提供一种故障点位置的判断方法、装置及光伏系统,用以在光伏系统发生断线故障的情况下,准确、高效地判断故障点的位置。
第一方面,本申请实施例提供一种故障点位置的判断方法,该方法应用于光伏系统,光伏系统包含至少一个逆变器以及至少一个光伏单元,光伏单元包含至少一个光伏组件以及一个光伏组件控制器,方法包括如下步骤:逆变器向至少一个光伏单元发送第一测试信号;逆变器获取至少一个光伏单元反馈的第一测试信号的特征信息;逆变器对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
其中,光伏组件控制器可以为优化器或关断器。
在第一方面提供的方法中,逆变器向至少一个光伏单元发送第一测试信号,以供至少一个光伏单元对第一测试信号进行测量。在光伏系统发生断线故障的情况下,由至少一个光伏单元反馈的第一测试信号的特征信息呈现与正常工作状态下不同的趋势,因而逆变器在获取到光伏单元反馈的第一测试信号的特征信息之后,可以根据光伏单元反馈的第一测试信号的特征信息绝对值或相对值排序确定光伏系统中的故障点。采用第一方面提供的方法,在光伏系统发生断线故障的情况下,无需人工排查故障点的位置,可以准确、高效地判断故障点的位置。
在一种可能的设计中,第一测试信号的特征信息包括但不限于以下几种:第一测试信号的信号强度信息;第一测试信号的阻抗信息。
此外,具体实现时,第一测试信号可以为PLC通信信号。
采用上述方案,可以借助光伏单元之间以及逆变器和光伏单元之间原有的通信协议实施第一方面提供的方法。
在一种可能的设计中,逆变器获取至少一个光伏单元反馈的第一测试信号的特征信息,具体可通过如下两种方式实现:
第一种
逆变器接收至少一个光伏单元发送的至少一个第一测试信号的特征信息。
第二种
逆变器接收至少一个第三光伏单元发送的至少一个第一测试信号的特征信息,至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
采用上述方案,逆变器可以直接从至少一个光伏单元接收第一测试信号的特征信息,也可以由第三光伏单元转发其他光伏单元反馈的第一测试信号的特征信息。
在一种可能的设计中,逆变器根据排序结果确定光伏系统中的故障点,具体可通过如下方式实现:逆变器确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小或最大;逆变器确定光伏系统中的故障点位于第一光伏单元和第二光伏单元之间,第二光伏单元为与第一光伏单元相邻的光伏单元。
在光伏系统中,光伏单元中的电池板存在对地分布电容,线缆间也存在对地分布电容。若光伏系统发生断线,正常的信号通路被切断,第一测试信号会通过电池板对地分布电容以及线缆间对地分布电容回流到参考地。由于距离断线点最近的光伏单元对地分布总电容最小,因而该光伏单元的交流阻抗最大,信号强度最弱。采用上述方案,可以根据第一测试信号的特征信息(例如交流阻抗信息或信号强度信息)绝对值或相对值排序确定光伏系统中的故障点。
此外,在逆变器向至少一个光伏单元发送第一测试信号之后,若逆变器未获取到光伏单元反馈的第一测试信号的特征信息,则逆变器可以向至少一个光伏单元发送第二测试信号,第二测试信号的频率与第一测试信号的频率不同;逆变器获取至少一个光伏单元反馈的第二测试信号的特征信息;逆变器对至少一个第二测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
若逆变器发送第一测试信号后,由于第一测试信号的信号强度较弱,至少一个光伏单元中的某一个或几个光伏单元难以测量得到第一测试信号的特征信息,或者多个光伏单元测量得到的第一测试信号的特征信息都很接近,以致逆变器难以对光伏单元反馈的第一测 试信号的特征信息进行辨别,则逆变器可以发送另一频点上的第二测试信号,以供光伏单元对第二测试信号的特征进行测量,然后,逆变器可以根据第二测试信号的特征信息绝对值或相对值排序确定光伏单元中的故障点。
在第一方面提供的方法中,可以通过多种方式判断光伏系统中发生断线故障,进而启用第一方面提供的故障点位置的判断方法来判断故障点位置。
第一种
在逆变器向至少一个光伏单元发送第一测试信号之前,逆变器确定至少一个光伏单元的电流信号和/或电压信号异常。
采用上述方案,可以根据光伏单元的电压和电流特征判断光伏系统中发生断线故障。
第二种
在逆变器向至少一个光伏单元发送第一测试信号之前,逆变器确定光伏系统中产生电弧。
采用上述方案,可以根据光伏系统中的电弧特征判断光伏系统中发生断线故障。
第三种
在逆变器获取至少一个光伏单元反馈的第一测试信号的特征信息之后,逆变器根据至少一个光伏单元反馈的第一测试信号的特征信息确定光伏系统中发生断线故障。
采用上述方案,可以在接收到光伏单元反馈的第一测试信号的特征信息之后确定光伏系统中发生断线故障,然后再对至少一个光伏单元反馈的第一测试信号的特征信息进行分析,确定具体的断线位置。
第二方面,本申请实施例提供一种故障点位置的判断方法,该方法应用于光伏系统,光伏系统包括至少一个逆变器和至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器,该方法包括:光伏组件控制器接收逆变器发送的第一测试信号;光伏组件控制器对第一测试信号进行测量,获取第一测试信号的特征信息;光伏组件控制器向逆变器反馈第一测试信号的特征信息。
此外,光伏组件控制器还可用于执行第一方面提供的方法中的光伏单元所执行的其他操作,此处不再赘述。
第三方面,本申请实施例提供一种故障点位置的判断方法,该方法应用于光伏系统,光伏系统包括至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器,该方法包括:
至少一个光伏单元中的第五光伏单元向至少一个光伏单元中除第五光伏单元之外的至少一个其他光伏单元发送第一测试信号;
第五光伏单元获取至少一个其他光伏单元反馈的第一测试信号的特征信息;
第五光伏单元对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
其中,第一测试信号的特征信息包括以下一种或多种:第一测试信号的信号强度信息;第一测试信号的阻抗信息。
第四方面,本申请实施例提供一种故障点位置的判断方法,该方法应用于光伏系统,光伏系统包括至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器,该方法包括:光伏组件控制器接收至少一个光伏单元中的第五光伏单元发送的第一测试信号;光伏组件控制器对第一测试信号进行测量,获取第一测试信号的特征信息;光伏 组件控制器向第五光伏单元反馈第一测试信号的特征信息。
第五方面,本申请实施例提供一种故障点位置的判断装置,该装置应用于光伏系统,光伏系统包括至少一个故障点位置的判断装置和至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器,该装置包括:发送单元,用于向至少一个光伏单元发送第一测试信号;接收单元,用于获取至少一个光伏单元反馈的第一测试信号的特征信息;处理单元,用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
其中,第一测试信号的特征信息可以包括以下一种或多种:第一测试信号的信号强度信息;第一测试信号的阻抗信息。光伏组件控制器可以为优化器或关断器。
在一种可能的设计中,处理单元在根据排序结果确定光伏系统中的故障点时,具体用于:确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小或最大;确定光伏系统中的故障点位于第一光伏单元和第二光伏单元之间,第二光伏单元为与第一光伏单元相邻的光伏单元。
在一种可能的设计中,接收单元在获取至少一个光伏单元反馈的第一测试信号的特征信息时,具体用于:接收至少一个光伏单元发送的至少一个第一测试信号的特征信息;或者,接收至少一个第三光伏单元发送的至少一个第一测试信号的特征信息,至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
在一种可能的设计中,处理单元还用于:在发送单元向至少一个光伏单元发送第一测试信号之后,确定未获取到至少一个光伏单元反馈的第一测试信号的特征信息;发送单元还用于:向至少一个光伏单元发送第二测试信号,第二测试信号的频率与第一测试信号的频率不同;接收单元还用于:获取至少一个光伏单元反馈的第二测试信号的特征信息;处理单元还用于:对至少一个第二测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
在一种可能的设计中,处理单元还用于:在发送单元向至少一个光伏单元发送第一测试信号之前,确定至少一个光伏单元的电流信号和/或电压信号异常;或者,确定光伏系统中产生电弧。
在一种可能的设计中,处理单元还用于:在接收单元获取至少一个光伏单元反馈的第一测试信号的特征信息之后,根据至少一个光伏单元反馈的第一测试信号的特征信息确定光伏系统中发生断线故障。
在一种可能的设计中,第一测试信号可以为PLC通信信号。
第六方面,本申请实施例提供一种故障点位置的判断装置,该装置应用于光伏系统,光伏系统包括至少一个逆变器和至少一个光伏单元;光伏单元包含至少一个光伏组件以及至少一个故障点位置的判断装置,该装置包括:接收单元,用于接收逆变器发送的第一测试信号;处理单元,用于对第一测试信号进行测量,获取第一测试信号的特征信息;发送单元,用于向逆变器反馈第一测试信号的特征信息。
第七方面,本申请实施例提供一种故障点位置的判断装置,所述故障点位置的判断装置应用于光伏系统中。所述故障点位置的判断装置的结构中包括处理器和存储器,所述处理器被配置为支持所述装置执行上述第一方面方法、第二方面方法、第三方面方法、第四方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述故障点位置的判断装 置必要的程序指令和数据。所述故障点位置的判断装置的结构中还包括通信接口,用于与其他设备进行通信。
第八方面,本申请实施例提供一种光伏系统,包括:至少一个逆变器和至少一个光伏单元,光伏单元包含至少一个光伏组件以及一个光伏组件控制器;逆变器,用于向至少一个光伏单元发送第一测试信号;至少一个光伏单元,用于向逆变器反馈第一测试信号的特征信息;逆变器,还用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
需要说明的是,第八方面提供的光伏系统中,逆变器还可用于执行第一方面中不同设计方式所提供的方案,光伏单元还可用于执行第二方面中不同设计方式所提供的方案,此处不再赘述。
另外,第二方面至第八方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种光伏系统的结构示意图;
图2为本申请实施例提供的一种光伏系统的结构示意图;
图3为本申请实施例提供的一种故障点位置的判断方法的流程示意图;
图4为本申请实施例提供的另一种光伏系统的结构示意图;
图5为本申请实施例提供的另一种故障点位置的判断方法的流程示意图;
图6为本申请实施例提供的第一种故障点位置的判断装置的结构示意图;
图7为本申请实施例提供的第二种故障点位置的判断装置的结构示意图;
图8为本申请实施例提供的第三种故障点位置的判断装置的结构示意图;
图9为本申请实施例提供的第三种光伏系统的结构示意图。
具体实施方式
下面,首先对本申请实施例的应用场景加以简单介绍。
本申请实施例可应用于图2所示的光伏系统中,该光伏系统包含至少一个逆变器(图2中以一个示意)以及至少一个光伏单元,至少一个光伏单元串联连接;至少一个光伏单元中的每个光伏单元包含至少一个光伏组件以及一个光伏组件控制器。
其中,光伏组件控制器的输入端与光伏组件连接,用于对光伏组件的输出电压和输出电流进行调节。此外,光伏组件控制器还和与光伏组件控制器所在光伏单元相邻的两个光伏单元连接,以实现光伏单元之间的连接。示例性地,该光伏组件控制器可以是优化器,用于实现输出电压和输出电流的调节,以使得光伏单元的输出功率最大;该光伏组件控制器也可以是关断器,用于对打开或关闭该光伏单元的输出。
在实际应用中,每个光伏单元中,光伏组件输出的直流电经光伏组件控制器进行DC/DC变换后输出。多个光伏单元均输出直流电至逆变器,逆变器对直流电进行DC/AC变换后得到的交流电可作为市电输出至电网。
本申请实施例中,串联的至少一个光伏单元可以视为一个光伏组串,也可以称为直流高压组串。光伏系统中可以包含一个光伏组串,也可以包含多个光伏组串,图2中仅以光 伏系统中包含一个光伏组串为例进行示意。在光伏系统中包含多个光伏组串时,多个光伏组串并联连接。
此外,在图2所示的光伏系统中,逆变器和每个光伏单元之间以及光伏单元之间均可以通过电力线通信(power line communication,PLC)协议来传递信息,以进行业务查询、命令控制等信息交互操作。其中,逆变器可以作为PLC通信主机,光伏组件控制器可以作为PLC通信从机。
在图2所示的光伏系统中,逆变器与光伏单元之间以及相邻的光伏单元之间均是通过端子连接的,若端子出现松动或接触不良的现象,两个光伏单元间会发生断线故障。采用现有技术对故障点位置进行人工排查,排查工作量大、效率低,难以准确、高效地判断故障点的位置。
本申请实施例提供一种故障点位置的判断方法、装置及光伏系统,用以在光伏系统发生断线故障的情况下,准确、高效地判断故障点的位置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
参见图3,为本申请实施例提供的故障点位置的判断方法的流程示意图。该方法可应用于图2所示的光伏系统中,该光伏系统包含至少一个逆变器以及至少一个光伏单元;每个光伏单元包含至少一个光伏组件以及一个光伏组件控制器。其中,该光伏组件控制器可以是用于对光伏单元的输出电压和输出电流进行调节的优化器,也可以是用于对光伏单元的输出进行打开或关闭操作的关断器。
参见图3,该方法包括如下步骤。
S301:逆变器向至少一个光伏单元发送第一测试信号。
其中,第一测试信号用于至少一个光伏单元对第一测试信号进行测量,例如光伏单元可以测量第一测试信号的信号强度或者阻抗等。
本申请实施例中,逆变器向至少一个光伏单元发送第一测试信号的含义可以是:逆变器发出第一测试信号后,串联的至少一个光伏单元均可以接收到第一测试信号。每个光伏单元在接收到第一测试信号后,均可对接收到的第一测试信号进行测量,得到第一测试信号的特征信息并上报给逆变器。具体地,可以由光伏单元中的光伏组件控制器对第一测试信号的进行测量。具体测量方式为现有技术,此处不再赘述。
可选地,第一测试信号可以是直流信号也可以是交流信号。以第一测试信号为交流信号为例,第一测试信号可以为PLC通信信号。第一测试信号可以是逆变器和光伏单元间进行PLC通信时的PLC通信频段的信号,也可以是PLC通信频段之外的信号。
示例性地,在光伏系统中,光伏单元之间或者逆变器和光伏单元之间进行PLC通信时,通常采用75kHz~148.5kHz这一频段的信号,那么,第一测试信号的频率可以位于75kHz~148.5kHz之间,也可以是该频段范围之外的某一频率,例如可以是150kHz。
具体实现时,逆变器在发送第一测试信号时,逆变器可以在一段时间内持续发送预先定义的某个频点或某几个频点的测试信号(PLC通信信号),每个光伏单元的光伏组件控制器中的PLC模块可以对接收到的第一测试信号进行测量。
S302:逆变器获取至少一个光伏单元反馈的第一测试信号的特征信息。
其中,第一测试信号的特征信息包括但不限于第一测试信号的信号强度信息和第一测试信号的阻抗信息。
具体实现时,逆变器在执行S302获取至少一个光伏单元反馈的第一测试信号的特征信息的方式可以有多种,下面列举其中两种。
方式一
在方式一中,逆变器可以接收至少一个光伏单元发送的至少一个第一测试信号的特征信息。
也就是说,在方式一中,每个光伏单元均具备与逆变器进行通信的能力,且每个光伏单元在反馈第一测试信号的特征信息时,信号强度均可以保证逆变器可以接收到第一测试信号的特征信息。此时,由每个光伏单元向逆变器发送第一测试信号的特征信息即可。
方式二
在方式二中,逆变器接收至少一个第三光伏单元发送的至少一个第一测试信号的特征信息,至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
也就是说,在方式二中,虽然每个光伏单元均具备与逆变器进行通信的能力,但是第四光伏单元在发送第一测试信号的特征信息时,信号强度无法保证逆变器可以接收到第一测试信号的特征信息,因而第四光伏单元的反馈结果(即第四光伏单元反馈的第一测试信号的特征信息)需经由至少一个第三光伏单元中的全部或部分光伏单元转发。即第四光伏单元将第一测试信号的特征信息发送给第三光伏单元,由第三光伏单元上报给逆变器。
此外,在方式二中,具体实现时,可以由一个第三光伏单元进行反馈结果的转发,也可以由多个第三光伏单元进行反馈结果的转发,具体由哪一个或几个第三光伏单元对哪一个或几个第四光伏单元的反馈结果进行转发可视具体情况而定,本申请实施例中对此不作具体限定。
S303:逆变器对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
具体地,逆变器在接收到至少一个光伏单元反馈的第一测试信号的特征信息之后,可以对第一测试信号的特征信息的绝对值或者相对值进行排序,那么,S303中,逆变器根据至少一个确定光伏系统中的故障点,具体可通过如下方式实现:逆变器确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小(例如第一测试信号的信号强度信息的绝对值或相对值最小),或者,逆变器确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最大(例如第一测试信号的阻抗信息的绝对值或相对值最大);逆变器确定光伏系统中的故障点位于第一光伏单元和第二光伏单元之间,第二光伏单元为与第一光伏单元相邻的光伏单元。
在光伏系统中,光伏单元中的电池板存在对地分布电容,线缆间也存在对地分布电容。若某两个光伏单元间发生断线,正常的信号通路被切断,第一测试信号会通过电池板对地分布电容以及线缆间对地分布电容回流到参考地。由于距离断线点最近的光伏单元对地分 布总电容最小,因而该光伏单元的交流阻抗最大,信号强度最弱。
示例性地,在确定第一光伏单元测量得到的第一测试信号的信号强度绝对值或相对值最小后,由于与第一光伏单元相邻的光伏单元有两个,那么还需判断这两个光伏单元中的哪一个光伏单元与第一光伏单元间发生断线故障。通常,若光伏组件控制器是在光伏单元的末端对第一测试信号的信号强度进行测量,那么逆变器可以确定与第一光伏单元的输出端连接的第二光伏单元与第一光伏单元间发生断线故障;若光伏组件控制器是在光伏单元的前端对信号强度进行测量,那么逆变器可以确定与第一光伏单元的输入端连接的第二光伏单元与第一光伏单元间发生断线故障。
这是因为,若在每个光伏单元的末端进行信号强度的测量,那么对于断线点之前的光伏单元来说,其末端之后不再有其他光伏单元,仅有一段短线缆,这段线缆形成的对地分布电容非常小、交流阻抗非常大,因而断线点之前的光伏单元应该是至少一个光伏单元中测量得到信号强度最弱的光伏单元。因此可以判断,与第一光伏单元(测量得到信号强度最弱的光伏单元)的输出端连接的第二光伏单元与第一光伏单元间发生断线故障。若在每个光伏单元的前端进行信号强度的测量,那么对于断线点之后的光伏单元来说,其前端之前不再有其他光伏单元,仅有一段短线缆,这段线缆形成的对地分布电容非常小、交流阻抗非常大,因而断线点之后的光伏单元应该是至少一个光伏单元中测量得到信号强度最弱的光伏单元。因此可以判断,与第一光伏单元(测量得到信号强度最弱的光伏单元)的输入端连接的第二光伏单元与第一光伏单元间发生断线故障。
示例性地,如图4所示,在光伏系统中,光伏单元#4和光伏单元#5间发生断线故障,信号通路在光伏单元#4和光伏单元#5间断开,逆变器发送的第一测试信号流经逆变器→光伏单元#1…光伏单元#4的同时,还会顺次经由线缆间对地分布电容、光伏单元#1的对地分布电容、光伏单元#2的对地分布电容、光伏单元#3的对地分布电容、光伏单元#4的对地分布电容流回参考地。逆变器发送第一测试信号后,每个光伏单元中的光伏组件控制器在该光伏单元的末端对第一测试信号的信号强度进行测量。从图4中不难看出,由于光伏单元#4之后不再有其他光伏单元,因而光伏单元#4流经的电流最小,光伏单元#4测量的信号强度最弱。同理,在逆变器→光伏单元#16→光伏单元#15…光伏单元#5这一通路上,光伏单元#5流经的电流最小,光伏单元#5测量的信号强度最弱。在该示例中,每个光伏单元中的光伏组件控制器是在光伏单元的末端对信号强度进行测试,逆变器可以确定光伏单元#4测量得到的信号强度最弱,光伏单元#3和光伏单元#5的信号强度也较弱。那么,逆变器可以判断光伏单元#4以及与光伏单元#4的输出端连接的光伏单元#5间发生断线故障。
本申请实施例中,在逆变器执行S301向至少一个光伏单元发送第一测试信号之后,若逆变器确定未获取到至少一个光伏单元反馈的第一测试信号的特征信息;则逆变器可向至少一个光伏单元发送第二测试信号,第二测试信号的频率与第一测试信号的频率不同;逆变器获取至少一个光伏单元反馈的第二测试信号的特征信息;逆变器对至少一个第二测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
也就是说,若逆变器发送第一测试信号后,由于第一测试信号的信号强度较弱,至少一个光伏单元中的某一个或几个光伏单元难以测量得到第一测试信号的特征信息,或者多个光伏单元测量得到的第一测试信号的特征信息都很接近,以致逆变器难以对光伏单元反馈的第一测试信号的特征信息进行辨别,则逆变器可以发送另一频点上的第二测试信号, 以供光伏单元对第二测试信号的特征进行测量,然后,逆变器可以根据第二测试信号的特征信息绝对值或相对值排序确定光伏单元中的故障点。
示例性地,逆变器发送100kHz的第一测试信号后,若逆变器并未收到至少一个光伏单元反馈的第一测试信号的特征信息,或者某些光伏单元测量得到的特征信息均较接近、逆变器难以对接收到的第一测试信号的特征信息进行辨别,则逆变器可以发送150kHz的第二测试信号,并根据第二测试信号的特征信息绝对值或相对值排序确定光伏系统中的故障点。
此外,在执行上述方法确定光伏系统中的故障点之前,需要先确定光伏系统中发生断线故障,进而触发执行上述方法。在本申请实施例中,可以采用多种方式判断光伏系统中发生断线故障,下面列举其中的三种方式。
方式一
在方式一中,逆变器确定至少一个光伏单元的电流信号和/或电压信号异常之后,逆变器可以确定光伏系统发生断线故障,进而执行上述S301~S303所述的方法来判断发生断线故障的位置。
比如,若某个光伏单元的输出电流值变得异常小,则可以确定光伏系统中发生断线故障。
方式二
在方式二中,逆变器确定光伏系统中产生电弧之后,逆变器可以确定光伏系统发生断线故障,进而执行上述S301~S303所述的方法来判断发生断线故障的位置。
具体实现时,系统中可设置有电弧故障分断器(arc-fault circuit-interrupter,AFCI),在光伏系统中产生电弧时,AFCI可以识别电弧并在存在电弧时切断电源。逆变器可以通过AFCI切断电源的操作判断系统中产生电弧,进而确定光伏系统发生断线故障。
方式三
在方式三中,逆变器可以根据至少一个光伏单元反馈的第一测试信号的特征信息确定光伏系统中发生断线故障。
也就是说,为了判断光伏系统中是否发生断线故障,逆变器可以发送第一测试信号,并根据至少一个光伏单元反馈的第一测试信号的特征信息绝对值或相对值排序结果确定光伏系统发生断线故障。在光伏系统发生断线故障后,离断线点位置越近的光伏单元测量得到的特征信息绝对值或相对值越小(或越大)。若逆变器确定第一测试信号的特征信息呈现上述趋势,则可以确定光伏系统中发生断线故障。
此外,在方式三中,逆变器还可预先保存光伏系统正常工作状态下各个光伏单元接收到的第一测试信号的特征信息,以作为判断是否发生断线故障的参考依据,进而根据正常工作状态下各个光伏单元接收到的第一测试信号的特征信息与当前时刻各个光伏单元接收到的第一测试信号的特征信息进行对比,判断光伏系统中是否发生断线故障。
需要说明的是,本申请实施例中,图3所示的方法也可以由光伏系统中的某一光伏单元执行。
那么,本申请实施例提供的故障点位置的判断方法应用于光伏系统,光伏系统包括至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器,该方法包括:至少一个光伏单元中的第五光伏单元向至少一个光伏单元中除第五光伏单元之外的至少一个其他光伏单元发送第一测试信号;第五光伏单元获取至少一个其他光伏单元反馈的第 一测试信号的特征信息;第五光伏单元对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
其中,第一测试信号的特征信息包括以下一种或多种:第一测试信号的信号强度信息;第一测试信号的阻抗信息。
相应地,在该实现方式中,光伏组件控制器接收至少一个光伏单元中的第五光伏单元发送的第一测试信号;光伏组件控制器对第一测试信号进行测量,获取第一测试信号的特征信息;光伏组件控制器向第五光伏单元反馈第一测试信号的特征信息。
在图3所示的方法中,逆变器向至少一个光伏单元发送第一测试信号,以供至少一个光伏单元对第一测试信号进行测量。在光伏系统发生断线故障的情况下,由至少一个光伏单元反馈的第一测试信号的特征信息呈现与正常工作状态下不同的趋势,因而逆变器在获取到至少一个光伏单元反馈的第一测试信号的特征信息之后,可以根据至少一个光伏单元反馈的第一测试信号的特征信息绝对值或相对值排序确定光伏系统中的故障点。采用图3所示方法,在光伏系统发生断线故障的情况下,无需人工排查故障点的位置,可以准确、高效地判断故障点的位置。
基于同一发明构思,本申请实施例还提供一种故障点位置的判断方法,该方法应用于光伏系统,光伏系统包括至少一个逆变器和至少一个光伏单元;光伏单元包含至少一个光伏组件以及光伏组件控制器。参见图5,该方法包括如下步骤。
S501:光伏组件控制器接收逆变器发送的第一测试信号。
S502:光伏组件控制器对第一测试信号进行测量,获取第一测试信号的特征信息。
S503:光伏组件控制器向逆变器反馈第一测试信号的特征信息。
此外,光伏组件控制器还可用于执行图3提供的方法示例中由光伏单元所执行的其他操作,此处不再赘述。
基于同一发明构思,本申请实施例还提供一种故障点位置的判断装置。该装置应用于光伏系统,光伏系统包括至少一个故障点位置的判断装置和至少一个光伏单元;光伏单元包含至少一个光伏组件以及一个光伏组件控制器。参见图6,故障点位置的判断装置600包括:
发送单元601,用于向至少一个光伏单元发送第一测试信号。
接收单元602,用于获取至少一个光伏单元反馈的第一测试信号的特征信息。
处理单元603,用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
其中,光伏组件控制器可以为优化器或关断器。第一测试信号的特征信息可以包括以下一种或多种:第一测试信号的信号强度信息;第一测试信号的阻抗信息。
具体地,第一测试信号可以为PLC通信信号。
可选地,处理单元603在根据排序结果确定光伏系统中的故障点时,具体用于:确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小,或者,确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最大;确定光伏系统中的故障点位于第一光伏单元和第二光伏单元之间,第二光伏单元为与第一光伏单元相邻的光伏单元。
可选地,接收单元602在获取至少一个光伏单元反馈的第一测试信号的特征信息时, 具体用于:接收至少一个光伏单元发送的至少一个第一测试信号的特征信息;或者,接收至少一个第三光伏单元发送的至少一个第一测试信号的特征信息,至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
可选地,处理单元603还用于:在发送单元601向至少一个光伏单元发送第一测试信号之后,确定未获取到至少一个光伏单元反馈的第一测试信号的特征信息;发送单元601还用于:向至少一个光伏单元发送第二测试信号,第二测试信号的频率与第一测试信号的频率不同;接收单元602还用于:获取至少一个光伏单元反馈的第二测试信号的特征信息;处理单元603还用于:对至少一个第二测试信号的特征信息绝对值或相对值进行排序,根据排序结果确定光伏系统中的故障点。
在一种方式中,处理单元603还用于:在发送单元601向至少一个光伏单元发送第一测试信号之前,确定至少一个光伏单元的电流信号和/或电压信号异常;或者,确定光伏系统中产生电弧。
在另一种处理方式中,处理单元603还用于:在接收单元602获取至少一个光伏单元反馈的第一测试信号的特征信息之后,根据至少一个光伏单元反馈的第一测试信号的特征信息确定光伏系统中发生断线故障。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一个终端设备(可以是个人计算机,手机,或者网络设备等)或处理器(processor)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各实施例中,逆变器可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
需要说明的是,图6所示的故障点位置的判断装置600可用于执行图3所示的方法,图6所示的装置600中未详尽介绍的实现方式和技术效果可参见图3所示的故障点位置的判断方法中的相关描述,此处不再赘述。
基于同一发明构思,本申请实施例一种故障点位置的判断装置,该装置应用于光伏系统,光伏系统包括至少一个逆变器和至少一个光伏单元;光伏单元包含至少一个光伏组件以及至少一个故障点位置的判断装置。参见图7,故障点位置的判断装置700包括:接收单元701,用于接收逆变器发送的第一测试信号;处理单元702,用于对第一测试信号进行测量,获取第一测试信号的特征信息;发送单元703,用于向逆变器反馈第一测试信号 的特征信息。
需要说明的是,图7所示的故障点位置的判断装置700可用于执行图5所示的方法,图7所示的装置700中未详尽介绍的实现方式和技术效果可参见图5所示的故障点位置的判断方法中的相关描述,此处不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到图6所示的故障点位置的判断装置600或者图7所示的故障点位置的判断装置700可采用图8所示的形式。
如图8所示的故障点位置的判断装置800,包括至少一个处理器801、存储器802,可选的,还可以包括通信接口803。
存储器802可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器802是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器802可以是上述存储器的组合。
本申请实施例中不限定上述处理器801以及存储器802之间的具体连接介质。本申请实施例在图中以存储器802和处理器801之间通过总线804连接,总线804在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线804可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器801可以具有数据收发功能,能够与其他设备(例如光伏单元或者逆变器)进行通信,在如图8装置中,也可以设置独立的数据收发模块,例如通信接口803,用于收发数据;处理器801在与其他设备(例如光伏单元或者逆变器)进行通信时,可以通过通信接口803进行数据传输。
当逆变器采用图8所示的形式时,图8中的处理器801可以通过调用存储器802中存储的计算机执行指令,使得所述逆变器可以执行上述任一方法实施例中提供的方法。
具体的,图6中的发送单元、接收单元和处理单元的功能/实现过程均可以通过图8中的处理器801调用存储器802中存储的计算机执行指令来实现。或者,图6中的处理单元的功能/实现过程可以通过图8中的处理器801调用存储器802中存储的计算机执行指令来实现,图6中的发送单元和接收单元的功能/实现过程可以通过图8中的通信接口803来实现。
具体的,图7中的发送单元、接收单元和处理单元的功能/实现过程均可以通过图8中的处理器801调用存储器802中存储的计算机执行指令来实现。或者,图7中的处理单元的功能/实现过程可以通过图8中的处理器801调用存储器802中存储的计算机执行指令来实现,图7中的发送单元和接收单元的功能/实现过程可以通过图8中的通信接口803来实现。
需要说明的是,图8所示的故障点位置的判断装置800可用于执行图3所示的方法,也可以视为与图6所示的故障点位置的判断装置600相同的设备,图8所示的装置800中未详尽介绍的实现方式和技术效果可参见图3所示的故障点位置的判断方法中的相关描述,此处不再赘述;图8所示的故障点位置的判断装置800也可用于执行图5所示的方法,也可以视为与图7所示的故障点位置的判断装置700相同的设备,图8所示的装置800中未 详尽介绍的实现方式和技术效果可参见图5所示的故障点位置的判断方法中的相关描述,此处不再赘述。
基于同一发明构思,本申请实施例还提供一种光伏系统,参见图9,该光伏系统至少一个逆变器(图9中以一个为例进行示意)和至少一个光伏单元,光伏单元包含至少一个光伏组件以及一个光伏组件控制器。其中,逆变器用于向至少一个光伏单元发送第一测试信号;光伏单元用于向逆变器反馈第一测试信号的特征信息;逆变器还用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据排序结果确定光伏系统中的故障点。
此外,图9所示的光伏系统中,逆变器还可用于执行图3所示的故障点位置的判断方法中逆变器所执行的其他操作,光伏单元还可用于执行图5所示的故障点位置的判断方法中光伏组件控制器所执行的其他操作,此处不再赘述。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (22)

  1. 一种故障点位置的判断方法,其特征在于,所述方法应用于光伏系统,所述光伏系统包括至少一个逆变器和至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及一个光伏组件控制器,所述方法包括:
    所述逆变器向所述至少一个光伏单元发送第一测试信号;
    所述逆变器获取所述至少一个光伏单元反馈的第一测试信号的特征信息;
    所述逆变器对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
  2. 如权利要求1所述的方法,其特征在于,所述第一测试信号的特征信息包括以下一种或多种:
    所述第一测试信号的信号强度信息;
    所述第一测试信号的阻抗信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述逆变器根据所述排序结果确定所述光伏系统中的故障点,包括:
    所述逆变器确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小;或者,所述逆变器确定所述第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最大;
    所述逆变器确定所述光伏系统中的故障点位于所述第一光伏单元和第二光伏单元之间,所述第二光伏单元为与所述第一光伏单元相邻的光伏单元。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述逆变器获取所述至少一个光伏单元反馈的第一测试信号的特征信息,包括:
    所述逆变器接收所述至少一个光伏单元发送的所述至少一个第一测试信号的特征信息;或者,
    所述逆变器接收至少一个第三光伏单元发送的所述至少一个第一测试信号的特征信息,所述至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
  5. 如权利要求1~4任一项所述的方法,其特征在于,在所述逆变器向所述至少一个光伏单元发送第一测试信号之后,还包括:
    所述逆变器确定未获取到所述至少一个光伏单元反馈的第一测试信号的特征信息;
    所述逆变器向所述至少一个光伏单元发送第二测试信号,所述第二测试信号的频率与所述第一测试信号的频率不同;
    所述逆变器获取所述至少一个光伏单元反馈的第二测试信号的特征信息;
    所述逆变器对至少一个第二测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
  6. 如权利要求1~5任一项所述的方法,其特征在于,在所述逆变器向所述至少一个光伏单元发送第一测试信号之前,还包括:
    所述逆变器确定所述至少一个光伏单元的电流信号和/或电压信号异常;或者,
    所述逆变器确定所述光伏系统中产生电弧。
  7. 如权利要求1~6任一项所述的方法,其特征在于,在所述逆变器获取所述至少一 个光伏单元反馈的第一测试信号的特征信息之后,还包括:
    所述逆变器根据所述至少一个光伏单元反馈的第一测试信号的特征信息确定所述光伏系统中发生断线故障。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述第一测试信号为电力线通信PLC通信信号。
  9. 一种故障点位置的判断方法,其特征在于,所述方法应用于光伏系统,所述光伏系统包括至少一个逆变器和至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及一个光伏组件控制器,所述方法包括:
    所述光伏组件控制器接收所述逆变器发送的第一测试信号;
    所述光伏组件控制器对所述第一测试信号进行测量,获取所述第一测试信号的特征信息;
    所述光伏组件控制器向所述逆变器反馈所述第一测试信号的特征信息。
  10. 一种故障点位置的判断方法,其特征在于,所述方法应用于光伏系统,所述光伏系统包括至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及一个光伏组件控制器,所述方法包括:
    所述至少一个光伏单元中的第五光伏单元向所述至少一个光伏单元中除所述第五光伏单元之外的至少一个其他光伏单元发送第一测试信号;
    所述第五光伏单元获取所述至少一个其他光伏单元反馈的第一测试信号的特征信息;
    所述第五光伏单元对所述至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
  11. 如权利要求10所述的方法,其特征在于,所述第一测试信号的特征信息包括以下一种或多种:
    所述第一测试信号的信号强度信息;
    所述第一测试信号的阻抗信息。
  12. 一种故障点位置的判断方法,其特征在于,所述方法应用于光伏系统,所述光伏系统包括至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及一个光伏组件控制器,所述方法包括:
    所述光伏组件控制器接收所述至少一个光伏单元中的第五光伏单元发送的第一测试信号;
    所述光伏组件控制器对所述第一测试信号进行测量,获取所述第一测试信号的特征信息;
    所述光伏组件控制器向所述第五光伏单元反馈所述第一测试信号的特征信息。
  13. 一种故障点位置的判断装置,其特征在于,所述装置应用于光伏系统,所述光伏系统包括至少一个所述装置和至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及一个光伏组件控制器,所述装置包括:
    发送单元,用于向所至少一个光伏单元发送第一测试信号;
    接收单元,用于获取所述至少一个光伏单元反馈的第一测试信号的特征信息;
    处理单元,用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
  14. 如权利要求13所述的装置,其特征在于,所述第一测试信号的特征信息包括以 下一种或多种:
    所述第一测试信号的信号强度信息;
    所述第一测试信号的阻抗信息。
  15. 如权利要求13或14所述的装置,其特征在于,所述处理单元在根据所述排序结果确定所述光伏系统中的故障点时,具体用于:
    确定第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最小;或者,确定所述第一光伏单元反馈的第一测试信号的特征信息的绝对值或相对值最大;
    确定所述光伏系统中的故障点位于所述第一光伏单元和第二光伏单元之间,所述第二光伏单元为与所述第一光伏单元相邻的光伏单元。
  16. 如权利要求13~15任一项所述的装置,其特征在于,所述接收单元在获取所述至少一个光伏单元反馈的第一测试信号的特征信息时,具体用于:
    接收所述至少一个光伏单元发送的所述至少一个第一测试信号的特征信息;或者,
    接收所述至少一个第三光伏单元发送的所述至少一个第一测试信号的特征信息,所述至少一个第三光伏单元中的全部或部分光伏单元用于对至少一个第四光伏单元反馈的第一测试信号的特征信息进行转发。
  17. 如权利要求13~16任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述发送单元向所述至少一个光伏单元发送第一测试信号之后,确定未获取到所述至少一个光伏单元反馈的第一测试信号的特征信息;
    所述发送单元还用于:向所述至少一个光伏单元发送第二测试信号,所述第二测试信号的频率与所述第一测试信号的频率不同;
    所述接收单元还用于:获取所述至少一个光伏单元反馈的所述第二测试信号的特征信息;
    所述处理单元还用于:对至少一个第二测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
  18. 如权利要求13~17任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述发送单元向所述至少一个光伏单元发送第一测试信号之前,确定所述至少一个光伏单元的电流信号和/或电压信号异常;或者,确定所述光伏系统中产生电弧。
  19. 如权利要求13~18任一项所述的装置,其特征在于,所述处理单元还用于:
    在所述接收单元获取所述至少一个光伏单元反馈的第一测试信号的特征信息之后,根据所述至少一个光伏单元反馈的第一测试信号的特征信息确定所述光伏系统中发生断线故障。
  20. 如权利要求13~19任一项所述的装置,其特征在于,所述第一测试信号为电力线通信PLC通信信号。
  21. 一种故障点位置的判断装置,其特征在于,所述装置应用于光伏系统,所述光伏系统包括至少一个逆变器和至少一个光伏单元;所述光伏单元包含至少一个光伏组件以及至少一个所述装置,所述装置包括:
    接收单元,用于接收所述逆变器发送的第一测试信号;
    处理单元,用于对所述第一测试信号进行测量,获取所述第一测试信号的特征信息;
    发送单元,用于向所述逆变器反馈所述第一测试信号的特征信息。
  22. 一种光伏系统,其特征在于,包括:至少一个逆变器和至少一个光伏单元,所述 光伏单元包含至少一个光伏组件以及一个光伏组件控制器;
    所述逆变器,用于向所述至少一个光伏单元发送第一测试信号;
    所述至少一个光伏单元,用于向所述逆变器反馈所述第一测试信号的特征信息;
    所述逆变器,还用于对至少一个第一测试信号的特征信息进行绝对值或相对值排序,根据所述排序结果确定所述光伏系统中的故障点。
PCT/CN2019/108771 2019-03-01 2019-09-27 一种故障点位置的判断方法、装置及光伏系统 WO2020177317A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19918167.8A EP3780386A4 (en) 2019-03-01 2019-09-27 METHOD AND DEVICE FOR DETERMINING THE POSITION OF A FAULT POINT AND PHOTOVOLTAIC SYSTEM
AU2019433018A AU2019433018B2 (en) 2019-03-01 2019-09-27 Fault point position determining method and apparatus and photovoltaic system
JP2021549854A JP7259069B2 (ja) 2019-03-01 2019-09-27 障害点位置決定方法および装置ならびに光起電力システム
US17/088,023 US11632077B2 (en) 2019-03-01 2020-11-03 Fault point position determining method and apparatus and photovoltaic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910157197.2A CN109905084B (zh) 2019-03-01 2019-03-01 一种故障点位置的判断方法、装置及光伏系统
CN201910157197.2 2019-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/088,023 Continuation US11632077B2 (en) 2019-03-01 2020-11-03 Fault point position determining method and apparatus and photovoltaic system

Publications (1)

Publication Number Publication Date
WO2020177317A1 true WO2020177317A1 (zh) 2020-09-10

Family

ID=66946108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108771 WO2020177317A1 (zh) 2019-03-01 2019-09-27 一种故障点位置的判断方法、装置及光伏系统

Country Status (6)

Country Link
US (1) US11632077B2 (zh)
EP (1) EP3780386A4 (zh)
JP (1) JP7259069B2 (zh)
CN (1) CN109905084B (zh)
AU (1) AU2019433018B2 (zh)
WO (1) WO2020177317A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905084B (zh) 2019-03-01 2021-10-15 华为技术有限公司 一种故障点位置的判断方法、装置及光伏系统
CN110297136B (zh) * 2019-05-28 2022-01-11 华为数字技术(苏州)有限公司 一种检测条件确定方法、装置及光伏系统
JP7306605B2 (ja) * 2019-11-25 2023-07-11 株式会社アイテス 太陽電池ストリングの検査装置、及び検査方法
CN111245007B (zh) * 2020-01-08 2022-06-14 华为数字能源技术有限公司 控制器的位置信息获取方法及装置
JP6749515B1 (ja) * 2020-04-30 2020-09-02 東京瓦斯株式会社 劣化予測情報蓄積装置、劣化予測装置、及び劣化予測プログラム
CN111999724B (zh) * 2020-09-09 2024-04-30 合肥零碳技术有限公司 自动识别光伏系统中设备位置的方法、系统及设备
CN117478170B (zh) * 2023-12-26 2024-08-06 杭州禾迈电力电子股份有限公司 通信串扰抑制方法、管理模块、光伏设备及光伏系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021341A (ja) * 2007-07-11 2009-01-29 National Institute Of Advanced Industrial & Technology 太陽電池アレイ故障診断方法
CN104362976A (zh) * 2014-10-15 2015-02-18 华北电力大学 一种利用遮蔽法检测光伏发电系统故障点的方法
CN207053467U (zh) * 2017-08-04 2018-02-27 杭州普沃晟科技有限公司 一种具有定位功能的光伏监控系统
CN108197774A (zh) * 2017-12-08 2018-06-22 囯网河北省电力有限公司电力科学研究院 一种分布式光伏发电量异常诊断的方法及装置
CN109905084A (zh) * 2019-03-01 2019-06-18 华为技术有限公司 一种故障点位置的判断方法、装置及光伏系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527613A (ja) * 2010-05-18 2013-06-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システム及び装置の接点の診断方法
CN103026248B (zh) * 2010-06-28 2015-09-02 Sma太阳能技术股份公司 用于监测光伏设备的装置和方法
US8878563B2 (en) * 2011-10-13 2014-11-04 Steven Andrew Robbins System and apparatus for arc detection and location in solar arrays
CN103217612A (zh) * 2013-03-22 2013-07-24 北京大学 一种铠装电力电缆故障在线监测与实时测距的方法
US9995796B1 (en) * 2013-05-23 2018-06-12 National Technology & Engineering Solutions Of Sandia, Llc Identifying an arc-fault type in photovoltaic arrays
JP2015053389A (ja) * 2013-09-06 2015-03-19 パナソニック株式会社 異常検出装置、太陽光発電システム、及び異常検出方法
CN104660304B (zh) * 2013-11-20 2017-08-25 上海未来宽带技术股份有限公司 一种基于用户端发起的同轴网络链路质量检测方法
US9897642B1 (en) * 2014-03-27 2018-02-20 National Technology & Engineering Solutions Of Sandia, Llc Detection of arcing location on photovoltaic systems using filters
DK201470457A1 (en) * 2014-07-18 2016-02-01 Emazys Technologies Aps Method and System of Fault Detection and Localisation in DC-Systems
JP2017187344A (ja) * 2016-04-04 2017-10-12 オムロン株式会社 地絡検出装置およびその制御方法、制御プログラム
CN107064713A (zh) * 2017-03-22 2017-08-18 南京南瑞继保电气有限公司 一种输配电线路断线判别方法及系统
CN108362981B (zh) * 2018-01-09 2020-07-28 复旦大学 一种主/被动检测结合的光伏系统直流故障电弧检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021341A (ja) * 2007-07-11 2009-01-29 National Institute Of Advanced Industrial & Technology 太陽電池アレイ故障診断方法
CN104362976A (zh) * 2014-10-15 2015-02-18 华北电力大学 一种利用遮蔽法检测光伏发电系统故障点的方法
CN207053467U (zh) * 2017-08-04 2018-02-27 杭州普沃晟科技有限公司 一种具有定位功能的光伏监控系统
CN108197774A (zh) * 2017-12-08 2018-06-22 囯网河北省电力有限公司电力科学研究院 一种分布式光伏发电量异常诊断的方法及装置
CN109905084A (zh) * 2019-03-01 2019-06-18 华为技术有限公司 一种故障点位置的判断方法、装置及光伏系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780386A4 *

Also Published As

Publication number Publication date
US11632077B2 (en) 2023-04-18
JP2022522681A (ja) 2022-04-20
EP3780386A1 (en) 2021-02-17
CN109905084A (zh) 2019-06-18
AU2019433018B2 (en) 2024-02-08
CN109905084B (zh) 2021-10-15
AU2019433018A1 (en) 2021-08-12
US20210050816A1 (en) 2021-02-18
EP3780386A4 (en) 2021-03-17
JP7259069B2 (ja) 2023-04-17

Similar Documents

Publication Publication Date Title
WO2020177317A1 (zh) 一种故障点位置的判断方法、装置及光伏系统
US10027494B2 (en) POE-based power supply method and PSE
CN111404480A (zh) 光伏系统、光伏单元的分组方法、计算设备及存储介质
US9268383B2 (en) Power over ethernet method, apparatus, device, and system
CN108886267B (zh) 远供电源系统中的电路控制方法、装置、远端电源及系统
WO2020173200A1 (zh) 一种功率变换装置以及控制功率变换装置输出阻抗的方法
CN106330467A (zh) 一种以太网供电方法、供电装置及供电设备
WO2014071578A1 (zh) 线路检测处理方法和设备
CN211148838U (zh) 一种空调内机测试装置
CN104991211A (zh) 一种高压直流输电光控换流阀tvm板自动测试设备
CN110838822A (zh) 一种光伏逆变器的故障信息获取系统及方法
CN105759103A (zh) 一种检测适配器最大输出电流的方法、装置及终端
CN116742432B (zh) 基于负反馈实现电缆组件的接口通用性适配方法及系统
CN116449134A (zh) 一种光伏逆变器的故障信息获取方法及系统
CN215263701U (zh) 一种精密电源的测试校准系统
CN211148837U (zh) 一种空调外机测试装置
CN101762776B (zh) 一种测试端口耐压程度的方法及装置
CN103245904A (zh) 一种用于测试功能电路的方法及装置
CN112924890A (zh) 一种检测电源的方法、装置和电子设备
WO2022134130A1 (zh) 用于质量安全监测的自适应电参数测试系统及方法
CN113740777B (zh) 一种寻线设备及其寻线方法、主机和从机
CN104348674A (zh) 服务器运行电力响应监控方法
WO2021249496A1 (zh) 一种供电检测装置、方法及其计算机程序产品
CN210270547U (zh) 热割刀控制装置及系统
CN216052128U (zh) 一种检验pd设备供电功能的测试设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019918167

Country of ref document: EP

Effective date: 20201104

ENP Entry into the national phase

Ref document number: 2019433018

Country of ref document: AU

Date of ref document: 20190927

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021549854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE