WO2020175164A1 - 光伝送システム及び光伝送方法 - Google Patents
光伝送システム及び光伝送方法 Download PDFInfo
- Publication number
- WO2020175164A1 WO2020175164A1 PCT/JP2020/005650 JP2020005650W WO2020175164A1 WO 2020175164 A1 WO2020175164 A1 WO 2020175164A1 JP 2020005650 W JP2020005650 W JP 2020005650W WO 2020175164 A1 WO2020175164 A1 WO 2020175164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- information
- signal
- wavelength
- transbonder
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0272—Transmission of OAMP information
- H04J14/0275—Transmission of OAMP information using an optical service channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0043—Fault tolerance
Definitions
- the present invention relates to an optical transmission system and an optical transmission method having a disaggregation configuration in which a transbonder device and a ⁇ X C (Optical Cross Connect: optical interconnection) device are connected together by an optical fiber cable.
- a transbonder device and a ⁇ X C (Optical Cross Connect: optical interconnection) device are connected together by an optical fiber cable.
- Fig. 8 shows a block diagram of a conventional optical transmission system 10.
- Optical transmission system 1
- trans bonder devices 1 1 and 1 5 there are multiple OXC devices 1 2, 1 3, 1 4 between the trans bonder device 11 and the trans bonder device 15 (hereinafter referred to as trans bonder devices 1 1 and 1 5) that are spaced apart from each other.
- Optical fiber cable (also called optical fiber) 16 connected.
- an EMS (Element Management System) device 17 is connected to the transbonder devices 11 and 15 by a cable such as an optical fiber or a conductive cable.
- An EMS device 18 is connected to the OXC devices 12 to 14 by a cable.
- Each transbonder device 1 1, 1 5 has a terminal device 19 as a communication device such as a personal computer or a router.
- each of the transbonder devices 11 and 15 has the same configuration, and each of the OXC devices 12 to 14 also has the same configuration, from the terminal device 19 to the terminal device 20. It shows a mode in which a signal is transmitted. Therefore, the OXC device 12 placed on the transmitting side represents a MUX (Multiplexer) 12 c that multiplexes optical signals of multiple wavelengths, and the OXC device 14 placed on the receiving side has multiple It represents a DMUX (Demultiplexer) 14 c that demultiplexes an optical signal of a wavelength.
- MUX Multiplexer
- the OXC device 13 connected between the OXC devices 1 2 and 1 4 on both sides is configured to relay the optical signal transmitted between the OXC devices 1 2 and 1 4 on both sides. ..
- the transbonder devices 11 and 15 are transmitted between the terminals 19 and 20. Performs optical signal relay processing.
- the OXC devices 12 to 14 perform switching processing of multi-directional wavelength paths by the optical fiber 16.
- the EMS device 17 monitors and controls the communication relay processing of the transbonder devices 11 and 15 and the EMS device 18 monitors the switching process of the multi-path wavelength paths of the OXC devices 12 to 14. Control.
- FIG. 9 shows the OXC device 14 and a transbonder device 15 connected to the OXC device 14 as a representative.
- ⁇ ⁇ ⁇ Device 14 consists of optical amplifier 4 a, optical SW (switch) 4 b, DMUX 4 c, ⁇ SC (Optical Supervisory Channel) part 4 d, supervisory control part 4 e, It is composed of an AIS (Alarm Indicative Signal) generator 4f and a communication processor 4g.
- the EMS device 18 is connected to the monitoring control unit 4e, and the EMS device 18 receives the monitoring information from the monitoring control unit 4e.
- the transbonder device 15 includes a plurality of (one or more) transbonders 5 a 1,
- the communication processing unit 5 g of the transbonder device 15 and the communication processing unit 4 g of the OXC device 14 are cable-connected with a LAN cable or the like.
- An EMS device 17 is connected to the monitoring control unit 5e, and the M 1/13 device 17 receives the monitoring information from the monitoring control unit 5e. Note that both the AIS receiving unit 5h and the monitor control unit 5e form a second control unit described in the claims.
- one of the transbonders 5 a 1 relays the optical signal of wavelength 1 and transmits it to the terminal 20 a 1, while the other transbonder 5 a 2 transmits optical signals of wavelength 2 2. It relays the signal and sends it to terminal 20 a 2.
- Each trans bonder Information related to the relay processing of 5 a 1 and 5 a 2 is notified to the monitoring control unit 5 e and detected.
- the OSC unit 4d of the OXC device 14 is monitoring the alarm signal from the upstream device of the optical fiber 16 and outputs an alarm signal indicating a failure of the upstream device to the monitoring control unit 4e. To do. Also, when the optical amplifier 4a detects an optical input interruption due to a failure of the optical fiber 16, the optical input interruption information is output to the monitor control unit 4e.
- the monitoring control unit 4e When the monitoring control unit 4e detects the optical input disconnection information, it outputs the failure information to the AIS generating unit 4f.
- the AIS generation unit 4H generates an AIS signal (alarm display signal) according to the input failure information, and transmits this AIS signal via the communication processing unit 4g to the communication processing unit 5g of the transbonder device 15. Send to.
- This transmitted A I S signal is received by the A I S reception unit 5 h and is notified to the monitor control unit 5 e.
- the monitoring control unit 5e detects that the optical input is interrupted in the OXC device 14 by detecting the A/S signal.
- Patent Document 1 discloses a method relating to the enhancement of failure section evaluation for a failure of a wavelength multiplexing section in an optical multiplexing network.
- Non-Patent Document 1 describes a device that can reduce the device cost and power consumption by not performing electrical termination processing on the WDM device. In addition to the above, it is described that the money is exchanged using 0 s C.
- Non-Patent Document 2 describes an optical multiplex transmission system configuration in which the trans bonder unit and the wavelength multiplex unit are configured as separate systems, such as an open R*A DM (Reconfigure optical Add/Drop Multiplexer) and a talented open line system. Is listed.
- Patent Document 1 Japanese Patent Laid-Open No. 201 2-01 5966
- Patent Document 2 Japanese Patent Laid-Open No. 201 2-01 5966
- Non-Patent Document 1 ITU-T G.709, [online], 2016, [Searched on January 29, 1991], Internet á URL: https://www ⁇ i tu ⁇ int/rec /T-REC-G ⁇ 709/en ⁇
- Non-patent document 2 Open R0ADM, “openroadm.org Multi-Source Agreement”, [online], 2019, [searched on January 29, 1991], Internet á URL: ht tps://0201. nccdn.net /42/000/000/05e/0e7/Open-ROADM-wh i tepaper-v2 2.p df>
- the transbonder 5a 1 and the transbonder 5 a 2 can detect the light input interruption caused by the external obstacle on the upstream side.
- the optical input disconnection of the transbonder 5 a 1 and the transbonder 5 a 2 is caused by the optical input disconnection due to the failure of the transbonder device 15 to the OXC device 14
- the optical node device (corresponding to MUX) is changed to the optical path termination device. No means for notifying information to the user, that is, failure information is disclosed.
- the EMS that operates the communication device is separated into the wavelength multiplexing unit and the transbonder unit, and both the EMS for the transbonder unit and the EMS for the wavelength multiplexing unit are used to grasp the state of the optical transmission network. Need to know the information.
- the transponder side determines whether the optical channel failure detected by the transbonder section is self-responsibility or another. Maintenance personnel cannot make a quick decision.
- FIG. 9 shows a configuration in which one O X C device 14 is connected to one trans bonder device 15. But in reality,
- a plurality of transbonder devices 15 are connected in parallel to one O X C device 14.
- OXC device 14 in order to transmit the A/S signal generated by the OXC device 14 to each transbonder device 15, as many LAN cables as the number of transbonder devices 15 are required, and the transbonder device 15 is There was a problem that the equipment cost would increase as the number increased.
- the present invention has been made in view of such circumstances, and in a transbonder device connected to an XC device through an optical transmission line, an optical input break detected by the OXC device from the upstream side is detected. It is an object of the present invention to provide an optical transmission system and an optical transmission method that can appropriately determine whether the cause is an external fault or an internal fault in the oxc device, and that this determination can be configured at low cost.
- the invention according to claim 1 is such that a wavelength path of an optical signal is switched between transbonder devices that relay an optical signal transmitted to a communication device.
- An optical transmission system in which multiple XC (Optical Cross Connect) devices are connected by an optical transmission line and aggregated, and the OXC device disconnects the optical signal input from the optical transmission line.
- XC Optical Cross Connect
- the wavelength information indicating the wavelength of the optical signal that caused the optical input break and the optical transmission line where the optical input break occurred
- a first control unit that outputs route information of a route, and both the wavelength and the route of the optical signal related to the optical input disconnection according to the wavelength information and the route information output from the first control unit.
- the transbonder device includes the both information and the warning information included in the generated warning signal.
- the optical transmission system is characterized by comprising a second control unit for notifying an external failure of the transbonder device.
- the invention according to claim 4 is a plurality of OXC (Optical cross Cross) for switching a wavelength path of an optical signal between transbonder devices for relaying an optical signal transmitted to a communication device.
- Connect is an optical transmission method of an optical transmission system in which devices are connected by an optical transmission line, wherein the OXC device detects an optical input interruption in which an optical signal input from the optical transmission line is interrupted, Outputting the wavelength information indicating the wavelength of the optical signal having the optical input interruption and the route information of the route of the optical transmission path having the optical input interruption, the output wavelength information and Performing a step of generating an alarm signal including both wavelength and path information of the optical signal related to the optical input interruption and alarm information related to both information according to the path information;
- the bonder device is an optical transmission method characterized by executing a step of notifying an external failure of the transbonder device from both of the information included in the generated alarm signal and the alarm information.
- the wavelength of the optical signal related to the interruption of the optical input from the optical transmission path and the optical transmission path through which the optical signal is transmitted are defined.
- An alarm signal including both the information on the route and the alarm information related to both the information is generated, and the alarm signal is notified from the OXC device to the transbonder device.
- the transbonder device can detect an external failure of the transbonder device based on both the information and the alarm information included in the notified alarm signal.
- ⁇ Whether the optical input disconnection detected by the XC device is due to an external fault from the upstream side or an internal fault in the OXC device. Can be properly determined.
- an optical cover which connects the O XC device and the transbonder device is inserted, and an alarm signal generated by the generation unit is transmitted through the optical cover.
- the alarm signal can be transmitted to the transbonder device via the optical cover in the existing optical transmission line connecting the OXC device and the transbonder device.
- the transbonder device includes: a route number which is a number of a route of the optical transmission line; and an accommodation wavelength which is a wavelength of an optical signal accommodated in the route.
- a device DB Identity (Identif ication) that is unique information of a signal transmission device and a destination device, and a first DB (Data Base) that stores each information of a transbonder ID, the OXC device, 1
- the DB is provided with a second DB in which each information stored in the DB is registered and stored, and the transbonder device is set to the above-mentioned when the connection state with the OXC device is changed to the connection state via the optical transmission line.
- each information read from the first DB is superimposed on the control signal changed to the specific specific wavelength and transmitted to the OXC device.
- the control signal transmitted is received, and each information superimposed on the received control signal is registered and held in the second DB under the control of the second control unit.
- the accommodation wavelength held in the first DB of the transbonder device, the device information D, and the information on the lance bonder device D are stored.
- the occurrence of an external obstacle related to the optical input disconnection of the OXC device is reported to the 2D D ⁇ 02020/175164 8 ((171?2020/005650
- Fig. 1 is a block diagram showing configurations of a 0X0 device and a transbonder device in an optical transmission system according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the information structure of 0x provided in the accommodation information management section of the 0x0 device.
- Fig. 3 is a diagram showing the structure of format information of eight I 3 signals.
- FIG 5 0 X (for pre-registration information to the 0 Mi 3 apparatus is a block diagram showing the configuration of a 0 X (3 device and Tran Subonda device.
- Fig. 6 is a flow chart for explaining a pre-registration process of information to 0x of the 0x0 device.
- Fig. 7 is a diagram showing format information of a control signal for pre-registration of information into 0X ( 0 device of 3 devices).
- FIG. 8 is a block diagram showing a configuration of a conventional optical transmission system.
- Fig. 9 is a block diagram showing the configurations of a X 0 device and a transbonder device in a conventional optical transmission system.
- FIG. 1 is a block diagram showing the configuration of an optical transmission system according to an embodiment of the present invention.
- the optical transmission system 108 shown in Fig. 1 one 0X ( 3 device 1 48 8 and multiple transponder devices 1 5 8 1 connected to this 0X ( 3 device 1 4 8 by optical fiber 1 6) ⁇ 15 A n.
- One 0X ( 3 devices 1 48 and multiple transbonder devices 1 5 8 1 to 15 A n are 0X0 (optical interconnection) devices on the right end side of the optical transmission system 10 shown in FIG. 14 and the transbonder device 15. Therefore, the overall connection configuration of the optical transmission system 10 shown in Fig. 1 corresponds to the optical transmission system 10.
- the device 148 also shows a state in which the first route 163 and the second route 166 are connected by the optical fiber 16.
- the optical fiber 16 constitutes the optical transmission line described in the claims.
- 03 for the 3 4 and the monitoring control unit 4 6 1 both constitute a first control unit of the ⁇ Motomeko described.
- I 3 generating unit 4 "constitutes a generator of claim.
- the trans bonder device 1 5 8 1 consists of two trans bonders 53 1 and 532, an optical cab 5 I 1, and ⁇ / ⁇ (0 ⁇ ⁇ 31 16 ( ⁇ ⁇ _1 ⁇ 3 ⁇ conversion unit 51 ⁇ 1 8 I 3 receiving section 51, monitoring control section 56 1 and accommodation information management section 5 1 1.
- Transponder 53 1 is connected to terminal 203 1
- a terminal 2032 is connected to the other trans bonder 532.
- the transbonder device 158 n includes two transbonders 5 and 1.
- One of the transbonder 5 1 has a terminal 20 1 is connected and the other ⁇ 02020/175164 10 ((171?2020/005650
- Bonda A terminal is connected to.
- optical cab 4 1 (or optical cab 4) of the device 14 8 and the optical cab 5 I 1 (or the optical cab 5 I n) of the lance bonder device 1 518 1 are connected by optical fibers 16.
- the optical signals of wavelengths 1 to 3 transmitted through the first route 1 63 are input to 0 X (3 devices 1 4), they are amplified by the optical amplifier 4 3. It is input to 0 1 ⁇ /1 11 ⁇ 4 ⁇ through the optical 3 ⁇ / 4 ⁇ . 0 1 ⁇ /1 11 ⁇ 40 ⁇ is the optical signal of each wavelength S 1 ⁇ S 1!
- the demultiplexed optical signals of the wavelengths S1 and S2 are transmitted to the transbonder unit 1581 via the optical fiber 16.
- the optical signal of the switch n is transmitted to the transbonder device 158 n via the optical fiber 16. In this way, the wavelengths S 1, S 2, S 111, S of the optical signal accommodated in each of the transponder devices 15 1 to 15 n are different.
- one of the transbonder 5 3 1 has a wavelength shifter.
- the trans bonder 1 5 eight n one of the transformer bonder 5 n 1 is relaying optical signals of wavelength scan is transmitted to the terminal 2 0 n 1, and the other transponder Sunda 5 n 2 The optical signal of wavelength n is relayed and transmitted to the terminal 20 n 2.
- Information related to the relay processing of each of the balance bonders 5 n 1 and 5 n 2 is notified to the monitoring control unit 5 61 and detected.
- ⁇ 3 ⁇ part 41 receives optical signals of wavelengths 1 to n input from the upstream of the first route 1 63 into device 0 48. I'm watching. In this monitoring, if the optical signal interruption state (optical input interruption) is detected in 03 (3 part 41), the wavelength of the optical signal (for example, S1, S2) for which the optical input is interrupted is detected. ⁇ 02020/175164 11 11 (:171?2020/005650
- the information and the optical input disconnection information including the route information of the route of this optical signal are output to the monitor control unit 46.
- the optical input disconnection may be detected by the optical amplifier 4 3 and notified to the monitoring controller 4 61.
- 0 3 (3 parts 4 ⁇ 1 1 is the detected 8 I 3 signal when the upstream 0 X (8 I 3 signal generated by 3 devices is detected due to an upstream failure. Is output to the supervisory control unit 4 61. Furthermore, when the optical input disconnection due to the internal failure of 0 X (3 devices 1 48) is detected, the optical input disconnection information is output to the supervisory control unit 4 0 1. It is output to 4 6. The I 3 signal notified from the outside like this and the optical input disconnection information related to the internal failure are notified to the transbonder device 1 5 8 1 to 1 5 8 8 without change.
- monitoring control unit 4 6 1 ⁇ 3 (3 4 wavelength scan 1 of 1 from the optical signal, the optical input interception information including information of the scan 2 is input, light of the light input in the cross-sectional information Information on wavelengths 1 and 2 of the optical signal that has been disconnected and information on the first path of this optical signal are output to the I 3 generator 4”.
- accommodation information managing unit 4 ⁇ is ⁇ say yes ⁇ or information device 1 4 optical signal input to the receiving information of the transformers bonder 1 5 eight 1-1 5 eight n, mouth snake ⁇ 8 8856) 4 I 8 is memorized and managed.
- 0 6 4 I 8 indicates the channel number, route number, accommodated wavelength, and destination device port as shown in Fig. 2.
- Transbonder Stores each information of the mouth.
- the channel number is a number for distinguishing the trans bonder device 155 1 to 158 n, for example, "1" is a number related to the trans bonder device 158 1 and "n". (N is a natural number other than 1 and 2) is a number related to the transbonder device 158.
- the route number is the number of 0 X (the route of the optical fiber 16 on the input side of 3 devices 1 4 and "0 1" is the number of the first route 1 6 3 (Fig. 1). , "0 2" is the number of the second route (Fig. 1).
- the accommodated wavelength represents the wavelength of the optical signal accommodated in the route, and includes “s1" and "s
- “2" represents the wavelength of the optical signal accommodated in the first route 1668.
- “Su” and “Su” are the wavelengths of the optical signals accommodated in the 1st route 1668. ⁇ 02020/175164 12 ((171?2020/005650
- the destination device 0 is the trans bonder device 1 8 which is the destination of the 8 3 signals.
- the trans bonder opening is a unique trans bonder opening inside the trans bonder device 1 8 8 1 to 1 5 8 gate, and "Ding 3 1" is the trans bonder 5 inside the trans bonder device 1 5 8 1 31 0, “Ding 3 2” is the trans bonder 5 3 2 in the trans bonder device 1 5 8 1 0. “Ding” 1 is the opening of the trans bonder in the transponder device (not shown). “GT n 1” is the I 0 of the trans bonder 5 1 in the trans bonder device 15 8 and “Cho 2” is the trans bonder 5 of the trans bonder device 15 0 2.
- the 0 X (3 devices 1 4 8 8 8 8 3 generator 4" shown in Fig. 1 is the information of the wavelengths 1 and 2 of the optical signal from the supervisory controller 4 61 and the first of this optical signal.
- the format 8 signal 3 signal 3 1 shown in FIG. 3 is generated in accordance with the 0 to 4 3 (see FIG. 2) included in the accommodation information management unit 4.
- the format of the eight three signals 3 1 is, in order from the top of Fig. 3, information such as the bucket header, the transmitter port, the destination port I, the transbonder 0, the wavelength number, and the 8 alarm 3 (format). It should be noted that both the transmitter device port and the destination device I 0 constitute the device port described in the claim. Note that the I 3 signal 31 is the alarm signal described in the claim. Make up.
- the bucket header is header information for identifying the beginning of the bucket of the three signals 3 1 to be bucketed.
- the transmitter device port is the 0 x 0 device 1 48 device 0 as a device for transmitting the I 3 signal 3 1.
- the destination device entrance is selected from the destination device I 0 (Fig. 3) stored in 064 1 3 and inserted into the format information.
- the trans bonder mouth is selected from the trans bonder mouth 0 stored in 06413 and inserted into the format information.
- the wavelength number depends on the wavelength selected from the wavelength information stored in 0 6 4 1 3. ⁇ 02020/175164 13 ((171?2020/005650
- the I 3 alarm is alarm information that notifies of a fault that has occurred in the optical fiber 16 or a fault that has occurred in the X 0 device connected to the optical fiber 16.
- each information of the destination device 0, the trans bonder port, and the wavelength number shown in Fig. 3 held in the above-mentioned 0 4 3 is from the monitoring controller 4 6 1 to the I 3 generator 4". It is selected according to the accommodated wavelength corresponding to the wavelengths 1 and 2 of the optical signal input to or the route number corresponding to the first route of the optical signal.
- the "3 generation unit 4" shown in Fig. 1 is a wavelength spectrum of the optical signal from the monitoring control unit 4 61.
- each information is read from the 0 0 4 4 3 of the accommodation information management section 4 and the superimposed I 3 signal 3 1 is obtained.
- the route number "0 1" of the first route 1 63, the accommodating wavelength “S1", the destination device port “Ding 1", and the trans bonder 0 "Ding 3 1” The superimposed I 3 signal, the route number “0 1”, the accommodated wavelength “S 2”, the destination device “D 1” and the trans bonder 0 “D 3 2” are combined. Two signals are generated, three signals.
- the two signals are transmitted to the control channel (for example, the first channel) connected to the destination transbonder device 1 5 1.
- the two I 3 signals are converted from electrical signals to optical signals by the day/ ⁇ converter 41 1 ⁇ 1, and the optical bonder 4 I 1 passes through the optical fiber 16 and the transbonder device 1 8
- the light turnip of 1 is input to 5 1 1.
- the two eight I3 signals input to the optical coupler 5I1 are converted from optical signals to electrical signals by the O/M conversion unit 5 1 ⁇ 1, and then received by the I3 reception unit 5 1. , Is input to the monitoring controller 5 61.
- the supervisory control unit 5 61 is responsible for the failure of the 1st route 1 6 3 caused by the two eight I 3 signals and the failure of the optical signals of wavelengths 1 and 2 transmitted to the 1st route 1 6 3.
- the occurrence can be notified to a monitoring device such as the day IV! 3 device 1 7 (see Fig. 9) connected to the trans bonder device 1 5 8 1 to 1 5 8 8 n, and it can be recognized that it is an external failure. To do.
- step 3 1 of FIG. 4 0 X (the monitoring controller 4 61 of 3 devices 1 4 3
- ⁇ 3 Determine whether or not the optical input interruption information is input from Part 3 41.
- the wavelength information of wavelengths 1 and 2 of the optical signal whose optical input is interrupted is determined.
- the light input break information including route information of first path 1 6 3 of the optical signal is input.
- step 32 the monitoring controller 4 61 obtains information on both the wavelengths 1 and 2 of the optical signal included in the optical input interruption information and the first route 1 63. 3 Output to the generator 4.
- step 33 the "3 generation unit 4" reads out the respective information of "0" 4 "3 of the accommodation information management unit 4" in accordance with the information of both of the above, and executes the predetermined format (Fig. 3).
- Hachijo 3 Generates signal 3 1. In this case, two eight-three signals are generated.
- the first three signals are, for example, the bucket header "1 to 1 1" and the transmitter device port.
- the second three signals are, for example, the bucket headers "1 to 12" and the transmitter device port.
- the two eight-three signals generated by such a format are output from the eight-third-signal generation unit 4" in step 34, and are converted from the electrical signal to the optical signal by the M/O conversion unit 41 ⁇ 1. After being converted into a signal, it is transmitted from the optical coupler 4 I 1 to the transbonder device 1 5 8 1 via the optical fiber 1 6.
- step 35 the transmitted two signals are transmitted from the optical signal to the optical signal from the optical signal at the O/M converter 5 1 ⁇ 1 via the optical cover 5 1 of the transponder device 1 5 1. After being converted to a signal, it is received by I 3 receiver 5 II 1 and is sent to the supervisory controller 5 ⁇ 02020/175164 15 ((171?2020/005650
- the monitoring control unit 5-1 notifies the monitoring device such as the M IV! 3 device 1 7 (see FIG. 9) of the external failure of the trans bonder device 1 5 1 according to the two signals.
- FIG. 5 is a block diagram showing the configuration of the ⁇ device 148 and the trans bonder device 158 for the pre-registration process of the accommodation information in the accommodation information management unit 4 s 0 s 4 s 3. is there .
- FIG. 6 is a flowchart for explaining the pre-registration process of accommodation information in 064 13.
- the 0X (3 devices 14 shown in Fig. 5 has the components of the 0X (3 devices 14 (Fig. 1) described above, 1 ⁇ /111 4 40, and light 3 ⁇ /4).
- the trans bonder In addition to the constituent elements of the trans bonder device 155 1 (FIG. 1) described above, the device 155 1 includes an accommodation information management unit 5 1 having 065 1 3.
- the optical coupler 4 V is connected between the optical amplifier 43 and 01/111 1140.
- the input end of IV! 11X40 is connected to the transbonder 1 53 1 via the optical fiber 16 and the output end is connected to the optical 3 ⁇ /4.
- the light 3 ⁇ /4 is connected to the optical amplifier 4 X and the O/MI converter 43 via the optical coupler 49.
- ⁇ / Snake converter 43 and ⁇ / Snake converter 4 is the monitoring control unit 4 is connected to the 61 input terminal.
- the monitoring controller 46 first output end, snake / ⁇ conversion unit 41: ,4 li is connected, and the day/o conversion unit 41 is connected to the optical cab 4 V.
- the electrical signal from the monitoring control unit 4 61 is converted into an optical signal and output to the optical coupler 4 V, which outputs the optical signal to the optical 3 ⁇ / 4 chamber.
- the channel 8 stores the channel number, route number, accommodating wave length, address of the destination device, and port I of the transbonder, similar to the port number 4 and 8 shown in Fig. 2.
- This pre-registration process is 0 X 0 devices 1 48 And the trans bonder device 1 5 8 1 is started for the first time.
- step 3 1 1 of FIG. 6 the trans bonder 5 31 of the trans bonder device 1 5 8 1 detects the input of the main signal which is the optical signal of wavelength 1 from the device 1 48 8. Then, it is determined that the optical input disconnection has been recovered, and this recovery information is output to the monitoring controller 5 61.
- the above-described function for determining recovery from loss of light input of the transbonder 1 5 3 1 operates when the loss of light input during operation is restored, and the device 1 48 and the device 1 5 1 Also works when and are first trained. Before this first connection, the 0 X 0 device 1 48 and the trans bonder device 1 5 8 1 are not connected, so the transponder device 1 5 8 1 is in the state of detecting the optical input interruption. For this reason, the transbonder 1 53 1 or 1 5 3 2 (transbonder device 1 5 8 1) recovers from the interruption of the optical input when the first optical signal is transmitted from the 0X0 device 1 4. To judge.
- the monitor controller 561 detects the recovery of the optical input interruption, and returns this response to the transbonder 1531, when the information on the recovery of the optical input interruption is input.
- the monitoring controller 5 6 1, accommodation information managing unit 5 ⁇ 1 0 Snake 5 ⁇ 3 to the stored channel number, the route number, accommodating the wavelength, the destination device ⁇ port (e.g., ⁇ say yes ⁇ device 1) Notify the trans bonder 1) of each information of the trans bonder.
- step 313 the transpo ⁇ 02020/175164 17 ⁇ (: 171?2020/005650
- the binder 153 1 changes the wavelength (laser wavelength) of the laser (not shown) mounted on the trans bonder 153 1 to a unique specific wavelength (for example, a circle). After that, the trans bonder 153 1 generates a control signal, which is an optical signal of a specific wavelength range, by the laser. At the time of this generation, the trans bonder 1 5 3 1 shows the control signal for pre-registration shown in Fig. 7 according to each information of the mouth 5 5 3 notified from the monitoring control unit 5 6 1. Format information such as packet header, transmission device port, destination device port (0 device 0 14.8 8 0), trans bonder 0, wavelength number, etc. is superimposed.
- step 3 14 the trans bonder 1 5 3 1 transmits the control signal on which the format information is superimposed to the destination 0 X 0 device 14.
- ⁇ ⁇ ⁇ Device 1 48 receives the control signal and inputs it to the optical coupler 4 via 1 ⁇ /11 1 4 40 and light 3 ⁇ /4.
- the optical coupler 49 separates the control signal from the optical signals other than the specific wavelength of this control signal, and outputs only the control signal to the monitoring control unit 4 61.
- step 315 the supervisory controller 461 uses the input control signal to determine the route information (first route) based on the optical fiber 16 connected to the 0X0 device 148. 1 6 3 and second route 16 etc.) and input to the accommodation information management unit 4
- step 316 the accommodation information management unit 4 writes the format information and the route information superimposed on the control signal in the corresponding column of 0 6 4 I 3, as shown in Fig. 2. Then (register and store) as storage information.
- step 317 the monitor controller 461 superimposes the 0 (0 X 0 ⁇ ® I 0) of the device 148 on the control signal of the specific wavelength range ⁇ 0. / ⁇ Conversion part 41:, Optical cab 4 V, Optical 3 ⁇ / 0 1 ⁇ /1 1 1 4 10 Send to trans bonder 1 5 3 1 via 4 ⁇ .
- step 318 when the received signal is a control signal with a specific wavelength, the transbonder 15531 monitors the 0 X 0 device I port superimposed on the control signal. Output to 1. ⁇ 02020/175164 18 ((171?2020/005650
- step 319 the monitor controller 561 outputs the input 0 X (three devices I port to the accommodation information management unit 5 1 1.
- the accommodation information management unit 5 1 1 3) The information sent to the trans bonder 1 5 3 1 at the time of response at 3 1 2 is linked to 0 information, 0 device information and 0 information, and stored in 0 0 5 information 3.
- step 320 the monitoring controller 561 transmits a signal O which is a response signal to the device 14 when the storage is completed. After this transmission, the following steps 3 2 1 and 3 2 2 are processed in parallel, and after these processes, the pre-registration operation ends.
- step 3 2 0 X (3 devices 1 48, When it is received via optical line 40 and optical 3 ⁇ /4, optical 3 ⁇ / 4 is switched to the optical signal selection mode which is the main signal.
- step 3 2 2 the trans bonder 1 5 3 1
- This optical transmission system 1 0 is connected between a transbonder device (for example, transbonder device 1 5 1) that relays an optical signal transmitted to and from a terminal device 193, 19 as a communication device.
- a transbonder device for example, transbonder device 1 5
- a plurality of 0 X 0 devices 1 48 for switching wavelength paths of optical signals are connected by an optical fiber 16 to be integrated.
- the 0 X 0 device 14 is provided with wavelength information indicating the wavelength of the optical signal whose optical input is interrupted when detecting the optical input disconnection in which the optical signal input from the optical fiber 16 is interrupted.
- a first control unit that includes both the route information of the route of the optical fiber 16 where the optical input interruption occurs and the monitoring control unit 4 61 is provided.
- the device 14 has both the information of both the wavelength and the route of the optical signal related to the optical input interruption, and the information of both of them according to the wavelength information and the route information output from the first control unit.
- I 3 generator 4 that generates an I 3 signal (alarm signal) that includes the alarm information related to ⁇ 02020/175164 19 (:171?2020/005650
- the transbonder device 1 51 notifies the external fault on the upstream side of the transbonder device 1 5 1 on the basis of the dual information and alarm information included in the generated 3 signals.
- a second control unit including both the reception unit 5 II 1 and the monitoring control unit 5 61 is provided.
- the wavelength of the optical signal related to the interruption of the optical input from the optical fiber 16 and the route of the optical fiber 16 through which the optical signal is transmitted in 0 X ( 3 devices 1 48)
- the I 3 signal including both information of the above and the alarm information related to the both information is generated, and this 88 3 signal is notified from the 0 X 0 device 1 48 to the trans bonder device 1 5 8 1.
- the transbonder device 1581 can detect an external fault on the upstream side of the transbonder device 151 based on both of the above information and alarm information contained in the notified eight signals.
- the optical input interruption detected by the device 1 4.8 is caused by the external disturbance from the upstream side. It is possible to properly determine whether it is caused by an internal failure.
- the existing optical fiber 16 connecting the device 1 48 and the trans bonder device 1 5 8 1 is connected to the existing optical fiber 16 via the optical couplers 4 1 1 and 5 1 1.
- Eight I 3 signals can be transmitted to the transbonder device 1 5 8 1.
- the cable device 1 48 and the trans bonder device 15 8 1 are connected by a cable such as !_8 1 ⁇ 1 cable, which is different from the optical fiber 16 to connect the 8 signal 3 signals.
- the need for costly configurations such as transmitting In other words, it is possible to realize at low cost a configuration in which the transbonder device 1 5 1 can properly determine that the optical input interruption of the 0 X 0 device 1 48 is caused by an external failure or an internal failure.
- the transbonder device 155 1 is the number of the route of the optical fiber 16. ⁇ 02020/175164 20 (:171?2020/005650
- ⁇ ⁇ ⁇ Device 14 is equipped with a mouth 4 3 to which each information stored in 065! 3 is registered and stored.
- the transponder device 1 5 1 determines that the optical input disconnection is recovered when the state is changed from the unconnected state with the 0X0 device 1 4 to the connected state through the optical fiber 16 and after this determination, the unique identification is performed. It superimposes each information read from 065 1 3 on the control signal changed to the wavelength and sends it to 0X0 device 14.
- the 0X0 device 14 receives the transmitted control signal, and registers the information superimposed on the received control signal in the mouth 4 3 under the control of the second control unit.
- the trans bonder device 1 5 8 1 holds the trans bonder device 1 5 8 1 at 0 s 5 5 3 It is possible to register and hold the stored accommodation wavelength, information on the device port, and information on the transbonder I port in the 0X4 unit of the 0X0 unit 14.8. After this holding, it becomes possible to notify the transbonder device 158 1 of the occurrence of the external failure related to the optical input interruption of the device 148 by using the information held in 064 1 3.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computing Systems (AREA)
- Optical Communication System (AREA)
Abstract
【課題】OXC装置に光伝送路で接続されたトランスポンダ装置において、OXC装置で検知された光入力断が上流側からの外部障害に起因するか、OXC装置の内部障害に起因するかを適正に判別でき、この判別を低コストで構成する。 【解決手段】光伝送システム10Aは、端末機19a,19bとの間で伝送される光信号の中継を行うトランスポンダ装置15A1間に、複数のOXC装置14Aを光ファイバ16で接続して構成されている。OXC装置14Aは、光ファイバ16からの光入力断の検知時に、光入力断の光信号の波長情報と、光入力断が生じた光ファイバ16の方路の方路情報とを出力するOSC部4d1及び監視制御部4e1を備える。OXC装置14Aは、上記出力された波長情報及び方路情報に応じて、光入力断に係る光信号の波長及び方路の双方の情報と、双方の情報に係る警報情報とを含むAIS信号を生成するAIS生成部4jを備える構成とする。
Description
明 細 書
発明の名称 : 光伝送システム及び光伝送方法
技術分野
[0001 ] 本発明は、 トランスボンダ装置と〇 X C (Optical Cross Connect :光相互 接続) 装置とを光ファイバケーブルで接続して集約したディスアグリ構成の 光伝送システム及び光伝送方法に関する。
背景技術
[0002] 図 8に従来の光伝送システム 1 0のブロック図を示す。 光伝送システム 1
0は、 遠方に離間したトランスボンダ装置 1 1 とトランスボンダ装置 1 5 ( 以下、 トランスボンダ装置 1 1 , 1 5と記載) との間に、 複数の OXC装置 1 2, 1 3, 1 4が光ファイバケーブル (光ファイバともいう) 1 6で接続 されている。 更に、 トランスボンダ装置 1 1 , 1 5には、 EMS (Element M anagement System :機器監視システム) 装置 1 7が光ファイバや導電ケーブ ル等でケーブル接続されている。 OXC装置 1 2〜 1 4には、 EMS装置 1 8がケーブル接続されて構成されている。 各トランスボンダ装置 1 1 , 1 5 には、 パーソナルコンピュータやルータ等の通信装置としての端末機 1 9,
20が接続されている。
[0003] この光伝送システム 1 0では、 各トランスボンダ装置 1 1 , 1 5は同構成 であり、 各 OXC装置 1 2〜 1 4も同構成であり、 端末機 1 9から端末機 2 〇へ信号が伝送される場合の様態を示している。 このため、 送信側に配置さ れた OXC装置 1 2には、 複数波長の光信号を合波する MUX (Multiplexer ) 1 2 cを表わし、 受信側に配置された OXC装置 1 4には、 複数波長の光 信号を分波する DMUX (Demultiplexer) 1 4 cを表わしている。
[0004] なお、 両側の OXC装置 1 2, 1 4の間に接続された OXC装置 1 3は、 両側の OXC装置 1 2, 1 4間で伝送される光信号を中継する構成となって いる。
[0005] トランスボンダ装置 1 1 , 1 5は、 端末機 1 9, 20との間で伝送される
光信号の中継処理を行う。 OXC装置 1 2〜 1 4は、 光ファイバ 1 6による 多方路の波長パスの切替処理を行う。 EMS装置 1 7は、 トランスボンダ装 置 1 1 , 1 5の通信の中継処理を監視制御し、 EMS装置 1 8は、 OXC装 置 1 2〜 1 4の多方路の波長パスの切替処理を監視制御する。
[0006] 図 9に、 OXC装置 1 4と、 OXC装置 1 4に接続されたトランスボンダ 装置 1 5とを代表して示す。 〇乂〇装置1 4は、 光アンプ 4 aと、 光 SW ( スイツチ) 4 bと、 DMUX4 cと、 〇SC (Optical Supervisory Channel :光監視チャネル) 部 4 dと、 監視制御部 4 eと、 A I S (Alarm Indicatio n Signal : アラーム表示信号) 生成部 4 f と、 通信処理部 4 gとを備えて構 成されている。 監視制御部 4 eには、 EMS装置 1 8が接続されており、 E M S装置 1 8が監視制御部 4 eからの監視情報を受信するようになっている
[0007] トランスボンダ装置 1 5は、 複数 (1つ以上) のトランスボンダ 5 a 1 ,
5 a 2と、 通信処理部 5 gと、 A I S受信部 5 hと、 監視制御部 5 eとを備 えて構成されている。 トランスボンダ装置 1 5の通信処理部 5 gと、 OXC 装置 1 4の通信処理部 4 gとは、 L A Nケーブル等でケーブル接続されてい る。 監視制御部 5 eには、 E MS装置 1 7が接続されており、 巳1\/13装置1 7が監視制御部 5 eからの監視情報を受信するようになっている。 なお、 A I S受信部 5 h及び監視制御部 5 eの双方は、 請求項記載の第 2制御部を構 成する。
[0008] このような構成において、 光ファイバ 1 6を伝送してきた各波長ス 1〜ス nの光信号が OXC装置 1 4に入力されると、 光アンプ 4 aで増幅され、 光 SW4 bを介して DMUX4 cに入力される。 D M U X 4 cは、 各波長ス 1 〜ス nの光信号を分波し、 波長ス 1 , ス 2の光信号を、 光ファイバ 1 6を介 してトランスボンダ装置 1 5へ送信する。
[0009] トランスボンダ装置 1 5では、 一方のトランスボンダ 5 a 1が波長ス 1の 光信号を中継して端末機 20 a 1へ送信し、 他方のトランスボンダ 5 a 2が 波長ス 2の光信号を中継して端末機 20 a 2へ送信する。 各トランスボンダ
5 a 1 , 5 a 2の中継処理に係る情報は監視制御部 5 eへ通知されて検知さ れる。
[0010] OXC装置 1 4の OSC部 4 dは光ファイバ 1 6の上流装置からの警報信 号を監視しており、 上流装置の障害を示す警報信号を検知すると、 監視制御 部 4 eへ出力する。 また、 光ファイバ 1 6の故障による光入力断を光アンプ 4 aで検知した場合も、 光入力断情報を監視制御部 4 eへ出力する。
[0011] 監視制御部 4 eは、 光入力断情報を検知すると、 故障情報を A I S生成部 4 f へ出力する。 A I S生成部 4チは、 入力された故障情報に応じて A I S 信号 (アラーム表示信号) を生成し、 この A I S信号を通信処理部 4 gを介 してトランスボンダ装置 1 5の通信処理部 5 gへ送信する。 この送信された A I S信号は、 A I S受信部 5 hで受信され、 監視制御部 5 eへ通知される 。 監視制御部 5 eは、 A 丨 S信号の検知により OXC装置 1 4に光入力断が 生じたことを検出する。
[0012] この種の光伝送システムとして、 特許文献 1 に、 光多重ネッ トワークにお ける波長多重区間の故障に対する故障区間評定の高度化に関する方法が開示 されている。 また、 非特許文献 1 に、 波長多重装置が電気的な終端処理を行 わないことで、 装置コストの低減や消費電力低減を可能とする装置であって 、 光波長多重区間の警報を主信号とは別に〇 s Cを用いて遣り取りすること が記載されている。 更に、 非特許文献 2に、 オープン R〇 A DM (Reconfigu rab le Optical Add/Drop Multiplexer) や才ープンラインシステムといった トランスボンダ部と波長多重部とを別システムで構成する光多重伝送システ ム構成が記載されている。
先行技術文献
特許文献
[0013] 特許文献 1 :特開 201 2-01 5966号公報 非特許文献
[0014] 非特許文献 1 : ITU-T G.709, [online] , 2016, [平成 3 1年 1月 29日検 索] , インターネッ ト áURL : https ://www· i tu· int/rec/T-REC-G· 709/en ñ
非特許文献 2 : Open R0ADM, “openroadm.org Multi-Source Agreement” , [ online] , 2019, [平成 3 1年 1月 29日検索] , インターネッ ト áURL: ht tps://0201. nccdn. net/42/000/000/05e/0e7/Open-ROADM-wh i tepaper-v2 2. p df>
発明の概要
発明が解決しようとする課題
[0015] ところで、 上述した光伝送システム 1 0において、 図 8に示すように、 例 えば OXC装置 1 2, 1 3間の光ファイバ 1 6で障害 2 1が発生したとする 。 この場合、 その障害 2 1の下流側の OXC装置 1 3では、 丸 2 1 aで示す ように光入力断が検知され、 白丸 2 1 bで示すように A I S信号が生成され る。 この A 丨 S信号には、 〇 XC装置 1 2, 1 3間の光ファイバ 1 6での障 害 2 1の発生を示す障害位置情報が重畳されている。 A I S信号は、 更に下 流側の〇 XC装置 1 4において丸 2 1 cで示すように検知される。 この検知 される A 丨 S信号は、 トランスボンダ装置 1 5では検知できない。
[0016] トランスボンダ装置 1 5では、 障害 2 1 に係る光信号が断状態となるので 、 トランスボンダ 5 a 1及びトランスボンダ 5 a 2で、 丸 2 1 dで示すよう に光入力断が検知される。 つまり、 トランスボンダ装置 1 5では、 トランス ボンダ 5 a 1及びトランスボンダ 5 a 2で上流側の外部障害に起因する光入 力断を検知できる。
[0017] しかし、 トランスボンダ 5 a 1及びトランスボンダ 5 a 2の光入力断は、 トランスボンダ装置 1 5〜 OXC装置 1 4の障害による光入力断に加えて、
〇 XC装置 1 4よりも上流に起因する障害による光入力断があり、 上記 2つ の要因のどちらの障害に起因するものかが判別できないという問題がある。 [0018] このように判別できないと、 トランスボンダ装置 1 5の保守者が、 自責 ( 自装置の責任) の障害か、 他責 (他装置の責任) の障害かを迅速に判断でき ないため、 無駄な保守作業等が発生してしまう。
[0019] この種の問題は、 特許文献 1及び非特許文献 1 , 2においても存在する。
特許文献 1の技術では、 光ノード装置 (MUXに相当) から光パス終端装置
への情報、 つまり故障情報の通知手段が開示されていない。 非特許文献 1の 技術では、 端点装置の波長多重部とトランスボンダ部間に O S C部が無く、 警報転送が行われていない。 非特許文献 2の技術では、 通信装置を操作する E M Sは波長多重部とトランスボンダ部で別々となり、 光伝送ネッ トワーク の状態を把握するためにトランスボンダ部用 E M S、 波長多重部用 E M Sの 両方の情報を把握する必要がある。 この構成において、 トランスボンダ部か ら波長多重部間の警報受け渡し手段が無いことから、 トランスボンダ部で検 知した光チャネル障害が自責であるか、 他責であるかの判断をトランスポン ダ側保守者が迅速に判定できない。
[0020] また、 光伝送システム 1 0において、 図 9では 1つの O X C装置 1 4に 1 つのトランスボンダ装置 1 5を接続する構成を示した。 しかし、 実際には、
1つの O X C装置 1 4に、 複数のトランスボンダ装置 1 5がパラレルに接続 される構成となっている。 この場合、 O X C装置 1 4で生成した A 丨 S信号 を各々のトランスボンダ装置 1 5へ送信するために、 トランスボンダ装置 1 5の数と同数の L A Nケーブルが必要となり、 トランスボンダ装置 1 5が増 える程に、 設備コストが局くなる問題があった。
[0021 ] 本発明は、 このような事情に鑑みてなされたものであり、 〇 X C装置に光 伝送路で接続されたトランスボンダ装置において、 O X C装置で検知された 光入力断が上流側からの外部障害に起因するか、 o x c装置の内部障害に起 因するかを適正に判別でき、 この判別を低コストで構成できる光伝送システ ム及び光伝送方法を提供することを課題とする。
課題を解決するための手段
[0022] 上記課題を解決するための手段として、 請求項 1 に係る発明は、 通信装置 との間で伝送される光信号の中継を行う トランスボンダ装置間に、 光信号の 波長パスの切替を行う複数の〇 X C (Opt i ca l Cross Connect) 装置を光伝送 路で接続して集約した光伝送システムであって、 前記 O X C装置は、 前記光 伝送路から入力される光信号が断となる光入力断の検知時に、 当該光入力断 となった光信号の波長を示す波長情報と、 当該光入力断が生じた光伝送路の
方路の方路情報とを出力する第 1制御部と、 前記第 1制御部から出力された 波長情報及び方路情報に応じて、 前記光入力断に係る光信号の波長及び方路 の双方の情報と、 当該双方の情報に係る警報情報とを含む警報信号を生成す る生成部とを備え、 前記トランスボンダ装置は、 前記生成された警報信号に 含まれる前記双方の情報及び前記警報情報を基に、 当該トランスボンダ装置 の外部障害を報知する第 2制御部を備えることを特徴とする光伝送システム である。
[0023] 請求項 4に係る発明は、 通信装置との間で伝送される光信号の中継を行う トランスボンダ装置間に、 光信号の波長パスの切替を行う複数の O X C (Opt i ca l Cross Connect) 装置を光伝送路で接続して集約した光伝送システムの 光伝送方法であって、 前記 O X C装置は、 前記光伝送路から入力される光信 号が断となる光入力断の検知時に、 当該光入力断となった光信号の波長を示 す波長情報と、 当該光入力断が生じた光伝送路の方路の方路情報とを出力す るステップと、 前記出力された波長情報及び方路情報に応じて、 前記光入力 断に係る光信号の波長及び方路の双方の情報と、 当該双方の情報に係る警報 情報とを含む警報信号を生成するステップとを実行し、 前記トランスボンダ 装置は、 前記生成された警報信号に含まれる前記双方の情報及び前記警報情 報から、 当該トランスボンダ装置の外部障害を報知するステップを実行する ことを特徴とする光伝送方法である。
[0024] 請求項 1の構成及び請求項 4の方法によれば、 O X C装置において、 光伝 送路からの光入力断に係る光信号の波長と、 当該光信号が伝送される光伝送 路の方路との双方の情報と、 双方の情報に係る警報情報とを含む警報信号が 生成され、 この警報信号が O X C装置からトランスボンダ装置に通知される 。 トランスボンダ装置では、 通知された警報信号に含まれる上記双方の情報 及び警報情報を基に、 トランスボンダ装置の外部障害が検知できる。 このた め、 O X C装置に光伝送路で接続されたトランスボンダ装置において、 〇 X C装置で検知された光入力断が上流側からの外部障害に起因するか、 O X C 装置の内部障害に起因するかを適正に判別できる。
[0025] 請求項 2に係る発明は、 前記〇 X C装置と前記トランスボンダ装置とを接 続している光カブラを介挿し、 前記生成部で生成された警報信号を、 前記光 カブラを介して、 前記〇 X c装置から前記トランスボンダ装置へ伝送するよ うにしたことを特徴とする請求項 1 に記載の光伝送システムである。
[0026] この構成によれば、 OXC装置とトランスボンダ装置とを接続している既 存の光伝送路に光カブラを介して、 警報信号をトランスボンダ装置に伝送で きる。 このため、 従来のように OXC装置とトランスボンダ装置とを、 光伝 送路とは別の L A Nケーブル等でケーブル接続して警報信号を伝送するとい った、 コスト高となる構成が不要となる。 つまり、 OXC装置の光入力断が 外部障害又は内部障害に起因することをトランスボンダ装置で適正に判別で きる構成を、 低コストで実現できる。
[0027] 請求項 3に係る発明は、 前記トランスボンダ装置は、 前記光伝送路の方路 の番号である方路番号と、 当該方路に収容される光信号の波長である収容波 長と、 信号の送信装置及び宛先装置の固有情報である装置丨 D (Identif icat ion) と、 トランスボンダ I Dとの各情報を保存する第 1 D B (Data Base) を備え、 前記 OXC装置は、 前記第 1 D Bに保存された各情報が登録されて 保存される第 2 D Bを備え、 前記トランスボンダ装置は、 前記 OXC装置と の未接続状態から、 光伝送路を介した接続状態への移行時に前記光入力断の 回復と判断し、 この判断後に、 固有の特定波長に変更した制御信号に、 前記 第 1 D Bから読み込んだ各情報を重畳して当該 OXC装置へ送信し、 前記〇 X C装置は前記送信されてきた制御信号を受信し、 前記第 2制御部の制御に よって、 前記受信された制御信号に重畳された各情報を前記第 2 D Bに登録 して保持することを特徴とする請求項 1又は 2に記載の光伝送システムであ る。
[0028] この構成によれば、 トランスボンダ装置に OXC装置が初めて繫がった際 に、 トランスボンダ装置の第 1 D Bに保持された収容波長、 装置丨 D及び卜 ランスボンダ丨 Dの各情報を、 OXC装置の第 2 D Bに登録して保持できる 。 この保持後、 OXC装置の光入力断に係る外部障害の発生を、 第 2 D巳に
\¥02020/175164 8 卩(:171?2020/005650
保持された各情報を用いてトランスボンダ装置に通知可能となる。
発明の効果
[0029] 本発明によれば、 0 X 0装置に光伝送路で接続されたトランスボンダ装置 において、 〇 X 0装置で検知された光入力断が上流側からの外部障害に起因 するか、 〇乂〇装置の内部障害に起因するかを適正に判別でき、 この判別を 低コストで構成できる光伝送システム及び光伝送方法を提供することができ る。
図面の簡単な説明
[0030] [図 1]本発明の実施形態に係る光伝送システムにおける 0 X 0装置及びトラン スボンダ装置の構成を示すブロック図である。
[図 2] 0 X 0装置の収容情報管理部に備えられた 0巳の情報構成を示す図であ る。
[図 3]八 I 3信号のフォーマッ ト情報の構成を示す図である。
[図 4]〇乂〇装置とトランスボンダ装置間での八 I 3信号の送受信動作を説明 するためのフロ _チヤ _卜である。
[図 5] 0 X (3装置の 0巳への情報の事前登録のための、 0 X (3装置及びトラン スボンダ装置の構成を示すブロック図である。
[図 6] 0 X 0装置の 0巳への情報の事前登録処理を説明するためのフローチヤ —卜である。
[図 7] 0 X (3装置の 0巳への情報の事前登録のための制御信号のフォーマッ ト 情報を示す図である。
[図 8]従来の光伝送システムの構成を示すブロック図である。
[図 9]従来の光伝送システムにおける〇 X 0装置及びトランスボンダ装置の構 成を示すブロック図である。
発明を実施するための形態
[0031] 以下、 本発明の実施形態を、 図面を参照して説明する。 但し、 本明細書の 全図において機能が対応する構成部分には同一符号を付し、 その説明を適宜 省略する。
\¥02020/175164 9 卩(:171?2020/005650
<実施形態の構成 >
図 1は、 本発明の実施形態に係る光伝送システムの構成を示すブロック図 である。 図 1 に示す光伝送システム 1 0八では、 1つの 0X(3装置 1 4八と 、 この 0X(3装置 1 4八に光ファイバ 1 6で接続された複数のトランスポン ダ装置 1 5八 1〜 1 5 A nとを示している。
[0032] 1つの 0X(3装置 1 4八と複数のトランスボンダ装置 1 5八 1 ~ 1 5 A n は、 図 8に示した光伝送システム 1 0の右端側の 0X0 (光相互接続) 装置 1 4及びトランスボンダ装置 1 5に対応している。 従って、 図 1 に示す光伝 送システム 1 〇 の全体接続構成は、 光伝送システム 1 0に対応している。
[0033] 0X(3装置 1 4八は、 光アンプ 43と、 光 3\^/4匕と、 01\/111乂4〇と、
030 (光監視チャネル) 部 4 1 と、 監視制御部 46 1 と、 収容情報管理 部 4 丨 と、 I 3生成部 4」 と、 º/0 16(^「_1〇31/0卩士_1〇3〇 変換部 41< 1 , 41<
と、 光カブラ 4 丨 1 , 4 I
とを備えて構成されている。 また、
〇乂〇装置 1 4八には、 光ファイバ 1 6による第 1方路 1 63と、 第 2方路 1 6匕とが接続されている様態も示す。 なお、 光ファイバ 1 6は、 請求項記 載の光伝送路を構成する。 03 (3部 4 及び監視制御部 46 1の双方は、 請 求項記載の第 1制御部を構成する。 I 3生成部 4」は、 請求項記載の生成 部を構成する。
[0034] 各トランスボンダ装置 1 5八 1 ~ 1 5 A nは同構成である。 トランスボン ダ装置 1 5八 1は、 2つのトランスボンダ 53 1 , 532と、 光カブラ 5 I 1 と、 〇/巳 (0卩士丨〇31 16(^「_1〇3〇 変換部 51< 1 と、 八 I 3受信部 5 1 と、 監視制御部 56 1 と、 収容情報管理部 5 丨 1 とを備えて構成されている 。 一方のトランスボンダ 53 1 には端末機 203 1が接続され、 他方のトラ ンスボンダ 532には端末機 2032が接続されている。
[0035] 同様に、 トランスボンダ装置 1 5八 nは、 2つのトランスボンダ 5门 1 ,
5 n 2と、 光カブラ 5 I nと、 〇/巳変換部 51< nと、 八 I 3受信部 5 n と、 監視制御部 56 nと、 収容情報管理部 5 丨 nとを備えて構成されている 。 一方のトランスボンダ 5 1 には端末機 20
1が接続され、 他方のトラ
\¥02020/175164 10 卩(:171?2020/005650
[0036] 但し、 〇乂〇装置1 4八の光カブラ 4 丨 1 (又は光カブラ 4 丨 门) と、 卜 ランスボンダ装置 1 5八 1の光カブラ 5 I 1 (又は光カブラ 5 I n) とは、 光ファイバ 1 6で接続されている。
[0037] このような構成において、 第 1方路 1 6 3を伝送してきた各波長ス 1〜ス 门の光信号が 0 X(3装置 1 4 に入力されると、 光アンプ 4 3で増幅され、 光 3 \^/ 4匕を介して 0 1\/1 11乂4〇に入力される。 0 1\/1 11乂4〇は、 各波長ス 1〜ス 1·!の光信号を分波する。 この分波された波長ス 1 , ス 2の光信号は、 光ファイバ 1 6を介してトランスボンダ装置 1 5八 1へ送信される。 また、
ス nの光信号は、 光ファイバ 1 6を介 してトランスボンダ装置 1 5八 nへ送信される。 このように、 トランスポン ダ装置 1 5 1 ~ 1 5 n毎に収容される光信号の波長ス 1 , ス 2 , , ス 111 , ス は異なっている。
[0038] トランスボンダ装置 1 5八 1では、 一方のトランスボンダ 5 3 1が波長ス
1の光信号を中継して端末機 2 0 3 1へ送信し、 他方のトランスボンダ 5 3 2が波長ス 2の光信号を中継して端末機 2 0 3 2へ送信する。 各トランスポ ンダ 5 3 1 , 5 3 2の中継処理に係る情報は監視制御部 5 6 1へ通知されて 検知される。
[0039] 同様に、 トランスボンダ装置 1 5八 nでは、 一方のトランスボンダ 5 n 1 が波長ス の光信号を中継して端末機 2 0 n 1へ送信し、 他方のトランスポ ンダ 5 n 2が波長ス nの光信号を中継して端末機 2 0 n 2へ送信する。 各卜 ランスボンダ 5 n 1 , 5 n 2の中継処理に係る情報は監視制御部 5 6 1へ通 知されて検知される。
[0040] 次に、 障害の検知構成について説明する。
〇乂〇装置 1 4八において、 〇3〇部4 1は、 第 1方路 1 6 3の上流か ら〇乂〇装置 1 4八内に入力される波長ス 1〜ス nの光信号を監視している 。 この監視において、 〇3(3部4 1は、 光信号の断状態 (光入力断) を検 知すると、 その光入力断となった光信号の波長 (例えばス 1 , ス 2) の波長
\¥02020/175164 11 卩(:171?2020/005650
情報及び、 この光信号の方路 (例えば第 1方路) の方路情報を含む光入力断 情報を監視制御部 4 6へ出力する。 なお、 光入力断は、 光アンプ 4 3が検出 して監視制御部 4 6 1へ通知するようにしてもよい。
[0041 ] 但し、 〇 3(3部 4 ¢1 1は、 上流側の障害で上流の 0 X(3装置で生成された 八 I 3信号を検知した際に、 この検知された八 I 3信号を監視制御部 4 6 1 へ出力する。 更に、 〇3〇部4 1は、 0 X(3装置 1 4八の内部障害による 光入力断を検知した場合は、 光入力断情報を監視制御部 4 6へ出力する。 こ のような外部から通知された I 3信号と、 内部障害に係る光入力断情報は 、 そのままの状態でトランスボンダ装置 1 5八 1 ~ 1 5八 へ通知される。
[0042] 監視制御部 4 6 1は、 〇 3(3部 4 1から光信号の波長ス 1 , ス 2の情報 を含む光入力断情報が入力されると、 この光入力断情報内の光入力断となつ た光信号の波長ス 1 , ス 2の情報及びこの光信号の第 1方路の情報を I 3 生成部 4」へ出力する。
[0043] ここで、 収容情報管理部 4 丨 は、 〇乂〇装置1 4 に入力される光信号の 情報や、 各トランスボンダ装置 1 5八 1〜 1 5八 nの収容情報を、 口巳 ^ 8 8856) 4 I 8に記憶して管理している。 0 6 4 I 8は、 図 2に示すように 、 チャネル番号、 方路番号、 収容波長、 宛先装置丨 口
、 トランスボンダ丨 口の各情報を記憶している。
[0044] チヤネル番号は、 トランスボンダ装置 1 5八 1 ~ 1 5八 nを区別するため の番号であり、 例えば、 「 1」 はトランスボンダ装置 1 5八 1 に係る番号で あり、 「n」 (nは 1及び 2以外の自然数とする) はトランスボンダ装置 1 5八 に係る番号である。
[0045] 方路番号は、 0 X(3装置 1 4 の入力側の光ファイバ 1 6による方路の番 号であり、 「0 1」 は第 1方路 1 6 3 (図 1) の番号、 「0 2」 は第 2方路 (図 1) の番号である。
[0046] 収容波長は、 方路に収容された光信号の波長を表わし、 「ス 1」 及び 「ス
2」 は第 1方路 1 6 8に収容された光信号の波長を表わす。 「ス〇1」 及び 「 ス门」 は第 1方路 1 6 8に収容された光信号の波長を表わす。
\¥02020/175164 12 卩(:171?2020/005650
[0047] 宛先装置丨 0は、 八 丨 3信号の宛先であるトランスボンダ装置 1 5八 1 ~
1 5八 nの丨 0であり、 「丁 1」 はトランスボンダ装置 1 5八 1の丨 0、 「丁 n」 はトランスボンダ装置 1 5八 nの丨 0である。
[0048] トランスボンダ丨 口は、 トランスボンダ装置 1 5八 1 ~ 1 5八门内のトラ ンスボンダ固有の丨 口であり、 「丁 3 1」 はトランスボンダ装置 1 5八 1内 のトランスボンダ 5 3 1の丨 0、 「丁 3 2」 はトランスボンダ装置 1 5八 1 内のトランスボンダ 5 3 2の丨 0である。 「丁」 1」 は図示せぬトランスポ ンダ装置内のトランスボンダの丨 口である。 G T n 1」 はトランスボンダ装 置 1 5八门内のトランスボンダ 5门 1の I 0、 「丁门 2」 はトランスボンダ 装置 1 5八门内のトランスボンダ 5门 2の丨 0である。
[0049] 図 1 に示す 0 X(3装置 1 4八の八 丨 3生成部 4」は、 監視制御部 4 6 1か ら光信号の波長ス 1 , ス 2の情報及びこの光信号の第 1方路の情報が入力さ れると、 収容情報管理部 4 丨が備える 0巳4 丨 3 (図 2参照) に応じて、 図 3に示すフォーマッ トの八 丨 3信号 3 1 を生成する。 八 丨 3信号 3 1のフォ —マッ トは、 図 3の上から順に、 バケッ トヘッダ、 送信装置丨 口、 宛先装置 I 口、 トランスボンダ丨 0、 波長番号、 八 丨 3警報等の情報 (フォーマッ ト 情報) から構成されている。 なお、 送信装置丨 口及び宛先装置 I 0の双方は 、 請求項記載の装置丨 口を構成する。 なお、 I 3信号 3 1は、 請求項記載 の警報信号を構成する。
[0050] バケッ トヘッダは、 バケッ ト化される 丨 3信号 3 1のバケッ トの先頭を 識別するためのへッダ情報である。
送信装置丨 口は、 I 3信号 3 1 を送信する装置としての 0 X 0装置 1 4 八の丨 0である。
宛先装置丨 口は、 0 6 4 1 3に記憶された宛先装置 I 0 (図 3) から選択 されてフォーマッ ト情報に揷入される。
[0051 ] トランスボンダ丨 口は、 0 6 4 1 3に記憶されたトランスボンダ丨 0から 選択されてフォーマッ ト情報に挿入される。
波長番号は、 0 6 4 1 3に記憶された波長情報から選択された波長に応じ
\¥02020/175164 13 卩(:171?2020/005650
た番号である。
八 I 3警報は、 光ファイバ 1 6で発生した障害や、 光ファイバ 1 6に接続 された〇 X 0装置で発生した障害を知らせる警報情報である。
[0052] 但し、 上述した 0巳4 丨 3に保持された図 3に示す宛先装置丨 0、 トラン スボンダ丨 口及び波長番号の各情報は、 監視制御部 4 6 1から I 3生成部 4」に入力された光信号の波長ス 1 , ス 2に対応する収容波長又は当該光信 号の第 1方路に対応する方路番号に応じて選択される。
[0053] 図 1 に示す 丨 3生成部 4」は、 監視制御部 4 6 1からの光信号の波長ス
1 , ス 2の情報及びこの光信号が伝送される第 1方路の情報に応じて、 収容 情報管理部 4 丨の0巳4 丨 3から各情報を読み出して重畳した I 3信号 3 1 を生成する。 この生成では、 第 1方路 1 6 3の方路番号 「0 1」 と、 収容 波長 「ス 1」 と、 宛先装置丨 口 「丁 1」 と、 トランスボンダ丨 0 「丁 3 1 」 とが重畳された I 3信号と、 方路番号 「0 1」 と、 収容波長 「ス 2」 と 、 宛先装置丨 口 「丁 1」 と、 トランスボンダ丨 0 「丁 3 2」 とが重畳され た八 丨 3信号との 2つの信号が生成される。
[0054] 2つの 丨 3信号は、 宛先であるトランスボンダ装置 1 5 1へ繫がる制 御チャネル (例えば第 1チャネル) へ送信される。 この際、 2つの I 3信 号は、 日/〇変換部 4 1< 1で電気信号から光信号に変換され、 光カブラ 4 I 1から光ファイバ 1 6を介して、 トランスボンダ装置 1 5八 1の光カブラ 5 1 1 に入力される。
[0055] 光カブラ 5 I 1 に入力された 2つの八 I 3信号は、 〇/巳変換部 5 1< 1で 光信号から電気信号に変換された後、 I 3受信部 5 1で受信され、 監視 制御部 5 6 1 に入力される。 監視制御部 5 6 1は、 2つの八 I 3信号による 第 1方路 1 6 3の障害発生、 並びに、 第 1方路 1 6 3に伝送される波長ス 1 , ス 2の光信号の障害発生を、 トランスボンダ装置 1 5八 1 ~ 1 5八 nに接 続された日 IV! 3装置 1 7 (図 9参照) 等の監視装置へ通知し、 外部障害であ ることを認識可能とする。
[0056] < I 3信号送受信動作 >
\¥02020/175164 14 卩(:171?2020/005650
ここで、 0 X 0装置 1 4八で生成された八 丨 3信号が送信され、 トランス ボンダ装置 1 5八 1で受信される際の動作を、 図 4に示すフローチヤートを 参照して説明する。
[0057] 図 4のステップ 3 1 において、 0 X (3装置 1 4 3の監視制御部 4 6 1は、
〇 3 (3部 4 1から光入力断情報が入力されたか否かを判定する。 この結果 、 光入力断情報として、 光入力断となった光信号の波長ス 1 , ス 2の波長情 報と、 この光信号の第 1方路 1 6 3の方路情報を含む光入力断情報が入力さ れたとする。
[0058] この場合、 ステップ 3 2において、 監視制御部 4 6 1は、 光入力断情報に 含まれる光信号の波長ス 1 , ス 2と第 1方路 1 6 3との双方の情報を 丨 3 生成部 4」へ出力する。
[0059] ステップ 3 3において、 丨 3生成部 4」は、 上記双方の情報に応じて、 収容情報管理部 4 丨の0巳4 丨 3の各情報を読み出し、 所定フォーマッ ト ( 図 3 ) の八 丨 3信号 3 1 を生成する。 この場合、 2つの八 丨 3信号が生成さ れる。
[0060] 1つ目の 丨 3信号は、 例えば、 バケッ トヘッダ 「1~1 1」 、 送信装置丨 口
「 1 4八」 、 宛先装置丨 口 「丁 1」 、 トランスボンダ丨 0 「丁 3 1」 、 波 長番号 「ス 1」 、 八 I 3警報 「障害」 のフォーマッ ト情報から成る。
[0061 ] 2つ目の 丨 3信号は、 例えば、 バケッ トヘッダ 「1~1 2」 、 送信装置丨 口
「 1 4八」 、 宛先装置丨 口 「丁 1」 、 トランスボンダ丨 0 「丁 3 2」 、 波 長番号 「ス 2」 、 八 I 3警報 「障害」 のフォーマッ ト情報から成る。
[0062] このようなフォーマッ トで生成された 2つの八 丨 3信号は、 ステップ 3 4 において、 八 丨 3生成部 4」から出力され、 巳/〇変換部 4 1< 1で電気信号 から光信号に変換後、 光カブラ 4 I 1から光ファイバ 1 6を介してトランス ボンダ装置 1 5八 1へ送信される。
[0063] ステップ 3 5において、 その送信された 2つの八 丨 3信号は、 トランスポ ンダ装置 1 5 1の光カブラ 5 丨 1 を介して〇/巳変換部 5 1< 1で光信号か ら電気信号に変換された後、 I 3受信部 5 II 1で受信され、 監視制御部 5
\¥02020/175164 15 卩(:171?2020/005650
6 1 に入力される。 監視制御部 5㊀ 1は、 2つの八 丨 3信号に応じてトラン スボンダ装置 1 5 1の外部障害の発生を、 巳 IV! 3装置 1 7 (図 9参照) 等 の監視装置へ報知する。
[0064] <0X0装置 0巳への事前登録処理 >
次に、 0X0装置 1 4 の収容情報管理部 4 丨が備える 0巳4 丨 3への収 容情報の事前登録処理を、 図 5及び図 6を参照して説明する。 図 5は、 収容 情報管理部 4 丨の0巳4 丨 3への収容情報の事前登録処理のための、 〇乂〇 装置 1 4八及びトランスボンダ装置 1 5八 1の構成を示すブロック図である 。 図 6は、 064 1 3への収容情報の事前登録処理を説明するためのフロー チヤートである。
[0065] 図 5に示す 0X(3装置 1 4 は、 上述した 0X(3装置 1 4 (図 1) の構 成要素の他に、 1\/111乂4〇と、 光 3\^/4 と、 光カブラ 49と、 〇/巳変換 部 4 「, 43と、 巳/〇変換部 41: , 4リと、 光カブラ 4 Vと、 光アンプ 4 Xとを備えている。 また、 トランスボンダ装置 1 5八 1は、 上述したトラン スボンダ装置 1 5八 1 (図 1) の構成要素の他に、 065 1 3を有する収容 情報管理部 5 丨 1 を備えている。
[0066] 光カプラ 4 Vは、 光アンプ 43と 01\/111乂 1 4〇との間に接続されている 。 IV! 11X40は、 入力端が光ファイバ 1 6を介してトランスボンダ 1 53 1 に接続され、 出力端が光 3\^/4 に接続されている。 光 3\^/4 は、 光カプ ラ 49を介して光アンプ 4 X及び〇/巳変換部 43に接続されている。
[0067] 〇/巳変換部 43及び〇/巳変換部 4 「は、 監視制御部 46 1の入力端に 接続されている。 監視制御部 46 1の出力端には、 巳/〇変換部 41: , 4リ が接続され、 日 /〇変換部 41が光カブラ 4 Vに接続されている。
[0068] これら構成要素の基本動作について説明する。 1\/111乂4〇は、 トランスポ ンダ 1 58 1からの光信号を図示せぬ他のトランスポンダからの光信号と多 重し、 光 3\^/4 を介して光カブラ 49へ出力する。 光カブラ 49は、 多重 された光信号を光アンプ 4 Xを介して第 1方路 1 68へ出力すると共に、 〇 /巳変換部 43を介して監視制御部 46 1へ出力する。 巳/〇変換部 4 Iは
\¥02020/175164 16 卩(:171?2020/005650
、 監視制御部 4 6 1からの電気信号を光信号に変換して光カブラ 4 Vへ出力 し、 光カブラ 4 Vは、 その光信号を光 3 \^/ 4匕へ出力する。
[0069] トランスボンダ装置 1 5 1 において、 収容情報管理部 5 丨 1の 0巳 5 I
8は、 図 2に示した口巳4 丨 8と同様に、 チャネル番号、 方路番号、 収容波 長、 宛先装置丨 口、 トランスボンダ I 口の各情報を記憶している。
[0070] <事前登録動作>
次に、 図 6のフローチャートを参照して 0 X(3装置 1 4八の0巳4 丨 3へ の収容情報の事前登録処理を説明する。 この事前登録処理は、 0 X 0装置 1 4八とトランスボンダ装置 1 5八 1 とが初めて繫がる場合に開始される。
[0071 ] 図 6のステップ 3 1 1 において、 トランスボンダ装置 1 5八 1のトランス ボンダ 5 3 1は、 〇乂〇装置1 4八からの波長ス 1の光信号である主信号の 入力を検知すると、 光入力断が回復と判断し、 この回復情報を監視制御部 5 6 1へ出力する。
[0072] 上記トランスボンダ 1 5 3 1の光入力断の回復判断機能は、 運用中の光入 力断が回復した場合に動作すると共に、 〇乂〇装置1 4八とトランスボンダ 装置 1 5 1 とが初めて繫がった場合にも動作する。 この初めて繫がる前の 、 0 X 0装置 1 4八とトランスボンダ装置 1 5八 1 とは未接続状態なので、 トランスポンダ装置 1 5八 1では光入力断の検知状態となっている。 このた め、 トランスボンダ 1 5 3 1又は 1 5 3 2 (トランスボンダ装置 1 5八 1) は、 0 X 0装置 1 4 と初めて繫がり光信号が伝送された際に、 光入力断の 回復と判断する。
[0073] ステップ 3 1 2において、 監視制御部 5 6 1は、 光入力断回復の情報が入 力されると、 この回復を検知し、 この応答をトランスボンダ 1 5 3 1へ返す 。 この応答時に、 監視制御部 5 6 1は、 収容情報管理部 5 丨 1の 0巳 5 丨 3 に記憶されたチャネル番号、 方路番号、 収容波長、 宛先装置丨 口 (例えば、 〇乂〇装置1 4八の丨 0) 、 トランスボンダ丨 口の各情報をトランスボンダ 1 5 3 1 に通知する。
[0074] ステップ 3 1 3において、 上記ステップ 3 1 2の応答を受けたトランスポ
\¥02020/175164 17 卩(:171?2020/005650
ンダ 1 5 3 1は、 当該トランスボンダ 1 5 3 1 に搭載された図示せぬレーザ の波長 (レーザ波長) を、 固有の特定波長 (例えばス〇) に変更する。 この 後、 トランスボンダ 1 5 3 1は、 レーザによって特定波長ス〇の光信号であ る制御信号を生成する。 この生成時に、 トランスボンダ 1 5 3 1は、 監視制 御部 5 6 1から通知された口巳 5 丨 3の各情報に応じて、 事前登録を行うた めの制御信号に、 図 7に示すパケッ トヘッダ、 送信装置丨 口、 宛先装置丨 口 (〇乂〇装置 1 4八の丨 0) 、 トランスボンダ丨 0、 波長番号等のフォーマ ッ ト情報を重畳する。
[0075] ステップ 3 1 4において、 トランスボンダ 1 5 3 1は、 フォーマッ ト情報 が重畳された制御信号を宛先の 0 X 0装置 1 4 へ送信する。 〇乂〇装置1 4八は、 制御信号を受信し、 1\/1 11乂4〇及び光 3 \^/ 4 を介して光カブラ 4 に入力する。 光カブラ 4 9は、 その制御信号と、 この制御信号の特定波長 ス〇以外の光信号とを分離し、 制御信号のみを監視制御部 4 6 1へ出力する
[0076] ステップ 3 1 5において、 監視制御部 4 6 1は、 入力された制御信号に、 0 X 0装置 1 4八に接続されている光ファイバ 1 6による方路の情報 (第 1 方路 1 6 3及び第 2方路 1 6 等の方路情報) を重畳して収容情報管理部 4 | に入力する。
[0077] ステップ 3 1 6において、 収容情報管理部 4 丨 は、 制御信号に重畳された フォーマッ ト情報と方路情報とを、 図 2に示すように、 0 6 4 I 3の該当欄 に書き込んで (登録して) 収容情報として記憶保持する。
[0078] ステップ 3 1 7において、 監視制御部 4 6 1は、 〇乂〇装置1 4八の丨 0 (0 X 0 ^® I 0) を特定波長ス〇の制御信号に重畳して、 日/〇変換部 4 1:、 光カブラ 4 V、 光 3 \^/ 0 1\/1 11乂4 〇を介してトランスボンダ 1 5 3 1へ送信する。
[0079] ステップ 3 1 8において、 トランスボンダ 1 5 3 1は、 受信信号が特定波 長ス〇の制御信号の場合に、 制御信号に重畳された 0 X 0装置 I 口を監視制 御部 5㊀ 1へ出力する。
\¥02020/175164 18 卩(:171?2020/005650
[0080] ステップ 3 1 9において、 監視制御部 5 6 1は、 入力された 0 X(3装置 I 口を収容情報管理部 5 丨 1へ出力する。 収容情報管理部 5 丨 1は、 上記ステ ップ 3 1 2での応答時にトランスボンダ 1 5 3 1へ通知した各情報に、 〇乂 〇装置丨 0を紐付けて 0巳 5 丨 3に保存する。
[0081 ] ステップ 3 2 0において、 監視制御部 5 6 1は、 上記保存が完了すると、 〇乂〇装置 1 4 に対して応答信号である 〇 信号を送信する。 この送信 後、 次のステップ3 2 1 と 3 2 2とが並列に処理され、 これらの処理後に事 前登録動作が終了する。
[0082] 即ち、 ステップ 3 2 1 において、 0 X(3装置 1 4八が、 八〇<信号を
乂4〇及び光 3 \^/ 4 を介して受信すると、 光 3 \^/ 4 を主信号である光信 号の選択モードに切り替える。
[0083] ステップ 3 2 2において、 トランスボンダ 1 5 3 1が、 上記ステップ 3 1
3で変更したレーザ波長 (特定波長ス〇) を、 変更前の主信号用の波長に切 り替ぇる。
[0084] <実施形態の効果>
本実施形態に係る光伝送システム 1 〇 の効果について説明する。 この光 伝送システム 1 〇 は、 通信装置としての端末機 1 9 3 , 1 9匕との間で伝 送される光信号の中継を行う トランスボンダ装置 (例えばトランスボンダ装 置 1 5 1) 間に、 光信号の波長パスの切替を行う複数の 0 X 0装置 1 4八 を光ファイバ 1 6で接続して集約して構成されている。
次に、 本実施形態の特徴構成について説明する。
[0085] (1) 0 X 0装置 1 4 は、 光ファイバ 1 6から入力される光信号が断と なる光入力断の検知時に、 光入力断となった光信号の波長を示す波長情報と 、 光入力断が生じた光ファイバ 1 6の方路の方路情報とを出力する 0 3〇部 4〇1 1及び監視制御部 4 6 1の双方による第 1制御部を備える。 また、 〇乂 〇装置 1 4 は、 第 1制御部から出力された波長情報及び方路情報に応じて 、 光入力断に係る光信号の波長及び方路の双方の情報と、 この双方の情報に 係る警報情報とを含む I 3信号 (警報信号) を生成する I 3生成部 4」
\¥02020/175164 19 卩(:171?2020/005650
を備える構成とした。
[0086] トランスボンダ装置 1 5 1は、 上記生成された 丨 3信号に含まれる双 方の情報及び警報情報を基に、 トランスボンダ装置 1 5 1の上流側の外部 障害を報知する八 I 3受信部 5 II 1及び監視制御部 5 6 1の双方による第 2 制御部を備える構成とした。
[0087] この構成によれば、 0 X (3装置 1 4八において、 光ファイバ 1 6からの光 入力断に係る光信号の波長と、 光信号が伝送される光ファイバ 1 6の方路と の双方の情報と、 双方の情報に係る警報情報とを含む I 3信号が生成され 、 この八 丨 3信号が 0 X 0装置 1 4八からトランスボンダ装置 1 5八 1 に通 知される。 トランスボンダ装置 1 5八 1では、 通知された八 丨 3信号に含ま れる上記双方の情報及び警報情報を基に、 トランスボンダ装置 1 5 1の上 流側の外部障害が検知できる。 このため、 0 X (3装置 1 4八に光ファイバ 1 6で接続されたトランスボンダ装置 1 5八 1 において、 〇乂〇装置1 4八で 検知された光入力断が上流側からの外部障害に起因するか、 内部障害に起因 するかを適正に判別できる。
[0088] ( 2 ) 〇乂〇装置 1 4八とトランスボンダ装置 1 5八 1 とを接続している 光ファイバ 1 6に光カブラ 4 1 1 , 5 I 1 を介揷し、 八 丨 3生成部 4」で生 成された八 丨 3信号を、 光カブラ 4 丨 1 , 5 I 1 を介して、 〇乂〇装置 1 4 八 1からトランスボンダ装置 1 5八 1へ伝送する構成とした。
[0089] この構成によれば、 〇乂〇装置1 4八とトランスボンダ装置 1 5八 1 とを 接続している既存の光ファイバ 1 6に光カブラ 4 1 1 , 5 1 1 を介して、 八 I 3信号をトランスボンダ装置 1 5八 1 に伝送できる。 このため、 従来のよ うに〇乂〇装置 1 4八とトランスボンダ装置 1 5八 1 とを、 光ファイバ 1 6 とは別の !_八 1\1ケーブル等でケーブル接続して八 丨 3信号を伝送するといっ た、 コスト高となる構成が不要となる。 つまり、 0 X 0装置 1 4八の光入力 断が外部障害又は内部障害に起因することをトランスボンダ装置 1 5 1で 適正に判別できる構成を、 低コストで実現できる。
[0090] ( 3 ) トランスボンダ装置 1 5八 1は、 光ファイバ 1 6の方路の番号であ
\¥02020/175164 20 卩(:171?2020/005650
る方路番号と、 方路に収容される光信号の波長である収容波長と、 信号の送 信装置丨 口及び宛先装置丨 0である装置丨 0と、 トランスボンダ丨 0との各 情報を保存する口巳 5 丨 3を備える。 〇乂〇装置1 4 は、 065 ! 3に保 存された各情報が登録されて保存される口巳 4 丨 3を備える。 トランスポン ダ装置 1 5 1は、 0X0装置 1 4 との未接続状態から、 光ファイバ 1 6 を介した接続状態に移行した際に光入力断の回復と判断し、 この判断後に、 固有の特定波長に変更した制御信号に、 065 1 3から読み込んだ各情報を 重畳して 0X0装置 1 4 へ送信する。 0X0装置 1 4 は送信されてきた 制御信号を受信し、 第 2制御部の制御によって、 受信された制御信号に重畳 された各情報を口巳4 丨 3に登録して保持する構成とした。
[0091] この構成によれば、 トランスボンダ装置 1 5八 1 に〇乂〇装置 1 4八が初 めて繫がった際に、 トランスボンダ装置 1 5八 1の 0巳 5 丨 3に保持された 収容波長、 装置丨 口及びトランスボンダ I 口の各情報を、 0X0装置 1 4八 の 0巳4 丨 3に登録して保持できる。 この保持後、 〇乂〇装置 1 4八の光入 力断に係る外部障害の発生を、 064 1 3に保持された各情報を用いてトラ ンスボンダ装置 1 5八 1 に通知可能となる。
[0092] その他、 具体的な構成について、 本発明の主旨を逸脱しない範囲で適宜変 更が可能である。
符号の説明
[0093] 1 〇八 光伝送システム
1 4 0X(3装置
43, 4 X 光アンプ
4〇 01\/111乂
4 1 〇 3〇咅6
46 1 監視制御部
4」 収容情報管理部
4」 八 I 3生成部
\¥02020/175164 21 卩(:171?2020/005650
41< 1 , 41< 1 41: , 4リ 巳/〇変換部
4 「, 43 0/E変換部
4 I 3 0巳
4〇 IV! II X
1 5八 1 , 1 5八门 トランスボンダ装置
53 1 , 532, 5门 1 , 5门 2 トランスボンダ
5 I 1 , 5 I 门 光カブラ
51< 1 , 5 k n 〇/巳変換部
5 h 1 , 5 h n 八 I 3受信部
56 1 , 5611 監視制御部
5 1 1 , 5 I n 収容情報管理部
5 丨 3 0巳
1 6 光ファイバケーブル
1 63 第 1方路
1 6匕 第 2方路
20 1 , 20 2, 20 a n 20 a n 端末機
Claims
[請求項 1 ] 通信装置との間で伝送される光信号の中継を行う トランスボンダ装 置間に、 光信号の波長パスの切替を行う複数の O X C (Opt i ca l Cros s Connect) 装置を光伝送路で接続して集約した光伝送システムであ って、
前記 O X C装置は、
前記光伝送路から入力される光信号が断となる光入力断の検知時に 、 当該光入力断となった光信号の波長を示す波長情報と、 当該光入力 断が生じた光伝送路の方路の方路情報とを出力する第 1制御部と、 前記第 1制御部から出力された波長情報及び方路情報に応じて、 前 記光入力断に係る光信号の波長及び方路の双方の情報と、 当該双方の 情報に係る警報情報とを含む警報信号を生成する生成部と
を備え、
前記トランスボンダ装置は、
前記生成された警報信号に含まれる前記双方の情報及び前記警報情 報を基に、 当該トランスボンダ装置の外部障害を報知する第 2制御部 を備える
ことを特徴とする光伝送システム。
[請求項 2] 前記 O X C装置と前記トランスボンダ装置を接続する光伝送路に光 カプラを介揷し、
前記生成部で生成された警報信号を、 前記光カブラを介して、 前記 〇 X C装置から前記トランスボンダ装置へ伝送するようにした ことを特徴とする請求項 1 に記載の光伝送システム。
[請求項 3] 前記トランスボンダ装置は、 前記光伝送路の方路の番号である方路 番号と、 当該方路に収容される光信号の波長である収容波長と、 信号 の送信装置及び宛先装置の固有情報である装置丨 D (Ident i f i cat i on ) と、 トランスボンダ丨 Dとの各情報を保存する第 1 D B (Data Bas e) を備え、
前記 O X C装置は、 前記第 1 D Bに保存された各情報が登録されて 保存される第 2 D Bを備え、
前記トランスボンダ装置は、 前記〇 X C装置との未接続状態から、 光伝送路を介した接続状態への移行時に前記光入力断の回復と判断し 、 この判断後に、 固有の特定波長に変更した制御信号に、 前記第 1 D Bから読み込んだ各情報を重畳して当該 0 X C装置へ送信し、 前記 0 X C装置は前記送信されてきた制御信号を受信し、 前記第 2 制御部の制御によって、 前記受信された制御信号に重畳された各情報 を前記第 2 D Bに登録して保持する
ことを特徴とする請求項 1又は 2に記載の光伝送システム。
[請求項 4] 通信装置との間で伝送される光信号の中継を行う トランスボンダ装 置間に、 光信号の波長パスの切替を行う複数の〇X C (Opt i ca l Cros s Connect) 装置を光伝送路で接続して集約した光伝送システムの光 伝送方法であって、
前記 O X C装置は、
前記光伝送路から入力される光信号が断となる光入力断の検知時に 、 当該光入力断となった光信号の波長を示す波長情報と、 当該光入力 断が生じた光伝送路の方路の方路情報とを出力するステップと、 前記出力された波長情報及び方路情報に応じて、 前記光入力断に係 る光信号の波長及び方路の双方の情報と、 当該双方の情報に係る警報 情報とを含む警報信号を生成するステップと
を実行し、
前記トランスボンダ装置は、
前記生成された警報信号に含まれる前記双方の情報及び前記警報情 報から、 当該トランスボンダ装置の外部障害を報知するステップ を実行する
ことを特徴とする光伝送方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/433,120 US11696056B2 (en) | 2019-02-26 | 2020-02-13 | Optical transmission system and optical transmission method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019033359A JP7135933B2 (ja) | 2019-02-26 | 2019-02-26 | 光伝送システム及び光伝送方法 |
JP2019-033359 | 2019-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020175164A1 true WO2020175164A1 (ja) | 2020-09-03 |
Family
ID=72238835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005650 WO2020175164A1 (ja) | 2019-02-26 | 2020-02-13 | 光伝送システム及び光伝送方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11696056B2 (ja) |
JP (1) | JP7135933B2 (ja) |
WO (1) | WO2020175164A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011019140A (ja) * | 2009-07-10 | 2011-01-27 | Nec Corp | 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体 |
JP2012109770A (ja) * | 2010-11-17 | 2012-06-07 | Nec Corp | 光伝送システム及び光伝送装置 |
JP2017005384A (ja) * | 2015-06-05 | 2017-01-05 | 富士通株式会社 | 光ネットワークシステム、光伝送装置及び検出方法 |
JP2018133707A (ja) * | 2017-02-15 | 2018-08-23 | 日本電信電話株式会社 | 光伝送システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5492684B2 (ja) | 2010-07-05 | 2014-05-14 | 日本電信電話株式会社 | ネットワーク保守・管理方法及びシステム |
US9544086B2 (en) * | 2012-07-02 | 2017-01-10 | Nec Corporation | Optical branching unit and optical branching method |
US10389470B2 (en) * | 2013-06-22 | 2019-08-20 | Mark E. Boduch | Construction of optical nodes using programmable ROADMS |
JP2017038328A (ja) * | 2015-08-14 | 2017-02-16 | 富士通株式会社 | 波長分割多重伝送システム |
-
2019
- 2019-02-26 JP JP2019033359A patent/JP7135933B2/ja active Active
-
2020
- 2020-02-13 US US17/433,120 patent/US11696056B2/en active Active
- 2020-02-13 WO PCT/JP2020/005650 patent/WO2020175164A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011019140A (ja) * | 2009-07-10 | 2011-01-27 | Nec Corp | 光通信装置、光波長多重伝送システム、光線路障害検出方法、そのプログラム及びプログラム記録媒体 |
JP2012109770A (ja) * | 2010-11-17 | 2012-06-07 | Nec Corp | 光伝送システム及び光伝送装置 |
JP2017005384A (ja) * | 2015-06-05 | 2017-01-05 | 富士通株式会社 | 光ネットワークシステム、光伝送装置及び検出方法 |
JP2018133707A (ja) * | 2017-02-15 | 2018-08-23 | 日本電信電話株式会社 | 光伝送システム |
Also Published As
Publication number | Publication date |
---|---|
JP7135933B2 (ja) | 2022-09-13 |
US20220046341A1 (en) | 2022-02-10 |
US11696056B2 (en) | 2023-07-04 |
JP2020141172A (ja) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3551407B2 (ja) | 波長多重光伝送システム | |
US9059815B2 (en) | Broadband optical communication network having optical channel protection apparatus | |
EP0920153B1 (en) | Ring network for sharing protection resource by working communications paths | |
EP1897299B1 (en) | Modular adaptation and configuration of a network node architecture | |
CN107925475A (zh) | 光分插设备和光分插方法 | |
JPH11252016A (ja) | 光通信用ノード及びこれにより構成されるリング構成の波長分割多重光伝送装置 | |
US6697546B2 (en) | Optical node system and switched connection method | |
KR100459572B1 (ko) | 버스트 통신을 위한 다중 링형 광 네트워크 | |
JP5011257B2 (ja) | パストレース方法及びノード装置 | |
CN109891783A (zh) | 光分支/耦合设备和光分支/耦合方法 | |
JP4730145B2 (ja) | 光信号切替え装置および光信号切替え方法 | |
JPH10164026A (ja) | 光中継装置と光伝送システム | |
US9369227B2 (en) | Protected optical single-fiber WDM system | |
US9654850B2 (en) | Wavelength multiplexer, and method and program for identifying failed portion | |
US20110243558A1 (en) | Optical transmission system and optical transmission method | |
WO2020175164A1 (ja) | 光伝送システム及び光伝送方法 | |
JP4914409B2 (ja) | Wdm伝送装置 | |
JP5499313B2 (ja) | トランスポンダ、中継装置、及び端局装置 | |
JP4906830B2 (ja) | パストレース方法及びトランスペアレントネットワークシステム | |
JP2009088852A (ja) | 多重中継光伝送装置 | |
JP3674541B2 (ja) | 光通信網における障害発生箇所の検出方法及び光通信システム | |
JP4859909B2 (ja) | トランスペアレント光ネットワーク及びトランスペアレント光ネットワーク故障監視方法 | |
JP2003046456A (ja) | 光伝送ネットワークシステムおよび光伝送ネットワークシステムの障害監視方法 | |
JP3551115B2 (ja) | 通信ネットワークノード | |
JP2007074254A (ja) | 中継伝送システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20762699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20762699 Country of ref document: EP Kind code of ref document: A1 |