WO2020173018A1 - 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沬中的应用 - Google Patents

一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沬中的应用 Download PDF

Info

Publication number
WO2020173018A1
WO2020173018A1 PCT/CN2019/091826 CN2019091826W WO2020173018A1 WO 2020173018 A1 WO2020173018 A1 WO 2020173018A1 CN 2019091826 W CN2019091826 W CN 2019091826W WO 2020173018 A1 WO2020173018 A1 WO 2020173018A1
Authority
WO
WIPO (PCT)
Prior art keywords
expandable graphite
modified
flame retardant
graphite
mesh
Prior art date
Application number
PCT/CN2019/091826
Other languages
English (en)
French (fr)
Inventor
费连东
程瑾宁
李铭佶
包彦彦
龙燕
Original Assignee
威海云山科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海云山科技有限公司 filed Critical 威海云山科技有限公司
Publication of WO2020173018A1 publication Critical patent/WO2020173018A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to the technical field of flame retardants, in particular to a modified expandable graphite and flame retardant with good flame retardant performance, long-lasting flame retardant effect, greatly increased oxygen index, and greatly reduced peak heat release rate And its preparation method and application in polyurethane foam.
  • polyurethane foam has the advantages of low density, high strength, excellent mechanical properties, good processing properties, and convenient construction, and is widely used in various fields.
  • polyurethane materials contain combustible carbon-ammonia segments, large specific surface area, low density and low thermal conductivity, they are easy to burn, and emit toxic gases such as HCN and CO during the combustion process, posing a great threat to personal safety and limiting Its further development.
  • expandable graphite As a new type of intumescent flame retardant, expandable graphite has great application prospects due to its high expansion ratio, obvious expansion effect and environmental friendliness. Expandable graphite can be used as a char-forming flame retardant.
  • the carbon layer formed after thermal expansion can cover the surface of the substrate, isolate heat transfer, and reduce the fire, and it can also be used as a cross-linking center to increase the degree of cross-linking to increase the density of the carbon layer , To achieve uniform dispersion in the polyurethane foam substrate to increase the dimensional stability of the polyurethane rigid foam.
  • the acid radicals located between the expandable graphite layers can promote the carbonization of the substrate and further improve the flame retardant effect.
  • expandable graphite also has a unique layer structure and excellent high temperature resistance, which realizes its flame-retardant polyurethane foam.
  • expandable graphite cannot be used alone, especially when it exists in the form of solid particles, it will often lead to an increase in the viscosity of the raw material when used, which will affect the foaming process of the material, cause the destruction of the polyurethane cell structure and increase the cell size, so Expanded graphite is unevenly distributed in the matrix, which leads to a serious decrease in foam mechanical properties and a significant increase in thermal conductivity.
  • expanded graphite is physical expansion during the combustion process, although the expansion ratio is large, it is not enough to form a dense carbon layer to protect the substrate, and the worm-like expanded carbon layer has a small adhesion to the substrate and is easy to fall off.
  • polyurethane foam has a larger specific surface area, which makes the disadvantages of expanded graphite more prominent. Therefore, in general, expanded graphite alone is rarely used as a flame retardant for polyurethane foam, and most of them are used by compounding or modified coating.
  • Chinese patent CN105732933A discloses a flame-retardant rigid polyurethane foam double-doped with expandable graphite and lightweight microbeads.
  • the expandable graphite and lightweight microbeads are combined to flame retardant, and the resulting flame-retardant polyurethane foam Has good flame retardancy.
  • there is a lack of research on the expansion performance of expandable graphite and no reference is made to whether the expansion ratio of expandable graphite itself is improved.
  • the flame retardant effect of expandable graphite in polyurethane foam is closely related to its particle size and expansion properties.
  • patent CN106279606A discloses a flame-retardant rigid polyurethane foam material in which expanded graphite cooperates with a phosphorus-containing flame retardant, which achieves a certain flame retardant effect through the synergistic effect of the phosphorus-containing flame retardant and expanded graphite.
  • phosphorus-containing flame retardants generate a large amount of smoke in a fire, they also have disadvantages such as environmental protection problems, poor comprehensive flame retardant performance, and high cost, which greatly restrict their application.
  • Patent CN106928491A discloses a kind of microencapsulated expandable graphite, which is a kind of melamine resin-epoxy resin double-coated expandable graphite.
  • the expandable graphite is covered with melamine microcapsules and then epoxy resin microcapsules. Capsule, obtain double-coated microencapsulated expandable graphite.
  • the dispersibility in the polyurethane foam substrate after the double coating will be worse, thereby affecting the mechanical properties of the polyurethane.
  • the method has a complicated process and is not suitable for large-scale production.
  • the purpose of the present invention is to solve the problem of uneven dispersion of existing graphite particles in the polyurethane matrix, which in turn leads to poor flame retardant performance, and to provide a flame retardant with good flame retardant performance, long lasting flame retardant effect, and greatly improved oxygen index.
  • a modified expandable graphite characterized in that one or more layers of polymer surface modifiers with special functional groups are adsorbed on the surface of expandable graphite, and the amount of the polymer surface modifier is 1% of that of expandable graphite -20%, preferably 10%-20%.
  • the purity of the above-mentioned expandable graphite is 92%-99.5%, preferably 95%-99% ; the average sheet diameter of the expandable graphite is 45um-500um, preferably 100um-250um; the magnification is 100 ml/ g -500ml/g, preferably 250 ml/g -300ml/g o
  • the polymer surface modifier described above has more than two functional groups, wherein at least one functional group is a five-membered ring or six-membered ring structure and at least one active functional group is a hydroxyl group, an amino group or a carboxyl group,
  • the five-membered ring or six-membered ring structure is a benzene ring, pyridine, pyrrole or furan.
  • the aforementioned polymer surface modifier is a water-soluble compound, which is one or a mixture of two of polyvinylpyrrolidone, melamine, 3-hydroxytetrahydrofuran, benzyl alcohol, and N-methylpyrrolidone, Preferable are polyvinylpyrrolidone and melamine.
  • a preparation method of modified expandable graphite characterized in that the preparation process steps of the modified expandable graphite are as follows:
  • Shaping process Put the expandable graphite into a mechanical impact pulverizer for shaping, and then classify by vibrating screen, return to production again when the size is smaller than 80 mesh, and then enter the next modification section with 80-150 mesh, larger than 150 mesh Deal with separately
  • Modification process Put the 80-150 mesh expandable graphite obtained in step (1) into a mixer, and stir at low speed at a speed of 50-85r/min. Add the polymer surface modifier and stir for 10- After 15 minutes, the speed is increased to 150-200r/min, stirred for 20-30 minutes, and then sieved through 80 meshes to obtain modified expandable graphite.
  • the modified expandable graphite is spherical or ellipsoidal particles, and the wetting angle is 78-80°, the volume resistivity is 0.10-0.30 Q ⁇ cm, and the thermal conductivity is 12.5 -13.1 W/ (m ⁇ K), the bulk density is 0.15-0.25 g ⁇ cm 3 , the particle size distribution is: D10 35um (400 mesh), D50 125um (120 mesh), D90
  • a modified expandable graphite flame retardant characterized in that the flame retardant is composed of modified expandable graphite and a dispersing suspending agent, and the amount of the dispersing suspending agent is 1% of the modified expandable graphite. 10%, preferably 2%-4%.
  • a method for preparing a modified expandable graphite flame retardant which is characterized in that the modified expandable graphite is added to the dispersing suspending agent, and after mixing uniformly at a low speed of 500r/min or less in a stainless steel stirrer, The modified graphite flame retardant is obtained.
  • the above-mentioned dispersing and suspending agent is one or more of organic bentonite, polyethylene wax, nano calcium carbonate and polyacrylamide, preferably organic bentonite and nano calcium carbonate.
  • modified expandable graphite flame retardant in polyurethane foam, characterized in that the modified expandable graphite flame retardant is directly added to the polyurethane composition, and after stirring, the viscosity is adjusted to 700 A viscosity of -1200mPas is sufficient, preferably a viscosity of 800-1000mPas, to obtain modified expandable graphite, which is used as a flame retardant for polyurethane foam, and can be applied to hard and soft foams.
  • the present invention Due to the use of the above-mentioned ingredients and preparation method, the present invention has the advantages of good flame retardant performance, long-lasting flame retardant effect, greatly increased oxygen index, and greatly reduced peak heat release rate.
  • a modified expandable graphite which is characterized in that one or more polymer surface modifiers with special functional groups are adsorbed on the surface of the expandable graphite, and the amount of the polymer surface modifier is 1- 20%, preferably 10-20%, further, the purity of the aforementioned expandable graphite is 92-99.5%, preferably 95-99%; the average sheet diameter of the expandable graphite is 45-500um, preferably 100-250um; The rate is 100-500ml/g, preferably 250-300ml/g.
  • the polymer surface modifier has more than two functional groups, of which at least one functional group is a five-membered ring or six-membered ring structure and at least one
  • the active functional group is a hydroxyl group, an amino group or a carboxyl group
  • the five- or six-membered ring structure is a benzene ring, pyridine, pyrrole or furan
  • the polymer surface modifier is a water-soluble compound, which is polyvinylpyrrolidone, One or a mixture of two of melamine, 3-hydroxytetrahydrofuran, benzyl alcohol, and N-methylpyrrolidone, preferably polyvinylpyrrolidone and Melamine.
  • a method for preparing modified expandable graphite characterized in that the preparation process steps of the modified expandable graphite are as follows: (1) Shaping process: Put the expandable graphite into a mechanical impact mill for shaping , And then vibrating sieve classification, return to re-production of less than 80 mesh, 80-150 mesh can enter the next modification section, more than 150 meshes will be treated separately; (2) Modification process: the 80-150 mesh obtained in step (1) Put the expandable graphite into the mixer and stir at low speed at 50-85r/min. After adding the polymer surface modifier, stir for 10-15 minutes, then increase the speed to 150-200r/min and stir for 20-30 minutes Then, the modified expandable graphite can be obtained by sieving with 80 mesh.
  • the modified expandable graphite is spherical or ellipsoidal particles, and the wetting angle is 78-80°, and the volume resistivity is 0.10- 0.30 Q ⁇ cm, thermal conductivity of 12.5-13.1 W/ (m ⁇ K), bulk density of 0.15-0.25 g ⁇ cm -3 , particle size distribution: D10 35um (400 mesh), D50 125um (120 mesh), D90 170um (80 mesh), D max 300um (50 mesh).
  • a modified expandable graphite flame retardant characterized in that the flame retardant is composed of modified expandable graphite and a dispersing suspending agent, and the amount of the dispersing suspending agent is 1% of the modified expandable graphite. 10%, preferably 2%-4%.
  • a method for preparing a modified expandable graphite flame retardant which is characterized in that the modified expandable graphite is added to a dispersing suspending agent, and after mixing uniformly at a low speed of 500r/min or less in a stainless steel mixer,
  • the modified graphite flame retardant is obtained, and the dispersing and suspending agent is one or more of organic bentonite, polyethylene wax, nano calcium carbonate and polyacrylamide, preferably organic bentonite and nano calcium carbonate.
  • modified expandable graphite flame retardant in polyurethane foam, characterized in that the modified expandable graphite flame retardant is directly added to the polyurethane composition, and after stirring, the viscosity is adjusted to 700 A viscosity of -1200mPas is sufficient, preferably a viscosity of 800-1000mPas, to obtain modified expandable graphite, which is used as a flame retardant for polyurethane foam, and can be applied to hard and soft foams.
  • the present invention helps to reduce the smoke production and smoke toxicity during the combustion of polyurethane foam. And it has good flame retardancy, the flame retardant effect is lasting and effective, the oxygen index is greatly increased, and the peak heat release rate is greatly reduced.
  • the present invention uses polymer organics as modifiers, and its molecular structure contains a large number of hydroxyl groups, which can be used as a carbon source in intumescent flame retardants, so as to form a tight, adhesive bond on the surface of high-temperature burning polyurethane
  • the thicker carbon layer isolates the polyurethane matrix from contact with external oxygen, and improves the flame retardant performance of the foam.
  • the organic coating layer can prevent the CO 2 and SO 2 in the expandable graphite from quickly overflowing from the edge of the flake graphite, thereby improving the expansion volume and flame retardant effect of the expandable graphite particles.
  • the benzene ring in the modified organic molecules can interact with the graphite surface chemically, so that the modifier is well adsorbed on the modified graphite surface, and the compatibility with graphite is guaranteed. At the same time, it is a weakly polar polymer. , Its and The thermal insulation compatibility of polymer polyurethane is also very good, which greatly improves the compatibility of the modified graphite with the polyurethane matrix.
  • the present invention uses organic matter modification to treat expanded graphite and adds an appropriate amount of dispersant to increase the compatibility of the flame retardant and the foam matrix and the dispersion stability of the flame retardant in the foam.
  • organic matter modification to treat expanded graphite and adds an appropriate amount of dispersant to increase the compatibility of the flame retardant and the foam matrix and the dispersion stability of the flame retardant in the foam.
  • the stress can be transferred well.
  • the increase of organically modified inorganic fillers is also conducive to the improvement of foam mechanical properties, but it has less influence on foam thermal conductivity.
  • the modified graphite flame-retardant polyurethane foam obtained by the present invention has excellent density, compressive strength, thermal stability and heat insulation, and excellent overall performance.
  • the preparation method of the present invention has simple process, low process conditions and equipment requirements, no pollution in production, and is beneficial to industrial production.
  • the obtained modified expandable graphite is ellipsoidal particles, the wetting angle is 78 °, the volume resistivity is 0.19 Q ⁇ cm, the thermal conductivity is 12.7 W/ (m. K), and the bulk density is 0.21 g ⁇ cm '
  • the particle size distribution is: D10 25um (500 mesh); D50 125um (120 mesh); D90 150um (100 mesh); D max 170um (80 mesh).
  • S4 Add 40 parts of the above-mentioned modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity It is 900mPas; at the same time, the component B PM-400 is also injected into another mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 through the foaming machine, they are injected into the mold, after foaming, curing and maturation, obtain B1 polyurethane rigid foam sheet.
  • Example 2 The tested milky white 35s; gel 150s; non-sticky 300s; density 55kg/m 3 ; water absorption rate 1.33%; dimensional stability (-30 ° C) -0.53%; dimensional stability (70 ° C) 0.3%; heat conduction The coefficient is 0.02334W/ (m ⁇ K); the compressive strength is 210kPa; the oxygen index is 31.0%; it has reached the flame retardant B1 level. [0030] Example 2
  • S3 The above-mentioned modified expandable graphite is added to 2 parts of nano calcium carbonate, and mixed uniformly at low speed in a stainless steel stirrer to obtain a modified graphite flame retardant.
  • S4 Add 45 parts of the above modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity 850mPas; at the same time, the B component PM-400 is also injected into another mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 through the foaming machine, they are injected into the mold, after foaming, curing and maturation, get B1 polyurethane rigid foam sheet.
  • S4 Add 35 parts of the above-mentioned modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity It is 800mPas; at the same time, component B PM-400 is also injected into another mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 through the foaming machine, they are injected into the mold, after foaming, curing and maturation, obtain B1 polyurethane rigid foam sheet.
  • the obtained modified expandable graphite is ellipsoidal particles, the wetting angle is 80 °, the volume resistivity is 0.11 Q ⁇ cm, the thermal conductivity is 13.0 W/ (m. K), and the bulk density is 0.25 g ⁇ cm — 3 .
  • the particle size distribution is: D10 23um (600 mesh); D50 l 10um (140 mesh); D90 125um (120 mesh); D max ⁇ 300um (50 mesh).
  • S4 Add 40 parts of the above-mentioned modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity It is 900mPas; at the same time, the component B PM-400 is also injected into another mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 through the foaming machine, they are injected into the mold, after foaming, curing and maturation, obtain B1 polyurethane rigid foam sheet.
  • the obtained modified expandable graphite is ellipsoidal particles, the wetting angle is 79 °, the volume resistivity is 0.10 Q ⁇ cm, the thermal conductivity is 12.8 W/ (m. K), and the bulk density is 0.23 g ⁇ cm '
  • the particle size distribution is: D10 23um (600 mesh); D50 l 10um (140 mesh); D90 125um (120 mesh); D max ⁇ 300um (50 mesh).
  • S3 The above-mentioned modified expandable graphite is added to 2 parts of polyacrylamide, and mixed uniformly at low speed in a stainless steel mixer to obtain a modified graphite flame retardant.
  • S4 Add 40 parts of the above-mentioned modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity
  • the B component PM-400 is also injected into the other mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 through the foaming machine, they are injected into the mold, after foaming, curing and maturation, obtain B1 polyurethane rigid foam sheet.
  • milky white 40s After testing, milky white 40s; gel 150s; non-sticky 310s; density 55kg/m 3 ; water absorption 1.30%; dimensional stability (-30 ° C) -0.54%; dimensional stability (70 ° C) 0.49%; thermal conductivity Coefficient 0.02331W/ (m ⁇ K); Compressive strength 213kPa; Oxygen index 31%; It has reached flame retardant B1 level.
  • the obtained modified expandable graphite is ellipsoidal particles, the wetting angle is 78 °, the volume resistivity is 0.11 Q ⁇ cm, the thermal conductivity is 12.8 W/ (m. K), and the bulk density is 0.25 g ⁇ cm '
  • the particle size distribution is: D10 25um (500 mesh); D50 113um (130 mesh); D90 125um (120 mesh); D max ⁇ 300um (50 mesh).
  • S4 Add 45 parts of the above-mentioned modified graphite flame retardant to component A of the polyurethane composition, then add 10 parts of foaming agent and 1.2 parts of water, adjust the stirring speed to 50-70r/min, stir evenly, and viscosity It is 950mPas; at the same time, the component B PM-400 is also injected into another mixing tank of the foaming machine; after the two are uniformly mixed according to the volume of 1:1 by the foaming machine, they are injected into the mold, after foaming, curing and maturation, the result is B1 polyurethane rigid foam sheet.
  • milky white 40s After testing, milky white 40s; gel 170s; non-sticky 320s; density 60kg/m 3 ; water absorption rate 1.27%; dimensional stability (-30 ° C) -0.45%; dimensional stability (70 ° C) 0.41%; thermal conductivity Coefficient 0.02315W/ (m ⁇ K); Compressive strength 215kPa; Oxygen index 31%; Reached flame retardant B1 level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

涉及阻燃剂技术领域,具体地说是一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沫中的应用,其特征在于在可膨胀石墨表面吸附一层或多层具有特殊官能团的高分子表面改性剂,改性可膨胀石墨的制备方法包括:利用含有经基和极性六元环结构的有机改性剂对可膨胀石墨进行表面改性,并加入分散剂混合均匀后破碎过筛即得改性石墨,将改性石墨按照一定的比例添加到聚氨酯组合聚醚混合均匀后,其能够均匀分散悬浮在聚醚中;并由此所得聚氨酯保温材料的阻燃性能大幅度提高且不影响聚氨酯硬泡的其他性能,具有阻燃性能好、阻燃效果持久、氧指数大幅度提高、热释放速率峰值大幅降低等优点。

Description

一种改性可膨胀石墨、 阻燃剂及其制备方法和在聚氨酯泡沬 中的应用 技术领域
[0001] 本发明涉及阻燃剂技术领域, 具体地说是一种阻燃性能好、 阻燃效果持久、 氧指数 大幅度提高、 热释放速率峰值大幅降低的改性可膨胀石墨、 阻燃剂及其制备方法和在聚氨酯 泡沫中的应用。
背景技术
[0002] 众所周知, 聚氨酯泡沫具有密度小、 强度高、 机械性能优异, 加工性能好, 施工方 便等优点, 广泛的应用于各个领域。 然而由于聚氨酯材料含有可燃的炭氨链段、 比表面积 大、 密度低和热导率低, 容易燃烧, 并在燃烧过程中放出 HCN、 CO等有毒气体, 对人身安 全构成很大威胁, 限制了其进一步的发展。
[0003] 可膨胀石墨作为一种新型膨胀型阻燃剂, 由于其膨胀比高、 膨胀效果明显及环境友 好而有较大的应用前景。 可膨胀石墨既可作为成炭阻燃剂, 受热膨胀后生成的炭层能够覆盖 基体表面, 隔离热量传递, 起到减弱火势的效果, 又可作为交联中心增加交联度以提高炭层 密度, 实现均匀分散于聚氨酯泡沫基材中而增加聚氨酯硬泡的尺寸稳定性。 同时, 位于可膨 胀石墨层间的酸根可促进基材的炭化, 进一步提高阻燃效果。 此外, 可膨胀石墨还具有独特 的片层结构和优良的耐高温性能, 实现其对聚氨酯泡沫的阻燃。 但可膨胀石墨不可单独使 用, 尤其是以固态粒子形式存在时, 使用时往往会导致原料粘度的提升, 因而影响材料发泡 过程, 造成聚氨酯泡孔结构的破坏和泡孔粒径的增加, 使膨胀石墨在基体中分布不均匀, 从 而导致泡沫力学性能的严重下降和导热系数的显著增加。 同时, 在燃烧过程中因为膨胀石墨 的膨胀机理为物理膨胀, 虽膨胀比大但不足以形成致密的炭层以保护基材, 而且蠕虫状膨胀 炭层与基体粘接力较小, 易脱落, 聚氨酯泡沫相比弹性体及塑料等而言比表面积大, 使得膨 胀石墨的该弊端显得更加突出。 所以, 一般很少将膨胀石墨单独作为阻燃剂用于聚氨酯泡 沫, 而大多是采用复配或改性包覆的方法进行使用。
[0004] 中国专利 CN105732933A 公布了一种双掺可膨胀石墨和轻质微珠的阻燃硬质聚氨醋 泡沫塑料, 将可膨胀石墨和轻质微珠协同阻燃, 所得的阻燃聚氨酯泡沫具有较好的阻燃性。 但缺乏对可膨胀石墨膨胀性能的研宄, 对可膨胀石墨自身膨胀倍率是否有提高没有涉及。 对 可膨胀石墨粒径的研宄也几乎没有。 而可膨胀石墨在聚氨酯泡沫中的阻燃效果与其粒径和膨 胀性能有密切的关系。 同时, 可膨胀石墨与聚氨酯基体的相容性还需进一步提高。 专利 CN106279606A 公开了一种膨胀石墨协同含磷阻燃剂的阻燃硬质聚氨酯泡沫材料, 通过含磷 阻燃剂与膨胀石墨协同作用达到一定的阻燃效果。 但由于含磷阻燃剂在火灾中会产生大量的 烟气, 同时还存在诸如环保问题、 综合阻燃性能不佳、 成本高等弊端, 使其应用受到极大限 制。 此外, 该发明中对膨胀石墨未经处理直接添加使用, 不可避免的造成了聚氨酯泡孔结构 的破坏, 会导致其在聚氨酯泡沫中的分散性较差, 使得所制得的制品普遍存在导热系数增高 等问题, 从而对聚氨酯泡沫的机械性能产生严重影响。 专利 CN106928491A公开了一种微胶 囊化可膨胀石墨, 它是一种三聚氰胺树脂 -环氧树脂双层包覆可膨胀石墨, 通过在可膨胀石 墨外首先包裹三聚氰胺微胶囊, 然后再包裹环氧树脂微胶囊, 得到双层包覆的微胶囊化可膨 胀石墨。 由于膨胀石墨层间距较小, 导致双层包覆后在聚氨酯泡沫基材中的分散性会更差, 从而影响聚氨酯的机械性能。 同时该方法工艺过程复杂, 不适合规模化生产使用。
发明内容
[0005] 本发明的目的是解决现有石墨粒子在聚氨酯基体中分散不均匀, 进而导致其阻燃性 能差的不足, 提供一种阻燃性能好、 阻燃效果持久、 氧指数大幅度提高、 热释放速率峰值大 幅降低的改性可膨胀石墨、 阻燃剂及其制备方法和在聚氨酯泡沫中的应用。
[0006] 本发明解决其技术问题所采用的技术方案是:
一种改性可膨胀石墨, 其特征在于在可膨胀石墨表面吸附一层或多层具有特殊官能团的高分 子表面改性剂, 所述的高分子表面改性剂用量为可膨胀石墨的 1%-20%, 优选为 10%-20%。
[0007] 进一步, 上述所述的可膨胀石墨的纯度 92%-99.5%, 优选为 95%-99%; 可膨胀石墨 的平均片径 45um -500um, 优选为 lOOum -250um; 倍率为 100 ml/g -500ml/g, 优选为 250 ml/g -300ml/go
[0008] 进一步, 上述所述的高分子表面改性剂中具有 2 个以上官能团, 其中至少有一个官 能团为五元环或者六元环结构并且至少有一个活性官能团为羟基、 胺基或者羧基, 所述的五 元环或者六元环结构为苯环, 吡啶, 吡咯或呋喃。
[0009] 进一步, 上述所述的高分子表面改性剂为水溶性化合物, 为聚乙烯吡咯烷酮、 三聚 氰胺、 3 -羟基四氢呋喃、 苯甲醇、 N-甲基吡咯烷酮中的一种或者 2种的混合, 优选为聚乙烯 吡咯烷酮和三聚氰胺。
[0010] 一种改性可膨胀石墨的制备方法, 其特征在于该改性可膨胀石墨的制备工艺步骤如 下:
( 1 ) 整形工艺: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 小于 80目返回重新生产, 80-150目方可进入下一改性工段, 大于 150目另行处理; (2) 改性工艺: 将步骤 (1) 得到的 80-150 目可膨胀石墨放入搅拌机中, 进行低速搅拌, 转速为 50-85r/min, 加入的高分子表面改性剂, 搅拌 10-15 分钟后, 转速提高至 150- 200r/min, 搅拌 20-30分钟, 然后 80目过筛即可得到改性可膨胀石墨。
[0011] 进一步, 上述所述的步骤 (2) 改性可膨胀石墨为球形或椭球形颗粒, 且润湿角为 78-80° , 体积电阻率为 0.10-0.30 Q · cm, 导热系数为 12.5-13.1 W/ (m · K), 堆积密度为 0.15-0.25 g · cm 3 , 粒径分布为: D10 35um (400 目), D50 125um (120 目), D90
Figure imgf000005_0001
[0012] 一种改性可膨胀石墨阻燃剂, 其特征在于该阻燃剂由改性可膨胀石墨和分散悬浮剂 组成, 所述的分散悬浮剂用量为改性可膨胀石墨的 1%-10%, 优选为 2%-4%。
[0013] 一种改性可膨胀石墨阻燃剂的制备方法, 其特征在于将改性可膨胀石墨, 加入分散 悬浮剂, 在不锈钢搅拌器中 500r/min 以下的低转速混合均匀后, 即可得到改性石墨阻燃 剂。
[0014] 进一步, 上述所述的分散悬浮剂为有机膨润土、 聚乙烯蜡、 纳米碳酸钙和聚丙烯酰 胺中的一种或者几种, 优选为有机膨润土和纳米碳酸钙。
[0015] 一种改性可膨胀石墨阻燃剂在聚氨酯泡沫中的应用, 其特征在于所述的改性可膨胀 石墨阻燃剂直接添加到聚氨酯组合料中, 经过搅拌后, 调整粘度至 700-1200mPas 粘度即 可, 优选粘度为 800-1000mPas, 得到了改性的可膨胀石墨, 用于聚氨酯泡沫塑料的阻燃 剂, 可以应用于硬泡和软泡。
[0016] 本发明由于采用上述成分和制备方法, 具有阻燃性能好、 阻燃效果持久、 氧指数大 幅度提高、 热释放速率峰值大幅降低等优点。
具体实施方式
[0017] 下面对本发明进一步说明:
一种改性可膨胀石墨, 其特征在于在可膨胀石墨表面吸附一层或多层具有特殊官能团的高分 子表面改性剂, 所述的高分子表面改性剂用量为可膨胀石墨的 1-20%, 优选为 10-20%, 进 一步, 上述所述的可膨胀石墨的纯度 92-99.5%, 优选为 95-99%; 可膨胀石墨的平均片径 45-500um, 优选为 100-250um; 倍率为 100-500ml/g, 优选为 250-300ml/g, 所述的高分子表 面改性剂中具有 2个以上官能团, 其中至少有一个官能团为五元环或者六元环结构并且至少 有一个活性官能团为羟基、 胺基或者羧基, 所述的五元环或者六元环结构为苯环, 吡啶, 吡 咯或呋喃, 所述的高分子表面改性剂为水溶性化合物, 为聚乙烯吡咯烷酮、 三聚氰胺、 3 -羟 基四氢呋喃、 苯甲醇、 N-甲基吡咯烷酮中的一种或者 2种的混合, 优选为聚乙烯吡咯烷酮和 三聚氰胺。
[0018] 一种改性可膨胀石墨的制备方法, 其特征在于该改性可膨胀石墨的制备工艺步骤如 下: (1) 整形工艺: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 小 于 80 目返回重新生产, 80-150 目方可进入下一改性工段, 大于 150 目另行处理; (2) 改性 工艺: 将步骤 (1) 得到的 80-150 目可膨胀石墨放入搅拌机中, 进行低速搅拌, 转速为 50- 85r/min, 加入的高分子表面改性剂, 搅拌 10-15 分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 80 目过筛即可得到改性可膨胀石墨, 所述的步骤 (2) 改性可膨胀石墨为 球形或椭球形颗粒, 且润湿角为 78-80 ° , 体积电阻率为 0.10-0.30 Q · cm, 导热系数为 12.5-13.1 W/ (m · K), 堆积密度为 0.15-0.25 g · cm-3, 粒径分布为: D10 35um (400目), D50 125um (120目), D90 170um (80目), Dmax 300um (50目)。
[0019] 一种改性可膨胀石墨阻燃剂, 其特征在于该阻燃剂由改性可膨胀石墨和分散悬浮剂 组成, 所述的分散悬浮剂用量为改性可膨胀石墨的 1%-10%, 优选为 2%-4%。
[0020] 一种改性可膨胀石墨阻燃剂的制备方法, 其特征在于将改性可膨胀石墨, 加入分散 悬浮剂, 在不锈钢搅拌器中 500r/min 以下的低转速混合均匀后, 即可得到改性石墨阻燃 剂, 所述的分散悬浮剂为有机膨润土、 聚乙烯蜡、 纳米碳酸钙和聚丙烯酰胺中的一种或者几 种, 优选为有机膨润土和纳米碳酸钙。
[0021] 一种改性可膨胀石墨阻燃剂在聚氨酯泡沫中的应用, 其特征在于所述的改性可膨胀 石墨阻燃剂直接添加到聚氨酯组合料中, 经过搅拌后, 调整粘度至 700-1200mPas 粘度即 可, 优选粘度为 800-1000mPas, 得到了改性的可膨胀石墨, 用于聚氨酯泡沫塑料的阻燃 剂, 可以应用于硬泡和软泡。
[0022] 与现有技术相比, 本发明具有如下优点和有益效果:
本发明通过添加有机物改性可膨胀石墨, 有助于减少聚氨酯泡沫燃烧时的产烟量及烟气毒 性。 并且具有良好的阻燃性, 阻燃效果持久有效, 氧指数大幅度提高, 热释放速率峰值都有 很大程度的降低。
[0023] 本发明以高分子有机物作为改性剂, 其分子结构中含有大量的羟基, 可以被用作膨 胀型阻燃剂中的炭源, 从而在高温燃烧的聚氨酯表面形成紧密的、 粘接的、 较厚的炭层, 隔 绝了聚氨酯基体和外界氧气的接触, 提高了泡沫阻燃性能。 此外, 有机物包裹层可以阻止可 膨胀石墨中 C02和 S02从鳞片状石墨的边缘快速溢出, 从而提高可膨胀石墨微粒的膨胀体 积和阻燃效果。 此外, 改性有机物分子中的苯环可以与石墨表面化学键相互作用, 使得改性 剂很好的吸附在改性石墨表面, 与石墨的相容性得到保证, 同时它是是弱极性聚合物, 其与 高分子聚氨酯保温相容性也非常好, 这样大大提高了改性石墨与聚氨酯基体的相容性。
[0024] 本发明采用有机物改性处理膨胀石墨并添加适量的分散剂, 增加了阻燃剂和泡沫基 体的相容性以及阻燃剂在泡沫中的分散稳定性, 当复合材料受到外力作用时, 应力能很好的 传递。 另一方面, 有机改性无机填料的增加, 也有利于泡沫力学性能的提高, 但是对泡沫导 热系数的影响却较小。
[0025] 本发明得到的改性石墨阻燃聚氨酯泡沫具有优异的密度、 压缩强度、 热稳定性以及 隔热性, 综合性能优异。
[0026] 本发明制备方法工艺简单, 工艺条件及设备要求低, 生产无污染, 有利于工业化生 产。
[0027] 实施例 1
S1: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 80-120 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 80目过筛;
Figure imgf000007_0001
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 78 ° , 体积电阻率为 0.19 Q · cm, 导热系数为 12.7 W/ (m . K), 堆积密度为 0.21 g · cm' 粒径分布为: D10 25um (500目); D50 125um (120目); D90 150um (100目); Dmax 170um (80目)。
[0028] S3: 将上述改性可膨胀石墨, 加入 4 份有机膨润土, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0029] S4: 向聚氨酯组合料 A组分中加入 40份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 900mPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 35s ; 凝胶 150s; 不粘手 300s; 密度 55kg/m3; 吸水率 1.33%; 尺寸稳定性 (-30°C) -0.53%; 尺寸稳定 性 (70°C) 0.3%; 导热系数 0.02334W/ (m · K); 抗压强度 210kPa; 氧指数 31.0%; 达到了 难燃 B1级。 [0030] 实施例 2
SI: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 80-120 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 80目过筛;
Figure imgf000008_0001
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 78 ° , 体积电阻率为 0.22 Q · cm, 导热系数为 13.0 W/ (m . K), 堆积密度为 0.16 g · cm-3。 粒径分布为: D10 35um (400目); D50 125um (120目); D90 170um (80目); Dmax^300um (50目)。
[0031] S3: 将上述改性可膨胀石墨, 加入 2 份纳米碳酸钙, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0032] S4: 向聚氨酯组合料 A组分中加入 45份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 850mPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 35-40S; 凝胶 150s; 不粘手 300s; 密度 60kg/m3; 吸水率 1.33%; 尺寸稳定性 (-30°C) -0.59%; 尺寸稳定 性 (70°C) 0.41%; 导热系数 0.02310W/ (m · K); 抗压强度 222kPa; 氧指数 30.0%; 达到 了难燃 B1级。
[0033] 实施例 3
S1: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 80-120 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 80目过筛;
Figure imgf000008_0002
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 80 ° , 体积电阻率为 0.12 Q · cm, 导热系数为 12.5 W/ (m . K), 堆积密度为 0.23 g · cm' 粒径分布为: D10 25um (500目); D50 125um (120目); D90 150um (100目); Dmax 300um (50目)。
[0034] S3: 将上述改性可膨胀石墨, 加入 3 份有机膨润土, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0035] S4: 向聚氨酯组合料 A组分中加入 35份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 800mPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 35-40S; 凝胶 170s; 不粘手 320s; 密度 50kg/m3; 吸水率 1.26%; 尺寸稳定性 (-30°C) -0.55%; 尺寸稳定 性 (70°C) 0.35%; 导热系数 0.02318W/ (m · K); 抗压强度 209kPa; 氧指数 30.5%; 达到 了难燃 B1级。
[0036] 实施例 4
S1: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 120-150 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 100目过筛;
Figure imgf000009_0001
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 80 ° , 体积电阻率为 0.11 Q · cm, 导热系数为 13.0 W/ (m . K), 堆积密度为 0.25g · cm—3。 粒径分布为: D10 23um (600目); D50 l lOum (140目); D90 125um (120目); Dmax^300um (50目)。
[0037] S3: 将上述改性可膨胀石墨, 加入 3 份有机膨润土, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0038] S4: 向聚氨酯组合料 A组分中加入 40份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 900mPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 35s ; 凝胶 160s; 不粘手 300s; 密度 55kg/m3; 吸水率 1.28%; 尺寸稳定性 (-30°C) -0.51%; 尺寸稳定 性 (70°C) 0.42%; 导热系数 0.02328W/ (m · K); 抗压强度 208kPa; 氧指数 30.5%; 达到 了难燃 B1级。
[0039] 实施例 5
S1: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 120-150 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 100目过筛;
Figure imgf000010_0001
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 79 ° , 体积电阻率为 0.10 Q · cm, 导热系数为 12.8 W/ (m . K), 堆积密度为 0.23g · cm' 粒径分布为: D10 23um (600目); D50 l lOum (140目); D90 125um (120目); Dmax^300um (50目)。
[0040] S3: 将上述改性可膨胀石墨, 加入 2 份聚丙烯酰胺, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0041] S4: 向聚氨酯组合料 A组分中加入 40份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 lOOOmPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 40s ; 凝胶 150s; 不粘手 310s; 密度 55kg/m3; 吸水率 1.30%; 尺寸稳定性 (-30°C) -0.54%; 尺寸稳定 性 (70°C) 0.49%; 导热系数 0.02331W/ (m · K); 抗压强度 213kPa; 氧指数 31%; 达到了 难燃 B1级。
[0042] 实施例 6
S1: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 筛出 100份 80 目 筛下, 120目筛上的整形后石墨;
S2: 搅拌机在低速搅拌 (50-85r/min) 下, 依次加入步骤 (1) 得到的 100份 120-150 目可膨 胀石墨, 以及下述物料。 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 100目过筛;
Figure imgf000011_0001
经检测, 得到的改性可膨胀石墨为椭球形颗粒, 润湿角为 78 ° , 体积电阻率为 0.11 Q · cm, 导热系数为 12.8 W/ (m . K), 堆积密度为 0.25g · cm' 粒径分布为: D10 25um (500目); D50 113um (130目); D90 125um (120目); Dmax^300um (50目)。
[0043] S3: 将上述改性可膨胀石墨, 加入 4 份聚丙烯酰胺, 在不锈钢搅拌器中低速混合均 匀, 得到改性石墨阻燃剂。
[0044] S4: 向聚氨酯组合料 A组分中加入 45份上述改性石墨阻燃剂, 然后加入 10份发泡 剂和 1.2份水, 搅拌转速调节至 50-70r/min, 搅拌均匀, 粘度为 950mPas; 同时 B组份 PM- 400 也注入发泡机另外一个搅拌罐中; 通过发泡机将两者按照体积 1 : 1 均匀混合后, 注入 模具中, 经过发泡, 固化和熟化, 得到 B1 级聚氨酯硬泡板材。 经检测乳白 40s ; 凝胶 170s; 不粘手 320s; 密度 60kg/m3; 吸水率 1.27%; 尺寸稳定性 (-30°C) -0.45%; 尺寸稳定 性 (70°C) 0.41%; 导热系数 0.02315W/ (m · K); 抗压强度 215kPa; 氧指数 31%; 达到了 难燃 B1级。

Claims

权利要求书
[权利要求 1] 一种改性可膨胀石墨, 其特征在于在可膨胀石墨表面吸附一层或多层 具有特殊官能团的高分子表面改性剂。
[权利要求 2] 根据权利要求 1所述的一种改性可膨胀石墨, 其特征在于所述的高分 子表面改性剂用量为可膨胀石墨的 1%-20%, 所述的可膨胀石墨的纯 度 92%-99.5%, 可膨胀石墨的平均片径 45 um -500um, 倍率为 100ml/g -500ml/g。
[权利要求 3] 根据权利要求 i所述的一种改性可膨胀石墨, 其特征在于所述的高分 子表面改性剂中具有 2个以上官能团, 其中至少有一个官能团为五元 环或者六元环结构并且至少有一个活性官能团为羟基、 胺基或者羧基
[权利要求 4] 根据权利要求 3所述的一种改性石墨阻燃剂, 其特征在于高分子表面 改性剂为水溶性化合物, 为聚乙烯吡咯烷酮、 三聚氰胺、 3 -羟基四氢 呋喃、 苯甲醇、 N-甲基吡咯烷酮中的一种或者 2种的混合, 优选为聚 乙烯吡咯烷酮和三聚氰胺。
[权利要求 5] 一种改性可膨胀石墨的制备方法, 其特征在于该改性可膨胀石墨的制 备工艺步骤如下:
( 1) 整形工艺: 将可膨胀石墨放入机械冲击式粉磨机中进行整形, 然后振动筛分级, 小于 80目返回重新生产, 80-150目方可进入下一改 性工段, 大于 150目另行处理;
(2) 改性工艺: 将步骤 ( 1) 得到的 80-150目可膨胀石墨放入搅拌机 中, 进行低速搅拌, 转速为 50-85r/min, 加入的高分子表面改性剂, 搅拌 10-15分钟后, 转速提高至 150-200r/min, 搅拌 20-30分钟, 然后 8 0目过筛即可得到改性可膨胀石墨。
[权利要求 6] 根据权利要求 5所述的一种改性可膨胀石墨的制备方法, 其特征在于 所述的步骤 (2) 改性可膨胀石墨为球形或椭球形颗粒, 且润湿角为 7
8-80°, 体积电阻率为 0.10-0mcm, 导热系数为 12.5-13.1 W/ (m-K ) , 堆积密度为 0.15-0.25 g-cm -3, 粒径分布为: D10<35um (400 g ) , D50<125um (120目) , D90<170um (80 S) , D max<300um (50 目) 。
[权利要求 7] 一种改性可膨胀石墨阻燃剂, 其特征在于该阻燃剂由改性可膨胀石墨 和分散悬浮剂组成, 所述的分散悬浮剂用量为改性可膨胀石墨的 1%-
10%。
[权利要求 8] 一种改性可膨胀石墨阻燃剂的制备方法, 其特征在于将改性可膨胀石 墨, 加入分散悬浮剂, 在不锈钢搅拌器中 500r/min以下的低转速混合 均匀后, 即可得到改性石墨阻燃剂。
[权利要求 9] 根据权利要求 7或 8所述的一种改性石墨阻燃剂及其制备方法, 其特征 在于所述的分散悬浮剂为有机膨润土、 聚乙烯蜡、 纳米碳酸钙和聚丙 烯酰胺中的一种或者几种, 优选为有机膨润土和纳米碳酸钙。
[权利要求 10] 一种改性可膨胀石墨阻燃剂在聚氨酯泡沫中的应用, 其特征在于所述 的改性可膨胀石墨阻燃剂直接添加到聚氨酯组合料中, 经过搅拌后, 调整粘度至 700-1200mPas粘度即可, 优选粘度为 800-1 OOOmPas
PCT/CN2019/091826 2019-02-28 2019-07-02 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沬中的应用 WO2020173018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910150366.X 2019-02-28
CN201910150366.XA CN109836621B (zh) 2019-02-28 2019-02-28 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沫中的应用

Publications (1)

Publication Number Publication Date
WO2020173018A1 true WO2020173018A1 (zh) 2020-09-03

Family

ID=66885137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091826 WO2020173018A1 (zh) 2019-02-28 2019-07-02 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沬中的应用

Country Status (2)

Country Link
CN (1) CN109836621B (zh)
WO (1) WO2020173018A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789056A (zh) * 2021-09-14 2021-12-14 长春工业大学 一种高效的物理-化学协同阻燃硅橡胶复合材料的制备方法
CN116656112A (zh) * 2023-04-04 2023-08-29 济南一诺振华防腐保温工程有限公司 一种lng绝热用高阻燃闭孔软泡板及制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836621B (zh) * 2019-02-28 2022-05-13 威海云山科技有限公司 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沫中的应用
CN110628084A (zh) * 2019-07-03 2019-12-31 威海云山科技有限公司 一种改性石墨阻燃剂及利用该阻燃剂制备全水发泡聚氨酯泡沫及其制备方法
CN110669244A (zh) * 2019-09-23 2020-01-10 安徽超星新材料科技有限公司 一种轻质阻燃泡沫塑料及其制备方法
CN110963492B (zh) * 2019-12-04 2021-03-23 常州市艾森塑料科技有限公司 一种改性膨胀石墨的制备方法
CN115028880B (zh) * 2022-06-07 2023-05-12 安徽瑞联节能科技股份有限公司 一种轻量型保温防火复合板及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192578A (zh) * 2013-04-28 2013-07-10 恩斯盟防静电材料(镇江)有限公司(中外合资) 拥有稳定剥离力的防静电离型膜的制作方法
CN104495831A (zh) * 2015-01-04 2015-04-08 黑龙江大学 一种实心的石墨烯微珠的制备方法
CN107359518A (zh) * 2017-07-26 2017-11-17 国网山东省电力公司临沂供电公司 一种动力配电箱
CN109836621A (zh) * 2019-02-28 2019-06-04 威海云山科技有限公司 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沫中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960388B2 (en) * 2002-09-13 2005-11-01 Gerald Hallissy Electrical distribution system components with fire resistant insulative coating
CN108410119A (zh) * 2018-03-22 2018-08-17 广东纳路纳米科技有限公司 聚甲醛复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192578A (zh) * 2013-04-28 2013-07-10 恩斯盟防静电材料(镇江)有限公司(中外合资) 拥有稳定剥离力的防静电离型膜的制作方法
CN104495831A (zh) * 2015-01-04 2015-04-08 黑龙江大学 一种实心的石墨烯微珠的制备方法
CN107359518A (zh) * 2017-07-26 2017-11-17 国网山东省电力公司临沂供电公司 一种动力配电箱
CN109836621A (zh) * 2019-02-28 2019-06-04 威海云山科技有限公司 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沫中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LONG, YAN; CHENG, JINNING; HAN, XIAO: "Application of Modified Expandable Graphite in Rigid Polyurethane Foam for Thermal Insulation Materials in Cold Storage", JOURNAL OF REFRIGERATION TECHNOLOGY, vol. 41, no. 03, 30 September 2018 (2018-09-30), pages 6 - 9, XP009522933, ISSN: 1674-0548 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789056A (zh) * 2021-09-14 2021-12-14 长春工业大学 一种高效的物理-化学协同阻燃硅橡胶复合材料的制备方法
CN113789056B (zh) * 2021-09-14 2022-09-27 长春工业大学 一种高效的物理-化学协同阻燃硅橡胶复合材料的制备方法
CN116656112A (zh) * 2023-04-04 2023-08-29 济南一诺振华防腐保温工程有限公司 一种lng绝热用高阻燃闭孔软泡板及制备方法
CN116656112B (zh) * 2023-04-04 2024-01-23 济南一诺振华防腐保温工程有限公司 一种lng绝热用高阻燃闭孔软泡板及制备方法

Also Published As

Publication number Publication date
CN109836621A (zh) 2019-06-04
CN109836621B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2020173018A1 (zh) 一种改性可膨胀石墨、阻燃剂及其制备方法和在聚氨酯泡沬中的应用
CN105367024B (zh) 一种外墙保温材料
CN112661429B (zh) 一种不燃型聚苯乙烯颗粒复合保温板的制备方法及其制得的产品
CN112300602A (zh) 一种无机填料的改性方法
CN108610576A (zh) 一种高耐候型pvc色母粒及其制备方法
CN112537936A (zh) 一种气凝胶改性的高强防火砂浆材料及其制备方法
Sun et al. Fabrication of flame-retardant and smoke-suppressant isocyanate-based polyimide foam modified by silica aerogel thermal insulation and flame protection layers
CN105153564B (zh) 一种石墨烯‑氧化钼纳米阻燃复合材料
CN108102348A (zh) 一种基于可膨胀石墨的含磷阻燃硬质聚氨酯泡沫及其制备方法
CN105440527A (zh) 一种纤维增韧塑料板材及其制备方法
CN110066495A (zh) 一种SiO2气凝胶阻燃环氧树脂复合材料及其制备方法
CN104986982B (zh) 一种氧化石墨烯阻燃秸秆材料及其制备方法
CN115108769A (zh) 一种高性能混合碱激发泡沫混凝土及其制备方法
CN108675821A (zh) 一种轻质防裂水泥发泡保温板
CN105314933B (zh) 一种低导热保温砂浆
CN106747178A (zh) 一种干混保温板抹面砂浆及其制备方法
CN108623991A (zh) 一种高强度天花板材料及其制备方法
CN112028554A (zh) 一种氧化石墨烯改性硅藻土防火保温板
CN107266006A (zh) 一种节能环保的建筑装饰材料及其制备方法
CN113817225B (zh) 复合温拌阻燃改性剂及其制备方法、改性胶囊及其应用
CN112374812B (zh) 一种高钙粉煤灰混凝土及其制备方法
CN1468922A (zh) 多用途膨胀型防火涂料
CN108358513A (zh) 一种环保耐磨保温阻燃复合板材及其制备方法
CN113716897A (zh) 一种纳米陶瓷涂层阻尼的合成工艺
CN112375267A (zh) 一种改性氧化锌/橡胶复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916820

Country of ref document: EP

Kind code of ref document: A1