WO2020173383A1 - 一种电池模组 - Google Patents

一种电池模组 Download PDF

Info

Publication number
WO2020173383A1
WO2020173383A1 PCT/CN2020/076056 CN2020076056W WO2020173383A1 WO 2020173383 A1 WO2020173383 A1 WO 2020173383A1 CN 2020076056 W CN2020076056 W CN 2020076056W WO 2020173383 A1 WO2020173383 A1 WO 2020173383A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
end plate
battery module
straight
mounting block
Prior art date
Application number
PCT/CN2020/076056
Other languages
English (en)
French (fr)
Inventor
陈思恩
徐守江
冯春艳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020173383A1 publication Critical patent/WO2020173383A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of energy storage devices, and in particular to a battery module. Background technique
  • the battery module includes multiple batteries, end plates located at both ends of the multiple batteries, and side plates located on both sides of the multiple batteries.
  • the end plate is fixedly connected with the side plate to clamp the battery.
  • the end plate is provided with end plate mounting holes.
  • the end plate mounting hole is used to install each battery module.
  • the end plate needs to withstand the expansion force of the battery, and the inner end face of the end plate receives the largest battery expansion force, resulting in the inner end face of the end plate (the surface of the end plate close to the battery) in the end plate mounting hole There is a risk of breakage at the position, resulting in lower strength of the end plate. Summary of the invention
  • the embodiments of the present application provide a battery module to solve the problem of low strength of the end plate under the action of the battery expansion force in the prior art.
  • the embodiment of the present application provides a battery module, including a plurality of batteries stacked along the length direction L of the battery module and end plates located at the ends of the plurality of batteries in the length direction L;
  • the end plate is provided with an end plate mounting hole, the end plate mounting hole extends along the height direction H of the battery module; the end plate has an inner wall and an outer wall arranged opposite to each other along the length direction L, and the first is between the axis of the end plate mounting hole and the inner wall.
  • Distance L1 there is a second distance L2 between the axis of the end plate mounting hole and the outer wall; The first distance L1 is greater than the second distance L2.
  • the end plate since the first distance L1 is greater than the second distance L2, that is, the distance between the central axis of the end plate mounting hole and the surface of the inner wall close to the battery is greater than the distance between it and the surface of the outer wall away from the battery, therefore, the end plate is installed At the hole, the end plate has a larger thickness that bears the battery expansion force, which can reduce the risk of the inner wall breaking under the action of the battery expansion force, thereby improving the strength of the end plate.
  • the end plate in the present application can also reduce the risk of the inner wall deforming outward under the action of the battery expansion force, thereby reducing the compression of the mounting bolt after the inner wall is deformed, thereby improving the installation reliability and stability of the battery module.
  • Fig. 1 is a schematic structural diagram of a battery module provided by an embodiment of the application
  • Fig. 2 is a schematic structural diagram of the end plate in Fig. 1;
  • Figure 3 is a schematic view of the top view of the end plate shown in Figure 2.
  • Figure 1 is a schematic structural diagram of a battery module provided by an embodiment of the application
  • Figure 2 is a structural schematic diagram of the end plate 1 in Figure 1
  • the present application provides a battery module.
  • the battery module includes a plurality of batteries 4 stacked along a length direction L of the battery module and a plurality of batteries 4 located in the length direction L
  • the end plate 1 is set to two and set opposite in the length direction L.
  • the battery module also includes two side plates 2 arranged opposite to each other along the width direction W.
  • An insulating member 3 is provided between the end plate 1 and the battery 5 adjacent to the end plate 1.
  • the insulating member 3 has both good heat insulation performance and insulation performance, so it can be used as an insulation structure and a heat insulation structure between the end plate 1 and the battery 4 adjacent to the end plate 1. After the end plate 1 and the side plate 2 are fixed by laser welding, the insulator 3 and the battery 4 can be clamped, thereby forming the battery module shown in FIG. 1.
  • the end plate 1 of the battery module is provided with end plate mounting holes (specifically, it may include the first end plate mounting hole 181 and the second end plate mounting hole shown in FIGS. 2 and 3). 191), the mounting bolt (not shown in the figure) is inserted into the mounting hole of the end plate to realize the installation of the battery module.
  • the position of the end plate mounting hole has low strength and rigidity.
  • the end plate 1 is subjected to the outward battery expansion force of the battery 4, and the inner end face of the end plate 1 receives the largest battery expansion force, which causes the inner end face of the end plate 1 to be broken at the position of the end plate mounting hole. Risk, resulting in lower strength of the end plate 1.
  • the inner end surface of the end plate 1 refers to the surface of the end plate 1 close to the battery 4.
  • the inner end surface squeezes the mounting bolts located in the end plate mounting holes, resulting in a decrease in the installation stability and reliability of the battery module.
  • the strength of the end plate 1 is mainly improved by improving the structure of the end plate 1.
  • the end plate 1 in the battery module, has an inner wall 11 and an outer wall 12 oppositely arranged along the length direction L of the battery module.
  • the end plate 1 has an end plate installation hole, the end plate installation hole extends along the height direction H of the battery module, and the end plate installation hole extends along the height direction H penetrates through the end plate 1.
  • the end plate mounting hole is provided between the inner wall 11 and the outer wall 12.
  • first distance L1 between the axis of the end plate mounting hole and the inner wall 11, that is, along the length direction L, there is a first distance L1 between the axis of the end plate mounting hole and the surface of the inner wall 11 close to the battery 4;
  • second distance L2 between the axis and the outer wall 12, that is, along the length direction L, there is a second distance L2 between the axis of the end plate mounting hole and the surface of the outer wall 12 away from the battery 4; wherein the first distance L1 is greater than the second distance L2.
  • the first distance L1 is greater than the second distance L2, that is, along the length direction L, the axis of the first end plate mounting hole 181 (or the second end plate mounting hole 191) and the inner wall 11
  • the distance close to the surface of the battery 4 is greater than the distance between it and the outer wall 12 away from the surface of the battery 4. Therefore, at the first end plate mounting hole 181 (or the second end plate mounting hole 191), the end plate 11 bears battery expansion
  • the thickness of the force is large, which can reduce the risk of the inner wall 11 breaking under the action of the battery expansion force, thereby improving the strength of the end plate 1.
  • the end plate 1 in the present application can also reduce the risk of the inner wall 11 deforming outward under the action of the battery expansion force, thereby reducing the compression of the mounting bolts after the inner wall 11 is deformed, thereby improving the installation reliability and reliability of the battery module. stability.
  • the end plate 1 further includes a first mounting block 18 and a second mounting block 19 spaced apart along the width direction W of the battery module.
  • the first mounting block 18 is fixed to the inner wall 11 and the outer wall 12
  • the second mounting block 19 is fixed to the inner wall 11 and the outer wall 12, that is, the first mounting block 18 and the second mounting block 19 are connected between the inner wall 11 and the outer wall 12
  • the physical structure The first end plate mounting hole 181 is provided in the first mounting block 18, and the second end plate mounting hole 191 is provided in the second mounting block 19.
  • the battery module by providing two end plate mounting holes on the end plate 1, the battery module can be installed, and when the two end plate mounting holes are provided in the mounting block of the physical structure, the inner wall 11 and the outer wall 12 can be improved. Strength and stiffness.
  • the first mounting block 18 and the second mounting block 19 are both square structures, and the dimensions of the two mounting blocks along the length direction L and the width direction W are both larger than the end plate
  • the size of the mounting hole makes the two mounting blocks have enough thickness to withstand the forces in all directions after the end plate mounting holes are provided.
  • the outer wall 12 includes a straight wall 121, a first inclined wall 122 and a second inclined wall 123 along the width direction W of the battery module.
  • the first inclined wall 122 and the second inclined wall 123 is located at both ends of the straight wall 121 in the width direction W.
  • the straight wall 121 is arranged parallel to the inner wall 11. Both the first inclined wall 122 and the second inclined wall 123 are inclined in a direction toward the inner wall 11, that is, the first inclined wall 122 and the second inclined wall 123 are inclined toward the battery 4 along the length direction L of the battery module.
  • the end plate 1 has a middle part and two end parts. Along the width direction W, the two end portions are respectively arranged on opposite sides of the middle portion. Wherein, the inner wall 11 and the straight wall 121 located in the middle part are parallel to each other. The thickness of each part of the middle part of the end plate 1 is the same. The first inclined wall 122 and the second inclined wall 123 at the two ends are both inclined toward the inner wall 11. In the two ends of the end plate 1, the thickness of each part gradually decreases in the width direction W. Among them, the thickness refers to the dimension of the end plate 1 along the length direction L.
  • Energy density refers to the electric energy stored per unit weight of the battery. Therefore, in order to increase the energy density of the battery module, the weight of the battery module needs to be reduced.
  • the battery expansion force received by the middle part is larger, and the battery expansion force received by the end part is smaller, that is, the strength requirement of the end part is lower than that of the middle part. Therefore, in this embodiment, by reducing the thickness of the two end portions of the end plate 1, the material consumption of the end plate 1 can be reduced under the premise of meeting the strength, thereby reducing the weight of the end plate 1 and improving the battery module. Energy Density.
  • the obtuse angle formed between the first inclined wall 122 and the straight wall 121 is 145° to 175°.
  • the obtuse angle formed between the first inclined wall 122 and the straight wall 121 may be 163°.
  • the obtuse angle formed between the second inclined wall 123 and the straight wall 121 is 145° to 175°.
  • the obtuse angle formed between the second inclined wall 123 and the straight wall 121 may be 163°.
  • the size of the two obtuse angles can be the same or different, and there is no strict size relationship between the two obtuse angles, and the specific values of the two obtuse angles can be set arbitrarily according to actual needs.
  • the angle between the two inclined walls and the straight wall 121 is set.
  • the end plate 1 has a first side wall 13 and a second side wall 14 at two ends along the width direction W, respectively. Both the first side wall 13 and the second side wall 14 are perpendicular to the inner wall 11. At the same time, the first side wall 13 is connected to the first inclined wall 122 and the inner wall 11, and the second side wall 14 is connected to the second inclined wall 123 and the inner wall 11. Therefore, along the length direction L of the battery module, the length of the first side wall 13 is less than the distance D2 between the straight wall 121 and the inner wall 11, and the length of the second side wall 14 is less than the distance between the straight wall 121 and the inner wall 11 D2.
  • the distance D2 between the straight wall 121 and the inner wall 11 refers to the distance between the surface of the straight wall 121 close to the battery 4 and the surface of the inner wall 11 far away from the battery 4 along the length direction L.
  • the first side wall 13 abuts and welds to the corresponding side plate 2
  • the second side wall 14 abuts and welds to the corresponding side plate 2.
  • the outer wall 12 since the outer wall 12 includes a first inclined wall 122 and a second inclined wall 123, the first inclined wall 122 can be directly connected to the inner wall 11 after being inclined, and the second inclined wall 123 can be directly connected to the inner wall 11 after being inclined.
  • the end plate 1 may not include the first side wall 13 and the second side wall 14.
  • the welding area between the end plate 1 and the side plate 2 can be increased, thereby increasing the end plate 1. Reliability of the connection with the side plate 2.
  • the two ends of the first mounting block 18 are fixed to the straight wall 121 and the inner wall 11, respectively, and the two ends of the second mounting block 19 are respectively fixed to the straight wall 121 and the inner wall. fixed.
  • the first side wall 13, the first inclined wall 122, the inner wall 11, the first mounting block 18 and a part of the straight wall 121 enclose the first cavity 15.
  • the second side wall 14, the second inclined wall 123, the inner wall 11, the second mounting block 19 and the partial straight wall 121 enclose the second cavity 16.
  • the first cavity 15 has a set width A along the width direction W
  • the second cavity 16 has a set width A along the width direction W.
  • the aforementioned set width A can be 25mm to 45mm.
  • the set width A may be 34.95mm or 40mm.
  • the cavity structure of the first cavity 15 and the second cavity 16 can reduce the weight of the end plate 1, thereby increasing the energy density of the battery module.
  • the width of the first cavity 15 in the width direction W refers to the distance between the first side wall 13 and the first mounting block 18.
  • the width of the second cavity 16 in the width direction W refers to the distance between the second side wall 14 and the second mounting block 19.
  • the set width A of the first cavity 15 and the second cavity 16 can represent the distance between the first end plate mounting hole 181 and the second end plate mounting hole 191 and the end of the end plate 1.
  • the installation reliability of the battery module may be affected.
  • the first end plate mounting hole 181 and the second end plate mounting hole 191 are close to the middle part of the end plate 1, which is subjected to a larger battery expansion force, which reduces the strength of the end plate 1 and resists the battery The ability of expansion force is easy to deform and fail.
  • the set width is too small, the first slanted wall 122 and the second slanted wall 123 are smaller, and the weight of the end plate 1 is larger, which is not conducive to improving the energy density of the battery module. Therefore, in this embodiment, the installation reliability of the battery module, the strength of the end plate 1 and the energy density of the battery module should be considered comprehensively, and the set width A of the cavity should be set reasonably.
  • the first cavity 15 is provided with a first reinforcing rib 151.
  • a second reinforcing rib 161 is provided in the second cavity 16.
  • the first reinforcing rib 151 and the second reinforcing rib 161 are both inclinedly arranged, and the inclination directions of the two are opposite.
  • the two ends of the first reinforcing rib 151 are fixed to the inner wall 11 and the straight wall 121 respectively, and the two ends of the second reinforcing rib 161 are fixed to the inner wall 11 and the straight wall 121 respectively.
  • the first reinforcing rib 151 divides the first cavity 15 into two cavities with different shapes, one is a pentagonal structure and the other is a quadrilateral structure.
  • the truss structure formed by the first reinforcement ribs 151 can further improve the strength of the end plate 1.
  • the second reinforcing rib 161 divides the second cavity 16 into two cavities with different shapes, one has a pentagonal structure and the other has a quadrilateral structure.
  • the truss structure formed by the second reinforcing rib 161 can further improve the strength of the end plate 1.
  • the end plate 1 can be improved in the first cavity 15 and the second cavity 15 Strength of cavity 16.
  • the first reinforcement ribs 151 and the second reinforcement ribs 161 are inclined, the number of reinforcement ribs can be reduced while increasing the strength, thereby reducing the weight of the end plate 1.
  • the shape between the first reinforcing rib 151 and the straight wall 121 is The obtuse angle is 100° to 150°.
  • the obtuse angle formed between the first reinforcing rib 151 and the straight wall 121 may be 120 ° or 126.8 °.
  • the obtuse angle formed between the second reinforcing rib 161 and the straight wall 121 is 100° to 150°.
  • the obtuse angle formed between the second reinforcing rib 161 and the straight wall 121 may be 126.8° or 130°.
  • the sizes of the two obtuse angles can be the same or different, and there is no strict relationship between the two obtuse angles, and the specific values of the two obtuse angles can be set arbitrarily according to actual needs.
  • the first mounting block 18, the second mounting block 19, the inner wall 11 and the straight wall 121 enclose the third cavity 17.
  • the third cavity 17 has a rectangular cross section.
  • a plurality of third reinforcing ribs 171 are provided in the third cavity 17. Both ends of each third reinforcing rib 171 are fixed to the inner wall 11 and the straight wall 121 respectively.
  • the strength of the end plate 1 at the third cavity 17 can be improved. As described above, the position of the third cavity 17 receives a relatively large battery expansion force. Therefore, in order to make it have sufficient strength, a plurality of third reinforcing ribs 171 are provided in the third cavity 17.
  • the thickness of the first reinforcing rib 151, the second reinforcing rib 161, and the third reinforcing rib 171 are not greater than the thickness of the inner wall 11 and the outer wall 12.
  • the thickness of the first reinforcement rib 151, the second reinforcement rib 161, and the third reinforcement rib 171 the higher the strength of the end plate 1, but at the same time the weight of the end plate 1 is also greater. Therefore, the above three reinforcement ribs
  • the thickness should not be too large, and can be less than or equal to the thickness of the inner wall 11 and the outer wall 12. In this case, it can improve the strength of the end plate 1 and avoid the end plate 1 from being too heavy due to the addition of reinforcing ribs.
  • the first mounting block 18 and the second mounting block 19 are both prismatic structures, and they are arranged symmetrically with respect to the center line of the end plate 1.
  • each third reinforcing rib 171 is inclined, and the inclination directions of the adjacent third reinforcing ribs 171 are opposite, so that the uniformity of the strength of each part of the end plate 1 can be improved, and the third reinforcing ribs 171 can be reduced. quantity.
  • the adjacent third reinforcement rib 171 and the inner wall 11 or the straight wall 121 enclose a structure with a triangular cross-section, or the third reinforcement rib 171, the inner wall 11, the straight wall 121 and the corresponding mounting block enclose a structure with a trapezoidal cross-section .
  • the first mounting block 18 and the second mounting block 19 have a rectangular parallelepiped structure, when the inclined third reinforcement rib 171 is provided in the third cavity 17, it is located along the third cavity 17
  • the two third reinforcing ribs 171 on the two edges of the width direction w can form a trapezoidal structure with the corresponding mounting block, the inner wall 11 and the outer wall 12, and the top side (the shorter length side) of the trapezoid is formed by the inner wall 11.
  • the inner wall 11 and the outer wall 12 are supported by the first mounting block 18 (or the second mounting block 19) and the third reinforcing rib 171, and the distance between the support points of the inner wall 11 and the outer wall 12 is smaller Therefore, after the trapezoidal structure is installed, the increase in the strength of the inner wall 11 is greater than the increase in the strength of the outer wall 12, even if the strength of the inner wall 11 is greater than the strength of the outer wall 12, thereby further reducing the inner wall 11 of the end plate 1 Risk of fracture under the action of expansion force.
  • the trapezoidal structure can not only increase the strength of the end plate 1, but also reduce the number of third reinforcing ribs 171 and reduce the weight of the end plate 1.
  • the sum of the thickness of the inner wall 11 and the outer wall 12 of the end plate 1 is D1
  • the distance between the inner wall 11 and the outer wall 12 is D2
  • the ratio of D1 to D2 is 1/5 to 3/ 5.
  • the thickness of the inner wall 11 of the end plate 1 is 1.8 mm.
  • the thickness of the outer wall 12 is 2.2mm.
  • the total thickness D1 of the inner wall 11 and the outer wall 12 is 4 mm.
  • the distance between the inner wall 11 and the outer wall 12 is 10. 2mm. Therefore, the ratio of D1 to D2 in this embodiment is about 2/5.
  • the ratio of D1 to D2 In the end plate 1, the greater the ratio of D1 to D2, the higher the strength and the weight of the end plate 1. The smaller the ratio of D1 to D2, the lower the strength of the end plate 1, and the smaller the weight. Therefore, the ratio of D1 to D2 can also be set reasonably in consideration of the strength and weight of the end plate 1.
  • the end plate mounting hole is a round hole, a waist-shaped hole or an oval hole.
  • the end plate mounting hole can be a waist-shaped hole or an oval hole.
  • the waist-shaped hole or the elliptical hole enables the installation of the end plate mounting holes and the battery pack mounting holes when the coaxiality is low.
  • the end plate mounting hole is a waist-shaped hole or an elliptical hole
  • its long side is along the width direction W of the battery module
  • the short side is along the length direction L of the battery module, so as to ensure that the end plate 1 Along the length direction L has sufficient strength.
  • the end plate 1 can not only withstand the expansion force of the battery, and its weight is relatively small, but also can increase the energy density of the battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池模组,包括多个沿电池模组的长度方向L堆叠的电池和位于多个电池在长度方向L的端部的端板;端板设有端板安装孔,端板安装孔沿电池模组的高度方向H延伸;端板具有沿长度方向L相对设置的内壁和外壁,端板安装孔的轴线与内壁之间具有第一距离L1,端板安装孔的轴线与外壁之间具有第二距离L2;第一距离L1大于第二距离L2。在端板安装孔处,端板承受电池膨胀力的厚度较大,能降低内壁在电池膨胀力作用下断裂的风险,从而能提高该端板的强度。同时,端板还能够降低内壁在电池膨胀力的作用下向外变形的风险,从而降低内壁变形后对安装螺栓的挤压,进而提高电池模组的安装可靠性和稳定性。

Description

种电池模组 相关申请的交叉引用
本申请要求享有于 2019年 02月 26日提交的名称为“一种电池模组” 的中国专利申请 201910141026.0的优先权, 该申请的全部内容通过引用并 入本文中。 技术领域
本申请涉及储能器件技术领域, 尤其涉及一种电池模组。 背景技术
电池模组包括多个电池、 位于多个电池两端的端板和位于多个电池两 侧的侧板。 端板与侧板固定连接以将电池夹紧。 其中, 端板设置有端板安 装孔。 在安装形成电池包时, 该端板安装孔用于安装各电池模组。 同时, 电池模组工作过程中, 端板需承受电池的膨胀力, 且端板的内端面受到的 电池膨胀力最大, 导致端板的内端面 (端板靠近电池的表面) 在端板安装 孔的位置存在断裂的风险, 从而导致该端板的强度较低。 发明内容
有鉴于此, 本申请实施例提供了一种电池模组, 用以解决现有技术中 端板在电池膨胀力作用下强度较低的问题。
本申请实施例提供了一种电池模组, 包括多个沿电池模组的长度方向 L堆叠的电池和位于多个电池在长度方向 L的端部的端板;
端板设有端板安装孔, 端板安装孔沿电池模组的高度方向 H延伸; 端板具有沿长度方向 L相对设置的内壁和外壁, 端板安装孔的轴线与 内壁之间具有第一距离 L1, 端板安装孔的轴线与外壁之间具有第二距离 L2; 第一距离 L1大于第二距离 L2。
本申请中, 由于第一距离 L1大于第二距离 L2, 即该端板安装孔的中 心轴线与内壁靠近电池的表面的距离大于其与外壁远离电池的表面的距 离, 因此, 在该端板安装孔处, 端板承受电池膨胀力的厚度较大, 能够降 低内壁在电池膨胀力作用下断裂的风险, 从而能够提高该端板的强度。 同 时, 本申请中的端板还能够降低内壁在电池膨胀力的作用下向外变形的风 险, 从而降低内壁变形后对安装螺栓的挤压, 进而提高电池模组的安装可 靠性和稳定性。 附图说明
为了更清楚地说明本申请实施例的技术方案, 下面将对实施例中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本申 请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其它的附图。
图 1为本申请一实施例所提供的一种电池模组的结构示意图; 图 2为图 1中端板的结构示意图;
图 3为图 2所不端板的俯视结构不意图。 附图标记:
I-端板;
I I-内壁;
12 -外壁;
121-直壁;
122 -第一斜壁;
123 -第二斜壁;
13 -第一侧壁;
14 -第二侧壁;
15 -第一空腔;
151-第一加强筋; 16 -第二空腔;
161-第二加强筋;
17 -第三空腔;
171-第三加强筋;
18 -第一安装块;
181 -第一端板安装孔;
19 -第二安装块;
191 -第二端板安装孔;
2 -侧板;
3 -绝缘件;
4 -电池。 具体实施方式
为了更好的理解本申请的技术方案, 下面结合附图对本申请实施例进 行详细描述。
应当明确, 所描述的实施例仅仅是本申请一部分实施例, 而不是全部 的实施例。 基于本申请中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其它实施例, 都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的, 而 非旨在限制本申请。 在本申请实施例和所附权利要求书中所使用的单数形 式的“一种” 、 “所述”和“该”也旨在包括多数形式, 除非上下文清楚 地表示其他含义。
应当理解, 本文中使用的术语“和 /或”仅仅是一种描述关联对象的 关联关系, 表示可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存 在 A, 同时存在 A 和 B, 单独存在 B 这三种情况。 另外, 本文中字符 “/” , 一般表示前后关联对象是一种“或” 的关系。
需要注意的是, 本申请实施例所描述的 “上” 、 “下” 、 “左” 、 “右”等方位词是以附图所示的角度来进行描述的, 不应理解为对本申请 实施例的限定。 此外, 在上下文中, 还需要理解的是, 当提到一个元件连 接在另一个元件“上”或者“下” 时, 其不仅能够直接连接在另一个元件 “上”或者“下” , 也可以通过中间元件间接连接在另一个元件“上”或 者“下” 。
请参考附图 1至图 3 , 其中, 图 1为本申请一实施例所提供的一种电 池模组的结构示意图; 图 2为图 1中端板 1的结构示意图; 图 3为图 2所 示端板 1的俯视结构示意图。
在一个实施例中, 本申请提供一种电池模组, 如图 1 所示, 该电池模 组包括多个沿电池模组的长度方向 L堆叠的电池 4和位于多个电池 4在长 度方向 L 的端部的端板 1。 端板 1 设置为两个且在长度方向 L 上相对设 置。 此外, 该电池模组还包括沿宽度方向 W相对设置的两个侧板 2。 在端 板 1和邻接该端板 1的电池 5之间设有绝缘件 3。 该绝缘件 3兼具良好的 隔热性能和绝缘性能, 因此, 可作为端板 1与邻接该端板 1的电池 4之间 的绝缘结构和绝热结构。 端板 1和侧板 2通过激光焊接固定后, 能够夹紧 绝缘件 3和电池 4, 从而形成图 1所示的电池模组。
同时, 为了实现电池模组的安装, 该电池模组的端板 1 设有端板安装 孔 (具体可包括图 2和图 3所示的第一端板安装孔 181和第二端板安装孔 191) , 安装螺栓 (图中未示出) 与该端板安装孔插装, 以实现电池模组 的安装。
对于端板 1 来说, 其在端板安装孔的位置强度和刚度较低。 安装完成 后, 该端板 1受到电池 4向外的电池膨胀力作用, 且端板 1的内端面受到 的电池膨胀力最大, 导致端板 1 的内端面在端板安装孔的位置存在断裂的 风险, 从而导致该端板 1的强度较低。 端板 1的内端面指的是端板 1靠近 电池 4 的表面。 另外, 当端板 1 的内端面在电池膨胀力作用下向外变形 时, 该内端面挤压位于端板安装孔内的安装螺栓, 导致电池模组的安装稳 定性和可靠性降低。 为了解决该技术问题, 本申请中, 主要通过改进端板 1的结构来提高端板 1的强度。
在一个实施例中, 如图 2和图 3所示, 该电池模组中, 端板 1具有沿 电池模组的长度方向 L相对设置的内壁 11和外壁 12。 端板 1具有端板安 装孔, 端板安装孔沿电池模组的高度方向 H延伸, 端板安装孔沿高度方向 H贯通端板 1。 端板安装孔设于内壁 11和外壁 12之间。 端板安装孔的轴 线与内壁 11 之间具有第一距离 L1, 即沿长度方向 L, 端板安装孔的轴线 与内壁 11靠近电池 4的表面之间具有第一距离 L1 ; 端板安装孔的轴线与 外壁 12 之间具有第二距离 L2, 即沿长度方向 L, 端板安装孔的轴线与外 壁 12远离电池 4的表面之间具有第二距离 L2 ; 其中, 第一距离 L1大于第 二距离 L2。
本申请中, 如图 3所示, 由于第一距离 L1大于第二距离 L2, 即沿长 度方向 L, 该第一端板安装孔 181 (或第二端板安装孔 191) 的轴线与内壁 11靠近电池 4的表面的距离大于其与外壁 12远离电池 4的表面的距离, 因此, 在该第一端板安装孔 181 (或第二端板安装孔 191) 处, 该端板 11 承受电池膨胀力的厚度较大, 能够降低内壁 11 在电池膨胀力作用下断裂 的风险, 从而能够提高该端板 1的强度。 同时, 本申请中的端板 1还能够 降低其内壁 11在电池膨胀力作用下向外变形的风险, 从而降低内壁 11变 形后对安装螺栓的挤压, 进而提高电池模组的安装可靠性和稳定性。
在一个实施例中, 如图 2和图 3所示, 该端板 1还包括沿电池模组的 宽度方向 W间隔分布的第一安装块 18和第二安装块 19。 第一安装块 18固 定于内壁 11和外壁 12, 且第二安装块 19固定于内壁 11和外壁 12, 即该 第一安装块 18与第二安装块 19为连接于内壁 11与外壁 12之间的实体结 构。 上述第一端板安装孔 181设于第一安装块 18, 且第二端板安装孔 191 设于第二安装块 19。
本实施例中, 通过在端板 1 上设置两个端板安装孔, 能够实现电池模 组的安装, 且两端板安装孔设于实体结构的安装块时, 能够提高内壁 11 和外壁 12的强度和刚度。
其中, 如图 2和图 3所示的实施例中, 第一安装块 18和第二安装块 19均为方形结构, 且两个安装块沿长度方向 L和宽度方向 W的尺寸均大于 端板安装孔的尺寸, 从而使得两个安装块设置端板安装孔后仍然具有足够 的厚度以承受各方向的作用力。
另一方面, 如图 2和图 3所示, 该外壁 12沿电池模组的宽度方向 W 包括直壁 121、 第一斜壁 122和第二斜壁 123。 第一斜壁 122和第二斜壁 123位于直壁 121沿宽度方向 W的两端。 同时, 该直壁 121与内壁 11平行 设置。 第一斜壁 122和第二斜壁 123均沿朝向内壁 11 的方向倾斜, 即第 一斜壁 122和第二斜壁 123沿电池模组的长度方向 L朝向电池 4倾斜。
如图 3所示, 该端板 1具有中间部和两个端部。 沿宽度方向 W, 两个 端部分别设置于中间部相对的两侧。 其中, 位于中间部的内壁 11 与直壁 121 相互平行。 端板 1 的中间部各部分的厚度相同。 位于两个端部的第一 斜壁 122和第二斜壁 123均朝向内壁 11倾斜。 端板 1 的两个端部中, 各 部分的厚度沿宽度方向 W逐渐减小。 其中, 厚度指的是端板 1沿长度方向 L的尺寸。
在电池领域, 能量密度为重要的指标, 能量密度指的是单位重量的电 池所储存的电能, 因此, 为了提高电池模组的能量密度, 需降低电池模组 的重量。
对于端板 1 来说, 其中间部所受到的电池膨胀力较大, 端部受到的电 池膨胀力较小, 即端部的强度要求比中间部低。 因此, 本实施例中, 通过 减小端板 1 两个端部的厚度, 从而能够在满足强度的前提下, 减少端板 1 的材料用量, 进而降低端板 1的重量, 提高电池模组的能量密度。
在一个示例中, 第一斜壁 122与直壁 121之间形成的钝角为 145 ° 至 175 ° 。 优选地, 第一斜壁 122与直壁 121之间形成的钝角可为 163 ° 。 第 二斜壁 123与直壁 121之间形成的钝角为 145 ° 至 175 ° 。 优选地, 第二 斜壁 123与直壁 121之间形成的钝角可为 163 ° 。
另外, 上述两个钝角的大小可相同, 也可不同, 且两钝角之间也不存 在严格的大小关系, 二者的具体数值可根据实际需要任意设置。
本实施例中, 如图 3 所示, 第一斜壁 122 与直壁 121 之间的钝角越 大, 端板 1端部的厚度越大, 其强度越高, 端板 1的重量越大。 第一斜壁 122与直壁 121之间的钝角越小, 端板 1 的厚度越小, 其强度越低, 端板 1的重量越小。 第二斜壁 123与直壁 121之间的钝角越大, 端板 1端部的 厚度越大, 其强度越高, 端板 1的重量越大。 第二斜壁 123与直壁 121之 间的钝角越小, 端板 1的厚度越小, 其强度越低, 端板 1的重量越小。 因 此, 在实际使用时, 可综合考虑端板 1 强度和能量密度两方面的因素, 合 理设置上述两个斜壁与直壁 121之间的夹角。
在一个实施例中, 如图 2和图 3所示, 该端板 1沿宽度方向 W的两个 端部分别具有第一侧壁 13和第二侧壁 14。 第一侧壁 13和第二侧壁 14均 与内壁 11垂直。 同时, 第一侧壁 13与第一斜壁 122和内壁 11相连, 第 二侧壁 14与第二斜壁 123和内壁 11相连。 因此, 沿电池模组的长度方向 L, 第一侧壁 13的长度小于直壁 121与内壁 11之间的距离 D2, 而第二侧 壁 14的长度小于直壁 121与内壁 11之间的距离 D2。 直壁 121与内壁 11 之间的距离 D2是指沿长度方向 L直壁 121靠近电池 4的表面与内壁 11远 离电池 4的表面之间的距离。 同时, 第一侧壁 13与对应的侧板 2相抵并 焊接, 而第二侧壁 14与对应的侧板 2相抵并焊接。
本申请中, 由于外壁 12包括第一斜壁 122和第二斜壁 123, 因此, 该 第一斜壁 122倾斜后可直接与内壁 11相连, 而第二斜壁 123倾斜后可直 接与内壁 11相连, 此时, 该端板 1可不包括第一侧壁 13和第二侧壁 14。 但是, 本实施例中, 通过设置第一侧壁 13 和第二侧壁 14, 与斜壁直接和 内壁 11连接相比, 能够增加端板 1与侧板 2的焊接面积, 从而提高端板 1 与侧板 2之间的连接可靠性。
当斜壁直接与内壁 11 连接时, 二者相连处形成锐角, 且二者相连的 位置为该端板 1的边缘。 当端板 1受力时, 在该位置容易造成应力集中, 导致端板 1 强度下降。 本实施例中, 以第一侧壁 13 为例, 其与第一斜壁 122之间形成钝角, 与内壁 11之间形成直角 (或近似直角) , 从而与锐角 相比, 能够降低端板 1边缘处出现应力集中的可能性。
以上各实施例中, 如图 2和图 3所示, 该第一安装块 18 的两端分别 与直壁 121和内壁 11固定, 而第二安装块 19的两端分别与直壁 121和内 壁固定。 第一侧壁 13、 第一斜壁 122、 内壁 11、 第一安装块 18和部分直 壁 121 围成第一空腔 15。 同样地, 第二侧壁 14、 第二斜壁 123、 内壁 11、 第二安装块 19和部分直壁 121围成第二空腔 16。 第一空腔 15沿宽度 方向 W具有设定宽度 A, 而第二空腔 16沿宽度方向 W具有设定宽度 A。 其 中, 上述设定宽度 A 可为 25mm 至 45mm。 优选地, 设定宽度 A 可为 34. 95mm或 40mm。 本实施例中, 第一空腔 15和第二空腔 16的空腔结构能够降低端板 1 的重量, 从而提高电池模组的能量密度。 第一空腔 15 沿宽度方向 W 的宽 度指的是第一侧壁 13与第一安装块 18之间的距离。 第二空腔 16沿宽度 方向 W的宽度指的是第二侧壁 14与第二安装块 19之间的距离。 第一空腔 15和第二空腔 16的设定宽度 A能够表示第一端板安装孔 181和第二端板 安装孔 191与端板 1的端部的距离。
可以理解, 该设定宽度 A过大或过小时均可能影响电池模组的安装可 靠性。 当设定宽度 A过大时, 第一端板安装孔 181和第二端板安装孔 191 靠近端板 1的中间部, 其受到较大的电池膨胀力, 降低端板 1的强度和抵 抗电池膨胀力的能力, 容易变形和失效。 当设定宽度过小时, 导致第一斜 壁 122和第二斜壁 123较小, 该端板 1的重量较大, 不利于提高电池模组 的能量密度。 因此, 本实施例中应综合考虑电池模组的安装可靠性、 端板 1 的强度和电池模组的能量密度三方面的因素, 合理设置空腔的设定宽度 A。
在一个实施例中, 如图 2和图 3所示, 该第一空腔 15 内设置有第一 加强筋 151。 第二空腔 16内设置有第二加强筋 161。 其中, 该第一加强筋 151 和第二加强筋 161 均倾斜设置, 且二者的倾斜方向相反。 该第一加强 筋 151 的两端分别与内壁 11和直壁 121 固定, 而第二加强筋 161 的两端 分别与内壁 11和直壁 121固定。 因此, 该第一加强筋 151将第一空腔 15 分割为两个形状不同的空腔, 一个为五边形结构, 另一个为四边形结构。 通过第一加强筋 151形成的桁架结构, 能够进一步提高端板 1的强度。 该 第二加强筋 161 将第二空腔 16 分割为两个形状不同的空腔, 一个为五边 形结构, 另一个为四边形结构。 通过第二加强筋 161 形成的桁架结构, 能 够进一步提高端板 1的强度。
本实施例中, 通过在第一空腔 15内设置第一加强筋 151, 而在第二空 腔 16内设置第二加强筋 161, 能够提高端板 1在该第一空腔 15和第二空 腔 16 的强度。 同时, 第一加强筋 151和第二加强筋 161倾斜时, 能够在 提高强度的同时减少加强筋的数量, 从而降低端板 1的重量。
在一个实施例中, 如图 3所示, 该第一加强筋 151与直壁 121之间形 成的钝角为 100 ° 至 150 ° 。 优选地, 第一加强筋 151与直壁 121之间形 成的钝角可为 120 ° 或 126. 8 ° 。 同样地, 第二加强筋 161与直壁 121之 间形成的钝角为 100 ° 至 150 ° 。 优选地, 第二加强筋 161与直壁 121之 间形成的钝角可为 126. 8 ° 或 130 ° 。
同样地, 上述两钝角的大小可相同, 也可不同, 且两钝角之间也不存 在严格的大小关系, 二者的具体数值可根据实际需要任意设置。
在一个实施例中, 如图 2 和图 3 所示, 第一安装块 18、 第二安装块 19、 内壁 11和直壁 121围成第三空腔 17。 该第三空腔 17的截面为矩形。 同时, 该第三空腔 17内设置有多个第三加强筋 171。 各个第三加强筋 171 的两端分别与内壁 11和直壁 121固定。 同理, 通过在第三空腔 17内设置 第三加强筋 171, 能够提高该端板 1在第三空腔 17处的强度。 如上所述, 该第三空腔 17 的位置所受到的电池膨胀力较大, 因此, 为了使其具有足 够的强度, 该第三空腔 17内设置多个第三加强筋 171。
其中, 该第一加强筋 151、 第二加强筋 161和第三加强筋 171 中, 三 者的厚度均不大于内壁 11和外壁 12的厚度。
可以理解, 第一加强筋 151、 第二加强筋 161和第三加强筋 171 的厚 度越大, 端板 1的强度越高, 但同时端板 1的重量也越大, 因此, 上述三 加强筋的厚度不宜过大, 具体可小于或等于内壁 11 和外壁 12 厚度, 此 时, 能够起到提高端板 1强度的作用, 也避免端板 1因增设加强筋而导致 重量过大。
在一个实施例中, 如图 3所示, 第一安装块 18和第二安装块 19均为 棱柱形结构, 且二者相对于端板 1 的中心线对称设置。 在第三空腔 17 内, 各第三加强筋 171均倾斜, 且相邻第三加强筋 171的倾斜方向相反, 从而能够提高端板 1 各部分强度的均匀性, 并减少第三加强筋 171 的数 量。 同时, 相邻第三加强筋 171与内壁 11或直壁 121 围成截面为三角形 的结构, 或者, 第三加强筋 171、 内壁 11、 直壁 121与对应的安装块围成 截面为梯形的结构。
如图 3所示, 由于第一安装块 18与第二安装块 19为长方体结构, 因 此, 当第三空腔 17内设置倾斜的第三加强筋 171时, 位于第三空腔 17沿 宽度方向 w 的两边缘的两第三加强筋 171 能够与对应的安装块、 内壁 11 和外壁 12 围成梯形结构, 且该梯形的顶边 (长度较短的一边) 由内壁 11 形成。 对于内壁 11 和外壁 12 来说, 通过第一安装块 18 (或第二安装块 19) 和第三加强筋 171 支撑, 且二者在内壁 11 的支撑点之间的距离小于 在外壁 12的支撑点之间的距离, 因此, 设置该梯形结构后, 对内壁 11强 度的提升大于对外壁 12 强度的提升, 即使得内壁 11 的强度大于外壁 12 的强度, 从而进一步降低端板 1内壁 11在电池膨胀力作用下断裂风险。
同时, 该梯形结构在提高端板 1 强度的同时, 还能够减少第三加强筋 171的数量, 降低端板 1的重量。
以上各实施例中, 该端板 1的内壁 11和外壁 12的厚度之和为 D1, 而 内壁 11与外壁 12之间的距离为 D2, 其中, D1与 D2之比为 1/5至 3/5。
在一个实施例中, 端板 1 的内壁 11 厚度为 1. 8mm。 外壁 12 厚度为 2. 2mm。 内壁 11与外壁 12的厚度之和 D1为 4mm。 内壁 11与外壁 12之间 的距离为 10. 2mm。 因此, 该实施例中的 D1与 D2之比约为 2/5。
该端板 1中, D1与 D2之比越大, 端板 1的强度越高, 重量越大。 D1 与 D2 之比越小, 端板 1 的强度越低, 重量越小。 因此, 也可综合考虑端 板 1的强度和重量合理设置 D1与 D2之比。
以上各实施例中, 该端板安装孔为圆孔、 腰形孔或椭圆孔。
为了降低各部件设计、 制造的精度要求, 以及各部件配合的精度要 求, 该端板安装孔可为腰形孔或椭圆孔。 电池模组安装时, 该腰形孔或椭 圆孔使得各端板安装孔与电池包安装孔同轴度较低时仍能够安装。
在一个实施例中, 当端板安装孔为腰形孔或椭圆孔时, 优选地, 其长 边沿电池模组的宽度方向 W, 短边沿电池模组的长度方向 L, 从而能够保 证端板 1沿长度方向 L具有足够的强度。
综上所述, 本申请中, 该端板 1 不仅能够承受电池膨胀力, 其重量较 小, 还能够提高电池模组的能量密度。
以上所述仅为本申请的较佳实施例而已, 并不用以限制本申请, 凡在 本申请的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包 含在本申请保护的范围之内。

Claims

权 利 要 求 书
1、 一种电池模组, 包括:
多个沿所述电池模组的长度方向 L堆叠的电池和位于多个所述电池在 所述长度方向 L的端部的端板;
所述端板设有端板安装孔, 所述端板安装孔沿所述电池模组的高度方 向 H延伸;
所述端板具有沿所述长度方向 L相对设置的内壁和外壁, 所述端板安 装孔的轴线与所述内壁之间具有第一距离 L1, 所述端板安装孔的轴线与所 述外壁之间具有第二距离 L2;
所述第一距离 L1大于所述第二距离 L2。
2、 根据权利要求 1 所述的电池模组, 其中, 所述端板还包括沿所述 电池模组的宽度方向 W间隔分布的第一安装块和第二安装块;
所述第一安装块固定于所述内壁和所述外壁, 所述第二安装块固定于 所述内壁和所述外壁;
所述第一安装块和所述第二安装块均设有所述端板安装孔。
3、 根据权利要求 1 或 2所述的电池模组, 其中, 所述外壁包括直 壁、 第一斜壁和第二斜壁, 且所述第一斜壁和所述第二斜壁位于所述直壁 沿所述宽度方向 W的两端;
所述直壁与所述内壁平行设置, 所述第一斜壁和所述第二斜壁均沿朝 向所述内壁的方向倾斜。
4、 根据权利要求 3所述的电池模组, 其中, 所述第一斜壁与所述直 壁之间的形成的钝角为 145 ° 至 175 ° , 所述第二斜壁与所述直壁之间形 成的钝角为 145 ° 至 175 ° 。
5、 根据权利要求 3所述的电池模组, 其中, 所述端板沿所述宽度方 向 W的两端还具有第一侧壁和第二侧壁;
沿所述电池模组的所述长度方向 L, 所述第一侧壁的长度小于所述直 壁与所述内壁之间的距离 D2, 所述第二侧壁的长度小于所述直壁与所述 内壁之间的距离 D2。
6、 根据权利要求 3所述的电池模组, 其中, 所述第一安装块与所述 直壁和所述内壁固定, 所述第二安装块与所述直壁和所述内壁固定;
所述第一侧壁、 所述第一斜壁、 所述内壁、 所述第一安装块和部分所 述直壁围成第一空腔;
所述第二侧壁、 所述第二斜壁、 所述内壁、 所述第二安装块和部分所 述直壁围成第二空腔。
7、 根据权利要求 6所述的电池模组, 其中, 所述第一空腔沿所述宽 度方向 W具有设定宽度 A, 所述第二空腔沿所述宽度方向 W具有所述设 定宽度 A;
其中, 所述设定宽度 A为 25mm至 45mm。
8、 根据权利要求 6所述的电池模组, 其中, 所述第一空腔内设置有 第一加强筋, 所述第二空腔内设置有第二加强筋;
所述第一加强筋和所述第二加强筋均倾斜设置, 且二者的倾斜方向相 反;
所述第一加强筋的两端分别与所述内壁和所述直壁固定, 所述第二加 强筋的两端分别与所述内壁和所述直壁固定。
9、 根据权利要求 8所述的电池模组, 其中, 所述第一加强筋与所述 直壁之间形成的钝角为 100° 至 150° , 所述第二加强筋与所述直壁之间 形成的钝角为 100° 至 150° 。
10、 根据权利要求 8所述的电池模组, 其中, 所述第一加强筋的厚度 不大于所述内壁和所述外壁的厚度; 所述第二加强筋的厚度不大于所述内 壁和所述外壁的厚度。
11、 根据权利要求 3所述的电池模组, 其中, 所述第一安装块、 所述 第二安装块、 所述内壁和所述直壁围成第三空腔;
所述第三空腔内设置有多个第三加强筋, 各所述第三加强筋的两端分 别与所述内壁和所述直壁固定。
12、 根据权利要求 11 所述的电池模组, 其中, 各所述第三加强筋的 厚度均不大于所述内壁和所述外壁的厚度。
13、 根据权利要求 11 所述的电池模组, 其中, 各所述第三加强筋均 倾斜设置, 且相邻的所述第三加强筋的倾斜方向相反;
相邻所述第三加强筋与所述内壁或所述直壁围成截面为三角形的结 构, 或者, 所述第三加强筋、 所述内壁、 所述直壁与对应的所述第一安装 块或所述第二安装块围成截面为梯形的结构。
14、 根据权利要求 1至 13 中任一项所述的电池模组, 其中, 所述内 壁和所述外壁的厚度之和为 D1, 所述内壁与所述外壁之间的距离为 D2, D1与 D2之比为 1/5至 3/5。
15、 根据权利要求 1至 14中任一项所述的电池模组, 其中, 所述端 板安装孔为圆孔、 腰形孔或椭圆孔。
PCT/CN2020/076056 2019-02-26 2020-02-20 一种电池模组 WO2020173383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910141026.0 2019-02-26
CN201910141026.0A CN109841774B (zh) 2019-02-26 2019-02-26 一种电池模组

Publications (1)

Publication Number Publication Date
WO2020173383A1 true WO2020173383A1 (zh) 2020-09-03

Family

ID=66885002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076056 WO2020173383A1 (zh) 2019-02-26 2020-02-20 一种电池模组

Country Status (4)

Country Link
US (1) US11742544B2 (zh)
EP (1) EP3703153A1 (zh)
CN (2) CN109841774B (zh)
WO (1) WO2020173383A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841774B (zh) * 2019-02-26 2020-10-27 宁德时代新能源科技股份有限公司 一种电池模组
CN116724453A (zh) * 2021-11-30 2023-09-08 宁德时代新能源科技股份有限公司 电池模块、电池包、用电装置和制造电池模块的方法
CN216389633U (zh) * 2021-11-30 2022-04-26 宁德时代新能源科技股份有限公司 端板、电池模块、电池及用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247085A (zh) * 2012-06-28 2014-12-24 宝马股份公司 由多个棱柱形存储电池构成的储能模块
WO2018207607A1 (ja) * 2017-05-12 2018-11-15 三洋電機株式会社 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
CN109216608A (zh) * 2017-07-06 2019-01-15 本田技研工业株式会社 电池模块
CN109841774A (zh) * 2019-02-26 2019-06-04 宁德时代新能源科技股份有限公司 一种电池模组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138044A (ja) * 1998-10-30 2000-05-16 Kenwood Corp バッテリケース
GB2501711A (en) * 2012-05-01 2013-11-06 Intelligent Energy Ltd Fuel Cell Stack Assembly
JP5954258B2 (ja) * 2013-05-24 2016-07-20 株式会社デンソー 電池パック及びその製造方法
DE102014217220A1 (de) * 2014-08-28 2016-03-03 Bayerische Motoren Werke Aktiengesellschaft Gehäuse für einen Brennstoffzellenstapel
CN205609590U (zh) * 2016-05-05 2016-09-28 宁德时代新能源科技股份有限公司 电池模组
CN206022482U (zh) * 2016-09-06 2017-03-15 宁德时代新能源科技股份有限公司 电池模组
CN106654103B (zh) * 2017-01-20 2019-10-22 宁德时代新能源科技股份有限公司 电池模组端板及电池模组
JP6568900B2 (ja) * 2017-07-06 2019-08-28 本田技研工業株式会社 バッテリモジュール
CN207441760U (zh) * 2017-11-17 2018-06-01 宁德时代新能源科技股份有限公司 端板及电池模组
CN108428834A (zh) * 2018-04-11 2018-08-21 东莞塔菲尔新能源科技有限公司 一种动力电池模组结构
CN108899456B (zh) * 2018-08-31 2024-04-23 常州普莱德新能源电池科技有限公司 一种电池模组及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247085A (zh) * 2012-06-28 2014-12-24 宝马股份公司 由多个棱柱形存储电池构成的储能模块
WO2018207607A1 (ja) * 2017-05-12 2018-11-15 三洋電機株式会社 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
CN109216608A (zh) * 2017-07-06 2019-01-15 本田技研工业株式会社 电池模块
CN109841774A (zh) * 2019-02-26 2019-06-04 宁德时代新能源科技股份有限公司 一种电池模组

Also Published As

Publication number Publication date
EP3703153A1 (en) 2020-09-02
CN112086599A (zh) 2020-12-15
CN109841774A (zh) 2019-06-04
CN109841774B (zh) 2020-10-27
US11742544B2 (en) 2023-08-29
CN112086599B (zh) 2023-08-01
US20200274115A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2020173383A1 (zh) 一种电池模组
US20190393458A1 (en) Fixing frame and battery pack
WO2020207230A1 (zh) 一种电池模组
WO2020173380A1 (zh) 一种电池模组
WO2015149660A1 (en) Battery accommodating assembly, battery module and vehicle having the same
WO2023216825A1 (zh) 防爆阀、电池、电池模组、电池包和车辆
EP3800686B1 (en) Secondary battery and battery module
WO2020199955A1 (zh) 二次电池以及电池模组
WO2023217242A1 (zh) 防爆阀、电池、电池模组、电池包以及车辆
WO2020173382A1 (zh) 一种电池模组
WO2022022515A1 (zh) 电池模组固定组件及电池包
WO2020151549A1 (zh) 二次电池以及电池模组
US11811155B2 (en) Connection member and rechargeable battery
WO2021031762A1 (zh) 电池模组、电池包和使用电池单体的装置
WO2022042495A1 (zh) 一种电池
US20220123441A1 (en) Output electrode base, battery module, and electric vehicle
JP2006108096A (ja) リチウム二次電池
US20210328293A1 (en) Secondary battery and battery module
WO2020134978A1 (zh) 电池模组
WO2023134033A1 (zh) 电池、用电装置、电池的制造设备
CN210507800U (zh) 钢管构件组合体
WO2020134746A1 (zh) 二次电池、电池模组以及二次电池的制造方法
CN220042045U (zh) 电池
CN215546081U (zh) 散热器芯体焊接用应力释放缓冲装置
CN111048727B (zh) 一种锂离子电池极片结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762851

Country of ref document: EP

Kind code of ref document: A1