WO2020175262A1 - 流路切替装置 - Google Patents

流路切替装置 Download PDF

Info

Publication number
WO2020175262A1
WO2020175262A1 PCT/JP2020/006469 JP2020006469W WO2020175262A1 WO 2020175262 A1 WO2020175262 A1 WO 2020175262A1 JP 2020006469 W JP2020006469 W JP 2020006469W WO 2020175262 A1 WO2020175262 A1 WO 2020175262A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer side
heat medium
flow path
flow
switching device
Prior art date
Application number
PCT/JP2020/006469
Other languages
English (en)
French (fr)
Inventor
康晃 福井
梯 伸治
北村 圭一
恒吏 高橋
橋村 信幸
真野 貴光
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080016795.9A priority Critical patent/CN113508233B/zh
Publication of WO2020175262A1 publication Critical patent/WO2020175262A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor

Definitions

  • the present disclosure relates to a flow channel switching device that switches a flow channel configuration in a fluid circuit.
  • a plurality of switching valves are arranged in order to realize a flow path configuration according to the application.
  • the first switching valve to the fifth switching valve are adopted to switch the flow path configuration.
  • Patent Document 1 by controlling the operation of the first switching valve to the fifth switching valve, the flow path configuration is switched to five patterns.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 1 4 _ 3 7 7 16
  • Patent Document 1 the first switching valve to the fifth switching valve are connected via a large number of pipes and joints, respectively. For this reason, the configuration for switching the flow paths becomes large, which affects the space and weight of the entire device.
  • Patent Document 1 a drive unit related to the switching operation is required for each of the first to fifth switching valves. Therefore, in consideration of the drive unit of each switching valve, it is considered that Patent Document 1 has room for further improvement in the space and weight of the configuration for switching the flow paths. ⁇ 2020/175262 2 (:171? 2020/006469
  • the present disclosure has been made in view of these points, and an object thereof is to provide a flow path switching device that has a compact structure and can switch the flow path configuration in a fluid circuit.
  • a flow channel switching device includes a first layer side flow channel forming unit, a second layer side flow channel forming unit, and a drive unit, and a fluid in which a fluid circulates. Switch the flow path configuration of the circuit.
  • the first layer side channel forming portion is formed with a first layer side channel connected to the fluid circuit.
  • the second layer side channel forming portion is formed with a second layer side channel that communicates with the first layer side channel at a plurality of points and is connected to the fluid circuit.
  • the drive unit drives the plurality of valve body units at least in conjunction with each other.
  • the plurality of valve bodies are arranged inside the second layer side flow passage, and adjust the flow rate of the fluid passing through the communication passage that connects the first layer side flow passage and the second layer side flow passage. Further, in the flow path switching device, the first layer side flow path forming section, the second layer side flow path forming section, and the driving section are stacked in this order.
  • the first-layer side flow passage forming portion, the second-layer side flow passage forming portion and the driving portion are stacked, the pipes and joints for switching the flow passage configuration of the fluid circuit are provided. Also, the functions of the valves can be integrated, and a more compact structure can be realized.
  • the first layer side flow passage forming portion, the second layer side flow passage forming portion and the driving portion are arranged in layers, a plurality of valve body portions are arranged in close proximity to each other.
  • the drive unit drives the plurality of valve bodies at least in conjunction with each other. Therefore, according to the flow path switching device, switching of the flow path structure of the fluid circuit is realized with a compact and lightweight structure compared to the case where a drive source such as a motor is arranged for each valve body. be able to.
  • FIG. 1 is a schematic configuration diagram of a flow path switching device according to a first embodiment, 20/175262 3 ⁇ (: 171? 2020 /006469
  • FIG. 2 is a side view of the flow path switching device according to the first embodiment
  • FIG. 3 is an overall configuration diagram of a heat medium circuit according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a configuration of a first layer side flow passage according to the first embodiment
  • FIG. 5 is a second layer side flow passage according to the first embodiment
  • Fig. 6 is an explanatory view showing the configuration.
  • Fig. 6 is an explanatory view of the second layer side lid member and the fixed lid according to the first embodiment.
  • Fig. 7 is a cross-sectional view of the V I I -V I cross section in Figs.
  • FIG. 8 is an explanatory view of a flow path resistance portion in the flow path switching device of the first embodiment.
  • Fig. 9 is a cross-sectional view taken along the line X-X in Figs.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a heat medium three-way valve in a flow path switching device
  • Fig. 11 is an explanatory view showing the valve body of the heat medium three-way valve in the fully opened state.
  • Fig. 12 is an explanatory view showing the valve body of the heat medium three-way valve in the fully closed state.
  • Fig. 13 is an explanatory view showing a valve body portion of the heat medium three-way valve in a flow distribution state.
  • Fig. 14 is a graph showing the relationship between the first opening and the second opening of the heat medium three-way valve.
  • FIG. 15 is an explanatory diagram showing a configuration of a heat insulating portion in the flow path switching device
  • FIG. 16 is a schematic configuration diagram of the flow path switching device according to the second embodiment.
  • FIG. 17 is an overall configuration diagram of a heat medium circuit according to a second embodiment.
  • FIG. 18 is an explanatory diagram showing a structure of a first-layer side flow path of a flow path switching device according to a second embodiment.
  • FIG. 19 is an explanatory diagram showing a configuration of a second-layer side channel of the channel switching device according to the second embodiment.
  • FIG. 20 shows a flow path resistance part in the flow path switching device according to the third embodiment. ⁇ 2020/175262 4 (:171? 2020/006469
  • FIG. 1 A first figure.
  • FIG. 21 is a cross-sectional view of the X X I -X X I cross section in FIG. MODE FOR CARRYING OUT THE INVENTION
  • the flow path switching device 1 according to the first embodiment constitutes a part of the heat medium circuit 50 as a fluid circuit. Switch the road structure.
  • the heat medium circuit 50 according to the first embodiment is mounted on an electric vehicle that obtains a driving force for traveling from a motor generator.
  • the heat medium circuit 50 is used in an electric vehicle to perform air conditioning of a vehicle interior that is a space to be air-conditioned and to adjust the temperature of an in-vehicle device (for example, a heat generating device 54) that is a temperature adjustment target.
  • the heat medium circuit 50 according to the first embodiment constitutes a part of a vehicle air conditioner with a temperature adjustment function for in-vehicle devices in an electric vehicle.
  • the heat-generating device 54 that generates heat during operation is the target of temperature adjustment.
  • the heat generating device 54 includes a plurality of constituent devices. Specific components of the heat-generating device 54 are a motor generator, a power control unit (so-called ⁇ ri), a control device for an advanced driving support system (so-called 883), and the like. ..
  • the motor generator supplies driving power for traveling by being supplied with electric power. ⁇ 2020/175262 5 (:171? 2020/006469
  • ⁇ 3 II is an integration of a transformer and a frequency converter in order to properly control the electric power supplied to each in-vehicle device.
  • the flow path switching device 1 includes a heat medium circuit.
  • the flow path switching device 1 is provided with a heater core 51, a water-refrigerant heat exchanger 52, a heating device 53, a heat-generating device 54, a radiator 55, a first device through a heat medium pipe.
  • the water pump 5 63 and the second water pump 5 6 are connected.
  • the flow path switching device 1 has a first-layer side lid member 20, a main body member 5, a second-layer side lid member 25, and a drive section 30. doing.
  • the first layer side cover member 20, the main body member 5, the second layer side cover member 25, and the drive unit 30 are stacked in this order in the stacking direction! -Stacked according to.
  • the main body member 5 is formed of synthetic resin in a rectangular parallelepiped block shape.
  • a groove-shaped first layer side channel 11 having one open side is formed on one side (upper surface in FIG. 2) of the main body member 5.
  • the first-layer side flow passage 11 is formed by joining the first-layer side cover member 20 to one surface of the main body member 5 to thereby form the heat medium circuit. It functions as a conduit through which the 50 heat medium flows. Therefore, the portion of the main body member 5 that constitutes one surface side constitutes the first layer side flow path forming portion 10.
  • a groove-shaped second layer side channel 16 having the other surface opened is formed on the other surface (lower surface in FIG. 2) located on the back side of one surface of the main body member 5, a groove-shaped second layer side channel 16 having the other surface opened is formed. ..
  • the second layer side flow passage 16 is formed by joining the second layer side lid member 25 and the like to the other surface of the main body member 5 so that the heat medium circuit 50 It functions as a heat medium passage through which the heat medium flows. Therefore, the portion of the main body member 5 that constitutes the other surface side constitutes the second layer side flow passage forming portion 15.
  • valve body portions 73 are arranged inside the second layer side flow passage 16.
  • a first heat medium three-way valve 70 3 and a second heat medium described later are provided. ⁇ 2020/175262 6 ⁇ (:171? 2020 /006469
  • the valve body 73 of the three-way valve 70 is arranged inside the second layer side flow passage 16. Each valve body portion 73 switches the flow of the heat medium in the first layer side channel 11 and the second layer side channel 16 to change the channel configuration of the heat medium circuit 50.
  • the body member 5 has communication portions formed so as to pass through the _ surface side and the other surface side at a plurality of predetermined locations. This communication portion connects the first layer side flow passage 11 and the second layer side flow passage 16 so that the heat medium can flow therethrough, and will be described later. Includes 2nd communication section 40 and others.
  • a plurality of connection ports to which the heat medium pipes of the heat medium circuit 50 are connected are formed on the side surface of the main body member 5.
  • the flow path switching device 1 according to the first embodiment is , And the constituent devices of the heat medium circuit 50 are connected via the heat medium pipe.
  • the first layer side cover member 20 is a plate member made of synthetic resin and is formed in the same size as the one surface side of the main body member 5.
  • the first layer side cover member 20 is joined and sealed to one surface of the main body member 5 (the upper surface of the main body member 5 in FIG. 2) by vibration welding, laser welding or the like.
  • the open portion of the groove-shaped first layer side flow passage 11 is closed by the first layer side cover member 20, so that the first layer side flow passage 11 serves as a conduit through which the heat medium flows. Function.
  • the second-layer-side lid member 25 is a plate-like member made of a synthetic resin, like the first-layer-side lid member 20.
  • the second layer side lid member 25 is joined and sealed to the other surface of the main body member 5 (the lower surface of the main body member 5 in FIG. 2) by vibration welding, laser welding or the like.
  • the open portion of the groove-shaped second layer side flow path 16 is closed by the second layer side cover member 25, so that the second layer side flow path 16 serves as a conduit through which the heat medium flows. Function.
  • the drive unit 30 is arranged on the other surface side of the block-shaped main body member 5 with the second layer side cover member 25 interposed therebetween.
  • the drive unit 30 is configured by accommodating the electromagnetic motor 32, the transmission mechanism 33, and the drive control unit 34 inside the casing 31.
  • the casing 31 protects the electromagnetic motor 32, the transmission mechanism 33, and the drive controller 34 from dust and water.
  • the electromagnetic motor 32 has a drive shaft 3 23 driven by power supply, and functions as a drive source for each valve body 73. Inside the casing 31 of the drive unit 30, the electromagnetic motor 32 is attached to the second layer side lid member 25 so as to be at a predetermined position.
  • the transmission mechanism 3 3 is a link mechanism including a gear 3 3 3 are configured to be capable of transmitting a driving force generated by the electromagnetic motor evening 3 2 to each valve body 7 3.
  • the gear 3 33 is arranged at the end of the rotary shaft 7 43 of the valve body 73. Therefore, when the driving force of the electromagnetic motor 32 is transmitted to the gear 33 3 and the gear 3 33 rotates, the valve body 7 3 can be rotated around the rotation shaft 7 43.
  • each valve body portion 7 is constituted by the link mechanism, each valve body portion 7
  • the mode of transmitting the driving force to 3 can be appropriately switched.
  • the transmission mechanism 33 can transmit the driving force so that the two valve body portions 73 are operated in conjunction with each other. Further, the transmission mechanism 33 can also transmit the driving force to either one of the two valve body portions 73.
  • each component of the transmission mechanism 33 is equivalent to the casing 3 in the drive unit 30.
  • the drive control unit 34 is an electronic control unit for controlling the operation of the flow path switching device 1. Specifically, the drive control unit 34 has a microcontroller and controls the operation of the electromagnetic motor 32 and the transmission mechanism 33 according to a control signal from a control device (not shown).
  • the heat medium circuit 50 is a heat medium circulation circuit that circulates the cooling water as the heat medium.
  • the flow passage configuration of the heat medium circuit 50 is switched as will be described later in order to perform air conditioning in the vehicle interior and cool the in-vehicle devices.
  • An ethylene glycol aqueous solution which is a non-compressible fluid, is used as the heat medium circulating in the heat medium circuit 50.
  • the suction port of the first water pump 5 63 is connected to the first connection port 3 53 via a heat medium pipe.
  • the first connection port 353 constitutes one end portion of the first layer side flow channel 11 as shown in FIG.
  • the first water pump 5 63 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from a control device (not shown). Discharge port of the first Mizupo amplifier 5 6 3 via the heat medium pipe is connected to a heat medium inlet of the heat medium passages 5 2 spoon in water refrigerant heat exchanger 5 2. Therefore, the first water pump 5 63 pumps the heat medium toward the heat medium passage 5 2 of the water-refrigerant heat exchanger 5 2.
  • the water-refrigerant heat exchanger 52 is a constituent device of the heat medium circuit 50 and also a constituent device of the refrigeration cycle 90.
  • Water refrigerant heat exchanger 5 2, the refrigerant passage 5 2 3 for circulating the refrigerant of the refrigeration cycle 9 0, has a thermal medium passage 5 2 spoon to pass the flow of heat medium of the heat medium circuit 5 0.
  • the water-refrigerant heat exchanger 52 is made of the same kind of metal having excellent heat conductivity (aluminum alloy in the first embodiment), and the respective constituent members are integrated by brazing. There is. Accordingly, the heat medium flowing through the refrigerant and the heat medium passage 5 2 spoon flowing through the refrigerant passage 5 2 3 can be heat-exchanged with each other.
  • the water-refrigerant heat exchanger 52 functions as a radiator (so-called water-cooling condenser) and as a heat absorber (so-called chiller) by changing the cycle configuration of the refrigeration cycle 90. You can switch to when you do.
  • 0 pressure refrigerant is when flowing through the refrigerant passage 5 2 3 functions as a heat radiator for radiating heat of the high-pressure refrigerant to the heat medium passages 5 second heat medium.
  • the water-refrigerant heat exchanger 52 can heat the heat medium with the heat of the high-pressure refrigerant.
  • the second connection port 35 is connected to the heat medium outlet side of the water-refrigerant heat exchanger 52 via a heat medium pipe. As shown in FIG. 4, the second connection port 35 constitutes one end of the first-layer side channel 11.
  • the heating device 5 is attached to the third connection port 3500 that constitutes one end of the first-layer side channel 11.
  • the heating device 53 has a heating passage and a heat generating portion, and heats the heat medium flowing into the heater core 51 by electric power supplied from a control device (not shown).
  • the heat generation amount of the heating device 53 can be arbitrarily adjusted by controlling the electric power from the control device.
  • the heating passage of the heating device 53 is a passage through which the heat medium flows.
  • the heat generating portion heats the heat medium flowing through the heating passage by being supplied with electric power.
  • a single element or a nichrome wire can be adopted.
  • the heat medium inlet side of the heater core 51 is connected to the outlet side of the heating passage in the heating device 53 via a heat medium pipe.
  • the heater core 51 is a heat exchanger that exchanges heat between the air blown from an indoor blower (not shown) and the heat medium.
  • the heater core 51 can heat the blown air using the heat of the heat medium heated by the water-refrigerant heat exchanger 52, the heating device 53, etc. as a heat source.
  • the heater core 51 is arranged in the casing of the indoor air conditioning unit mounted on the electric vehicle, downstream of the indoor evaporator that constitutes the refrigeration cycle 90.
  • the fourth connection port 35 is connected to the heat medium outlet side of the heater core 51 via a heat medium pipe.
  • the fourth connection port 35 constitutes one end of the second layer side channel 16.
  • the fifth connection port 356 constitutes one end of the first-layer side flow channel 11 1.
  • the heat medium passage 5 43 of the heat generating device 5 4 is connected to the fifth connection port 3 56 via a heat medium pipe.
  • Heat medium passages 5 4 3 of the heating device 5 4 is formed in the interior or the like of the housing unit or case forming the outer shell of the heating device 5 4. ⁇ 2020/175262 10 ⁇ (:171? 2020/006469
  • heat medium passages 5 4 3 of the heating device 5 heating device by circulating a heat medium
  • the heat medium passage 5 4 3 of the heat generating device 5 4 functions as a temperature adjusting unit that adjusts the temperature of the heat generating device 5 4 by exchanging heat with the heat medium circulating in the heat medium circuit 50.
  • a sixth connection port 35 Chi is connected.
  • the sixth connection port 35 constitutes one end of the first layer side flow passage 11.
  • the seventh connection port 359 constitutes one end of the first-layer side flow channel 11.
  • the suction port of the second water pump 56 is connected to the seventh connection port 359 through a heat medium pipe.
  • the second water pump 56 is an electric pump that pumps the heat medium in order to circulate the heat medium circuit 50.
  • the basic configuration of the second water pump 5 6 is the same as the first water pump 5 63.
  • the eighth connection port 3511 is connected to the discharge outlet side of the second water pump 56 through a heat medium pipe.
  • the eighth connection port 35 II constitutes one end of the first-layer side flow passage 11.
  • one side of the heat medium inlet/outlet of the radiator 55 is connected to the ninth connection port 35 via a heat medium pipe.
  • the ninth connection port 35 is one end of the second layer side channel 16.
  • the radiator 55 is a heat exchanger for exchanging heat between the heat medium flowing inside and the outside air. Therefore, the radiator 55 radiates the heat of the heat medium passing through the inside to the outside air.
  • the radiator 55 is disposed on the front side in the drive device chamber. Therefore, the radiator 55 can be configured integrally with the outdoor heat exchanger.
  • the 10th connection port 35 is connected via a heat medium pipe.
  • the 10th connection port 35 ′ constitutes the _end portion of the first layer side flow channel 11 1.
  • the first layer side channel 11 extending from the second connection port 35 is a first layer side channel 11 extending from the third connection port 3500. It is connected to the first-layer side flow passage 11 extending from the outlet of the first heat medium check valve 60 3, and constitutes a first connection portion 80 3. ⁇ 2020/175262 1 1 ⁇ (: 171-1?2020/006469
  • the first heat medium three-way valve 70 3 is a flow rate of the heat medium flow rate flowing out from the heater core 51 and flowing out from the _ side of the outlet and the heat medium flow rate flowing out from the other side of the outlet. It is a three-way flow control valve with adjustable ratio. The operation of the first heat medium three-way valve 70 3 is controlled by controlling the drive unit 30 by a control device (not shown).
  • the first heat medium three-way valve 70 3 can cause the total flow rate of the heat medium flowing out of the heater core 5 1 to flow out to either one of the two outflow ports. This ensures that the first heat medium three-way valve 7 0 3 can and this switch the flow path configuration of the heat medium circuit 5 0.
  • the first layer side flow passage 11 extending from one side of the outlet of the first heat medium three-way valve 7 03 is connected to the other three first layer side flow passages 11 and the second connection portion is formed.
  • Make up 8 0 13 As shown in FIG. 3, the second connecting portion 8 0 13 includes the first layer side flow passage 1 1 on one side of the outlet of the first heat medium three-way valve 70 3 and the first heat medium check valve 6 0 3.
  • the first heat medium check valve 60 3 allows the heat medium to flow from the second connecting portion 80 0 side to the first connecting portion 8 0 3 side. However, it is prohibited to flow from the first connecting portion 8033 side to the second connecting portion 8013 side.
  • the first layer side flow passage 11 extending from the other side of the outlet of the first heat medium three-way valve 7 03 is the first layer side flow passage 11 extending from the fifth connection port 3 56 and It is connected to the first-layer side flow passage 11 in which the first communication portion 40 3 is formed and constitutes a fourth connection portion 8 0.
  • the first communication portion 408 is arranged in the stacking direction of the block-shaped main body member 5! -Nuki ⁇ 2020/175262 12 ⁇ (:171? 2020/006469
  • the heat medium flows between the first-layer side flow passage 11 and the second-layer side flow passage 16 through the first communication portion 40 3 .
  • the heat medium that has passed through the first communication portion 40 3 passes through the second layer side flow path 16 and flows through the second heat medium three-way valve 70 Reach the entrance.
  • the second heat medium three-way valve 70 has a flow rate of the heat medium flowing out from the _ side of the outlet and a flow rate of the heat medium flowing out from the other side of the outlet out of the heat medium flowing in from the fourth connecting portion 80. It is a three-way flow rate adjusting valve that can adjust the flow rate ratio of.
  • the basic structure of the second heat medium three-way valve 70 3 is the same as that of the first heat medium three-way valve 70 3.
  • the heat medium that has flowed in from the inflow port of the second heat medium three-way valve 70 is passed through the communication passage in the process of going through the inside of the second heat medium three-way valve 70 inward to the second layer It flows out from the side channel 16 to the first layer side channel 11.
  • the second communication portion 40 is formed. Therefore, the heat medium flowing out from one of the outlets of the second heat medium three-way valve 7 0 13 passes through the second communicating portion 4 0 13 from the first layer side flow passage 1 1 to the second layer side flow passage 1 Spill to 6. As shown in FIG. 5, a ninth connection port 35 is formed in the second layer side flow passage 16 extending from the second communication portion 40.
  • the first layer side flow passage 11 extending from the other side of the outlet of the second heat medium three-way valve 7 013 is connected to the first layer side flow passage 11 1 extending from the seventh connection port 3 59 and It is connected to the first-layer side flow passage 11 extending from the 10th connection port 35 ′ and constitutes the third connection unit 800.
  • the first layer side flow passage 11 extending from the eighth connection port 35 II is connected to the inlet side of the second heat medium check valve 60. Further, the first layer side flow passage 11 extending from the sixth connection port 35 is the first layer side flow passage 11 and the third heat medium extending from the outlet of the second heat medium check valve 60. the check valve 6 is connected to the first layer side passage 1 1 extending from the inlet of 0_Rei, constituting the fifth connection 8 0 6.
  • the third heat medium check valve 600 allows the heat medium to flow from the fifth connecting portion 806 side to the second connecting portion 80 side, and from the second connecting portion 8013 side. It is prohibited to flow to the 5th connection part 806 side.
  • first heat medium three-way valve 70 3 the second heat medium three-way valve 70, the first heat medium check valve 60 3 , the second heat medium check valve 60 and the third heat medium
  • first heat medium check valve 60 3 the first heat medium check valve 60 3
  • second heat medium check valve 60 the third heat medium
  • the specific configuration of the check valve 600 will be described later with reference to the drawings.
  • the heat medium circuit 50 is controlled by controlling the operations of the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70.
  • the flow channel configuration can be switched to various modes.
  • the flow path switching device 1 has a flow path configuration of the heat medium circuit 50 including a first water-podium heat exchanger 52, a heating device 53, a heater core 51, and a first heat Heat generating equipment 54, 3rd heat medium check valve 600, 1st water pump
  • the heat medium is circulated in the order of 5 6 3.
  • the waste heat of the heat generating device 5 4 can flow into the heater core 51, the waste heat of the heat generating device 5 4 can be removed. It is possible to realize the heating of the passenger compartment used.
  • the flow path switching device 1 has a first water pump as the flow path configuration of the heat medium circuit 50.
  • a circulation path of the heat medium passing through 51 and a circulation path of the heat medium passing through the radiator 5 5 can be configured in parallel. Therefore, the heat medium circuit of this flow path configuration ⁇ 2020/175 262 14 ⁇ (: 171? 2020 /006469
  • the excess heat can be radiated to the outside air while heating the vehicle interior using the waste heat of the heat generating device 54.
  • the flow path switching device 1 has a flow path configuration of the heat medium circuit 50 including a first water tank water refrigerant heat exchanger 52, a heating device 53, a heater core 51, and a first heat medium three-way.
  • the heat medium is circulated in the order of the valve 70 3 and the first water pump 5 63.
  • the heat transfer medium circuit 50 can cool the heat generating device 54 by radiating outside air while heating the vehicle interior by the refrigeration cycle 90.
  • the second layer side lid member 25 and the like in the flow path switching device 1 will be described with reference to the drawings.
  • the second layer side cover member 25 is attached to the other surface of the body member 5.
  • the second-layer side lid member 25 includes a second-layer side flow path 16 and a second-layer side flow path 16 including the first heat medium three-way valve 70. 2
  • the heat medium three-way valve 70 is mounted so as to seal the second layer side flow passage 16 including the container.
  • a fixed lid 28 is attached to the other surface of the main body member. Fixed lid 2
  • the second layer side lid member 25 and the fixed lid 28 are attached to the other surface side of the main body member 5, when performing the leak inspection of the flow passage in the flow passage switching device 1, It is also possible to remove the second layer side lid member 25 while the fixed lid 28 is bonded. As a result, the work load for leak inspection can be reduced.
  • a plurality of through holes 26 are formed in the second layer side cover member 25 so as to penetrate the second layer side cover member 25 in the thickness direction.
  • Multiple through holes 2 ⁇ 2020/175262 15 ⁇ (: 171-1? 2020/006469
  • the respective through holes 26 are respectively penetrated by the rotary shafts 7 48 of the valve body portion 7 3 in the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70. This ensures that since the end of the rotating shaft 7 4 3 of the first heat medium three-way valve 7 0 3 and the second heat medium three-way valve 7 0 reaches the interior of the drive unit 3 0, the valve bodies 7 The driving force generated by the electromagnetic motor 32 can be transmitted to the motor 3.
  • Each positioning pin 27 is formed so as to project toward the other surface of the main body member 5.
  • Each positioning recess 17 has the other surface of the body member 5 in the stacking direction! -It is recessed in and is arranged corresponding to the position of the positioning pin 27 in the second layer side lid member 25.
  • each positioning pin 27 is fitted in the positioning recess 17 respectively.
  • the second layer side lid member 25 is positioned at a predetermined position on the other surface of the main body member 5. That is, the positioning recess 17 and the positioning pin 27 function as a positioning portion.
  • the plurality of through holes 26 are formed in the second layer side lid member 25 as described above, and are penetrated by the rotary shaft 7 4 3 of the valve body portion 7 3. Therefore, if the position of the second layer side lid member 25 with respect to the other surface of the main body member 5 shifts, the rotating wheel mechanism 7 4 3 interferes with the through hole 26 and the operation of the valve body portion 7 3 moves. May interfere with the
  • the cooperation of the positioning recess 17 and the positioning pin 27 allows the main body member 5 and the second-layer side lid member 25 to be joined in an appropriate positional relationship, so that the through hole 2 The 6 does not interfere with the rotating shaft 7 43, and the smooth operation of the valve body 7 3 can be ensured. ⁇ 2020/175262 16 ⁇ (: 171-1?2020/006469
  • Second heat medium check valve 6033 As described above, in the flow path switching device 1 according to the first embodiment, Second heat medium check valve 6033 and the like in the flow path switching device 1 will be described with reference to FIGS. 7 and 8. As described above, in the flow path switching device 1 according to the first embodiment, Second heat medium check valve
  • a 60 sill and a third heat medium check valve 600 are installed.
  • the first heat medium return valve 6_Rei 3 to the third heat medium return valve 6 0_Rei it may be referred to as the heat medium return valve 6 0 ..
  • the second heat medium check valve 60 and the third heat medium check valve 600 are linearly extended so as to connect the second connection port 35 and the eighth connection port 35 II. It is located in the first-layer side channel 11.
  • the second heat medium check valve 600 and the third heat medium check valve 600 use a plurality of flow passage resistance portions 12 formed in the same straight first-layer side flow passage 1 1. Then, it is attached to each of the predetermined positions. Therefore, flow path resistance unit 1 2, the first heat medium return valve 6 0 3 or the like functional parts are held on the first layer side channel 1 1.
  • the heat medium check valve 60 is configured by accommodating a spherical valve body 62 inside a cylindrical valve body case 61.
  • the inside of the cylindrical valve body case 61 constitutes a conduit through which the heat medium passes.
  • a flow path hole 6 13 is formed on the heat medium inlet side of the valve body case 61. As shown in FIG. 6, the flow passage hole 6 13 is formed to have a diameter smaller than the inner diameter of the heat medium outlet of the valve body case 61 and the outer diameter of the spherical valve body 62.
  • the flow path hole 6 13 constitutes a valve seat on which the spherical valve body 6 2 is seated when the heat medium flows in from the heat medium outlet side.
  • a restriction pin 63 is arranged on the heat medium outlet side of the valve body case 61.
  • the control pin 63 is formed in a rod shape, and is arranged so as to intersect with the heat medium flow direction in the valve body case 61.
  • the restriction pin 63 contacts the spherical valve body 62 to restrict the movement range of the spherical valve body 62 inside the valve body case 61. ⁇ 2020/175262 17 ⁇ (: 171-1? 2020/006469
  • the heat medium check valve 60 such as the first heat medium check valve 60 3 configured as described above is provided by the flow passage resistance portion 12 formed in the first layer side flow passage 1 1. It is installed in the first layer side channel 11. As shown in Figs. 7 and 8, the flow path resistance part 12 is formed in a wall shape so as to traverse the groove-shaped first layer side flow path 11 and the holding hole 1 2 3 have.
  • the holding holes 123 are formed so as to penetrate the flow path resistance portion 12 in the thickness direction.
  • the flow path resistance portion 12 is changed so as to reduce the flow path cross-sectional area of the first layer side flow path 11 so that the flow resistance of the heat medium flowing through the first layer side flow path 11 is reduced. Is increasing.
  • the holding hole 1 The inner diameter of the valve is slightly larger than the outer diameter of the valve body case 61. Accordingly, as shown in FIG. 8, the heat medium return valve 6 0, by moving along the extending direction of the first layer side channel 1 1, the holding hole 1 2 3 flow resistance portion 1 2 It is attached. Therefore, the flow path resistance part 12 holds the heat medium check valve 60 as a functional component.
  • a seal member 6 4 is arranged between the outer peripheral surface of the valve body case 61 and the inner wall surface of the holding hole 1 23.
  • the seal member 64 is configured by a so-called ring, and prevents the heat medium from leaking between the outer peripheral surface of the valve body case 61 and the inner wall surface of the holding holes 1 23.
  • the flow control unit 1 in the flow path switching device 1 can be operated.
  • the spherical valve body 62 does not flow out from the valve body case 61 because the spherical valve body 62 comes into contact with the regulation pin 63 to limit the movement toward the heat medium outlet side.
  • the flow path resistance portion 12 is formed with the joint surface 12 cavities.
  • the joint surface 12 of the flow path resistance portion 12 is formed by connecting one surface of the main body member 5 so as to cross the first layer side flow path 11. Then, as shown in FIG. 7, when the first layer side cover member 20 is attached to one surface side of the main body member 5, the joint surface 12 is contacted with the surface of the first layer side cover member 20.
  • the first layer side lid member 2 is different from the body member 5.
  • joint surface 12 is formed by connecting one surface of the main body member 5, it is possible to minimize the setting change of the focal length etc. when laser welding or the like is adopted. It is possible to carry out continuous joining work.
  • the heat medium three-way valve 70 may be generically called a heat medium three-way valve 70. Further, the diagram shown in FIG. 9 is an explanatory diagram showing the basic configuration of the heat medium three-way valve 70. ⁇ 2020/175 262 19 ⁇ (: 171? 2020/006469
  • the heat medium three-way valve 70 has a heat medium flow rate of the heat medium flowing in from the heat medium inflow port 7 2 and flowing out from the first heat medium outflow port 7 6 This is a three-way flow rate adjustment valve that can adjust the flow rate ratio with the flow rate of the heat medium flowing out from the second heat medium outlet 77.
  • the second layer side flow passage 16 extending from the fourth connection port 35 corresponds to the heat medium inlet port 72.
  • the first layer side channel 11 extending to the second connecting portion 80 and the first layer side channel 11 extending to the fourth connecting portion 80 are the first heat medium outlet 7 6 and the second heat It corresponds to the medium outlet 77.
  • the two-layer side flow passage 16 corresponds to the heat medium inlet 72.
  • the first layer side channel 11 extending to the second communicating part 40 and the first layer side channel 11 extending to the third connecting part 800 are the first heat medium outlet 7 6 and the second layer Corresponds to the heat medium outlet 7 7.
  • the heat medium three-way valve 70 has a stacking direction! -It is formed in a tube shape that extends to. Therefore, in the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70 0, the second layer side flow passage 16 and the first layer side flow passage 11 are connected in the stacking direction !_.
  • the communication passage corresponds to the main body 71.
  • valve body portion 7 3 is arranged inside the main body portion 71.
  • the 3 is composed of a drive disk 74 and a fixed disk 75.
  • the body 71 stack the body 71 in the stacking direction! It is arranged so as to be divided into-and has a first communication passage 753 and a second communication passage 75.
  • the first communication passage 7 5 3 penetrates the fixed disk 75 in the thickness direction thereof, and has a space on the heat medium inlet 7 2 side and a space on the first heat medium outlet 7 6 side. Are in communication.
  • the second communication passage 75 is located adjacent to the first communication passage 753, and penetrates the fixed disk 75 in the thickness direction thereof. The second communication passage 75 is in communication with the space on the heat medium inlet 72 side and the space on the second heat medium outlet 77 side.
  • the space on the medium outlet 7 7 side is divided. Therefore, the heat medium is not provided between the space on the first heat medium outlet 7 6 side and the space on the second heat medium outlet 7 7 side without passing through the first communication passage 75 3 and the second communication passage 75. The inflow and outflow of will never occur.
  • the drive disk 74 is arranged along the surface of the fixed disk 75 on the side of the heat medium inlet 72, and is formed in a substantially fan-shaped plate shape.
  • the drive disk 74 is formed in a size capable of closing at least one of the first communication path 753 and the second communication path 75.
  • the drive disk 74 is fixed to the rotary shaft 743 forming the valve body 73.
  • the heat medium three-way valve 70 can change the position of the drive disk 7 4 with respect to the fixed disk 75 by controlling the operation of the drive unit 30. As a result, the heat medium three-way valve 70 can adjust the flow rate ratio between the heat medium flow rate flowing out from the first heat medium outlet 76 and the heat medium flow rate flowing out from the second heat medium outlet 77. It
  • the opening degree of the first communication passage 753 is referred to as the first opening degree ⁇ 3
  • the opening degree of the second communication passage 755 is referred to as the second opening degree ⁇ 3.
  • the drive disc 74 has the second communication passage 7 5 fully closed, and the first communication passage 75 3 is fully opened.
  • the heat medium three-way valve 70 is in a state in which the entire flow rate of the heat medium flowing in from the heat medium inflow port 72 is flown out from the first heat medium outflow port 76.
  • the drive disk 74 advances toward the side of the first communication passage 753 and moves away from the second communication passage 75.
  • the heat medium three-way valve 70 reduces the first opening degree as the second opening degree O increases, as shown in FIG. Go.
  • the heat medium three-way valve 70 can adjust the flow rate ratio of the heat medium at the first heat medium outlet 76 and the second heat medium outlet 77.
  • the heat medium three-way valve 70 is in a state in which the entire flow rate of the heat medium flowing in from the heat medium inflow port 72 is flown out from the second heat medium outflow port 77.
  • the heat medium three-way valve 70 having the structure of
  • the second heat medium three-way valve 7013 can adjust the heat medium flow rate flowing out from one side of the outlet and the heat medium flow rate flowing out from the other side of the outlet. Further, the heat medium three-way valve 70 can allow the heat medium to flow out from either one of the two outflow ports.
  • the first heat medium three-way valve is provided.
  • the heat medium three-way valve 70 of this configuration as shown in Fig. 13, either one of the first communication passage 753 and the second communication passage 75 is fully opened. It is possible to increase or decrease the opening degree of the other one. Even in the state shown in Fig. 13, the heat medium three-way valve 70 can adjust the heat medium flow rate flowing out from one side of the outlet and the heat medium flow rate flowing out from the other side of the outlet. it can.
  • heat insulating parts 13 are formed between the flow paths arranged close to each other. For example, as shown in FIG. 15, on one surface side of the main body member 5, a groove-shaped heat insulating portion 13 is formed between the two first layer side flow paths 11. ⁇ 2020/175 262 22 ⁇ (: 171? 2020 /006469
  • the heat insulating section 13 is formed independently of the first-layer side channel 11 and the second-layer side channel 16 so that the heat medium does not flow in. Therefore, since the inside of the heat insulating section 13 is filled with air, the heat insulating section 13 can prevent heat transfer between the two first-layer side flow paths 11 1. As a result, the heat insulating unit 13 can suppress the influence of heat transfer between the flow paths arranged in close proximity to each other, and can properly use each component of the heat medium circuit 50.
  • the heat insulating section 13 is arranged at a position where a low-temperature heat medium flows through one of the flow passages arranged close to each other and a high-temperature heat medium flows through the other. This is because it is possible to maintain an appropriate temperature for each of the heat mediums that flow through the channels that are arranged close to each other.
  • the flow path switching device 1 As described above, according to the flow path switching device 1 according to the first embodiment, as shown in FIGS. 2 and 7, the first layer side flow path forming portion 10 of the main body member 5, The second layer side flow path forming section 15 and the driving section 30 are in the stacking direction! -They are stacked. Therefore, according to the flow path switching device 1, the functions of the pipe, the joint, and the valve for switching the flow path configuration of the heat medium circuit 50 can be integrated, and a more compact configuration can be realized. ..
  • the first layer side flow passage forming portion 10 of the main body member 5, the second layer side flow passage forming portion 15 and the drive portion 30 are laminated in the stacking direction!
  • the valve bodies 73 of the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70 can be arranged in close proximity as shown in FIG. Therefore, the flow path switching device 1 is more compact than the case where drive sources such as motors are arranged for the first heat medium three-way valve 703 and the second heat medium three-way valve 70, respectively. It is possible to realize switching of the flow path configuration of the heat medium circuit 50 with a lightweight structure.
  • the first layer side channel forming portion 10 is configured by forming a groove-shaped first layer side channel 11 on one surface side of a block-shaped main body member 5
  • the second layer side flow passage forming portion 15 is configured by forming a groove-like second layer side flow passage 16 on the other surface side of the main body member 5.
  • the one surface side of the main body member 5 is sealed by the first layer side lid member 20, ⁇ 2020/175262 23 ⁇ (: 171-1? 2020/006469
  • the flow path switching device 1 can surely stack the first-layer side flow path forming section 10 and the second-layer side flow path forming section 15 and realize a compact and lightweight structure. be able to.
  • the first layer side flow passage 11 extending in a straight line from the second connection port 35 to the eighth connection port 35 II has a channel resistance. Part 1 2 is formed.
  • the joint surface 12 of the flow path resistance portion 12 connects the surface of the main body member 5 so as to cross the first layer side flow path 11 and is joined to the first layer side cover member 20.
  • the flow path switching device 1 can bond the first layer side cover member 20 to the main body member 5 by using the bonding surface 12 of the flow path resistance portion 12 and The bonding strength between the main body member 5 and the first layer side lid member 20 can be improved.
  • the holding holes 1 2 3 flow resistance unit 1 2, the heat medium return valve 6 0 is retained is the heat medium circuit 5 0 functional components. Therefore, the flow path resistance section 12 adjusts the flow path resistance in the heat medium circuit 50, improves the bonding strength of the first layer side cover member 20 to the main body member 5, and reverses the heat medium in the heat medium circuit 50. It plays various roles such as holding the stop valve 60.
  • each flow path resistance part 12 is arranged inside the collinear first layer side flow path 11.
  • Has The second heat medium check valve 600 and the third heat medium check valve 600 are installed as functional parts.
  • the joint surface 12 of the flow path resistance portion 12 is joined to the first layer side lid member 20.
  • a plurality of through holes 26 are formed in the second layer side lid member 25.
  • an electromagnetic motor 32 as a drive source of each valve body portion 73 and a transmission mechanism 33 are attached to the second layer side lid member 25.
  • a plurality of positioning recesses 17 are formed in the second layer side flow path forming portion 15, and a plurality of positioning concave portions 17 are formed in the second layer side lid member 25.
  • Locating pin 27 is formed. By fitting the positioning pins 27 into the positioning recesses 17, the second layer side lid member 25 can be positioned and joined to the main body member 5 at a predetermined position. ..
  • the rotary shaft 743 in the valve body portion 7 3 of the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70 3 and the through hole of the second layer side lid member 25 The positions of 2 6 can be accurately aligned, and interference between the rotary shaft 7 4 3 and the through hole 26 can be suppressed. That is, the flow path switching device 1 can ensure the smooth operation of the valve body portion 73.
  • the heat insulating section 13 is provided between the channels arranged close to each other. Is formed. The heat insulating portion 13 prevents heat transfer between the two first layer side flow passages 11.
  • the heat insulating section 13 can suppress the influence of heat transfer between the flow paths arranged in close proximity to each other. With this, according to the flow path switching device 1, since the temperature of the heat medium flowing through each flow path can be appropriately maintained, each component in the heat medium circuit 50 can be appropriately used.
  • valve body 7 3 in the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70 c It is arranged so that the flow rate of the heat medium flowing into the two communication passages 75 can be adjusted.
  • the drive disc 74 of the valve body 73 is connected to the first communication passage 753 and the second communication passage 753. ⁇ 2020/175 262 25 ⁇ (:171? 2020 /006469
  • the flow path configuration of the heat medium circuit 50 is controlled by controlling the operation of the first heat medium three-way valve 70 3 and the second heat medium three-way valve 70. Can be switched to various configurations.
  • the heat medium circuit 50 can be realized in various modes with respect to the air conditioning in the vehicle interior and the temperature adjustment of in-vehicle devices such as the heat generating device 54.
  • the flow path switching device 1 according to the second embodiment constitutes a part of the heat medium circuit 50, as in the above-described first embodiment.
  • the flow path switching device 1 according to the second embodiment is similar to the first embodiment in that the first layer side flow path forming unit 10, the second layer side flow path forming unit 15 and the drive unit are provided.
  • 30 is stacked in this order in the stacking direction !-.
  • the first layer side flow passage 11 is formed on one surface side of the main body member 5, and constitutes the first layer side flow passage forming portion 10.
  • the first layer side lid member 20 is joined to one surface side of the main body member 5 to seal the first layer side flow passage 11.
  • a second layer side channel 16 is formed on the other surface side of the main body member 5 to form a second layer side channel forming portion 15.
  • the second layer side lid member 25 is joined to the other surface side of the main body member 5 to seal the second layer side flow passage 16.
  • the flow path switching device 1 according to the second embodiment is basically the same as the flow path switching device 1 except for the configurations of the first layer side flow path 11 and the second layer side flow path 16 and the arrangement of the valve body portion 7 3 and the like.
  • the general configuration is the same as that of the first embodiment. Therefore, description of the same configuration in the second embodiment will be omitted.
  • the heat medium circuit 50 according to the second embodiment has a battery 57 as a target device for temperature adjustment, in addition to the constituent devices according to the first embodiment described above.
  • the heat medium circuit 50 according to the second embodiment is an air conditioner for a passenger compartment of an electric vehicle, ⁇ 2020/175 262 26 ⁇ (:171? 2020 /006469
  • the flow path switching device 1 has a main body member as in the first embodiment.
  • the flow path switching device 1 according to the second embodiment is similar to the first embodiment in that in addition to the first connection port 35 3 to 10 connection port 35 ⁇ , It has 1 connection port 35 and 1st and 2nd connection port 35.
  • each component in the heat medium circuit 50 is connected to the “.” via the heat medium pipe.
  • the correspondence relationship between each connection port and the component device is basically the same as that in the first embodiment.
  • the 1 1st connection port 35 and the 1st 2nd connection port 35 I are connected to the heat medium passage 5 73 of the battery 57 through the heat medium pipe.
  • the battery 57 is a secondary battery (for example, a lithium ion battery) that stores the electric power supplied to the motor generator and the like.
  • the battery 57 is an assembled battery formed by connecting a plurality of battery cells in series or in parallel. Battery 57 heats up during charging and discharging.
  • heat medium passage 5 7 3 of the battery 5 7 when the heat medium cooled by the water refrigerant heat exchanger 5 2 is circulated, cooling you cool the battery 5 7 low-temperature heat medium as a cold source Function as a department. Also, the heat medium passage 5 7 3 of the battery 5 7, if the high-temperature heat medium is circulated, and functions as a pressure heat unit to warm the battery 5 7 high-temperature heat medium as a heat source.
  • the heat medium passage 5 73 of the battery 5 7 is formed in a dedicated case for the battery 5 7.
  • the passage configuration of the heat medium passage 5 7 3 of the battery 5 7 is ⁇ 2020/175 262 27 ⁇ (:171? 2020 /006469
  • -It has a passage structure in which multiple passages are connected in parallel inside the space.
  • the heat medium passage 5 73 can uniformly exchange heat with the heat medium in the entire area of the battery 57.
  • the heat medium passage 5 7 3 absorbs heat uniformly the heat of the all the battery cells are formed in so that can uniformly cool all the battery cells.
  • the flow path switching device 1 has a third heat medium three-way valve 700 and a heat medium on-off valve 7 as a structure for switching the flow channel configuration of the heat medium circuit 50.
  • a third heat medium three-way valve 700 and a heat medium on-off valve 7 as a structure for switching the flow channel configuration of the heat medium circuit 50.
  • the heat medium on-off valve 78 is an open/close valve that opens and closes the flow path in the heat medium circuit 50, and has a valve body portion 73 as in the heat medium three-way valve 70. ..
  • the fixed disc 75 is formed with one communication passage having the same structure as the first communication passage 753.
  • the opening/closing operation of the heat medium opening/closing valve 78 is realized by opening/closing the communication passage by the drive disk 74.
  • the first water pump 5 63 and the water-refrigerant heat exchanger are provided between the first connection port 35 3 and the second connection port 35 according to the second embodiment via a heat medium pipe. 52 heat medium passages 52 are connected.
  • the first connection port 353 constitutes one end of the first-layer side flow channel 11 1.
  • the second connection port 35 constitutes one end of the second layer side flow path 16 as shown in FIG.
  • the heating device 5 3 and the heater core 51 are connected between the third connection port 350 and the fourth connection port 35 via a heat medium pipe.
  • the third connection port 350 serves as one end of the first-layer side flow passage 11 and the fourth connection port 35 is connected to the second-layer side. It constitutes one end of the flow path 16.
  • a heat medium pipe is provided between the fifth connection port 356 and the sixth connection port 35. ⁇ 2020/175 262 28 ⁇ (:171? 2020 /006469
  • the heat medium passage 5 4 3 of the heat generating device 5 4 is connected.
  • the fifth connection port 3 5 6 constitute the first layer side channel 1 1 of the end portion.
  • the sixth connection port 35 constitutes one end of the second-layer side channel 16 as shown in FIG.
  • a second water pump 56 is connected via a heat medium pipe.
  • the seventh connection port 359 and the eighth connection port 35II each constitute one end of the first-layer side flow passage 11.
  • a radiator 55 is connected between the ninth connection port 35 and the tenth connection port 35" via a heat medium pipe.
  • the ninth connection port 35 constitutes one end of the second layer side channel 16.
  • the “10th connection port 35 ”, as shown in FIG. 18, constitutes one end portion of the first-layer side flow channel 11 1.
  • the first Between ⁇ through the heat medium pipe, the heat medium passage 5 7 3 of the battery 5 7 is connected.
  • the first It constitutes one end of the first layer side flow channel 11.
  • the first and second connection ports 35 I constitute one end portion of the second layer side flow path 16.
  • the first layer side passageway forming section 1 0 in accordance with the second embodiment, the first layer side passage 1 1 extending from the first connection port 3 5 3, the fourth heat medium return valve 6 0 It is connected to the first-layer side channel 11 extending from the outlet.
  • a sixth communicating portion 40 is formed in the first-layer side flow passage 11 between the first connection port 353 and the outlet of the fourth heat medium check valve 60.
  • the sixth communicating portion 40 is a unit to be described later.
  • the second layer side flow passage 16 extending from the communicating portion 406 and the first layer side flow passage 11 are communicated with each other to form a sixth connecting portion 80.
  • the first layer side flow passage 11 extending from one of the outlets of the first heat medium three-way valve 70 3 is a first layer side passage extending from the inlet of the first heat medium check valve 6 03. 11 and the second heat medium check valve 60 are connected to the first-layer side flow passage 11 extending from the outlet of the swirl and the first-layer side flow passage 11 extending from the fifth communication portion 40 6.
  • the first layer side flow passage 11 extending from one of the outlets of the first heat medium three-way valve 70 3 is connected to the other three first layer side flow passages 1 1 so that the second connecting portion is connected. Make up 8 0 13.
  • the second layer side passage 1 6 extending from the fifth communication portion 4 0 6 has a sixth communication portion 4 0 NOTE at its end. Accordingly, a fifth communication portion 4 0 6, by going through the sixth communication portion 4 0 Ji, the first layer side passage 1 1 comprising a sixth connecting portions 8 0 Ji, second connecting portions 8 0 spoon It is possible to secure the flow of the heat medium between the first layer side flow channel 11 and the first layer side flow channel 11.
  • the second layer side passage 1 6 extending from the first communicating portion 4 0 3 is connected to the inlet of the second heat medium three-way valve 7 0 spoon.
  • the heat medium flowing in from the inlet of the second heat medium three-way valve 70 passes through the communication passage in the process of flowing inside the second heat medium three-way valve 70 to the outlet, and then flows into the second layer side flow passage 1 It flows out from 6 to the first layer side channel 11.
  • the first layer side passage 1 1 extending from one side of the outlet of the second heat medium three-way valve 7 0 spoon is the first layer side flow path extending from the seventh connection port 3 5 9 1 1 and the first It is connected to the first-layer side flow passage 11 extending from the 0 connection port 35 ′ and constitutes the third connection portion 800.
  • the first layer side flow passage 11 extending from the other side of the outlet of the second heat medium three-way valve 70 has a second communication portion 40 at its end.
  • the heat medium flows between the first layer side flow passage 11 and the second layer side flow passage 16.
  • the second-layer side flow passage 16 extending from the second communicating portion 40 extends to the ninth connecting port 35.
  • a third communication part 400 is formed between the second communication part 40 and the ninth connection port 35.
  • the heat medium flows between the first layer side flow passage 11 and the second layer side flow passage 16.
  • the first layer side flow passage 11 extending from the third communicating portion 400 is connected to one side of the inflow/outflow port of the heat medium opening/closing valve 78.
  • the heat medium on-off valve 78 the heat medium flows in and out between the first-layer side flow passage 1 1 and the second-layer side flow passage 16 while flowing from one side of the inflow/outflow side to the other side. ..
  • first layer side passage 1 1 extending from the third connection port 3 5_Rei the first layer side stream extending from the outlet of the first heat medium return valve 6_Rei 3 It is connected to the passage 11 and the first layer side passage 11 extending from one of the outlets of the third heat medium three-way valve 700, and constitutes a first connection portion 8033.
  • the second layer side flow passage 16 extending from the second connection port 35 is connected to the inlet of the third heat medium three-way valve 700.
  • the heat medium flowing in from the inflow port of the third heat medium three-way valve 700 passes through the communication passage in the process of flowing inside the third heat medium three-way valve 700 to the second layer side flow. Flow out from the channel 16 to the first layer side channel 11.
  • the first layer side flow passage 11 extending from one of the outlets of the third heat medium three-way valve 700 is connected to the first connecting portion 803.
  • the first layer side channel 11 extending from the other of the outlets of the third heat medium three-way valve 700 is the first layer side channel 1 extending from the first 11 connecting port 3 5. It is connected to the first layer side flow passage 11 extending from the outlets of the 1st and 5th heat medium check valves 60 6 and constitutes the 8th connection portion 8 0 II.
  • the first layer side channel 11 extending from the eighth connection port 35 is the first layer side channel 11 and the fifth heat channel extending from the inlet of the second heat medium check valve 60. It is connected to the 1st layer side flow passage 11 extending from the inlet of the medium check valve 60 6 and the 10th connecting portion 80 ⁇ 2020/175262 31 ⁇ (: 171-1?2020/006469
  • the second layer side flow path 16 extending from the sixth connection port 35 has a fourth communication part 40 at its end.
  • the heat medium flows between the first layer side flow passage 11 and the second layer side flow passage 16.
  • the fourth communicating portion 40 is provided with the first heat medium check valve 6
  • the fourth communicating portion 40 is arranged such that the first layer side flow passage 11 extending from the outlet of the first heat medium check valve 60 3 and the first passage extending from the inlet of the third heat medium check valve 600.
  • the first-layer side flow passage 11 and the second-layer side flow passage 16 extending from the sixth connection port 35 are connected to each other to form a fifth connection portion 806.
  • the second-layer side flow passage 16 extending from the first-second connection port 35 is a second-layer side flow passage 1 extending from the other side of the inlet/outlet of the heat medium on-off valve. It is connected to the second-layer side flow passage 16 extending from the 6th and 7th communicating portions 409, and constitutes the 7th connecting portion 809. Therefore, the second layer side channel 16 extending from the 1st 2nd connection port 35 I is connected to the 1st layer side channel 1 1 1 extending from the 3rd communicating part 400 through the heat medium on-off valve 78. Is connected to.
  • the seventh communication portion 4 0 9 between the first layer side passage 1 1 and the second layer side channel 1 6, the heat medium flows.
  • the first-layer side flow path 11 extending from the seventh communication portion 409 is connected to the inlet of the fourth heat medium check valve 60 1.
  • the flow path switching device 1 by switching the flow path configuration of the heat medium circuit 50, air conditioning in the passenger compartment, temperature adjustment of the heat generating device 5 4, and battery 5 7 The temperature can be adjusted.
  • the heat medium is circulated in the order of 0, the battery 57, the fourth heat medium check valve 60, and the first water pump 563.
  • the second water pump 5 6 s, the second heat medium check valve 6 0 s, the heat generating device 54, the second heat medium three-way valve 70 s, the radiator 55, the second water pump 5 6 s To circulate the heat medium.
  • the waste heat of the heat generating device 5 4 can be radiated to the outside air while cooling the battery 5 7 using the refrigeration cycle 90 as the cold heat source. You can That is, the temperature adjustment of the battery 57 and the temperature adjustment of the heat generating device 54 can be performed independently and in parallel.
  • the heat medium is circulated in the order of the 5th and 6th water pumps.
  • the refrigeration cycle 90 cools the battery 57, the vehicle interior heating is performed by using the waste heat of the heat generating device 54, and the excess heat related to the waste heat of the heat generating device 54 is radiated to the outside air. Can be done in parallel.
  • the flow path switching device 1 of the second embodiment has a flow path configuration of the heat medium circuit 50, Water-refrigerant heat exchanger 5 2, heating device 5 3, heater core 5
  • the waste heat of the heat generating device 54 and the air conditioning in the vehicle compartment using the refrigeration cycle 90 and the cooling of the battery 57 by the heat radiation from the outside air are performed. Can be run in parallel.
  • the flow path switching device 1 constitutes a part of the heat medium circuit 50, as in the above-described embodiment.
  • the flow path switching device 1 is basically configured in the same way as the first embodiment, including the configuration of the heat medium circuit 50. Differences definitive to the third embodiment, a flow path resistance portion 1 2 of the arrangement and the first heat medium return valve 6 0 3 - third heat medium check valve 6 0_Rei configuration. Therefore, with respect to the same configuration in the third embodiment, the description will be omitted and the difference will be described in detail.
  • FIG. 20 shows the first-layer side flow that linearly extends from the second connection port 35 to the eighth connection port 35 II in the flow path switching device 1 according to the third embodiment.
  • FIG. 3 is a cross-sectional view of a cross section taken along path 11. Also in the third embodiment, a plurality of flow path resistance parts 12 are provided inside the linear first layer side flow path 11 connecting the second connection port 35 and the eighth connection port 35 II. It is arranged.
  • each flow path resistance portion 12 is formed in a wall shape so as to cross the groove-shaped first layer side flow path 1 1, and the holding hole 1 Have 2 3
  • the holding holes 1 2 3 are formed by penetrating the flow path resistance portion 1 2 in the thickness direction. That is, the flow path resistance portion 12 is changed so as to reduce the flow path cross-sectional area of the first layer side flow path 11 so that the flow resistance of the heat medium flowing through the first layer side flow path 11 is reduced. Is increasing.
  • the inner diameter of the holding bore 1 2 3, the spherical valve body 6 2 constituting the first heat medium return valve 6 0 3 - third valve element of the heat medium return valve 6 0_Rei Is formed to be smaller than the outer diameter of.
  • each spherical valve body 62 is disposed on the second connection port 35 side of the flow path resistance part 12 and passes through the first layer side flow path 11. It is configured to be movable according to the flow of the heat medium.
  • the restriction piece 6 is provided on the second connection port 35 side from the position of each spherical valve body 62.
  • the 3 3 and the regulating projection 6 3 are formed so as to face each other. As shown in FIGS. 20 and 21, the restriction piece 633 is formed so as to project from the first layer side cover member 20 into the first layer side flow passage 11.
  • the restriction protrusion 63 is located at the bottom of the groove-shaped first layer side channel 11 from the bottom. ⁇ 2020/175 262 34 ⁇ (: 171-1? 2020/006469
  • the restriction piece 6 3 3 and the restriction protrusion 6 3 are arranged so that the flow path width in the first-layer side flow path 11 is smaller than the outer diameter of the spherical valve body 6 2. That is, the restricting piece 633 and the restricting protruding part 63 act in the same manner as the restricting pin 63 of the heat medium check valve 60 in the first embodiment.
  • the spherical valve body 62 can move within the first-layer side flow passage 11 within the range from the control piece 633 and the control projection 633 to the flow passage resistance portion 12. It is housed. Therefore, according to the example shown in FIG. 20, when the heat medium flows from the eighth connection port 35 side toward the second connection port 35 side, the spherical valve body 62 follows the flow of the heat medium. Move to the side of the regulation piece 6 3 3 and the regulation projection 6 3 sill.
  • the flow path of the first-layer side flow path 11 is not blocked by the spherical valve body 62 on the side of the restriction piece 633 and the restriction projection 63. Therefore, the flow of the heat medium from the 8th connection port 35 side to the 2nd connection port 35 side is permitted.
  • the spherical valve body 6 2, regulating piece 6 3 3 or restricting protrusion 6 3 spoon and contacts, since the movement caused by the flow of the heat medium is restricted, the first layer side channel 1 It does not flow out from the prescribed range in 1.
  • the valve 600 includes a first-layer side flow passage 1 1 from the flow passage resistance portion 12 to the restriction piece 6 3 3 and the restriction protrusion 6 3 and a spherical valve body 62.
  • the first-layer side flow passage 11 from the flow passage resistance portion 12 to the restriction piece 633 and the restriction protrusion 63 is equivalent to the valve body case 61 in the first embodiment. ..
  • the regulation piece 63 3 and the regulation projection 63 3 correspond to the regulation pin 63 in the first embodiment.
  • the holding holes 1 2 3 flow resistance portion 1 2 is a Nagareroana 6 1 3 in the first embodiment, the spherical valve body 6 2 constitutes a valve seat to be seated. That is, the flow path resistance portion 12 holds the spherical valve body 62 as a functional component.
  • the joint surface 12 cave is formed.
  • the joint surface 12 of the flow path resistance portion 12 is formed by connecting one surface of the main body member 5 so as to cross the first layer side flow path 11. Then, as shown in FIG. 20, when the first layer side cover member 20 is attached to one surface side of the main body member 5, the joint surface 12 contacts the surface of the first layer side cover member 20. ..
  • joint surface 12 is formed by connecting one surface of the main body member 5, it is possible to minimize the setting change of the focal length etc. when laser welding or the like is adopted. It is possible to carry out continuous joining work.
  • a structure for regulating the movement range of the spherical valve body 6 2, the regulating piece 6 3 3 of the first layer side cover member 2 0, the first layer is a body member 5
  • the restriction projection 6313 formed on the side flow path 11 side is used, the invention is not limited to this mode. It is also possible to adopt a configuration that uses either one of the restriction piece 6 3 3 and the restriction protrusion 6 3 c.
  • the projecting direction of the regulating projection 63 is not necessarily the open side of the first layer side flow passage 11 and if the movement of the spherical valve body 62 can be restricted, the first layer side It may be configured to project from the inner wall surface of the flow path 11 parallel to the bottom surface.
  • one surface side of the main body member 5 of the flow path switching device 1 is the first layer side flow path forming portion 10 and the other surface side is the second layer side flow path forming portion 15.
  • the first layer side flow passage forming portion 10 and the second layer side flow passage forming portion 15 can be configured as separate members.
  • one of the first layer side channel 11 of the first layer side channel forming part 10 and the second layer side channel 16 of the second layer side channel forming part 15 has a plurality of It is also possible to use heat medium piping.
  • the groove 6 is formed on the surface of the main body member 5, the shape is not limited to this mode.
  • the first layer side flow channel 11 and the second layer side flow channel 16 are respectively formed for the first layer side flow channel forming section 10 and the second layer side flow channel forming section 15 which are stacked.
  • the method of forming the first-layer side channel 11 and the like can be appropriately changed.
  • the flat plate-shaped first layer side lid member 20 and the second layer side lid member 25 are used, but the present invention is not limited to this. It's not something you can touch.
  • the surfaces facing the main body member 5 may be processed.
  • the positioning recesses 17 formed on the other surface side of the main body member 5 and the positioning recesses formed on the second layer side lid member 25 are arranged.
  • the pins 27 cooperate with each other to function as the positioning portion, but the present invention is not limited to this.
  • a positioning pin is provided on the second-layer side flow path forming portion 15 so that the second-layer side lid member is formed.
  • a positioning recess may be provided with a positioning recess. Further, it is not limited to the combination of the pin and the concave portion, and if the second layer side flow path forming portion 15 and the second layer side lid member 25 can be positioned due to the geometrical characteristics of the configuration, a rib and a rib can be formed. Various modes such as grooves can be adopted.
  • the heat insulating portion 13 is provided between the flow passages arranged close to each other in the first layer side flow passage 11 and the second layer side flow passage 16.
  • it is not limited to the embodiment shown in FIG.
  • it had contact to the heating medium three-way valve 7 0, first communication passage 7 5 3 and the flow path extending to the first heat medium outflow port 7 6, the second communication passage 7 from 5 spoon second heat medium outflow port 7 7
  • the heat insulating portion 13 may be formed between the flow paths extending to.
  • the flow path switching device 1 is not limited to a heat medium circuit for a vehicle, but may be applied to a heat medium circuit such as a stationary air conditioner.
  • a heat medium circuit such as an air conditioner with a server cooling function that performs air conditioning in the room where the server is housed while appropriately adjusting the temperature of the server (computer).
  • the plurality of valve body portions 7 in the flow path switching device 1 are arranged.
  • the second heat medium three-way valve 70, the third heat medium three-way valve 700, and the valve body portion 73 of the heat medium on-off valve 78 were used. ⁇ 0 2020/175 262 38 ⁇ (: 17 2020 /006469
  • the heat medium is not limited to this.
  • dimethylpolysiloxane, a solution containing a nanofluid, an antifreeze, or the like can be used as the heat medium.
  • the flow path resistance portion 1 2 is formed a retaining hole 1 2 3, had varied so as to reduce the flow path cross-sectional area of the first layer side passage 1 1
  • the present invention is not limited to this mode. If the flow path resistance of the heat medium can be increased by changing the flow path cross-sectional area, various modes can be adopted. For example, the flow path resistance may be increased by causing the vortex of the heat medium to be generated in the expanded portion by rapidly expanding the flow path cross-sectional area.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Multiple-Way Valves (AREA)
  • Valve Housings (AREA)

Abstract

流路切替装置(1)は、第1層側流路形成部(10)と、第2層側流路形成部(15)と、駆動部(30)と、を備えており、流体が循環する流体回路(50)の流路構成を切り替える。第1層側流路形成部(10)には、流体回路(50)に接続される第1層側流路(11)が形成されている。第2層側流路形成部(15)には、第1層側流路(11)と複数の箇所で連通すると共に、流体回路(50)に接続される第2層側流路(16)が形成されている。駆動部(30)は、複数の弁体部(73)を少なくとも連動して駆動させる。複数の弁体部(73)は、第2層側流路(16)の内部に配置されており、第1層側流路(11)と第2層側流路(16)とを連通する連通路を通過する流体の流量を調整する。そして、流路切替装置(1)は、第1層側流路形成部(11)、第2層側流路形成部(16)、及び駆動部(30)がこの順番で積層配置されている。

Description

\¥0 2020/175262 1 卩(:17 2020 /006469 明 細 書
発明の名称 : 流路切替装置
関連出願の相互参照
[0001 ] 本出願は、 2 0 1 9年2月 2 8日に出願された日本特許出願 2 0 1 9— 3
5 4 4 6号に基づくもので、 ここにその記載内容を援用する。
技術分野
[0002] 本開示は、 流体回路における流路構成を切り替える流路切替装置に関する 背景技術
[0003] 従来、 流体回路においては、 用途に応じて流路構成を実現する為に、 複数 の切替弁を配置している。 例えば、 特許文献 1 に記載された給水ポンプ装置 では、 第 1切替バルブ〜第 5切替バルブが、 流路構成を切り替える為に採用 されている。
[0004] 特許文献 1 においては、 第 1切替バルブ〜第 5切替バルブの作動を制御す ることによって、 5つのバターンの流路構成に切り替えている。
先行技術文献
特許文献
[0005] 特許文献 1 :特開 2 0 1 4 _ 3 7 7 1 6号公報
発明の概要
[0006] ここで、 特許文献 1 においては、 第 1切替バルブ〜第 5切替バルブは、 そ れぞれ多数の配管、 継手を介して接続されている。 この為、 流路を切り替え る構成が大型化してしまい、 装置全体としてのスペース及び重量に影響を及 ぼしてしまう。
[0007] 又、 特許文献 1では、 第 1切替バルブ〜第 5切替バルブのそれぞれに対し て、 切替動作に係る駆動部が必要になる。 この為、 各切替バルブの駆動部も 考慮すると、 特許文献 1では、 更に、 流路を切り替える構成のスペースや重 量に関して改善する余地があると考えられる。 〇 2020/175262 2 卩(:171? 2020 /006469
[0008] 本開示は、 これらの点に鑑みてなされており、 コンパクトな構成で、 流体 回路における流路構成を切り替えることができる流路切替装置を提供するこ とを目的とする。
[0009] 本開示の一態様に係る流路切替装置は、 第 1層側流路形成部と、 第 2層側 流路形成部と、 駆動部と、 を備えており、 流体が循環する流体回路の流路構 成を切り替える。
[0010] 第 1層側流路形成部には、 流体回路に接続される第 1層側流路が形成され ている。 第 2層側流路形成部には、 第 1層側流路と複数の箇所で連通すると 共に、 流体回路に接続される第 2層側流路が形成されている。
[001 1 ] 駆動部は、 複数の弁体部を少なくとも連動して駆動させる。 複数の弁体部 は、 第 2層側流路の内部に配置されており、 第 1層側流路と第 2層側流路と を連通する連通路を通過する流体の流量を調整する。 そして、 流路切替装置 は、 第 1層側流路形成部、 第 2層側流路形成部、 及び駆動部がこの順番で積 層配置されている。
[0012] これによれば、 第 1層側流路形成部、 第 2層側流路形成部及び駆動部が積 層配置されている為、 流体回路の流路構成を切り替える為の配管、 継手及び 弁の機能を集約することができ、 よりコンパクトな構成を実現することがで きる。
[0013] 又、 第 1層側流路形成部、 第 2層側流路形成部及び駆動部が積層配置され ている為、 複数の弁体部を相互に近接した位置に配置される。 そして、 駆動 部は、 複数の弁体部を少なくとも連動して駆動させる。 この為、 流路切替装 置によれば、 各弁体部に対してモータ等の駆動源を配置する場合に比べ、 コ ンパクトで軽量な構成で、 流体回路の流路構成の切替を実現することができ る。
図面の簡単な説明
[0014] 本開示についての上記及び他の目的、 特徴や利点は、 添付図面を参照した 下記詳細な説明から、 より明確になる。 添付図面において、
[図 1 ]図 1は、 第 1実施形態に係る流路切替装置の概略構成図であり、 20/175262 3 卩(:171? 2020 /006469
[図 2]図 2は、 第 1実施形態に係る流路切替装置の側面図であり、
[図 3]図 3は、 第 1実施形態に係る熱媒体回路の全体構成図であり、
[図 4]図 4は、 第 1実施形態に係る第 1層側流路の構成を示す説明図であり、 [図 5]図 5は、 第 1実施形態に係る第 2層側流路の構成を示す説明図であり、 [図 6]図 6は、 第 1実施形態に係る第 2層側蓋部材及び固定蓋の説明図であり
[図 7]図 7は、 図 4、 5における V I I - V I 丨断面の断面図であり、
[図 8]図 8は、 第 1実施形態の流路切替装置における流路抵抗部に関する説明 図であり、
[図 9]図 9は、 図 4、 5における 丨 X— 丨 X断面の断面図であり、
[図 10]図 1 0は、 流路切替装置における熱媒体三方弁の概略構成を示す模式 図であり、
[図 1 1]図 1 1は、 全開状態における熱媒体三方弁の弁体部を示す説明図であ り、
[図 12]図 1 2は、 全閉状態における熱媒体三方弁の弁体部を示す説明図であ り、
[図 13]図 1 3は、 流量分配状態における熱媒体三方弁の弁体部を示す説明図 であり、
[図 14]図 1 4は、 熱媒体三方弁における第 1開度及び第 2開度の関係を示す グラフであり、
[図 15]図 1 5は、 流路切替装置における断熱部の構成を示す説明図であり、 [図 16]図 1 6は、 第 2実施形態に係る流路切替装置の概略構成図であり、
[図 17]図 1 7は、 第 2実施形態に係る熱媒体回路の全体構成図であり、
[図 18]図 1 8は、 第 2実施形態に係る流路切替装置の第 1層側流路の構成を 示す説明図であり、
[図 19]図 1 9は、 第 2実施形態に係る流路切替装置の第 2層側流路の構成を 示す説明図であり、
[図 20]図 2 0は、 第 3実施形態に係る流路切替装置における流路抵抗部に関 〇 2020/175262 4 卩(:171? 2020 /006469
する断面図であり、
[図 21 ]図 2 1は、 図 2 0における X X I - X X I断面の断面図である。 発明を実施するための形態
[0015] 以下に、 図面を参照しながら本開示を実施するための複数の実施形態を説 明する。 各実施形態において先行する実施形態で説明した事項に対応する部 分には同 _の参照符号を付して重複する説明を省略する場合がある。 各実施 形態において構成の一部のみを説明している場合は、 構成の他の部分につい ては先行して説明した他の実施形態を適用することができる。 各実施形態で 具体的に組合せが可能であることを明示している部分同士の組合せばかりで はなく、 特に組合せに支障が生じなければ、 明示していなくとも実施形態同 士を部分的に組み合せることも可能である。
[0016] (第 1実施形態)
先ず、 第 1実施形態に係る流路切替装置 1の概略構成について、 図面を参 照しつつ説明する。 図 1 に示すように、 第 1実施形態に係る流路切替装置 1 は、 流体回路としての熱媒体回路 5 0の一部を構成しており、 後述するよう に、 熱媒体回路 5 0における流路構成を切り替える。
[0017] 第 1実施形態に係る熱媒体回路 5 0は、 走行用の駆動力をモータジェネレ —夕から得る電気自動車に搭載されている。 熱媒体回路 5 0は、 電気自動車 において、 空調対象空間である車室内の空調を行うと共に、 温度調整対象で ある車載機器 (例えば、 発熱機器 5 4) の温度調整を行う際に利用される。 つまり、 第 1実施形態に係る熱媒体回路 5 0は、 電気自動車において、 車載 機器の温度調整機能付きの車両用空調装置の一部を構成している。
[0018] 第 1実施形態における熱媒体回路 5 0では、 作動時に発熱する発熱機器 5 4を温度調整の対象としている。 発熱機器 5 4には、 複数の構成機器が含ま れている。 発熱機器 5 4の構成機器としては、 具体的に、 モータジヱネレー 夕、 電力制御ユニッ ト (所謂、 〇リ) 、 先進運転支援システム (所謂、 八 0八3) 用の制御装置等を挙げることができる。
[0019] モータジェネレータは、 電力を供給されることによって走行用の駆動力を 〇 2020/175262 5 卩(:171? 2020 /006469
出力し、 車両の減速時等には回生電力を発生させる。 <3 IIは、 各車載機器 へ供給される電力を適切に制御するために変圧器、 周波数変換器等を一体化 させたものである。
[0020] 図 1 に示すように、 第 1実施形態に係る流路切替装置 1 には、 熱媒体回路
5 0の構成機器が接続されている。 具体的には、 流路切替装置 1 には、 熱媒 体配管を介して、 ヒータコア 5 1、 水冷媒熱交換器 5 2、 加熱装置 5 3、 発 熱機器 5 4、 ラジェータ 5 5、 第 1水ポンプ 5 6 3、 第 2水ポンプ 5 6匕が 接続されている。
[0021 ] そして、 流路切替装置 1は、 図 2に示すように、 第 1層側蓋部材 2 0と、 本体部材 5と、 第 2層側蓋部材 2 5と、 駆動部 3 0を有している。 流路切替 装置 1 において、 第 1層側蓋部材 2 0、 本体部材 5、 第 2層側蓋部材 2 5、 駆動部 3 0の順番で、 積層方向!-に従って積層配置されている。
[0022] 図 1、 図 2に示すように、 第 1実施形態に係る流路切替装置 1 において、 本体部材 5は、 合成樹脂によって直方体を為すブロック状に形成されている 。 そして、 本体部材 5の一面 (図 2中の上面) 側には、 一面側が開放された 溝状の第 1層側流路 1 1が形成されている。
[0023] 第 1層側流路 1 1は、 図 2、 図 7等に示すように、 本体部材 5の一面に対 して第 1層側蓋部材 2 0を接合することで、 熱媒体回路 5 0の熱媒体が流通 する管路として機能する。 従って、 本体部材 5における一面側を構成する部 分は、 第 1層側流路形成部 1 〇を構成する。
[0024] そして、 本体部材 5の一面の裏側に位置する他面 (図 2中の下面) 側には 、 他面側が開放された溝状の第 2層側流路 1 6が形成されている。 第 2層側 流路 1 6は、 図 2、 図 7に示すように、 本体部材 5の他面に対して第 2層側 蓋部材 2 5等を接合することで、 熱媒体回路 5 0の熱媒体が流通する熱媒体 通路として機能する。 従って、 本体部材 5における他面側を構成する部分は 、 第 2層側流路形成部 1 5を構成する。
[0025] 又、 第 2層側流路 1 6の内部には、 複数の弁体部 7 3が配置されている。
第 1実施形態においては、 後述する第 1熱媒体三方弁 7 0 3及び第 2熱媒体 〇 2020/175262 6 卩(:171? 2020 /006469
三方弁 7 0匕の弁体部 7 3が第 2層側流路 1 6の内部に配置されている。 各 弁体部 7 3は、 第 1層側流路 1 1及び第 2層側流路 1 6における熱媒体の流 れを切り替え、 熱媒体回路 5 0の流路構成を変更する。
[0026] 尚、 本体部材 5には、 _面側と他面側を貫通するように形成された連通部 が予め定められた複数の箇所に形成されている。 この連通部は、 第 1層側流 路 1 1 と第 2層側流路 1 6の間を熱媒体の流通可能に接続しており、 後述す
Figure imgf000008_0001
第 2連通部 4 0匕等を含んでいる。
[0027] 図 2に示すように、 本体部材 5の側面には、 熱媒体回路 5 0の熱媒体配管 が接続される複数の接続口が形成されている。 第 1実施形態に係る流路切替 装置 1は、
Figure imgf000008_0002
」を有しており、 熱媒体配 管を介して、 熱媒体回路 5 0の構成機器が接続される。
[0028] 図 2に示すように、 第 1層側蓋部材 2 0は、 合成樹脂製の板状部材であり 、 本体部材 5の一面側と同じサイズに形成されている。 第 1層側蓋部材 2 0 は、 本体部材 5の一面 (図 2における本体部材 5の上面) に対して、 振動溶 着やレーザー溶着等によって接合されて密閉される。 これにより、 溝状の第 1層側流路 1 1 における開放部分が第 1層側蓋部材 2 0によって閉塞される 為、 第 1層側流路 1 1は、 熱媒体が流通する管路として機能する。
[0029] そして、 第 2層側蓋部材 2 5は、 第 1層側蓋部材 2 0と同様に、 合成樹脂 製の板状部材である。 第 2層側蓋部材 2 5は、 本体部材 5の他面 (図 2にお ける本体部材 5の下面) に対して、 振動溶着やレーザー溶着等によって接合 されて密閉される。 これにより、 溝状の第 2層側流路 1 6における開放部分 が第 2層側蓋部材 2 5によって閉塞される為、 第 2層側流路 1 6は、 熱媒体 が流通する管路として機能する。
[0030] 又、 図 2等に示すように、 駆動部 3 0は、 ブロック状の本体部材 5の他面 側において、 第 2層側蓋部材 2 5を介して配置されている。 駆動部 3 0は、 電磁モータ 3 2と、 伝達機構 3 3と、 駆動制御部 3 4をケーシング 3 1の内 部に収容して構成されている。 ケーシング 3 1は、 電磁モータ 3 2、 伝達機 構 3 3、 駆動制御部 3 4を、 塵や水から保護する。 〇 2020/175262 7 卩(:171? 2020 /006469
[0031 ] 電磁モータ 3 2は、 電力供給によって駆動する駆動軸 3 2 3を有しており 、 各弁体部 7 3の駆動源として機能する。 駆動部 3 0におけるケーシング 3 1の内部において、 電磁モータ 3 2は、 予め定められた位置となるように第 2層側蓋部材 2 5に対して取り付けられている。
[0032] そして、 伝達機構 3 3は、 ギヤ 3 3 3を含むリンク機構であり、 電磁モー 夕 3 2で生じた駆動力を各弁体部 7 3に伝達可能に構成されている。 ギヤ 3 3 3は、 弁体部 7 3の回転軸 7 4 3の端部に配置されている。 従って、 ギヤ 3 3 3に対して電磁モータ 3 2の駆動力が伝達されて回転することで、 弁体 部 7 3を回転軸 7 4 3周りに回転させることができる。
[0033] 又、 伝達機構 3 3は、 リンク機構によって構成されている為、 各弁体部 7
3に対する駆動力の伝達態様を適宜切り替えることができる。 例えば、 伝達 機構 3 3は、 2つの弁体部 7 3を連動させて作動させるように、 駆動力を伝 達することができる。 又、 伝達機構 3 3は、 2つの弁体部 7 3の内、 何れか —方に駆動力を伝達することも可能である。
[0034] そして、 伝達機構 3 3の各構成部品は、 駆動部 3 0におけるケーシング 3
1の内部において、 それぞれに予め定められた位置となるように第 2層側蓋 部材 2 5に対して取り付けられている。
[0035] 駆動制御部 3 4は、 流路切替装置 1の動作を制御する為の電子制御ュニッ 卜である。 具体的には、 駆動制御部 3 4は、 マイクロコントローラを有して おり、 図示しない制御装置からの制御信号に従って、 電磁モータ 3 2及び伝 達機構 3 3の作動を制御する。
[0036] 次に、 第 1実施形態における第 1層側流路 1 1及び第 2層側流路 1 6の構 成について、 図 3〜図 5を参照しつつ説明する。 上述したように、 熱媒体回 路 5 0は、 熱媒体としての冷却水を循環させる熱媒体循環回路である。 第 1 実施形態では、 車室内の空調及び車載機器の冷却を行う為に、 後述するよう に熱媒体回路 5 0の流路構成を切り替えている。 熱媒体回路 5 0を循環する 熱媒体として、 非圧縮性流体であるエチレングリコール水溶液が採用されて いる。 〇 2020/175262 8 卩(:171? 2020 /006469
[0037] 図 1等に示すように、 第 1接続口 3 5 3には、 熱媒体配管を介して、 第 1 水ポンプ 5 6 3の吸入口が接続されている。 ここで、 第 1接続口 3 5 3は、 図 4に示すように、 第 1層側流路 1 1の一端部を構成している。
[0038] 第 1水ポンプ 5 6 3は、 図示しない制御装置から出力される制御電圧によ って、 回転数 (即ち、 圧送能力) が制御される電動ポンプである。 第 1水ポ ンプ 5 6 3の吐出口は、 熱媒体配管を介して、 水冷媒熱交換器 5 2における 熱媒体通路 5 2匕の熱媒体入口に接続されている。 従って、 第 1水ポンプ 5 6 3は、 熱媒体を水冷媒熱交換器 5 2の熱媒体通路 5 2 へ向けて圧送する
[0039] 水冷媒熱交換器 5 2は、 熱媒体回路 5 0の構成機器であると同時に、 冷凍 サイクル 9 0の構成機器の 1つである。 水冷媒熱交換器 5 2は、 冷凍サイク ル 9 0の冷媒を流通させる冷媒通路 5 2 3と、 熱媒体回路 5 0の熱媒体を流 通させる熱媒体通路 5 2匕を有している。
[0040] 水冷媒熱交換器 5 2は、 伝熱性に優れる同種の金属 (第 1実施形態では、 アルミニウム合金) で形成されており、 各構成部材は、 ロウ付け接合によっ て一体化されている。 これにより、 冷媒通路 5 2 3を流通する冷媒と熱媒体 通路 5 2匕を流通する熱媒体は、 互いに熱交換することができる。
[0041 ] 尚、 水冷媒熱交換器 5 2は、 冷凍サイクル 9 0のサイクル構成を変更する ことによって、 放熱器 (いわゆる、 水冷コンデンサ) として機能する場合と 、 吸熱器 (いわゆる、 チラー) として機能する場合とに切り替えられる。
[0042] 例えば、 冷凍サイクル 9 0のサイクル構成を切り替えて、 冷凍サイクル 9
0の高圧冷媒が冷媒通路 5 2 3を流通する場合には、 高圧冷媒の熱を熱媒体 通路 5 2 の熱媒体へ放熱させる放熱器として機能する。 この場合、 水冷媒 熱交換器 5 2は、 高圧冷媒の熱で熱媒体を加熱することができる。
[0043] 一方、 冷凍サイクル 9 0の低圧冷媒が冷媒通路 5 2 3を流通するように、 サイクル構成を切り替えた場合には、 熱媒体通路 5 2 を流通する熱媒体の 熱を低圧冷媒に吸熱させる吸熱器として機能する。 この場合、 水冷媒熱交換 器 5 2は、 低圧冷媒を冷熱源として、 熱媒体を冷却することができる。 〇 2020/175262 9 卩(:171? 2020 /006469
[0044] そして、 水冷媒熱交換器 5 2の熱媒体出口側には、 熱媒体配管を介して、 第 2接続口 3 5匕が接続されている。 第 2接続口 3 5匕は、 図 4に示すよう に、 第 1層側流路 1 1の一端部を構成している。
[0045] 第 1層側流路 1 1の一端部を構成する第 3接続口 3 5〇には、 加熱装置 5
3が接続されている。 加熱装置 5 3は、 加熱用通路及び発熱部を有しており 、 図示しない制御装置から供給される電力によって、 ヒータコア 5 1へ流入 する熱媒体を加熱する。 加熱装置 5 3の発熱量は、 制御装置からの電力を制 御することで任意に調整することができる。
[0046] 加熱装置 5 3の加熱用通路は、 熱媒体を流通させる通路である。 発熱部は 、 電力を供給されることによって、 加熱用通路を流通する熱媒体を加熱する 。 発熱部としては、 具体的に、 丁〇素子やニクロム線を採用することがで きる。
[0047] 加熱装置 5 3における加熱用通路の出口側には、 熱媒体配管を介して、 ヒ —タコア 5 1の熱媒体入口側が接続されている。 ヒータコア 5 1は、 図示し ない室内送風機から送風された送風空気と熱媒体とを熱交換させる熱交換器 である。
[0048] ヒータコア 5 1は、 水冷媒熱交換器 5 2や加熱装置 5 3等によって加熱さ れた熱媒体の有する熱を熱源として送風空気を加熱することができる。 ヒー タコア 5 1は、 電気自動車に搭載された室内空調ユニッ トのケーシング内に おいて、 冷凍サイクル 9 0を構成する室内蒸発器の下流側に配置されている 。 ヒータコア 5 1の熱媒体出口側には、 熱媒体配管を介して、 第 4接続口 3 5 が接続されている。 第 4接続口 3 5 は、 第 2層側流路 1 6の一端部を 構成する。
[0049] 図 4に示すように、 第 5接続口 3 5 6は、 第 1層側流路 1 1の一端部を構 成している。 第 5接続口 3 5 6には、 熱媒体配管を介して、 発熱機器 5 4の 熱媒体通路 5 4 3が接続されている。 発熱機器 5 4の熱媒体通路 5 4 3は、 発熱機器 5 4の外殻を形成するハウジング部或いはケースの内部等に形成さ れている。 〇 2020/175262 10 卩(:171? 2020 /006469
[0050] 発熱機器 5 4の熱媒体通路 5 4 3は、 熱媒体を流通させることで発熱機器
5 4の温度を調整する為の熱媒体通路である。 換言すると、 発熱機器 5 4の 熱媒体通路 5 4 3は、 熱媒体回路 5 0を循環する熱媒体との熱交換によって 、 発熱機器 5 4の温度調整を行う温度調整部として機能する。
[0051 ] 発熱機器 5 4における熱媒体通路 5 4 3の他端側には、 熱媒体配管を介し て、 第 6接続口 3 5チが接続されている。 第 6接続口 3 5チは、 第 1層側流 路 1 1の一端部を構成している。
[0052] 図 4に示すように、 第 7接続口 3 5 9は、 第 1層側流路 1 1の一端部を構 成している。 第 7接続口 3 5 9には、 熱媒体配管を介して、 第 2水ポンプ 5 6匕の吸入口が接続されている。 第 2水ポンプ 5 6匕は、 熱媒体回路 5 0を 循環させる為に熱媒体を圧送する電動ポンプである。 第 2水ポンプ 5 6匕の 基本的構成は、 第 1水ポンプ 5 6 3と同様である。 第 2水ポンプ 5 6匕の吐 出口側には、 熱媒体配管を介して、 第 8接続口 3 5 11が接続されている。 第 8接続口 3 5 IIは、 第 1層側流路 1 1の一端部を構成している。
[0053] そして、 第 9接続口 3 5 丨 には、 熱媒体配管を介して、 ラジェータ 5 5の 熱媒体流入出口の一方側が接続されている。 第 9接続口 3 5 丨 は、 第 2層側 流路 1 6の一端部である。 ラジェータ 5 5は、 内部を流通する熱媒体と外気 とを熱交換させる熱交換器である。 従って、 ラジェータ 5 5は、 内部を通過 する熱媒体の熱を外気に放熱する。
[0054] ラジェータ 5 5は、 駆動装置室内の前方側に配置されている。 この為、 ラ ジェータ 5 5を、 室外熱交換器と一体的に構成することも可能である。 ラジ ェータ 5 5の熱媒体流入出口の他方側には、 熱媒体配管を介して、 第 1 0接 続口 3 5 」が接続されている。 第 1 0接続口 3 5 」は、 第 1層側流路 1 1の _端部を構成する。
[0055] 図 3、 図 4に示すように、 第 2接続口 3 5匕から伸びる第 1層側流路 1 1 は、 第 3接続口 3 5〇から伸びる第 1層側流路 1 1及び第 1熱媒体逆止弁 6 0 3の流出口から伸びる第 1層側流路 1 1 と接続され、 第 1接続部 8 0 3を 構成している。 〇 2020/175262 1 1 卩(:171? 2020 /006469
[0056] そして、 図 3、 図 5に示すように、 第 4接続口 3 5 から伸びる第 2層側 流路 1 6は、 第 1熱媒体三方弁 7 0 3の流入口側が接続されている。 第 1熱 媒体三方弁 7 0 3は、 ヒータコア 5 1から流出した熱媒体のうち、 流出口の _方側から流出させる熱媒体流量と、 流出口の他方側から流出させる熱媒体 流量との流量比を調整可能な三方式の流量調整弁である。 第 1熱媒体三方弁 7 0 3は、 図示しない制御装置によって駆動部 3 0を制御することでその作 動が制御される。
[0057] 更に、 第 1熱媒体三方弁 7 0 3は、 ヒータコア 5 1から流出した熱媒体の 全流量を、 二つの流出口の何れか一方へ流出させることができる。 これによ り、 第 1熱媒体三方弁 7 0 3は、 熱媒体回路 5 0の流路構成を切り替えるこ とができる。
[0058] 第 1熱媒体三方弁 7 0 3の流入口から流入した熱媒体は、 第 1熱媒体三方 弁 7 0 3内部を流出口へ向かう過程で、 連通路を通過して、 第 2層側流路 1 6から第 1層側流路 1 1へ流出する。
[0059] 第 1熱媒体三方弁 7 0 3の流出口の一方側から伸びる第 1層側流路 1 1は 、 他の 3つの第 1層側流路 1 1 に接続され、 第 2接続部 8 0 13を構成する。 図 3に示すように、 第 2接続部 8 0 13は、 第 1熱媒体三方弁 7 0 3の流出口 の一方側の第 1層側流路 1 1、 第 1熱媒体逆止弁 6 0 3の流入口側の第 1層 側流路 1 1、 第 3熱媒体逆止弁 6 0〇の流出口側の第 1層側流路 1 1及び第 1接続口 3 5 3側の第 1層側流路 1 1 にて構成される。
[0060] 図 3、 図 4に示すように、 第 1熱媒体逆止弁 6 0 3は、 熱媒体が第 2接続 部 8 0匕側から第 1接続部 8 0 3側へ流れることを許容し、 第 1接続部 8 0 3側から第 2接続部 8 0 13側へ流れることを禁止する。
[0061 ] そして、 第 1熱媒体三方弁 7 0 3の流出口の他方側から伸びる第 1層側流 路 1 1は、 第 5接続口 3 5 6から伸びる第 1層側流路 1 1及び第 1連通部 4 0 3が形成された第 1層側流路 1 1 に接続され、 第 4接続部 8 0 を構成す る。
[0062] ここで、 第 1連通部 4 0 8は、 ブロック状の本体部材 5を積層方向!-に貫 〇 2020/175262 12 卩(:171? 2020 /006469
通するように形成されており、 第 1層側流路 1 1 と第 2層側流路 1 6とを連 通している。 従って、 第 1連通部 4 0 3を介して、 第 1層側流路 1 1 と第 2 層側流路 1 6の間で、 熱媒体が流通する。
[0063] 図 3、 図 5に示すように、 第 1連通部 4 0 3を通過した熱媒体は、 第 2層 側流路 1 6を介して、 第 2熱媒体三方弁 7 0匕の流入口に到達する。 第 2熱 媒体三方弁 7 0 は、 第 4接続部 8 0 から流入する熱媒体の内、 流出口の _方側から流出させる熱媒体流量と、 流出口の他方側から流出させる熱媒体 流量との流量比を調整可能な三方式の流量調整弁である。 第 2熱媒体三方弁 7 0匕の基本的構成は、 第 1熱媒体三方弁 7 0 3と同様である。
[0064] 第 2熱媒体三方弁 7 0匕の流入口から流入した熱媒体は、 第 2熱媒体三方 弁 7 0匕内部を流出口へ向かう過程で、 連通路を通過して、 第 2層側流路 1 6から第 1層側流路 1 1へ流出する。
[0065] 第 2熱媒体三方弁 7 0匕の流出口の一方側から伸びる第 1層側流路 1 1の 端部には、 第 2連通部 4 0匕が形成されている。 従って、 第 2熱媒体三方弁 7 0 13の流出口の一方から流出した熱媒体は、 第 2連通部 4 0 13を介して、 第 1層側流路 1 1から第 2層側流路 1 6へ流出する。 図 5に示すように、 第 2連通部 4 0匕から伸びる第 2層側流路 1 6には、 第 9接続口 3 5 丨が形成 されている。
[0066] そして、 第 2熱媒体三方弁 7 0 13の流出口の他方側から伸びる第 1層側流 路 1 1は、 第 7接続口 3 5 9から伸びる第 1層側流路 1 1及び第 1 0接続口 3 5 」から伸びる第 1層側流路 1 1 に接続され、 第 3接続部 8 0〇を構成す る。
[0067] 図 3、 図 4に示すように、 第 8接続口 3 5 IIから伸びる第 1層側流路 1 1 は、 第 2熱媒体逆止弁 6 0 の流入口側が接続されている。 又、 第 6接続口 3 5チから伸びる第 1層側流路 1 1は、 第 2熱媒体逆止弁 6 0匕の流出口か ら伸びる第 1層側流路 1 1及び第 3熱媒体逆止弁 6 0〇の流入口から伸びる 第 1層側流路 1 1 に接続され、 第 5接続部 8 0 6を構成する。
[0068] そして、 第 2熱媒体逆止弁 6 0匕は、 熱媒体が第 8接続口 3 5 側から第 〇 2020/175262 13 卩(:171? 2020 /006469
5接続部 8 0 6へ流れることを許容し、 第 5接続部 8 0 6側から第 8接続口 3 5 II側へ流れることを禁止する。 又、 第 3熱媒体逆止弁 6 0〇は、 熱媒体 が第 5接続部 8 0 6側から第 2接続部 8 0匕側へ流れることを許容し、 第 2 接続部 8 0 13側から第 5接続部 8 0 6側へ流れることを禁止する。
[0069] 尚、 第 1熱媒体三方弁 7 0 3、 第 2熱媒体三方弁 7 0匕、 第 1熱媒体逆止 弁 6 0 3、 第 2熱媒体逆止弁 6 0 及び第 3熱媒体逆止弁 6 0〇の具体的な 構成については、 後に図面を参照しつつ説明する。
[0070] 第 1実施形態に係る流路切替装置 1 によれば、 第 1熱媒体三方弁 7 0 3及 び第 2熱媒体三方弁 7 0 の動作を制御することで、 熱媒体回路 5 0の流路 構成を様々な態様に切り替えることができる。
[0071 ] 例えば、 流路切替装置 1は、 熱媒体回路 5 0の流路構成として、 第 1水ポ 媒熱交換器 5 2、 加熱装置 5 3、 ヒータコア 5 1、 第 1熱
Figure imgf000015_0001
発熱機器 5 4、 第 3熱媒体逆止弁 6 0〇、 第 1水ポンプ
5 6 3の順で熱媒体を循環させる。
[0072] この流路構成の熱媒体回路 5 0によれば、 発熱機器 5 4の廃熱で加熱され た熱媒体をヒータコア 5 1 に流入させることができるので、 発熱機器 5 4の 廃熱を利用した車室内の暖房を実現することができる。
[0073] 又、 流路切替装置 1は、 熱媒体回路 5 0の流路構成として、 第 1水ポンプ
5 6 3 , 水冷媒熱交換器 5 2、 加熱装置 5 3、 ヒータコア 5 1、 第 1熱媒体 三方弁
Figure imgf000015_0002
発熱機器 5 4、 第 3熱媒体逆止弁 6 0〇、 第 1水ポンプ 5 6
3の順で熱媒体を循環させる。 同時に、 第 2水ポンプ 5 6匕、 第 2熱媒体逆 止弁 6 0匕、 第 3熱媒体逆止弁 6 0〇、
Figure imgf000015_0003
水冷媒熱交換 器 5 2、 加熱装置 5 3、 ヒータコア 5 1、
Figure imgf000015_0004
第 2熱 媒体三方弁 7 0匕、 ラジェータ 5 5、 第 2水ポンプ 5 6匕の順で熱媒体を循 環させる。
[0074] これにより、 発熱機器 5 4を経由する熱媒体の流れに対して、 ヒータコア
5 1 を経由する熱媒体の循環経路と、 ラジェータ 5 5を経由する熱媒体の循 環経路を並列に構成することができる。 従って、 この流路構成の熱媒体回路 〇 2020/175262 14 卩(:171? 2020 /006469
5 0によれば、 発熱機器 5 4の廃熱を利用した車室内暖房を行いつつ、 余剰 熱を外気に放熱させることができる。
[0075] 更に、 流路切替装置 1は、 熱媒体回路 5 0の流路構成として、 第 1水ボン 水冷媒熱交換器 5 2、 加熱装置 5 3、 ヒータコア 5 1、 第 1熱媒 体三方弁 7 0 3、 第 1水ポンプ 5 6 3の順で熱媒体を循環させる。 同時に、 第 2水ポンプ 5 6匕、 第 2熱媒体逆止弁 6 0匕、 発熱機器 5 4、 第 2熱媒体 三方弁 7 0匕、 ラジェータ 5 5、 第 2水ポンプ 5 6匕の順で熱媒体を循環さ せる。
[0076] この構成の熱媒体回路 5 0によれば、 水冷媒熱交換器 5 2及びヒータコア
5 1 を経由する熱媒体の循環経路と、 発熱機器 5 4及びラジェータ 5 5を循 環する熱媒体の循環経路を独立して形成することができる。 この結果、 熱媒 体回路 5 0は、 冷凍サイクル 9 0による車室内暖房を行いつつ、 外気放熱に よって発熱機器 5 4を冷却することができる。
[0077] 次に、 流路切替装置 1 における第 2層側蓋部材 2 5等について、 図面を参 照して説明する。 上述したように、 本体部材 5の他面側には、 第 2層側蓋部 材 2 5が取り付けられている。 図 6に示すように、 第 2層側蓋部材 2 5は、 第 2層側流路 1 6のうち、 第 1熱媒体三方弁 7 0 3を含む第 2層側流路 1 6 及び、 第 2熱媒体三方弁 7 0匕を含む第 2層側流路 1 6を密閉するように取 り付けられている。
[0078] 又、 本体部材の他面側には、 固定蓋 2 8が取り付けられている。 固定蓋 2
8は、 第 2層側流路 1 6のうち、 第 9接続口 3 5 丨 に接続された第 2層側流 路 1 6を密閉するように取り付けられている。
[0079] 本体部材 5の他面側には、 第 2層側蓋部材 2 5と固定蓋 2 8が取り付けら れている為、 流路切替装置 1 における流路の漏れ検査を行う際に、 固定蓋 2 8を接合させたまま、 第 2層側蓋部材 2 5を取り外すことも可能となる。 こ れにより、 漏れ検査の作業負担を軽減することができる。
[0080] 図 6に示すように、 第 2層側蓋部材 2 5には、 複数の貫通孔 2 6が第 2層 側蓋部材 2 5を厚み方向に貫通するように形成されている。 複数の貫通孔 2 〇 2020/175262 15 卩(:171? 2020 /006469
6は、 第 2層側流路 1 6における第 1熱媒体三方弁 7 0 3及び第 2熱媒体三 方弁 7 0 13に対して、 積層方向!-に並ぶように形成されている。
[0081 ] 各貫通孔 2 6は、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 0匕に おける弁体部 7 3の回転軸 7 4 8によって、 それぞれ貫通される。 これによ り、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 0 の回転軸 7 4 3の 端部が、 駆動部 3 0の内部に到達する為、 各弁体部 7 3に対して、 電磁モー 夕 3 2で生じた駆動力を伝達することができる。
[0082] そして、 図 6に示すように、 第 2層側蓋部材 2 5には、 複数の位置決めピ ン 2 7が形成されている。 各位置決めピン 2 7は、 本体部材 5の他面に向か って突出するように形成されている。
[0083] —方、 本体部材 5の他面には、 複数の位置決め凹部 1 7が形成されている 。 各位置決め凹部 1 7は、 本体部材 5の他面を積層方向!-へ窪ませたもので あり、 第 2層側蓋部材 2 5における位置決めピン 2 7の位置に対応して配置 されている。
[0084] 本体部材 5の他面に対して第 2層側蓋部材 2 5を取り付ける際に、 各位置 決めピン 2 7は、 それぞれ位置決め凹部 1 7と嵌合する。 この位置決め凹部 1 7と位置決めピン 2 7の嵌合によって、 第 2層側蓋部材 2 5は、 本体部材 5の他面における予め定められた位置に位置決めされる。 即ち、 位置決め凹 部 1 7及び位置決めピン 2 7は位置決め部として機能する。
[0085] ここで、 第 2層側蓋部材 2 5には、 上述したように複数の貫通孔 2 6が形 成されており、 弁体部 7 3の回転軸 7 4 3によって貫通される。 この為、 本 体部材 5の他面に対する第 2層側蓋部材 2 5の位置がずれてしまうと、 回転 車由 7 4 3が貫通孔 2 6と干渉して、 弁体部 7 3の動作を妨げてしまうことが 考えられる。
[0086] この点、 位置決め凹部 1 7及び位置決めピン 2 7の協働によって、 本体部 材 5と第 2層側蓋部材 2 5が適切な位置関係で接合することができる為、 貫 通孔 2 6が回転軸 7 4 3と干渉することはなく、 弁体部 7 3の円滑な動作を 担保することができる。 〇 2020/175262 16 卩(:171? 2020 /006469
[0087] 続いて、 流路切替装置 1 における第 1熱媒体逆止弁 6 0 3等の構成及び取 付について、 図 7、 図 8を参照して説明する。 上述したように、 第 1実施形 態に係る流路切替装置 1では、
Figure imgf000018_0001
第 2熱媒体逆止弁
6 0匕及び第 3熱媒体逆止弁 6 0〇が取り付けられている。 以下の説明では 、 特に必要のない場合には、 第 1熱媒体逆止弁 6〇 3〜第 3熱媒体逆止弁 6 0〇の総称として、 熱媒体逆止弁 6 0と呼ぶ場合がある。
[0088] 図 3に示すように、
Figure imgf000018_0002
第 2熱媒体逆止弁 6 0匕及 び第 3熱媒体逆止弁 6 0〇は、 第 2接続口 3 5匕から第 8接続口 3 5 IIを接 続するように直線状に伸びる第 1層側流路 1 1 に配置されている。
[0089] 即ち、
Figure imgf000018_0003
第 2熱媒体逆止弁 6 0匕及び第 3熱媒体 逆止弁 6 0〇は、 同一直線状の第 1層側流路 1 1内に形成された複数の流路 抵抗部 1 2を利用して、 予め定められた位置にそれぞれ取り付けられている 。 従って、 流路抵抗部 1 2は、 第 1熱媒体逆止弁 6 0 3等の機能部品を、 第 1層側流路 1 1内に保持している。
[0090] ここで、 第 1熱媒体逆止弁 6 0 3等を含む熱媒体逆止弁 6 0の構成につい て、 図 7を参照して説明する。 図 7、 図 8に示すように、 熱媒体逆止弁 6 0 は、 円筒形状の弁体ケース 6 1の内部に、 球状弁体 6 2を収容して構成され ている。 円筒形状の弁体ケース 6 1の内部は、 熱媒体が通過する管路を構成 している。
[0091 ] そして、 弁体ケース 6 1の熱媒体入口側には、 流路穴 6 1 3が形成されて いる。 図 6に示すように、 流路穴 6 1 3は、 弁体ケース 6 1の熱媒体出口の 内径及び球状弁体 6 2の外径よりも小径に形成されている。 流路穴 6 1 3は 、 熱媒体が熱媒体出口側から流入した場合に、 球状弁体 6 2が着座する弁座 を構成する。
[0092] 弁体ケース 6 1の熱媒体出口側には、 規制ピン 6 3が配置されている。 規 制ピン 6 3は、 棒状に形成されており、 弁体ケース 6 1 における熱媒体流れ 方向に交差するように配置されている。 規制ピン 6 3は、 球状弁体 6 2と当 接することで、 弁体ケース 6 1内部における球状弁体 6 2の移動範囲を規制 〇 2020/175262 17 卩(:171? 2020 /006469
する。
[0093] このように構成された第 1熱媒体逆止弁 6 0 3等の熱媒体逆止弁 6 0は、 第 1層側流路 1 1 に形成された流路抵抗部 1 2によって、 第 1層側流路 1 1 内に取り付けられる。 図 7、 図 8に示すように、 流路抵抗部 1 2は、 溝状に 形成された第 1層側流路 1 1 を横断するように壁状に形成されており、 保持 穴 1 2 3を有している。
[0094] 保持穴 1 2 3は、 流路抵抗部 1 2を厚み方向に貫通して形成されている。
即ち、 流路抵抗部 1 2は、 第 1層側流路 1 1の流路断面積を縮小するように 変化させたことで、 第 1層側流路 1 1 を流れる熱媒体の流路抵抗を増大させ ている。
[0095] そして、 保持穴 1
Figure imgf000019_0001
の内径は、 弁体ケース 6 1の外径よりもやや大きく 形成されている。 従って、 図 8に示すように、 熱媒体逆止弁 6 0は、 第 1層 側流路 1 1の伸びる方向に沿って移動させることで、 流路抵抗部 1 2の保持 穴 1 2 3に取り付けられる。 従って、 流路抵抗部 1 2は、 機能部品としての 熱媒体逆止弁 6 0を保持している。
[0096] 図 7に示すように、 弁体ケース 6 1の外周面と保持穴 1 2 3の内壁面の間 には、 シール部材 6 4が配置されている。 シール部材 6 4は、 いわゆる〇リ ングによって構成されており、 弁体ケース 6 1の外周面と保持穴 1 2 3の内 壁面の間における熱媒体の漏れを防止している。
[0097] このように構成された熱媒体逆止弁 6 0を流路抵抗部 1 2に対して取り付 けることで、 流路切替装置 1 における第
Figure imgf000019_0002
逆止弁 6 0〇として機能させている。
[0098] 図 7に示す例によれば、 第 8接続口 3 5 側から第 2接続口 3 5匕側へ向 かって熱媒体が流れる場合、 各熱媒体逆止弁 6 0における弁体ケース 6 1の 内部において、 球状弁体 6 2が熱媒体の流れに従って、 熱媒体出口側へ移動 する。
[0099] これにより、 熱媒体逆止弁 6 0における流路穴 6 1 3が開放され、 第 8接 続口 3 5 II側から第 2接続口 3 5 13側へ向かう熱媒体の流れが許容される。 〇 2020/175262 18 卩(:171? 2020 /006469
この時、 球状弁体 6 2は、 規制ピン 6 3と当接して熱媒体出口側への移動が 制限される為、 弁体ケース 6 1から外部へ流出することはない。
[0100] —方、 第 2接続口 3 5匕側から第 8接続口 3 5 側へ向かって熱媒体が流 れる場合、 各熱媒体逆止弁 6 0における弁体ケース 6 1の内部において、 球 状弁体 6 2が熱媒体の流れに従って、 熱媒体入口側へ移動して、 流路穴 6 1 3に対して着座する。 これにより、 熱媒体逆止弁 6 0の流路穴 6 1 3が球状 弁体 6 2によって閉塞され、 第 2接続口 3 5 13側から第 8接続口 3 5 1*1側へ 向かう熱媒体の流れが禁止される。
[0101 ] 図 8に示すように、 流路抵抗部 1 2には、 接合面 1 2匕が形成される。 流 路抵抗部 1 2の接合面 1 2匕は、 第 1層側流路 1 1 を横断するように、 本体 部材 5の一面側の表面を接続して構成される。 そして、 図 7に示すように、 本体部材 5の一面側に第 1層側蓋部材 2 0を取り付けた場合に、 接合面 1 2 匕は第 1層側蓋部材 2 0の表面に当接する。
[0102] この為、 流路切替装置 1 によれば、 本体部材 5に対して第 1層側蓋部材 2
0をレーザー溶着等で接合する場合に、 流路抵抗部 1 2の接合面 1 2 を介 して接合できる。 これにより、 流路切替装置 1では、 複数の接合面 1 2匕を 利用することで、 本体部材 5に対する第 1層側蓋部材 2 0の接合強度を向上 させることができる。
[0103] 又、 接合面 1 2 は本体部材 5の一面側の表面を接続して形成されている 為、 レーザー溶着等を採用した場合に、 焦点距離等の設定変更を最小限にと どめることができ、 連続的な接合作業を行うことができる。
[0104] 次に、 流路切替装置 1 における第 1熱媒体三方弁 7 0 3等の構成について 、 図面を参照して説明する。 上述したように、 第 1実施形態に係る流路切替 装置 1では、 第 1熱媒体三方弁 7 0 3と、 第 2熱媒体三方弁 7 0匕が取り付 けられている。
[0105] 以下の説明では、 特に必要のない場合には、 第 1熱媒体三方弁 7 0 3、 第
2熱媒体三方弁 7 0 の総称として、 熱媒体三方弁 7 0と呼ぶ場合がある。 又、 図 9に示す図は、 熱媒体三方弁 7 0の基本的な構成を示す為の説明図で 〇 2020/175262 19 卩(:171? 2020 /006469
あり、 第 1熱媒体三方弁 7 0 3、 第 2熱媒体三方弁 7 0 の具体的構成とは 相違している。
[0106] 図 1 0に示すように、 熱媒体三方弁 7 0は、 熱媒体流入口 7 2から流入す る熱媒体の内、 第 1熱媒体流出口 7 6から流出させる熱媒体流量と、 第 2熱 媒体流出口 7 7から流出させる熱媒体流量との流量比を調整可能な三方式の 流量調整弁である。
[0107] 第 1熱媒体三方弁 7 0 3においては、 第 4接続口 3 5 から伸びる第 2層 側流路 1 6が熱媒体流入口 7 2に相当している。 そして、 第 2接続部 8 0匕 へ伸びる第 1層側流路 1 1及び第 4接続部 8 0 へ伸びる第 1層側流路 1 1 は、 第 1熱媒体流出口 7 6及び第 2熱媒体流出口 7 7に相当している。
[0108] そして、 第 2熱媒体三方弁 7 0匕の場合、 第 1連通部 4 0 3から伸びる第
2層側流路 1 6が熱媒体流入口 7 2に相当している。 そして、 第 2連通部 4 〇匕へ伸びる第 1層側流路 1 1及び第 3接続部 8 0〇へ伸びる第 1層側流路 1 1は、 第 1熱媒体流出口 7 6及び第 2熱媒体流出口 7 7に相当している。
[0109] 図 9、 図 1 0に示すように、 熱媒体三方弁 7 0は、 積層方向!-へ伸びる管 状に形成されている。 従って、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方 弁 7 0匕においては、 第 2層側流路 1 6と第 1層側流路 1 1 とを積層方向 !_ に連通する連通路が本体部 7 1 に相当する。
[01 10] そして、 本体部 7 1の内部には、 弁体部 7 3が配置されている。 弁体部 7
3は、 駆動ディスク 7 4と、 固定ディスク 7 5によって構成されている。 固 定ディスク 7 5は、 本体部 7 1 を積層方向!-に分断するように配置されてお り、 第 1連通路 7 5 3及び第 2連通路 7 5匕を有している。
[01 1 1 ] 第 1連通路 7 5 3は、 固定ディスク 7 5をその厚み方向に貫通しており、 熱媒体流入口 7 2側の空間と第 1熱媒体流出口 7 6側の空間とを連通してい る。 第 2連通路 7 5匕は、 第 1連通路 7 5 3に隣接する位置で、 固定ディス ク 7 5をその厚み方向に貫通している。 第 2連通路 7 5匕は、 熱媒体流入口 7 2側の空間と第 2熱媒体流出口 7 7側の空間と連通している。
[01 12] 尚、 本体部 7 1の内部において、 第 1熱媒体流出口 7 6側の空間と第 2熱 〇 2020/175262 20 卩(:171? 2020 /006469
媒体流出口 7 7側の空間は区画されている。 従って、 第 1連通路 7 5 3及び 第 2連通路 7 5匕を介することなく、 第 1熱媒体流出口 7 6側の空間と第 2 熱媒体流出口 7 7側の空間の間で熱媒体の流出入が起こることはない。
[01 13] 駆動ディスク 7 4は、 固定ディスク 7 5における熱媒体流入口 7 2側の表 面に沿って配置されており、 略扇形状の板状に形成されている。 駆動ディス ク 7 4は、 少なくとも第 1連通路 7 5 3及び第 2連通路 7 5匕の何れか一方 を閉塞可能なサイズに形成されている。 そして、 駆動ディスク 7 4は、 弁体 部 7 3を構成する回転軸 7 4 3に固定されている。
[01 14] 従って、 駆動ディスク 7 4は、 回転軸 7 4 3の回転に伴って、 固定ディス ク 7 5の表面をスライ ド移動する。 上述したように、 回転軸 7 4 3は、 第 2 層側蓋部材 2 5の貫通孔 2 6を介して、 駆動部 3 0内に到達している。 駆動 部 3 0内における回転軸 7 4 3には、 伝達機構 3 3を構成するギヤ 3 3 3が 固定されている。 従って、 駆動ディスク 7 4は、 駆動部 3 0の電磁モータ 3 2の作動に伴って、 固定ディスク 7 5の表面をスライ ド移動する。
[01 15] 即ち、 熱媒体三方弁 7 0は、 駆動部 3 0の作動制御によって、 固定ディス ク 7 5に対する駆動ディスク 7 4の位置を変更することができる。 これによ り、 熱媒体三方弁 7 0は、 第 1熱媒体流出口 7 6から流出させる熱媒体流量 と、 第 2熱媒体流出口 7 7から流出させる熱媒体流量との流量比を調整でき る。
[01 16] 続いて、 図 1 1〜図 1 4を参照して、 熱媒体三方弁 7 0における流量比の 調整について説明する。 以下の説明においては、 第 1連通路 7 5 3の開度を 第 1開度〇 3といい、 第 2連通路 7 5匕の開度を第 2開度〇匕という。
[01 17] 図 1 1 に示す場合、 駆動ディスク 7 4は、 第 2連通路 7 5匕を全閉してお り、 第 1連通路 7 5 3は全開状態になっている。 換言すると、
Figure imgf000022_0001
が 1 0 0 %であり、 第 2開度〇匕が 0 %である状態を示している。 この場合 、 熱媒体三方弁 7 0は、 熱媒体流入口 7 2から流入した熱媒体の全流量を、 第 1熱媒体流出口 7 6から流出させる状態になる。
[01 18] この図 1 1 に示す状態から、 駆動ディスク 7 4を徐々に所定方向 (図 1 1 〇 2020/175262 21 卩(:171? 2020 /006469
中、 時計回り方向) にスライ ド移動させていくと、 駆動ディスク 7 4は、 第 1連通路 7 5 3側へ進出していき、 第 2連通路 7 5匕から離れていく。
[01 19] 即ち、 この動作を行った場合、 熱媒体三方弁 7 0は、 図 1 4に示すように 、 第 2開度〇匕を増加させるに伴って、 第 1開度 を減少させていく。 こ れにより、 熱媒体三方弁 7 0は、 第 1熱媒体流出口 7 6及び第 2熱媒体流出 口 7 7における熱媒体の流量比を調整することができる。
[0120] そして、 図 1 2に示すように、 駆動ディスク 7 4が第 1連通路 7 5 3を全 閉すると、 第 2連通路 7 5匕は全開状態となる。 即ち、
Figure imgf000023_0001
で、 第 2開度〇匕が 1 0 0 %である状態になる。 この場合、 熱媒体三方弁 7 〇は、 熱媒体流入口 7 2から流入した熱媒体の全流量を、 第 2熱媒体流出口 7 7から流出させる状態になる。
[0121 ] このように、 熱媒体三方弁 7 0の構成を有する第
Figure imgf000023_0002
第 2熱媒体三方弁 7 0 13は、 流出口の一方側から流出する熱媒体流量と、 流 出口の他方側から流出する熱媒体流量を調整することができる。 又、 熱媒体 三方弁 7 0は、 二つの流出口の内、 何れか一方側から熱媒体を流出させるこ とができる。
[0122] 従って、 第 1実施形態に係る流路切替装置 1 によれば、 第 1熱媒体三方弁
7 0 3及び第 2熱媒体三方弁 7 0匕の弁体部 7 3の動作を制御することによ って、 熱媒体回路 5 0の流路構成を適宜切り替えることができる。
[0123] 尚、 この構成の熱媒体三方弁 7 0によれば、 図 1 3に示すように、 第 1連 通路 7 5 3及び第 2連通路 7 5匕の何れか一方を全開状態としたままで、 何 れか他方の開度を増減させることができる。 この図 1 3のような状態とした 場合でも、 熱媒体三方弁 7 0は、 流出口の一方側から流出する熱媒体流量と 、 流出口の他方側から流出する熱媒体流量を調整することができる。
[0124] そして、 流路切替装置 1 においては、 第 1層側流路 1 1及び第 2層側流路
1 6にて、 互いに近接して配置される流路の間には、 断熱部 1 3を形成され る。 例えば、 図 1 5に示すように、 本体部材 5の一面側において、 2つの第 1層側流路 1 1の間には、 溝状の断熱部 1 3が形成されている。 〇 2020/175262 22 卩(:171? 2020 /006469
[0125] 断熱部 1 3は、 第 1層側流路 1 1及び第 2層側流路 1 6から独立して形成 されており、 熱媒体が流入することはない。 従って、 断熱部 1 3の内部は空 気で満たされている為、 断熱部 1 3は、 2つの第 1層側流路 1 1の間におけ る熱移動を妨げることができる。 これにより、 断熱部 1 3は、 近接して配置 された流路の間における熱伝達の影響を抑えることができ、 熱媒体回路 5 0 における各構成機器を適切に利用することができる。
[0126] そして、 断熱部 1 3は、 近接して配置される流路の一方を低温の熱媒体が 流通し、 他方を高温の熱媒体が流通する位置に配置されることが望ましい。 近接して配置される流路を流通する熱媒体について、 それぞれ適切な温度を 維持することができる為である。
[0127] 以上説明したように、 第 1実施形態に係る流路切替装置 1 によれば、 図 2 、 図 7等に示すように、 本体部材 5の第 1層側流路形成部 1 0、 第 2層側流 路形成部 1 5及び駆動部 3 0が積層方向!-に積層配置されている。 この為、 流路切替装置 1 によれば、 熱媒体回路 5 0の流路構成を切り替える為の配管 、 継手及び弁の機能を集約することができ、 よりコンパクトな構成を実現す ることができる。
[0128] 更に、 本体部材 5の第 1層側流路形成部 1 0、 第 2層側流路形成部 1 5及 び駆動部 3 0が積層方向!-に積層配置することで、 図 5に示すように、 第 1 熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 0 の弁体部 7 3を近接した位 置に配置できる。 この為、 流路切替装置 1 によれば、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 0匕に対してそれぞれモータ等の駆動源を配置す る場合に比べて、 コンパクトで軽量な構成で、 熱媒体回路 5 0の流路構成の 切替を実現することができる。
[0129] 図 7に示すように、 第 1層側流路形成部 1 0は、 ブロック状の本体部材 5 の一面側に溝状の第 1層側流路 1 1 を形成して構成され、 第 2層側流路形成 部 1 5は、 本体部材 5の他面側に溝状の第 2層側流路 1 6を形成して構成さ れている。
[0130] そして、 本体部材 5の一面側は、 第 1層側蓋部材 2 0によって密閉され、 〇 2020/175262 23 卩(:171? 2020 /006469
本体部材 5の他面側は、 第 2層側蓋部材 2 5によって密閉されている。 これ により、 流路切替装置 1は、 第 1層側流路形成部 1 〇及び第 2層側流路形成 部 1 5を確実に積層配置することができ、 コンパクトで軽量な構成を実現す ることができる。
[0131 ] 更に、 図 7に示すように、 第 2接続口 3 5匕から第 8接続口 3 5 IIを接続 するように直線状に伸びる第 1層側流路 1 1 には、 流路抵抗部 1 2が形成さ れている。 流路抵抗部 1 2の接合面 1 2匕は、 第 1層側流路 1 1 を横断する ように本体部材 5の表面を接続しており、 第 1層側蓋部材 2 0と接合される
[0132] これにより、 流路切替装置 1は、 流路抵抗部 1 2の接合面 1 2匕を利用し て、 第 1層側蓋部材 2 0を本体部材 5に接合することができるので、 本体部 材 5と第 1層側蓋部材 2 0の接合強度を向上させることができる。
[0133] 又、 流路抵抗部 1 2の保持穴 1 2 3によって、 熱媒体回路 5 0の機能部品 である熱媒体逆止弁 6 0が保持されている。 この為、 流路抵抗部 1 2は、 熱 媒体回路 5 0における流路抵抗の調整、 本体部材 5に対する第 1層側蓋部材 2 0の接合強度の向上、 熱媒体回路 5 0における熱媒体逆止弁 6 0の保持と いった多様な役割を果たす。
[0134] 更に、 図 7等に示すように、 同一直線状の第 1層側流路 1 1の内部には、 複数の流路抵抗部 1 2が配置されている。 各流路抵抗部
Figure imgf000025_0001
には、
Figure imgf000025_0002
第 2熱媒体逆止弁 6 0匕、 第 3熱媒体逆止 弁 6 0〇が機能部品として取り付けられている。 各流路抵抗部 1 2の接合面 1 2匕は、 それぞれ、 第 1層側蓋部材 2 0に対して接合されている。
[0135] これにより、 直線状の第 1層側流路 1 1 において、 接合面 1 2匕による接 合部分を複数配置することができるので、 短い間隔で接合面 1 2匕による接 合部分を設けることができ、 直線状の流路部分における接合強度を向上させ ることができる。
[0136] 図 6に示すように、 第 2層側蓋部材 2 5には、 複数の貫通孔 2 6が形成さ れている。 貫通孔 2 6は、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 〇 2020/175262 24 卩(:171? 2020 /006469
0 13における弁体部 7 3の回転軸 7 4 3によって貫通される。 更に、 図 2に 示すように、 第 2層側蓋部材 2 5には、 各弁体部 7 3の駆動源としての電磁 モータ 3 2と、 伝達機構 3 3が取り付けられている。
[0137] これにより、 貫通孔 2 6を貫通する回転軸 7 4 3と、 伝達機構 3 3及び電 磁モータ 3 2の位置関係を精度よく定めることができるので、 第 1熱媒体三 方弁 7 0 3及び第 2熱媒体三方弁 7 0 における弁体部 7 3を確実に動作さ せることができる。
[0138] 又、 図 5に示すように、 第 2層側流路形成部 1 5には、 複数の位置決め凹 部 1 7が形成されており、 第 2層側蓋部材 2 5には、 複数の位置決めピン 2 7が形成されている。 各位置決め凹部 1 7に対して、 各位置決めピン 2 7を 嵌合させることで、 本体部材 5に対して第 2層側蓋部材 2 5を予め定められ た位置に位置決めして接合することができる。
[0139] これにより、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方弁 7 0匕の弁体 部 7 3における回転軸 7 4 3と、 第 2層側蓋部材 2 5の貫通孔 2 6の位置を 精度よく合わせることができ、 回転軸 7 4 3と貫通孔 2 6が干渉することを 抑制することができる。 即ち、 流路切替装置 1は、 弁体部 7 3の円滑な動作 を担保することができる。
[0140] 図 1 5に示すように、 第 1層側流路 1 1及び第 2層側流路 1 6にて、 互い に近接して配置される流路の間には、 断熱部 1 3を形成される。 断熱部 1 3 は、 2つの第 1層側流路 1 1の間における熱移動を妨げる。
[0141 ] 従って、 流路切替装置 1は、 断熱部 1 3によって、 近接して配置された流 路の間における熱伝達の影響を抑えることができる。 これにより、 流路切替 装置 1 によれば、 各流路を流れる熱媒体の温度を適切に保つことができるの で、 熱媒体回路 5 0における各構成機器を適切に利用することができる。
[0142] 図 9〜図 1 4に示すように、 第 1熱媒体三方弁 7 0 3及び第 2熱媒体三方 弁 7 0匕における弁体部 7 3は、 第 1連通路 7 5 3及び第 2連通路 7 5匕へ 流入する熱媒体の流量を調整可能に配置されている。 そして、 図 1 4に示す ように、 弁体部 7 3の駆動ディスク 7 4は、 第 1連通路 7 5 3及び第 2連通 〇 2020/175262 25 卩(:171? 2020 /006469
路 7 5 13の内、 一方の開度を増加させるに伴って、 他方の開度を減少させる
[0143] 従って、 流路切替装置 1 によれば、 第 1熱媒体三方弁 7 0 3及び第 2熱媒 体三方弁 7 0 の作動を制御することで、 熱媒体回路 5 0の流路構成を多様 な構成に切り替えることができる。 これにより、 熱媒体回路 5 0は、 車室内 空調及び、 発熱機器 5 4等の車載機器の温度調整について、 多様な態様で実 現することができる。
[0144] (第 2実施形態)
次に、 第 2実施形態に係る流路切替装置 1 について、 図 1 6〜図 1 9を参 照して説明する。 第 2実施形態に係る流路切替装置 1は、 上述した第 1実施 形態と同様に、 熱媒体回路 5 0の一部を構成している。
[0145] そして、 第 2実施形態に係る流路切替装置 1は、 第 1実施形態と同様に、 第 1層側流路形成部 1 0、 第 2層側流路形成部 1 5、 駆動部 3 0がこの順に 積層方向!-へ積層配置された構成である。
[0146] 第 2実施形態においても、 本体部材 5の一面側には、 第 1層側流路 1 1が 形成されており、 第 1層側流路形成部 1 〇を構成している。 本体部材 5の一 面側には、 第 1層側蓋部材 2 0が接合されて、 第 1層側流路 1 1が密閉され る。
[0147] そして、 本体部材 5の他面側には、 第 2層側流路 1 6が形成されており、 第 2層側流路形成部 1 5を構成している。 本体部材 5の他面側には、 第 2層 側蓋部材 2 5が接合されて、 第 2層側流路 1 6が密閉されている。
[0148] 第 2実施形態に係る流路切替装置 1は、 第 1層側流路 1 1及び第 2層側流 路 1 6の構成及び弁体部 7 3等の配置を除いて、 その基本的な構成は、 第 1 実施形態と同一である。 従って、 第 2実施形態における同一の構成について は、 再度の説明は省略する。
[0149] 第 2実施形態に係る熱媒体回路 5 0は、 上述した第 1実施形態に係る構成 機器に加えて、 温度調整の対象機器として、 バッテリ 5 7を有している。 第 2実施形態に係る熱媒体回路 5 0は、 電気自動車における車室内の空調と、 〇 2020/175262 26 卩(:171? 2020 /006469
車載機器 (例えば、 発熱機器 5 4) の温度調整に加えて、 バッテリ 5 7の温 度調整を行う際に利用される。
[0150] 第 2実施形態に係る流路切替装置 1は、 第 1実施形態と同様に、 本体部材
5の側面に複数の接続口を有している。 図 1 6に示すように、 第 2実施形態 に係る流路切替装置 1は、 第 1実施形態と同様の第 1接続口 3 5 3〜第 1 0 接続口 3 5 」に加えて、 第 1 1接続口 3 5 と第 1 2接続口 3 5 丨 を有して いる。
[0151 ]
Figure imgf000028_0001
」には、 上述した第 1実施形態と同 様に、 熱媒体回路 5 0における各構成機器が、 熱媒体配管を介して接続され ている。 各接続口と構成機器との対応関係は、 基本的に第 1実施形態と同様 である。
[0152] 第 1 1接続口 3 5 及び第 1 2接続口 3 5 I は、 熱媒体配管を介して、 バ ッテリ 5 7の熱媒体通路 5 7 3に接続されている。 バッテリ 5 7は、 モータ ジェネレータ等へ供給される電力を蓄える二次電池 (例えば、 リチウムイオ ン電池) である。 バッテリ 5 7は、 複数の電池セルを直列或いは並列に接続 することによって形成された組電池である。 バッテリ 5 7は、 充放電時に発 熱する。
[0153] バッテリ 5 7の熱媒体通路 5 7 3は、 熱媒体を流通させることによって、 バッテリ 5 7の温度調整を行う為の熱媒体通路であり、 機器用熱交換部を構 成している。 即ち、 バッテリ 5 7の熱媒体通路 5 7 3は、 熱媒体回路 5 0の 熱媒体が流出入可能に接続されている。
[0154] バッテリ 5 7の熱媒体通路 5 7 3は、 水冷媒熱交換器 5 2にて冷却された 熱媒体が流通した場合、 低温の熱媒体を冷熱源としてバッテリ 5 7を冷却す る冷却部として機能する。 又、 バッテリ 5 7の熱媒体通路 5 7 3は、 高温の 熱媒体が流通した場合、 高温の熱媒体を熱源としてバッテリ 5 7を温める加 熱部として機能する。
[0155] そして、 バッテリ 5 7の熱媒体通路 5 7 3は、 バッテリ 5 7の専用ケース に形成されている。 バッテリ 5 7の熱媒体通路 5 7 3の通路構成は、 専用ケ 〇 2020/175262 27 卩(:171? 2020 /006469
—スの内部で複数の通路を並列的に接続した通路構成となっている。
[0156] これにより、 熱媒体通路 5 7 3は、 バッテリ 5 7の全域において、 熱媒体 との熱交換を均等に行うことができる。 例えば、 熱媒体通路 5 7 3は、 全て の電池セルの有する熱を均等に吸熱して、 全ての電池セルを均等に冷却でき るように形成されている。
[0157] 更に、 第 2実施形態に係る流路切替装置 1は、 熱媒体回路 5 0の流路構成 を切り替える為の構成として、 第 3熱媒体三方弁 7 0〇と、 熱媒体開閉弁 7 8を有している。 第 3熱媒体三方弁 7 0〇は、 上述した第 1熱媒体三方弁 7 〇 3、 第 2熱媒体三方弁 7 0 と同様に、 三方式の流量調整弁によって構成 されている。
[0158] そして、 熱媒体開閉弁 7 8は、 熱媒体回路 5 0における流路を開閉する開 閉弁であり、 熱媒体三方弁 7 0と同様に、 弁体部 7 3を有している。 熱媒体 開閉弁 7 8の弁体部 7 3において、 固定ディスク 7 5には、 第 1連通路 7 5 3と同様に構成された一つの連通路が形成されている。 駆動ディスク 7 4に よって連通路を開閉することで、 熱媒体開閉弁 7 8における開閉動作が実現 される。
[0159] 続いて、 第 2実施形態における第 1層側流路 1 1及び第 2層側流路 1 6の 構成について、 図 1 7〜図 1 9を参照しつつ説明する。
[0160] 第 2実施形態に係る第 1接続口 3 5 3と第 2接続口 3 5匕の間には、 熱媒 体配管を介して、 第 1水ポンプ 5 6 3及び水冷媒熱交換器 5 2の熱媒体通路 5 2匕が接続されている。 図 1 8に示すように、 第 1接続口 3 5 3は、 第 1 層側流路 1 1の一端部を構成している。 一方、 第 2接続口 3 5匕は、 図 1 9 に示すように、 第 2層側流路 1 6の一端部を構成している。
[0161 ] そして、 第 3接続口 3 5〇と第 4接続口 3 5 の間には、 熱媒体配管を介 して、 加熱装置 5 3及びヒータコア 5 1が接続されている。 図 1 8、 図 1 9 に示すように、 第 3接続口 3 5〇は、 第 1層側流路 1 1の一端部を構成して おり、 第 4接続口 3 5 は、 第 2層側流路 1 6の一端部を構成している。
[0162] 又、 第 5接続口 3 5 6と第 6接続口 3 5干の間には、 熱媒体配管を介して 〇 2020/175262 28 卩(:171? 2020 /006469
、 発熱機器 5 4の熱媒体通路 5 4 3が接続されている。 図 1 8に示すように 、 第 5接続口 3 5 6は、 第 1層側流路 1 1の一端部を構成している。 一方、 第 6接続口 3 5干は、 図 1 9に示すように、 第 2層側流路 1 6の一端部を構 成している。
[0163] 図 1 7に示すように、 第 7接続口 3 5 9と第 8接続口 3 5 の間には、 熱 媒体配管を介して、 第 2水ポンプ 5 6匕が接続されている。 図 1 8に示すよ うに、 第 7接続口 3 5 9、 第 8接続口 3 5 IIは、 それぞれ、 第 1層側流路 1 1の一端部を構成している。
[0164] 又、 第 9接続口 3 5 丨 と第 1 0接続口 3 5 」の間には、 熱媒体配管を介し て、 ラジェータ 5 5が接続されている。 図 1 9に示すように、 第 9接続口 3 5 丨 は、 第 2層側流路 1 6の一端部を構成している。 一方、 第 1 0接続口 3 5 」は、 図 1 8に示すように、 第 1層側流路 1 1の一端部を構成している。
[0165] そして、 上述したように、 第 1
Figure imgf000030_0001
丨の間 には、 熱媒体配管を介して、 バッテリ 5 7の熱媒体通路 5 7 3が接続されて いる。 図 1 8に示すように、 第 1
Figure imgf000030_0002
第 1層側流路 1 1の一 端部を構成している。 そして、 第 1 2接続口 3 5 I は、 図 1 9に示すように 、 第 2層側流路 1 6の一端部を構成している。
[0166] 第 2実施形態に係る第 1層側流路形成部 1 0において、 第 1接続口 3 5 3 から伸びる第 1層側流路 1 1は、 第 4熱媒体逆止弁 6 0 の流出口から伸び る第 1層側流路 1 1 と接続されている。 そして、 第 1接続口 3 5 3と第 4熱 媒体逆止弁 6 0 の流出口の間の第 1層側流路 1 1 には、 第 6連通部 4 0干 が形成されている。
[0167] ここで、 図 1 7〜図 1 9に示すように、 第 6連通部 4 0干は、 後述する第
5連通部 4 0 6から伸びる第 2層側流路 1 6と、 第 1層側流路 1 1 を連通し ており、 第 6接続部 8 0チを構成している。
[0168] そして、 図 1 9に示すように、 第 4接続口 3 5 から伸びる第 2層側流路
1 6は、 第 1熱媒体三方弁 7 0 3の流入口に接続されている。 第 1熱媒体三 方弁 7 0 3の流入口から流入した熱媒体は、 第 1熱媒体三方弁 7 0 3内部を 〇 2020/175262 29 卩(:171? 2020 /006469
流出口へ向かう過程で、 連通路を通過して、 第 2層側流路 1 6から第 1層側 流路 1 1へ流出する。
[0169] 第 1熱媒体三方弁 7 0 3の流出口の一方から伸びる第 1層側流路 1 1は、 第 1熱媒体逆止弁 6 0 3の流入口から伸びる第 1層側流路 1 1、 第 2熱媒体 逆止弁 6 0匕の流出口から伸びる第 1層側流路 1 1及び、 第 5連通部 4 0 6 から伸びる第 1層側流路 1 1 に接続される。 第 1熱媒体三方弁 7 0 3の流出 口の一方から伸びる第 1層側流路 1 1は、 他の 3つの第 1層側流路 1 1 と接 続されることで、 第 2接続部 8 0 13を構成する。
[0170] 第 5連通部 4〇 6は、 第 1層側流路 1 1 と第 2層側流路 1 6の間を、 積層 方向!-に連通している。 この為、 第 1層側流路 1 1 と第 2層側流路 1 6の間 で、 第 5連通部 4 0 6を介した熱媒体の流通が生じる。
[0171 ] 図 1 9に示すように、 第 5連通部 4 0 6から伸びる第 2層側流路 1 6は、 その端部に第 6連通部 4 0干を有している。 従って、 第 5連通部 4 0 6、 第 6連通部 4 0チを介することで、 第 6接続部 8 0チを含む第 1層側流路 1 1 と、 第 2接続部 8 0匕を含む第 1層側流路 1 1 との間における熱媒体の流通 を担保することができる。
[0172] そして、 第 1熱媒体三方弁 7 0 3の流出口の他方から伸びる第 1層側流路
1 1は、 第 5接続口 3 5 6から伸びる第 1層側流路 1 1及び第 1連通部 4 0 3から伸びる第 1層側流路 1 1 に接続され、 第 4接続部 8 0 を構成する。
[0173] 上述したように、 第 1連通部 4〇 3では、 第 1層側流路 1 1 と第 2層側流 路 1 6の間で、 熱媒体が流通する。 図 1 9に示すように、 第 1連通部 4 0 3 から伸びる第 2層側流路 1 6は、 第 2熱媒体三方弁 7 0匕の流入口に接続さ れている。 第 2熱媒体三方弁 7 0匕の流入口から流入した熱媒体は、 第 2熱 媒体三方弁 7 0 内部を流出口へ向かう過程で、 連通路を通過して、 第 2層 側流路 1 6から第 1層側流路 1 1へ流出する。
[0174] 第 2熱媒体三方弁 7 0匕の流出口の一方側から伸びる第 1層側流路 1 1は 、 第 7接続口 3 5 9から伸びる第 1層側流路 1 1及び第 1 0接続口 3 5 」か ら伸びる第 1層側流路 1 1 に接続され、 第 3接続部 8 0〇を構成する。 〇 2020/175262 30 卩(:171? 2020 /006469
[0175] そして、 第 2熱媒体三方弁 7 0匕の流出口の他方側から伸びる第 1層側流 路 1 1は、 その端部に第 2連通部 4 0匕を有している。 第 2連通部 4 0匕で は、 第 1層側流路 1 1 と第 2層側流路 1 6の間で、 熱媒体が流通する。 図 1 9に示すように、 第 2連通部 4 0匕から伸びる第 2層側流路 1 6は、 第 9接 続口 3 5 丨 まで伸びている。
[0176] そして、 第 2連通部 4 0匕と第 9接続口 3 5 丨の間には、 第 3連通部 4 0 〇が形成されている。 第 3連通部 4 0〇では、 第 1層側流路 1 1 と第 2層側 流路 1 6の間で、 熱媒体が流通する。 第 3連通部 4 0〇から伸びる第 1層側 流路 1 1は、 熱媒体開閉弁 7 8の流入出口の一方側に接続されている。 熱媒 体開閉弁 7 8において、 流入出口の一方側から他方側へ流通する過程で、 熱 媒体は、 第 1層側流路 1 1 と第 2層側流路 1 6の間で流出入する。
[0177] 図 1 8に示すように、 第 3接続口 3 5〇から延びる第 1層側流路 1 1は、 第 1熱媒体逆止弁 6〇 3の流出口から伸びる第 1層側流路 1 1 と、 第 3熱媒 体三方弁 7 0〇の流出口の一方から伸びる第 1層側流路 1 1 に接続され、 第 1接続部 8 0 3を構成している。
[0178] 第 2接続口 3 5匕から伸びる第 2層側流路 1 6は、 第 3熱媒体三方弁 7 0 〇の流入口に接続されている。 第 3熱媒体三方弁 7 0〇の流入口から流入し た熱媒体は、 第 3熱媒体三方弁 7 0〇内部を流出口へ向かう過程で、 連通路 を通過して、 第 2層側流路 1 6から第 1層側流路 1 1へ流出する。
[0179] 上述したように、 第 3熱媒体三方弁 7 0〇の流出口の一方から伸びる第 1 層側流路 1 1は、 第 1接続部 8 0 3に接続されている。 図 1 8に示すように 、 第 3熱媒体三方弁 7 0〇の流出口の他方から伸びる第 1層側流路 1 1は、 第 1 1接続口 3 5 から伸びる第 1層側流路 1 1及び第 5熱媒体逆止弁 6 0 6の流出口から伸びる第 1層側流路 1 1 に接続され、 第 8接続部 8 0 IIを構 成している。
[0180] そして、 第 8接続口 3 5 から伸びる第 1層側流路 1 1は、 第 2熱媒体逆 止弁 6 0匕の流入口から伸びる第 1層側流路 1 1及び第 5熱媒体逆止弁 6 0 6の流入口から伸びる第 1層側流路 1 1 に接続され、 第 1 〇接続部 8 0」を 〇 2020/175262 31 卩(:171? 2020 /006469
構成している。
[0181 ] 図 1 9に示すように、 第 6接続口 3 5干から伸びる第 2層側流路 1 6は、 その端部に第 4連通部 4 0 を有している。 第 4連通部 4 0 では、 第 1層 側流路 1 1 と第 2層側流路 1 6の間で、 熱媒体が流通する。
[0182] ここで、 第 4連通部 4 0 は、 図 1 8に示すように、 第 1熱媒体逆止弁 6
0 3の流出口と第 3熱媒体逆止弁 6 0〇の流入口を接続する第 1層側流路 1 1の内部に配置されている。 従って、 第 4連通部 4 0 は、 第 1熱媒体逆止 弁 6 0 3の流出口から伸びる第 1層側流路 1 1、 第 3熱媒体逆止弁 6 0〇の 流入口から伸びる第 1層側流路 1 1及び第 6接続口 3 5チから伸びる第 2層 側流路 1 6を接続しており、 第 5接続部 8 0 6を構成している。
[0183] 図 1 9に示すように、 第 1 2接続口 3 5 丨から伸びる第 2層側流路 1 6は 、 熱媒体開閉弁の流入出口の他方側から伸びる第 2層側流路 1 6及び第 7連 通部 4 0 9から伸びる第 2層側流路 1 6に接続され、 第 7接続部 8 0 9を構 成する。 従って、 第 1 2接続口 3 5 Iから伸びる第 2層側流路 1 6は、 熱媒 体開閉弁 7 8を介して、 第 3連通部 4 0〇から伸びる第 1層側流路 1 1 と接 続されている。
[0184] そして、 第 7連通部 4 0 9では、 第 1層側流路 1 1 と第 2層側流路 1 6の 間で、 熱媒体が流通する。 第 7連通部 4 0 9から伸びる第 1層側流路 1 1は 、 第 4熱媒体逆止弁 6 0 ¢1の流入口に接続されている。
[0185] 第 2実施形態に係る流路切替装置 1 によれば、 熱媒体回路 5 0の流路構成 を切り替えることによって、 車室内の空調と、 発熱機器 5 4の温度調整と、 バッテリ 5 7の温度調整を行うことができる。
[0186] 例えば、 第 2実施形態に係る流路切替装置 1は、 熱媒体回路 5 0の流路構 成として、
Figure imgf000033_0001
水冷媒熱交換器 5 2、 第 3熱媒体三方弁 7
0〇、 バッテリ 5 7、 第 4熱媒体逆止弁 6 0 、 第 1水ポンプ 5 6 3の順で 熱媒体を循環させる。 同時に、 第 2水ポンプ 5 6匕、 第 2熱媒体逆止弁 6 0 匕、 発熱機器 5 4、 第 2熱媒体三方弁 7 0匕、 ラジェータ 5 5、 第 2水ボン プ 5 6匕の順で熱媒体を循環させる。 〇 2020/175262 32 卩(:171? 2020 /006469
[0187] この流路構成の熱媒体回路 5 0によれば、 冷凍サイクル 9 0を冷熱源とす るバッテリ 5 7の冷却を行いつつ、 発熱機器 5 4の廃熱を外気に放熱するこ とができる。 即ち、 バッテリ 5 7の温度調整と、 発熱機器 5 4の温度調整を それぞれ独立して、 並列的に実行することができる。
[0188] 第 2実施形態に係る流路切替装置 1 によれば、 上述した熱媒体回路 5 0の 回路構成において、 第 2水ポンプ 5 6匕による熱媒体の循環経路を更に切り 替えることができる。 第 2水ポンプ 5 6匕、 第 2熱媒体逆止弁 6 0匕、 第 3 熱媒体三方弁 7 0〇、
Figure imgf000034_0001
加熱装置 5 3、 ヒータコア
5 1、
Figure imgf000034_0002
第 2熱媒体三方弁 7 0匕、 ラジェータ 5 5
、 第 2水ポンプ 5 6匕の順で熱媒体を循環させる。
[0189] この構成によれば、 冷凍サイクル 9 0によるバッテリ 5 7の冷却と、 発熱 機器 5 4の廃熱を用いた車室内暖房と、 発熱機器 5 4の廃熱に係る余剰熱の 外気放熱を並列的に行うことができる。
[0190] 又、 第 2実施形態の流路切替装置 1は、 熱媒体回路 5 0の流路構成として 、
Figure imgf000034_0003
水冷媒熱交換器 5 2、 加熱装置 5 3、 ヒータコア 5
1、
Figure imgf000034_0004
発熱機器 5 4、 第 3熱媒体逆止弁 6 0〇、 第
1水ポンプ 5 6 3の順で熱媒体を循環させる。 同時に、 第 2水ポンプ 5 6匕 、
Figure imgf000034_0005
バッテリ 5 7、 熱媒体開閉弁 7 8、 ラジェータ
5 5、 第 2水ポンプ 5 6匕の順で熱媒体を循環させる。
[0191 ] これにより、 この流路構成の熱媒体回路 5 0によれば、 発熱機器 5 4の廃 熱及び冷凍サイクル 9 0を利用した車室内空調と、 外気放熱によるバッテリ 5 7の冷却とを並列的に実行することができる。
[0192] 以上説明したように、 第 2実施形態に係る流路切替装置 1 によれば、 熱媒 体回路 5 0の機能としてバッテリ 5 7の温度調整を追加した場合であっても 、 上述した第 1実施形態と共通の構成及び作動から奏される作用効果を、 第 1実施形態と同様に得ることができる。
[0193] (第 3実施形態)
続いて、 第 3実施形態に係る流路切替装置 1 について、 図 2 0〜図 2 1 を 〇 2020/175262 33 卩(:171? 2020 /006469
参照して説明する。 第 3実施形態に係る流路切替装置 1は、 上述した実施形 態と同様に、 熱媒体回路 5 0の一部を構成している。
[0194] そして、 第 3実施形態に係る流路切替装置 1は、 熱媒体回路 5 0の構成を 含めて、 基本的に、 第 1実施形態と同様に構成されている。 第 3実施形態に おける相違点は、 流路抵抗部 1 2の構成及び第 1熱媒体逆止弁 6 0 3〜第 3 熱媒体逆止弁 6 0〇の構成である。 従って、 第 3実施形態における同一の構 成については、 再度の説明は省略して、 相違点について詳細に説明する。
[0195] 図 2 0は、 第 3実施形態に係る流路切替装置 1 において、 第 2接続口 3 5 匕から第 8接続口 3 5 IIを接続するように直線状に伸びる第 1層側流路 1 1 に沿った断面の断面図である。 第 3実施形態においても、 第 2接続口 3 5匕 と第 8接続口 3 5 IIを接続する直線状の第 1層側流路 1 1の内部には、 複数 の流路抵抗部 1 2が配置されている。
[0196] 各流路抵抗部 1 2は、 第 1実施形態と同様に、 溝状に形成された第 1層側 流路 1 1 を横断するように壁状に形成されており、 保持穴 1 2 3を有してい る。 保持穴 1 2 3は、 流路抵抗部 1 2を厚み方向に貫通して形成されている 。 即ち、 流路抵抗部 1 2は、 第 1層側流路 1 1の流路断面積を縮小するよう に変化させたことで、 第 1層側流路 1 1 を流れる熱媒体の流路抵抗を増大さ せている。
[0197] 第 3実施形態において、 保持穴 1 2 3の内径は、 第 1熱媒体逆止弁 6 0 3 〜第 3熱媒体逆止弁 6 0〇の弁体を構成する球状弁体 6 2の外径よりも小さ く形成されている。 図 2 0に示すように、 各球状弁体 6 2は、 それぞれ流路 抵抗部 1 2よりも第 2接続口 3 5匕側に配置されており、 第 1層側流路 1 1 を通過する熱媒体の流れに従って移動可能に構成されている。
[0198] そして、 各球状弁体 6 2の位置よりも第 2接続口 3 5匕側には、 規制片 6
3 3及び規制突部 6 3匕が相互に対向するように形成されている。 図 2 0、 図 2 1 に示すように、 規制片 6 3 3は、 第 1層側蓋部材 2 0から第 1層側流 路 1 1内に向かって突出するように形成されている。
[0199] 一方、 規制突部 6 3匕は、 溝状の第 1層側流路 1 1 における底面から、 第 〇 2020/175262 34 卩(:171? 2020 /006469
1層側流路 1 1 における開放部分に向かって突出している。 規制片 6 3 3及 び規制突部 6 3 は、 第 1層側流路 1 1 における流路幅を球状弁体 6 2の外 径よりも小さくするように配置されている。 つまり、 規制片 6 3 3及び規制 突部 6 3匕は、 第 1実施形態における熱媒体逆止弁 6 0の規制ピン 6 3と同 様に作用する。
[0200] 従って、 球状弁体 6 2は、 規制片 6 3 3及び規制突部 6 3匕から流路抵抗 部 1 2までの範囲で、 第 1層側流路 1 1の内部を移動可能に収容されている 。 この為、 図 2 0に示す例によれば、 第 8接続口 3 5 側から第 2接続口 3 5匕側へ向かって熱媒体が流れる場合、 球状弁体 6 2が熱媒体の流れに従っ て、 規制片 6 3 3及び規制突部 6 3匕の側へ移動する。
[0201 ] この場合、 球状弁体 6 2の移動に伴って、 流路抵抗部
Figure imgf000036_0001
が開放される。 更に、 図 2 1 に示すように、 規制片 6 3 3及び規制突部 6 3 匕側で球状弁体 6 2にて、 第 1層側流路 1 1の流路が閉塞されることはない 為、 第 8接続口 3 5 側から第 2接続口 3 5匕側へ向かう熱媒体の流れが許 容される。
[0202] この時、 球状弁体 6 2は、 規制片 6 3 3又は規制突部 6 3匕と当接して、 熱媒体の流れに伴う移動が制限される為、 第 1層側流路 1 1 における所定の 範囲から外部へ流出することはない。
[0203] —方、 第 2接続口 3 5匕側から第 8接続口 3 5 側へ向かって熱媒体が流 れる場合、 規制片 6 3 3及び規制突部 6 3匕を通過した熱媒体は、 流路抵抗 咅^ 1 2の保持穴 1 2 3に向かって流れる。 この時、 球状弁体 6 2が熱媒体の 流れに従って、 保持穴 1 2 3へ向かって移動して着座する。 つまり、 流路抵 抗部 1 2の保持穴 1 2 3が球状弁体 6 2によって閉塞され、 第 2接続口 3 5 匕側から第 8接続口 3 5 側へ向かう熱媒体の流れが禁止される。
[0204] つまり、
Figure imgf000036_0002
弁 6 0〇は、 流路抵抗部 1 2から規制片 6 3 3及び規制突部 6 3匕までの第 1層側流路 1 1 と、 球状弁体 6 2によって構成される。 これにより、 第 1実 施形態における熱媒体逆止弁 6 0と同様の機能を発揮させつつ、 よりコンパ 〇 2020/175262 35 卩(:171? 2020 /006469
クトな構成とすることができる。
[0205] 換言すると、 流路抵抗部 1 2から規制片 6 3 3及び規制突部 6 3匕までの 第 1層側流路 1 1は、 第 1実施形態における弁体ケース 6 1 に相当する。 規 制片 6 3 3及び規制突部 6 3匕は、 第 1実施形態における規制ピン 6 3に相 当する。 そして、 流路抵抗部 1 2の保持穴 1 2 3は、 第 1実施形態における 流路穴 6 1 3であり、 球状弁体 6 2が着座する弁座を構成する。 つまり、 流 路抵抗部 1 2は、 機能部品としての球状弁体 6 2を保持している。
[0206] そして、 図 2 0に示すように、 第 3実施形態に係る流路抵抗部 1 2におい ても、 接合面 1 2匕が形成される。 流路抵抗部 1 2の接合面 1 2匕は、 第 1 層側流路 1 1 を横断するように、 本体部材 5の一面側の表面を接続して構成 される。 そして、 図 2 0に示すように、 本体部材 5の一面側に第 1層側蓋部 材 2 0を取り付けた場合に、 接合面 1 2 は第 1層側蓋部材 2 0の表面に当 接する。
[0207] この為、 流路切替装置 1 によれば、 本体部材 5に対して第 1層側蓋部材 2
0をレーザー溶着等で接合する場合に、 流路抵抗部 1 2の接合面 1 2 を介 して接合できる。 これにより、 流路切替装置 1では、 複数の接合面 1 2匕を 利用することで、 本体部材 5に対する第 1層側蓋部材 2 0の接合強度を向上 させることができる。
[0208] 又、 接合面 1 2 は本体部材 5の一面側の表面を接続して形成されている 為、 レーザー溶着等を採用した場合に、 焦点距離等の設定変更を最小限にと どめることができ、 連続的な接合作業を行うことができる。
[0209] 以上説明したように、 第 3実施形態に係る流路切替装置 1 によれば、 流路 抵抗部 1 2及び第 1熱媒体逆止弁 6 0 3等の構成を変更した場合であっても 、 上述した第 1実施形態と共通の構成及び作動から奏される作用効果を、 第 1実施形態と同様に得ることができる。
[0210] 尚、 第 3実施形態においては、 第 1実施形態に係る流路切替装置 1 に適用 した場合について説明したが、 この態様に限定されるものではない。 即ち、 第 3実施形態における流路抵抗部 1 2及び第 1熱媒体逆止弁 6 0 3等の構成 〇 2020/175262 36 卩(:171? 2020 /006469
を、 第 2実施形態に係る流路切替装置 1 に適用することも可能である。
[021 1 ] 又、 第 3実施形態では、 球状弁体 6 2の移動範囲を規制する構成として、 第 1層側蓋部材 2 0の規制片 6 3 3と、 本体部材 5である第 1層側流路 1 1 側に形成された規制突部 6 3 13を用いていたが、 この態様に限定されるもの ではない。 規制片 6 3 3と規制突部 6 3匕の何れか一方を用いる構成を採用 することも可能である。 又、 規制突部 6 3匕の突出方向は、 第 1層側流路 1 1の開放側である必要はなく、 球状弁体 6 2の移動を制限することができれ ば、 第 1層側流路 1 1の内壁面から底面に平行に突出する構成としても良い
[0212] 本開示は上述した実施形態に限定されることなく、 本開示の趣旨を逸脱し ない範囲内で、 以下のように種々変形可能である。
[0213] 上述した実施形態においては、 流路切替装置 1 における本体部材 5の一面 側を第 1層側流路形成部 1 〇とし、 他面側を第 2層側流路形成部 1 5として いたが、 この態様に限定されるものではない。 第 1層側流路形成部 1 〇及び 第 2層側流路形成部 1 5をそれぞれ別の部材として構成することも可能であ る。 又、 第 1層側流路形成部 1 〇の第 1層側流路 1 1 と、 第 2層側流路形成 部 1 5の第 2層側流路 1 6の何れか一方について、 複数の熱媒体配管で構成 することも可能である。
[0214] 又、 上述した実施形態においては、 第 1層側流路 1 1及び第 2層側流路 1
6を本体部材 5の表面に溝状に形成していたが、 この態様に限定されるもの ではない。 積層配置される第 1層側流路形成部 1 〇及び第 2層側流路形成部 1 5に対して、 それぞれ第 1層側流路 1 1、 第 2層側流路 1 6が形成されて いればよく、 第 1層側流路 1 1等の形成方法は適宜変更することができる。
[0215] そして、 上述した実施形態においては、 図 7、 図 9等に示すように、 平板 状の第 1層側蓋部材 2 0、 第 2層側蓋部材 2 5としていたが、 これに限定さ れるものではない。 第 1層側蓋部材 2 0及び第 2層側蓋部材 2 5について、 本体部材 5に対向する面を加工してもよい。
[0216] 例えば、 第 1層側蓋部材 2 0における本体部材 5に対向する面に、 第 1層 〇 2020/175262 37 卩(:171? 2020 /006469
側流路 1 1 と同じパターンで形成された凹部を設けても良い。 蓋部材側の凹 部と本体部材 5側の溝形状によって、 第 1層側流路等の流路面積を確保する ことができると共に、 蓋部材としての強度を向上させることができる。
[0217] 又、 上述した実施形態においては、 図 5に示すように、 本体部材 5の他面 側に形成された位置決め凹部 1 7と、 第 2層側蓋部材 2 5に形成された位置 決めピン 2 7とを協働させて、 位置決め部として機能させていたが、 この態 様に限定されるものではない。
[0218] 例えば、 第 2層側流路形成部 1 5に位置決めピンを設け、 第 2層側蓋部材
2 5に位置決め凹部を設けても良い。 更に、 ピンと凹部の組み合わせに限定 されるものではなく、 その構成の形状的特徴から第 2層側流路形成部 1 5と 第 2層側蓋部材 2 5とを位置決めすることができれば、 リブと溝など種々の 態様を採用することができる。
[0219] そして、 上述した実施形態においては、 第 1層側流路 1 1及び第 2層側流 路 1 6の内、 近接して配置される流路の間に断熱部 1 3を設けていたが、 図 1 5に示す態様に限定されるものではない。 例えば、 熱媒体三方弁 7 0にお いて、 第 1連通路 7 5 3から第 1熱媒体流出口 7 6まで伸びる流路と、 第 2 連通路 7 5匕から第 2熱媒体流出口 7 7まで伸びる流路の間に、 断熱部 1 3 を形成しても良い。
[0220] 又、 上述した実施形態では、 本開示に係る流路切替装置 1 を、 車載機器冷 却機能付きの車両用空調装置における熱媒体回路 5 0に適用した例を説明し たが、 これに限定されるものではない。
[0221 ] 本開示に係る流路切替装置 1は、 車両用の熱媒体回路に限定されることな く、 定置型の空調装置等の熱媒体回路に適用してもよい。 例えば、 サーバ ( コンピュータ) の温度を適切に調整しつつ、 サーバが収容される室内の空調 を行うサーバ冷却機能付きの空調装置等の熱媒体回路に適用してもよい。
[0222] そして、 上述した実施形態では、 流路切替装置 1 における複数の弁体部 7
3として、
Figure imgf000039_0001
第 2熱媒体三方弁 7 0匕、 第 3熱媒体 三方弁 7 0〇、 熱媒体開閉弁 7 8の弁体部 7 3を採用していたが、 これに限 \¥0 2020/175262 38 卩(:17 2020 /006469
定されるものではない。 熱媒体回路 5 0における流路構成を切り替えること ができれば、 複数の開閉弁の組み合わせ等の他の構成を採用することができ る。
[0223] 又、 上述した実施形態では、 熱媒体回路 5 0の熱媒体として、 エチレング リコール水溶液を採用した例を説明したが、 熱媒体はこれに限定されない。 例えば、 ジメチルポリシロキサン、 或いはナノ流体等を含む溶液、 不凍液等 を、 熱媒体として採用することができる。
[0224] そして、 上述した実施形態では、 流路抵抗部 1 2に保持穴 1 2 3を形成し 、 第 1層側流路 1 1の流路断面積を縮小するように変化させていたが、 この 態様に限定されるものではない。 流路断面積を変化させることで、 熱媒体の 流路抵抗を増大させることができれば、 種々の態様を採用することができる 。 例えば、 流路断面積を急拡大することで、 拡大した部分に熱媒体の渦を発 生させ、 流路抵抗を増大させてもよい。
[0225] 本開示は、 実施例に準拠して記述されたが、 本開示は当該実施例や構造に 限定されるものではないと理解される。 本開示は、 様々な変形例や均等範囲 内の変形をも包含する。 加えて、 様々な組み合わせや形態、 さらには、 それ らに一要素のみ、 それ以上、 あるいはそれ以下、 を含む他の組み合わせや形 態をも、 本開示の範疇や思想範囲に入るものである。

Claims

\¥0 2020/175262 39 卩(:17 2020 /006469 請求の範囲
[請求項 1 ] 流体が循環する流体回路 (5 0) の流路構成を切り替える流路切替 装置であって、
前記流体回路に接続される第 1層側流路 (1 1) が形成された第 1 層側流路形成部 (1 〇) と、
前記第 1層側流路と複数の箇所で連通すると共に、 前記流体回路に 接続される第 2層側流路 (1 6) が形成された第 2層側流路形成部 ( 1 5) と、
前記第 1層側流路と前記第 2層側流路とを連通する連通路 (7 5 3 . 7 5 6) を通過する前記流体の流量を調整する複数の弁体部 (7 3 ) を少なくとも連動して駆動させる駆動部 (3 0) と、 を備え、 前記弁体部は、 前記第 2層側流路の内部に配置されており、 前記第 1層側流路形成部、 前記第 2層側流路形成部、 及び前記駆動 部がこの順番で積層配置されている流路切替装置。
[請求項 2] 前記第 1層側流路形成部は、 ブロック状に形成された本体部材 (5
) の一面側に対して、 前記第 1層側流路を溝状に形成して構成され、 前記第 2層側流路形成部は、 前記本体部材にて前記第 1層側流路が 形成された面の裏側に位置する他面側に対して、 前記第 2層側流路を 溝状に形成して構成されており、
前記本体部材の一面側は、 第 1層側蓋部材 (2 0) によって密閉さ れ、
前記本体部材の他面側は、 第 2層側蓋部材 (2 5) によって密閉さ れている請求項 1 に記載の流路切替装置。
[請求項 3] 前記第 1層側流路及び前記第 2層側流路における流路の内部には、 溝状の前記流路を横断するように形成され、 前記流路における流路断 面積を変化させた流路抵抗部 (1 2) が配置されており、
前記流路抵抗部は、 前記流路を横断するように前記本体部材の表面 を接続し、 前記第 1層側蓋部材又は前記第 2層側蓋部材と接合される 〇 2020/175262 40 卩(:171? 2020 /006469
接合面 (1 2 ) を有している請求項 2に記載の流路切替装置。
[請求項 4] 前記流路抵抗部は、 前記流路の内部において、 前記流体回路の機能 部品を保持する請求項 3に記載の流路切替装置。
[請求項 5] 前記流路抵抗部は、 前記第 1層側流路及び前記第 2層側流路におけ る同一直線状の前記流路に複数配置されている請求項 3又は 4に記載 の流路切替装置。
[請求項 6] 前記第 2層側蓋部材は、 前記弁体部の回転軸 (7 4 3) によって貫 通される貫通孔 (2 6) を複数有しており、
前記第 2層側蓋部材には、 前記弁体部の駆動源としてのモータ (3 2) と、 前記モータの駆動力を前記回転軸のそれぞれに伝達可能に構 成された伝達機構 (3 3) とが取り付けられている請求項 2ないし 5 の何れか 1つに記載の流路切替装置。
[請求項 7] 前記第 2層側蓋部材と前記本体部材の他面側には、 前記本体部材に 対して前記第 2層側蓋部材を位置決めする位置決め部 (1 7、 2 7) が形成されている請求項 2ないし 6の何れか 1つに記載の流路切替装 置。
[請求項 8] 前記第 1層側流路及び前記第 2層側流路にて、 互いに近接して配置 される流路の間には、 前記流路の間における熱伝達を減少させる断熱 咅6 (1 3) が配置されている請求項 1ないし 7の何れか 1つに記載の 流路切替装置。
[請求項 9] 前記弁体部は、 前記第 2層側流路の内部において、 2つの前記連通 路 (7 5 3、 1 b b
) へ流入する前記流体の流量を調整可能に配置され、
2つの前記連通路の内、 一方の開度を増加させるに伴って、 他方の 開度を減少させる請求項 1ないし 8の何れか 1つに記載の流路切替装 置。
PCT/JP2020/006469 2019-02-28 2020-02-19 流路切替装置 WO2020175262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016795.9A CN113508233B (zh) 2019-02-28 2020-02-19 流路切换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-035446 2019-02-28
JP2019035446A JP7014196B2 (ja) 2019-02-28 2019-02-28 流路切替装置

Publications (1)

Publication Number Publication Date
WO2020175262A1 true WO2020175262A1 (ja) 2020-09-03

Family

ID=72239577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006469 WO2020175262A1 (ja) 2019-02-28 2020-02-19 流路切替装置

Country Status (3)

Country Link
JP (1) JP7014196B2 (ja)
CN (1) CN113508233B (ja)
WO (1) WO2020175262A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019058A1 (ja) * 2020-07-23 2022-01-27 株式会社デンソー 流路切替装置
DE102020134131A1 (de) 2020-12-18 2022-06-23 Hanon Systems Vorrichtung zum Regeln von Durchfluss und zum Verteilen eines Fluids in einem Fluidkreislauf

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4200100A2 (en) 2020-08-20 2023-06-28 Ricoh Company, Ltd. Pattern forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933370B1 (ja) * 1970-10-20 1974-09-06
JPH10267199A (ja) * 1997-03-24 1998-10-09 Kayaba Ind Co Ltd 油路構成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489187B1 (ja) * 1968-04-30 1973-03-22
CN102667276B (zh) * 2009-10-22 2014-03-12 大金工业株式会社 空调机
JP5615573B2 (ja) * 2010-03-17 2014-10-29 株式会社不二工機 流路切換弁及びそれを用いたヒートポンプ装置
EP2610526B1 (en) * 2010-08-24 2017-04-26 Honda Motor Co., Ltd. Liquid flow path control device for drive device for vehicle
JP6504252B2 (ja) * 2015-08-03 2019-04-24 株式会社デンソー 統合弁
JP2017166569A (ja) * 2016-03-16 2017-09-21 日立オートモティブシステムズ株式会社 流量制御弁および冷却システム
JP6673547B2 (ja) * 2016-04-27 2020-03-25 Smc株式会社 流体制御弁
JP6493300B2 (ja) * 2016-05-19 2019-04-03 株式会社デンソー 流路切替弁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933370B1 (ja) * 1970-10-20 1974-09-06
JPH10267199A (ja) * 1997-03-24 1998-10-09 Kayaba Ind Co Ltd 油路構成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019058A1 (ja) * 2020-07-23 2022-01-27 株式会社デンソー 流路切替装置
DE102020134131A1 (de) 2020-12-18 2022-06-23 Hanon Systems Vorrichtung zum Regeln von Durchfluss und zum Verteilen eines Fluids in einem Fluidkreislauf

Also Published As

Publication number Publication date
JP2020139568A (ja) 2020-09-03
CN113508233A (zh) 2021-10-15
JP7014196B2 (ja) 2022-02-01
CN113508233B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020175262A1 (ja) 流路切替装置
US11724561B2 (en) Device for regulating a flow through and distributing a fluid in a fluid circuit
US9657861B2 (en) Flow passage switching unit
KR102276255B1 (ko) 차량 통합 열관리 멀티포트 밸브
KR102216300B1 (ko) 유체 회로에서 유체 관류 조절 및 분배 장치
WO2023045358A1 (zh) 电动车辆及其热管理器
JP2012180049A (ja) 車両用空調システム
WO2019026481A1 (ja) 複合型熱交換器
WO2020158207A1 (ja) 車両用空気調和装置
WO2019123970A1 (ja) 冷却回路及びオイルクーラ
US11221076B2 (en) Device for regulating a flow-through and distributing a fluid in a fluid circuit
WO2020246423A1 (ja) 流路切替弁及び流体循環システム
WO2021235124A1 (ja) 流路切替装置
CN111854208A (zh) 热管理系统
US20230141026A1 (en) Flow path switching device
WO2020059353A1 (ja) 車両用空気調和装置
JP7346927B2 (ja) 流路切替装置
US12017503B2 (en) Plate arrangement for fluid flow
JP7433965B2 (ja) 熱交換器
WO2020059354A1 (ja) 車両用空気調和装置
KR20120056221A (ko) 공조 장치
CN116804442A (zh) 阀装置和使用阀装置的集成式热管理系统
WO2019181627A1 (ja) 車両用空気調和装置
WO2019230116A1 (ja) 車両用空気調和装置
CN116373554A (zh) 热交换模块、热管理系统、电动车辆和储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763385

Country of ref document: EP

Kind code of ref document: A1