WO2020175910A1 - 로봇 관절 구동용 동력 전달 시스템 - Google Patents

로봇 관절 구동용 동력 전달 시스템 Download PDF

Info

Publication number
WO2020175910A1
WO2020175910A1 PCT/KR2020/002737 KR2020002737W WO2020175910A1 WO 2020175910 A1 WO2020175910 A1 WO 2020175910A1 KR 2020002737 W KR2020002737 W KR 2020002737W WO 2020175910 A1 WO2020175910 A1 WO 2020175910A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
wire
force
driving unit
sheath
Prior art date
Application number
PCT/KR2020/002737
Other languages
English (en)
French (fr)
Inventor
홍대희
김병곤
최진우
이채동
임정현
최혁순
김정한
Original Assignee
고려대학교 산학협력단
주식회사 엔도로보틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190023402A external-priority patent/KR102165413B1/ko
Priority claimed from KR1020200018283A external-priority patent/KR20210103739A/ko
Priority claimed from KR1020200018284A external-priority patent/KR20210103740A/ko
Application filed by 고려대학교 산학협력단, 주식회사 엔도로보틱스 filed Critical 고려대학교 산학협력단
Priority to JP2021550704A priority Critical patent/JP7260883B2/ja
Priority to EP20763220.9A priority patent/EP3932623A4/en
Priority to US17/434,592 priority patent/US12005575B2/en
Priority to CN202080017325.4A priority patent/CN113543936A/zh
Publication of WO2020175910A1 publication Critical patent/WO2020175910A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • B25J9/1045Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons comprising tensioning means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible

Definitions

  • This invention relates to a surgical robot, and more particularly, to a power transmission system for driving a robot joint.
  • this conventional cable drive method is a method that drives only when both motors pull the cable, so in order to transmit the driving force to the object, one motor connects both the master cable and the slave cable. It must provide the force to pull.
  • these cables are inserted through parts of the body, thus preventing infection in patients.
  • the present invention is to solve the above problems, and it is possible to increase the power transmission amount by controlling the movement of the slave cable and to increase the control precision.
  • a system for driving comprising: a driving unit including a first driving unit and a second driving unit; A formulation comprising a first sheath having a predetermined length, flexible, and formed in a hollow shape, and a first wire inserted into the first sheath and fixed to the joint of the first stage robot and the other end connected to the first driving unit 1 force transmission unit; and a second sheath that has a predetermined length and has flexibility and is formed in a hollow shape, and a second sheath inserted into the second sheath and fixed to the joint of the robot at one end and the other end connected to the second driving unit.
  • a second force transmission unit including a wire; Including, When the first driving unit provides force in a first direction to the first wire side, the second driving unit comprises the first on the second wire side It is possible to provide a power transmission system for driving a robot joint that provides force in a second direction opposite to the direction.
  • the second driving unit may provide force to the second wire in a direction in which the second wire is pushed
  • the first driving unit may provide a force to the first wire in a direction in which the first wire is pushed.
  • the first driving unit provides force to the first wire in a direction pulling the first wire
  • the second driving unit provides force to the second wire in a direction pushing the second wire
  • the The magnitude of the force provided by the second driving unit to the second wire side may be adjusted according to the friction force generated between the second wire and the second sheath.
  • the magnitude of the maximum force provided by the second driving unit to the second wire side may be the same magnitude as the friction force generated between the second wire and the second sheath.
  • the first driving unit provides force to the first wire in a direction in which the first wire is pulled and the second driving unit provides force to the second wire in a direction in which the second wire is pushed
  • the The magnitude of the force provided by the first driving unit to the first wire side may be the same size as the sum of the friction force generated between the first wire and the first sheath and the force that moves the robot joint itself.
  • the first driving unit is attached to the first wire in the direction in which the first wire is pulled. 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • the second driving unit provides force to the second wire in a direction pushing the second wire, the outer side from the end of the first sheath
  • the lead length of the first wire drawn out may be a length that is relatively longer than the lead length of the second wire drawn from the end of the second sheath to the inside of the second sheath.
  • a portion of the length including the end portion of the second sheath into which the second wire is drawn may be in a state in which flow is prevented together with the second wire.
  • one end is fixed to the robot joint and the other end of the first wire inserted into the first sheath is connected, so that the first wire is the length of the first sheath.
  • a first driving unit that provides a force to pull or push along the direction, and once fixed to the abnormal robot joint and inserted into the second sheath.
  • a second driving unit is connected to the other end of the second wire to provide a force for pulling or pushing the second wire along a longitudinal direction of the second sheath, wherein the
  • the second driving unit is for driving a robot joint that provides force to the second wire side in a second direction opposite to the first direction. Power transmission method can be provided.
  • the robot joint driving power transmission system includes: a body portion; one end of which is fixed to the body portion, the other end of which is fixed to the first driving unit, and a first elastic portion surrounding the other end of the first wire; and the One end is fixed to the body portion, the other end is fixed to the second driving unit, and a second elastic portion surrounding the other end of the second wire; further comprising, the first driving unit and the second driving unit are linearly moved Can be
  • the power transmission system for driving the robot joint further includes a control unit disposed on the body, and the control unit performs the first driving so that the first driving unit provides a force to the first wire in a first direction.
  • a unit may be controlled, and the second driving unit may be controlled so that the second driving unit provides a force to the second wire in a second direction opposite to the first direction.
  • a first wire hole through which the first wire passes and a second wire hole through which the second wire passes may be formed at one side of the body part.
  • the first driving unit includes a first driving motor that generates a driving force; and a first moving part that is linearly moved by receiving the driving force of the first driving motor, and the second driving unit generates a driving force. It may include a second driving motor; And a second moving part linearly moved by receiving the driving force of the second driving motor.
  • It may have a second guide hole guiding the second moving part.
  • the first elastic portion and the second elastic portion are provided with force in the first direction 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 It is contracted and can be stretched by receiving force in the second direction.
  • a cartridge type power transmission system for driving a robot joint is a power transmission system for driving a joint of a robot, comprising: a housing; a material disposed inside the housing and linearly moved 1 driving unit; and a cartridge inserted into the interior of the housing, wherein the cartridge includes: a case; a moving unit accommodated in the case and connected to the first driving unit to move linearly; has a predetermined length and has flexibility.
  • a force transmission unit including a sheath formed in a hollow shape and a wire inserted into the sheath and fixed to the joint of the robot at one end, the other end fixed to the moving unit, and passing through the case; And one end is fixed to the case.
  • the other end is fixed to the moving part, and includes an elastic part surrounding the wire, and the cartridge may be detachably coupled to the housing.
  • the first driving unit may further include a second driving unit for moving the first driving unit to be connected to or separated from the moving unit.
  • the first driving part A driving body part movable inside the housing; A first motor disposed in the driving body part; It is connected to the first motor, and linearly moved by the driving force of the first motor. , It may include a detachable portion that is detachably coupled with the moving portion.
  • the second driving unit a second motor disposed on the housing; And to the second motor
  • connection portion that is linearly moved by the driving force of the second motor.
  • the detachable part may include a protrusion protruding from an outer surface of the detachable part, and the moving part may have a detachable groove into which the protrusion of the detachable part is inserted.
  • the cartridge may have a hole through which the force transmission unit passes.
  • the case may have a guide hole that guides the movement of the moving part.
  • the elastic portion may be elongated along a first direction and contracted along the second direction, which is a direction opposite to the first direction.
  • the driving unit applies a driving force to the slave cable side.
  • control precision can be improved by reducing or preventing backlash in the slave cable by canceling the friction force generated on the slave cable side.
  • FIG. 1 shows a power transmission system for driving a robot joint according to an embodiment of the present invention.
  • FIG. 2 is an operational state diagram of FIG. 1.
  • FIG. 3 is an enlarged view of a part of “Show” in FIG. 2.
  • FIG. 4 is an operational state diagram showing a case in which excessive force applied to the wire side from the driving unit in FIG. 1 is provided.
  • FIG. 5 is a diagram showing a cable driving device for driving a robot joint that can be employed as a driving unit in a power transmission system for driving a robot joint according to an embodiment of the present invention.
  • FIG. 6 is a view showing the state in which the main components are separated from FIG.
  • Fig. 7 is a view of Fig. 6 viewed from a different direction.
  • FIG. 8 is a partial cross-sectional view showing a state in which the wire is wound around a roller in FIG. 6.
  • FIG. 9 is an operating state diagram showing a case in which the motor pulls the wire in FIG. 8.
  • Fig. 8 is an operating state diagram showing a case where the motor pushes the wire.
  • FIG. 11 is a schematic diagram showing a state in which the power transmission system for driving a robot joint according to an embodiment of the present invention is applied to the endoscopic surgery system.
  • FIG. 12 is a diagram schematically showing a power transmission system for driving a robot joint according to another embodiment of the present invention.
  • FIG. 12 is an operation state diagram of FIG. 12;
  • FIG. 14 is a perspective view showing a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • 15 is a perspective view schematically showing the configuration of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • 16 is a front view schematically showing the configuration of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • FIG. 17 is a plan view schematically showing the configuration of a power transmission system for driving a robot joint according to another embodiment of the present invention.
  • FIG. 18 is a side view schematically showing the configuration of a power transmission system for driving a robot joint according to another embodiment of the present invention.
  • 19 is a perspective view showing a cartridge of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • 20 is a cartridge-type power for driving a robot joint according to another embodiment of the present invention 2020/175910 1»(:1/10 ⁇ 020/002737 This is a side view showing the cartridge of the delivery system.
  • 21 is a view schematically showing the configuration of a cartridge of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • FIG. 22 is a side view showing a first driving unit of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • Lee 120 first force transmission unit 121: first sheath
  • control unit 150 sheath holder
  • first receiving groove 234 seating groove
  • a “module” or “unit” may perform a function or operation by means of hardware, software, or a combination of hardware and software. In addition, it must be performed or at least one of a specific hardware.
  • Plural "modules” or plural “parts” excluding “modules” or “parts” performed by the processor may be integrated into at least one module.
  • the singular representation is plural unless the context clearly indicates otherwise. Include expression.
  • the power transmission system 100 for driving a robot joint is to implement a double input ((1 011 1 5 1 6 no1) 111;) sheath-tendon power transmission mechanism, 1 and 2, it includes a driving unit, a first force transmission unit 120 and a second force transmission unit 130.
  • the power transmission system 100 for driving a robot joint according to an embodiment of the present invention
  • the driving unit may include a first driving unit 110 and a second driving unit (11 Ah 5) , and the first driving unit (0 ⁇ is directly connected to the first force transmission unit 120, the first power transmission unit)
  • the second driving unit (11) which provides driving force to 120, is directly connected to the second force transmission unit (130) to provide driving force to the second force transmission unit (130).
  • the first force transmission unit 120 and the second force transmission unit 130 employ a sheath-tendon mechanism inserted inside the sheath so that the tendon sheath can be moved along the longitudinal direction inside the tendon sheath.
  • a sheath-tendon mechanism inserted inside the sheath so that the tendon sheath can be moved along the longitudinal direction inside the tendon sheath.
  • the first force transmission unit 120 has a predetermined length and has flexibility
  • a first sheath 121 formed in a hollow shape, and inserted into the first sheath 121
  • a first wire 122 may be included.
  • the first wire 122 may be inserted into the first sheath 121 so that both ends thereof are exposed to the outside of the first sheath 121.
  • One of both ends of the first wire 122 exposed to the furnace is controlled
  • the second force transmission unit 130 has a predetermined length, has flexibility and is formed in a hollow shape, and the second sheath 131 is inserted into the second sheath 131.
  • a second wire 132 may be included.
  • the second wire 132 may be inserted into the second sheath 131 so that both ends are exposed to the outside of the second sheath 131, and One end of both ends of the second wire 132 exposed by the furnace may be fixed to the control object 10 and the other end may be fixed to the second driving unit (A5).
  • first roller 114 rotatably coupled to the first driving motor 112
  • the first wire 122 may be fixedly coupled to the first roller 114 at one end.
  • the second driving unit (11a 5) is the second driving motor (112
  • a second roller (114 ratio) rotatably coupled to the second driving motor (112 ratio), the second wire (132) may be fixedly coupled at one end to the second roller (114 ratio).
  • control object 10 may be a driving joint of a robot
  • the driving joint of the robot may be a driving joint for driving the finger of the robot or the wrist of the robot in the robot arm.
  • the first sheath 121 and the second sheath 131 are the first wire 122 and the second wire.
  • (132) It may be a coil-shaped tube made of a metal material to have flexibility while maintaining the overall shape while retaining the tension applied to the (132).
  • the shape and material of the first sheath 121 and the second sheath 131 are limited to this. It does not mean that any shape and material adopted as a sheath in the known sheath-tendon mechanism can be applied.
  • the power transmission system 100 for driving a robot joint includes a control unit 140 for controlling the overall operation of the first driving unit (0 ⁇ and the second driving unit (A5)). ) May be further included, and the control unit 140 may control the driving of the first driving unit 110 and the second driving unit 11 based on a user's input signal.
  • the control unit 140 may include Based on the user's input signal, the first driving unit (the magnitude of the force provided to the first wire 122 at 0 ⁇ and the 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 In the second driving unit (A5), the amount of force provided to the second wire 132 can be controlled.
  • System 100 is the end of the first wire 122 is connected to the first drive unit (110 ⁇ )
  • first driving unit 120 and the second wire 132 are connected to the second driving unit (11a5) and the second force transmission unit 130 may be connected to each other via the control object 10, the Through the control of the control unit 140, the first driving unit
  • the first wire 122 and the second wire 132 It is possible to move along the longitudinal direction inside the gauze first sheath 121 and the second sheath 131. Through this, the control object 10 can be rotated or moved to the position desired by the user.
  • the power transmission system 100 for driving a robot joint is different from the conventional double input sheath-tendon mechanism, the first driving unit (0 ⁇ and the second driving unit 11 H5) It is possible to provide driving force to the first force transmission unit 120 and the second force transmission unit 130 at the same time, and the first driving unit (110 ⁇ and
  • the magnitude of the driving force provided from the second driving unit 11a5 to the first and second force transmitting units 120 and 130 may be controlled through the control unit 140.
  • the power transmission system 100 for driving a robot joint is the first driving unit (0 ⁇ the first wire 122 side), as shown in Figs.
  • the second driving unit (E) is the
  • a force may be provided to the second wire 132 side in a second direction opposite to the first direction.
  • the system 100 is provided with the second driving unit (11a5) on the second wire (132) side.
  • the first driving unit (0 ⁇ is
  • a force may be provided to the first wire 122 side in a second direction opposite to the first direction.
  • the first direction is the first driving unit (110 ⁇ is the first wire 122)
  • the direction of the pulling force or the direction of the force that the second driving unit (A5) pulls the second wire 132 is defined, and the second direction is the first driving unit (0 ⁇ i
  • the second wire 132 is defined as the direction of the pushing force.
  • first wire 122 and the second wire 132 are the role of the master cable and the slave according to the direction of the force provided from the first driving unit (0 ⁇ and the second driving unit (A5) The role of the cable can be transferred.
  • the first wire 122 When moving in the second direction, the first wire 122 may serve as a master cable 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 and the second wire 132 can serve as a slave cable. Conversely, the first wire 122 moves in the second direction, and the second wire ( When 132 moves in the first direction, the second wire 132 may serve as a master cable, and the first wire 122 may serve as a slave cable.
  • the power transmission system 100 for driving a robot joint is located on the side of any one of the first wire 122 and the second wire 132 serving as a master cable.
  • the power transmission system 100 for driving a robot joint is located on the side of any one of the first wire 122 and the second wire 132 serving as a master cable.
  • the system 100 provides the pulling force 11 through the drive unit to the wire side, which serves as the master cable, and at the same time, provides an active push force 2) through the drive unit to the wire side, which serves as the slave cable. By doing so, it is possible to compensate for the frictional force 3) generated through contact with the sheath during the process of moving the wire acting as a slave cable inside the sheath.
  • the system 100 can change the position for the purpose of movement of the control object 10 even if the wire serving as the master cable is pulled with a small force.
  • the first wire 122 is
  • the direction and magnitude of the force provided to the second wire 132 are only switched with each other.
  • the first driving unit when 0 is provided to the first wire 122 with a force 11 in the first direction, the second driving unit 11 A5) 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • the force 12 in the second direction can be provided to the side of the second wire 132 above.
  • the magnitude of the force 12 in the second direction provided by the second driving unit (A5) to the side of the second wire 132 is the second wire 132 and the second sheath ( It may be set based on the friction force 3) generated between the second wire 132 and the second sheath 131 in the process of moving toward the control object 10 along the longitudinal direction of 131).
  • the magnitude of the force 12 in the second direction provided by the second driving unit (A5) to the side of the second wire 132 is the second wire 132 and the second sheath (
  • the friction force generated between the second wire 132 and the second sheath 131 in the process of moving toward the control object 10 along the longitudinal direction of 131 may be provided in the same size as 3).
  • the first driving unit (110 ⁇ is provided to the first wire 122 side
  • the magnitude of the force 11 in the first direction is the first wire 122 and the first wire 122 in the process of moving toward the 0 ⁇ side along the length direction of the first sheath 121 1 If the friction force 111 generated between the sheaths 121 and the size of the control object 10 and the force 112 for moving itself are equal to the sum of the size, the control object 10 is the position where the operator is intended. can be changed.
  • the maximum magnitude of the force 12 in the second direction is the second wire 132 and the second wire 132 and the second wire 132 in the process of moving toward the control object 10 along the longitudinal direction of the second sheath 131.
  • the friction force generated between the two sheaths 131 may have the same size as 3).
  • the second driving unit (A5) provides a second direction force 12 provided to the second wire 132 side.
  • the maximum size of the above first driving unit (0 ⁇ or above
  • the power transmission system 100 for driving a robot joint provides a push force to the side of the wire serving as a slave cable, the wire is not struck, and the inside of the sheath is
  • the end of the sheath may be fixed to the side of the virtual driving unit (110 11A5) so that it can move smoothly.
  • the first driving unit (0 ⁇ This first wire 122 is applied with a force in the first direction)
  • the second sheath 131 is the entire length of the second wire 132 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 Part of the length including the lead-in end (the flow may be prevented with the second wire 132 above the blood).
  • the second sheath 131 is
  • the second driving unit (A5) side can be fixed in a state inserted into the guide groove 252 formed in a direction parallel to the longitudinal direction, and the guide groove 252 is a partial length of the second sheath 131 (piwa A portion of the second wire 132 exposed to the outside together may be formed to be seated (see FIG. 8).
  • Part of the length of the second wire 132 can be moved directly along the guide groove 252 toward the second sheath 131, so that at the end side of the second sheath 131
  • the system 100 provides a driving force that actively pushes the wire to the side of the wire that plays the role of the slave cable through the driving unit, thereby canceling the friction force generated between the wire wash that plays the role of the slave cable.
  • a small size of driving force is applied to the side of the wire that plays a role.
  • control precision can be increased by reducing or preventing the backlash in the slave cable by canceling the friction force generated on the slave cable side.
  • the first driving unit 110 and the second driving unit 11A5 are cables for driving the robot joint
  • the first driving unit (110 ⁇ and the second driving unit (11A 5) may be a cable driving device 200 for driving a robot joint shown in Figs. 5 to 7, and the robot joint driving cable
  • the driving device 200 operates the driving motor 220 in a state in which the sheath holder 150 to which the sheaths 121 and 131 are fixedly coupled and the wire holder 160 to which the ends of the wires 122 and 132 are fixed are fixed.
  • By rotating the driving roller 230 through the through it is possible to provide a force that pulls the wires 122 and 132 out of the sheaths 121 and 131 or pushes them into the sheaths 121 and 131.
  • the sheath 121 and 131 are the first sheath 121 or
  • the second sheath 131 may be, and the wires 122 and 132 may be the first wire 122 or the second wire 132 described above.
  • the first driving motor 112 and the first roller 114 constituting the first driving unit 110 may be a driving motor 220 and a driving roller 230 to be described later.
  • the above-described robot joint drive is used. 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • the second driving motor (112 ratio and the second roller (114 ratio) constituting the second driving unit (11A5)) to be described later It may be a motor 220 and a driving roller 230.
  • the sheath 121 and 131 may be fixed to the sheath holder 150 so that both ends of the sheath holder 150 protrude from the sheath holder 150 for a certain length, and the wire 122 and 132 are controlled at one end.
  • the other end After passing through the sheaths 121 and 131 fixed to the sheath holder 150 in a state fixed to the object 10, the other end may be fixed to the wire holder 160.
  • the sheath holder 150 and the wire holder 160 may be mounted on the cable driving device 200 for driving the robot joint.
  • the cable driving device 200 for driving a robot joint may include a main body 210, a driving motor 220, a driving roller 230, and a load measuring unit 240. have.
  • the phase base body 210 includes a phase driving motor 220, a driving roller 230, and
  • the load measuring unit 240 can serve as a fixture to which it is mounted.
  • the upper body 210 may be fixed to the upper drive motor 220 on one surface, and a placement hole having a shape corresponding to the upper drive roller 230 so that the drive roller 230 can be disposed ( 212) can be formed.
  • the upper drive roller 230 may be rotated through the driving force provided from the upper drive motor 220, may be disposed rotatably in the placement hole 212, one side of the drive roller 230 In order to accommodate the wire holder 160
  • a first receiving groove 232 may be formed.
  • the upper actuating motor 220 may include a reducer, and the above
  • the driving roller 230 may be rotatably coupled to the reducer side.
  • the wire holder 160 is also rotated by the driving roller 230
  • the placement hole 212 may have an opening formed at one side so that the first receiving groove 232 can be exposed to the outside.
  • the wire holder 160 may be configured to be exposed to the outside.
  • the first receiving groove 232 When the first receiving groove 232 is disposed to be located on the side of the arranging hole 212 having an opening, it can be easily mounted on the side of the first receiving groove 232 through the opened portion.
  • the upper driving roller 230 may be formed with a seating groove 234 that is drawn inward along the circumferential direction to accommodate the thickness of the wires 122 and 132.
  • the wire ( 122) (132) is the end of the wire holder in a state where the length of a part of the total length that has passed through the sheath (121) (131) is wound at least one time along the seating groove (234) Since it can be fixed to the 160 side, it is possible to smoothly transmit the force to the wire 122, 132 side through rotation.
  • the upper driving roller 230 rotates in one direction or in the opposite direction, 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 Even if the wire (122)(132) is withdrawn from the sheath (121)(131)
  • the wires 122 and 132 are guided along the seating groove 234 to guide the winding direction, so that force can be smoothly transmitted to the wires 122 and 132.
  • the upper driving motor 220 may be driven in the forward or reverse direction through the control of the control unit, and the control unit may be the control unit 140 described above.
  • the load measurement unit 240 may be fixedly installed on one side of the upper body 210, and a second receiving groove 242 for receiving the sheath holder 150 may be formed on one side. That is, in the second receiving groove 242, a sheath holder 150 to which some lengths of the sheaths 121 and 131 are fixedly coupled may be detachably mounted.
  • the load measuring unit 240 may be a load cell, and the second receiving groove 242 may be formed directly on one side of the load cell, or may be formed in a separate member fixedly coupled to the load cell.
  • the load measurement unit 240 is the second receiving groove 242, ash holder 150
  • the sheath (121, 131) When mounted, the sheath (121, 131) is exposed to the outside through the
  • the wires 122 and 132 may be disposed on one side of the driving roller 230 so that the wires 122 and 132 can proceed toward the wire holder 160 in a straight line.
  • the load measurement unit 240 is in the state in which the sheath holder 150 is mounted in the second receiving groove 242 and the wire holder 160 is mounted in the first receiving groove 232
  • the wire holder 160 rotates through the rotation of the driving roller 230
  • the force applied to the sheath holder 150 can be measured, and the force applied to the sheath holder 150
  • the force of the sheath 121 and 131 can be measured.
  • the force provided to the wires 122 and 132 through the upstream motor 220 controls the control of the control unit 140 based on the magnitude of the load applied to the sheath holder 150 Can be precisely controlled through.
  • the cable drive device 200 for driving the robot joint is the wire 122, 132 through the drive of the drive motor 220 of the sheath (121, 131)
  • the wire (122, 132) is not bent by the applied force and the wire (122) (132) is 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • a cover 250 can be included to allow accurate entry into the inside of the sheath 121, 131.
  • the wire holder 160 and the sheath holder 150 are mounted in the first receiving groove 232 and the second receiving groove 242, respectively, and the above-mentioned receiving groove ⁇ 32 is located in the open part of the placement hole 212.
  • it may include a cover 250 having a cover surface 251 covering the upper portions of the first receiving groove 232 and the second receiving groove 242 at the same time.
  • the wire holder 160 and the sheath holder 150 can be prevented from being separated from the first receiving groove 232 and the second receiving groove 242 by being pressed through the cover surface 251.
  • Such a cover 250 may be detachably coupled to the phase base body 210, and may be rotatably coupled to one or more of the base bodies 210.
  • the cover surface 251 is from the sheath holder 150 in a state in which the sheath holder 150 is mounted in the second receiving groove 242 as shown in FIG.
  • the wires 122 and 132 are retractable so that some parts of the wire can be seated at the same time.
  • the guide groove 252 is the protruding part of the sheath 121, 131 (the first guide groove for receiving blood (the protruding part of the 252 and the sheath 121, 131)) from the end to the outside
  • a second guide groove (252 ratio) for accommodating the exposed wires 122 and 132 may be formed, and the first guide groove 252 and the second guide groove 252 may be formed to be connected to each other.
  • the bottom surface can be formed as a stepped surface.
  • the cable driving device 200 for driving a robot joint is the wire 122, 132 through the driving of the driving motor 220, sheath (121, 131) Even if a force is applied to the side of the wires 122 and 132 in the second direction, which is the direction of pushing the inside of the wire, the wire 122, 132 is in a state in which the moving direction is restricted by the second guide groove 252.
  • the cable drive device 200 for driving a robot joint in one embodiment of the present invention 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • the above wire 122, 132 is pushed to the inside of the sheath 121, 131 in the second direction. Even if a force is applied to the side of the wires 122, 132, side effects such as loss of force or bending of the wire do not occur in the process of entering the inside of the wires 122, 132, gasses 121, 131. remind
  • the load measurement unit 240 may accurately measure the force applied to the sheath holder 150.
  • the cable driving device 200 for driving a robot joint includes the sheath holder 150 mounted in the second receiving groove 242 and the wire holder 160 through the above-described configuration. ) In the state of being mounted in the first receiving groove (232)
  • the force applied to the wires 122 and 132 may be accurately applied.
  • the cable drive device 200 for driving a robot joint is a drive unit for implementing the above-described power transmission system 100 for driving a robot joint. Can be employed.
  • the above-described power transmission system for driving the robot joint 100 can constitute an endoscopic surgery system, and the power transmission system for driving the robot joint 100 is a cable driving device for driving the robot joint described above by the driving unit It can be composed of 200.
  • the power transmission system 100 for driving a robot joint includes a first driving unit (110 ⁇ , a second driving unit (11a 5), a first sheath 121) and a first A first force transmission unit 120 including a wire 122, a second sheath 131 and a second force transmission unit 130 including a second wire 132 may be included, and the first driving unit ( 110 ⁇ and
  • the second driving unit (110 ratio may be composed of a cable driving device 200 for driving the robot joint described above.
  • the second force transmission unit 130 may have the above-described configuration as it is, and the cable driving device 200 for driving the robot joint is a cable for driving the robot joint described above.
  • the drive device 200 may be employed as it is. Therefore, detailed descriptions thereof will be omitted.
  • the first wire 122 is connected at one end to the driving joint of the robot, which is the object to be controlled 10, and the other end is equipped with a cable driving device for driving the first robot joint (200).
  • the endoscope equipment may be fixed to the driving joint of the robot, which is the control object 10.
  • the operator uses the control unit 140 to drive the first robot joint.
  • the cable drive device 200a and the second robot joint drive cable drive device 200b, while pulling the first wire 122, pushing the second wire 132, or pulling the second wire 132, The first wire 122 can be pushed.
  • the driving joint of the robot which is the control object 10
  • the endoscopic equipment fixed to the control object 10 is also accurately changed to the direction and position desired by the operator.
  • the accuracy of the procedure can be improved by being able to.
  • the wire holder 160 and the sheath holder 150 are detachably mounted to the first receiving groove 232 and the second receiving groove 242, so that the first force transmission unit 120 and The first robot joint drive cable drive device 200a and the second robot joint drive cable drive device 200b that can be easily removed and replaced with an unused item together with the second force transmission unit 130 are contaminated. It can be easily reused without any concern.
  • the present invention is not limited to this, and can be applied to any robot arm that performs a grip operation or a driving joint of a robot to drive it, and can be widely applied to medical use, home use, and industrial use.
  • FIG. 12 is a diagram schematically showing a power transmission system for driving a robot joint according to another embodiment of the present invention
  • FIG. 13 is an operation state diagram of FIG. 12.
  • a power transmission system 300 for driving a robot joint is for implementing a double input Sheath-tendon power transmission mechanism, and a body Part (3W), a driving unit including a first driving unit 360 and a second driving unit 370, a first force transmission unit 120, a second force transmission unit 130, a first elastic unit 340 and It includes a second elastic portion (350).
  • a driving unit including a first driving unit 360 and a second driving unit 370, a first force transmission unit 120, a second force transmission unit 130, a first elastic unit 340 and It includes a second elastic portion (350).
  • the body part 310 includes the first driving unit 360, the second driving unit 370, and the
  • the first elastic part 340 and the second elastic part 350 may be accommodated.
  • the body part 3W may be made of a plastic or metal material, and in addition, it may be made of various materials having rigidity and corrosion resistance. .
  • the first driving unit 360 may be disposed on the body part 3W.
  • the first driving unit 360 may include a first driving motor 361 and a first moving part 362.
  • the first driving motor 361 may be mounted on the body part 3W.
  • the first driving motor 361 may receive power and generate driving force.
  • the first moving part 362 may be linearly moved by receiving the driving force of the first driving motor 361.
  • the first moving part 362 may include the first driving motor 361 )of 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 Depending on the driving force, it can be moved in the first direction (1) or in the second direction (2) opposite to the first direction (1).
  • the body part may have a first guide hole 312 that guides the first moving part 362.
  • the first moving part 362 It may be moved in the first direction (1) or the second direction (2) along the first guide hole 312.
  • the second driving unit 370 may be disposed on the body part (ruler 0).
  • the second driving unit 370 may include a second driving motor (three) and a second moving part 372.
  • the second driving motor (three units) may be mounted on the body part 310.
  • the second driving motor (3 units) can generate driving force by receiving power.
  • the second moving part 372 may be linearly moved by receiving the driving force of the second driving motor (three units).
  • the second moving part 372 may include the second driving motor ( Depending on the driving force of 3), it can be moved in the first direction (1) or in the second direction (2) opposite to the first direction (1).
  • the body part may have a second guide hole 313 guiding the second moving part 372.
  • the second guide hole 313 is the above It may be formed parallel to the first guide hole 312.
  • the second moving part 372 moves in the first direction (1) or the second direction (2) along the second guide hole 313 Can be.
  • the first force transmission unit 320 and the second force transmission unit 330 may employ a sheath-tendon mechanism inserted inside the sheath so that the tendon sheath can be moved along the lengthwise direction inside the tendon sheath. .
  • the first force transmission unit 320 may include a first sheath 321 and a first wire 322.
  • the first sheath 321 has a predetermined length, has high flexibility, and may be formed in a hollow shape.
  • the first wire 322 may be inserted into the first sheath 321.
  • the first wire 322 May be inserted into the first sheath 321 so that both ends of the first wire 322 are exposed to the outside of the first sheath 321.
  • One of the both ends of the first wire 322 is a joint of the robot.
  • the other end of the both ends of the first wire 322 passes through one side 311 of the body part (ruler 0), and the first moving part of the first driving unit 360 Can be pinned to (362).
  • the second force transmission unit 330 may include a second sheath 331 and a second wire 332.
  • the second sheath 331 has a predetermined length, has high flexibility, and may be formed in a hollow shape.
  • the second wire 332 may be inserted into the second sheath 331.
  • the second wire 332 May be inserted into the second sheath 331 so that both ends of the second wire 332 are exposed to the outside of the second sheath 331.
  • One of the both ends of the second wire 332 is a joint of the robot. It may be fixed to 10.
  • the other end of the both ends of the second wire 332 passes through one side 311 of the body part 310, and the second moving part of the second driving unit 370 ( 372). 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737
  • one side 311 of the body part includes the
  • a first wire hole through which the first wire 322 passes and a second wire hole through which the second wire 332 passes may be formed.
  • the joint 10 of the robot may be a driving joint for driving the finger of the robot or the wrist of the robot in the robot arm.
  • first sheath 321 and the second sheath 331 are the first wire 322 and
  • first sheath 321 and the second sheath 331 are different. This is not limited to this, and both shapes and materials adopted as a sheath in the known sheath-tendon mechanism can be applied.
  • the power transmission system 300 for driving a robot joint further includes a control unit for controlling the overall operation of the first driving unit 360 and the second driving unit 370
  • the control unit may control the driving of the first driving unit 360 and the second driving unit 370 based on a user's input signal.
  • the control unit may control the driving of the first driving unit 360 and the second driving unit 370 based on the user’s input signal.
  • the driving unit 360 may control the amount of force provided to the first wire 322 and the amount of force provided to the second wire 332 from the second driving unit 370.
  • the control unit The first driving unit 360 controls the first driving unit 360 to provide force to the first wire 322 in a first direction (1)
  • the second driving unit 370 is
  • the second wire 332 to provide force in the second direction (2)
  • the second driving unit 370 can be controlled.
  • first force transmission unit 320 and the second force transmission unit 330 may be interconnected via the joint 10 of the robot, and through the control of the control unit
  • the first wire 322 and the first wire 322 can move along the longitudinal direction inside the first sheath 321 and the second sheath 331. Through this, the joint 10 of the robot can be rotated or moved to the desired position by the user. .
  • the first driving unit 360 and the second driving unit 370 are provided with the first force transmission unit 320 and the second It is possible to provide driving force to the force transmission unit 330 at the same time, provided from the first driving unit 360 and the second driving unit 370 to the first force transmission unit 320 and the second force transmission unit 330 The magnitude of the driving force can be controlled through the control unit.
  • the power transmission system 300 for driving a robot joint includes the first driving unit 360 in the first wire 322 in the first direction ( 1) in the case of providing power, the second driving unit 370 is
  • the power transmission system 300 for driving a robot joint includes the second driving unit 370 and the second wire 332 in the first When providing force in the direction (1)
  • the first driving unit 360 may provide force to the first wire 322 in the second direction (2).
  • first wire 122 and the second wire 132 are the role of the master cable and the slave according to the direction of the force provided from the first driving unit 360 and the second driving unit 370
  • the role of the cable can be switched. That is, the first wire 322 moves in the first direction (1) by the first length ⁇ ), and the second wire 332 is
  • the first wire 322 When moving in the second direction (2) by the first length ⁇ ), the first wire 322 may serve as a master cable and the second wire 332 may serve as a slave cable. Conversely, the first wire 322 may serve as a slave cable. The first wire 322 is above in the second direction (2)
  • the second wire 332 When the second wire 332 moves in the first direction (1) by the first length ⁇ ) and moves as much as the first length ⁇ ), the second wire 332 may serve as a master cable, and the second wire 332 The 1-wire 322 may serve as a slave cable.
  • a power transmission system 300 for driving a robot joint according to another embodiment of the present invention
  • the wire that plays the role of the slave cable is provided with the pulling force through the drive unit to the wire that plays the role of the master cable and at the same time provides the pulling force through the drive unit to the wire that plays the role of the slave cable.
  • the power transmission system 300 for driving a robot joint performs the role of a master cable. Even if the wire is pulled with a small force, it can be changed to a position for the purpose of moving the joint 10 of the robot.
  • the first driving unit 360 is the same as the above.
  • the friction force generated between the first wire 322 and the first sheath 321 in the process of moving by the first driving unit 360 along the longitudinal direction of the first wire 322 and the first sheath 321 When the size of the force 112 for moving the joint 10 of the robot is equal to the sum of the size, the joint 10 of the robot can be changed to the position desired by the operator.
  • the system 300 provides a driving force that actively pushes the wire to the side of the wire that plays the role of a slave cable through a driving unit, thereby canceling the friction force generated between the wire wash that plays the role of the slave cable.
  • a small size of driving force is applied to the side of the wire that plays a role.
  • the first elastic part 340 may wrap the other end of the first wire 322.
  • the other end of the first wire 322 is the entire portion of the first wire 322 Among them, it may mean a portion disposed inside the body part (ruler 0).
  • One end of the first elastic part 340 is fixed to the inner surface of the body part (ruler 0), and the first elastic part 340 The other end of) may be fixed to the first moving part 362 of the first driving unit 360.
  • the first elastic portion 340 may be formed in a tube shape.
  • the first elastic portion 340 may be made of various materials having elasticity while maintaining the overall tube shape.
  • the first elastic part 340 is contracted as the first moving part 362 is moved in the first direction (1), and the first elastic part 340 is the first moving part (362) Virtual Machine
  • the first wire 322 is moved in the first direction (1) or the second direction (2) by the first moving part 362.
  • the first elastic part 340 can maintain a state surrounding the first wire 322. Accordingly, the first elastic part 340 is the first wire 322 You can prevent being hit inside (ruler 0).
  • the second elastic part 350 is disposed inside the body part 310
  • the second wire 332 may be wrapped.
  • One end of the second elastic part 350 is
  • It may be fixed to the second moving part 372 of the second driving unit 370.
  • the second elastic part 350 may be formed in a tube shape.
  • the second elastic part 350 may be made of various materials having elasticity while maintaining the tube shape as a whole.
  • the second elastic part 350 is described above. It may be disposed parallel to the first elastic portion 340.
  • the second wire 332 is moved in the first direction (1) or the second direction (2) by the second moving part 372.
  • the second elastic part 350 can maintain a state surrounding the second wire 332. Accordingly, the second elastic part 350 is formed of the second wire 332 You can prevent being hit inside (ruler 0).
  • FIG. 14 is a perspective view showing a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention
  • FIG. 15 is a configuration of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention Is a perspective view schematically showing
  • Fig. 16 is a front view schematically showing the configuration of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention
  • Fig. 17 is a robot joint drive according to another embodiment of the present invention It is a plan view schematically showing the configuration of a cartridge type power transmission system for use.
  • FIG. 18 is a side view schematically showing the configuration of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention.
  • the driving cartridge type power transmission system 400 may include a housing 410, a first driving unit 420 and a cartridge 430.
  • the housing 410 is the first driving unit 420, the cartridge 430, and will be described later
  • the second driving part 440 may be accommodated.
  • the housing 410 may be made of a plastic or metal material.
  • the housing 410 is not limited to being made of a plastic or metal material, and has rigidity and corrosion resistance. It may be made of a variety of materials.
  • an insertion hole (411 ⁇ ) for inserting the cartridge 430 into the inside of the housing 410 may be formed.
  • a display indicating the state of the cartridge type power transmission system 400 for driving the robot joint may be disposed on the one side 411 of the 410.
  • the first driving unit 420 may be disposed inside the housing 410.
  • the first driving unit 420 may be linearly moved in the first direction (1, see Fig. 13) or the second direction (2, see Fig. 13).
  • the first driving unit 420 may be configured in plural.
  • the plurality of first driving units 420 may include one of the plurality of first driving units 421 facing one side of the cartridge 430 and the other of the plurality of first driving units facing the other side of the cartridge 430.
  • One 422 may be included.
  • the other one 422 of the plurality of first driving units may be disposed symmetrically with one of the plurality of first driving units 421 with the cartridge 430 interposed therebetween.
  • One of the plurality of first driving units (421) may be composed of four, and the other of the plurality of first driving units (422) may be composed of four.
  • one of the plurality of first driving units (421) and The other one 422 of the plurality of first driving units is not limited to being composed of four, but may be composed of various numbers such as two or six. [0043]
  • the first driving unit 420 is described with reference to the following drawings. I will do it.
  • the cartridge 430 can be inserted into the interior of the housing 410 through the insertion hole (411 ⁇ ).
  • the cartridge 430 has a double input ((10111 ⁇ ! ⁇ ) Sheath-tendon power transmission mechanism. It may include a force transmission unit 439 (see Fig. 21) and an elastic unit 438 for implementing the cartridge 430.
  • the cartridge 430 will be described with reference to the following drawings.
  • the cartridge 430 may be detachably coupled to the housing 410. As such, since the cartridge 430 is detachably coupled to the housing 410, according to an embodiment of the present invention
  • the surgical robot driving system 400 improves the convenience of replacement of the force transmission unit (439, see Fig. 21) used as consumables.
  • a cartridge type power transmission system 400 for driving a robot joint according to another embodiment of the present invention may further include a second driving unit 440.
  • the second driving unit 440 is the first driving unit 420 to the virtual machine cartridge 430 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 Move the first driving part 420 to the third direction (3) or the opposite direction of the third direction (3) so that it is connected or separated, the fourth direction (4)
  • the third direction (3) may be a vertical direction in the first direction (1).
  • the second driving unit 440 may be configured in plural.
  • the plurality of second driving units 440 are The plurality of second driving units 440 may include one of the plurality of second driving units disposed on the opposite side of the cartridge 430 with one of the plurality of first driving units 421 interposed therebetween. 441) and the other one of the plurality of first driving units (422)
  • It may include another one 442 of the plurality of second driving units disposed on the opposite side of the cartridge 430.
  • One of the plurality of second driving parts (441) is the second motor (441 ⁇ and the connecting part (441 ratio)
  • the second motor 441 may be disposed on the lower surface 412 of the housing (four 0).
  • the connection part 441 is connected to the second motor 441, the
  • the second motor can be moved linearly in the third direction (3) or the fourth direction (4) by the driving force of 441.
  • the connection part (441 ratio is the number of the first driving parts)
  • One of the plurality of second driving units (441) moves one of the plurality of first driving units (421) in the fourth direction (4) to recall one of the plurality of first driving units (421) It can be connected to the cartridge 430.
  • one of the plurality of second driving units (441) moves one of the plurality of first driving units (421) in the third direction (3),
  • One of the driving parts 421 may be separated from the cartridge 430.
  • the other one 442 of the plurality of second driving units may include a second motor 442 and a connecting unit 442.
  • the second motor 442 is the lower surface 412 of the housing (four 0).
  • the connection part 442 is connected to the second motor 442, and the
  • the second motor can be linearly moved in the third direction (3) or in the fourth direction (4) by the driving force of the 442 ⁇ .
  • the connecting part 442 is the other one (422) of the plurality of first driving parts. Can be connected
  • the other one (442) of the plurality of second driving units moves the other one (422) of the plurality of first driving units in the third direction (3), and the other one of the plurality of first driving units (422) ) Can be connected to the cartridge 430.
  • the other one 442 of the plurality of second driving units is moved to the fourth direction 422 of the plurality of first driving units
  • the other one 422 of the plurality of first driving parts may be separated from the cartridge 430.
  • the second driving unit 440 may control whether the first driving unit 420 and the cartridge 430 are connected. .
  • one of the plurality of second driving units 441 and the other one of the plurality of second driving units 442 may be driven at the same time.
  • FIG. 19 is a perspective view showing a cartridge of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention
  • FIG. 20 is a perspective view showing a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention
  • FIG. 21 is a diagram schematically showing the configuration of a cartridge of a cartridge type power transmission system for driving a robot joint according to another embodiment of the present invention
  • FIG. 22 is a robot according to another embodiment of the present invention. It is a side view showing the first driving part of the cartridge type power transmission system for joint drive.
  • the cartridge 430 of the robot joint drive cable power transmission system is a case 431, moving parts (435, 436, 437), It may include a force transmission portion 439 and an elastic portion 438.
  • the case 431 is the moving part (435, 436, 437), the force transmission part (439) and the
  • the elastic portion 438 may be accommodated.
  • the case 431 may be made of a plastic or metal material.
  • the case 431 is not limited to being made of a plastic or metal material, and has rigidity and corrosion resistance. It may be made of a variety of materials.
  • the case 431 may include a handle portion 432 that is gripped by a user's hand or mechanism.
  • the case 431 is to guide the movement of the moving parts (435, 436, 437)
  • the guide hole 434 may be formed in a slit shape.
  • the guide hole 434 may be formed in a plurality. The plurality of the above
  • the guide holes 434 may be formed side by side.
  • the moving parts 435, 436, 437 may be accommodated in the case 431.
  • the moving parts 435, 436, 437 may be connected to the first driving part 420.
  • the moving parts 435, 436, 437 receive the driving force of the first driving part 420, and the first direction ( 1) or may be linearly moved in the second direction (2).
  • the moving parts 435, 436, 437 may be exposed to the outside of the case 431 through the guide hole 434.
  • the moving parts 435, 436 and 437 may include a first moving part 435, a second moving part 436, and a third moving part 437.
  • the third moving parts 437 can be aligned with each other.
  • the force transmission unit 439 may include a sheath (439 wire (43%)).
  • the sheath (439 ⁇ has a predetermined length, has flexibility, and can be formed into a hollow shape.
  • the sheath (a part of the 439 ⁇ is accommodated in the case 431, the
  • the other part of the sheath 439 can be exposed to the outside of the case 431.
  • the sheath (439 ⁇ is the first sheath 321 and the
  • the wire (43%) can be inserted into the sheath (439 ⁇ .
  • One end of the wire (43%) is fixed to the joint (10, see Fig. 12) of the robot, and the other of the wire (43%)
  • the end may be fixed to the first moving part 435.
  • the other end of the wire (43%) is moved in the first direction (1) or the second direction (2) by the movement of the first moving part 435. )to 2020/175910 1»(:1 ⁇ 1 ⁇ 2020/002737 May be moved.
  • the wire (43%) is the first wire (322) and the
  • the elastic part 438 may be accommodated in the case 431.
  • One end of the elastic part 438 may be fixed to the case 431, and the other end of the elastic part 438 may be fixed to the first moving part 435.
  • the elastic part 438 is the case.
  • the first moving part 435 Due to the movement of the first moving part 435, it is stretched along the first direction (1) and may be contracted along the second direction (2).
  • the elastic portion 438 is the
  • the elastic part 438 includes the second moving part 436 and the It can penetrate the 3rd moving part 437.
  • the elastic part 438 may be the same as or similar to the elastic part 438 of the above-described embodiment.
  • the first driving unit 421 of the cartridge type power transmission system for driving a robot joint includes a driving body unit 42, a first motor 423, and
  • It may include a detachable portion (425, 426, 427).
  • the driving body part (421 ⁇ is the aircraft by the driving force of the second driving part 440)
  • the upper moving body part (421 ⁇ is the connection part 44 of the second driving part 440) ⁇ , see Fig. 17).
  • the first motor 423 may be disposed in the upper moving body part (421 ⁇ ).
  • the detachable parts 425, 426, and 427 may be disposed on the upper moving body part 421.
  • the detachable parts 425, 426 and 427 may be connected to the first motor 423.
  • the detachable parts 425, 426, and 427 can be linearly moved in the first direction (1) or the second direction (2) by the driving force of the first motor 423.
  • the attaching and detaching parts 425, 426, 427 may be detachably coupled to the moving parts 435, 436, 437.
  • the detachable parts (425, 426, 427) may include projections (425 425 ⁇ 426 42 years, 427 427 ratio) protruding from the outer surface of the detachable parts (425, 426, 427).
  • the movement The part (435, 436, 437) may include a detachable groove (433 ⁇ 4, 43 years, 437 ratio) into which the upper protrusion (425 425 ⁇ 426 42 years, 427 427 ratio is inserted).
  • the attaching and detaching parts 425, 426, and 42 are the first detachable part 425, the second attachable and detachable part 426
  • a third attaching and detaching portion 427 may be included.
  • the first attaching and detaching portion 425, the second attaching and detaching portion 426, and the third attaching and detaching portion 427 may be aligned in parallel with each other.
  • It may be detachably coupled with the second moving part 436.
  • the cartridge 430 may further include a first fixed portion (431 ratio).
  • the first fixing part 431 may be exposed from the side surface of the case 431 through a fixing hole 431 formed on the side surface of the case 431.
  • the first driving part 420 is the second fixing part.
  • the second fixing part 428 may include a fixing protrusion (428 428 ratio).
  • the fixing protrusion corresponding to the fixing protrusion (428 428 ratio in the first fixing part 431 ratio) may be included.
  • a groove may be formed. of the second fixing part 428 above.
  • Fixing protrusion (428 428 is inserted into the fixing groove of the first fixing part (431 ratio
  • the first driving unit 420 and the cartridge 430 may be rigidly coupled.
  • the detachable parts 425, 426, and 427 may be moved in the first direction (1) or the second direction (2) by receiving the driving force of the first motor 423.
  • the moving part 435 , 436, 437) After being connected to the virtual machine detachable part (425, 426, 427), the moving part (435, 436, 437) together with the detachable part (425, 426, 427) in the first direction (1) or It can be moved in the second direction (2). And, the wire (43%) can be moved in the first direction (1) or the second direction (2) together with the moving parts (435, 436, 437). There is. Above.
  • the robot's joint (see 10, Fig. 12) connected to the wire (43%) can be driven by the movement of the wire (43%).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

로봇 관절 구동용 동력 전달 시스템이 제공된다. 본 발명의 예시적인 실시예에 따른 로봇 관절 구동용 동력 전달 시스템은 로봇의 관절을 구동하기 위한 시스템으로서, 제1구동유닛 및 제2구동유닛을 포함하는 구동부; 소정의 길이를 갖추고 유연성을 가지며 중공형으로 형성되는 제1쉬스와, 상기 제1쉬스에 삽입되고 일단이 상기 로봇의 관절에 고정되고 타단이 상기 제1구동유닛에 연결되는 제1와이어를 포함하는 제1힘전달부; 및 소정의 길이를 갖추고 유연성을 가지며 중공형으로 형성되는 제2쉬스와, 상기 제2쉬스에 삽입되고 일단이 상기 로봇의 관절에 고정되고 타단이 상기 제2구동유닛에 연결되는 제2와이어를 포함하는 제2힘전달부;를 포함하고, 상기 제1구동유닛이 상기 제1와이어 측에 제1방향으로 힘을 제공하는 경우 상기 제2구동유닛은 상기 제2와이어 측에 상기 제1방향과 반대방향인 제2방향으로 힘을 제공한다.

Description

() 2020/175910 1»(:1/10公020/002737 명세서
발명의 명칭:로봇관절구동용동력전달시스템 기술분야
[I] 본발명은수술용로봇에관한것으로서,보다상세하게는,로봇관절구동용 동력전달시스템에관한것이다.
배경기술
[3] 최근산업계,의료계등여러분야에서로봇의적용범위가넓어짐에따라
다양한액추에이션방식이개발되고있다.로봇관절에액추에이터를직접 부착하는것이외에도,벨트,체인,와이어등의다양한방법으로동력을 전달하고있다.
[4] 이러한액추에이션방식중에서가장간단한방법은링크구조에액추에이터를 직접부착하는방법이나,액추에이터자체의무게가매우무거운단점이있다.
[5] 이를보완하기위하여액추에이터는바닥에고정하고,유연한두개의
케이블을이용하여힘을전달하는더블인풋케이블구동방법이제안되었다.
[6] 그러나,이와같은종래의케이블구동방법은두개의모터가모두케이블을 당기는경우에만구동하는방식이므로,대상물에구동력을전달하기위해서는 하나의모터가두개의케이블인마스터케이블및슬레이브케이블을모두당길 수있는힘을제공해야한다.
[7] 이에따라,구동시각각의모터는매우큰힘으로마스터케이블을당겨야
하므로큰출력을갖는모터가요구되며,정밀도가떨어지는문제가있다.
[8] 더불어 ,종래의구동방식의경우마스터케이블은모터에의해직접당겨지는 힘이가해지므로크게문제가없으나마스터케이블에서가해지는힘에의해 구동되는슬레이브케이블은쉬스에삽입되지않고외부로노출된부분이 느슨해져휘어지거나백래쉬가크게발생하여정밀도를저해하는문제가있다.
[9] 따라서 ,슬레이브케이블이느슨해져휘어지지않으면서도백래쉬를감소시킬 수있는방안이요구된다.
[1이 또한,이러한케이블은신체의부위를통해삽입되므로,환자의감염을
예방하기위해서재활용되지않는 1회용으로사용된다.케이블은사용된이후에 구동장치로부터분리된후,새로운케이블로교체되어야하나,케이블을다시 구동장치에결합해야하는불편함이 있다.
[I I]
발명의상세한설명
기술적과제
[12] 본발명은상기와같은문제점을해결하기위한것으로서 ,슬레이브케이블의 움직임을제어하여동력전달량을증가시킬수있고제어정밀도를높일수있는 2020/175910 1»(:1^1{2020/002737 로봇관절구동용동력 전달시스템을제공하는데그목적이 있다.
[13] 또한, 1회용으로사용되는케이블을편리하게교체할수있는로봇관절구동용 카트리지 타입동력 전달시스템을제공하고자한다.
[14] 본발명의과제들은이상에서 언급한과제들로제한되지 않으며 ,언급되지 않는또다른과제들은아래의 기재로부터 당업자에게 명확하게 이해될수있을 것이다.
[15]
과제해결수단
[16] 상기과제를해결하기위하여,본발명의실시예에 따른로봇의 관절을
구동하기 위한시스템으로서,제 1구동유닛및제 2구동유닛을포함하는구동부; 소정의 길이를갖추고유연성을가지며중공형으로형성되는제 1쉬스와,상기 제 1쉬스에삽입되고일단이상기로봇의 관절에고정되고타단이상기 제 1구동유닛에 연결되는제 1와이어를포함하는제 1힘전달부;및소정의 길이를 갖추고유연성을가지며중공형으로형성되는제 2쉬스와,상기제 2쉬스에 삽입되고일단이상기로봇의관절에고정되고타단이상기제 2구동유닛에 연결되는제 2와이어를포함하는제 2힘전달부;를포함하고,상기 제 1구동유닛이 상기 제 1와이어측에 제 1방향으로힘을제공하는경우상기제 2구동유닛은상기 제 2와이어측에상기 제 1방향과반대방향인제 2방향으로힘을제공하는로봇 관절구동용동력 전달시스템을제공할수있다.
[17] 상기제 1구동유닛이상기제 1와이어를당기는방향으로상기제 1와이어에 힘을가하는경우상기제 2구동유닛은상기제 2와이어를미는방향으로상기 제 2와이어에 힘을제공할수있고,상기 제 2구동유닛이상기 제 2와이어를 당기는방향으로상기 제 2와이어에 힘을가하는경우상기제 1구동유닛은상기 제 1와이어를미는방향으로상기제 1와이어에 힘을제공할수있다.
[18] 상기제 1구동유닛이상기제 1와이어를당기는방향으로상기제 1와이어에 힘을제공하고상기 제 2구동유닛이상기 제 2와이어를미는방향으로상기 제 2와이어에 힘을제공하는경우,상기제 2구동유닛이상기제 2와이어측에 제공하는힘의크기는상기제 2와이어 및제 2쉬스사이에발생하는마찰력에 따라조정될수있다.
[19] 상기제 2구동유닛이상기제 2와이어측에제공하는최대힘의크기는상기 제 2와이어 및제 2쉬스사이에발생하는마찰력과동일한크기일수있다.
[2이 상기제 1구동유닛이상기제 1와이어를당기는방향으로상기제 1와이어에 힘을제공하고상기 제 2구동유닛이상기 제 2와이어를미는방향으로상기 제 2와이어에 힘을제공하는경우,상기제 1구동유닛이상기제 1와이어측에 제공하는힘의크기는상기제 1와이어 및제 1쉬스사이에발생하는마찰력과 상기로봇관절자체를움직이는힘을합한크기와동일한크기일수있다.
[21] 상기제 1구동유닛이상기제 1와이어를당기는방향으로상기제 1와이어에 2020/175910 1»(:1^1{2020/002737 힘을제공하고상기 제 2구동유닛이상기 제 2와이어를미는방향으로상기 제 2와이어에 힘을제공하는경우,상기제 1쉬스의 단부로부터외측으로 인출되는제 1와이어의 인출길이는상기제 2쉬스의 단부로부터상기 제 2쉬스의 내부측으로인입되는제 2와이어의 인입길이보다상대적으로더 긴길이일수 있다.
[22] 상기제 1구동유닛이상기제 1와이어를당기는방향으로상기제 1와이어에 힘을제공하고상기 제 2구동유닛이상기 제 2와이어를미는방향으로상기 제 2와이어에 힘을제공하는경우,상기제 2쉬스의 전체길이중상기
제 2와이어가인입되는상기 제 2쉬스의단부를포함하는일부길이는상기 제 2와이어와함께유동이 방지된상태일수있다.
[23] 또한,로봇의관절을구동하기위한케이블동력 전달방법으로서,일단이로봇 관절에고정되고제 1쉬스에삽입된제 1와이어의 타단부가연결되어상기 제 1와이어를상기제 1쉬스의 길이방향을따라당기거나미는힘을제공하는 제 1구동유닛과,일단이상기로봇관절에고정되고제 2쉬스에삽입된
제 2와이어의 타단부가연결되어상기제 2와이어를상기제 2쉬스의 길이방향을 따라당기거나미는힘을제공하는제 2구동유닛을포함하고,상기
제 1구동유닛이상기제 1와이어측에제 1방향으로힘을제공하는경우상기 제 2구동유닛은상기제 2와이어측에상기 제 1방향과반대방향인제 2방향으로 힘을제공하는로봇관절구동용동력 전달방법을제공할수있다.
[24] 상기로봇관절구동용동력 전달시스템은,바디부;그일단이상기 바디부에 고정되고,그타단이상기 제 1구동유닛에고정되고,상기 제 1와이어의타단을 감싸는제 1탄성부;및그일단이상기바디부에고정되고,그타단이상기 제 2구동유닛에고정되고,상기제 2와이어의 타단을감싸는제 2탄성부;를더 포함하고,상기 제 1구동유닛과상기 제 2구동유닛은선형 이동될수있다.
[25] 상기로봇관절구동용동력 전달시스템은,상기바디부에 배치되는제어부를 더포함하고,상기제어부는상기제 1구동유닛이상기제 1와이어에 제 1방향으로 힘을제공하도록상기 제 1구동유닛을제어하고,상기 제 2구동유닛이상기 제 2와이어에상기제 1방향과반대방향인제 2방향으로힘을제공하도록상기 제 2구동유닛을제어할수있다.
[26] 상기바디부의 일측에는상기 제 1와이어가관통하는제 1와이어홀과상기 제 2와이어가관통하는제 2와이어홀이 형성될수있다.
[27] 상기제 1구동유닛은,구동력을발생하는제 1구동모터;및상기 제 1구동모터의 구동력을제공받아선형 이동되는제 1이동부를포함하고,상기제 2구동유닛은, 구동력을발생하는제 2구동모터;및상기 제 2구동모터의구동력을제공받아 선형 이동되는제 2이동부를포함할수있다.
[28] 상기바디부는,상기 제 1이동부를가이드하는제 1가이드홀;및상기
제 2이동부를가이드하는제 2가이드홀을가질수있다.
[29] 상기제 1탄성부와상기제 2탄성부는상기제 1방향으로힘을제공받아 2020/175910 1»(:1^1{2020/002737 수축되고,상기 제 2방향으로힘을제공받아늘어날수있다.
[3이 또한,본발명의실시예에또따른로봇관절구동용카트리지타입동력 전달 시스템은,로봇의 관절을구동하기 위한동력 전달시스템으로서,하우징;상기 하우징의 내부에 배치되고,선형 이동되는제 1구동부;및상기하우징의내부로 삽입되는카트리지 ;를포함하고,상기카트리지는,케이스;상기 케이스에 수용되고,상기 제 1구동부에 연결되어선형 이동되는이동부;소정의 길이를 갖고유연성을가지며중공형으로형성되는쉬스와,상기쉬스에삽입되고그 일단이상기로봇의 관절에고정되고그타단이상기 이동부에고정되고상기 케이스를관통하는와이어를포함하는힘전달부;및그일단이상기 케이스에 고정되고,그타단이상기 이동부에고정되고,상기 와이어를감싸는탄성부를 포함하고,상기카트리지는상기하우징에착탈가능하게결합될수있다.
[31] 상기제 1구동부가상기 이동부에 연결되거나분리되도록상기제 1구동부를 이동시키는제 2구동부를더포함할수있다.
[32] 상기제 1구동부는,상기하우징의내부에서 이동가능한구동바디부;상기 구동바디부에 배치되는제 1모터 ;상기 제 1모터와연결되고,상기 제 1모터의 구동력에 의해선형 이동되고,상기 이동부와착탈가능하게결합되는착탈부를 포함할수있다.
[33] 상기제 2구동부는,상기하우징에 배치되는제 2모터 ;및상기제 2모터에
연결되고,상기 제 2모터의구동력에 의해선형 이동되는연결부를포함할수 있다.
[34] 상기착탈부는상기착탈부의 외측면으로부터돌출되는돌기를포함하고,상기 이동부는상기착탈부의상기돌기가삽입되는착탈홈을가질수있다.
[35] 상기카트리지는상기 힘전달부가통과하는홀을가질수있다.
[36] 상기 케이스는상기 이동부의 이동을가이드하는가이드홀을가질수있다.
[37] 상기탄성부는제 1방향을따라늘어나고,상기제 1방향과반대방향인상기 제 2방향을따라수축될수있다.
[38]
발명의효과
[39] 본발명의실시예에따르면,구동유닛이슬레이브케이블측에구동력을
제공하여슬레이브케이블에서 발생하는마찰력을상쇄시켜줌으로써마스터 케이블측에작은크기의구동력을제공하더라도종래와동등수준이상의 동력전달량을구현할수있다.
[4이 또한,본발명의실시예에의하면,슬레이브케이블측에 발생하는마찰력의 상쇄를통해슬레이브케이블에서의 백래쉬를감소시키거나방지함으로써 제어 정밀도를높일수있는장점이 있다.
[41] 또한,케이블을포함한카트리지가하우징에서착탈가능하게결합되므로, 수술에서사용된케이블을쉽게교체할수있다. 2020/175910 1»(:1^1{2020/002737
[42] 또한,종래의케이블을구동장치에연결하는과정에서감염의위험이
존재하는것에비하여,카트리지를하우징에삽입하는것으로케이블이 구동되므로,수술용로봇구동장치의위생관리가개선된다.
[43]
도면의간단한설명
[44] 도 1은본발명의일실시예에따른로봇관절구동용동력전달시스템을
나타낸개략도이다.
[45] 도 2는도 1의작동상태도이다.
[46] 도 3은도 2에서’’쇼 "부분의확대도이다.
[47] 도 4는도 1에서구동유닛으로부터와이어측에미는힘이과도하게제공되는 경우를나타낸작동상태도이다.
[48] 도 5는본발명의일실시예에따른로봇관절구동용동력전달시스템에서 구동유닛으로채용될수있는로봇관절구동용케이블구동장치를나타낸 도면이다.
[49] 도 6는도 5에서주요구성이분리된상태를나타낸도면이다.
[5이 도 7은도 6를다른방향에서바라본도면이다.
[51] 도 8은도 6에서와이어가롤러에감긴상태를나타낸부분단면도이다.
[52] 도 9은도 8에서모터가와이어를당기는경우를나타낸작동상태도이다.
[53] 도 는도 8에서모터가와이어를미는경우를나타낸작동상태도이다.
[54] 도 11은본발명의일실시예에따른로봇관절구동용동력전달시스템이 내시경수술시스템에적용된상태를나타낸개략도이다.
[55] 도 12은본발명의다른실시예에따른로봇관절구동용동력전달시스템을 개략적으로나타내는도면이다.
[56] 도 13는도 12의작동상태도이다.
[57] 도 14은본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템을나타내는사시도이다.
[58] 도 15는본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의구성을개략적으로나타내는사시도이다.
[59] 도 16는본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의구성을개략적으로나타내는정면도이다.
[6이 도 17은본발명의또다른실시예에따른로봇관절구동용동력전달시스템의 구성을개략적으로나타내는평면도이다.
[61] 도 18은본발명의또다른실시예에따른로봇관절구동용동력전달시스템의 구성을개략적으로나타내는측면도이다.
[62] 도 19은본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의카트리지를나타내는사시도이다.
[63] 도 20는본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 2020/175910 1»(:1/10公020/002737 전달시스템의카트리지를나타내는측면도이다.
[64] 도 21은본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의카트리지의구성을개략적으로나타내는도면이다.
[65] 도 22은본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의제 1구동부를나타내는측면도이다.
[66] 100 :로봇관절구동용동력전달시스템
[67] 11(切 :제 1구동유닛 112 제 1구동모터
[68] 114 제 1롤레 1에 :제 2구동유닛
[69] 11¾ :제 2구동모테 141) :제 2롤러
이 120 :제 1힘전달부 121 :제 1쉬스
1] 122 :제 1와이에 30 :제 2힘전달부
2] 131 :제 2쉬스 132 :제 2와이어
3] 140 :제어부 150 :쉬스홀더
4] 160 :와이어홀더
5] 200, 200 20아) :로봇관절구동용케이블구동장치
6] 210 :본체 212 :배치공
7] 220 :구동모터 230 :구동롤러
8] 232 :제 1수용홈 234 :안착홈
9] 240 :하중측정부 242 :제 2수용홈
[80] 250 : ¾ᅫ251 : ¾ᅫ¾
[81] 252 :가이드홈 252& :제 1가이드홈
[82] 25¾ :제 2가이드홈
[83] 300:로봇관절구동용동력전달시스템
[84] 310:바디부 361:제 1구동유닛
[85] 371:제 2구동유닛 320:제 1힘전달부
[86] 321:제 1쉬스 322:제 1와이어
[87] 330:제 2힘전달부 331:제 2쉬스
[88] 332:제 2와이어 340:제 1탄성부
[89] 350:제 2탄성부
[9이 400:로봇관절구동용카트리지타입동력전달시스템
[91] 410:하우징 420:제 1구동부
[92] 430:카트리지
[93]
발명의실시를위한형태
[94] 이하에서는첨부된도면을참조하여다양한실시예를보다상세하게설명한다. 본발명에따른실시예는다양하게변형될수있다.특정한실시예가도면에서 묘사되고상세한설명에서자세하게설명될수있다.그러나,첨부된도면에 2020/175910 1»(:1^1{2020/002737 개시된특정한실시예는다양한실시예를쉽게 이해하도록하기위한것일 뿐이다.따라서,첨부된도면에 개시된특정실시예에 의해기술적사상이 제한되는것은아니며,발명의사상및기술범위에포함되는모든균등물또는 대체물을포함하는것으로이해되어야한다.
[95] 제 1,제 2등과같이서수를포함하는용어는다양한구성요소들을설명하는데 사용될수있지만,이러한구성요소들은상술한용어에의해 한정되지는않는다. 상술한용어는하나의구성요소를다른구성요소로부터구별하는목적으로만 사용된다.
[96] 본발명의실시예에서, "포함한다”또는 "가지다”등의용어는본발명의
실시예에 기재된특징,숫자,단계,동작,구성요소,부품또는이들을조합한 것이존재함을지정하려는것이지,하나또는그이상의다른특징들이나숫자, 단계,동작,구성요소,부품또는이들을조합한것들의존재또는부가가능성을 미리 배제하지 않는것으로이해되어야한다.어떤구성요소가다른구성요소에 "연결되어”있다거나”접속되어”있다고언급된때에는,그다른구성요소에 직접적으로연결되어 있거나또는접속되어 있을수도있지만,중간에다른 구성요소가존재할수도있다고이해되어야할것이다.반면에,어떤구성요소가 다른구성요소에 "직접 연결되어”있다거나”직접접속되어”있다고언급된 때에는,중간에다른구성요소가존재하지 않는것으로이해되어야할것이다.
[97] 한편,본발명의실시예에서사용되는구성요소에 대한”모듈”또는 "부”는
적어도하나의기능또는동작을수행한다.그리고, "모듈”또는 "부”는하드웨어 , 소프트웨어또는하드웨어와소프트웨어의조합에 의해기능또는동작을 수행할수있다.또한,특정하드웨어에서수행되어야하거나적어도하나의 프로세서에서수행되는 "모듈”또는 "부”를제외한복수의 "모듈들”또는복수의 "부들’’은적어도하나의모듈로통합될수도있다.단수의표현은문맥상 명백하게다르게뜻하지 않는한,복수의표현을포함한다.
[98] 그밖에도,본발명의실시예를설명함에 있어서,관련된공지기능혹은구성에 대한구체적인설명이본발명의요지를불필요하게흐릴수있다고판단되는 경우,그에 대한상세한설명은축약하거나생략한다.
[99]
[100] 본발명의 일실시예에 따른로봇관절구동용동력 전달시스템 (100)은더블 인풋 ((10111516노1)111;)쉬스-텐던동력전달메커니즘을구현하기 위한것으로,도 1 및도 2에도시된바와같이구동부,제 1힘전달부 (120)및제 2힘전달부 (130)를 포함한다.
[101] 즉,본발명의 일실시예에 따른로봇관절구동용동력 전달시스템 (100)은
상기구동부가제 1구동유닛 (110 및제 2구동유닛 (11아5)을포함할수있으며 , 상기 제 1구동유닛 ( 0幻은상기제 1힘전달부 (120)와직접 연결되어상기 제 1힘전달부 (120)에구동력을제공하는한편상기제 2구동유닛 (11에)은상기 제 2힘전달부 (130)와직접 연결되어상기 제 2힘전달부 (130)에구동력을제공할 2020/175910 1»(:1^1{2020/002737 수있다.
[102] 본발명에서,상기제 1힘전달부 (120)및제 2힘전달부 (130)는텐던이쉬스의 내부에서길이방향을따라이동될수있도록상기쉬스의내부에삽입되는 쉬스-텐던메커니즘이채용될수있다.
[103] 즉,상기제 1힘전달부 (120)는소정의길이를갖추고유연성을가지며
중공형으로형성되는제 1쉬스 (121)와,상기제 1쉬스 (121)에삽입되는
제 1와이어 (122)를포함할수있다.이와같은경우,상기제 1와이어 (122)는 양단부가상기제 1쉬스 (121)의외부에노출되도록상기제 1쉬스 (121)에삽입될 수있으며,외부로노출된제 1와이어 (122)의양단부중일단부는제어
대상물 (10)에고정될수있고타단부는상기제 1구동유닛( 0幻에고정될수 있다.
[104] 마찬가지로,상기제 2힘전달부 (130)는소정의길이를갖추고유연성을가지며 중공형으로형성되는제 2쉬스 (131)와,상기제 2쉬스 (131)에삽입되는
제 2와이어 (132)를포함할수있다.이와같은경우,상기제 2와이어 (132)는 양단부가상기제 2쉬스 (131)의외부에노출되도록상기제 2쉬스 (131)에삽입될 수있으며,외부로노출된제 2와이어 (132)의양단부중일단부는상기제어 대상물 (10)에고정될수있고타단부는상기제 2구동유닛 ( 아5)에고정될수 있다.
[105] 또한,상기제 1구동유닛 (110幻은제 1구동모터 (112)와상기
제 1구동모터 (112 에회전가능하게결합된제 1롤러 (114 를포함할수있으며, 상기제 1와이어 (122)는일단부가상기제 1롤러 (114幻에고정결합될수있다.
[106] 유사하게,상기제 2구동유닛 (11아5)은제 2구동모터 (112비와상기
제 2구동모터 (112비에회전가능하게결합된제 2롤러 (114비를포함할수있으며, 상기제 2와이어 (132)는일단부가상기제 2롤러 (114비에고정결합될수있다.
[107] 본발명에서,상기제어대상물 (10)은로봇의구동관절일수있으며,상기
로봇의구동관절은로봇암에서로봇의손가락또는로봇의팔목을구동하기 위한구동관절일수있다.또한,상기제 1쉬스 (121)및제 2쉬스 (131)는상기 제 1와이어 (122)및제 2와이어 (132)에걸리는장력을버티면서전체적인형상을 유지하면서도유연성을갖도록금속재질로이루어진코일형상의튜브일수 있다.그러나상기제 1쉬스 (121)및제 2쉬스 (131)의형상및재질을이에 한정하는것은아니며공지의쉬스-텐던메커니즘에서쉬스로서채용되는형상 및재질이모두적용될수있다.
[108] 더불어,본발명의일실시예에따른로봇관절구동용동력전달시스템 (100)은 상기제 1구동유닛 ( 0幻및제 2구동유닛 ( 아5)의전반적인동작을제어하기 위한제어부 (140)를더포함할수있으며,상기제어부 (140)는사용자의 입력신호를기반으로상기제 1구동유닛 (110幻및제 2구동유닛 (11에)의구동을 제어할수있다.더불어 ,상기제어부 (140)는사용자의입력신호를기반으로상기 제 1구동유닛 ( 0幻에서상기제 1와이어 (122)에제공되는힘의크기와상기 2020/175910 1»(:1^1{2020/002737 제 2구동유닛 ( 아5)에서상기 제 2와이어 (132)에제공되는힘의크기를제어할수 있다.
[109] 이와같이,본발명의 일실시예에따른로봇관절구동용동력 전달
시스템 (100)은제 1와이어 (122)의 단부가제 1구동유닛 (110幻에 연결된
제 1힘전달부 (120)와제 2와이어 (132)의 단부가제 2구동유닛 (11아5)에 연결된 제 2힘전달부 (130)가제어 대상물 (10)을매개로상호연결될수있으며,상기 제어부 (140)의제어를통해상기 제 1구동유닛 ( 0幻으로부터상기
제 1와이어 (122)측에구동력이제공되거나상기제 2구동유닛 ( 아5)으로부터 상기 제 2와이어 (132)측에구동력이 제공되는경우상기제 1와이어 (122)및 제 2와이어 (132)가제 1쉬스 (121)및제 2쉬스 (131)의내부에서 길이방향을따라 움직일수있다.이를통해,상기제어 대상물 (10)은사용자가목적하는위치로 회전되거나움직일수있다.
[110] 이때,본발명의 일실시예에 따른로봇관절구동용동력 전달시스템 (100)은 종래의 더블인풋쉬스-텐던메커니즘과는달리상기 제 1구동유닛( 0幻및 제 2구동유닛 (11아5)이상기 제 1힘전달부 (120)및제 2힘전달부 (130)측으로 동시에구동력을제공할수있으며,상기 제 1구동유닛 (110幻및
제 2구동유닛 (11아5)으로부터상기 제 1힘전달부 (120)및제 2힘전달부 (130)측으로 제공되는구동력의크기는상기제어부 (140)를통해제어될수있다.
[111] 즉,본발명의 일실시예에 따른로봇관절구동용동력 전달시스템 (100)은도 2 및도 3에도시된바와같이상기 제 1구동유닛 ( 0幻이상기제 1와이어 (122)측에 제 1방향으로힘을제공하는경우상기 제 2구동유닛 ( 에)은상기
제 2와이어 (132)측에상기제 1방향과반대방향인제 2방향으로힘을제공할수 있다.
[112] 유사하게,본발명의 일실시예에 따른로봇관절구동용동력 전달
시스템 (100)은상기 제 2구동유닛 (11아5)이상기 제 2와이어 (132)측에
제 1방향으로힘을제공하는경우상기 제 1구동유닛 ( 0幻은상기
제 1와이어 (122)측에상기제 1방향과반대방향인제 2방향으로힘을제공할수 있다.
[113] 본발명에서,상기 제 1방향은상기 제 1구동유닛 (110幻이 제 1와이어 (122)를
당기는힘의방향또는상기 제 2구동유닛 ( 아5)이 제 2와이어 (132)를당기는힘의 방향으로정의하며,상기제 2방향은상기제 1구동유닛 ( 0幻이
제 1와이어 (122)를미는힘의방향또는상기 제 2구동유닛 ( 아5)이
제 2와이어 (132)를미는힘의방향으로정의한다.
[114] 더불어,상기제 1와이어 (122)및제 2와이어 (132)는상기 제 1구동유닛 ( 0幻및 제 2구동유닛 ( 아5)으로부터제공되는힘의방향에 따라마스터 케이블의 역할과 슬레이브케이블의 역할이상호전환될수있다.
[115] 즉,상기제 1와이어 (122)가제 1방향으로이동하고상기 제 2와이어 (132)가
제 2방향으로이동하는경우,상기 제 1와이어 (122)는마스터 케이블의 역할일수 2020/175910 1»(:1^1{2020/002737 있고상기제 2와이어 (132)는슬레이브케이블의역할일수있다.반대로,상기 제 1와이어 (122)가제 2방향으로이동하고상기제 2와이어 (132)가제 1방향으로 이동하는경우,상기제 2와이어 (132)는마스터케이블의역할일수있고상기 제 1와이어 (122)는슬레이브케이블의역할일수있다.
[116] 구체적으로,상기제 1구동유닛 ( 0幻이상기제 1와이어 (122)에제 1방향으로 힘 (11)을제공하는경우상기제 2구동유닛 (11아5)은상기제 2와이어 (132)에 제 2방향으로힘 (12)을제공할수있다.이를통해,상기제 1와이어 (122)의단부및 제 2와이어 (132)의단부가각각연결된제어대상물 (10)은도 2에도시된바와 같이상기제 1방향측으로회전될수있다.
[117] 이와는반대로,상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)에제 1방향의 힘을제공하는경우상기제 1구동유닛 ( 0幻은상기제 1와이어 (122)에 제 2방향의힘을제공할수있다.이를통해,상기제 1와이어 (122)의단부및 제 2와이어 (132)의단부가각각연결된제어대상물 (10)은상기제 2방향측으로 회전될수있다.
[118] 즉,본발명의일실시예에따른로봇관절구동용동력전달시스템 (100)은 제 1와이어 (122)및제 2와이어 (132)중마스터케이블의역할을수행하는어느 하나의와이어측에와이어를당기는제 1방향으로의힘 (11)을제공하는경우 슬레이브케이블의역할을수행하는나머지와이어측에와이어를미는 제 2방향으로의힘 2)을제공할수있다.
[119] 다시말하면,본발명의일실시예에따른로봇관절구동용동력전달
시스템 (100)은마스터케이블의역할을수행하는와이어측에구동유닛을 통하여당기는힘 (11)을제공함과동시에슬레이브케이블의역할을수행하는 와이어측에구동유닛을통하여능동적으로미는힘 2)을제공함으로써 슬레이브케이블의역할을수행하는와이어가쉬스의내부에서이동하는 과정에서쉬스와의접촉을통해발생하는마찰력 3)을보상할수있다.
[12이 이로인해,본발명의일실시예에따른로봇관절구동용동력전달
시스템 (100)은마스터케이블의역할을수행하는와이어를적은힘으로 당기더라도상기제어대상물 (10)의움직임을목적하는위치로변경할수있다.
[121] 이하에서는설명의편의상,상기제 1와이어 (122)가제어대상물 (10)의
움직임을주관하는마스터케이블의역할을수행하고,상기제 2와이어 (132)가 슬레이브케이블의역할을수행하는과정을일례로써설명하기로하며 ,상기 제 2와이어 (132)가제어대상물 (10)의움직임을주관하는마스터케이블의 역할을수행하고상기제 1와이어 (122)가슬레이브케이블의역할을수행하는 반대의경우는상기제 1와이어 (122)에제공되는힘의방향과상기
제 2와이어 (132)에제공되는힘의방향및힘의크기가서로전환될뿐
동일하므로상세한설명은생략하기로한다.
[122] 구체적으로,도 2및도 3에도시된바와같이상기제 1구동유닛 ( 0幻이상기 제 1와이어 (122)에제 1방향의힘 (11)을제공하는경우상기제 2구동유닛 (11아5)은 2020/175910 1»(:1^1{2020/002737 상기제 2와이어 (132)측에제 2방향의힘 (12)을제공할수있다.
[123] 이와같은경우,상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에제공하는 제 2방향으로의힘 (12)의크기는상기제 2와이어 (132)가제 2쉬스 (131)의 길이방향을따라상기제어대상물 (10)측으로이동하는과정에서상기 제 2와이어 (132)및제 2쉬스 (131)사이에서발생하는마찰력 3)을기반으로 설정될수있다.
[124] 바람직하게는,상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에제공하는 제 2방향으로의힘 (12)의크기는상기제 2와이어 (132)가제 2쉬스 (131)의 길이방향을따라상기제어대상물 (10)측으로이동하는과정에서상기 제 2와이어 (132)및제 2쉬스 (131)사이에서발생하는마찰력 3)과동등한크기로 제공될수있다.
[125] 이를통해,상기제 1구동유닛 (110幻이상기제 1와이어 (122)측에제공하는
제 1방향으로의힘 (11)의크기가상기제 1와이어 (122)가제 1쉬스 (121)의 길이방향을따라상기제 1구동유닛 ( 0幻측으로이동하는과정에서상기 제 1와이어 (122)및제 1쉬스 (121)사이에서발생하는마찰력 (111)과상기제어 대상물 (10)자체를움직이기위한힘 (112)의크기를합한크기와동등하면상기 제어대상물 (10)은작업자가목적하는위치로변경될수있다.
[126] 이때,상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에제공하는
제 2방향으로의힘 (12)의최대크기는상기제 2와이어 (132)가제 2쉬스 (131)의 길이방향을따라상기제어대상물 (10)측으로이동하는과정에서상기 제 2와이어 (132)및제 2쉬스 (131)사이에서발생하는마찰력 3)과동등한크기일 수있다.또한,상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에제공하는 제 2방향으로의힘 (12)의최대크기는상기제 1구동유닛 ( 0幻이상기
제 1와이어 (122)측에제공하는제 1방향으로의힘 (11)의크기보다는작을수 있다.
[127] 이는,도 4에도시된바와같이상기제 2구동유닛 ( 아5)이상기제 2와이어 (132) 측에제공하는제 2방향으로의힘 (12)의최대크기가상기제 2와이어 (132)및 제 2쉬스 (131)사이에서발생하는마찰력 3)보다크다면,상기제어
대상물 (10)에연결되고상기제 2쉬스 (131)의단부로부터노출된제 2와이어 (132) 부분이느슨해져휘어질수있으며상기제 1와이어 (122)를당기는힘 (11)이 제거되는경우상기제 2와이어 (132)측에백래쉬가발생할수있기때문이다.
[128] 한편,본발명의일실시예에따른로봇관절구동용동력전달시스템 (100)은 슬레이브케이블의역할을수행하는와이어측에미는힘을제공하는경우상기 와이어가쳐지지않고쉬스의내부로원활하게이동할수있도록상기쉬스의 단부가상기구동유닛 (110 11아5)측에고정될수있다.
[129] 일례로,상기제 1구동유닛 ( 0幻이상기제 1와이어 (122)에제 1방향의힘을
제공하고상기제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에제 2방향의힘을 동시에제공하는경우,상기제 2쉬스 (131)는전체길이중상기제 2와이어 (132)가 2020/175910 1»(:1^1{2020/002737 인입되는단부를포함하는일부길이 (피는상기제 2와이어 (132)와함께유동이 방지된상태일수있다.
[13이 비제한적인일례로써,상기 제 2쉬스 (131)는전체길이중상기
제 2와이어 (132)가인입되는단부를포함하는일부길이여)가상기
제 2구동유닛 ( 아5)측에 길이방향과평행한방향으로형성된가이드홈 (252)에 삽입된상태로고정될수있으며,상기 가이드홈 (252)은상기제 2쉬스 (131)의 일부길이 (피와함께외부로노출되는제 2와이어 (132)의 일부가안착되도록 형성될수있다 (도 8참조).
[131] 이를통해,상기 제 2구동유닛 ( 아5)이상기제 2와이어 (132)측에 제 2방향으로의 힘을제공하는경우상기제 2쉬스 (131)의단부로부터 외부로노출된
제 2와이어 (132)의 일부길이는상기가이드홈 (252)을따라곧바로제 2쉬스 (131) 측으로이동될수있음으로써상기 제 2쉬스 (131)의 단부측에서
제 2와이어 (132)가쳐지는것을미연에 방지할수있다.
[132] 이와같이본발명의 일실시예에 따른로봇관절구동용동력 전달
시스템 (100)은구동유닛을통해슬레이브케이블의 역할을수행하는와이어 측에 와이어를능동적으로밀어주는구동력을제공하여슬레이브케이블의 역할을수행하는와이어와쉬스간에발생하는마찰력을상쇄시켜줌으로써 마스터 케이블의 역할을수행하는와이어측에작은크기의구동력을
제공하더라도종래와동등수준이상의동력전달량을구현할수있다.
[133] 또한,본발명에 의하면,슬레이브케이블측에발생하는마찰력의상쇄를통해 슬레이브케이블에서의 백래쉬를감소시키거나방지함으로써 제어정밀도를 높일수있는장점이 있다.
[134] 한편,본발명의 일실시예에 따른로봇관절구동용동력 전달시스템 (100)에서 제 1구동유닛 (110 및제 2구동유닛 (11아5)은로봇관절구동용케이블
구동장치 (200)로구현될수있다.
[135] 일례로,상기제 1구동유닛 (110幻및제 2구동유닛 (11아5)은도 5내지도 7에 도시된로봇관절구동용케이블구동장치 (200)일수있으며,상기로봇관절 구동용케이블구동장치 (200)는쉬스 (121)(131)가고정결합된쉬스홀더 (150)와 와이어 (122)(132)의단부가고정된와이어홀더 (160)가고정된상태에서 구동모터 (220)를통해구동롤러 (230)를회전시킴으로써상기와이어 (122)(132)를 쉬스 (121)(131)의외부로당기거나상기 쉬스 (121)(131)의 내부로밀어주는힘을 제공할수있다.
[136] 본실시예에서,상기 쉬스 (121)(131)는상술한제 1쉬스 (121)또는
제 2쉬스 (131)일수있고,상기와이어 (122)(132)는상술한제 1와이어 (122)또는 제 2와이어 (132)일수있다.
[137] 또한,상술한로봇관절구동용동력 전달시스템 (100)에서
제 1구동유닛 (110 을구성하는제 1구동모터 (112幻및제 1롤러 (114 는후술하는 구동모터 (220)및구동롤러 (230)일수있다.더하여,상술한로봇관절구동용 2020/175910 1»(:1^1{2020/002737 동력 전달시스템 (100)에서제 2구동유닛 (11아5)을구성하는제 2구동모터 (112비 및제 2롤러 (114비역시후술하는구동모터 (220)및구동롤러 (230)일수있다.
[138] 이때,상기쉬스 (121)(131)는양단부측이상기 쉬스홀더 (150)로부터 일정길이 돌출되도록상기쉬스홀더 (150)에고정될수있고,상기 와이어 (122)(132)는 일단부가제어 대상물 (10)에고정된상태에서상기 쉬스홀더 (150)에고정된 쉬스 (121)(131)를통과한후타단부가상기와이어홀더 (160)에고정된상태일수 있다.
[139] 이와같은상태에서,상기쉬스홀더 (150)및상기와이어홀더 (160)는상기로봇 관절구동용케이블구동장치 (200)에장착될수있다.
[140] 이를위해 ,본발명의 일실시예에로봇관절구동용케이블구동장치 (200)는 본체 (210),구동모터 (220),구동롤러 (230)및하중측정부 (240)를포함할수있다.
[141] 구체적으로,상기본체 (210)는상기구동모터 (220),구동롤러 (230)및
하중측정부 (240)가장착되는고정물의 역할을수행할수있다.
[142] 일례로,상기본체 (210)는일면에상기구동모터 (220)가고정될수있으며 ,상기 구동롤러 (230)가배치될수있도록상기구동롤러 (230)와대응되는형상을갖는 배치공 (212)이 형성될수있다.
[143] 또한,상기구동롤러 (230)는상기구동모터 (220)로부터제공되는구동력을 통해회전될수있고,상기 배치공 (212)에회전가능하게 배치될수있으며,상기 구동롤러 (230)의 일측에는상기와이어홀더 (160)를수용하기위한
제 1수용홈 (232)이 형성될수있다.
[144] 이와같은경우,상기구동모터 (220)는감속기를포함할수있으며 ,상기
구동롤러 (230)는상기감속기측에 회전가능하게결합될수있다.
[145] 이를통해,도 9및도 에도시된바와같이상기 와이어홀더 (160)가상기 제 1수용홈 (232)에장착된상태에서상기구동롤러 (230)가일방향또는 반대방향으로회전하는경우상기와이어 (122)(132)의단부가고정된
와이어홀더 (160)역시구동롤러 (230)에의해회전함으로써상기
와이어 (122)(132)를당기거나밀어줄수있다.
[146] 이때,상기 배치공 (212)은상기 제 1수용홈 (232)이외부로노출될수있도록 일측이 개구형성될수있다.이를통해,상기 와이어홀더 (160)는상기
제 1수용홈 (232)이 개구형성된배치공 (212)측에 위치하도록배치된경우상기 개구된부분을통해상기제 1수용홈 (232)측에용이하게장착될수있다.
[147] 또한,상기구동롤러 (230)는상기 와이어 (122)(132)의두께를수용할수있도록 둘레방향을따라내측으로인입되는안착홈 (234)이 형성될수있다.이를통해, 상기 와이어 (122)(132)는상기쉬스 (121)(131)를통과한전체길이중일부의 길이가상기 안착홈 (234)을따라구동롤러 (230)를적어도 1회 이상감긴 상태에서 단부가상기 와이어홀더 (160)측에고정될수있음으로써 회전을통해 상기 와이어 (122)(132)측에 힘을원활하게전달할수있다.
[148] 더불어,상기구동롤러 (230)가일방향또는반대방향으로회전하여상기 2020/175910 1»(:1^1{2020/002737 와이어 (122)(132)가상기 쉬스 (121)(131)로부터 인출되더라도상기
와이어 (122)(132)가안착홈 (234)을따라안내되어권선방향이 안내됨으로써 상기 와이어 (122)(132)측에 힘을원활하게전달할수있다.
[149] 여기서 ,상기구동모터 (220)는제어부의 제어를통해정 ,역방향으로구동될수 있으며,상기 제어부는상술한제어부 (140)일수있다.
[150] 상기하중측정부 (240)는상기본체 (210)의 일측에고정설치될수있으며, 일측에상기쉬스홀더 (150)를수용하기 위한제 2수용홈 (242)이 형성될수있다. 즉,상기 제 2수용홈 (242)에는상기쉬스 (121)(131)의 일부길이가고정결합된 쉬스홀더 (150)가착탈가능하게장착될수있다.
[151] 여기서,상기하중측정부 (240)는로드셀일수있고,상기 제 2수용홈 (242)은 상기로드셀의 일측에 직접 형성될수도있고,상기로드셀에고정결합된별도의 부재에 형성될수도있다.
[152] 일례로,상기하중측정부 (240)는상기 제 2수용홈 (242)에쉬스홀더 (150)가
장착된경우상기 쉬스 (121)(131)를통과하여외부로노출되는
와이어 (122)(132)가일직선으로상기와이어홀더 (160)측으로진행할수있도록 상기구동롤러 (230)의 일측에 배치될수있다.
[153] 이에따라,상기하중측정부 (240)는상기제 2수용홈 (242)에 쉬스홀더 (150)가 장착되고상기제 1수용홈 (232)에와이어홀더 (160)가장착된상태에서상기 구동롤러 (230)의회전을통해상기 와이어홀더 (160)가회전하여상기
와이어 (122)(132)에 힘이 제공되는경우상기쉬스홀더 (150)에 인가되는힘을 측정할수있으며,상기 쉬스홀더 (150)에 인가되는힘을통해상기
쉬스 (121)(131)의 힘을측정할수있다.
[154] 이와같은경우,상기와이어 (122)(132)에 인가되는힘과상기 쉬스 (1 )(131)에 인가되는힘은작용과반작용의관계에 따라서로동일한힘이므로상기 쉬스홀더 (150)에 인가되는힘을측정함으로써상기와이어 (122)(132)에 인가되는힘을용이하게측정할수있다.
[155] 이를통해,상기구동모터 (220)를통해상기 와이어 (122)(132)에제공되는힘은 상기 쉬스홀더 (150)에 인가된하중의크기를기반으로상기제어부 (140)의 제어를통해정확하게제어될수있다.
[156] 이에따라,상술한로봇관절구동용동력 전달시스템 (100)에서마스터
케이블의 역할을수행하는와이어측에 인가되는당기는힘의크기와슬레이브 케이블의 역할을수행하는와이어측에 인가되는미는힘의크기를적절하게 조절할수있음으로써슬레이브케이블의 역할을수행하는와이어와쉬스 사이에서 발생하는마찰력을정확하게보상할수있다.
[157] 이때,본발명의 일실시예에로봇관절구동용케이블구동장치 (200)는상기 구동모터 (220)의구동을통해상기 와이어 (122)(132)를쉬스 (121)(131)의내부로 미는방향인제 2방향으로상기와이어 (122)(132)측에 힘을가하는경우,상기 와이어 (122)(132)가인가되는힘에의해휘어지지 않고상기와이어 (122)(132)를 2020/175910 1»(:1^1{2020/002737 쉬스 (121)(131)의내부로정확하게진입시킬수있도록덮개 (250)를포함할수 있다.
[158] 즉,본발명의일실시예에로봇관절구동용케이블구동장치 (200)는상기
제 1수용홈 (232)및제 2수용홈 (242)에와이어홀더 (160)및쉬스홀더 (150)가각각 장착되고상기제 !수용홈公32)이배치공 (212)의개방된부분에위치하는초기 상태에서상기제 1수용홈 (232)및제 2수용홈 (242)의상부를동시에덮는 덮개면 (251)을갖는덮개 (250)를포함할수있다.
[159] 이를통해,상기제 1수용홈 (232)및제 2수용홈 (242)에각각장착된
와이어홀더 (160)및쉬스홀더 (150)는상기덮개면 (251)을통해가압됨으로써 상기제 1수용홈 (232)및제 2수용홈 (242)으로부터이탈되는것이방지될수있다.
[160] 이와같은덮개 (250)는상기본체 (210)에착탈가능하게결합될수도있고, 일측이상기본체 (210)에회동가능하게결합될수도있다.
[161] 이때,상기덮개면 (251)은도 7에도시된바와같이상기쉬스홀더 (150)가상기 제 2수용홈 (242)에장착된상태에서상기쉬스홀더 (150)로부터상기
구동롤러 (230)측으로돌출된쉬스 (121)(131)의돌출부분 (피과상기
쉬스 (121)(131)의돌출부분 (피의단부로부터외부로노출되는
와이어 (122)(132)의일부가동시에안착될수있도록인입형성되는
가이드홈 (252)을포함할수있다.
[162] 즉,상기가이드홈 (252)은상기쉬스 (121)(131)의돌출부분 (피을수용하기위한 제 1가이드홈 (252 과상기쉬스 (121)(131)의돌출부분여)단부로부터외부로 노출되는와이어 (122)(132)를수용하기위한제 2가이드홈 (252비을포함할수 있으며,상기제 1가이드홈 (252幻과제 2가이드홈 (252비은서로연결되도록 형성될수있다.
[163] 더불어 ,상기제 1가이드홈 (252幻의바닥면과상기제 2가이드홈 (252비의
바닥면은단차면으로형성될수있다.
[164] 이를통해,도 8에도시된바와같이상기쉬스홀더 (150)가상기
제 2수용홈 (242)에장착된상태에서상기쉬스홀더 (150)로부터상기
구동롤러 (230)측으로돌출된쉬스 (121)(131)의돌출부분 (피은상기
제 1수용홈 (232)의단부측과연결될수있다.
[165] 이로인해,본발명의일실시예에로봇관절구동용케이블구동장치 (200)는 상기구동모터 (220)의구동을통해상기와이어 (122)(132)를쉬스 (121)(131)의 내부로미는방향인제 2방향으로상기와이어 (122)(132)측에힘을가하더라도, 상기와이어 (122)(132)가상기제 2가이드홈 (252비에의해이동방향이제한된 상태에서상기제 1가이드홈 (252幻에안착된쉬스 (121)(131)의돌출부분여)의 단부를통해상기쉬스 (121)(131)의내부로곧바로진입할수있음으로써상기 와이어 (122)(132)를미는방향으로힘이인가되더라도인가되는힘에의해 휘어지지않고쉬스 (121)(131)의내부로정확하게진입할수있다.
[166] 이를통해,본발명의일실시예에로봇관절구동용케이블구동장치 (200)는 2020/175910 1»(:1^1{2020/002737 상기구동모터 (220)의구동을통해상기와이어 (122)(132)를쉬스 (121)(131)의 내부로미는방향인제 2방향으로상기와이어 (122)(132)측에힘을가하더라도 상기와이어 (122)(132)가쉬스 (121)(131)의내부로진입하는과정에서힘의손실 또는와이어의휘어짐과같은부작용이발생하지않음으로써상기
하중측정부 (240)는상기쉬스홀더 (150)에인가되는힘을정확하게측정할수 있다.
[167] 이와같이,본발명의일실시예에로봇관절구동용케이블구동장치 (200)는 상술한구성을통하여상기쉬스홀더 (150)가상기제 2수용홈 (242)에장착되고 상기와이어홀더 (160)가상기제 1수용홈 (232)에장착된상태에서
구동모터 (220)의구동을통해와이어 (122)(132)측에당기는힘을제공하는 경우는물론와이어 (122)(132)측에미는힘을정확하게인가할수있다.
[168] 이를통해,본발명의일실시예에로봇관절구동용케이블구동장치 (200)는 상술한로봇관절구동용동력전달시스템 (100)을구현하기위한구동유닛 ( (成 11아5)으로채용될수있다.
[169] 한편,상술한로봇관절구동용동력전달시스템 (100)은내시경수술시스템을 구성할수있으며,상기로봇관절구동용동력전달시스템 (100)은구동유닛이 상술한로봇관절구동용케이블구동장치 (200)로구성될수있다.
[170] 일례로,도 11에도시된바와같이로봇관절구동용동력전달시스템 (100)은 제 1구동유닛 (110幻,제 2구동유닛 (11아5),제 1쉬스 (121)및제 1와이어 (122)를 포함하는제 1힘전달부 (120),제 2쉬스 (131)및제 2와이어 (132)를포함하는 제 2힘전달부 (130)를포함할수있으며,상기제 1구동유닛 (110幻및
제 2구동유닛 (110비은상술한로봇관절구동용케이블구동장치 (200)로구성될 수있다.
[171] 이와같은경우,상기제 1쉬스 (121)및제 1와이어 (122)를포함하는
제 1힘전달부 (120),상기제 2쉬스 (131)및제 2와이어 (132)를포함하는
제 2힘전달부 (130)는상술한구성이그대로채용될수있으며,상기로봇관절 구동용케이블구동장치 (200)는상술한로봇관절구동용케이블
구동장치 (200)가그대로채용될수있다.따라서,이에대한상세한설명은 생략하기로한다.
[172] 이때,상기제 1힘전달부 (120)및제 2힘전달부 (130)는환자의구강을통해
환자의체내로삽관된보호튜브 (20)의내부로삽입될수있고,상기
제 1와이어 (122)는일단이제어대상물 (10)인로봇의구동관절에연결되고 타단이제 1로봇관절구동용케이블구동장치 (200 에구비되는
와이어홀더 (160)측에고정될수있으며,상기제 2와이어 (132)는일단이로봇의 구동관절 (10)에연결되고타단이제 2로봇관절구동용케이블구동장치 (200비에 구비되는와이어홀더 (160)측에고정될수있다.여기서,상기제어대상물 (10)인 로봇의구동관절에는내시경장비가고정될수있다.
[173] 이와같은상태에서시술자는제어부 (140)를통해상기제 1로봇관절구동용 케이블구동장치 (200a)및제 2로봇관절구동용케이블구동장치 (200b)를 작동시킴으로써상기제 1와이어 (122)를당기면서상기제 2와이어 (132)를 밀어주거나상기제 2와이어 (132)를당기면서상기제 1와이어 (122)를밀어줄수 있다.
[174] 이를통해,상기제어대상물 (10)인로봇의구동관절은시술자가원하는방향 및위치로정확하게변경될수있고상기제어대상물 (10)에고정된내시경장비 역시시술자가원하는방향및위치로정확하게변경될수있음으로써시술의 정확도를향상시킬수있다.
[175] 더불어 ,상기와이어홀더 (160)및쉬스홀더 (150)는상기제 1수용홈 (232)및 제 2수용홈 (242)에착탈가능하게장착됨으로써사용후제 1힘전달부 (120)및 제 2힘전달부 (130)와함께간편하게제거하고미사용품으로대체할수있으며, 구동력을제공하는제 1로봇관절구동용케이블구동장치 (200a)및제 2로봇관절 구동용케이블구동장치 (200b)는오염의우려가없이간편하게재사용할수 있다.
[176] 한편,상술한로봇관절구동용동력전달시스템 (100)또는로봇관절구동용 케이블구동장치 (200)를포함하는로봇관절구동용동력전달시스템 (100)의일 적용례로써내시경수술시스템을예시하였지만,본발명을이에한정하는것은 아니며,그립작업을수행하는로봇팔또는이를구동하기위한로봇의구동 관절이라면모두적용될수있으며,의료용,가정용,산업용등에폭넓게적용될 수있다.
[177]
[178] 도 12은본발명의다른실시예에따른로봇관절구동용동력전달시스템을 개략적으로나타내는도면이고,도 13는도 12의작동상태도이다.
[179] 도 12및도 13를참조하면,본발명의다른실시예에따른로봇관절구동용 동력전달시스템 (300)은더블인풋 (double input)쉬스-텐던동력전달메커니즘을 구현하기위한것으로,바디부 (3W),제 1구동유닛 (360)및제 2구동유닛 (370)을 포함하는구동부,제 1힘전달부 (120),제 2힘전달부 (130),제 1탄성부 (340)및 제 2탄성부 (350)를포함한다.
[18이 상기바디부 (310)는상기제 1구동유닛 (360),상기제 2구동유닛 (370),상기
제 1탄성부 (340)및상기제 2탄성부 (350)를수용할수있다.상기바디부 (3 W)는 플라스틱또는금속재질로이루어질수있으며,이외에강성을가지면서 내식성을가지는다양한재질로이루어질수있다.
[181] 상기제 1구동유닛 (360)은상기바디부 (3 W)에배치될수있다.상기
제 1구동유닛 (360)은제 1구동모터 (361)및제 1이동부 (362)를포함할수있다.
[182] 상기제 1구동모터 (361)는상기바디부 (3 W)에장착될수있다.상기
제 1구동모터 (361)는전원을공급받아구동력을발생할수있다.
[183] 상기제 1이동부 (362)는상기제 1구동모터 (361)의구동력을제공받아선형 이동될수있다.예를들면,상기제 1이동부 (362)는상기제 1구동모터 (361)의 2020/175910 1»(:1^1{2020/002737 구동력에따라상기제 1방향 (①)으로이동되거나상기제 1방향 (①)의반대방향인 제 2방향 (②)으로이동될수있다.
[184] 본발명의한실시예에따르면,상기바디부 (자 0)는상기제 1이동부 (362)를 가이드하는제 1가이드홀 (312)을가질수있다.상기제 1이동부 (362)는상기 제 1가이드홀 (312)을따라상기제 1방향 (①)또는상기제 2방향 (②)으로이동될수 있다.
[185] 상기제 2구동유닛 (370)은상기바디부 (자 0)에배치될수있다.상기
제 2구동유닛 (370)은제 2구동모터 (3기)및제 2이동부 (372)를포함할수있다.
[186] 상기제 2구동모터 (3기)는상기바디부 (310)에장착될수있다.상기
제 2구동모터 (3기)는전원을공급받아구동력을발생할수있다.
[187] 상기제 2이동부 (372)는상기제 2구동모터 (3기)의구동력을제공받아선형 이동될수있다.예를들면,상기제 2이동부 (372)는상기제 2구동모터 (3기)의 구동력에따라상기제 1방향 (①)으로이동되거나상기제 1방향 (①)의반대방향인 제 2방향 (②)으로이동될수있다.
[188] 본발명의한실시예에따르면,상기바디부 (자 0)는상기제 2이동부 (372)를 가이드하는제 2가이드홀 (313)을가질수있다.상기제 2가이드홀 (313)은상기 제 1가이드홀 (312)과평행하게형성될수있다.상기제 2이동부 (372)는상기 제 2가이드홀 (313)을따라상기제 1방향 (①)또는상기제 2방향 (②)으로이동될수 있다.
[189] 상기제 1힘전달부 (320)및상기제 2힘전달부 (330)는텐던이쉬스의내부에서 길이방향을따라이동될수있도록상기쉬스의내부에삽입되는쉬스-텐던 메커니즘이채용될수있다.
[19이 상기제 1힘전달부 (320)는제 1쉬스 (321)및제 1와이어 (322)를포함할수있다. 상기제 1쉬스 (321)는소정의길이를갖고유연성을가지며중공형으로형성될수 있다.상기제 1와이어 (322)는상기제 1쉬스 (321)에삽입될수있다.상기 제 1와이어 (322)는상기제 1와이어 (322)의양단부가상기제 1쉬스 (321)의외부에 노출되도록상기제 1쉬스 (321)에삽입될수있다.상기제 1와이어 (322)의양단부 중일단은로봇의관절 (10)에고정될수있다.상기제 1와이어 (322)의양단부중 타단은상기바디부 (자 0)의일측 (311)을관통하고,상기제 1구동유닛 (360)의 상기제 1이동부 (362)에고정될수있다.
[191] 상기제 2힘전달부 (330)는제 2쉬스 (331)및제 2와이어 (332)를포함할수있다. 상기제 2쉬스 (331)는소정의길이를갖고유연성을가지며중공형으로형성될수 있다.상기제 2와이어 (332)는상기제 2쉬스 (331)에삽입될수있다.상기 제 2와이어 (332)는상기제 2와이어 (332)의양단부가상기제 2쉬스 (331)의외부에 노출되도록상기제 2쉬스 (331)에삽입될수있다.상기제 2와이어 (332)의양단부 중일단은로봇의관절 (10)에고정될수있다.상기제 2와이어 (332)의양단부중 타단은상기바디부 (310)의일측 (311)을관통하고,상기제 2구동유닛 (370)의 상기제 2이동부 (372)에고정될수있다. 2020/175910 1»(:1^1{2020/002737
[192] 본발명의다른실시예에따르면,상기바디부 (자 0)의일측 (311)에는상기
제 1와이어 (322)가관통하는제 1와이어홀과상기제 2와이어 (332)가관통하는 제 2와이어홀이형성될수있다.
[193] 본발명의다른실시예에따르면,상기로봇의관절 (10)은로봇암에서로봇의 손가락또는로봇의팔목을구동하기위한구동관절일수있다.
[194] 또한,상기제 1쉬스 (321)및제 2쉬스 (331)는상기제 1와이어 (322)및
제 2와이어 (332)에걸리는장력을버티면서전체적인형상을유지하면서도 유연성을갖도록금속재질로이루어진코일형상의튜브일수있다.그러나상기 제 1쉬스 (321)및제 2쉬스 (331)의형상및재질을이에한정하는것은아니며 공지의쉬스-텐던메커니즘에서쉬스로서채용되는형상및재질이모두적용될 수있다.
[195] 또한,본발명의다른실시예에따른로봇관절구동용동력전달시스템 (300)은 상기제 1구동유닛 (360)및제 2구동유닛 (370)의전반적인동작을제어하기위한 제어부를더포함할수있으며 ,상기제어부는사용자의입력신호를기반으로 상기제 1구동유닛 (360)및제 2구동유닛 (370)의구동을제어할수있다.또한, 상기제어부는사용자의입력신호를기반으로상기제 1구동유닛 (360)에서상기 제 1와이어 (322)에제공되는힘의크기와상기제 2구동유닛 (370)에서상기 제 2와이어 (332)에제공되는힘의크기를제어할수있다.상기제어부는상기 제 1구동유닛 (360)이상기제 1와이어 (322)에제 1방향 (①)으로힘을제공하도록 상기제 1구동유닛 (360)을제어하고,상기제 2구동유닛 (370)은상기
제 2와이어 (332)에상기제 2방향 (②)으로힘을제공하도록상기
제 2구동유닛 (370)을제어할수있다.
[196] 또한,상기제 1힘전달부 (320)와제 2힘전달부 (330)가로봇의관절 (10)을매개로 상호연결될수있으며,상기제어부의제어를통해상기
제 1구동유닛 (360)으로부터상기제 1와이어 (322)에구동력이제공되거나상기 제 2구동유닛 (370)으로부터상기제 2와이어 (332)에구동력이제공되는경우상기 제 1와이어 (322)및제 2와이어 (332)가제 1쉬스 (321)및제 2쉬스 (331)의내부에서 길이방향을따라움직일수있다.이를통해 ,상기로봇의관절 (10)은사용자가 목적하는위치로회전되거나움직일수있다.
[197] 본발명의다른실시예에따르면,종래의더블인풋쉬스-텐던메커니즘과는 달리상기제 1구동유닛 (360)및제 2구동유닛 (370)이상기제 1힘전달부 (320)및 제 2힘전달부 (330)에동시에구동력을제공할수있으며,상기제 1구동유닛 (360) 및제 2구동유닛 (370)으로부터상기제 1힘전달부 (320)및제 2힘전달부 (330)로 제공되는구동력의크기는상기제어부를통해제어될수있다.
[198] 본발명의다른실시예에따른로봇관절구동용동력전달시스템 (300)은도 13에도시된바와같이,상기제 1구동유닛 (360)이상기제 1와이어 (322)에상기 제 1방향 (①)으로힘을제공하는경우상기제 2구동유닛 (370)은상기
제 2와이어 (332)에상기제 2방향 (②)으로힘을제공할수있다.유사하게,본 2020/175910 1»(:1^1{2020/002737 발명의다른실시예에 따른로봇관절구동용동력 전달시스템 (300)은상기 제 2구동유닛 (370)이상기 제 2와이어 (332)에상기 제 1방향 (①)으로힘을제공하는 경우상기제 1구동유닛 (360)은상기 제 1와이어 (322)에상기 제 2방향 (②)으로 힘을제공할수있다.
[199] 또한,상기제 1와이어 (122)및제 2와이어 (132)는상기 제 1구동유닛 (360)및상기 제 2구동유닛 (370)으로부터제공되는힘의방향에 따라마스터 케이블의 역할과 슬레이브케이블의 역할이상호전환될수있다.즉,상기 제 1와이어 (322)가상기 제 1방향 (①)으로제 1길이知)만큼이동하고상기제 2와이어 (332)가
제 2방향 (②)으로상기 제 1길이知)만큼이동하는경우,상기 제 1와이어 (322)는 마스터 케이블의 역할일수있고상기제 2와이어 (332)는슬레이브케이블의 역할일수있다.반대로,상기 제 1와이어 (322)가제 2방향 (②)으로상기
제 1길이知)만큼이동하고상기제 2와이어 (332)가제 1방향 (①)으로상기 제 1길이知)만큼이동하는경우,상기제 2와이어 (332)는마스터 케이블의 역할일 수있고상기 제 1와이어 (322)는슬레이브케이블의 역할일수있다.
[200] 본발명의다른실시예에 따른로봇관절구동용동력 전달시스템 (300)은
마스터 케이블의 역할을수행하는와이어측에구동유닛을통하여 당기는힘을 제공함과동시에슬레이브케이블의 역할을수행하는와이어측에구동유닛을 통하여 능동적으로미는힘을제공함으로써슬레이브케이블의 역할을 수행하는와이어가쉬스의 내부에서 이동하는과정에서쉬스와의 접촉을통해 발생하는마찰력을보상할수있다.이로인해,본발명의다른실시예에 따른 로봇관절구동용동력 전달시스템 (300)은마스터 케이블의 역할을수행하는 와이어를적은힘으로당기더라도상기로봇의관절 (10)의움직임을목적하는 위치로변경할수있다.예를들면,상기 제 1구동유닛 (360)이상기
제 1와이어 (322)에제공하는상기제 2방향 (②)으로의 힘의크기가상기
제 1와이어 (322)가제 1쉬스 (321)의 길이방향을따라상기제 1구동유닛 (360)에 의해 이동하는과정에서상기제 1와이어 (322)및제 1쉬스 (321)사이에서 발생하는마찰력과상기로봇의관절 (10)을움직이기 위한힘 (112)의크기를 합한크기와동등하면상기로봇의 관절 (10)은작업자가목적하는위치로변경될 수있다.
[201] 이와같이본발명의다른실시예에 따른로봇관절구동용동력 전달
시스템 (300)은구동유닛을통해슬레이브케이블의 역할을수행하는와이어 측에 와이어를능동적으로밀어주는구동력을제공하여슬레이브케이블의 역할을수행하는와이어와쉬스간에발생하는마찰력을상쇄시켜줌으로써 마스터 케이블의 역할을수행하는와이어측에작은크기의구동력을
제공하더라도종래와동등수준이상의동력전달량을구현할수있다.
[202] 또한,본발명에 의하면,슬레이브케이블측에발생하는마찰력의상쇄를통해 슬레이브케이블에서의 백래쉬를감소시키거나방지함으로써 제어정밀도를 높일수있는장점이 있다. 2020/175910 1»(:1^1{2020/002737
[203] 상기제 1탄성부 (340)는상기 제 1와이어 (322)의타단을감쌀수있다.예를들면, 상기 제 1와이어 (322)의 타단은상기 제 1와이어 (322)의 전체부분중에서상기 바디부 (자 0)의내부에 배치된부분을의미할수있다.상기 제 1탄성부 (340)의 일단은상기바디부 (자 0)의내측면에고정되고,상기제 1탄성부 (340)의 타단은 상기 제 1구동유닛 (360)의상기제 1이동부 (362)에고정될수있다.상기
제 1탄성부 (340)는튜브형태로이루어질수있다.상기 제 1탄성부 (340)는 전체적으로튜브형태를유지하면서도탄성력을가지는다양한재질로 이루어질수있다.
[204] 상기제 1탄성부 (340)는상기 제 1이동부 (362)가상기 제 1방향 (①)으로이동됨에 따라,수축되고,상기 제 1탄성부 (340)는상기제 1이동부 (362)가상기
제 2방향 (②)으로이동됨에 따라,늘어날수있다.상기제 1와이어 (322)가상기 제 1이동부 (362)에의해상기제 1방향 (①)또는상기제 2방향 (②)으로
이동되더라도,상기 제 1탄성부 (340)는상기제 1와이어 (322)를감싼상태를 유지할수있다.이에 따라,상기제 1탄성부 (340)는상기 제 1와이어 (322)가상기 바디부 (자 0)의내부에서 쳐지는것을방지할수있다.
[205] 상기제 2탄성부 (350)는상기 바디부 (310)의내부에 배치된상기
제 2와이어 (332)를감쌀수있다.상기 제 2탄성부 (350)의 일단은상기
바디부 (자 0)의내측면에고정되고,상기제 2탄성부 (350)의 타단은상기
제 2구동유닛 (370)의상기 제 2이동부 (372)에고정될수있다.상기
제 2탄성부 (350)는튜브형태로이루어질수있다.상기 제 2탄성부 (350)는 전체적으로튜브형태를유지하면서도탄성력을가지는다양한재질로 이루어질수있다.또한,상기 제 2탄성부 (350)는상기제 1탄성부 (340)와나란하게 배치될수있다.
[206] 상기제 2탄성부 (350)는상기 제 2이동부 (372)가상기 제 1방향 (①)으로이동됨에 따라,수축되고,상기 제 2탄성부 (350)는상기제 2이동부 (372)가상기
제 2방향 (②)으로이동됨에 따라,늘어날수있다.상기제 2와이어 (332)가상기 제 2이동부 (372)에의해상기제 1방향 (①)또는상기제 2방향 (②)으로
이동되더라도,상기 제 2탄성부 (350)는상기제 2와이어 (332)를감싼상태를 유지할수있다.이에 따라,상기제 2탄성부 (350)는상기 제 2와이어 (332)가상기 바디부 (자 0)의내부에서 쳐지는것을방지할수있다.
[207]
[208] 도 14은본발명의또다른실시예에따른로봇관절구동용카트리지 타입동력 전달시스템을나타내는사시도이고,도 15는본발명의또다른실시예에따른 로봇관절구동용카트리지타입동력 전달시스템의구성을개략적으로 나타내는사시도이고,도 16는본발명의또다른실시예에따른로봇관절 구동용카트리지타입동력 전달시스템의구성을개략적으로나타내는 정면도이고,도 17은본발명의또다른실시예에 따른로봇관절구동용 카트리지 타입동력 전달시스템의구성을개략적으로나타내는평면도이고,도 2020/175910 1»(:1^1{2020/002737
18은본발명의또다른실시예에따른로봇관절구동용카트리지타입동력 전달시스템의구성을개략적으로나타내는측면도이다.
[209] 도 14내지도 18을참조하면,본발명의또다른실시예에따른로봇관절
구동용카트리지타입동력전달시스템 (400)은하우징 (410),제 1구동부 (420)및 카트리지 (430)를포함할수있다.
[210] 상기하우징 (410)은상기제 1구동부 (420),상기카트리지 (430)및후술할
제 2구동부 (440)를수용할수있다.상기하우징 (410)은플라스틱또는금속 재질로이루어질수있다.또한,상기하우징 (410)은플라스틱또는금속재질로 이루어진것에한정되지않고,강성을가지면서내식성을가진다양한재질로 이루어질수있다.상기하우징 (사 0)의일측 (411)에는상기카트리지 (430)가상기 하우징 (410)의내부로삽입되기위한삽입홀 (411幻이형성될수있다.또한,상기 하우징 (410)의상기일측 (411)에는상기로봇관절구동용카트리지타입동력 전달시스템 (400)의상태를표시하는디스플레이가배치될수있다.
[211] 상기제 1구동부 (420)는상기하우징 (410)의내부에배치될수있다.상기
제 1구동부 (420)는상기제 1방향 (①,도 13참조)또는상기제 2방향 (②,도 13 참조)으로선형이동될수있다.상기제 1구동부 (420)는복수로구성될수있다. 상기복수의제 1구동부 (420)는상기카트리지 (430)의일측면을대면하는상기 복수의제 1구동부중하나 (421)및상기카트리지 (430)의타측면을대면하는 상기복수의제 1구동부중다른하나 (422)를포함할수있다.상기복수의 제 1구동부중다른하나 (422)는상기카트리지 (430)를사이에두고상기복수의 제 1구동부중하나 (421)와대칭적으로배치될수있다.상기복수의제 1구동부중 하나 (421)는 4개로구성되고,상기복수의제 1구동부중다른하나 (422)는 4개로 구성될수있다.다만,상기복수의제 1구동부중하나 (421)와상기복수의 제 1구동부중다른하나 (422)는 4개로구성되는것에한정되지않고, 2개또는 6개와같이다양한개수로구성될수있다.상기제 1구동부 (420)에대해서는 이후도면을참조하여설명하기로한다.
[212] 상기카트리지 (430)는상기삽입홀 (411幻을통해상기하우징 (410)의내부로 삽입될수있다.상기카트리지 (430)는더블인풋 ((10111^ !^)쉬스-텐던 동력전달메커니즘을구현하기위한힘전달부 (439,도 21참조)및탄성부 (438)를 포함할수있다.상기카트리지 (430)에대해서는이후도면을참조하여 설명하기로한다.
[213] 상기카트리지 (430)는상기하우징 (410)에착탈가능하게결합될수있다.이와 같이,상기카트리지 (430)가상기하우징 (410)에착탈가능하게결합되므로,본 발명의실시예에따른수술용로봇구동시스템 (400)은소모품으로사용되는 힘전달부 (439,도 21참조)의교체의편리성이개선된다.
[214] 본발명의또다른실시예에따른로봇관절구동용카트리지타입동력전달 시스템 (400)은제 2구동부 (440)를더포함할수있다.
[215] 상기제 2구동부 (440)는상기제 1구동부 (420)가상기카트리지 (430)에 2020/175910 1»(:1^1{2020/002737 연결되거나분리되도록상기제 1구동부 (420)를상기제 3방향 (③)또는상기 제 3방향 (③)의반대방향인제 4방향 (④)으로이동시킬수있다.상기제 3방향 (③)은 상기제 1방향 (①)의수직한방향일수있다.상기제 2구동부 (440)는복수로 구성될수있다.상기복수의제 2구동부 (440)는복수로구성될수있다.상기 복수의제 2구동부 (440)는상기복수의제 1구동부중하나 (421)를사이에두고 상기카트리지 (430)의반대측에배치되는상기복수의제 2구동부중하나 (441) 및상기복수의제 1구동부중다른하나 (422)를사이에두고상기
카트리지 (430)의반대측에배치되는상기복수의제 2구동부중다른하나 (442)를 포함할수있다.
[216] 상기복수의제 2구동부중하나 (441)는제 2모터 (441幻및연결부 (441비를
포함할수있다.상기제 2모터 (441幻는상기하우징 (사 0)의하면 (412)에배치될수 있다.상기연결부 (441비는상기제 2모터 (441幻에연결되고,상기
제 2모터 (441幻의구동력에의해상기제 3방향 (③)또는상기제 4방향 (④)으로 선형이동될수있다.상기연결부 (441비는상기복수의제 1구동부중
하나 (421)와연결될수있다.
[217] 상기복수의제 2구동부중하나 (441)는상기복수의제 1구동부중하나 (421)를 상기제 4방향 (④)으로이동시켜상기복수의제 1구동부중하나 (421)를상기 카트리지 (430)에연결시킬수있다.또한,상기복수의제 2구동부중하나 (441)는 상기복수의제 1구동부중하나 (421)를상기제 3방향 (③)으로이동시켜상기 복수의제 1구동부중하나 (421)를상기카트리지 (430)와분리시킬수있다.
[218] 상기복수의제 2구동부중다른하나 (442)는제 2모터 (442幻및연결부 (442비를 포함할수있다.상기제 2모터 (442幻는상기하우징 (사 0)의하면 (412)에배치될수 있다.상기연결부 (442비는상기제 2모터 (442幻에연결되고,상기
제 2모터 (442幻의구동력에의해상기제 3방향 (③)또는상기제 4방향 (④)으로 선형이동될수있다.상기연결부 (442비는상기복수의제 1구동부중다른 하나 (422)와연결될수있다.
[219] 상기복수의제 2구동부중다른하나 (442)는상기복수의제 1구동부중다른 하나 (422)를상기제 3방향 (③)으로이동시켜상기복수의제 1구동부중다른 하나 (422)를상기카트리지 (430)에연결시킬수있다.또한,상기복수의 제 2구동부중다른하나 (442)는상기복수의제 1구동부중다른하나 (422)를상기 제 4방향 (④)으로이동시켜상기복수의제 1구동부중다른하나 (422)를상기 카트리지 (430)와분리시킬수있다.
[22이 상기카트리지 (430)가상기하우징 (410)에삽입되거나분리되는과정에서 , 상기제 2구동부 (440)는상기제 1구동부 (420)와상기카트리지 (430)의연결 여부를제어할수있다.
[221] 본발명의또다른실시예에따르면,상기복수의제 2구동부중하나 (441)와 상기복수의제 2구동부중다른하나 (442)는동시에구동될수있다.
[222] 2020/175910 1»(:1^1{2020/002737
[223] 도 19은본발명의또다른실시예에따른로봇관절구동용카트리지 타입동력 전달시스템의카트리지를나타내는사시도이고,도 20는본발명의또다른 실시예에 따른로봇관절구동용카트리지타입동력 전달시스템의카트리지를 나타내는측면도이고,도 21은본발명의또다른실시예에따른로봇관절 구동용카트리지타입동력 전달시스템의카트리지의구성을개략적으로 나타내는도면이고,도 22은본발명의또다른실시예에따른로봇관절구동용 카트리지 타입동력 전달시스템의 제 1구동부를나타내는측면도이다.
[224] 도 19내지도 22일참조하면,본발명의또다른실시예에 따른로봇관절구동 케이블동력 전달시스템의상기카트리지 (430)는케이스 (431),이동부 (435, 436, 437),힘전달부 (439)및탄성부 (438)를포함할수있다.
[225] 상기 케이스 (431)는상기 이동부 (435, 436, 437),상기 힘전달부 (439)및상기
탄성부 (438)를수용할수있다.상기 케이스 (431)는플라스틱또는금속재질로 이루어질수있다.또한,상기 케이스 (431)는플라스틱또는금속재질로 이루어진것에 한정되지 않고,강성을가지면서 내식성을가진다양한재질로 이루어질수있다.상기 케이스 (431)는사용자의손또는기구에 의해그립되는 손잡이부 (432)를포함할수있다.
[226] 상기 케이스 (431)는상기 이동부 (435, 436, 437)의 이동을가이드하는
가이드홀 (434)을가질수있다.상기 가이드홀 (434)은슬릿형태로이루어질수 있다.상기 가이드홀 (434)은복수로구성될수있다.상기복수의
가이드홀 (434)은서로나란하게형성될수있다.
[227] 상기 이동부 (435, 436, 437)는상기 케이스 (431)에수용될수있다.상기
이동부 (435, 436, 437)는상기 제 1구동부 (420)에 연결될수있다.상기 이동부 (435, 436, 437)는상기제 1구동부 (420)의구동력을전달받아상기제 1방향 (①)또는 상기 제 2방향 (②)으로선형 이동될수있다.상기 이동부 (435, 436, 437)는상기 가이드홀 (434)을통해상기 케이스 (431)의 외부로노출될수있다.상기
이동부 (435, 436, 437)는제 1이동부 (435),제 2이동부 (436)및제 3이동부 (437)를 포함할수있다.상기 제 1이동부 (435),상기 제 2이동부 (436)및상기
제 3이동부 (437)는서로나란하게정렬될수있다.
[228] 상기 힘전달부 (439)는쉬스 (439 와와이어 (43%)를포함할수있다.
[229] 상기쉬스 (439幻는소정의 길이를갖고유연성을가지며중공형으로형성될수 있다.상기 쉬스 (439幻의 일부분은상기 케이스 (431)에수용되고,상기
쉬스 (439 의다른부분은상기 케이스 (431)의외부로노출될수있다.
[23이 또한,상기쉬스 (439幻는전술한실시예의상기 제 1쉬스 (321)와상기
제 2쉬스 (331)와동일하거나유사할수있다.
[231] 상기와이어 (43%)는상기 쉬스 (439幻에삽입될수있다.상기 와이어 (43%)의 일단은로봇의관절 (10,도 12참조)에고정되고,상기 와이어 (43%)의타단은 상기 제 1이동부 (435)에고정될수있다.상기와이어 (43%)의 타단은상기 제 1이동부 (435)의 이동에 의해상기 제 1방향 (①)또는상기 제 2방향 (②)으로 2020/175910 1»(:1^1{2020/002737 이동될수있다.
[232] 또한,상기와이어 (43%)는전술한실시예의상기제 1와이어 (322)와상기
제 2와이어 (332)와동일하거나유사할수있다.
[233] 상기탄성부 (438)는상기케이스 (431)의내부에수용될수있다.상기
탄성부 (438)의일단은상기케이스 (431)에고정되고,상기탄성부 (438)의타단은 상기제 1이동부 (435)에고정될수있다.상기탄성부 (438)는상기
제 1이동부 (435)의이동에의해상기제 1방향 (①)을따라늘어나고,상기 제 2방향 (②)을따라수축될수있다.
[234] 또한,본발명의또다른실시예에따르면,상기탄성부 (438)는상기
제 2이동부 (436)및상기제 3이동부 (437)에고정될수있다.또한,본발명의또 다른실시예에따르면,상기탄성부 (438)는상기제 2이동부 (436)와상기 제 3이동부 (437)를관통할수있다.
[235] 또한,상기탄성부 (438)는전술한실시예의상기탄성부 (438)와동일하거나 유사할수있다.
[236] 본발명의또다른실시예에따른로봇관절구동용카트리지타입동력전달 시스템의상기제 1구동부 (421)는,구동바디부 (42 ),제 1모터 (423)및
착탈부 (425, 426, 427)를포함할수있다.
[237] 상기구동바디부 (421幻는상기제 2구동부 (440)의구동력에의해상기
하우징 (410,도 16)의내부에서상기제 3방향 (③)또는상기제 4방향 (④)으로 이동될수있다.상기구동바디부 (421幻는상기제 2구동부 (440)의상기 연결부 (44比,도 17참조)와결합될수있다.
[238] 상기제 1모터 (423)는상기구동바디부 (421幻에배치될수있다.
[239] 상기착탈부 (425, 426, 427)는상기구동바디부 (421幻에배치될수있다.상기 착탈부 (425, 426, 427)는상기제 1모터 (423)와연결될수있다.상기착탈부 (425, 426, 427)는상기제 1모터 (423)의구동력에의해상기제 1방향 (①)또는상기 제 2방향 (②)으로선형이동될수있다.상기착탈부 (425, 426, 427)는상기 이동부 (435, 436, 437)와착탈가능하게결합될수있다.
[24이 상기착탈부 (425, 426, 427)는상기착탈부 (425, 426, 427)의외측면으로부터 돌출되는돌기 (425 425江 426 42해, 427 427비를포함할수있다.또한,상기 이동부 (435, 436, 437)는상기돌기 (425 425江 426 42해, 427 427비가삽입되는 착탈홈 (43¾, 43해, 437비를포함할수있다.
[241] 상기착탈부 (425, 426, 42刀는제 1착탈부 (425),제 2착탈부 (426)및
제 3착탈부 (427)를포함할수있다.상기제 1착탈부 (425),상기제 2착탈부 (426)및 상기제 3착탈부 (427)는서로나란하게정렬될수있다.
[242] 상기제 1착탈부 (425)의돌기 (425 425비가상기제 1이동부 (435)의착탈
홈 (435비에삽입되거나분리됨에따라,상기제 1착탈부 (425)는상기
제 1이동부 (435)와착탈가능하게결합될수있다.
[243] 상기제 2착탈부 (426)의돌기 (426 426비가상기제 2이동부 (436)의착탈 2020/175910 1»(:1^1{2020/002737 홈 (436비에삽입되거나분리됨에따라,상기제 2착탈부 (426)는상기
제 2이동부 (436)와착탈가능하게결합될수있다.
[244] 상기제 3착탈부 (427)의돌기 (427 427비가상기제 3이동부 (437)의착탈
홈 (437비에삽입되거나분리됨에따라,상기제 3착탈부 (427)는상기
제 3이동부 (437)와착탈가능하게결합될수있다.
[245] 또한,상기카트리지 (430)는제 1고정부 (431비를더포함할수있다.상기
제 1고정부 (431비는상기케이스 (431)의측면에형성된고정홀 (431幻을통해상기 케이스 (431)의측면으로부터노출될수있다.또한,상기제 1구동부 (420)는 제 2고정부 (428)를포함할수있다.상기제 2고정부 (428)는고정돌기 (428 428비를포함할수있다.또한,상기제 1고정부 (431비에는상기고정돌기 (428 428비에대응하는고정홈이형성될수있다.상기제 2고정부 (428)의
고정돌기 (428 428비는제 1고정부 (431비의고정홈에삽입되어,상기
제 1구동부 (420)와상기카트리지 (430)를견고하게결합시킬수있다.
[246] 상기착탈부 (425, 426, 427)는상기제 1모터 (423)의구동력을전달받아상기 제 1방향 (①)또는상기제 2방향 (②)으로이동될수있다.상기이동부 (435, 436, 437)가상기착탈부 (425, 426, 427)에연결된후,상기이동부 (435, 436, 437)는 상기착탈부 (425, 426, 427)와함께상기제 1방향 (①)또는상기제 2방향 (②)으로 이동될수있다.그리고,상기와이어 (43%)는상기이동부 (435, 436, 437)와함께 상기제 1방향 (①)또는상기제 2방향 (②)으로이동될수있다.상기
와이어 (43%)에연결된상기로봇의관절 (10,도 12참조)는상기와이어 (43%)의 이동에의해구동될수있다.
[247]
[248] 이상에서본발명의일실시예에대하여설명하였으나,본발명의사상은본 명세서에제시되는실시 예에제한되지아니하며 ,본발명의사상을이해하는 당업자는동일한사상의범위내에서,구성요소의부가,변경,삭제 ,추가등에 의해서다른실시 예를용이하게제안할수있을것이나,이또한본발명의 사상범위내에든다고할것이다.

Claims

() 2020/175910 1»(:1/10公020/002737 청구범위
[청구항 1] 로봇의관절을구동하기위한케이블동력전달시스템으로서,
제 1구동유닛및제 2구동유닛을포함하는구동부;
소정의길이를갖추고유연성을가지며중공형으로형성되는제 1쉬스와, 상기제 1쉬스에삽입되고일단이상기로봇의관절에고정되고타단이 상기제 1구동유닛에연결되는제 1와이어를포함하는제 1힘전달부;및 소정의길이를갖추고유연성을가지며중공형으로형성되는제 2쉬스와, 상기제 2쉬스에삽입되고일단이상기로봇의관절에고정되고타단이 상기제 2구동유닛에연결되는제 2와이어를포함하는제 2힘전달부;를 포함하고,
상기제 1구동유닛이상기제 1와이어측에제 1방향으로힘을제공하는 경우상기제 2구동유닛은상기제 2와이어측에상기제 1방향과
반대방향인제 2방향으로힘을제공하는로봇관절구동용동력전달 시스템.
[청구항 2] 제 1항에있어서,
상기제 1구동유닛이상기제 1와이어를당기는방향으로상기 제 1와이어에힘을가하는경우상기제 2구동유닛은상기제 2와이어를 미는방향으로상기제 2와이어에힘을제공하고,
상기제 2구동유닛이상기제 2와이어를당기는방향으로상기 제 2와이어에힘을가하는경우상기제 1구동유닛은상기제 1와이어를 미는방향으로상기제 1와이어에힘을제공하는로봇관절구동용동력 전달시스템.
[청구항 3] 제 1항에있어서,
상기제 1구동유닛이상기제 1와이어를당기는방향으로상기 제 1와이어에힘을제공하고상기제 2구동유닛이상기제 2와이어를미는 방향으로상기제 2와이어에힘을제공하는경우,
상기제 2구동유닛이상기제 2와이어측에제공하는힘의크기는상기 제 2와이어및제 2쉬스사이에발생하는마찰력을기반으로조정되는 로봇관절구동용동력전달시스템.
[청구항 4] 제 3항에있어서,
상기제 2구동유닛이상기제 2와이어측에제공하는최대힘의크기는 상기제 2와이어및제 2쉬스사이에발생하는마찰력과동일한크기인 로봇관절구동용동력전달시스템.
[청구항 5] 제 1항에있어서,
상기제 1구동유닛이상기제 1와이어를당기는방향으로상기 제 1와이어에힘을제공하고상기제 2구동유닛이상기제 2와이어를미는 방향으로상기제 2와이어에힘을제공하는경우, 2020/175910 1»(:1^1{2020/002737 상기 제 1구동유닛이상기 제 1와이어측에 제공하는힘의크기는상기 제 1와이어 및제 1쉬스사이에발생하는마찰력과상기로봇의관절 자체를움직이는힘을합한크기와동일한크기인로봇관절구동용동력 전달시스템.
[청구항 6] 제 1항에 있어서,
상기 제 1구동유닛이상기 제 1와이어를당기는방향으로상기
제 1와이어에 힘을제공하고상기제 2구동유닛이상기제 2와이어를미는 방향으로상기제 2와이어에 힘을제공하는경우,
상기 제 2쉬스의 전체길이중상기 제 2와이어가인입되는상기제 2쉬스의 단부를포함하는일부길이는상기제 2와이어와함께유동이 방지된 상태인로봇관절구동용동력 전달시스템.
[청구항 7] 제 1항에 있어서,
바디부;
그일단이상기 바디부에고정되고,그타단이상기 제 1구동유닛에 고정되고,상기 제 1와이어의타단을감싸는제 1탄성부;및 그일단이상기 바디부에고정되고,그타단이상기 제 2구동유닛에 고정되고,상기 제 2와이어의타단을감싸는제 2탄성부; 를더포함하고,
상기 제 1구동유닛과상기 제 2구동유닛은선형 이동되는로봇관절 구동용동력 전달시스템.
[청구항 8] 제 7항에 있어서,
상기 바디부에 배치되는제어부를더포함하고,
상기 제어부는상기 제 1구동유닛이상기 제 1와이어에제 1방향으로힘을 제공하도록상기제 1구동유닛을제어하고,상기제 2구동유닛이상기 제 2와이어에상기제 1방향과반대방향인제 2방향으로힘을제공하도록 상기 제 2구동유닛을제어하는로봇관절구동용동력 전달시스템.
[청구항 9] 제 7항에 있어서,
상기 바디부의 일측에는상기제 1와이어가관통하는제 1와이어홀과 상기 제 2와이어가관통하는제 2와이어홀이 형성되는로봇관절구동용 동력 전달시스템.
[청구항 ] 제 9항에 있어서,
상기 제 1구동유닛은,
구동력을발생하는제 1구동모터 ;및
상기 제 1구동모터의구동력을제공받아선형 이동되는제 1이동부를 포함하고,
상기 제 2구동유닛은,
구동력을발생하는제 2구동모터 ;및
상기 제 2구동모터의구동력을제공받아선형 이동되는제 2이동부를 2020/175910 1»(:1^1{2020/002737 포함하는로봇관절구동용동력 전달시스템.
[청구항 11] 제 10항에 있어서 ,
상기 바디부는,
상기 제 1이동부를가이드하는제 1가이드홀;및
상기 제 2이동부를가이드하는제 2가이드홀을가지는로봇관절구동용 동력 전달시스템.
[청구항 12] 제 8항에 있어서 ,
상기 제 1탄성부와상기 제 2탄성부는상기 제 1방향으로힘을제공받아 수축되고,상기 제 2방향으로힘을제공받아늘어나는로봇관절구동용 동력 전달시스템.
[청구항 13] 로봇의 관절을구동하기 위한동력 전달시스템으로서,
하우징 ;
상기하우징의내부에 배치되고,선형 이동되는제 1구동부;및
상기하우징의내부로삽입되는카트리지;를포함하고, 상기카트리지는,
케이스;
상기 케이스에수용되고,상기 제 1구동부에 연결되어선형 이동되는 이동부;
소정의 길이를갖고유연성을가지며중공형으로형성되는쉬스와,상기 쉬스에삽입되고그일단이상기로봇의관절에고정되고그타단이상기 이동부에고정되고상기 케이스를관통하는와이어를포함하는 힘전달부;및
그일단이상기 케이스에고정되고,그타단이상기 이동부에고정되고, 상기 와이어를감싸는탄성부를포함하고,
상기카트리지는상기하우징에착탈가능하게결합되는로봇관절 구동용카트리지타입동력 전달시스템.
[청구항 14] 제 13항에 있어서 ,
상기 제 1구동부가상기 이동부에 연결되거나분리되도록상기
제 1구동부를이동시키는제 2구동부를더포함하는로봇관절구동용 카트리지 타입동력 전달시스템.
[청구항 15] 제 14항에 있어서 ,
상기 제 1구동부는,
상기하우징의내부에서 이동가능한구동바디부;
상기구동바디부에 배치되는제 1모터;
상기 제 1모터와연결되고,상기 제 1모터의구동력에 의해선형 이동되고, 상기 이동부와착탈가능하게결합되는착탈부를포함하는로봇관절 구동용카트리지타입동력 전달시스템.
[청구항 16] 제 15항에 있어서, 2020/175910 1»(:1^1{2020/002737 상기제 2구동부는,
상기하우징에배치되는제 2모터;및
상기제 2모터에연결되고,상기제 2모터의구동력에의해선형이동되는 연결부를포함하는로봇관절구동용카트리지타입동력전달시스템. [청구항 17] 제 15항에있어서 ,
상기착탈부는상기착탈부의외측면으로부터돌출되는돌기를 포함하고,
상기이동부는상기착탈부의상기돌기가삽입되는착탈홈을가지는 로봇관절구동용카트리지타입동력전달시스템.
[청구항 18] 제 17항에있어서 ,
상기카트리지는상기힘전달부가통과하는홀을가지는로봇관절 구동용카트리지타입동력전달시스템.
[청구항 19] 제 17항에있어서 ,
상기케이스는상기이동부의이동을가이드하는가이드홀을가지는 로봇관절구동용카트리지타입동력전달시스템.
[청구항 20] 제 17항에있어서 ,
상기탄성부는제 1방향을따라늘어나고,상기제 1방향과반대방향인 상기제 2방향을따라수축되는로봇관절구동용카트리지타입동력 전달시스템.
PCT/KR2020/002737 2019-02-27 2020-02-26 로봇 관절 구동용 동력 전달 시스템 WO2020175910A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021550704A JP7260883B2 (ja) 2019-02-27 2020-02-26 ロボット関節駆動用動力伝達システム
EP20763220.9A EP3932623A4 (en) 2019-02-27 2020-02-26 POWER TRANSMISSION SYSTEM FOR DRIVING A ROBOT JOINT
US17/434,592 US12005575B2 (en) 2019-02-27 2020-02-26 Power transmission system for driving robot joint
CN202080017325.4A CN113543936A (zh) 2019-02-27 2020-02-26 机器人关节驱动用动力传输系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2019-0023402 2019-02-27
KR1020190023402A KR102165413B1 (ko) 2019-02-27 2019-02-27 로봇 관절 구동용 케이블 동력 전달 시스템 및 방법
KR1020200018283A KR20210103739A (ko) 2020-02-14 2020-02-14 로봇 관절 구동용 동력 전달 시스템
KR1020200018284A KR20210103740A (ko) 2020-02-14 2020-02-14 로봇 관절 구동용 카트리지 타입 동력 전달 시스템
KR10-2020-0018284 2020-02-14
KR10-2020-0018283 2020-02-14

Publications (1)

Publication Number Publication Date
WO2020175910A1 true WO2020175910A1 (ko) 2020-09-03

Family

ID=72238318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002737 WO2020175910A1 (ko) 2019-02-27 2020-02-26 로봇 관절 구동용 동력 전달 시스템

Country Status (5)

Country Link
US (1) US12005575B2 (ko)
EP (1) EP3932623A4 (ko)
JP (1) JP7260883B2 (ko)
CN (1) CN113543936A (ko)
WO (1) WO2020175910A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472101B1 (ko) * 2021-07-21 2022-11-29 한국생산기술연구원 케이블 직렬탄성 구동 시스템 및 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202217436D0 (en) * 2022-11-22 2023-01-04 Rolls Royce Plc Actuator
GB202217437D0 (en) * 2022-11-22 2023-01-04 Rolls Royce Plc Connection plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110069114A (ko) * 2008-09-30 2011-06-22 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 장치용 수동 프리로드 및 캡스턴 드라이브
US20130304084A1 (en) * 2010-10-11 2013-11-14 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
KR20140001572A (ko) * 2012-06-27 2014-01-07 한국과학기술원 유연한 수술도구용 경도조절장치
JP2015159844A (ja) * 2014-02-26 2015-09-07 オリンパス株式会社 弛み補正機構、マニピュレータ及びマニピュレータシステム
KR101889065B1 (ko) * 2017-03-20 2018-08-16 울산과학기술원 이중 텐던-쉬스 메커니즘을 이용한 힘 전달 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218135A (ja) 1990-02-20 1992-08-07 Olympus Optical Co Ltd 内視鏡
US8414598B2 (en) * 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
JP2002264048A (ja) 2001-03-08 2002-09-18 Hitachi Ltd 被牽引機構の位置決め制御装置
JP4434640B2 (ja) 2003-06-27 2010-03-17 オリンパス株式会社 内視鏡
AU2005292229B2 (en) 2004-09-30 2012-03-15 Boston Scientific Limited Video endoscope
JP5047689B2 (ja) 2007-05-17 2012-10-10 オリンパスメディカルシステムズ株式会社 電動湾曲内視鏡
JP2010221329A (ja) 2009-03-23 2010-10-07 Olympus Corp 駆動機構
US9101379B2 (en) 2010-11-12 2015-08-11 Intuitive Surgical Operations, Inc. Tension control in actuation of multi-joint medical instruments
JP6037964B2 (ja) 2013-07-26 2016-12-07 オリンパス株式会社 マニピュレータシステム
EP3463168A4 (en) 2016-05-26 2020-03-11 Covidien LP ROBOTIC SURGICAL ASSEMBLIES
US11419691B2 (en) 2017-06-29 2022-08-23 The Board Of Regents Of The University Of Texas System Surgical apparatus
CN207373163U (zh) * 2017-11-09 2018-05-18 上海司羿智能科技有限公司 外骨骼驱动装置和助力外骨骼系统
KR102165413B1 (ko) 2019-02-27 2020-10-14 주식회사 엔도로보틱스 로봇 관절 구동용 케이블 동력 전달 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110069114A (ko) * 2008-09-30 2011-06-22 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 장치용 수동 프리로드 및 캡스턴 드라이브
US20130304084A1 (en) * 2010-10-11 2013-11-14 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
KR20140001572A (ko) * 2012-06-27 2014-01-07 한국과학기술원 유연한 수술도구용 경도조절장치
JP2015159844A (ja) * 2014-02-26 2015-09-07 オリンパス株式会社 弛み補正機構、マニピュレータ及びマニピュレータシステム
KR101889065B1 (ko) * 2017-03-20 2018-08-16 울산과학기술원 이중 텐던-쉬스 메커니즘을 이용한 힘 전달 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3932623A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472101B1 (ko) * 2021-07-21 2022-11-29 한국생산기술연구원 케이블 직렬탄성 구동 시스템 및 방법

Also Published As

Publication number Publication date
EP3932623A4 (en) 2023-03-08
US12005575B2 (en) 2024-06-11
EP3932623A1 (en) 2022-01-05
JP2022522737A (ja) 2022-04-20
US20220134541A1 (en) 2022-05-05
CN113543936A (zh) 2021-10-22
JP7260883B2 (ja) 2023-04-19

Similar Documents

Publication Publication Date Title
WO2020175910A1 (ko) 로봇 관절 구동용 동력 전달 시스템
KR102165413B1 (ko) 로봇 관절 구동용 케이블 동력 전달 시스템 및 방법
CN107809939B (zh) 具有工具的内窥镜
US20210251709A1 (en) Device for automatically inserting and manipulating a medical tool into and within a bodily lumen
CN108836234B (zh) 主-从柔性机器人内窥镜系统
US8221306B2 (en) Endoscope therapeutic device
US8075474B2 (en) Endoscope system and medical instrument
CN102469923B (zh) 柔顺手术装置
US8282543B2 (en) Surgical instrument and endoscope surgical system having surgical instrument
JP6278747B2 (ja) マニピュレータのキャリブレーション方法、マニピュレータ、およびマニピュレータシステム
JP5341261B2 (ja) 湾曲装置
US20090143642A1 (en) Therapeutic device system and manipulator system
EP2022433A1 (en) Endoscope treatment system
WO2018174226A1 (ja) 張力調整機構、インターフェースおよび駆動機構
JP6404537B1 (ja) 医療用処置具
KR102118124B1 (ko) 로봇 관절 구동용 케이블 구동장치
EP2848189A1 (de) Endoskopisches System
KR102343866B1 (ko) 수술용 로봇 구동 장치
KR20210103740A (ko) 로봇 관절 구동용 카트리지 타입 동력 전달 시스템
EP3590411B1 (en) Flexible mechanism
KR20210103739A (ko) 로봇 관절 구동용 동력 전달 시스템
EP4079366A1 (en) Device for automatically inserting and manipulating a medical tool into and within a bodily lumen
JPH0360622A (ja) 湾曲操作装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020763220

Country of ref document: EP

Effective date: 20210927