WO2020172872A1 - 光路调制器件及其制作方法、光学设备和电子装置 - Google Patents

光路调制器件及其制作方法、光学设备和电子装置 Download PDF

Info

Publication number
WO2020172872A1
WO2020172872A1 PCT/CN2019/076565 CN2019076565W WO2020172872A1 WO 2020172872 A1 WO2020172872 A1 WO 2020172872A1 CN 2019076565 W CN2019076565 W CN 2019076565W WO 2020172872 A1 WO2020172872 A1 WO 2020172872A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
path modulation
substrate
optical path
Prior art date
Application number
PCT/CN2019/076565
Other languages
English (en)
French (fr)
Inventor
王文轩
沈健
王红超
姚国峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/076565 priority Critical patent/WO2020172872A1/zh
Priority to CN201980000411.1A priority patent/CN110023797A/zh
Priority to CN202020073011.3U priority patent/CN211956509U/zh
Publication of WO2020172872A1 publication Critical patent/WO2020172872A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • This application relates to optical technology, and in particular to an optical path modulation device with the functions of light wave selective transmission and optical path modulation, and its manufacturing method, optical equipment and electronic device.
  • optical devices such as cameras, 3D imaging sensors, under-screen fingerprint recognition sensors, and other optical devices are applied to the terminal.
  • these optical devices need to be applied to specific wavelengths.
  • the range of light is collected and identified after the optical path is modulated, and the interference of other stray light in the unnecessary wavelength range is eliminated.
  • optical equipment In order to achieve the selection of light in a specific wavelength range, optical equipment often places one or several separate filters in the optical path of the lens. In order to achieve the filtering effect, when setting, the filter and lens in the optical device are made separately and installed together by the module.
  • the filter and lens need to be manufactured separately. This increases the process of manufacturing the lens module part on the one hand, and the arrangement of the filter makes the thickness of the entire lens module thicker. The limitation makes it impossible to eliminate the interference of other stray light after the filter and lens are assembled.
  • This application provides an optical path modulation device and its manufacturing method, optical equipment and electronic device, which achieves the purpose of selectively collecting light waves of specific wavelengths and performing optical path modulation, eliminating the interference of other stray light, thereby solving the existing
  • the lens cannot be used for light wave selection alone, the optical path modulation method is single, the lens module technology is increased, and other stray light interference problems cannot be well eliminated.
  • This application provides an optical path modulation device, including:
  • the light filter layer, the light barrier layer and the light path modulation element wherein the light barrier layer is provided with single or multiple light through holes arranged at intervals, and the projection of the light path modulation element on the light barrier layer covers the light Through holes, and the filter layer is used to selectively transmit light of a specific wavelength at the position of the light blocking layer and the optical path modulation element.
  • it further includes: a light-permeable substrate, the filter layer and/or the light blocking layer are provided on the substrate, and the filter layer is on the light
  • the projection on the barrier layer at least covers the light barrier layer.
  • the filter layer is disposed on at least one surface of the substrate, and the projection area of the filter layer on the substrate at least partially covers the substrate.
  • the filter layer is provided on both the front and the back of the substrate, and the light barrier layer covers the filter layer on at least one surface of the substrate.
  • the light path modulation element is arranged on the light blocking layer and covers the light through hole.
  • the filter layer is provided on one side of the substrate
  • the light barrier layer is provided on the other side of the substrate away from the filter layer
  • the modulation element is arranged on the light blocking layer and covers the light through hole.
  • the light barrier layer is provided on at least one surface of the substrate, the filter layer is at least covered on the light barrier layer, and the light path modulation element is provided on the On the filter layer and corresponding to the light through hole.
  • the light barrier layer is provided on one side of the substrate, and both the light barrier layer and the other side of the substrate away from the light barrier layer are provided.
  • the filter layer, the light path modulation element is arranged on the filter layer above the light blocking layer and corresponds to the light through hole.
  • the light barrier layer is provided on at least one surface of the substrate
  • the light path modulation element is provided on the light barrier layer and covers the light through hole
  • the filter The optical layer covers at least the light blocking layer and the optical path modulation element.
  • the light barrier layer is provided on one surface of the substrate, and the filter layer covers the light barrier layer, the light path modulation element, and the substrate The other side facing away from the light blocking layer.
  • the substrate is any one of the following substrates:
  • the filter layer is a filter substrate that can transmit light of the specific wavelength, and at least one surface of the filter substrate is provided with a light blocking layer, and the light path
  • the modulation element is arranged on the light blocking layer and covers the light through hole.
  • the filter substrate is any one of the following substrates: sapphire substrate, sapphire crystal, germanium flake, ruby or glass substrate doped with different color elements.
  • the filter layer is a filter layer that can transmit the wavelength band of the specific wavelength of 300 nm to 1100 nm.
  • the light barrier layer is a film layer made of vinyl material or inorganic material.
  • the optical path modulation element is a convex lens, a concave lens, a Fresnel lens, a prism or an irregularly shaped transparent optical path modulation element.
  • the present application also provides an optical device, which at least includes the optical path modulation device described in any one of the above.
  • the application also provides an electronic device, which includes at least the above-mentioned optical device.
  • This application also provides a method for manufacturing an optical path modulation device, the method including:
  • An optical path modulation element is formed on the light through hole.
  • This application also provides a method for manufacturing an optical path modulation device, the method including:
  • a filter layer is at least covered on the light blocking layer and the light path modulation element, and the projection of the filter layer on the light blocking layer at least covers the light blocking layer.
  • the forming a light barrier layer on at least one surface of the substrate includes:
  • the covering at least a filter layer on the light blocking layer and the light path modulation element includes:
  • a second filter layer is provided on the other surface of the substrate away from the light blocking layer.
  • This application also provides a method for manufacturing an optical path modulation device, the method including:
  • An optical path modulation element is formed on the light through hole.
  • This application also provides a method for manufacturing an optical path modulation device, the method including:
  • An optical path modulation element is formed on the filter layer, and the optical path modulation element corresponds to the light through hole.
  • the forming a light barrier layer on at least one surface of the substrate includes:
  • the covering at least a filter layer on the light blocking layer includes:
  • the forming an optical path modulation element on the filter layer includes:
  • An optical path modulation element is formed on the first filter layer and at a position corresponding to the light through hole.
  • the light path modulation device includes a filter layer, a light blocking layer and a light path modulation element, wherein the light blocking layer is provided with single or multiple light through holes arranged at intervals, and the light path modulation element is located in the The projection on the light blocking layer covers the light through hole, and the filter layer is used to selectively transmit light of a specific wavelength at the position of the light blocking layer and the optical path modulation element, so that the light path
  • the modulation device does not require additional module technology to integrate the filter layer and the optical path modulation element, so that a single optical path modulation device can achieve the purpose of selectively transmitting light of a specific wavelength.
  • the filter The layer can also selectively transmit light of a specific wavelength at the light barrier layer, so that the light barrier layer and the filter layer together form a barrier area for secondary light blocking, due to the secondary light barrier layer and the filter layer
  • the blocking makes the light have extremely low transmittance, and thus has a good stray light blocking effect. Therefore, the optical path modulation device provided in this embodiment not only realizes the selective transmission and optical path modulation of light waves of a specific wavelength by a single optical path modulation device
  • the secondary barrier of the light barrier layer and the filter layer makes the light have extremely low transmittance, thereby eliminating the interference of other stray light, and reducing the thickness of the optical path modulation device, which solves the problem of the existing lens assembly. Individual light wave selection, single light path modulation mode, and other stray light interference and thick thickness problems cannot be eliminated well.
  • FIG. 1A is a schematic diagram of a cross-sectional structure of an optical path modulation device provided in Embodiment 1 of the application;
  • FIG. 1B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in Embodiment 1 of the application;
  • FIG. 1C is a schematic top view of the optical path modulation device provided by Embodiment 1 of the application;
  • FIG. 2A is a schematic diagram of a cross-sectional structure of an optical path modulation device provided in Embodiment 2 of this application;
  • 2B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in the second embodiment of the application;
  • 2C is a schematic diagram of another cross-sectional structure of the optical path modulation device provided in the second embodiment of the application.
  • 2D is a schematic diagram of another cross-sectional structure of the optical path modulation device provided in the second embodiment of the application.
  • 3A is a schematic diagram of a cross-sectional structure of an optical path modulation device provided in a third embodiment of the application.
  • 3B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in the third embodiment of the application;
  • FIG. 4 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 6 of the application;
  • 4A-4D are schematic diagrams of the cross-sectional structure after each step in the manufacturing method of the optical path modulation device provided in the sixth embodiment of the application;
  • FIG. 5 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 7 of the application;
  • FIG. 6 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 8 of this application;
  • 6A-6D are schematic diagrams of the cross-sectional structure after each step in the manufacturing method of the optical path modulation device provided in the eighth embodiment of the application;
  • FIG. 7 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 9 of the application.
  • 31-Optical through hole 40-Optical path modulation component; 100-Optical path modulation component.
  • the lens module in the optical device has the problems of increased process, thicker lens module thickness, and the filtering process cannot well eliminate other stray light interference.
  • the inventor found that, The reason for this problem is that since it is difficult for a single lens in the existing optical equipment to have better wavelength selection characteristics, it is necessary to set one or more separate filters and lenses in the lens optical path to form a lens module.
  • the filter and lens need to be manufactured separately, the process of the lens module is increased, and the thickness of the entire lens module is increased due to the increase of the filter.
  • the present invention provides an optical path modulation device.
  • the optical path modulation device provided in the present application will be described with reference to multiple embodiments as follows.
  • optical path modulation device provided in the following embodiments of the present application can be applied to any optical device such as a camera, a 3D imaging sensor, and an under-screen fingerprint recognition sensor.
  • FIG. 1A is a schematic diagram of the cross-sectional structure of the optical path modulation device provided in Embodiment 1 of the application
  • FIG. 1B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in Embodiment 1 of the application
  • FIG. 1C is the optical path provided in Embodiment 1 of the application A schematic top view of the modulation device.
  • the light path modulation device 100 includes: a filter layer 20, a light blocking layer 30, and a light path modulation element 40, wherein the light blocking layer 30 is provided with a single or a plurality of spaced optical through holes 31, wherein the light blocking layer 30 is used to block light of a specific wavelength so that light of a specific wavelength cannot pass through the light blocking layer 30.
  • the light The barrier layer 30 is provided with a light through hole 31, so that the light barrier layer 30 has a light transmission area and a light blocking area.
  • the light path modulation element In order to modulate the light path of the light passing through the light through hole 31, in this embodiment, the light path modulation element The projection of 40 on the light blocking layer 30 covers the light through hole 31, so that the light passing through the light through hole 31 undergoes optical path modulation by the optical path modulation element 40 and then exits outward.
  • a filter layer 20 is added to the optical path modulation device 100.
  • the filter layer 20 is used to position the light blocking layer 30 and the optical path modulation element 40.
  • Light of a specific wavelength at the optical path is selectively transmitted, that is, in this embodiment, the filter layer 20 not only selectively transmits light of a specific wavelength at the optical path modulation element 40, but also transmits the specific wavelength of light at the light blocking layer 30.
  • the light is selectively transmitted through the optical path modulation device 100, so that the optical path modulation device 100 can integrate the filter layer 20 and the optical path modulation element 40 together without additional module processes, so that a single optical path modulation device 100 can transmit light waves of specific wavelengths. For the purpose of selective permeation.
  • the filter layer 20 can also selectively transmit light of a specific wavelength at the light barrier layer 30, the light barrier layer 30 and the filter layer 20 together form a barrier area for secondary light barrier.
  • the secondary blocking of the barrier layer 30 and the filter layer 20 makes the light have extremely low transmittance, thereby having a good stray light blocking effect, while in the prior art, only the filter layer 20 is provided at the light through hole 31. In this way, only the light blocking layer 30 blocks the light once, and the probability of light passing through the light blocking layer 30 is greater.
  • the filter layer 20 also selectively selects light of a specific wavelength at the light blocking layer 30
  • the light blocking layer 30 and the filter layer 20 form the purpose of secondary blocking light, thereby greatly reducing the probability of light passing through the light blocking layer 30. Therefore, the optical path modulation device 100 provided in this embodiment not only achieves the purpose of a single optical path modulation device 100 to selectively transmit and modulate light waves of a specific wavelength, but also the secondary blocking of the optical barrier layer 30 and the filter layer 20 makes the light It has extremely low transmittance, which eliminates the interference of other stray light, and solves the problems that the existing lens assembly cannot select light waves alone and cannot well eliminate the interference of other stray light.
  • the optical filter layer 20 and the optical path modulation element 40 are integrated in the optical path modulation device 100, so that the problem of separately manufacturing filters and lenses is avoided during production, thereby preventing additional module processes, and
  • the thickness of the filter layer 20 is much lower than the thickness of the filter. Therefore, the thickness of the optical path modulation device 100 of this embodiment is greatly reduced, which solves the problem of the existing lens module due to the arrangement of the filter. This makes the entire lens module thicker.
  • the optical path modulation device 100 provided in this embodiment solves the problem that the existing lens cannot be individually selected for light waves, the lens module process is increased, the lens module thickness is thicker, and the lens module cannot be very thick. To eliminate other stray light interference problems.
  • the projection of the light path modulation element 40 on the light barrier layer 30 covers the light through hole 31, specifically, the projection area of the light path modulation element 40 on the light barrier layer 30 completely covers the light through hole 31 That is, the projected area of the light path modulation element 40 on the light blocking layer 30 is greater than or equal to the opening area of the light through hole 31, so that the light passing through the light can enter the light path modulation element 40 for optical path modulation.
  • the light path modulation element 40 may be provided on the light through hole 31, and the light path modulation element 40 is filled in the light through hole 31.
  • the light path modulation element 40 may be specifically formed by a pasting process after injection molding or an embossing process.
  • Standard wafer level optics (Wafer Level Optics, abbreviated as: WLO) manufacturing process, gray-scale mask process, photoresist reflow process and any other required optical path modulation element 40 processing technology.
  • WLO Wafer Level Optics
  • the material of the optical path modulation element 40 is selected according to the requirements index to meet the requirements of specific refractive index, haze, elastic modulus, etc. and the requirements of specific processes, and the specific process requirements are not limited here.
  • the light through hole 31 when the light through hole 31 is opened on the photo-blocking layer 30, specifically, the light through hole 31 can be formed after exposure and development through a photolithography process, or, in this embodiment, photolithography and etching The process jointly forms the light through hole 31.
  • the light through hole 31 may be a round through hole or a square through hole.
  • the shape of the light through hole 31 is not limited in this embodiment, wherein, In this embodiment, the opening size of the light through hole 31 is specifically set according to actual applications. For example, when the light through hole 31 is a round through hole, the aperture of the light through hole 31 may be 5um to 1000um, for example, the aperture of the light through hole 31 It can be 100um or 500um, depending on actual needs.
  • the optical path modulation device 100 provided in this embodiment includes the filter layer 20, the light blocking layer 30, and the optical path modulation element 40, wherein the light blocking layer 30 is provided with a single or a plurality of light through holes 31 arranged at intervals.
  • the projection of the light path modulation element 40 on the light blocking layer 30 covers the light through hole 31, and the filter layer 20 is used to selectively transmit light of a specific wavelength at the position of the light blocking layer 30 and the light path modulation element 40
  • the optical path modulation device 100 can integrate the filter layer 20 and the optical path modulation element 40 without additional module processes, so that a single optical path modulation device 100 can achieve selective transmission of light of a specific wavelength.
  • the filter layer 20 can also selectively transmit light of a specific wavelength at the light barrier layer 30, the light barrier layer 30 and the filter layer 20 together form a barrier area for secondary light barrier. Since the secondary blocking of the light blocking layer 30 and the filter layer 20 makes the light have extremely low transmittance and thus has a good stray light blocking effect, the optical path modulation device 100 provided in this embodiment not only implements single optical path modulation The device 100 selectively transmits light waves of a specific wavelength and modulates the light path. At the same time, the secondary blocking of the light blocking layer 30 and the filter layer 20 makes the light have extremely low transmittance, thereby eliminating the interference of other stray light. This solves the problems that the existing lens assembly cannot perform light wave selection alone, and cannot well exclude other stray light interference and thick thickness.
  • this embodiment further includes: a light-transmissive substrate 10, that is, in this embodiment, light can pass through the substrate 10.
  • the substrate 10 Select a substrate that has a selective transmission effect for certain specific wavelengths or specific wavelength bands.
  • the substrate 10 may be a rigid transparent substrate or a flexible transparent substrate.
  • the substrate 10 may be glass, or The substrate 10 may also be crystal, or, the substrate 10 may also be a metal substrate that selectively transmits light of a specific wavelength or a specific wavelength band, or the substrate 10 may also be a resin substrate, or it may be organic glass, as it should be noted Yes, the substrate includes but is not limited to the above-mentioned substrates, and can also be other substrates that have a selective transmission effect for certain specific wavelengths or specific wavelengths of light.
  • the substrate 10 specifically selects a specific material according to the wavelength range of the transmitted light.
  • the substrate 10 is specifically selected as a white glass substrate with high transmittance in the visible light range and the near-infrared wavelength range (300 nm to 1100 nm), that is, the substrate 10 Select a substrate that can transmit light waves with a specific wavelength of 300 nm to 1100 nm.
  • the thickness of the substrate 10 may specifically be 100 um to 500 um. It should be noted that the thickness of the substrate 10 may also be of other sizes. In the embodiment, it is not limited, and it is specifically set according to actual needs.
  • the filter layer 20 and/or the light blocking layer 30 may be provided on the substrate 10.
  • the filter layer 20 may be provided on the substrate 10 On the back side, the light barrier layer 30 is provided on the front side of the substrate 10, that is, the filter layer 20 and the light barrier layer 30 are respectively located on the front and back sides of the substrate 10, or the filter layer 20 is provided on the front side of the substrate 10, and the light barrier layer 30 is provided On the filter layer 20, or the light blocking layer 30 is provided on the front surface of the substrate 10, the filter layer 20 covers the light blocking layer 30 and the light path modulation element 40, specifically, as shown in FIG.
  • the filter layer 20 Set on the substrate 10 the light blocking layer 30 covers the filter layer 20, and in this embodiment, when the filter layer 20 is provided on the substrate 10, the filter layer 20 covers the entire surface of the substrate 10, while filtering
  • the projection of the light layer 20 on the light barrier layer 30 at least covers the light barrier layer 30, that is, the projection of the filter layer 20 on the light barrier layer 30 can cover the light barrier layer 30, or the filter layer 20 is on the light barrier layer 30
  • the projection on 30 can also cover both the light blocking layer 30 and the light through holes 31, so that when the light blocking layer 30 and the filter layer 20 are overlapped up and down, the light blocking layer 30 and the filter layer 20 form a secondary barrier to light waves.
  • the filter layer 20 has reduced the transmittance of most stray light to an extremely low level, and only transmits the required specific wavelengths (such as near infrared bands) Light wave), after adding the light barrier layer 30, the light of a specific wavelength originally transmitted by the filter layer 20 is blocked together at the area where the light through hole 31 is not provided on the light barrier layer 30, that is, the wavelength range of other wavelengths is further enhanced
  • the light blocking effect as shown in FIG. 1B, the light passing through the filter layer 20 only enters the light path modulation element 40 at the light through hole 31 of the light blocking layer 30 for optical path modulation, and the light at other areas of the light blocking layer 30 cannot It emits outwards. Therefore, in this embodiment, the filter layer 20 and the light blocking layer 30 together achieve a secondary blocking effect on light.
  • the light path modulation element 40 when the optical path modulation element 40 is disposed on the light through hole 31, the light path modulation element 40 can be filled in the light through hole 31 and covered on the filter layer 20, so that the filter layer 20 and the light path modulation element 40 The gap therebetween is reduced and the light path is shortened.
  • the light passing through the filter layer 20 can directly enter the light path modulation element 40 at the light through hole 31, thereby avoiding the interference of other stray light.
  • the filter layer 20 when the filter layer 20 is provided on the substrate 10, specifically, the filter layer 20 may be provided on at least one surface of the substrate 10.
  • the filter layer 20 may be provided on a single side of the substrate 10.
  • the filter layer 20 is provided on both sides of the substrate 10, so that the light of a specific wavelength is filtered twice to make the filtering effect better.
  • the filter layer 20 is on the substrate 10
  • the thickness of the two filter layers 20 on the front and back sides of the substrate 10 can be the same or different.
  • the substrate In practical applications, in order to filter different wavelengths, the substrate The thickness of the two filter layers 20 on the two sides of the substrate 10 is different, so that a better filtering effect can be achieved for a specific wavelength band.
  • the filter layers on both sides of the substrate 10 The wavelength range of light filtered by the layer 20 can be different.
  • the filter layer 20 provided on the back of the substrate 10 can selectively transmit the wavelength range from 300 nm to 1100 nm
  • the filter layer 20 provided on the front surface of the substrate 10 can be 760 to 760 nm.
  • the wavelength band of 1100 nm is selectively transmitted again.
  • the wavelength band selected by the filter layer 20 on the front and back surfaces of the substrate 10 includes but is not limited to the above-mentioned wavelength band, and may also be other wavelength bands. , Choose according to actual application.
  • the projection area of the filter layer 20 on the substrate 10 at least partially covers the substrate 10. That is, in this embodiment, the filter layer 20 is formed on the substrate 10.
  • the substrate 10 is partially covered by the filter layer 20, and the projected area of the filter layer 20 on the substrate 10 is less than or equal to the area of the surface of the substrate 10 facing the filter layer 20, so that when the light blocking layer 30 is provided
  • the unopened area on the light barrier layer 30 and the filter layer 20 jointly form an area for secondary light blocking, which can effectively block other stray light and effectively eliminate other impurities. Interference of astigmatism.
  • both the front and back of the substrate 10 are provided with filter layers 20, that is, the filter layers 20 are provided on the upper and lower surfaces of the substrate 10, and the filter layers 20 are provided on the upper and lower sides of the substrate 10.
  • the projections on each surface at least partially cover both the upper and lower surfaces of the substrate 10.
  • the light blocking layer 30 covers the filter layer 20 on at least one surface of the substrate 10. That is, in this embodiment, the light The barrier layer 30 may cover the filter layer 20 provided on the front surface of the substrate 10, or it may cover the filter layer 20 provided on the back surface of the substrate 10, and may also be on the filter layer 20 provided on the upper and lower surfaces of the substrate 10.
  • the light path modulation element 40 may be provided on one of the light barrier layers 30.
  • the light through hole 31 is upper and covered, or the light path modulation element 40 can be arranged on each light blocking layer 30, so that there are two light path modulation elements 40 in the light path modulation device.
  • the filter layer 20 may also be provided on one surface of the substrate 10.
  • the filter layer 20 is provided on the front surface of the substrate, or the filter layer 20 is provided on the back surface of the substrate, and the light blocking layer 30 is provided on the other side of the substrate 10 away from the filter layer 20.
  • the light blocking layer 30 is provided on the back surface of the substrate 10, and the light path modulation element 40 can be It is arranged on the light blocking layer 30 and covers the light through hole 31, or the light path modulation element 40 may be arranged on the filter layer 20 and corresponds to the light through hole 31 on the light blocking layer 30.
  • the filter layer 20 is an organic or inorganic material, for example, SiO 2 , TiO 2 , MgF 2 , Al 2 O 3 , photocurable resin, photoinitiator, pigment, alkali-soluble resin, etc.
  • the filter layer 20 may be a single-layer or multi-layer film formed by coating, evaporation, sputtering, physical/chemical vapor deposition, plasma enhanced deposition, or spin coating, that is, in this embodiment, the filter layer 20 It can be an organic single-layer or multilayer film, or an inorganic single-layer or multilayer film.
  • the filter layer 20 is a filter layer 20 that can transmit a specific wavelength of 700 nm to 1100 nm. That is, in this embodiment, the filter layer 20 can be selected to transmit light in the wavelength range of 700 nm to 1100 nm. In this way, the light barrier layer 30 needs to select a film layer with extremely low light transmittance in the 300nm to 1100nm wavelength range.
  • the light barrier layer 30 can specifically be an organic film layer made of vinyl material, or in this embodiment
  • the light barrier layer 30 is made of some inorganic materials, for example, it can be made of Ti-containing metal compounds, Ag, Au and other materials.
  • the light barrier layer 30 can be made by coating or evaporation. , Sputtering, physical/chemical vapor deposition, plasma enhanced deposition, spin coating and other film preparation techniques.
  • the optical path modulation element 40 may specifically be a convex lens as shown in FIG. 1A, which converges left and right light, or the optical path modulation device 100 may also be a concave lens, which may have a divergent effect on the light, or optical path modulation
  • the element 40 may also be a prism, and the prism may specifically be a triangular prism, or the optical path modulation element 40 may also be a Fresnel lens, or, in this embodiment, the optical path modulation element 40 may also be an irregularly shaped transparent optical path modulation element .
  • the optical path modulation element 40 when the optical path modulation element 40 is a lens, at this time, the center line of the light through hole 31 coincides with the projection of the optical center of the optical path modulation element 40 on the light barrier layer 30, which ensures that the selected transparent The passed effective light can pass through the optical path modulation element 40 and be received by subsequent sensors.
  • the area on the optical barrier layer 30 where the optical path modulation element 40 is not provided is due to the laminated arrangement of the filter layer 20 and the optical barrier layer 30, which is The light waves transmitted by the layer 20 have extremely low transmittance, and have a good stray light blocking effect.
  • FIG. 2A is a schematic cross-sectional structure diagram of the optical path modulation device provided in the second embodiment of the application
  • FIG. 2B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in the second embodiment of the application.
  • the light barrier layer 30 is provided on at least one surface of the substrate 10.
  • the light barrier layer 30 may be provided on the front or back of the substrate, or The barrier layer 30 is provided on both the front and back sides of the substrate 10.
  • the light barrier layer 30 is provided on the front surface of the substrate 10.
  • the light barrier layer 30 at least partially covers one side of the substrate 10.
  • the optical path modulation element 40 is provided on the light blocking layer 30.
  • the optical path modulation element 40 covers the position where the light through hole 31 is opened on the light blocking layer 30, and the filter layer 20 covers at least the light blocking layer 30 and the optical path modulation element 40, and the projection area of the filter layer 20 on the light barrier layer 30 at least covers the light barrier layer 30.
  • the element 40 modulates the light path, and then selectively transmits light of a specific wavelength through the filter layer 20, so as to achieve the purpose of light selection. The remaining light is blocked under the double barrier of the light barrier layer 30 and the filter layer 20. It cannot be emitted outward.
  • the filter layer 20 covers the light barrier layer 30, the light that is not blocked by the light barrier layer 30 passes through the filter layer 20 for secondary blocking, so the filter layer 20 and the light
  • the stacked arrangement of the barrier layer 30 realizes effective blocking of stray light, thereby eliminating the interference of stray light.
  • the light barrier layer 30 may be specifically provided on one surface of the substrate 10. As shown in FIG. 2A, the light barrier layer 30 is provided on the front surface of the substrate 10. At this time, the filter layer is not only covering the light On the barrier layer 30 and the light path modulation element 40, the filter layer 20 also covers the other side of the substrate 10 away from the light barrier layer 30.
  • a filter layer 20 is also provided on the back of the substrate 10 (see FIG. 2D), That is, the filter layer 20 is provided on the upper and lower sides of the substrate 10. It should be noted that the filter layer 20 depends on the specific application requirements. If the filter layer 20 is set on both sides, the back side of the substrate 10 is provided The filter layer 20 at least partially covers the back of the substrate 10.
  • the light blocking layer 30 can be provided on the front of the substrate 10, or on the back of the substrate 10, or on the front and back sides of the substrate 10. Both are set so that the light before entering the substrate 10 can be blocked for the first time, and then the light can be blocked again after passing through the substrate 10, so that the light blocking layer 30 and the filter layer 20 form a film layer for multiple blocking of light , Thereby effectively avoiding the interference of stray light.
  • the optical path modulation device 100 not only achieves the purpose of a single optical path modulation device 100 for selective transmission of light waves of a specific wavelength and optical path modulation, but also a secondary barrier of the optical barrier layer 30 and the filter layer 20
  • the light has a very low transmittance, thereby eliminating the interference of other stray light, and solving the problems that the existing lens assembly cannot select light waves alone, and cannot well eliminate the interference of other stray light and the thick thickness.
  • the filter layer 20 covers the surface of the optical path modulation element 40, the optical path modulation element 40 can be well protected from damage by external forces.
  • FIG. 2C is a schematic diagram of another cross-sectional structure of the optical path modulation device provided in the second embodiment of the application.
  • the light blocking layer 30 is arranged on At least one side of the substrate 10, for example, the light blocking layer 30 may be provided on the front or back of the substrate, or the light blocking layer 30 may be provided on both sides of the substrate 10, and the filter layer 20 covers at least the light blocking layer 30 2C, the light barrier layer 30 is provided on the front surface of the substrate 10, the filter layer 20 is provided on the light barrier layer 30, and the light path modulation element 40 is provided on the filter layer 20.
  • the filter layer 20 covers the light blocking layer 30, and the projection area of the filter layer 20 on the light blocking layer 30 covers at least the light blocking layer 30, and the light path modulation element 40 is arranged on the filter layer 20 and opposite to the light through hole 31, so The light first passes through the substrate 10, and then part of the light passes through the light through hole 31 and enters the filter layer 20 to enter the optical path modulating element 40. The light is modulated by the optical path modulating element 40 and then emitted outward. The remaining light entering the substrate 10 Under the double barrier of the barrier layer 30 and the filter layer 20, it cannot be emitted to the outside, which achieves an effective barrier to stray light, thereby eliminating the interference of stray light.
  • FIG. 2D is a schematic diagram of another cross-sectional structure of the optical path modulation device provided in the second embodiment of the application.
  • the light blocking layer 30 is provided on one side of the substrate 10, for example, the light blocking layer 30 is provided on the substrate 10 (as shown in Figure 2D) or back, the light blocking layer 30 and the other side of the substrate 10 away from the light blocking layer 30 are provided with a filter layer 20, that is, the filter layer 20 is on the light blocking layer 30 and The other side of the substrate 10 without the light blocking layer 30 is provided.
  • the light blocking layer 30 is provided on the front surface of the substrate 10, the filter layer 20 is provided on the back surface of the substrate 10, and the light barrier layer 30 is also provided A filter layer 20, and the light path modulation element 40 is disposed on the filter layer 20 above the light blocking layer 30 and corresponds to the light through hole 31.
  • FIG. 3A is a schematic cross-sectional structure diagram of the optical path modulation device provided in the third embodiment of the application
  • FIG. 3B is a schematic diagram of light wave selection and optical path modulation of the optical path modulation device provided in the third embodiment of the application.
  • the filter layer 20 is a filter substrate 10a that can transmit light of a specific wavelength (see FIG. 6A below) ), that is, in this embodiment, the filter layer 20 is not a film layer, but a filterable substrate 10 material, so the filter substrate 10a can be used as the filter layer 20 at the same time as the first embodiment and The substrate 10 in the second embodiment is used, which avoids the additional provision of a filter film layer on the substrate 10.
  • the filter substrate 10a is compared with the substrate 10 in the first and second embodiments above.
  • the filter substrate 10a has the characteristic of selectively transmitting light waves in a specific wavelength range, so the light blocking layer 30 can be directly provided on the filter substrate 10a.
  • the light blocking layer 30 and the filter The optical substrate 10a is laminated and arranged to constitute a barrier area for secondary barrier to light.
  • the filter substrate 10a can be a sapphire substrate, sapphire crystal, germanium chip, ruby or a glass substrate doped with different color elements. It should be noted that the filter substrate 10a includes but is not limited to the above-mentioned substrates. The material may also be a cyclic olefin copolymer film and other substrates with different filter characteristics, wherein the material of the filter substrate 10a is specifically selected according to the desired transmission wavelength band.
  • the filter substrate 10a combines the functions of the filter and the substrate 10, while the existing lens module is set up for It is convenient to install the filter, and the filter is often set on the substrate 10.
  • the thickness of the filter and the substrate 10 is greater than that of the filter substrate 10a in the present application.
  • the thickness of the optical path modulation device 100 provided in this embodiment is reduced.
  • This embodiment provides an optical device that is equipped with at least the optical path modulation device 100 of any of the above embodiments.
  • the optical device may specifically be a camera, a 3D imaging sensor, an under-screen fingerprint recognition sensor, etc., which require specific wavelength selectivity.
  • the optical device provided in this embodiment includes the above-mentioned optical path modulation device 100, so that a single optical path modulation device 100 in the optical device selectively transmits and modulates light waves of a specific wavelength, and the optical barrier layer 30 and the filter layer 20
  • the secondary blocking makes the light have extremely low transmittance, thereby eliminating the interference of other stray light, and reducing the thickness of the optical path modulation device 100, reducing the manufacturing process, and solving the problem that the existing lens components cannot be individually selected for light waves.
  • the problems of other stray light interference, thicker thickness and increased lens module process are well eliminated.
  • This embodiment provides an electronic device, the electronic device at least the optical device of the fourth embodiment, wherein the electronic device may specifically be a smart phone, a notebook computer, a wearable device, a household appliance, an access control system, etc., any device having the above optical path Of electronic devices.
  • the electronic device provided in this embodiment includes the optical path device described above, and the optical path device includes the optical path modulation device 100, so that a single optical path modulation device 100 in the optical device selectively transmits and modulates light waves of a specific wavelength, and the optical barrier layer
  • the secondary blocking of 30 and the filter layer 20 makes the light have extremely low transmittance, thereby eliminating the interference of other stray light, and reducing the thickness of the optical path modulation device 100, reducing the manufacturing process, and solving the existing lens assembly It is not possible to select light waves alone, to exclude other stray light interference, thicker thickness and increased lens module technology.
  • Fig. 4 is a schematic flow chart of the manufacturing method of the optical path modulation device provided in the sixth embodiment of the application
  • Figs. 4A-4D are schematic cross-sectional structure diagrams after preparation of each step in the manufacturing method of the optical path modulation device provided in the sixth embodiment of the application.
  • This embodiment provides a method for manufacturing the optical path modulation device 100, where the method is shown in FIG. 4 and includes the following steps:
  • S601 Provide a base
  • a substrate 10 is provided.
  • the substrate 10 is specifically a material with high transmittance to light waves in a specific wavelength range.
  • the substrate 10 may be glass, crystal, or a flexible transparent substrate.
  • the substrate 10 The specific material is selected according to the wavelength range of the transmitted light.
  • the substrate 10 is specifically selected as a white glass substrate with high transmittance in the visible light range and the near-infrared wavelength range (300 nm to 1100 nm), that is, the substrate 10 can be selected for specific A substrate that transmits light waves with a wavelength of 300 nm to 1100 nm.
  • the thickness of the substrate 10 may specifically be 100 um to 500 um. It should be noted that the thickness of the substrate 10 may also have other dimensions. In this embodiment, It is not limited, and it is set according to actual needs.
  • the filter layer 20 can be provided on one side of the substrate 10, or the filter layer 20 can be provided on the front and back sides of the substrate 10. As shown in FIG. 4B, the filter layer 20 is formed on the front side of the substrate 10.
  • the filter layer 20 can be a single layer or a multilayer film Among them, the filter layer 20 may be an inorganic film layer or an organic film layer, or the filter layer 20 may also be a laminated composition of an organic film layer and an inorganic film layer.
  • S603 forming a light barrier layer on the filter layer, and patterning is performed on the light barrier layer to form single or multiple light through holes arranged at intervals;
  • a light barrier layer 30 is formed on the filter layer 20, and the light barrier layer 30 covers the entire surface of the filter layer 20.
  • the light barrier layer 30 specifically selects The material with extremely low light transmittance through the layer 20 can effectively block the light transmitted by the filter layer 20 and eliminate the interference of stray light.
  • the light blocking layer 30 is patterned The processing forms single or multiple light through holes 31 arranged at intervals.
  • the photo-blocking layer 30 can be a photoresist material of black glue. In this case, it can be directly exposed and developed through a photolithography process. The light through hole 31 is formed.
  • the light barrier layer 30 may also be an inorganic material prepared by evaporation or sputtering.
  • the light through hole 31 may be formed by photolithography and etching processes.
  • the projection of the filter layer 20 on the light barrier layer 30 at least covers the light barrier layer 30, that is, the projection of the filter layer 20 on the light barrier layer 30 can cover the light barrier layer 30, or the filter layer 20 is on The projection on the light blocking layer 30 covers the light blocking layer 30 and the light through hole 31.
  • the light barrier layer 30 can be provided on the filter layer 20 provided on at least one side of the substrate 10, for example, the light barrier layer The layer 30 may cover the filter layer 20 on one side, or the light blocking layer 30 may cover the filter layer 20 on both sides of the substrate 10 respectively.
  • an optical path modulation element 40 is formed on the light through hole 31, and finally an optical path modulation device 100 as shown in FIG. 1A is formed.
  • the optical path modulation element 40 can specifically pass any optical path modulation element that meets the requirements, such as a paste after injection molding process, an imprint process, a standard wafer level lens (WLO) manufacturing process, a grayscale mask process, a photoresist reflow process, etc. Made with 40 processing techniques.
  • the material of the optical path modulation element 40 is selected according to the requirements index to meet the requirements of specific refractive index, haze, elastic modulus, etc. and the requirements of specific processes, and the specific process requirements are not limited here.
  • the method for manufacturing the optical path modulation device 100 provided in this embodiment is to form a filter layer 20 on at least one surface of the substrate 10, and form a light barrier layer 30 on the filter layer 20, and the light barrier layer 30 is formed by patterning Single or multiple spaced optical through holes 31 are formed on the optical through holes 31 to form the optical path modulation element 40, so that the optical path modulation device 100 made can combine the filter layer 20 and the optical path modulation element without additional module processes. 40 are integrated together to achieve the purpose of a single optical path modulation device 100 that can selectively transmit light waves of a specific wavelength.
  • the optical path modulation device 100 manufactured by the method for manufacturing the optical path modulation device 100 provided in this embodiment not only realizes the purpose of a single optical path modulation device 100 for selective transmission of light waves of a specific wavelength and optical path modulation, but also
  • the secondary barrier of the barrier layer 30 and the filter layer 20 makes the light have extremely low transmittance, thereby eliminating the interference of other stray light, and solving the problem that the existing lens components cannot be individually selected for light waves and cannot well exclude other impurities.
  • the problem of astigmatism interference is stacked, the light blocking layer 30 and the light filter The layers 20 together form a barrier area for secondary light barrier, so that the light has a very low transmittance in the barrier area, thereby having a good stray light barrier effect, thereby greatly reducing the light transmission from the light barrier layer 30 Therefore, the optical path modulation device 100 manufactured by the method for manufacturing the optical path modulation device 100 provided in this embodiment not only realizes the purpose of a single optical path modulation device 100 for selective transmission of light waves of a specific
  • FIG. 5 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 7 of the application;
  • This embodiment provides a method for manufacturing an optical path modulation device, where, as shown in FIG. 5, the method includes the following steps:
  • S702 forming a light barrier layer on at least one surface of the substrate, and patterning is performed on the light barrier layer to form a single or multiple light through holes arranged at intervals;
  • step 604 for this step, reference may be made to step 604 above.
  • S704 At least cover the filter layer on both the light barrier layer and the light path modulation element, and the projection of the filter layer on the light barrier layer at least covers the light barrier layer.
  • the filter layer 20 may be covered on the light blocking layer 30 and the optical path modulation element 40, and finally the optical path modulation device 100 as shown in FIG. 2A is formed.
  • the filter layer 20 can also be provided on the other side of the substrate 10. Specifically, it includes the following steps: One surface is provided with a light blocking layer 30, and the light blocking layer is patterned to form single or multiple light through holes arranged at intervals.
  • the light path modulation element 40 is formed on the light through holes 31, and the light blocking layer 30 and The light path modulation element 40 is covered with a first filter layer, and a second filter layer is provided on the other side of the substrate 10 away from the light barrier layer 30. That is, in this embodiment, the filter layer 30 is placed on the light barrier layer 30 and the substrate 10 The light blocking layer 30 is provided on one side.
  • the method for manufacturing the optical path modulation device 100 provided by this embodiment is to form a light blocking layer 30 on the substrate 10, and patterning the light blocking layer 30 to form a single or multiple light through holes 31 arranged at intervals.
  • the light path modulation element 40 is formed on the hole 31, and at least the light barrier layer 30 and the light path modulation element 40 are covered with the filter layer 20, so that the optical path modulation device 100 manufactured in this way does not require additional module processes to integrate the filter layer 20. It is integrated with the optical path modulation element 40 to achieve the purpose of a single optical path modulation device 100 that can selectively transmit light waves of a specific wavelength.
  • the optical path modulation device 100 produced by the method for manufacturing the optical path modulation device 100 provided in this embodiment not only realizes the selective transmission and optical path modulation of a single optical path modulation device 100 for light waves of specific wavelengths.
  • the secondary barrier of the light barrier layer 30 and the filter layer 20 makes the light have extremely low transmittance, thereby eliminating the interference of other stray light, and solving the problem that the existing lens components cannot be individually selected for light waves and cannot be very good. Eliminate other stray light interference problems.
  • FIGS. 6A-6D are schematic diagrams of the cross-sectional structure after each step in the manufacturing method of the optical path modulation device provided in the eighth embodiment of the application.
  • This embodiment provides a method for manufacturing the optical path modulation device 100, where the method is shown in FIG. 6 and includes the following steps:
  • a filter substrate 10a is provided, that is, the filter substrate 10a can be used as the filter layer 20 for the purpose of selectively transmitting light waves of a specific wavelength, that is, in this embodiment
  • the provided filter substrate 10a serves as the filter layer 20 or the substrate 10 of the above-mentioned embodiment.
  • the filter substrate 10a may be a sapphire substrate, a blue crystal or a germanium plate, wherein the material of the filter substrate 10a is specifically selected according to the desired transmission wavelength band.
  • S802 forming a light barrier layer on the filter substrate, and patterning is performed on the light barrier layer to form a single or multiple spaced optical through holes;
  • a light blocking layer 30 is formed on the filter substrate 10a.
  • the light blocking layer 30 is patterned to form a single or multiple spaced light fluxes.
  • the hole 31, the light blocking layer 30 and the light through hole 31, please refer to the above step 603 for details.
  • the optical path modulation element 40 is covered on the light through hole 31, and finally the optical path modulation device 100 as shown in FIG. 3A is manufactured, wherein, in this embodiment, the optical path modulation element 40
  • the optical path modulation element 40 For the specific setting of, please refer to the above step 604, which will not be repeated in this embodiment.
  • the method for manufacturing the optical path modulation device 100 provided in this embodiment is to form a light blocking layer 30 on the filter substrate 10a, and patterning the light blocking layer 30 to form a single or multiple spaced light through holes 31;
  • the optical path modulation element 40 is formed on the optical through hole 31.
  • the optical path modulation device 100 thus manufactured can integrate the filter film layer and the optical path modulation element 40 without additional module processes, so that a single optical path modulation device 100 can be integrated.
  • the purpose of selectively transmitting light waves of specific wavelengths is performed at the same time, when the light barrier layer 30 and the filter substrate 10a are stacked, the light barrier layer 30 and the filter substrate 10a jointly form a barrier area for secondary light blocking.
  • the optical path modulation device 100 manufactured by the manufacturing method of 100 not only achieves the purpose of a single optical path modulation device 100 to selectively transmit light waves of a specific wavelength and optical path modulation, but also the secondary barrier of the optical barrier layer 30 and the filter substrate 10a makes The light has an extremely low transmittance, and by directly providing a filter substrate 10a, it is avoided that an additional filter film layer is provided on the substrate 10, the manufacturing process of the optical path modulation device 100 is simplified, and other stray light is eliminated This solves the problem that the existing lens assembly cannot perform light wave selection alone and cannot well exclude other stray light interference.
  • FIG. 7 is a schematic flowchart of a method for manufacturing an optical path modulation device according to Embodiment 9 of the application.
  • This embodiment provides a method for manufacturing the optical path modulation device 100, where the method is shown in FIG. 7 and includes the following steps:
  • S902 forming a light barrier layer on at least one surface of the substrate, and patterning is performed on the light barrier layer to form single or multiple light through holes arranged at intervals;
  • this step can refer to the above step 702 for details.
  • the light blocking layer 30 when the light blocking layer 30 is disposed on the substrate 10, the light blocking layer 30 may be disposed on one end surface of the substrate 10, or The light blocking layer 30 can also be provided on both the upper and lower end surfaces of the substrate 10.
  • S903 At least cover the filter layer on the light blocking layer
  • the filter layer 20 is provided on the light blocking layer 30, and when the light blocking layer 30 is provided on one side of the substrate 10 At this time, the light blocking layer 30 and the other side of the substrate 10 on which the light blocking layer 30 is not provided are covered with a filter layer.
  • the filter layer 20 is provided, specifically, the filter layer 20 is on the light blocking layer 30
  • the projection covers at least the light blocking layer 30.
  • the optical path modulation element 40 is disposed on the filter layer 20, and the optical path modulation element 40 corresponds to the light through hole 31 on the light blocking layer 30, and finally the optical path modulation device 100 as shown in FIG. 2C is formed.
  • the method when the light blocking layer 30 is disposed on one side of the substrate 10, the method includes the following steps: disposing the light blocking layer 30 on one side of the substrate 10, and disposing the light blocking layer 30
  • the first filter layer is provided with a second filter layer on the other side of the substrate 10 away from the light blocking layer 30, and a light path modulation element 40 is formed on the first filter layer at a position corresponding to the light through hole 31, that is, in this embodiment
  • the light blocking layer 30 and the other surface of the substrate 10 are both covered with a filter layer 20.
  • the first filter layer and the second filter layer are used to distinguish the two filter layers. , Is not used to limit the filter layer.
  • the method for manufacturing the optical path modulation device 100 provided in this embodiment is to form a light blocking layer 30 on the substrate 10, and patterning the light blocking layer 30 to form a single or multiple spaced optical through holes 31, at least
  • the light blocking layer 30 is covered with a filter layer 20, and an optical path modulation element 40 is formed on the filter layer 20, and the optical path modulation element 40 corresponds to the light through hole 31, so that the optical path modulation device 100 manufactured does not require
  • the additional module process can integrate the filter layer 20 and the optical path modulation element 40 together to achieve the purpose of a single optical path modulation device 100 that can selectively transmit light waves of a specific wavelength.
  • the optical barrier layer 30 and the filter When the optical layer 20 is laminated and arranged, the light-blocking layer 30 and the filter layer 20 jointly form a barrier area for secondary light blocking, so that the light has a very low transmittance in the barrier area, and thus has a good impurity.
  • the astigmatism blocking effect greatly reduces the probability of light passing through the light blocking layer 30. Therefore, the optical path modulation device 100 manufactured by the method for manufacturing the optical path modulation device 100 provided in this embodiment not only realizes that a single optical path modulation device 100 is specific The purpose of selective transmission and optical path modulation of light waves of wavelengths.
  • the secondary blocking of the light blocking layer 30 and the filter layer 20 makes the light have a very low transmittance, thereby eliminating the interference of other stray light and solving the problem.
  • the lens assembly cannot be used for light wave selection alone and other stray light interference cannot be eliminated well.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or an intermediate connection.
  • the medium is indirectly connected, which can be the internal communication between two elements or the interaction between two elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请提供一种光路调制器件及其制作方法、光学设备和电子装置,光路调制器件包括:滤光层(20)、光阻隔层(30)和光路调制元件(40),其中,所述光阻隔层(30)上开设单个或多个间隔设置的光通孔(31),所述光路调制元件(40)在所述光阻隔层(30)上的投影覆盖所述光通孔(31),且所述滤光层(20)用于将所述光阻隔层(30)以及所述光路调制元件(40)位置处的特定波长的光线选择性透过,本申请实现了单一光路调制器件对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层和滤光层的二次阻隔使得光线具有极低的透过率,排除了其他杂散光的干扰。

Description

光路调制器件及其制作方法、光学设备和电子装置 技术领域
本申请涉及光学技术,尤其涉及一种具有光波选择性透过及光路调制功能的光路调制器件及其制作方法、光学设备和电子装置。
背景技术
随着智能终端的不断发展,越来越多的光学设置如摄像头,3D成像传感器,屏下指纹识别传感器等光学设备应用到终端中,其中,该些光学设备在应用时,均需要对特定波长范围的光进行光路调制后进行收集以及识别,同时剔除不需要的波长范围的其他杂散光的干扰。
目前,光学设备中单一透镜很难有较好的波长选择特性,为了达到对特定波长范围的光进行选择,光学设备中往往通过将一片或几片单独的滤光片放置于透镜光路之中,以达到滤光效果,设置时,光学设备中的滤光片和透镜是单独制作并依靠模组安装在一起。
然而,上述光学设备中由于滤光片和透镜需单独制作,这样一方面增加了制造透镜模组部分的工艺,且滤光片的设置使得整个透镜模组的厚度较厚,另一方面由于工艺限制使得滤光片和透镜组装后不能很好地排除其他杂散光的干扰。
发明内容
本申请提供一种光路调制器件及其制作方法、光学设备和电子装置,实现了对特定波长的光波进行选择性收集并进行光路调制的目的,排除了其他杂散光的干扰,从而解决了现有透镜无法单独进行光波选择、光路调制方式单一、透镜模组工艺增加以及不能很好排除其他杂散光干扰的问题。
本申请提供一种光路调制器件,包括:
滤光层、光阻隔层和光路调制元件,其中,所述光阻隔层上开设单个或多个间隔设置的光通孔,所述光路调制元件在所述光阻隔层上的投影覆盖所述光通孔,且所述滤光层用于将所述光阻隔层以及所述光路调制元件位置处 的特定波长的光线选择性透过。
本申请的具体实施方式中,具体的,还包括:可透光的基底,所述滤光层和/或所述光阻隔层设在所述基底上,且所述滤光层在所述光阻隔层上的投影至少覆盖所述光阻隔层。
本申请的具体实施方式中,具体的,所述滤光层设置在所述基底的至少一面上,且所述滤光层在所述基底上的投影区域至少部分覆盖所述基底。
本申请的具体实施方式中,具体的,所述基底的正面和背面均设有所述滤光层,所述光阻隔层覆盖在所述基底至少一面上的所述滤光层上,所述光路调制元件设置在所述光阻隔层上且覆盖所述光通孔。
本申请的具体实施方式中,具体的,所述滤光层设在所述基底的其中一面上,所述光阻隔层设在所述基底背离所述滤光层的另一面上,所述光路调制元件设置在所述光阻隔层上且覆盖所述光通孔。
本申请的具体实施方式中,具体的,所述光阻隔层设在所述基底的至少一面上,所述滤光层至少覆盖在所述光阻隔层上,所述光路调制元件设置在所述滤光层上且与所述光通孔相对应。
本申请的具体实施方式中,具体的,所述光阻隔层设在所述基底的其中一面上,且所述光阻隔层上以及所述基底背离所述光阻隔层的另一面上均设有所述滤光层,所述光路调制元件设置在所述光阻隔层之上的所述滤光层上且与所述光通孔相对应。
本申请的具体实施方式中,具体的,所述光阻隔层设在所述基底的至少一面上,所述光路调制元件设置在所述光阻隔层上且覆盖所述光通孔,所述滤光层至少覆盖在所述光阻隔层和所述光路调制元件上。
本申请的具体实施方式中,具体的,所述光阻隔层设在所述基底的其中一面上,所述滤光层覆盖在所述光阻隔层上、所述光路调制元件上以及所述基底背离所述光阻隔层的另一面上。
本申请的具体实施方式中,具体的,所述基底为下述任意一种基材:
玻璃、水晶、金属、柔性透明基材。
本申请的具体实施方式中,具体的,所述滤光层为有机或无机材料通过涂覆、蒸镀、溅镀、物理/化学气相沉积、等离子体增强沉积或旋涂方式形成的单层或多层膜层。
本申请的具体实施方式中,具体的,所述滤光层为可供所述特定波长的光线透过的滤光基底,且所述滤光基底的至少一面上设置光阻隔层,所述光路调制元件设在所述光阻隔层上且覆盖所述光通孔。
本申请的具体实施方式中,具体的,所述滤光基底为下述任意一种基材:蓝宝石基材、蓝水晶、锗片、红宝石或掺杂不同颜色元素的玻璃基材。
本申请的具体实施方式中,具体的,所述滤光层为可供所述特定波长为300nm~1100nm的波段透过的滤光层。
本申请的具体实施方式中,具体的,所述光阻隔层为黑胶材料或者无机材料制成的膜层。
本申请的具体实施方式中,具体的,所述光路调制元件为凸透镜、凹透镜、菲涅尔透镜、棱镜或者不规则形状的透明光路调制元件。
本申请还提供一种光学设备,至少包括上述任一项所述的光路调制器件。
本申请还提供一种电子装置,至少包括上述所述的光学设备。
本申请还提供一种光路调制器件的制作方法,所述方法包括:
提供一基底;
在所述基底的至少一面上形成滤光层;
在所述滤光层上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
在所述光通孔上形成光路调制元件。
本申请还提供一种光路调制器件的制作方法,所述方法包括:
提供一基底;
在所述基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
在所述光通孔上形成光路调制元件;
至少在所述光阻隔层和所述光路调制元件上覆盖滤光层,且所述滤光层在所述光阻隔层上的投影至少覆盖所述光阻隔层。
本申请的具体实施方式中,具体的,所述在所述基底的至少一面上形成光阻隔层,包括:
在所述基底的其中一面上设置所述光阻隔层;
所述至少在所述光阻隔层和所述光路调制元件上覆盖滤光层,包括:
在所述光阻隔层和所述光路调制元件上覆盖第一滤光层;
在所述基底背离所述光阻隔层的另一面上设置第二滤光层。
本申请还提供一种光路调制器件的制作方法,所述方法包括:
提供一滤光基底;
在所述滤光基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
在所述光通孔上形成光路调制元件。
本申请还提供一种光路调制器件的制作方法,所述方法包括:
提供一基底;
在所述基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
至少在所述光阻隔层上覆盖滤光层;
在所述滤光层上形成光路调制元件,且所述光路调制元件与所述光通孔对应。
本申请的具体实施方式中,具体的,所述在所述基底的至少一面上形成光阻隔层,包括:
在所述基底的其中一面上设置所述光阻隔层;
所述至少在所述光阻隔层上覆盖滤光层,包括:
在所述光阻隔层上设置第一滤光层;
在所述基底背离所述光阻隔层的另一面上设置第二滤光层;
所述在所述滤光层上形成光路调制元件,包括:
在所述第一滤光层上且与所述光通孔对应的位置形成光路调制元件。
本申请提供的光路调制器件,通过包括滤光层、光阻隔层和光路调制元件,其中,所述光阻隔层上开设单个或多个间隔设置的光通孔,所述光路调制元件在在所述光阻隔层上的投影覆盖在所述光通孔上,且所述滤光层用于将所述光阻隔层以及所述光路调制元件位置处的特定波长的光线选择性透过,这样光路调制器件不需要额外的模组工艺即可将滤光层和光路调制元件集成在一起,达到了单一的光路调制器件可以实现对特定波长的光线进行选择性透过的目的,同时,由于滤光层还可以将光阻隔层处的特定波长的光线进行选择性透过,这样光阻隔层和滤光层共同组成对光线进行二次阻隔的阻隔区 域,由于光阻隔层和滤光层的二次阻隔使得光线具有极低的透过率,从而具有很好的杂散光阻隔效果,所以本实施例提供的光路调制器件不仅实现了单一光路调制器件对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层和滤光层的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,而且降低了光路调制器件的厚度,解决了现有透镜组件无法单独进行光波选择、光路调制方式单一以及不能很好地排除其他杂散光干扰以及厚度较厚的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为本申请实施例一提供的光路调制器件的剖面结构示意图;
图1B为本申请实施例一提供的光路调制器件的光波选择以及光路调制示意图;
图1C为本申请实施例一提供的光路调制器件的俯视示意图;
图2A为本申请实施例二提供的光路调制器件的剖面结构示意图;
图2B为本申请实施例二提供的光路调制器件的光波选择以及光路调制示意图;
图2C为本申请实施例二提供的光路调制器件的又一剖面结构示意图;
图2D为本申请实施例二提供的光路调制器件的再一剖面结构示意图;
图3A为本申请实施例三提供的光路调制器件的剖面结构示意图;
图3B为本申请实施例三提供的光路调制器件的光波选择以及光路调制示意图;
图4为本申请实施例六提供的光路调制器件制作方法的流程示意图;
图4A-4D为本申请实施例六提供的光路调制器件制作方法中各步骤制备后的剖面结构示意图;
图5为本申请实施例七提供的光路调制器件制作方法的流程示意图;
图6为本申请实施例八提供的光路调制器件制作方法的流程示意图;
图6A-6D为本申请实施例八提供的光路调制器件制作方法中各步骤制备后的剖面结构示意图;
图7为本申请实施例九提供的光路调制器件制作方法的流程示意图。
附图标记说明:
10-基底;       10a-滤光基底;     20-滤光层;   30-光阻隔层;
31-光通孔;         40-光路调制元件;      100-光路调制器件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
正如背景技术所述,现有技术中,光学设备中的透镜模组存在工艺增加、透镜模组厚度较厚以及滤光过程不能很好的排除其他杂散光干扰的问题,经发明人研究发现,出现这种问题的原因在于:由于现有光学设备中的单一透镜很难有较好的波长选择特性,所以需要在透镜光路中设置一片或多片单独的滤光片与透镜组成透镜模组,但是由于滤光片与透镜需单独制作,这样增加了透镜模组的工艺,而且由于滤光片的增加使得整个透镜模组的厚度增加,同时,滤光片与透镜组装过程中,由于工艺限制,滤光片与透镜之间往往存在一定的间隙,这样使得光路较长,而且透镜模组在使用过程中不能很好地排除其他杂散光的干扰,最终造成光学设备的成像效果不佳。
基于以上原因,本发明提供了一种光路调制器件,如下结合多个实施例对本申请提供的光路调制器件进行说明。
本申请下述各实施例提供的光路调制器件可应用于摄像头,3D成像传感器,屏下指纹识别传感器等任一光学设备中。
实施例一
图1A为本申请实施例一提供的光路调制器件的剖面结构示意图,图1B为本申请实施例一提供的光路调制器件的光波选择以及光路调制示意图,图1C为本申请实施例一提供的光路调制器件的俯视示意图。
参见图1A-1C所示,光路调制器件100包括:滤光层20、光阻隔层30和光路调制元件40,其中,光阻隔层30上开设单个或多个间隔设置的光通孔31,其中,本实施例中,光阻隔层30用于对特定波长的光线进行阻隔,使得特定波长的光线无法穿过光阻隔层30,为了使得光线穿过光阻隔层30,本实施例中,在光阻隔层30上开设光通孔31,这样光阻隔层30上具有光线透过区域和光线阻隔区域,其中,为了穿过光通孔31的光线进行光路调制,本实施例中,将光路调制元件40在光阻隔层30上的投影覆盖在光通孔31上,这样穿过光通孔31的光线经过光路调制元件40进行光路调制后向外射出。
同时,本实施例中,为了实现对特定波长的光线进行选择性透过,在光路调制器件100中增加了滤光层20,滤光层20用于将光阻隔层30以及光路调制元件40位置处的特定波长的光线选择性透过,即本实施例中,滤光层20不仅将光路调制元件40处的特定波长的光线进行选择性透过,同时还将光阻隔层30处的特定波长的光线进行选择性透过,这样使得光路调制器件100不需要额外的模组工艺即可将滤光层20和光路调制元件40集成在一起,以达到单一光路调制器件100可以对特定波长的光波进行选择性透过的目的。
同时,由于滤光层20还可以将光阻隔层30处的特定波长的光线进行选择性透过,这样光阻隔层30和滤光层20共同组成对光线进行二次阻隔的阻隔区域,由于光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而具有很好的杂散光阻隔效果,而现有技术中只在光通孔31处设置滤光层20,这样只有光阻隔层30对光线进行一次阻隔,光线从光阻隔层30处透过的机率较大,而本实施例中,滤光层20同时对光阻隔层30处特定波长的光线进行选择性透过,使得光阻隔层30和滤光层20形成对光线进行二次阻隔的目的,从而大大降低光线从光阻隔层30处透过的机率。所以本实施例提供的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰的问题。
同时,本实施例中,光路调制器件100中集成了滤光层20和光路调制元件40,这样在制作时,避免了单独制作滤光片和透镜的问题,从而防止额外增加模组工艺,而且,本实施例中,滤光层20的厚度远远低于滤光片的厚度, 所以本实施例的光路调制器件100的厚度大大降低,解决了现有透镜模组中由于滤光片设置而使得整个透镜模组的厚度较厚的问题,综上,本实施例提供的光路调制器件100解决了现有透镜无法单独进行光波选择、透镜模组工艺增加、透镜模组厚度较厚以及无法很好排除其他杂散光干扰的问题。
其中,本实施例中,光路调制元件40在光阻隔层30上的投影覆盖光通孔31时,具体的,光路调制元件40在光阻隔层30上的投影区域将光通孔31完全覆盖住,即光路调制元件40在光阻隔层30上的投影面积大于或等于光通孔31的开口面积,这样从光通过穿过的光线可以都进入光路调制元件40中进行光路调制,同时,本实施例中,光路调制元件40可以在光通孔31上设置,光路调制元件40填充在光通孔31中,其中,本实施例中,光路调制元件40具体可以通过注塑后粘贴工艺,压印工艺,标准晶元级镜头(Wafer Level Optics,简称:WLO)制作工艺,灰度掩模工艺,光阻回流工艺等任何满足要求的光路调制元件40加工工艺制成。光路调制元件40材料依据需求指标选择满足特定折射率,雾度,弹性模量等要求以及特定工艺要求的透光材料,具体在此不做限定。
其中,本实施例中,光阻隔层30上开设光通孔31时,具体的,可通过光刻工艺曝光显影后形成光通孔31,或者,本实施例中,可通过光刻加刻蚀工艺共同形成光通孔31,其中,本实施例中,光通孔31可以为圆型通孔,或者也可以为方型通孔,光通孔31的形状本实施例中不作限定,其中,本实施例中,光通孔31的开口大小具体根据实际应用进行设置,例如,当光通孔31为圆通孔时,光通孔31的孔径可以为5um~1000um,例如光通孔31的孔径可以为100um或500um,具体根据实际需求进行选择。
综上,本实施例提供的光路调制器件100,通过包括滤光层20、光阻隔层30和光路调制元件40,其中,光阻隔层30上开设单个或多个间隔设置的光通孔31,光路调制元件40在所述光阻隔层30上的投影覆盖在光通孔31上,且滤光层20用于将光阻隔层30以及光路调制元件40位置处的特定波长的光线选择性透过,这样光路调制器件100不需要额外的模组工艺即可将滤光层20和光路调制元件40集成在一起,达到了单一的光路调制器件100可以实现对特定波长的光线进行选择性透过的目的,同时,由于滤光层20还可以将光阻隔层30处的特定波长的光线进行选择性透过,这样光阻隔层30和滤光层20共同组成对 光线进行二次阻隔的阻隔区域,由于光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而具有很好的杂散光阻隔效果,所以本实施例提供的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰和厚度较厚的问题。
在上述实施例的基础上,本实施例中,具体的,如图1A所示,还包括:可透光的基底10,即本实施例中,光线可以透过基底10,具体的,基底10选取一种对某些特定波长或特定波段光具有选择性透过效果的基材,本实施例中,基底10可以刚性透明基材或柔性透明基材,具体的,基底10可以为玻璃,或者基底10还可以为水晶,或者,基底10还可以为特定波长或特定波段光具有选择性透过的金属基材,或者基底10还可以为树脂基材,或者也可以为有机玻璃,需要说明的是,所述基底包括但不限于上述基材,还可以为其他对某些特定波长或特定波段光具有选择性透过效果的基材。
其中,基底10具体根据透过光波长范围选择特定材料,本实施例中,基底10具体选用在可见光范围以及近红外波段(300nm~1100nm)具有高透过率的白玻璃基材,即基底10选用可供特定波长为300nm~1100nm的光波透过的基材,其中,本实施例中,基底10的厚度具体可以为100um~500um,需要说明的是,基底10的厚度还可以其他尺寸,本实施例中,不做限定,具体根据实际需求进行设定。
其中,本实施例中,光路调制器件100中包括基底10时,此时,滤光层20和/或光阻隔层30可以设在基底10上,例如,滤光层20可以设在基底10的背面,光阻隔层30设在基底10的正面上,即滤光层20和光阻隔层30分别位于基底10的正反两面,或者滤光层20设在基底10的正面上,光阻隔层30设在滤光层20上,或者光阻隔层30设在基底10的正面上,滤光层20覆盖在光阻隔层30和光路调制元件40上,具体的,如图1A所示,滤光层20设在基底10上,光阻隔层30覆盖在滤光层20上,且本实施例中,滤光层20在基底10上设置时,滤光层20将基底10的整个面覆盖,同时,滤光层20在光阻隔层30上的投影至少覆盖所述光阻隔层30,即滤光层20在光阻隔层30上的投影可以将光阻隔层30覆盖, 或者滤光层20在光阻隔层30上的投影还可以将光阻隔层30以及光通孔31均覆盖,这样当光阻隔层30与滤光层20上下重叠设置时,光阻隔层30与滤光层20形成对光波二次阻隔的区域,因为当光阻隔层30设在滤光层20上时,滤光层20已经将大部分杂散光的透过率降至极低水平,只透过需求的特定波长(例如近红外波段光波),增加该光阻隔层30后,将原本滤光层20透过的特定波长的光线在光阻隔层30上未开设光通孔31的区域处一起阻隔掉,即进一步增强其他波段波长范围光的阻隔效果,如图1B所示,经过滤光层20的光线只在光阻隔层30的光通孔31处进入光路调制元件40中进行光路调制,光阻隔层30其他区域处的光线无法向外射出,所以,本实施例中,滤光层20和光阻隔层30一起达到对光线进行二次阻隔的作用。
本实施例中,光路调制元件40在光通孔31上设置时,光路调制元件40可以填充在光通孔31中且覆盖在滤光层20上,这样滤光层20与光路调制元件40之间的间隙减少,缩短了光路,透过滤光层20的光线在光通孔31处可以直接进入光路调制元件40中,从而避免其他杂散光的干扰。
其中,本实施例中,滤光层20在基底10上设置时,具体的,滤光层20可以设在基底10的至少一面上,例如,滤光层20可以在基底10的单面进行设置,或者滤光层20在基底10的双面均进行设置,这样对特定波长的光线进行两次滤光,使得滤光效果更好,其中,本实施例中,滤光层20在基底10的双面(即正面和背面)设置时,基底10正反双面上的两个滤光层20的厚度可以相同,或者也可以不同,在实际应用中,为了对不同波段进行滤光,往往基底10两个面上的两个滤光层20的厚度是不同的,这样可以实现对特定波长的波段实现较好的滤光效果,同时,本实施例中,基底10两个面上的滤光层20所滤的光线波段范围可以不同,例如,基底10背面上设置的滤光层20可以对300nm~1100nm的波段进行选择性透过,基底10正面上的设置滤光层20可以为760~1100nm的波段进行再次选择性透过,其中,本实施例中,基底10正反两个面上的设置的滤光层20所选择透过的波段包括但不限于上述波段,还可以为其他波段,具体根据实际应用进行选择。
其中,本实施例中,滤光层20在基底10上设置时,滤光层20在基底10上的投影区域至少部分覆盖基底10,即本实施例中,滤光层20在基底10的整面上进行覆盖,或者,滤光层20将基底10部分覆盖,滤光层20在基底10上的投 影面积小于或等于基底10朝向滤光层20的一面的面积,这样当光阻隔层30设在滤光层20上时,光阻隔层30上未开孔的区域与滤光层20共同形成对光线进行二次阻隔的区域,从而可以有效的对其他杂散光阻隔,从有效排除了其他杂散光的干扰。
其中,本实施例中,基底10的正面和背面均设有滤光层20,即滤光层20在基底10的上下两个面上均进行设置,且滤光层20在基底10的上下两个面上的投影将基底10的上下两个面均至少部分覆盖,其中,本实施例中,光阻隔层30覆盖在基底10至少一面上的滤光层20上,即本实施例中,光阻隔层30可以覆盖在基底10正面设置的滤光层20上,也可以覆盖在基底10背面设置的滤光层20上,还可以在基底10上下两个面上设置的滤光层20上均进行覆盖,其中,需要说明的是,当光阻隔层30在基底10上下两个面上设置的滤光层20上均进行覆盖时,此时光路调制元件40可以设在其中一个光阻隔层30上并覆盖光通孔31,或者,光路调制元件40可以在每个光阻隔层30上均进行设置,这样光路调制器件中具有两个光路调制元件40。
其中,本实施例中,滤光层20还可以设在基底10的其中一面上,例如,滤光层20设在基底的正面上,或者滤光层20设在基底的背面上,光阻隔层30设在基底10背离所述滤光层20的另一面上,例如,当滤光层20设在基底的正面上时,则光阻隔层30设在基底10的背面上,光路调制元件40可以设置在光阻隔层30上且覆盖光通孔31,或者,光路调制元件40可以设在滤光层20上且与所述光阻隔层30上的光通孔31相对应。
其中,本实施例中,滤光层20为有机或无机材料,例如可以为SiO 2,TiO 2,MgF 2,Al 2O 3,光固化树脂,光引发剂,颜料,碱可溶性树脂等,且滤光层20可以为通过涂覆、蒸镀、溅镀、物理/化学气相沉积、等离子体增强沉积或旋涂方式形成的单层或多层膜层,即本实施例中,滤光层20可以为有机的单层或多层膜,也可以为无机的单层或多层膜层。
其中,本实施例中,滤光层20为可供特定波长为700nm~1100nm的波段透过的滤光层20,即本实施例中,滤光层20可以选择700nm~1100nm波段的光线透过,这样,光阻隔层30需选择对300nm~1100nm波段光线透过率极低的膜层,本实施例中,光阻隔层30具体可以选用黑胶材料制成的有机膜层,或者,本实施例中,光阻隔层30具体选择一些无机材料制成,例如可以采用含Ti金属 化合物,Ag,Au等材料制成,其中,本实施例中,光阻隔层30具体可以通过涂覆,蒸镀、溅镀、物理/化学气相沉积、等离子体增强沉积、旋涂等膜层制备技术制成。
其中,本实施例中,光路调制元件40具体可以如图1A所示的凸透镜,这样对光线有汇聚左右,或者光路调制器件100还可以为凹透镜,这样可以对光线有发散作用,或者,光路调制元件40还可以为棱镜,棱镜具体可以为三角形棱镜,或者,光路调制元件40还可以为菲涅尔透镜,或者,本实施例中,光路调制元件40还可以为不规则形状的透明光路调制元件。
其中,本实施例中,当光路调制元件40为透镜时,此时,光通孔31的中心线与光路调制元件40的光心在光阻隔层30上的投影重合,这样可以保证被选择透过的有效光都可以透过该光路调制元件40并被后续传感器接收,同时,光阻隔层30上非光路调制元件40设置的区域由于滤光层20和光阻隔层30的层叠设置,对滤光层20透过的光波具有极低的透过率,具有很好的杂散光阻隔效果。
实施例二
图2A为本申请实施例二提供的光路调制器件的剖面结构示意图,图2B为本申请实施例二提供的光路调制器件的光波选择以及光路调制示意图。
本实施例与上述实施例的区别为:本实施例中,具体的,光阻隔层30设置在基底10的至少一面上,例如,光阻隔层30可以设在基底的正面或背面上,或者光阻隔层30在基底10的正反两面均进行设置,参见图2A-2B所示,光阻隔层30设在基底10的正面上,具体的,光阻隔层30将基底10的一面至少部分覆盖,光路调制元件40设在光阻隔层30上,具体的,光路调制元件40覆盖在光阻隔层30上开设光通孔31的位置处,滤光层20至少覆盖在光阻隔层30和光路调制元件40上,且滤光层20在光阻隔层30上的投影区域至少覆盖光阻隔层30,这样使用时,如图2B所示,光线经过基底10,其中部分光线从光通孔31进入光路调制元件40进行光路调制,然后经过滤光层20对特定波长的光线进行选择性透过,从而达到对光线选择的目的,其余光线在光阻隔层30和滤光层20的双重阻隔下阻隔掉,无法向外射出,本实施例中,当滤光层20覆盖在光阻隔层30上时,这样光阻隔层30未阻隔掉的光线通过滤光层20进行二次阻 隔,所以滤光层20和光阻隔层30的层叠设置实现了对杂散光的有效阻隔,从而排除了杂散光的干扰。
其中,本实施例中,光阻隔层30具体可以设在基底10的其中一面上,如图2A所示,光阻隔层30设在基底10的正面上,此时,滤光层除了覆盖在光阻隔层30和光路调制元件40上外,滤光层20还覆盖在基底10背离光阻隔层30的另一面上,例如在基底10的背面也设置滤光层20(参考图2D所示),即滤光层20在基底10的上下两侧均进行设置,需要说明的是,滤光层20依具体应用需求而定,如果是双面设定的滤光层20,则基底10的背面设置的滤光层20,至少部分覆盖基底10背面,相应的,本实施例中,光阻隔层30可以在基底10的正面设置,也可以在基底10的背面设置,或者在基底10的正反两面均进行设置,这样可以对进入基底10前的光线进行首次阻隔,接着对经过基底10后光线还可以再次进行阻隔,这样与光阻隔层30和滤光层20组成对光线进行多重阻隔的膜层,从而有效避免杂散光的干扰。
因此,本实施例提供的光路调制器件100,不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰和厚度较厚的问题。同时由于滤光层20覆盖在光路调制元件40表面,可以很好地保护光路调制元件40不受外力破坏。
其中,本实施例中,除了上述图2A的设置方式外,还可以如图2C所示,图2C为本申请实施例二提供的光路调制器件的又一剖面结构示意图,光阻隔层30设置在基底10的至少一面上,例如,光阻隔层30可以设在基底的正面或背面上,或者光阻隔层30在基底10的正反两面均进行设置,滤光层20至少覆盖在光阻隔层30上,如图2C所示,光阻隔层30设在基底10的正面上,滤光层20设在光阻隔层30上,在滤光层20上设置光路调制元件40,具体的,滤光层20覆盖在光阻隔层30上,且滤光层20在光阻隔层30上的投影区域至少覆盖光阻隔层30,光路调制元件40设置在滤光层20上且与光通孔31相对,这样光线首先经过基底10,然后部分光线从光通孔31穿过并进过滤光层20滤光后进入光路调制元件40,光线经过光路调制元件40调制后向外射出,进入基底10的其余光线在光阻隔层30和滤光层20的 双重阻隔下无法向外射出,实现了对杂散光的有效阻隔,从而排除了杂散光的干扰。
图2D为本申请实施例二提供的光路调制器件的再一剖面结构示意图,本实施例中,具体的,光阻隔层30设在基底10的其中一面上,例如,光阻隔层30设在基底10的正面(如图2D所示)或背面上,光阻隔层30上以及基底10背离光阻隔层30的另一面上均设有滤光层20,即滤光层20在光阻隔层30以及基底10未设置光阻隔层30的另一面上均进行设置,例如,光阻隔层30设在基底10的正面,滤光层20设在基底10的背面,同时再在光阻隔层30上再设置一层滤光层20,光路调制元件40设置在光阻隔层30之上的滤光层20上且与光通孔31相对应。
实施例三
图3A为本申请实施例三提供的光路调制器件的剖面结构示意图,图3B为本申请实施例三提供的光路调制器件的光波选择以及光路调制示意图。
本实施例与上述实施例的区别为:本实施例中,参见图3A-3B所示,滤光层20为可供特定波长的光线透过的滤光基底10a(参见下述图6A所示),即本实施例中,滤光层20并非为膜层,而为可滤光的基底10材料,这样该滤光基底10a即可以作为滤光层20使用同时还可以作为上述实施例一和实施例二中的基底10使用,这样避免了额外在基底10上设置滤光膜层,其中,本实施例中,滤光基底10a与上述实施例一和实施例二中的基底10相比,区别为,本实施例中,滤光基底10a具有可以对特定波长范围光波的选择透过的特性,这样光阻隔层30可以直接设在滤光基底10a上,此时,光阻隔层30和滤光基底10a层叠设置组成对光线进行二次阻隔的阻隔区域。
其中,本实施例中,滤光基底10a可以为蓝宝石基材、蓝水晶、锗片、红宝石或掺杂不同颜色元素的玻璃基材,需要说明的是,滤光基底10a包括但不限于上述基材,还可以为环烯烃共聚物薄膜以及其他不同滤光特性的基材,其中,滤光基底10a的材料选择具体根据所需透过的波段进行选择。
其中,本实施例中,需要说明的是,当滤光层20为滤光基底10a时,该滤光基底10a集合了滤光和基底10的作用,而现有的透镜模组设置上,为了便于滤光片设置,往往将滤光片设置在基底10上,这样现有的透镜模组中,滤光 片和基底10的厚度大于本申请中的滤光基底10a,所以,与现有技术相比,本实施例中,由于只设置滤光基底10a,所以本实施例提供的光路调制器件100的厚度降低。
实施例四
本实施例提供一种光学设备,该光学设置至少上述任一实施例的光路调制器件100,其中,光学设备具体可以为摄像头、3D成像传感器、屏下指纹识别传感器等所有需进行特定波长选择性透过和光路调制的光学设备。
本实施例提供的光学设备,通过包括上述光路调制器件100,这样光学设备中单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,而且降低了光路调制器件100的厚度,减少了制作工艺,解决了现有透镜组件无法单独进行光波选择、不能很好地排除其他杂散光干扰以及厚度较厚和透镜模组工艺增加的问题。
实施例五
本实施例提供一种电子装置,该电子装置至少上述实施例四的光学设备,其中,电子装置具体可以为智能手机、笔记本电脑、可穿戴设备、家电设备以及门禁系统等任一具有上述光路设备的电子器件。
本实施例提供的电子装置,通过包括上述光路设备,而光路设备包括光路调制器件100,这样光学设备中单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,而且降低了光路调制器件100的厚度,减少了制作工艺,解决了现有透镜组件无法单独进行光波选择、不能很好地排除其他杂散光干扰以及厚度较厚和透镜模组工艺增加的问题。
实施例六
图4为本申请实施例六提供的光路调制器件制作方法的流程示意图,图4A-4D为本申请实施例六提供的光路调制器件制作方法中各步骤制备后的剖 面结构示意图。
本实施例提供一种光路调制器件100的制作方法,其中,方法如图4所示,包括如下步骤:
S601:提供一基底;
如图4A所示,提供一基底10,该基底10具体为一种对特定波长范围的光波具有高透过率的材料,例如基底10可以为玻璃,水晶或柔性透明基材,其中,基底10具体根据透过光波长范围选择特定材料,本实施例中,基底10具体选用在可见光范围以及近红外波段(300nm~1100nm)具有高透过率的白玻璃基材,即基底10选用可供特定波长为300nm~1100nm的光波透过的基材,其中,本实施例中,基底10的厚度具体可以为100um~500um,需要说明的是,基底10的厚度还可以其他尺寸,本实施例中,不做限定,具体根据实际需求进行设定。
S602:在基底的至少一面上形成滤光层;
其中,本实施例中,滤光层20可以设在基底10的一面上,或者滤光层20可以设在基底10的正反两面上,如图4B所示,基底10的正面上形成滤光层20,其中,滤光层20具体可以通过涂覆、蒸镀、溅镀、物理/化学气相沉积、等离子体增强沉积或旋涂方式形成,滤光层20具体可以为单层或多层膜层,其中,滤光层20可以为无机膜层,也可以为有机膜层,或者滤光层20还可以为有机膜层和无机膜层层叠组成。
S603:在滤光层上形成光阻隔层,且光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
如图4C所示,在滤光层20上形成光阻隔层30,光阻隔层30在滤光层20的整个面上进行覆盖,其中,本实施例中,光阻隔层30具体选用对滤光层20透过的具有极低透光率的材料,这样可以对滤光层20透过的光线进行有效阻隔,排除杂散光的干扰,同时如图4D所示,光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31,其中,本实施例中,光阻隔层30具体可以为光刻胶性质的黑胶材料,此时,可通过光刻工艺曝光显影后,直接形成光通孔31,或者,本实施例中,光阻隔层30还可以为蒸镀或溅镀等工艺制备的无机材料,此时,可通过光刻加刻蚀工艺共同形成光通孔31,本实施例中,滤光层20在光阻隔层30上的投影至少覆盖光阻隔层30,即滤光层20在光阻隔层 30上的投影可以覆盖光阻隔层30,或者滤光层20在光阻隔层30上的投影覆盖光阻隔层30以及光通孔31。
其中,本实施例中,需要说明的是,当基底10的两面均设置滤光层20时,此时光阻隔层30可以设在基底10的至少一面设置的滤光层20上,例如,光阻隔层30可以覆盖在其中一面上的滤光层20上,或者光阻隔层30可以分别在基底10两个面上的滤光层20上进行覆盖。
S604:在光通孔上形成光路调制元件。
其中,本实施例中,在光通孔31上形成光路调制元件40,最终形成如图1A所示的光路调制器件100。本实施例中,光路调制元件40具体可以通过注塑后粘贴工艺,压印工艺,标准晶元级镜头(WLO)制作工艺,灰度掩模工艺,光阻回流工艺等任何满足要求的光路调制元件40加工工艺制成。光路调制元件40材料依据需求指标选择满足特定折射率,雾度,弹性模量等要求以及特定工艺要求的透光材料,具体在此不做限定。
本实施例提供的光路调制器件100的制作方法,通过在基底10的至少一面上形成滤光层20,在滤光层20上形成光阻隔层30,且光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31,在光通孔31上形成光路调制元件40,这样制得的光路调制器件100不需要额外的模组工艺即可将滤光层20和光路调制元件40集成在一起,以达到单一光路调制器件100可以对特定波长的光波进行选择性透过的目的,同时,光阻隔层30和滤光层20的层叠设置时,使得光阻隔层30和滤光层20共同组成对光线进行二次阻隔的阻隔区域,使得光线在该阻隔区域具有极低的透过率,从而具有很好的杂散光阻隔效果,从而大大降低光线从光阻隔层30处透过的机率,所以,本实施例提供的光路调制器件100的制作方法制得的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰的问题。
实施例七
图5为本申请实施例七提供的光路调制器件制作方法的流程示意图;
本实施例提供一种光路调制器件的制作方法,其中,如图5所示,方法包括如下步骤:
S701:提供一基底;
其中,本实施例中,该步骤具体可以参考上述步骤601。
S702:在基底的至少一面上形成光阻隔层,且光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
其中,本实施例中,基底10的一面或两面上形成光阻隔层30,其中,光阻隔层的设置方法具体可以参考上述步骤603。
S703:在光通孔上形成光路调制元件;
其中,本实施例中,该步骤具体可以参考上述步骤604。
S704:至少在光阻隔层和光路调制元件上均覆盖滤光层,且所述滤光层在所述光阻隔层上的投影至少覆盖所述光阻隔层。
本实施例中,可以将滤光层20覆盖在光阻隔层30和光路调制元件40上,最终形成如图2A所示的光路调制器件100。
或者本实施例中,当基底10的一面上设置光阻隔层30时,此时,滤光层20还可以在基底10的另一面上也进行设置,具体的,包括如下步骤:在基底10的其中一面上设置光阻隔层30,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔,在光通孔31上形成光路调制元件40,在光阻隔层30和光路调制元件40上覆盖第一滤光层,在基底10背离光阻隔层30的另一面上设置第二滤光层,即本实施例中,滤光层30在光阻隔层30和基底10未设置光阻隔层30的一面上均进行设置。
本实施例提供的光路调制器件100的制作方法,通过在基底10上形成光阻隔层30,且光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31,在光通孔31上形成光路调制元件40,至少在光阻隔层30和光路调制元件40上均覆盖滤光层20,这样制得的光路调制器件100不需要额外的模组工艺即可将滤光层20和光路调制元件40集成在一起,以达到单一光路调制器件100可以对特定波长的光波进行选择性透过的目的,同时,光阻隔层30和滤光层20的层叠设置时,使得光阻隔层30和滤光层20共同组成对光线进行二次阻隔的阻隔区域,使得光线在该阻隔区域具有极低的透过率,从而具有很好的杂散光阻隔效果,从而大大降低光线从光阻隔层30处透过的机率,所以,本实 施例提供的光路调制器件100的制作方法制得的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰的问题。
实施例八
图6为本申请实施例八提供的光路调制器件制作方法的流程示意图,图6A-6D为本申请实施例八提供的光路调制器件制作方法中各步骤制备后的剖面结构示意图。
本实施例提供一种光路调制器件100的制作方法,其中,方法如图6所示,包括如下步骤:
S801:提供一滤光基底;
其中,本实施例中,如图6A所示,提供一滤光基底10a,即该滤光基底10a可以作为滤光层20对特定波长的光波进行选择性透过的目的,即本实施例中提供的滤光基底10a即作为作为滤光层20,也可以作为上述实施例的基底10,通过提供滤光基底10a,这样避免了在基底10上再次设置滤光膜层,这样简化了光路调制器件100的制作工艺。
本实施例中,滤光基底10a可以为蓝宝石基材、蓝水晶或锗片,其中,滤光基底10a的材料选择具体根据所需透过的波段进行选择。
S802:在滤光基底上形成光阻隔层,且光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
其中,本实施例中,如图6B所示,在滤光基底10a上形成光阻隔层30,如图6C所示,光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31,光阻隔层30和光通孔31具体具体可以参考上述步骤603。
S803:在光通孔上形成光路调制元件。
其中,本实施例中,如图6D所示,在光通孔31上覆盖光路调制元件40,最终制得如图3A所示的光路调制器件100,其中,本实施例中,光路调制元件40的设置具体可以参考上述步骤604,本实施例中不再赘述。
本实施例提供的光路调制器件100的制作方法,通过在滤光基底10a上形 成光阻隔层30,且光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31;在光通孔31上形成光路调制元件40,这样制得的光路调制器件100不需要额外的模组工艺即可将滤光膜层和光路调制元件40集成在一起,以达到单一光路调制器件100可以对特定波长的光波进行选择性透过的目的,同时,光阻隔层30和滤光基底10a的层叠设置时,使得光阻隔层30和滤光基底10a共同组成对光线进行二次阻隔的阻隔区域,使得光线在该阻隔区域具有极低的透过率,从而具有很好的杂散光阻隔效果,从而大大降低光线从光阻隔层30处透过的机率,所以,本实施例提供的光路调制器件100的制作方法制得的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光基底10a的二次阻隔使得光线具有极低的透过率,而且通过直接提供一滤光基底10a,这样避免了在基底10上额外设置滤光膜层,简化了光路调制器件100的制作工艺,同时,排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰的问题。
实施例九
图7为本申请实施例九提供的光路调制器件制作方法的流程示意图。
本实施例提供一种光路调制器件100的制作方法,其中,方法如图7所示,包括如下步骤:
S901:提供一基底;
其中,本实施例中,该步骤具体可以参考上述步骤601。
S902:在基底的至少一面上形成光阻隔层,且光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
其中,本实施例中,该步骤具体可以参考上述步骤702,同时,本实施例中,光阻隔层30在基底10上设置时,光阻隔层30可以在基底10的其中一端面上设置,或者光阻隔层30还可以在基底10的上下两个端面上均进行设置。
S903:至少在光阻隔层上覆盖滤光层;
其中,本实施例中,当基底10的正反两面均设置光阻隔层30时,此时,在光阻隔层30上设置滤光层20,当基底10的其中一面上设置光阻隔层30时,此时,在光阻隔层30上以及基底10未设置光阻隔层30的另一面上均覆盖滤光 层,滤光层20设置时,具体的,滤光层20在光阻隔层30上的投影至少覆盖光阻隔层30。
S904:在滤光层上形成光路调制元件,且光路调制元件与光通孔对应。
本实施例中,将光路调制元件40设置在滤光层20上,且光路调制元件40与光阻隔层30上的光通孔31对应,最终形成如图2C所示的光路调制器件100。
其中,本实施例中,当光阻隔层30在基底10的其中一面设置时,此时所述方法包括如下步骤:在基底10的其中一面上设置光阻隔层30,在光阻隔层30上设置第一滤光层,在基底10背离光阻隔层30的另一面上设置第二滤光层,在第一滤光层上且与光通孔31对应的位置形成光路调制元件40,即本实施例中,在光阻隔层30和基底10的另一面上均覆盖滤光层20,其中,本实施例中,第一滤光层和第二滤光层用于对两个滤光层进行区别,并不用于对滤光层进行限定。
本实施例提供的光路调制器件100的制作方法,通过在基底10上形成光阻隔层30,且光阻隔层30上经过图形化处理形成单个或多个间隔设置的光通孔31,至少在所述光阻隔层30上覆盖滤光层20,在滤光层20上形成光路调制元件40,且所述光路调制元件40与所述光通孔31对应,这样制得的光路调制器件100不需要额外的模组工艺即可将滤光层20和光路调制元件40集成在一起,以达到单一光路调制器件100可以对特定波长的光波进行选择性透过的目的,同时,光阻隔层30和滤光层20的层叠设置时,使得光阻隔层30和滤光层20共同组成对光线进行二次阻隔的阻隔区域,使得光线在该阻隔区域具有极低的透过率,从而具有很好的杂散光阻隔效果,从而大大降低光线从光阻隔层30处透过的机率,所以,本实施例提供的光路调制器件100的制作方法制得的光路调制器件100不仅实现了单一光路调制器件100对特定波长的光波进行选择性透过以及光路调制的目的,同时光阻隔层30和滤光层20的二次阻隔使得光线具有极低的透过率,从而排除了其他杂散光的干扰,解决了现有透镜组件无法单独进行光波选择以及不能很好地排除其他杂散光干扰的问题。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本 发明中的具体含义。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种光路调制器件,其特征在于,包括:
    滤光层(20)、光阻隔层(30)和光路调制元件(40),其中,所述光阻隔层(30)上开设单个或多个间隔设置的光通孔(31),所述光路调制元件(40)在所述光阻隔层(30)上的投影覆盖所述光通孔(31),且所述滤光层(20)用于将所述光阻隔层(30)以及所述光路调制元件(40)位置处的特定波长的光线选择性透过。
  2. 根据权利要求1所述的光路调制器件,其特征在于,还包括:可透光的基底(10),所述滤光层(20)和/或所述光阻隔层(30)设在所述基底(10)上,且所述滤光层(20)在所述光阻隔层(30)上的投影至少覆盖所述光阻隔层(30)。
  3. 根据权利要求2所述的光路调制器件,其特征在于,所述滤光层(20)设置在所述基底(10)的至少一面上,且所述滤光层(20)在所述基底(10)上的投影区域至少部分覆盖所述基底(10)。
  4. 根据权利要求3所述的光路调制器件,其特征在于,所述基底(10)的正面和背面均设有所述滤光层(20),所述光阻隔层(30)覆盖在所述基底(10)至少一面上的所述滤光层(20)上,所述光路调制元件(40)设置在所述光阻隔层(30)上且覆盖所述光通孔(31)。
  5. 根据权利要求3所述的光路调制器件,其特征在于,所述滤光层(20)设在所述基底(10)的其中一面上,所述光阻隔层(30)设在所述基底(10)背离所述滤光层(20)的另一面上,所述光路调制元件(40)设置在所述光阻隔层(30)上且覆盖所述光通孔(31)。
  6. 根据权利要求2所述的光路调制器件,其特征在于,所述光阻隔层(30)设在所述基底(10)的至少一面上,所述滤光层(20)至少覆盖在所述光阻隔层(30)上,所述光路调制元件(40)设置在所述滤光层(20)上且与所述光通孔(31)相对应。
  7. 根据权利要求6所述的光路调制器件,其特征在于,所述光阻隔层(30)设在所述基底(10)的其中一面上,且所述光阻隔层(30)上以及所述基底(10)背离所述光阻隔层(30)的另一面上均设有所述滤光层(20),所述光路调制元件(40)设置在所述光阻隔层(30)之上的所述滤光层(20)上 且与所述光通孔(31)相对应。
  8. 根据权利要求2所述的光路调制器件,其特征在于,所述光阻隔层(30)设在所述基底(10)的至少一面上,所述光路调制元件(40)设置在所述光阻隔层(30)上且覆盖所述光通孔(31),所述滤光层(20)至少覆盖在所述光阻隔层(30)和所述光路调制元件(40)上。
  9. 根据权利要求8所述的光路调制器件,其特征在于,所述光阻隔层(30)设在所述基底(10)的其中一面上,所述滤光层(20)覆盖在所述光阻隔层(30)上、所述光路调制元件(40)上以及所述基底(10)背离所述光阻隔层(30)的另一面上。
  10. 根据权利要求2-9任一所述的光路调制器件,其特征在于,所述基底(10)为下述任意一种基材:
    玻璃、水晶、金属、柔性透明基材。
  11. 根据权利要求1-10任一所述的光路调制器件,其特征在于,所述滤光层(20)为有机或无机材料通过涂覆、蒸镀、溅镀、物理/化学气相沉积、等离子体增强沉积或旋涂方式形成的单层或多层膜层。
  12. 根据权利要求1所述的光路调制器件,其特征在于,所述滤光层(20)为可供所述特定波长的光线透过的滤光基底(10a),且所述滤光基底(10a)的至少一面上设置光阻隔层(30),所述光路调制元件(40)设在所述光阻隔层(30)上且覆盖所述光通孔(31)。
  13. 根据权利要求12所述的光路调制器件,其特征在于,所述滤光基底(10a)为下述任意一种基材:
    蓝宝石基材、蓝水晶、锗片、红宝石或掺杂不同颜色元素的玻璃基材。
  14. 根据权利要求1-13任一所述的光路调制器件,其特征在于,所述滤光层(20)为可供所述特定波长为300nm~1100nm的波段透过的滤光层。
  15. 根据权利要求1-14任一所述的光路调制器件,其特征在于,所述光阻隔层(30)为黑胶材料或者无机材料制成的膜层。
  16. 根据权利要求1-15任一所述的光路调制器件,其特征在于,所述光路调制元件(40)为凸透镜、凹透镜、菲涅尔透镜、棱镜或者不规则形状的透明光路调制元件。
  17. 一种光学设备,其特征在于,至少包括上述权利要求1-16任一项所 述的光路调制器件(100)。
  18. 一种电子装置,其特征在于,至少包括上述权利要求17所述的光学设备。
  19. 一种光路调制器件的制作方法,其特征在于,所述方法包括:
    提供一基底;
    在所述基底的至少一面上形成滤光层;
    在所述滤光层上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
    在所述光通孔上形成光路调制元件。
  20. 一种光路调制器件的制作方法,其特征在于,所述方法包括:
    提供一基底;
    在所述基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
    在所述光通孔上形成光路调制元件;
    至少在所述光阻隔层和所述光路调制元件上覆盖滤光层,且所述滤光层在所述光阻隔层上的投影至少覆盖所述光阻隔层。
  21. 根据权利要求20所述的制作方法,其特征在于,所述在所述基底的至少一面上形成光阻隔层,包括:
    在所述基底的其中一面上设置所述光阻隔层;
    所述至少在所述光阻隔层和所述光路调制元件上覆盖滤光层,包括:
    在所述光阻隔层和所述光路调制元件上覆盖第一滤光层;
    在所述基底背离所述光阻隔层的另一面上设置第二滤光层。
  22. 一种光路调制器件的制作方法,其特征在于,所述方法包括:
    提供一滤光基底;
    在所述滤光基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化处理形成单个或多个间隔设置的光通孔;
    在所述光通孔上形成光路调制元件。
  23. 一种光路调制器件的制作方法,其特征在于,所述方法包括:
    提供一基底;
    在所述基底的至少一面上形成光阻隔层,且所述光阻隔层上经过图形化 处理形成单个或多个间隔设置的光通孔;
    至少在所述光阻隔层上覆盖滤光层;
    在所述滤光层上形成光路调制元件,且所述光路调制元件与所述光通孔对应。
  24. 根据权利要求23所述的制作方法,其特征在于,所述在所述基底的至少一面上形成光阻隔层,包括:
    在所述基底的其中一面上设置所述光阻隔层;
    所述至少在所述光阻隔层上覆盖滤光层,包括:
    在所述光阻隔层上设置第一滤光层;
    在所述基底背离所述光阻隔层的另一面上设置第二滤光层;
    所述在所述滤光层上形成光路调制元件,包括:
    在所述第一滤光层上且与所述光通孔对应的位置形成所述光路调制元件。
PCT/CN2019/076565 2019-02-28 2019-02-28 光路调制器件及其制作方法、光学设备和电子装置 WO2020172872A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/076565 WO2020172872A1 (zh) 2019-02-28 2019-02-28 光路调制器件及其制作方法、光学设备和电子装置
CN201980000411.1A CN110023797A (zh) 2019-02-28 2019-02-28 光路调制器件及其制作方法、光学设备和电子装置
CN202020073011.3U CN211956509U (zh) 2019-02-28 2020-01-14 光路调制器件、光学设备、指纹识别传感器和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076565 WO2020172872A1 (zh) 2019-02-28 2019-02-28 光路调制器件及其制作方法、光学设备和电子装置

Publications (1)

Publication Number Publication Date
WO2020172872A1 true WO2020172872A1 (zh) 2020-09-03

Family

ID=67194543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076565 WO2020172872A1 (zh) 2019-02-28 2019-02-28 光路调制器件及其制作方法、光学设备和电子装置

Country Status (2)

Country Link
CN (2) CN110023797A (zh)
WO (1) WO2020172872A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113558594B (zh) * 2020-04-29 2022-12-27 华为技术有限公司 光发射器及光感装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067757A1 (en) * 2008-09-16 2010-03-18 Shinichi Arai Image acquisition apparatus and biometric information acquisition apparatus
DE102013107578A1 (de) * 2013-07-17 2015-01-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zum Simulieren von Kameraeigenschaften
CN108710869A (zh) * 2018-07-25 2018-10-26 中山联合光电科技股份有限公司 一种手机屏幕下的指纹识别成像系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067757A1 (en) * 2008-09-16 2010-03-18 Shinichi Arai Image acquisition apparatus and biometric information acquisition apparatus
DE102013107578A1 (de) * 2013-07-17 2015-01-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zum Simulieren von Kameraeigenschaften
CN108710869A (zh) * 2018-07-25 2018-10-26 中山联合光电科技股份有限公司 一种手机屏幕下的指纹识别成像系统

Also Published As

Publication number Publication date
CN211956509U (zh) 2020-11-17
CN110023797A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2020199674A1 (en) Electroluminescent display panel and display apparatus
US7466001B2 (en) Image sensor and manufacturing method of image sensor
US20150253473A1 (en) Color filter array substrate, method for fabricating the same and display device
JP2008066702A (ja) 固体撮像素子及びカメラ
KR20160041762A (ko) 마이크로 렌즈 어레이 기판, 마이크로 렌즈 어레이 기판을 구비한 전기 광학 장치, 투사형 표시 장치 및, 마이크로 렌즈 어레이 기판의 제조 방법
US7643114B2 (en) Transflective display device with reflection pattern on the color filter substrate
JP2005010280A (ja) カラーフィルタアレイ及びその製造方法、表示装置、投射型表示装置
TWI753775B (zh) 感測裝置
WO2020113396A1 (zh) 光学镜头及其制作方法、指纹识别模组、移动终端
JP2003131013A (ja) レンズアレイ基板及び液晶表示装置
WO2017147991A1 (zh) 彩膜基板及其制作方法、显示装置
JP2000180621A (ja) オンチップカラーフィルタ及びこれを用いた固体撮像素子
EP1701182A1 (en) Camera module comprising an infrared cut filter, said filter comprising ultraviolet cut means
WO2020172872A1 (zh) 光路调制器件及其制作方法、光学设备和电子装置
JPH0894831A (ja) カラーフィルター
JP6299501B2 (ja) マイクロレンズアレイ基板の製造方法、マイクロレンズアレイ基板、電気光学装置および電子機器
TW201944585A (zh) 光學感測器及其形成方法
JP2014032226A (ja) マイクロレンズ基板、マイクロレンズ基板の製造方法、及びマイクロレンズ基板を備えた電気光学装置
CN210038217U (zh) 光路调制器件、光学设备和电子装置
CN215728920U (zh) 滤光膜、滤光片、指纹识别模组及电子设备
JP2009037180A (ja) 樹脂製光学素子用多層薄膜真空蒸着方法とその樹脂製光学素子を持つ撮影素子
JP2015200690A (ja) マイクロレンズ基板、及び電気光学装置
CN101211949B (zh) 图像传感器及其制造方法
CN113486801A (zh) 感测装置
JP2006509240A (ja) 高屈折率の被覆調光フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916844

Country of ref document: EP

Kind code of ref document: A1