WO2020177093A1 - 磁制冷模块及其制备方法 - Google Patents

磁制冷模块及其制备方法 Download PDF

Info

Publication number
WO2020177093A1
WO2020177093A1 PCT/CN2019/077126 CN2019077126W WO2020177093A1 WO 2020177093 A1 WO2020177093 A1 WO 2020177093A1 CN 2019077126 W CN2019077126 W CN 2019077126W WO 2020177093 A1 WO2020177093 A1 WO 2020177093A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic refrigeration
film
refrigeration module
nanoparticles
magnetocaloric
Prior art date
Application number
PCT/CN2019/077126
Other languages
English (en)
French (fr)
Inventor
陈必成
Original Assignee
罗伯特·博世有限公司
陈必成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 陈必成 filed Critical 罗伯特·博世有限公司
Priority to KR1020217028361A priority Critical patent/KR20210136013A/ko
Priority to PCT/CN2019/077126 priority patent/WO2020177093A1/zh
Priority to CN201980093584.2A priority patent/CN113631511B/zh
Priority to DE112019006977.2T priority patent/DE112019006977T5/de
Publication of WO2020177093A1 publication Critical patent/WO2020177093A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present application relates to the field of magnetocaloric materials, and in particular to a magnetic refrigeration module, a magnetic refrigeration device including the magnetic refrigeration module, and a method for preparing the magnetic refrigeration module.
  • the currently widely used refrigeration method is vapor compression refrigeration technology, which repeatedly compresses and expands gaseous or liquid refrigerant through a compressor, and uses the refrigerant to take heat away from the environment or equipment during the cycle to achieve refrigeration.
  • the refrigeration efficiency of the compressor is low, the energy consumption is huge, and the leakage of refrigerant seriously affects the ecological environment and physical health, so the traditional refrigeration technology is being replaced by the emerging refrigeration technology.
  • Magnetic refrigeration technology based on "Magneto Caloric Effect" has gradually become a potential alternative technology.
  • a magnetocaloric material with a magnetocaloric effect the application and removal of an external magnetic field can cause the order of the magnetic moment in the material to change, which leads to a temperature change in the material.
  • Magnetic refrigeration technology uses the magnetocaloric effect of bulk magnetocaloric materials to refrigerate without using refrigerants and compressors, so it has the characteristics of high efficiency, energy saving and environmental friendliness, and has gained more and more attention and applications.
  • the existing magnetocaloric materials mainly use metal gadolinium (Gd) and its compounds, MnFe-based compounds, La 1-x Ca x MaO 3 -based compounds, La (Fe 1-x Si x ) 13 series compounds or Hesuler (Hesuler) ) Alloy etc.
  • Gd metal gadolinium
  • MnFe-based compounds MnFe-based compounds
  • La 1-x Ca x MaO 3 -based compounds La (Fe 1-x Si x ) 13 series compounds or Hesuler (Hesuler) ) Alloy etc.
  • the thermal conductivity of these magnetocaloric materials is low and it is difficult to meet application requirements.
  • the thermal conductivity of metal gadolinium is only about 10W/m ⁇ K.
  • the corresponding problem is that the machinability of these magnetocaloric materials is poor, which limits the shapes that can be processed, and cannot guarantee uniform performance when forming bulk materials. Therefore, the preparation and processing of magnetocaloric materials also greatly restrict the application of these magnetocaloric materials.
  • the purpose of the present application is to overcome at least one of the above-mentioned defects in the prior art, and provide an improved magnetic refrigeration module, a magnetic refrigeration device including such a magnetic refrigeration module, and a method for preparing the magnetic refrigeration module to achieve higher heat Conductivity and heat exchange efficiency, and easy to process and prepare.
  • a magnetic refrigeration module including:
  • a film comprising a graphene material
  • a magnetocaloric material that forms nanoparticles attached to the surface of the film is A magnetocaloric material that forms nanoparticles attached to the surface of the film.
  • the nanoparticles formed of the magnetocaloric material are separated from each other by defects on the surface of the film.
  • the graphene material includes at least one of graphene, graphene oxide, and reduced graphene oxide.
  • the thermal conductivity of the graphene material is at least 1000 W/m ⁇ K, preferably at least 1300 W/m ⁇ K, more preferably at least 1500 W/m ⁇ K, particularly preferably at least 2000 W/m ⁇ K.
  • the magnetocaloric material is metal gadolinium.
  • the particle size of the nanoparticles is less than 30 nm, preferably less than 20 nm, and more preferably less than 10 nm.
  • the magnetic refrigeration module includes a structure formed by a multilayer film, the structure is formed by stacking a plurality of individual films or wound or folded by a single layer film, so that the nanoparticles are located in two adjacent layers Between membranes.
  • a magnetic refrigeration device including:
  • the magnet is configured to provide a magnetic field to the magnetic refrigeration module.
  • the magnetic refrigeration device further includes a radiator, and the radiator can absorb heat from the magnetic refrigeration module.
  • the magnetic refrigeration device further includes a thermal interface material, and the thermal interface material is disposed between the heat sink and the magnetic refrigeration module.
  • a method of preparing a magnetic refrigeration module including the following steps:
  • the film comprising a graphene material
  • the magnetocaloric material and the film are cooled so that the magnetocaloric material forms nanoparticles on the surface of the film.
  • the nanoparticles formed of the magnetocaloric material are separated from each other by defects on the surface of the film.
  • the magnetic refrigeration module and the magnetic refrigeration device of the present application make full use of the characteristics of the magnetocaloric material and the graphene material, which can greatly improve the thermal conductivity of the magnetic refrigeration module and significantly improve the heat exchange efficiency.
  • the preparation method of the magnetic refrigeration module of the present application can quickly form ultra-fine nanoparticles and avoid reducing the performance of the nanoparticles.
  • FIGS. 1A and 1B are respectively schematic perspective views showing the state before preparation and the state after preparation of the magnetic refrigeration module according to an embodiment of the present application;
  • Fig. 2 is a schematic diagram showing a magnetic refrigeration device according to an embodiment of the present application.
  • Fig. 3 is a flowchart showing a method of manufacturing a magnetic refrigeration module according to an embodiment of the present application.
  • magnetocaloric material generally refers to a magnetic material having a magnetocaloric effect, for example, the aforementioned metal gadolinium (Gd) and its compounds.
  • Magnetocaloric materials can achieve magnetic refrigeration, but existing magnetocaloric materials generally have low thermal conductivity, which is difficult to meet the heat dissipation requirements in actual operation. It is known that the thermal conductivity of metal is generally lower than 500W/m ⁇ K, while graphene theoretically has a thermal conductivity of up to 5300W/m ⁇ K, and it has been achieved in the laboratory. 3200W/m ⁇ K graphene film.
  • the present application creatively proposes an improved magnetic refrigeration module, which combines graphene materials and magnetocaloric materials together and exhibits significant advantages in magnetic refrigeration.
  • the magnetic refrigeration module of the present application will be described in detail below with reference to FIGS. 1A and 1B.
  • FIG. 1A and FIG. 1B schematically show the state before preparation and the state after preparation of the magnetic refrigeration module 10 according to an embodiment of the present application, respectively.
  • the magnetic refrigeration module of the present application includes a film 11 and a magnetocaloric material 15, where the film 11 includes a graphene material.
  • graphene material generally refers to a layered carbon material with a hexagonal crystal lattice, which may include graphene, graphene oxide (GO), reduced graphene oxide (RGO), and doped Heterogeneous graphene film, or other graphene compounds, etc.
  • the magnetic material 15 forms nanoparticles attached to the surface of the film 11. Since the graphene material has a very high thermal conductivity, as mentioned above, the magnetic refrigeration module 10 of the present application can obtain a higher thermal conductivity much higher than that of the magnetocaloric material 15 itself. In addition, the magnetocaloric material 15 forms nanoparticles, which significantly increases the surface area and therefore greatly improves the heat exchange efficiency.
  • the nanoparticles formed of the magnetocaloric material 15 are separated from each other on the surface of the film 11. It is known that defects (for example, vacancies, grain boundaries, and slits) are inevitably formed on the surface of a film formed of a graphene material. These defects block the migration of nanoparticles, so that the nanoparticles are effectively confined in the area divided by adjacent defects. This phenomenon is more obvious in reduced graphene oxide (RGO). As a result, the nanoparticles formed by the magnetocaloric material 15 are kept isolated from each other without significant aggregation and merging, so that the nanoparticles are separated from each other by the defects 13 on the surface of the film 11. In this way, the formed nanoparticles are finer, have a larger surface area, and are more evenly distributed, which helps to further improve the heat exchange efficiency.
  • defects for example, vacancies, grain boundaries, and slits
  • the graphene material of the film 11 is reduced graphene oxide (RGO), because the surface of the film-like reduced graphene oxide has relatively uniformly dispersed grid-forming defects 13, which facilitates the formation of nanoparticles .
  • RGO reduced graphene oxide
  • Graphene materials obtained in different ways or of different types may have different thermal conductivity and surface defects. Therefore, other types of graphene materials can be selected according to different application requirements. Of course, when other graphene materials are used, additional preparation steps can be used to process the graphene materials.
  • the thermal conductivity of the graphene material of the film 11 may be at least 1000 W/m ⁇ K, preferably at least 1300 W/m ⁇ K, and more It is preferably at least 1500 W/m ⁇ K, particularly preferably at least 2000 W/m ⁇ K.
  • the magnetic refrigeration module of the present application can apply graphene materials with higher thermal conductivity.
  • gadolinium is usually used in the form of pellets or plates.
  • metal gadolinium is used as the magnetocaloric material, wherein the metal gadolinium is in the form of nanoparticles, wherein the particle size of the nanoparticles may be less than 30nm, preferably less than 20nm, more preferably less than 10nm, for example, 1nm , 3nm, 5nm, etc.
  • the magnetocaloric material of the present application can also be a gadolinium-based alloy, a Ni-Mn-Sn-based alloy, or an Mn-Fe-based alloy.
  • the alloy may undergo structural phase transition, magnetic phase transition, or composition segregation during the formation of nanoparticles, the process parameters need to be adjusted accordingly.
  • the magnetic refrigeration module 10 of the present application is only shown as including one layer of film 11.
  • the magnetic refrigeration module 10 may include a structure formed by a multilayer film 11, and this structure may be more Layers of separate films 11 are stacked, for example, a film 11 with a size equivalent to that of the final magnetic refrigeration module 10 is selected for stacking, or a single layer of film 11 can be wound into a solid or hollow cylindrical magnetic refrigeration module, or It can be formed by folding a single-layer film 11 so that the nanoparticles are located between two adjacent films 11.
  • the film 11 can be used as an oxidation barrier layer to prevent the oxidation of nanoparticles, so that the properties of the nanoparticles can be fully utilized and accidental ignition of the magnetocaloric material (for example, metal gadolinium is flammable) can be avoided.
  • a certain pressure can be applied to compact the formed stack or roll.
  • the magnetic refrigeration device 100 includes the above-mentioned magnetic refrigeration module 10 and a magnet.
  • FIG. 2 the N pole 20 and the S pole 30 of the magnet located at both ends of the magnetic refrigeration module 10 are shown.
  • the magnet generates a magnetic field passing through the magnetic refrigeration module 10 from the N pole 20 to the S pole 30 to generate a magnetocaloric effect in the magnetic refrigeration module 10.
  • the magnetic refrigeration device 100 further includes a radiator 40 that can absorb heat from the magnetic refrigeration module 10 and dissipate the heat to the external environment through conduction, convection or radiation.
  • a thermal interface material 60 may also be provided between the radiator 40 and the magnetic refrigeration module 10.
  • the thermal interface material 60 is a commonly used substance in the field, and will not be repeated here. 2 also shows a heat source 50, such as a heating device or space that needs to be cooled, and another thermal interface material 70 can also be arranged between the heat source 50 and the magnetic refrigeration module 10.
  • the working principle of the magnetic refrigeration device 100 is known, and will not be described in detail herein.
  • the structure of the magnetic refrigeration module 10 and the magnetic refrigeration device 100 of the present application is roughly described above.
  • the preparation method of the magnetic refrigeration module 10 of the present application is described below with reference to FIG. 3.
  • the manufacturing method of the magnetic refrigeration module of the present application roughly includes the following steps:
  • a film 11 including a graphene material is provided.
  • the film 11 can be made by various methods such as mechanical peeling, oxidation-reduction, and vapor deposition.
  • the magnetocaloric material 15 is distributed on the surface of the film 11.
  • the magnetocaloric material 15 is generally uniformly spread on the surface of the film 11 in the form of ultrafine particles.
  • the particle size of the magnetocaloric material 15 may be on the order of micrometers, for example, 2 ⁇ m, 4 ⁇ m, etc. Of course, a size smaller than 1 ⁇ m can also be used.
  • the magnetocaloric material 15 is heated to a molten state.
  • the heating of the magnetocaloric material 15 may adopt multiple methods such as laser heating, infrared heating, and energization heating.
  • the heating time should be as short as possible, for example, in the range of 1 millisecond to 10 milliseconds. Of course, a heating time of less than 1 millisecond can also be used, such as 900 microseconds.
  • the heating temperature should be higher than the melting point of the magnetocaloric material 15, but excessively high temperature should be avoided, for example, in the range of 1700K to 2500K. It is conceivable that the heating temperature and heating time can be calibrated according to different types of magnetocaloric materials.
  • the magnetocaloric material 15 and the film 11 are cooled so that the magnetocaloric material 15 forms nanoparticles on the surface of the film 11.
  • the cooling time to room temperature should also be as short as possible. Taking into account the limitation of rapid cooling, the cooling time is usually longer than the heating time, roughly in the range of 10 milliseconds to 20 milliseconds. Of course, if the equipment is feasible, a cooling time of less than 10 milliseconds can also be used.
  • the magnetocaloric material 15 can be quickly melted and dispersed on the entire surface of the film 11 at a high temperature. With rapid cooling, the magnetocaloric material 15 nucleates around the defects 13 on the surface of the film 11 and forms ultrafine nanoparticles.
  • the defects 13 on the surface of the film 11 restrict the movement of the nanoparticles, so that the nanoparticles are distributed in the area 12 separated by the adjacent defects 13. Therefore, the nanoparticles formed of the magnetocaloric material 15 are separated from each other by the defects 13 on the surface of the film 11 without aggregation and merging.
  • a magnetic refrigeration module with ultra-high thermal conductivity and heat exchange efficiency can be manufactured quickly and conveniently, which breaks through the bottleneck of the application of existing magnetocaloric materials.

Abstract

一种磁制冷模块及包含该模块的磁制冷装置和制备磁制冷模块的方法。磁制冷模块包括:膜(11),膜包括石墨烯材料和磁热材料(15),磁热材料(15)形成附着在膜(11)表面上的纳米颗粒。该结构可以方便地实现具有较高导热率和热交换率的磁制冷装置。

Description

磁制冷模块及其制备方法 技术领域
本申请涉及磁热材料领域,尤其涉及一种磁制冷模块、包括这种磁制冷模块的磁制冷装置以及制备磁制冷模块的方法。
背景技术
目前广泛采用的制冷方式是蒸汽压缩制冷技术,其通过压缩机对气态或液态制冷剂进行反复压缩和膨胀,在循环过程中利用制冷剂将热量从环境或设备中带走,从而实现制冷。然而,压缩机的制冷效率较低、能耗巨大,并且制冷剂的泄漏严重影响生态环境和身体健康,因此传统制冷技术正在被新兴的制冷技术所取代。
基于“磁热效应(Magneto Caloric Effect)”的磁制冷技术逐渐成为一种极具潜力的替代技术。在具有磁热效应的磁热材料中,施加和除去外加磁场时可以导致材料中的磁矩有序度发生变化,从而导致材料产生温度变化。磁制冷技术利用块体磁热材料的磁热效应来制冷,而不使用制冷剂和压缩机,因此具有高效节能和环境友好的特点,获得了越来越多的关注和应用。
现有的磁热材料主要采用金属钆(Gd)及其化合物、MnFe基化合物、La 1-xCa xMaO 3基化合物、La(Fe 1-xSi x) 13系列化合物或赫斯勒(Hesuler)合金等。然而,这些磁热材料本身的热导率较低而很难满足应用要求,例如,金属钆的热导率仅仅约为10W/m·K。另外,为了提高热交换效率,往往需要将磁热材料加工成各种形状以增加表面积,例如加工成不规则的颗粒料或团粒料,或者加工成板状或切块。与之相应的问题是这些磁热材料的机加工性能较差,限制了所能够加工的形状,且在形成块体材料时无法保证性能均匀。因此,磁热材料的制备加工也使这些磁热材料的应用受到了很大的限制。
已有一种在还原氧化石墨烯膜的表面形成纳米颗粒的方法,其采用超快速加热和冷却在还原氧化石墨烯膜上形成稳定的Al、Si、Sn、Au或Pd等纳 米颗粒。然而,在磁热材料的加工中并未出现类似的方法。
因此,需要一种热导率高、热交换效率高且加工方便的磁制冷模块及其制备方法。
发明内容
本申请的目的在于克服上述现有技术中的至少一种缺陷,提供一种改进的磁制冷模块、包括这种磁制冷模块的磁制冷装置以及制备磁制冷模块的方法,以实现较高的热导率和热交换效率,且便于加工和制备。
为此,根据本申请的第一方面,提供一种磁制冷模块,包括:
膜,所述膜包括石墨烯材料;和
磁热材料,所述磁热材料形成附着在所述膜的表面上的纳米颗粒。
优选地,由所述磁热材料形成的纳米颗粒被所述膜的表面上的缺陷彼此分隔开。
优选地,所述石墨烯材料包括石墨烯、氧化石墨烯、还原氧化石墨烯中的至少一种。
优选地,所述石墨烯材料的热导率为至少1000W/m·K,优选为至少1300W/m·K,更优选为至少1500W/m·K,特别优选为至少2000W/m·K。
优选地,所述磁热材料是金属钆。
优选地,所述纳米颗粒的粒径为小于30nm,优选为小于20nm,更优选为小于10nm。
优选地,所述磁制冷模块包括由多层膜形成的构造,所述构造由多层单独的膜堆叠成或由单层膜卷绕或折叠成,使得所述纳米颗粒位于相邻的两层膜之间。
根据本申请的另一方面,提供一种磁制冷装置,包括:
上述的磁制冷模块;和
磁体,所述磁体被配置成为所述磁制冷模块提供磁场。
优选地,所述磁制冷装置还包括散热器,所述散热器能够从所述磁制冷模块吸收热量。
优选地,所述磁制冷装置还包括热界面材料,所述热界面材料被设置在所述散热器和所述磁制冷模块之间。
根据本申请的另一方面,提供一种制备磁制冷模块的方法,所述方法包括以下步骤:
提供膜,所述膜包括石墨烯材料;
将磁热材料分布在所述膜的表面上;
将所述磁热材料加热到熔融状态;和
冷却所述磁热材料和所述膜,使得所述磁热材料在所述膜的表面上形成纳米颗粒。
优选地,由所述磁热材料形成的纳米颗粒被所述膜的表面上的缺陷彼此分隔开。
本申请的磁制冷模块和磁制冷装置,充分利用磁热材料和石墨烯材料的特点,可以极大地改进磁制冷模块的热导率,并明显地提高热交换效率。本申请的磁制冷模块的制备方法可以快速地形成超细的纳米颗粒,并避免降低纳米颗粒的性能。
附图说明
下面将参照附图对本申请的示例性实施例进行详细描述,应当理解,下面描述的实施例仅用于解释本申请,而不是对本申请的范围进行限制。在本申请的各附图中,结构相同或功能相似的特征由相同的附图标记表示。应当理解,附图中各部件的尺寸、比例关系以及部件的数目均不作为对本申请的限制。在附图中:
图1A和图1B分别是示出根据本申请的一实施例的磁制冷模块的制备前状态和制备后状态的示意性透视图;
图2是示出根据本申请的一实施例的磁制冷装置的示意图;以及
图3是示出了根据本申请的一实施例的磁制冷模块的制备方法的流程图。
具体实施方式
以下将结合示例对本申请的优选实施例进行详细描述。本领域技术人员应当理解的是,这些示例性的实施例并不意味着对本申请施加任何限制。此外,在不冲突的情况下,本申请的实施例中的特征可以相互组合。在附图中,为简要起见,省略了其它的部件,但这并不表明本申请的磁制冷模块和磁制冷装置不可包括其它部件,也不表明本申请的制备方法不可包括其它步骤。
在本申请中,“磁热材料”大致上指的是具有磁热效应的磁性材料,例如,前述的金属钆(Gd)及其化合物等。磁热材料可以实现磁制冷,但现有的磁热材料普遍热导率较低,难以满足实际运行中的散热要求。已知的是,通常金属的热导率基本上低于500W/m·K,而石墨烯理论上具有高达5300W/m·K的热导率,且在实验室中已经实现了热导率高达3200W/m·K的石墨烯薄膜。因此,基于石墨烯材料和磁热材料的特点,本申请创造性地提出一种改进的磁制冷模块,该模块将石墨烯材料和磁热材料结合在一起,在磁制冷方面表现出显著的优势。下面参照图1A和图1B对本申请的磁制冷模块进行详细描述。
图1A和图1B分别示意性地示出了根据本申请的一实施例的磁制冷模块10的制备前状态和制备后状态。如图1A和1B所示,本申请的磁制冷模块包括膜11和磁热材料15,其中,膜11包括石墨烯材料。在本申请中,“石墨烯材料”大致上指的是具有六边形晶格的层状碳材料,其可包括石墨烯、氧化石墨烯(GO)、还原氧化石墨烯(RGO)以及经掺杂的石墨烯薄膜,或其它的石墨烯化合物等。由于石墨烯材料普遍具有各种缺陷,这些缺陷在薄膜状石墨烯材料的表面上可以呈现出由相邻缺陷分开的区域。例如,从图1A和1B可以看出,膜11的表面上存在大致呈六边形的区域12和缺陷13。在制备后的磁制冷模块10中,磁性材料15形成附着在膜11的表面上的纳米颗粒。由于石墨烯材料具有非常高的热导率,如前所述,所以本申请的磁制冷模块10可以获得远远高于磁热材料15本身的较高热导率。另外,磁热材料15形成纳米颗粒,显著增大了表面积,因此也大大提高了热交换效率。
如图1B所示,由磁热材料15形成的纳米颗粒在膜11的表面上彼此分 隔开。已知的是,在石墨烯材料形成的膜的表面上,不可避免地会形成缺陷(例如,空位、晶界和狭缝)。这些缺陷阻挡纳米颗粒的迁移,使纳米颗粒被有效地限制在由相邻缺陷划分的区域内。这种现象在还原氧化石墨烯(RGO)中较为明显。结果,磁热材料15形成的纳米颗粒彼此保持隔离,并不发生明显的聚集和合并,使纳米颗粒被膜11的表面上的缺陷13彼此分隔开。这样,形成的纳米颗粒更细,表面积更大,且分布更均匀,有助于热交换效率的进一步提高。
根据本申请的一实施例,膜11的石墨烯材料为还原氧化石墨烯(RGO),因为薄膜状的还原氧化石墨烯的表面具有分散较均匀的形成网格的缺陷13,便于纳米颗粒的形成。不同方式获得的或不同种类的石墨烯材料可能具有不同的热导率和表面缺陷,因此,根据不同的应用需求,还可以选择其它种类的石墨烯材料。当然,在采用其它石墨烯材料时,可以采用附加的制备步骤对石墨烯材料进行处理。
为显著提高本申请的磁制冷模块的总热导率,在一个实施例中,膜11的石墨烯材料的热导率可以为至少1000W/m·K,优选为至少1300W/m·K,更优选为至少1500W/m·K,特别优选为至少2000W/m·K。随着技术的发展,可以设想到本申请的磁制冷模块能够应用具有更高热导率的石墨烯材料。
金属钆作为一种传统的磁热材料,通常以颗粒料或板的形式来使用。在本申请的一实施例中,采用金属钆作为磁热材料,其中金属钆呈纳米颗粒的形式,其中,纳米颗粒的粒径可以小于30nm,优选为小于20nm,更优选为小于10nm,例如1nm、3nm、5nm等。另外,本申请的磁热材料还可采用钆基合金、Ni-Mn-Sn基合金或Mn-Fe基合金等。但应注意的是,由于合金在形成纳米颗粒的过程中可能出现结构相变、磁相变或成分偏析等,需要相应地调整工艺参数。
如图1B所示,本申请的磁制冷模块10仅被示为包括一层膜11,然而,在实际产品中,磁制冷模块10可包括由多层膜11形成的构造,这种构造可由多层单独的膜11堆叠成,例如选用尺寸与最终形成的磁制冷模块10的尺 寸相当的膜11进行堆叠,或者可以由单层的膜11卷绕成实心或空心的圆柱状磁制冷模块,或者可以由单层的膜11折叠而成,使得纳米颗粒位于相邻的两层膜11之间。通过形成多层结构,可以使膜11作为氧化阻挡层,防止纳米颗粒的氧化,从而可以充分发挥纳米颗粒的性能,并避免意外引燃磁热材料(例如,金属钆具有易燃性)。在形成多层膜构造的过程中,可以施加一定的压力,以压实所形成的堆叠体或卷绕体。
参照图2,其示出了根据本申请的一实施例的磁制冷装置100,磁制冷装置100包括如上所述的磁制冷模块10,以及磁体。在图2中示出了磁体的分别位于磁制冷模块10的两端的N极20和S极30。该磁体产生从N极20到S极30的穿过磁制冷模块10的磁场,以在磁制冷模块10内产生磁热效应。另外,磁制冷装置100还包括散热器40,散热器40能够从磁制冷模块10吸收热量,并通过传导、对流或辐射将热量散失到外部环境中。为降低散热器40和磁制冷模块10之间的接触热阻,还可以在散热器40和磁制冷模块10之间设置热界面材料60。热界面材料60是本领域常用的物质,本文不再赘述。在图2中还示出了热源50,例如需要冷却的发热器件或空间等,且热源50和磁制冷模块10之间也可设置另一热界面材料70。磁制冷装置100的工作原理是已知的,本文不再对此详细描述。
以上大致描述了本申请的磁制冷模块10和磁制冷装置100的结构,下面参照图3描述本申请的磁制冷模块10的制备方法。
如图2所示,本申请的磁制冷模块的制备方法大致包括以下步骤:
在步骤S1处,提供包括石墨烯材料的膜11。膜11可以通过机械剥离、氧化还原、气相沉积等多种方法制成。
在步骤S2处,将磁热材料15分布在膜11的表面上。磁热材料15通常以超细颗粒的形式大致均匀地铺置在膜11的表面上。磁热材料15的颗粒尺寸可以在微米的级别,例如,2μm、4μm等。当然,也可以采用小于1μm的尺寸。
在步骤S3处,将磁热材料15加热到熔融状态。加热磁热材料15可以采用激光加热、红外加热、通电加热等多种方式。为减少热损失并避免磁热 材料15的氧化等不利影响,加热时间应尽可能短,例如,例如在1毫秒至10毫秒的范围内。当然也可以采用低于1毫秒的加热时间,例如900微秒。加热温度应高于磁热材料15的熔点,但应避免温度过高,例如在1700K至2500K的范围内。可想到的是,根据磁热材料的种类不同,可以对加热温度和加热时间进行标定。
在步骤S4处,冷却磁热材料15和膜11,使得磁热材料15在膜11的表面上形成纳米颗粒。冷却到室温的时间也应尽可能短,考虑到快速冷却的限制,通常情况下冷却时间会比加热时间长,大致在10毫秒至20毫秒的范围内。当然,在设备可行的情况下,也可以采用低于10毫秒的冷却时间。
通过这种超快速的加热,可以使磁热材料15在高温下迅速融化并分散在膜11的整个表面上。随着快速冷却,磁热材料15在膜11的表面上的缺陷13周围成核并形成超细纳米颗粒。优选地,在形成纳米颗粒的过程中,膜11的表面上的缺陷13限制了纳米颗粒的移动,使纳米颗粒分布在由相邻缺陷13分开的区域12内。因此,由磁热材料15形成的纳米颗粒被膜11的表面上的缺陷13彼此分隔开,而不发生聚集和合并。
利用本申请的制备磁制冷模块的方法,可以快速、便利地制造具有超高热导率和热交换效率的磁制冷模块,而突破现有磁热材料应用的瓶颈。
以上结合具体实施例对本申请进行了详细描述。显然,以上描述以及在附图中示出的实施例均应被理解为是示例性的,而不构成对本申请的限制。对于本领域技术人员而言,可以在不脱离本申请的精神的情况下对其进行各种变型或修改,这些变型或修改均不脱离本申请的范围。

Claims (12)

  1. 一种磁制冷模块(10),包括:
    膜(11),所述膜包括石墨烯材料;和
    磁热材料(15),所述磁热材料形成附着在所述膜(11)的表面上的纳米颗粒。
  2. 根据权利要求1所述的磁制冷模块(10),其中,由所述磁热材料(15)形成的纳米颗粒被所述膜(11)的表面上的缺陷(13)彼此分隔开。
  3. 根据权利要求1或2所述的磁制冷模块(10),其中,所述石墨烯材料为还原氧化石墨烯。
  4. 根据权利要求1至3中的任一项所述的磁制冷模块(10),其中,所述石墨烯材料的热导率为至少1000W/m·K,优选为至少1300W/m·K,更优选为至少1500W/m·K,特别优选为至少2000W/m·K。
  5. 根据权利要求1至4中的任一项所述的磁制冷模块(10),其中,所述磁热材料(15)是金属钆。
  6. 根据权利要求1至5中的任一项所述的磁制冷模块(10),其中,所述纳米颗粒的粒径为小于30nm,优选为小于20nm,更优选为小于10nm。
  7. 根据权利要求1至6中的任一项所述的磁制冷模块(10),其中,所述磁制冷模块(10)包括由多层膜(11)形成的构造,所述构造由多层单独的膜(11)堆叠成或由单层膜(11)卷绕或折叠成,使得所述纳米颗粒位于相邻的两层膜(11)之间。
  8. 一种磁制冷装置(100),包括:
    根据权利要求1至7中的任一项所述的磁制冷模块(10);和
    磁体,所述磁体被配置成为所述磁制冷模块(10)提供磁场。
  9. 根据权利要求8所述的磁制冷装置(100),其中,所述磁制冷装置(100)还包括散热器(40),所述散热器能够从所述磁制冷模块(10)吸收热量。
  10. 根据权利要求8或9所述的磁制冷装置(100),其中,所述磁制冷装置(100)还包括热界面材料(60),所述热界面材料被设置在所述散热器(40)和所述磁制冷模块(10)之间。
  11. 一种制备磁制冷模块(10)的方法,所述方法包括以下步骤:
    提供膜(11),所述膜包括石墨烯材料;
    将磁热材料(15)分布在所述膜(11)的表面上;
    将所述磁热材料(15)加热到熔融状态;和
    冷却所述磁热材料(15)和所述膜(11),使得所述磁热材料(15)在所述膜(11)的表面上形成纳米颗粒。
  12. 根据权利要求9所述的方法,其中,由所述磁热材料(15)形成的纳米颗粒被所述膜(11)的表面上的缺陷(13)彼此分隔开。
PCT/CN2019/077126 2019-03-06 2019-03-06 磁制冷模块及其制备方法 WO2020177093A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217028361A KR20210136013A (ko) 2019-03-06 2019-03-06 자기 냉각 모듈 및 이의 제조 방법
PCT/CN2019/077126 WO2020177093A1 (zh) 2019-03-06 2019-03-06 磁制冷模块及其制备方法
CN201980093584.2A CN113631511B (zh) 2019-03-06 2019-03-06 磁制冷模块及其制备方法
DE112019006977.2T DE112019006977T5 (de) 2019-03-06 2019-03-06 Magnetisches Kühlmodul und Verfahren zur Herstellung desselben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077126 WO2020177093A1 (zh) 2019-03-06 2019-03-06 磁制冷模块及其制备方法

Publications (1)

Publication Number Publication Date
WO2020177093A1 true WO2020177093A1 (zh) 2020-09-10

Family

ID=72337410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077126 WO2020177093A1 (zh) 2019-03-06 2019-03-06 磁制冷模块及其制备方法

Country Status (4)

Country Link
KR (1) KR20210136013A (zh)
CN (1) CN113631511B (zh)
DE (1) DE112019006977T5 (zh)
WO (1) WO2020177093A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389536A (zh) * 2002-07-15 2003-01-08 南京大学 复合室温磁制冷材料及其制法
US20120021219A1 (en) * 2010-07-21 2012-01-26 Alexander Gabay Magnetic nanoflakes
US20120019342A1 (en) * 2010-07-21 2012-01-26 Alexander Gabay Magnets made from nanoflake precursors
CN103231066A (zh) * 2013-04-16 2013-08-07 中国科学院宁波材料技术与工程研究所 一种制备稀土-过渡族永磁合金微/纳米颗粒的方法
CN104174855A (zh) * 2014-08-13 2014-12-03 中国科学院物理研究所 一种制备磁性纳米片的方法
CN206003836U (zh) * 2016-08-31 2017-03-08 鸿之微科技(上海)有限公司 磁热电器件
CN106554006A (zh) * 2015-09-25 2017-04-05 国家纳米科学中心 一种碳材料、制备方法及其应用
CN206695450U (zh) * 2017-03-14 2017-12-01 华南理工大学 一种用于室温磁制冷的并联微元回热系统
CN109099616A (zh) * 2018-08-09 2018-12-28 宁夏欣达节能技术有限公司 石墨烯薄膜冷媒蒸发管及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801686B (zh) * 2013-12-31 2016-08-17 深圳市国创新能源研究院 一种石墨烯纳米复合材料及其制备方法
CN103938012B (zh) * 2014-04-23 2017-02-15 中国科学院理化技术研究所 一种碳基室温磁制冷复合材料及其制备方法
WO2018090329A1 (zh) * 2016-11-18 2018-05-24 深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389536A (zh) * 2002-07-15 2003-01-08 南京大学 复合室温磁制冷材料及其制法
US20120021219A1 (en) * 2010-07-21 2012-01-26 Alexander Gabay Magnetic nanoflakes
US20120019342A1 (en) * 2010-07-21 2012-01-26 Alexander Gabay Magnets made from nanoflake precursors
CN103231066A (zh) * 2013-04-16 2013-08-07 中国科学院宁波材料技术与工程研究所 一种制备稀土-过渡族永磁合金微/纳米颗粒的方法
CN104174855A (zh) * 2014-08-13 2014-12-03 中国科学院物理研究所 一种制备磁性纳米片的方法
CN106554006A (zh) * 2015-09-25 2017-04-05 国家纳米科学中心 一种碳材料、制备方法及其应用
CN206003836U (zh) * 2016-08-31 2017-03-08 鸿之微科技(上海)有限公司 磁热电器件
CN206695450U (zh) * 2017-03-14 2017-12-01 华南理工大学 一种用于室温磁制冷的并联微元回热系统
CN109099616A (zh) * 2018-08-09 2018-12-28 宁夏欣达节能技术有限公司 石墨烯薄膜冷媒蒸发管及其装置

Also Published As

Publication number Publication date
DE112019006977T5 (de) 2021-11-25
CN113631511A (zh) 2021-11-09
CN113631511B (zh) 2023-11-24
KR20210136013A (ko) 2021-11-16

Similar Documents

Publication Publication Date Title
Barber et al. A review on boiling heat transfer enhancement with nanofluids
Hamad Magnetocaloric effect in La 1.25 Sr 0.75 MnCoO 6
Moore et al. Selective laser melting of La (Fe, Co, Si) 13 geometries for magnetic refrigeration
Li et al. Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound
Zhang et al. Excellent magnetocaloric properties in RE 2Cu2Cd (RE= Dy and Tm) compounds and its composite materials
KR20170097131A (ko) 자기 열량적 캐스케이드 및 자기 열량적 캐스케이드의 제조 방법
Li et al. Low field giant magnetocaloric effect in RNiBC (R= Er and Gd) and enhanced refrigerant capacity in its composite materials
Zhang et al. Experimental study of TiO2–water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube
JP5520306B2 (ja) 少なくとも一つの磁気熱量活性相を有する製品,及び少なくとも一つの磁気熱量活性相を有する製品の加工方法
CN106350690B (zh) 用于室温磁制冷材料的稀土钆基非晶合金条带及其制备方法
WO2012058861A1 (zh) 一种磁制冷工质床及制备方法
Zhong et al. Table-like magnetocaloric effect and large refrigerant capacity in Gd65Mn25Si10-Gd composite materials for near room temperature refrigeration
KR20170095987A (ko) 자기 열량적 캐스케이드 및 자기 열량적 캐스케이드의 제조 방법
M’nassri Field dependence of magnetocaloric properties in La 0.6 Pr 0.4 Fe 10.7 Co 0.8 Si 1.5
Dong et al. Magnetic phase transition and magnetocaloric effect in Dy12Co7 compound
M’nassri Enhancement of refrigeration capacity and table-like magnetocaloric effect in LaFe 10.7 Co 0.8 Si 1.5/La 0.6 Pr 0.4 Fe 10.7 Co 0.8 Si 1.5 composite
WO2019163978A1 (ja) 熱交換器、冷凍機および焼結体
Shinde et al. Magnetocaloric effect in Tb2O3 and Dy2O3 nanoparticles at cryogenic temperatures
WO2020177093A1 (zh) 磁制冷模块及其制备方法
Zhang et al. Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications
Lu et al. Microstructure, magnetic properties and enhanced thermal conductivity in La (Fe, Co, Si) 13/Nb magnetocaloric composites
Radulov et al. Heat Exchangers From Metal-Bonded La (Fe, Mn, Si) 13 H x Powder
JP5853907B2 (ja) 磁気冷凍材料熱交換器の製造方法
Zhang et al. Magnetic and reversible magnetocaloric properties of (Gd1− xDyx) 4Co3 ferrimagnets
Hu et al. Thermodynamic properties of nano-silver and alloy particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917588

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19917588

Country of ref document: EP

Kind code of ref document: A1