JP7306605B2 - 太陽電池ストリングの検査装置、及び検査方法 - Google Patents

太陽電池ストリングの検査装置、及び検査方法 Download PDF

Info

Publication number
JP7306605B2
JP7306605B2 JP2019212703A JP2019212703A JP7306605B2 JP 7306605 B2 JP7306605 B2 JP 7306605B2 JP 2019212703 A JP2019212703 A JP 2019212703A JP 2019212703 A JP2019212703 A JP 2019212703A JP 7306605 B2 JP7306605 B2 JP 7306605B2
Authority
JP
Japan
Prior art keywords
impedance
solar cell
output terminal
cell string
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212703A
Other languages
English (en)
Other versions
JP2021087243A (ja
Inventor
輝雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATIONAL TEST & ENGINEERING SERVICES CO., LTD.
Original Assignee
INTERNATIONAL TEST & ENGINEERING SERVICES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATIONAL TEST & ENGINEERING SERVICES CO., LTD. filed Critical INTERNATIONAL TEST & ENGINEERING SERVICES CO., LTD.
Priority to JP2019212703A priority Critical patent/JP7306605B2/ja
Publication of JP2021087243A publication Critical patent/JP2021087243A/ja
Application granted granted Critical
Publication of JP7306605B2 publication Critical patent/JP7306605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、複数の太陽電池パネルが直列に接続された太陽電池ストリングの検査装置、及び太陽電池ストリングの検査方法に関する。
近年、環境に配慮したクリーンなエネルギーへの関心の高まりから、エネルギー源が無尽蔵に存在する太陽光を利用した太陽光発電が注目されている。太陽光発電によって長期的に安定したエネルギーを供給するためには、発電に使用する太陽電池パネルに不具合が生じていないかを任意に又は定期的に検査する必要がある。
太陽電池パネルの検査装置として、これまで本出願人は、太陽電池パネルのインピーダンスを当該太陽電池パネルの配線が集約されている接続箱を介して測定し、計測されたインピーダンスの大きさから太陽電池パネルの断線や劣化を判定する検査装置(特許文献1を参照)を開発してきた。太陽電池パネルの回路は、抵抗(R成分)とインダクタ(L成分)とキャパシタ(C成分)とが直列に接続された等価回路と見なすことができるが、太陽電池セルを複数接続してモジュール化した太陽電池パネルにおいては、回路内でのインダクタ(L成分)の影響が大きくなるため、太陽電池パネル全体のインピーダンスが見かけ上増大し、正確な検査結果を得ることが困難となる場合がある。そこで、特許文献1の太陽電池パネルの検査装置では、インダクタ(L成分)とキャパシタ(C成分)とが共振して互いに打ち消し合うような周波数の交流波を用いて太陽電池パネルのインピーダンスの最小値を測定している。これにより、モジュールとしての太陽電池パネルに異常な部位が含まれているか否かを事前に把握できる。
国際公開第2015/087390号
特許文献1の検査装置は、予め正常な太陽電池パネルで取得したインピーダンスの最小値を参照値として用い、検査対象の太陽電池パネルで測定されたインピーダンスの最小値との比較により欠陥を判定するものである。しかしながら、夜間や日射量が少ない天候においては、正常な太陽電池パネルのインピーダンスと、断線のある太陽電池パネルのインピーダンスとの差が小さくなるため、特許文献1の太陽電池パネルの検査装置では夜間の判定精度が低下する虞があった。
本発明は、上記問題点に鑑みてなされたものであり、夜間や日射量が少ない天候においても、断線の有無を正確かつ容易に判定可能な太陽電池ストリングの検査装置、及び検査方法を提供することを目的とする。
上記課題を解決するための本発明に係る太陽電池ストリングの検査装置の特徴構成は、
複数の太陽電池パネルが直列に接続された太陽電池ストリングの検査装置であって、
前記太陽電池ストリングの第一出力端子と第二出力端子との間、並びに前記第一出力端子及び前記第二出力端子の何れか一方と前記太陽電池ストリングの接地端子との間に、周波数を変更させながら検査交流波を入力する交流波入力部と、
前記太陽電池ストリングから戻ってくる減衰交流波を計測する交流波計測部と、
前記検査交流波と前記減衰交流波とに基づいて、前記第一出力端子と前記第二出力端子との間の第一インピーダンス、並びに前記第一出力端子及び前記第二出力端子の何れか一方と前記接地端子との間の第二インピーダンスを算出する演算部と、
前記太陽電池ストリングの状態を判定する判定部と、
を備え、
前記判定部は、前記第一インピーダンスと前記第二インピーダンスとが一致する周波数よりも低い周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定することにある。
発明者らは、太陽電池ストリングのインピーダンスを様々な条件で測定し、その特性を詳細に検討したところ、正常な太陽電池パネルと断線のある太陽電池パネルとでは、第一インピーダンスと第二インピーダンスとの大小関係が逆転しており、この現象は昼間及び夜間を問わず生じていることを見い出した。本構成の太陽電池ストリングの検査装置では、この知見に基づいて、検査対象の太陽電池ストリングにおいて測定した第一インピーダンスと第二インピーダンスとの比較により断線を判定するため、昼間及び夜間を問わず、断線を正確かつ容易に判定することができる。また、断線を判定するために他の正常な太陽電池ストリングのインピーダンスを参照値として用いる必要がないため、夜間や日射量が少ない天候において正常な太陽電池パネルのインピーダンスと断線のある太陽電池パネルのインピーダンスとの差が小さくなろうとも、判定精度が低下することがない。
本発明に係る太陽電池ストリングの検査装置において、
前記判定部は、100kHz以下の周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定することが好ましい。
第一インピーダンスと第二インピーダンスとは、特に100kHz以下の低周波数において大きく相違することになる。本構成の太陽電池ストリングの検査装置によれば、100kHzよりも低い周波数における第一インピーダンスと第二インピーダンスとを判定に用いることにより、断線をより正確かつ容易に判定することができる。
本発明に係る太陽電池ストリングの検査装置において、
前記判定部は、前記第一インピーダンスが前記第二インピーダンスより小さい場合に前記太陽電池ストリングに断線がないと判定することが好ましい。
本構成の太陽電池ストリングの検査装置によれば、判定部が、第一インピーダンスが第二インピーダンスより小さい場合に太陽電池ストリングに断線がないと判定することにより、断線の有無を確実に判断できるとともに、断線している太陽電池パネルを特定するための追加の作業の必要がないことが速やかに分かり、検査の効率を向上させることが可能となる。
本発明に係る太陽電池ストリングの検査装置において、
前記接地端子を、インダクタが挿入された電路と、前記インダクタが挿入されていない電路とに切り替えて接続する接続部と、
前記インダクタが挿入された電路に前記接地端子が接続された状態、及び前記インダクタが挿入されていない電路に前記接地端子が接続された状態の夫々で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する特定部と、
前記特定部において特定した共振周波数、及び前記インダクタのインダクタンスに基づいて、前記第一出力端子と前記接地端子との間の第一静電容量、及び前記第二出力端子と前記接地端子との間の第二静電容量を算出する容量算出部と、
をさらに備え、
前記判定部は、前記太陽電池ストリングに断線があると判定した場合において、前記第一静電容量より前記第二静電容量が大きい場合、前記第二出力端子より前記第一出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量より前記第二静電容量が小さい場合、前記第一出力端子より前記第二出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量と前記第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定することが好ましい。
通常、太陽電池ストリング毎に断線があることが判明した場合、作業員が個々の太陽電池パネルに接近して、断線している太陽電池パネルを特定するための作業が必要である。本構成の太陽電池ストリングの検査装置によれば、容量算出部が第一静電容量、及び第二静電容量を算出し、判定部が、第一静電容量より第二静電容量が大きい場合、第二出力端子より第一出力端子に近い位置の太陽電池パネルが断線していると判定し、第一静電容量より第二静電容量が小さい場合、第一出力端子より第二出力端子に近い位置の太陽電池パネルが断線していると判定し、第一静電容量と第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定することにより、太陽電池ストリング内のおおまかな断線位置を容易に推定することができる。そのため、作業員の作業を軽減し、検査の効率を向上させることが可能となる。
上記課題を解決するための本発明に係る太陽電池ストリングの検査方法の特徴構成は、
複数の太陽電池パネルが直列に接続された太陽電池ストリングの検査方法であって、
前記太陽電池ストリングの第一出力端子と第二出力端子との間に周波数を変更しながら交流波を入力することにより、前記第一出力端子と前記第二出力端子との間の第一インピーダンスを特定する第二インピーダンス特定工程と、
前記第一出力端子及び前記第二出力端子の何れか一方と前記太陽電池ストリングの接地端子との間に周波数を変更させながら交流波を入力することにより、前記第一出力端子及び前記第二出力端子の何れか一方と前記接地端子との間の第二インピーダンスを特定する第一インピーダンス特定工程と、
前記第一インピーダンスと前記第二インピーダンスとが一致する周波数よりも低い周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定する判定工程と、
を包含することにある。
本構成の太陽電池ストリングの検査方法によれば、検査対象の太陽電池ストリングにおいて測定した第一インピーダンスと第二インピーダンスとの比較により断線を判定するため、昼間及び夜間を問わず、断線を正確かつ容易に判定することができる。また、断線を判定するために他の正常な太陽電池ストリングのインピーダンスを参照値として用いる必要がないため、夜間や日射量が少ない天候において正常な太陽電池パネルのインピーダンスと断線のある太陽電池パネルのインピーダンスとの差が小さくなろうとも、判定精度が低下することがない。
本発明に係る太陽電池ストリングの検査方法において、
前記判定工程において、前記第一インピーダンスが前記第二インピーダンスより小さい場合に前記太陽電池ストリングに断線がないと判定することが好ましい。
本構成の太陽電池ストリングの検査装置によれば、判定工程において、第一インピーダンスが第二インピーダンスより小さい場合に太陽電池ストリングに断線がないと判定することにより、断線の有無を確実に判断できるとともに、断線している太陽電池パネルを特定するための追加の作業の必要がないことが速やかに分かり、検査の効率を向上させることが可能となる。
本発明に係る太陽電池ストリングの検査方法において、
前記接地端子をインダクタが挿入された電路に接続する第一接続工程と、
前記インダクタが挿入された電路に前記接地端子が接続された状態で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する第一共振周波数特定工程と、
前記接地端子を前記インダクタが挿入されていない電路に接続する第二接続工程と、
前記インダクタが挿入されていない電路に前記接地端子が接続された状態で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する第二共振周波数特定工程と、
前記インダクタのインダクタンス、並びに前記第一共振周波数特定工程及び前記第二共振周波数特定工程において特定した共振周波数に基づいて、前記第一出力端子と前記接地端子との間の第一静電容量、及び前記第二出力端子と前記接地端子との間の第二静電容量を算出する容量算出工程と、
をさらに包含し、
前記判定工程において、前記太陽電池ストリングに断線があると判定した場合において、前記第一静電容量より前記第二静電容量が大きい場合、前記第二出力端子より前記第一出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量より前記第二静電容量が小さい場合、前記第一出力端子より前記第二出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量と前記第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定することが好ましい。
通常、太陽電池ストリング毎に断線があることが判明した場合、作業員が個々の太陽電池パネルに接近して、断線している太陽電池パネルを特定するための作業が必要である。本構成の太陽電池ストリングの検査方法によれば、容量算出工程において、第一出力端子と接地端子との間の第一静電容量、及び第二出力端子と接地端子との間の第二静電容量を算出し、断線箇所判定工程において、第一静電容量より第二静電容量が大きい場合、第二出力端子より第一出力端子に近い位置の太陽電池パネルが断線していると判定し、第一静電容量より第二静電容量が小さい場合、第一出力端子より第二出力端子に近い位置の太陽電池パネルが断線していると判定し、第一静電容量と第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定することにより、太陽電池ストリング内のおおまかな断線位置を容易に推定することができる。そのため、作業員の作業を軽減し、検査の効率を向上させることが可能となる。
図1は、太陽電池ストリングに関する説明図であり、(a)は太陽電池ストリングの概略構成図であり、(b)は太陽電池ストリングの等価回路図である。 図2は、本発明に係る太陽電池ストリングの検査装置に関する説明図であり、(a)は太陽電池ストリングに交流波を入力したときの交流波の流れを示す図であり、(b)は(a)から導かれる実質的な等価回路図である。 図3は、昼間に測定した太陽電池ストリングのインピーダンスの周波数特性を示すグラフであり、(a)は正常な太陽電池ストリングでの測定結果であり、(b)は断線のある太陽電池ストリングでの測定結果である。 図4は、夜間に測定した太陽電池ストリングのインピーダンスの周波数特性を示すグラフであり、(a)は正常な太陽電池ストリングでの計測結果であり、(b)は断線のある太陽電池ストリングでの計測結果である。 図5は、断線のある太陽電池ストリングでの出力端子間の電路に関する説明図である。 図6は、断線のある太陽電池ストリングでの電路に関する説明図であり、(a)は断線箇所に近い側の出力端子と接地端子間の電路であり、(b)は断線箇所から遠い側の出力端子と接地端子間の電路である。 図7は、第一実施形態に係る太陽電池ストリングの検査装置の概略構成図である。 図8は、太陽電池ストリングの検査装置が実行する演算に関する回路図である。 図9は、第一実施形態に係る太陽電池ストリングの検査装置を用いて実施する太陽電池ストリングの検査方法のフローチャートである。 図10は、太陽電池ストリングの検査方法の付加的な処理のフローチャートである。 図11は、第二実施形態に係る太陽電池ストリングの検査装置の概略構成図である。 図12は、第二実施形態に係る太陽電池ストリングの検査装置を用いて実施する太陽電池ストリングの検査方法のフローチャートである。
以下、本発明の太陽電池ストリングの検査装置、及び検査方法に関する実施形態について、図面を参照しながら詳細に説明する。ただし、本発明は、以下に説明する構成に限定されることを意図しない。
<第一実施形態>
[太陽電池ストリングの等価回路]
初めに、本発明の太陽電池ストリングの検査装置を開発するにあたり、太陽電池ストリングの構成及び等価回路について以下のような考察をした。これについて図1に基づいて説明する。図1は、太陽電池ストリングSに関する説明図である。図1(a)は、太陽電池ストリングSの概略構成図である。太陽電池ストリングSは、複数枚の太陽電池パネルMが直列に接続されて構成される。太陽電池パネルMは、複数のセルCが直列に接続された太陽電池モジュールとして構成される。図1(a)では4枚の太陽電池パネルMが接続された太陽電池ストリングSを例示している。夫々の太陽電池パネルMを構成するセルCは、負の電荷を有する電子を多く含むn型半導体と、正の電荷を有するホールを多く含むp型半導体とが接合されたものである。ホールがn型半導体に入ると電子と結合する。これと同様に、電子がp型半導体に入るとホールと結合する。このように、n型半導体とp型半導体とが接合した際、接合面では電子もホールもない空乏層と呼ばれる領域が形成される。この空乏層には電界が生じており、空乏層に太陽光が入射すると光が半導体に吸収されて電子とホールが生じ、これらが電界で押し出されることにより外部回路へ電流として流れる。この一連の仕組みが発電である。太陽電池パネルMで生成された電流は直流であり、電気として利用するためには交流に変換する必要がある。図1(a)に示すように、太陽電池パネルMの各配線は一対の出力端子P、Nにより接続箱1に接続されており、接続箱1はさらにパワーコンディショナー2に接続されている。太陽電池パネルMで発電された直流は、パワーコンディショナー2によって交流に変換され、工場、オフィス、住居等で電力として利用される。また、太陽電池ストリングSは、感電、漏電火災等を防止するために、すべての太陽電池パネルMの外郭金属部分(フレームF)が接続され接地端子Eにより接地される。
図1(b)は、太陽電池パネルMを構成する1枚のセルCにおける等価回路図である。太陽電池パネルM全体の構成は上記のとおりであるが、電気回路図で考えた場合、太陽電池パネルMを構成する1枚のセルCは、図1(b)に示すように定電流源(I成分)、並列ダイオード(D成分)、直列抵抗(Rs成分)、及び並列抵抗(Rsh成分)の組み合わせで表すことができる。太陽電池ストリングS全体でもセルCを直列に接続したモジュール構造をしているが、図1(b)に示す等価回路がセルCの枚数だけ直列に接続したものと考えることができる。従って、太陽電池モジュールの等価回路図は、直列抵抗等の各成分の値は変わるものの、セルCが1枚のときと同様に図1(b)の等価回路図として表すことができる。
図2は、本発明に係る太陽電池ストリングSの検査装置に関する説明図である。図2(a)は、太陽電池ストリングSに交流波を入力したときの交流波の流れを示す図である。図2(b)は、図2(a)から導かれる実質的な等価回路図である。上記のとおり、セルC内には空乏層が形成され電界が生じている。ここに交流波を入力すると、交流波は空乏層を電荷が蓄えられるコンデンサとして捉えるため、図2(a)に示すように、等価回路図には容量性リアクタンス(C成分)を表記することができる。そして、図2(a)中の矢印で示すように、交流波は並列抵抗(Rsh成分)を通らず、電気容量の大きいコンデンサを通る。つまり、図2(a)において、実線で示してある部分の誘導性リアクタンス(L成分)、直列抵抗(Rs成分)、及び容量性リアクタンス(C成分)を通ることとなる。従って、図2(b)に示すように、太陽電池パネルMに交流波を入力した場合の等価回路図は、実質的には直列抵抗(Rs成分)と誘導性リアクタンス(L成分)と容量性リアクタンス(C成分)とで表される等価回路図となる。
図2(b)のような等価回路図で表されるとき、Zをインピーダンス(Ω)、Rを抵抗(Ω)、ωを角周波数(rad/s)とすると、次の式(1)が成り立つ。
Figure 0007306605000001
式(1)において、角周波数ωは次の式(2)を意味する。
Figure 0007306605000002
ここで、式(1)のCは、空乏層により生じるが、夜間や日射量が少ない天候では空乏層が広がることによりC成分が低下し、インピーダンスZが大きくなる。そこで、日射量の低下がインピーダンスの周波数特性に及ぼす影響を検討するため、太陽電池ストリングSの出力端子P-出力端子N間のインピーダンスZP-N、出力端子P-接地端子E間のインピーダンスZP-E、及び出力端子N-接地端子E間のインピーダンスZN-Eについて、昼間と夜間とに周波数特性の測定を行った。周波数特性の測定は、太陽電池パネルを14枚接続した太陽電池ストリングについて行った。図3は、昼間に測定した太陽電池ストリングのインピーダンスの周波数特性を示すグラフであり、(a)は正常な太陽電池ストリングでの測定結果であり、(b)は断線のある太陽電池ストリングでの測定結果である。図4は、夜間に測定した太陽電池ストリングのインピーダンスの周波数特性を示すグラフであり、(a)は正常な太陽電池ストリングでの計測結果であり、(b)は断線のある太陽電池ストリングでの計測結果である。ここで、P-N間のインピーダンスZP-N、及びP-E間のインピーダンスZP-Eについて注目すると、正常な太陽電池ストリングでは、昼間に測定した場合、周波数を低周波数から高周波数に徐々に上げていくと、図3(a)に示すグラフのように、低周波領域においてP-N間のインピーダンスZP-Nは、インピーダンスZP-Eよりも小さくなった。高周波領域では、インピーダンスZP-Nが、インピーダンスZP-Eより大きくなった。低周波領域においてインピーダンスZP-NがインピーダンスZP-Eよりも小さくなるという特性は、図4(a)に示すグラフのように、夜間に測定した場合にも変化していなかった。
一方、断線のある太陽電池ストリングでは、昼間及び夜間の何れの測定でも、図3(b)及び図4(b)に示すグラフのように、低周波領域においてインピーダンスZP-Nは、正常な太陽電池ストリングとは逆に、インピーダンスZP-Eよりも大きくなった。このように、正常な太陽電池ストリングでの特性と、断線のある太陽電池ストリングでの特性とでは、昼間及び夜間を問わず、インピーダンスZP-NとインピーダンスZP-Eとの大小関係が逆転する現象が見られた。また、断線の有無によって低周波領域のインピーダンスZの大小関係が逆転する現象は、インピーダンスZP-N、及びインピーダンスZP-Eの間だけではなく、インピーダンスZP-N、及びN-E間のインピーダンスZN-Eの間でも同様に見られた。このような現象は、断線のある太陽電池ストリングでは、図5において破線で示すように、断線箇所と他の一カ所において、太陽電池パネルMの本来の電路とフレームFとの間に形成される比較的小さな静電容量を2度通ることで、P-N間の電路のC成分が小さくなり、C成分に大きく影響される低周波領域でインピーダンスZP-Eが増大するためと考えられる。そこで、このような知見に基づき、低周波領域でのP-N間のインピーダンスZP-Nと、P-E間のインピーダンスZP-E及びN-E間のインピーダンスZN-Eの少なくとも一方との大小関係を参照することにより、昼夜を問わず、太陽電池ストリングSの断線の有無を判定することができる装置、及び検査方法を開発した。つまり、周波数fを変更しながら式(1)及び式(2)によりインピーダンスZP-Nと、インピーダンスZP-E及びインピーダンスZN-Eの少なくとも一方とを算出し、これらを比較することによって、太陽電池ストリングSの断線の有無等を発見するものである。以下では、太陽電池ストリングSの断線の有無を判定するときに、P-N間のインピーダンスZP-NをP-E間のインピーダンスZP-Eと比較する構成について説明するが、本発明は、太陽電池ストリングSの断線の有無を判定するときに、P-N間のインピーダンスZP-NをN-E間のインピーダンスZN-Eと比較する構成や、P-N間のインピーダンスZP-NをP-E間のインピーダンスZP-E及びN-E間のインピーダンスZN-Eの両方と比較する構成として実施することも可能である。
さらに、P-E間のインピーダンスZP-E、及びN-E間のインピーダンスZN-Eについて注目すると、正常な太陽電池ストリングでは、昼間に測定した場合、図3(a)に示すグラフのように、インピーダンスZP-E及びインピーダンスZN-Eは略一致した。このインピーダンスZP-EとインピーダンスZN-Eとが略一致するという特性は、図4(a)に示すグラフのように、夜間に測定した場合にも、低周波領域では変化していなかった。
一方、断線のある太陽電池ストリングでは、昼間及び夜間の何れの測定でも、図3(b)及び図4(b)に示すグラフのように、低周波領域においてもインピーダンスZP-EとインピーダンスZN-Eとが一致しなかった。このように、正常な太陽電池ストリングでの特性と、断線のある太陽電池ストリングでの特性とでは、昼間及び夜間を問わず、インピーダンスZP-E及びインピーダンスZN-Eの一致度合いに相違が見られた。このような現象は、断線のある太陽電池ストリングでは、断線箇所において太陽電池パネルMの本来の電路とフレームFとの間に形成される静電容量を通じて接地端子Eに接続する電路を交流波が通ることで、断線箇所に近い側の出力端子と接地端子E間のC成分が小さくなり、C成分に大きく影響される低周波数帯域でインピーダンスZが増大するためと考えられる。例えば、出力端子Pに近い太陽電池パネルMで断線している場合、図6(a)において破線で示す出力端子Pと接地端子E間の電路は、図6(b)において破線で示す出力端子Nと接地端子E間の電路よりもC成分が小さくなる。このような知見に基づき、低周波領域でのP-E間の静電容量CpとN-E間の静電容量Cnとの大小関係を参照することにより、昼夜を問わず、太陽電池ストリングSの断線位置を判定することができると考えられる。以下、第一実施形態に係る太陽電池ストリングSの検査装置100について説明する。
[太陽電池パネルの検査装置]
図7は、第一実施形態に係る太陽電池ストリングSの検査装置100(以下、「検査装置100」と称する。)の概略構成図である。図8は、太陽電池ストリングSの検査装置100が実行する演算に関する回路図である。図7に示すように、検査装置100は、接続箱1に接続されており、太陽電池ストリングSに検査のための検査交流波を入力する交流波入力部10と、太陽電池ストリングSから戻ってくる減衰交流波を計測する交流波計測部20と、太陽電池ストリングSのインピーダンスを算出する演算部30と、演算部30によって算出されたインピーダンスから太陽電池ストリングSの状態を判定する判定部40とを備えている。また、任意の構成要素として、接地端子EにインダクタL0を接続する接続部50と、太陽電池ストリングSのインピーダンスが最小値となる共振周波数を特定する特定部60と、端子間の電路の静電容量を算出する容量算出部70とを備える。本明細書において、「太陽電池ストリングSのインピーダンスZ」とは、出力端子P-出力端子N間のインピーダンスZP-Nだけではなく、出力端子P-接地端子E間のインピーダンスZP-E、及び出力端子N-接地端子E間のインピーダンスZN-Eをも含むものとする。
図7で示すように、検査装置100における交流波入力部10と交流波計測部20とは、接続箱1を介して太陽電池ストリングSに接続されている。太陽電池ストリングSは屋外の高所に設置されているため、作業員が検査機器を用いて行う検査には危険や負担が伴う。しかしながら、上記のような構成であれば、作業員が行う検査の前に予め接続箱1を介して太陽電池ストリングSの状態を容易に確認することができる。このため、作業員は真に検査の必要な太陽電池ストリングSを知ることができる。その結果、作業員の危険や負担が軽減し、検査の効率を向上させることができる。
〔交流波入力部、交流波計測部〕
交流波入力部10、及び交流波計測部20は、夫々出力端子P、出力端子N、及び接地端子Eの何れかに接続することができるよう、切り替え可能なスイッチsw1、及びsw2に接続されている。このスイッチsw1、及びsw2を適宜切り替えて、交流波入力部10は、太陽電池ストリングSの断線検査のために、周波数fの交流波(これを、「検査交流波f」と称する。)をP-N間、P-E間、及びN-E間の電路に入力する。このとき、交流波入力部10は、周波数fを低周波数から高周波数に、例えば、4~630kHzの範囲で周波数fを変更する。検査交流波fは、P-N間、P-E間、及びN-E間の電路を通るとき、インピーダンスZによっていくらか減衰する。この減衰した交流波を検査交流波fに対して減衰交流波gと称する。交流波計測部20は、太陽電池ストリングSから戻ってくる減衰交流波gを計測する。検査交流波f及び減衰交流波gは、インピーダンスZの演算に利用される。
〔演算部〕
演算部30は、検査交流波fと減衰交流波gとに基づいて太陽電池ストリングSのインピーダンスZ(P-E間のインピーダンスZP-E、N-E間のインピーダンスZN-E、及びP-N間のインピーダンスZP-N)の値を算出する。ここで、検査交流波fに対応する電圧をV0とし、減衰交流波gに対応する電圧をV1とし、テスター本体内のインピーダンスをZ1とし、太陽電池ストリングSのインピーダンスをZ2とすると、図8に示すような等価回路図で表すことができる。図8に示すように、Z1及びZ2は直列に接続されているため、以下のような分圧の式が成り立つ。
Figure 0007306605000003
式(3)から以下の式(4)を導くことができる。
Figure 0007306605000004
式(4)において、V0は交流波入力部10から検査交流波fを入力する際に設定される電圧であり、V1は交流波計測部20により計測される減衰交流波gの電圧であり、Z1は既知であるから、式(4)にV0、V1、及びZ1を代入すれば、太陽電池ストリングSのインピーダンスZ2の値を算出することができる。ここで、式(4)におけるインピーダンスZ2は太陽電池ストリングSのインピーダンスを意味するから、前述の式(1)におけるインピーダンスZに相当する。そして、上記にて説明したように、交流波入力部10が周波数fの値を変更してゆき、その都度、前述の式(1)及び(2)に基づいて、インピーダンスZ(P-E間のインピーダンスZP-E、N-E間のインピーダンスZN-E、及びP-N間のインピーダンスZP-N)の値が算出される。演算部30によって算出されたインピーダンスZの値は判定部40で使用されるため、例えば、メモリやハードディスク等にデータとして記憶される。
〔接続部〕
接続部50は、インダクタL0、又はインダクタL0が存在しない導通部のどちらかに接続することができるよう、切り替え可能なスイッチ回路として構成されており、後述する断線位置の判定を行うときに、接地端子EにインダクタL0を接続する。
〔特定部〕
特定部60は、接続部50のスイッチがインダクタL0が存在しない導通部側に接続された状態でP-E間のインピーダンスZP-Eが最小値となる共振周波数fp1と、接続部50のスイッチがインダクタL0側に接続された状態でインピーダンスZP-Eが最小値となる共振周波数fp2と、接続部50のスイッチがインダクタL0が存在しない導通部側に接続された状態でN-E間のインピーダンスZN-Eが最小値となる共振周波数fn1と、接続部50のスイッチがインダクタL0側に接続された状態でインピーダンスZN-Eが最小値となる共振周波数fn2とを特定する。共振周波数fp1、fp2、fn1、及びfn2は、交流波入力部10が周波数fの値を変更してゆき、その都度、インピーダンスZの値が算出され、最終的にωLと1/ωCとが等しくなり、インピーダンスZが最小値となったときの周波数fが用いられる。
〔容量算出部〕
容量算出部70は、P-E間の静電容量Cp、及びN-E間の静電容量Cnを算出する。太陽電池ストリングSのインダクタンスをLとすると、P-E間の静電容量Cpについて、次の式(5)及び式(6)が成り立つ。
Figure 0007306605000005
Figure 0007306605000006
インダクタL0のインダクタンスは既知であるから、容量算出部70は、インダクタL0のインダクタンスと、特定部60により特定された共振周波数fp1、及びfp2とを、式(5)及び式(6)に代入して、P-E間の静電容量Cpを算出することができる。
同様に、N-E間の静電容量Cnについては、次の式(7)及び式(8)が成り立つ。
Figure 0007306605000007
Figure 0007306605000008
容量算出部70は、インダクタL0のインダクタンスと、特定部60により特定された共振周波数fn1、fn2とを、式(7)及び式(8)に代入して、N-E間の静電容量Cnを算出することができる。なお、図7では、専用の容量算出部70を設けているが、演算部30が容量算出部70の機能を兼ねる構成であってもよい。
〔判定部〕
判定部40は、太陽電池ストリングSの状態として、断線の有無を判定する。断線の有無を判定するとき、判定部40は、演算部30によって算出されたP-N間のインピーダンスZP-Nと、P-E間のインピーダンスZP-Eと比較する。ここでの比較には、低周波領域、例えば、インピーダンスZP-NとインピーダンスZP-Eとが一致する周波数よりも低い周波数領域、又はP-N間のインピーダンスZP-Nが最小値となる共振周波数よりも低い周波数領域でのインピーダンスZP-N、及びインピーダンスZP-Eを用いるが、100kHz以下の周波数領域でのインピーダンスZP-N、及びインピーダンスZP-Eを用いることが好ましい。インピーダンスZP-NとインピーダンスZP-Eとが一致する周波数よりも低い周波数領域とは、図3(a)、図3(b)、及び図4(a)における領域B1である。P-N間のインピーダンスZP-Nが最小値となる共振周波数よりも低い周波数領域とは、図4(b)における領域B1である。領域B1では、太陽電池ストリングSに断線がない場合、図3(a)、及び図4(a)に示すグラフのように、インピーダンスZP-NがインピーダンスZP-Eよりも小さくなるが、太陽電池ストリングSに断線がある場合、図3(b)、及び図4(b)に示すグラフのように、インピーダンスZP-NがインピーダンスZP-Eよりも大きくなる。特に、100kHz以下の低周波数においては、インピーダンスZP-N、及びインピーダンスZP-Eの相違が大きく、これらの比較が容易である。そのため、演算部30により算出されたインピーダンスZP-NとインピーダンスZP-Eとを比較すれば、検査対象の太陽電池ストリングSに断線があるかどうか判別することができる。判定基準としては、インピーダンスZP-NがインピーダンスZP-Eよりも大きい場合、太陽電池ストリングに断線があると判定することができる。さらに、太陽電池ストリングSに断線がないことを明確にするためには、インピーダンスZP-NがインピーダンスZP-Eよりも小さい場合に、太陽電池ストリングSに断線がないと判定してもよい。
判定部40は、太陽電池ストリングSに断線があると判定した場合において、太陽電池ストリングSの状態を判定する付加的な機能として、断線の位置をさらに判定する。断線の位置を判定するとき、判定部40は、容量算出部70によって算出されたP-E間の静電容量CpとN-E間の静電容量Cnとを比較する。例えば、出力端子Pに近い太陽電池パネルMで断線している場合、図6(a)において破線で示すP-E間の電路の静電容量Cpは、図6(b)において破線で示すN-E間の電路の静電容量Cnより小さくなる。太陽電池ストリングSの中央の位置で太陽電池パネルMが断線している場合は、静電容量Cpと静電容量Cnとが一致する。そのため、容量算出部70によって算出されたP-E間の静電容量CpとN-E間の静電容量Cnとを比較すれば、断線のおおまかな位置を判別することができる。判定基準としては、P-E間の静電容量CpよりN-E間の静電容量Cnが大きい場合、太陽電池ストリングSの出力端子Pに近い位置の太陽電池パネルMが断線していると判定し、P-E間の静電容量CpよりN-E間の静電容量Cnが小さい場合、太陽電池ストリングSの出力端子Nに近い位置の太陽電池パネルMが断線していると判定し、P-E間の静電容量CpとN-E間の静電容量Cnとが一致する場合、太陽電池ストリングSの中央の位置の太陽電池パネルMが断線していると判定する。ここで、「静電容量Cpと静電容量Cnとが一致」とは、夫々の値が完全に一致する場合だけではなく、例えば、静電容量Cpと静電容量Cnとの差分が静電容量Cpと静電容量Cnの10%以下であれば一致とみなし、断線がないと判定する。なお、この一致の基準となる倍率は一例であり、太陽電池ストリングSの種類や使用環境等に応じて適宜設定することができる。また、「太陽電池ストリングSの中央の位置」とは、出力端子P側から数えた太陽電池パネルMの枚数と、出力端子N側から数えた太陽電池パネルMの枚数とが一致する位置を意味する。このように、判定部40では、単に太陽電池ストリングSの断線の有無を判定するだけではなく、その断線の位置をおおまかに判定することができる。従って、太陽電池パネルMに直接検査機器を近づけて行う検査に際し、作業員は真に検査の必要な太陽電池パネルMのおおよその位置を予め知ることができる。その結果、作業員の負担が軽減し、検査効率を向上させることができる。
[太陽電池ストリングの検査方法]
検査装置100を用いた太陽電池ストリングSの検査方法(以下、「検査方法」とする。)について説明する。図9は、検査装置100用いて実施する太陽電池ストリングSの検査方法のフローチャートである。検査方法では、第一インピーダンス特定工程、第二インピーダンス特定工程、及び判定工程の各工程を順に実行する。なお、以下の検査方法の説明及び図9において、検査方法における各ステップを記号「S」で示してある。
〔第一インピーダンス特定工程:S1~S6〕
第一インピーダンス特定工程では、初めにスイッチsw1を太陽電池ストリングSの出力端子Nに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Pに接続するように切り替えることで、検査装置100を、P-N間に接続する(S1)。この接続状態で、交流波入力部10が、検査交流波fをP-N間の電路に入力する(S2)。ここで入力する検査交流波fの周波数は、予め設定された周波数帯域(例えば、4~630kHz)の最小値(例えば、4kHz)である。入力された検査交流波fは、P-N間の電路を通るときインピーダンスZP-Nによって減衰し、減衰交流波gとなる。交流波計測部20は、太陽電池ストリングSから戻ってくる減衰交流波gを計測する(S3)。次に、演算部30が、検査交流波fと減衰交流波gとに基づいてP-N間のインピーダンスZP-Nの値を算出する(S4)。算出されたインピーダンスZP-Nの値は、算出に用いた検査交流波fの周波数と対応付けて、例えば、メモリやハードディスク等にデータとして記憶される。ここで、検査交流波fの周波数が、予め設定された周波数帯域の最大値(例えば、630kHz)に達していなければ(S5:NO)、検査交流波fの周波数を所定幅(例えば20kHz)だけ上げて(S6)、S2から処理手順を繰り返す。そして、S2~S6の繰り返しにより徐々に検査交流波fの周波数を上げ、その都度、インピーダンスZP-Nの値を算出し、これを検査交流波fの周波数と対応付けて記憶することで、インピーダンスZP-Nの周波数特性、即ち、図3や図4に示すP-Nのグラフが特定される。検査交流波fの周波数が、予め設定された周波数帯域の最大値(例えば、630kHz)に達すると(S5:YES)、第二インピーダンス特定工程へ処理を進める。
〔第二インピーダンス特定工程:S7~S12〕
第二インピーダンス特定工程では、初めにスイッチsw1を太陽電池ストリングSの接地端子Eに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Pに接続するように切り替えることで、検査装置100を、P-E間に接続する(S7)。この接続状態で、交流波入力部10が、検査交流波fをP-E間の電路に入力する(S8)。交流波計測部20は、入力された検査交流波fがP-E間の電路を通るときにインピーダンスZP-Eによって減衰した減衰交流波gを計測する(S9)。次に、演算部30が、検査交流波fと減衰交流波gとに基づいてP-E間のインピーダンスZP-Eの値を算出する(S10)。算出されたインピーダンスZP-Eの値は、算出に用いた検査交流波fの周波数と対応付けて、例えば、メモリやハードディスク等にデータとして記憶される。インピーダンスZP-Eの算出後、検査交流波fの周波数が、予め設定された周波数帯域の最大値に達していなければ(S11:NO)、検査交流波fの周波数を所定幅だけ上げて(S12)、S8から処理手順を繰り返す。S8~12を繰り返すことにより、予め設定された周波数帯域におけるインピーダンスZP-Eの周波数特性、即ち、図3や図4に示すP-Eのグラフが特定される。第二インピーダンス特定工程において、P-E間の電路に入力する検査交流波fの周波数が、予め設定された周波数帯域の最大値に達すると(S11:YES)、判定工程へ処理を進める。
なお、第一インピーダンス特定工程と第二インピーダンス特定工程とは、判定工程の前に実行するのであれば、必ずしも図9に示す順に実行する必要はなく、第二インピーダンス特定工程を先に実行し、第一インピーダンス特定工程を後に実行してもよい。
〔判定工程:S13~S15〕
判定工程では、判定部40が、メモリやハードディスク等にデータとして記憶されているインピーダンスZP-Eの周波数特性と、インピーダンスZP-Nの周波数特性とを読み出し、低周波領域、例えば、インピーダンスZP-NとインピーダンスZP-Eが一致する周波数よりも低い周波数領域、又はP-N間のインピーダンスZP-Nが最小値となる共振周波数よりも低い周波数領域、即ち、図3、及び図4においてB1で示される領域内の周波数(例えば、50kHz)におけるインピーダンスZP-EとインピーダンスZP-Nとを比較する(S13)。比較したインピーダンスZP-Nの値がインピーダンスZP-Eの値より大きい場合(S13:NO)、判定部40は、太陽電池ストリングSに断線があると判定し(S14)、太陽電池ストリングSの状態として断線を判定する検査を終了する。なお、太陽電池ストリングSに断線がないことを明確にするためには、S13において比較したインピーダンスZP-Nの値がインピーダンスZP-Eの値より小さい場合(S13:YES)、判定部40は、太陽電池ストリングSに断線がないと判定してもよい(S15)。
検査装置100を用いた太陽電池ストリングSの検査方法では、さらに、太陽電池ストリングSの断線があると判定した場合に、断線の位置を判定するための付加的な処理を実施してもよい。図10は、太陽電池ストリングの検査方法の付加的な処理のフローチャートである。検査方法の付加的な処理では、S14の処理に続けて、図10に示す第一接続工程、第一共振周波数特定工程、第二接続工程、第二共振周波数特定工程、容量算出工程、及び判定工程(断線箇所判定工程)の各工程を順に実行する。
〔第一接続工程:S21〕
第一接続工程は、接続部50のスイッチが、インダクタL0が存在しない導通部側に接続を切り替える工程である(S21)。
〔第一共振周波数特定工程:S22~S25〕
第一共振周波数特定工程では、初めにスイッチsw1を太陽電池ストリングSの接地端子Eに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Pに接続するように切り替えることで、検査装置100を、P-E間に接続する(S22)。この接続状態で、S23では、先ず、インピーダンスZP-Eの周波数特性を特定する。インピーダンスZP-Eの周波数特性は、検査方法の第二インピーダンス特定工程のS8~S12と同一の処理により特定することができる。インピーダンスZP-Eの周波数特性を得た後は、特定部60が、このインピーダンスZP-Eを参照して、接続部50のスイッチがインダクタL0が存在しない導通部側に接続された状態でインピーダンスZP-Eが最小値となる共振周波数fp1を特定する(S23)。
次に、スイッチsw1を太陽電池ストリングSの接地端子Eに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Nに接続するように切り替えることで、検査装置100を、N-E間に接続する(S24)。この接続状態で、S25では、先ず、インピーダンスZN-Eの周波数特性を特定する。インピーダンスZN-Eの周波数特性を特定する手順は、交流波入力部10が検査交流波fを入力する電路がN-E間の電路となっている以外は、インピーダンスZP-Eの周波数特性を特定する手順と同様である。インピーダンスZN-Eの周波数特性を得た後は、特定部60が、このインピーダンスZN-Eを参照して、接続部50のスイッチがインダクタL0が存在しない導通部側に接続された状態でインピーダンスZN-Eが最小値となる共振周波数fn1を特定する(S25)。
〔第二接続工程:S26〕
第二接続工程は、接続部50がインダクタL0側に接続を切り替える工程である(S26)。
〔第二共振周波数特定工程:S27~S30〕
第二共振周波数特定工程のS27~S30の処理における検査装置100の動作は、第一共振周波数特定工程のS22~S25の処理における検査装置100の動作と同一のものである。ただし、先に実行された第二接続工程において接地端子Eと交流波入力部10との間にインダクタL0が挿入されたことにより、交流波入力部10が出力する検査交流波fは、インダクタL0を通って太陽電池ストリングSへ入力されることになる。そのため、ここでのインピーダンスZP-E、及びインピーダンスZN-Eの周波数特性は、S23、及びS25での周波数特性と異なるものとなる。その結果、S28では、特定部60が、インピーダンスZP-Eを参照して、接続部50のスイッチがインダクタL0側に接続された状態でインピーダンスZP-Eが最小値となる共振周波数fp2を特定し、S30では、特定部60が、インピーダンスZN-Eを参照して、接続部50のスイッチがインダクタL0側に接続された状態でインピーダンスZN-Eが最小値となる共振周波数fn2を特定する。
なお、第一接続工程、第一共振周波数特定工程、第二接続工程、及び第二共振周波数特定工程は、必ずしも図10に示す順に実行する必要はなく、第一接続工程を第一共振周波数特定工程の直前に実行し、第二接続工程を第二共振周波数特定工程の直前に実行するのであれば、第二接続工程及び第二共振周波数特定工程を先に実行し、第一接続工程及び第一共振周波数特定工程を後に実行してもよい。
〔容量算出工程:S31、S32〕
容量算出工程では、容量算出部70が、インダクタL0のインダクタンスと、第一共振周波数特定工程において特定された共振周波数fp1と、第二共振周波数特定工程において特定された共振周波数fp2とに基づいて、前述の式(5)及び式(6)により、P-E間の静電容量Cpを算出する(S31)。容量算出工程ではさらに、容量算出部70が、インダクタL0のインダクタンスと、第一共振周波数特定工程において特定された共振周波数fn1と、第二共振周波数特定工程において特定された共振周波数fn2とに基づいて、前述の式(7)及び式(8)により、N-E間の静電容量Cnを算出する(S32)。
なお、静電容量Cpを算出するS31と、静電容量Cnを算出するS32とは、必ずしもこの順に実行する必要はなく、S32を先に実行し、S31を後に実行してもよい。また、容量算出工程は、必ずしもS31及びS32を連続して実行する必要はなく、例えば、第一共振周波数特定工程(S22~S25)の実行後、且つ第二共振周波数特定工程(S27~S30)の実行前に、静電容量Cpを算出するS31のみを実行し、第二共振周波数特定工程(S27~S30)の実行後に静電容量Cnを算出するS32のみ実行してもよい。
〔判定工程:S33~S36〕
ここでの判定工程は、特に断線箇所を判定する断線箇所判定工程である。断線箇所判定工程では、判定部40が、容量算出工程おいて算出された静電容量Cpと静電容量Cnとを比較する(S33)。比較の結果、静電容量Cpより静電容量Cnが大きい場合(Cp<Cn)、判定部40は、太陽電池ストリングSの出力端子Pに近い位置の太陽電池パネルMが断線していると判定する(S34)。比較の結果、静電容量Cpより静電容量Cnが小さい場合(Cp>Cn)、判定部40は、太陽電池ストリングSの出力端子Nに近い位置の太陽電池パネルMが断線していると判定する(S35)。比較の結果、静電容量Cpと静電容量Cnとが一致する場合(Cp=Cn)、判定部40は、太陽電池ストリングSの中央の位置の太陽電池パネルMが断線していると判定する(S36)。S34~S36の何れかの処理が実行されることで、検査を終了する。このように、検査方法では、付加的な処理を実施することで、単に太陽電池ストリングSの断線の有無を判定するだけではなく、その断線の位置をおおまかに判定することができる。
<第二実施形態>
第一実施形態では、P-N間のインピーダンスZP-NとP-E間のインピーダンスZP-Eとの関係に注目したが、ここでは、P-E間のインピーダンスZP-EとN-E間のインピーダンスZN-Eとの関係に注目すると、正常な太陽電池ストリングでは、昼間に測定した場合、周波数を低周波数から高周波数に徐々に上げていくと、図3(a)に示すグラフのように、インピーダンスZP-E及びインピーダンスZN-Eは略一致した。このインピーダンスZP-EとインピーダンスZN-Eとが略一致するという特性は、図4(a)に示すグラフのように、夜間に測定した場合にも、低周波領域では変化していなかった。
一方、断線のある太陽電池ストリングでは、昼間及び夜間の何れの測定でも、図3(b)及び図4(b)に示すグラフのように、低周波領域においてもインピーダンスZP-EとインピーダンスZN-Eとが一致しなかった。このように、正常な太陽電池ストリングでの特性と、断線のある太陽電池ストリングでの特性とでは、昼間及び夜間を問わず、インピーダンスZP-E及びインピーダンスZN-Eの一致度合いに相違が見られた。このような現象は、断線のある太陽電池ストリングでは、断線箇所において太陽電池パネルMの本来の電路とフレームFとの間に形成される静電容量を通じて接地端子Eに接続する電路を交流波が通ることで、断線箇所に近い側の出力端子と接地端子E間のC成分が小さくなり、C成分に大きく影響される低周波数帯域でインピーダンスZが増大するためと考えられる。例えば、出力端子Pに近い太陽電池パネルMで断線している場合、図6(a)において破線で示す出力端子Pと接地端子E間の電路は、図6(b)において破線で示す出力端子Nと接地端子E間の電路よりもC成分が小さくなる。その結果、低周波数帯域においてインピーダンスZP-Eは、インピーダンスZN-Eよりも大きくなる。このような知見に基づき、低周波数でのP-E間のインピーダンスZP-E及びN-E間のインピーダンスZN-Eの一致度合いを参照することにより、昼夜を問わず、太陽電池ストリングSの断線の有無を判定することができる装置、及び検査方法を開発した。つまり、周波数fを変更しながら式(1)及び式(2)によりインピーダンスZP-E及びインピーダンスZN-Eを算出し、これらが一致するか否かによって、太陽電池ストリングSの断線の有無等を発見するものである。
[太陽電池パネルの検査装置]
図11は、第二実施形態に係る太陽電池ストリングSの検査装置200(以下、「検査装置200」と称する。)の概略構成図である。検査装置200は、検査装置100と比較して、判定部41による太陽電池ストリングSの断線の有無の判定処理が相違する。その他の構成要素は、図7に示す第一実施形態に係る検査装置100と同様のものであるため、これらについては図11において同一の符号を付し、ここでの説明を省略する。
〔判定部〕
判定部41は、太陽電池ストリングSの状態として断線の有無を判定するとき、演算部30によって算出されたP-E間のインピーダンスZP-Eと、N-E間のインピーダンスZN-Eとを比較する。ここでの比較には、P-E間のインピーダンスZP-Eが最小値となる共振周波数及びN-E間のインピーダンスZN-Eが最小値となる共振周波数の何れよりも低い周波数でのインピーダンスZP-E、並びにインピーダンスZN-Eを用いるが、100kHz以下の周波数でのインピーダンスZP-E、及びインピーダンスZN-Eを用いることが好ましい。インピーダンスZP-Eが最小値となる共振周波数及びインピーダンスZN-Eが最小値となる共振周波数の何れよりも低い周波数とは、図3、及び図4において、領域B2に含まれる周波数である。この領域B2では、太陽電池ストリングSに断線がない場合、図3(a)、及び図4(a)に示すグラフのように、インピーダンスZP-E、及びインピーダンスZN-Eは一致するが、太陽電池ストリングSに断線がある場合、図3(b)、及び図4(b)に示すグラフのように、インピーダンスZP-E、及びインピーダンスZN-Eは相違する。特に、100kHz以下の低周波数においては、インピーダンスZP-E、及びインピーダンスZN-Eの相違が大きくなる。そのため、演算部30により算出されたインピーダンスZP-E、及びインピーダンスZN-Eを比較すれば、検査対象の太陽電池ストリングSに断線があるかどうか判別することができる。判定基準としては、インピーダンスZP-E及びインピーダンスZN-Eが相違する場合、太陽電池ストリングSに断線があると判定することができる。さらに、太陽電池ストリングSに断線がないことを明確にするためには、インピーダンスZP-E及びインピーダンスZN-Eが一致する場合に、太陽電池ストリングSに断線がないと判定してもよい。ここで、「インピーダンスZP-E及びインピーダンスZN-Eが一致する」とは、夫々の値が完全に一致する場合だけではなく、例えば、インピーダンスZP-EとインピーダンスZN-Eとの差分がインピーダンスZP-E又はインピーダンスZN-Eの10%未満であれば一致するとみなし、10%以上であれば相違するとみなすことができる。なお、この一致の基準となる倍率は一例であり、太陽電池ストリングSの種類や使用環境等に応じて適宜設定することができる。
[太陽電池ストリングの検査方法]
検査装置200を用いた太陽電池ストリングSの検査方法について説明する。図12は、検査装置200用いて実施する太陽電池ストリングSの検査方法のフローチャートである。検査方法では、第一インピーダンス特定工程、第二インピーダンス特定工程、及び判定工程の各工程を順に実行する。
〔第一インピーダンス特定工程:S101~S106〕
第一インピーダンス特定工程では、初めにスイッチsw1を太陽電池ストリングSの接地端子Eに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Pに接続するように切り替えることで、検査装置200を、P-E間に接続する(S101)。その後の処理は、第一実施形態の検査装置100を用いた検査方法における第一インピーダンス特定工程(図9のS2~S6)と同様のものであるため、ここでは詳細な説明を省略するが、S102~S106を繰り返すことにより、予め設定された周波数帯域におけるインピーダンスZP-Eの周波数特性、即ち、図3や図4に示すP-Eのグラフが特定される。
〔第二インピーダンス特定工程:S107~S112〕
第二インピーダンス特定工程では、初めにスイッチsw1を太陽電池ストリングSの接地端子Eに接続するように切り替え、スイッチsw2を太陽電池ストリングSの出力端子Nに接続するように切り替えることで、検査装置200を、N-E間に接続する(S107)。その後は、第一インピーダンス特定工程と同様に、S108~S112を繰り返すことにより、予め設定された周波数帯域におけるインピーダンスZN-Eの周波数特性、即ち、図3や図4に示すN-Eのグラフが特定される。
なお、第一インピーダンス特定工程と第二インピーダンス特定工程とは、判定工程の前に実行するのであれば、必ずしも図12に示す順に実行する必要はなく、第二インピーダンス特定工程を先に実行し、第一インピーダンス特定工程を後に実行してもよい。
〔判定工程:S113~S115〕
判定工程では、判定部40が、メモリやハードディスク等にデータとして記憶されているインピーダンスZP-Eの周波数特性と、インピーダンスZN-Eの周波数特性とを読み出し、インピーダンスZP-Eが最小値となる共振周波数、及びインピーダンスZN-Eが最小値となる共振周波数よりも低い周波数(例えば、50kHz)において、インピーダンスZP-EとインピーダンスZN-Eとを比較する(S113)。比較したインピーダンスZP-Eの値とインピーダンスZN-Eの値とが異なる場合(S113:NO)、判定部40は、太陽電池ストリングSに断線があると判定し(S114)、検査を終了する。なお、太陽電池ストリングSに断線がないことを明確にするためには、S113において比較したインピーダンスZP-Eの値とインピーダンスZN-Eの値とが一致する場合(S113:YES)、判定部40は、太陽電池ストリングSに断線がないと判定してもよい(S115)。インピーダンスZP-Eの値とインピーダンスZN-Eの値とが一致するか否かは、夫々の値が完全に一致する場合だけではなく、例えば、インピーダンスZP-E及びインピーダンスZN-Eとの差分がインピーダンスZP-E又はインピーダンスZN-Eの10%未満であれば一致とみなし、10%以上であれば相違するとみなすことができる。なお、この一致の基準となる倍率は一例であり、太陽電池ストリングSの種類や使用環境等に応じて適宜設定することができる。
本発明の太陽電池ストリングの検査装置、及び検査方法は、太陽電池ストリングにおける断線を検査する用途に利用可能である。
100、200 検査装置
10 交流波入力部
20 交流波計測部
30 演算部
40、41 判定部
50 接続部
60 特定部
70 容量算出部
S 太陽電池ストリング

Claims (7)

  1. 複数の太陽電池パネルが直列に接続された太陽電池ストリングの検査装置であって、
    前記太陽電池ストリングの第一出力端子と第二出力端子との間、並びに前記第一出力端子及び前記第二出力端子の何れか一方と前記太陽電池ストリングの接地端子との間に、周波数を変更させながら検査交流波を入力する交流波入力部と、
    前記太陽電池ストリングから戻ってくる減衰交流波を計測する交流波計測部と、
    前記検査交流波と前記減衰交流波とに基づいて、前記第一出力端子と前記第二出力端子との間の第一インピーダンス、並びに前記第一出力端子及び前記第二出力端子の何れか一方と前記接地端子との間の第二インピーダンスを算出する演算部と、
    前記太陽電池ストリングの状態を判定する判定部と、
    を備え、
    前記判定部は、前記第一インピーダンスと前記第二インピーダンスとが一致する周波数よりも低い周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定する太陽電池ストリングの検査装置。
  2. 前記判定部は、100kHz以下の周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定する請求項1に記載の太陽電池ストリングの検査装置。
  3. 前記判定部は、前記第一インピーダンスが前記第二インピーダンスより小さい場合に前記太陽電池ストリングに断線がないと判定する請求項1又は2に記載の太陽電池ストリングの検査装置。
  4. 前記接地端子を、インダクタが挿入された電路と、前記インダクタが挿入されていない電路とに切り替えて接続する接続部と、
    前記インダクタが挿入された電路に前記接地端子が接続された状態、及び前記インダクタが挿入されていない電路に前記接地端子が接続された状態の夫々で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する特定部と、
    前記特定部において特定した共振周波数、及び前記インダクタのインダクタンスに基づいて、前記第一出力端子と前記接地端子との間の第一静電容量、及び前記第二出力端子と前記接地端子との間の第二静電容量を算出する容量算出部と、
    をさらに備え、
    前記判定部は、前記太陽電池ストリングに断線があると判定した場合において、前記第一静電容量より前記第二静電容量が大きい場合、前記第二出力端子より前記第一出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量より前記第二静電容量が小さい場合、前記第一出力端子より前記第二出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量と前記第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定する請求項1~3の何れか一項に記載の太陽電池ストリングの検査装置。
  5. 複数の太陽電池パネルが直列に接続された太陽電池ストリングの検査方法であって、
    前記太陽電池ストリングの第一出力端子と第二出力端子との間に周波数を変更しながら交流波を入力することにより、前記第一出力端子と前記第二出力端子との間の第一インピーダンスを特定する第二インピーダンス特定工程と、
    前記第一出力端子及び前記第二出力端子の何れか一方と前記太陽電池ストリングの接地端子との間に周波数を変更させながら交流波を入力することにより、前記第一出力端子及び前記第二出力端子の何れか一方と前記接地端子との間の第二インピーダンスを特定する第一インピーダンス特定工程と、
    前記第一インピーダンスと前記第二インピーダンスとが一致する周波数よりも低い周波数において、前記第一インピーダンスと前記第二インピーダンスとを比較し、前記第一インピーダンスが前記第二インピーダンスより大きい場合に前記太陽電池ストリングに断線があると判定する判定工程と、
    を包含する太陽電池ストリングの検査方法。
  6. 前記判定工程において、前記第一インピーダンスが前記第二インピーダンスより小さい場合に前記太陽電池ストリングに断線がないと判定する請求項5に記載の太陽電池ストリングの検査方法。
  7. 前記接地端子をインダクタが挿入された電路に接続する第一接続工程と、
    前記インダクタが挿入された電路に前記接地端子が接続された状態で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する第一共振周波数特定工程と、
    前記接地端子を前記インダクタが挿入されていない電路に接続する第二接続工程と、
    前記インダクタが挿入されていない電路に前記接地端子が接続された状態で、前記第一出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数と、前記第二出力端子と前記接地端子との間のインピーダンスが最小値となる共振周波数とを特定する第二共振周波数特定工程と、
    前記インダクタのインダクタンス、並びに前記第一共振周波数特定工程及び前記第二共振周波数特定工程において特定した共振周波数に基づいて、前記第一出力端子と前記接地端子との間の第一静電容量、及び前記第二出力端子と前記接地端子との間の第二静電容量を算出する容量算出工程と、
    をさらに包含し、
    前記判定工程において、前記太陽電池ストリングに断線があると判定した場合において、前記第一静電容量より前記第二静電容量が大きい場合、前記第二出力端子より前記第一出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量より前記第二静電容量が小さい場合、前記第一出力端子より前記第二出力端子に近い位置の太陽電池パネルが断線していると判定し、前記第一静電容量と前記第二静電容量とが一致する場合、太陽電池ストリングの中央の位置の太陽電池パネルが断線していると判定する請求項5又は6に記載の太陽電池ストリングの検査方法。
JP2019212703A 2019-11-25 2019-11-25 太陽電池ストリングの検査装置、及び検査方法 Active JP7306605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212703A JP7306605B2 (ja) 2019-11-25 2019-11-25 太陽電池ストリングの検査装置、及び検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212703A JP7306605B2 (ja) 2019-11-25 2019-11-25 太陽電池ストリングの検査装置、及び検査方法

Publications (2)

Publication Number Publication Date
JP2021087243A JP2021087243A (ja) 2021-06-03
JP7306605B2 true JP7306605B2 (ja) 2023-07-11

Family

ID=76085962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212703A Active JP7306605B2 (ja) 2019-11-25 2019-11-25 太陽電池ストリングの検査装置、及び検査方法

Country Status (1)

Country Link
JP (1) JP7306605B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527613A (ja) 2010-05-18 2013-06-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システム及び装置の接点の診断方法
JP2014186022A (ja) 2013-02-22 2014-10-02 Mitsubishi Electric Corp 太陽電池パネルの診断方法
US20150015298A1 (en) 2012-04-04 2015-01-15 Sma Solar Technology Ag Method and apparatus for signaling partial shadowing of a photovoltaic generator
WO2015087390A1 (ja) 2013-12-10 2015-06-18 株式会社アイテス 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
WO2015163329A1 (ja) 2014-04-23 2015-10-29 三菱電機株式会社 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
JP2016093039A (ja) 2014-11-07 2016-05-23 オムロン株式会社 太陽光発電システムの検査方法および検査装置
WO2017212757A1 (ja) 2016-06-09 2017-12-14 三菱電機株式会社 太陽電池ストリングの故障診断方法及び故障診断装置
JP2018096761A (ja) 2016-12-09 2018-06-21 オムロン株式会社 検査支援装置およびその制御方法、検査システム、並びに制御プログラム
CN109905084A (zh) 2019-03-01 2019-06-18 华为技术有限公司 一种故障点位置的判断方法、装置及光伏系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527613A (ja) 2010-05-18 2013-06-27 エスエムエー ソーラー テクノロジー アーゲー 光起電力システム及び装置の接点の診断方法
US20150015298A1 (en) 2012-04-04 2015-01-15 Sma Solar Technology Ag Method and apparatus for signaling partial shadowing of a photovoltaic generator
JP2014186022A (ja) 2013-02-22 2014-10-02 Mitsubishi Electric Corp 太陽電池パネルの診断方法
WO2015087390A1 (ja) 2013-12-10 2015-06-18 株式会社アイテス 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
WO2015163329A1 (ja) 2014-04-23 2015-10-29 三菱電機株式会社 太陽電池モジュールの診断方法、太陽電池モジュールの診断用回路および診断システム
JP2016093039A (ja) 2014-11-07 2016-05-23 オムロン株式会社 太陽光発電システムの検査方法および検査装置
WO2017212757A1 (ja) 2016-06-09 2017-12-14 三菱電機株式会社 太陽電池ストリングの故障診断方法及び故障診断装置
JP2018096761A (ja) 2016-12-09 2018-06-21 オムロン株式会社 検査支援装置およびその制御方法、検査システム、並びに制御プログラム
CN109905084A (zh) 2019-03-01 2019-06-18 华为技术有限公司 一种故障点位置的判断方法、装置及光伏系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN, Jianhua et al.,"An Open-Circuit Faults Diagnostic Algorithm for Solar Cell System",2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe),IEEE,2017年09月,pp. 1-8,DOI: 10.23919/EPE17ECCEEurope.2017.8098964

Also Published As

Publication number Publication date
JP2021087243A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
CN103547932B (zh) 使用可变频率的测试信号的隔离监控
JP4780416B2 (ja) 太陽電池アレイ故障診断方法
US20130088252A1 (en) Method for diagnosis of contacts of a photovoltaic system and apparatus
US10439553B2 (en) Method and system of fault detection and localization in DC-systems
JP6113220B2 (ja) 太陽電池検査装置および太陽電池検査方法
US9599658B2 (en) Method and apparatus for signaling partial shadowing of a photovoltaic generator
JP5918390B2 (ja) 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
US10305424B2 (en) Solar photovoltaic system inspection method and inspection apparatus
WO2017212757A1 (ja) 太陽電池ストリングの故障診断方法及び故障診断装置
JP2015080399A (ja) 太陽電池モジュールの劣化判別方法
JP7306605B2 (ja) 太陽電池ストリングの検査装置、及び検査方法
JP6702168B2 (ja) 太陽光発電システムの検査装置および検査方法
JP6312081B2 (ja) 欠陥診断装置
JP6208843B1 (ja) 太陽電池パネルの検査装置、及び太陽電池パネルの検査方法
US20240012068A1 (en) System for detecting an electrical grounding intergrid integrity
JP2016123232A (ja) 太陽電池の検査方法およびその装置並びに太陽電池検査装置に用いられる信号源
JP6428396B2 (ja) 太陽光発電システムの検査方法および検査装置
JP6189550B1 (ja) 太陽電池パネルの検査装置
JP6089332B2 (ja) 太陽電池の検査方法及び装置
CN117220590A (zh) 功率变换装置及其控制方法
KR102279394B1 (ko) 낙뢰 피해 방지 태양광 발전 장치
Navid et al. Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review. Sustainability 2021, 13, 1629
CN105911408A (zh) 适用于逆变器的对地故障检测电路、逆变器及其故障检测方法
JP2019221083A (ja) 太陽電池モジュールの診断方法及び診断装置
JPWO2017212757A1 (ja) 太陽電池ストリングの故障診断方法及び故障診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R150 Certificate of patent or registration of utility model

Ref document number: 7306605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150