WO2020172801A1 - 一种表面增强拉曼散射基底材料、其制备方法与应用 - Google Patents

一种表面增强拉曼散射基底材料、其制备方法与应用 Download PDF

Info

Publication number
WO2020172801A1
WO2020172801A1 PCT/CN2019/076203 CN2019076203W WO2020172801A1 WO 2020172801 A1 WO2020172801 A1 WO 2020172801A1 CN 2019076203 W CN2019076203 W CN 2019076203W WO 2020172801 A1 WO2020172801 A1 WO 2020172801A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
silver
aldehyde
ldh
aminothiophenol
Prior art date
Application number
PCT/CN2019/076203
Other languages
English (en)
French (fr)
Inventor
王铁
乔学志
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to PCT/CN2019/076203 priority Critical patent/WO2020172801A1/zh
Publication of WO2020172801A1 publication Critical patent/WO2020172801A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the invention relates to a base material, in particular to a surface enhanced Raman scattering base material, and a preparation method and application thereof.
  • VOCs volatile organic gases
  • GC-MS gas chromatography-mass spectrometry
  • SERS Surface-enhanced Raman scattering
  • the present invention provides a base material.
  • the base material includes silver nanowires and cobalt-nickel double hydroxide Co-Ni LDH with a hollow structure.
  • the base material has a core-shell structure: the core is silver nanowires, and the shell is composed of The Co-Ni LDH; preferably, the base material may be represented by Ag@Co-Ni LDH.
  • the length of the silver nanowires may be 1.5-7 ⁇ m, for example, the length may be 2.3-5.6 ⁇ m. As an example, the length is 2.5 ⁇ m, 3 ⁇ m, 3.6 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m.
  • the diameter of the silver nanowire may be 30-120 nm, for example, the diameter may be 50-100 nm, 55-90 nm, and as an example, the diameter may be 60 nm, 70 nm, or 80 nm.
  • the silver nanowires account for 24-49% of the mass of the base material, such as 25-45%, 30-40%; as an example, the silver nanowires account for the mass of the base material. 29%, 33%, 36%.
  • the Co-Ni LDH accounts for 50-75% of the mass of the base material, such as 55-70%, 60-65%; as an example, the Co-Ni LDH accounts for the base material The quality is 63%, 66%, 70%.
  • the hollow structure cobalt-nickel double metal hydroxide has a particle size of 150-400nm, for example, the particle size can be 200-300nm, as an example, the particle size can be 220nm, 240nm, 250nm, 275nm, 290nm.
  • the silver nanowires of the base material can also be modified with p-aminothiophenol.
  • the modification is by combining the sulfhydryl group of p-aminothiophenol with the silver atom on the surface of the silver nanowire.
  • the graft amount of the p-aminothiophenol on the surface of the silver nanowire may be 0.0002 to 0.4 wt ⁇ (the mass ratio relative to the silver nanowire).
  • the present invention also provides a method for preparing the above-mentioned base material, and the method includes the following steps:
  • the silver nanowires can be prepared by themselves or purchased directly from commercial products.
  • the preparation process of the silver nanowires shown includes: adding polyvinylpyrrolidone to ethylene glycol, heating the mixture, and rapidly adding silver chloride and silver nitrate to the mixture under vigorous stirring, and heat preservation reaction. After the reaction was completed, the off-white product was collected by centrifugation and washed.
  • the mass-volume ratio of the polyvinylpyrrolidone to the ethylene glycol may be 5-30 mg/mL, for example, 10-20 mg/mL. As an example, the mass-volume ratio may be 10 mg/mL, 15 mg/mL.
  • the silver chloride may be added in the form of a ethylene glycol mixture of silver chloride
  • the concentration of silver chloride in the ethylene glycol mixture of silver chloride may be 0.02-0.04 g/mL, such as 0.025 -0.03g/mL.
  • the silver nitrate may be added in the form of a ethylene glycol mixture of silver nitrate.
  • the concentration of silver nitrate in the ethylene glycol mixture of silver nitrate may be 0.03-0.08 g/mL, such as 0.04-0.06 g/mL.
  • mL as an example, the concentration can be 0.05g/mL.
  • the mass ratio of the silver chloride to the polyvinylpyrrolidone may be (0.03-0.2):1, for example (0.05-0.15):1, (0.07-0.12):1, as an example, the mass ratio may be 0.083:1, 0.1:1.
  • the mass ratio of the silver nitrate to the polyvinylpyrrolidone may be (0.05-0.8):1, for example (0.1-0.7):1, (0.15-0.5):1, as an example, the mass ratio may be 0.1 :1, 0.33:1.
  • the silver chloride and silver nitrate can be added simultaneously or sequentially, for example, silver chloride is added first, and then silver nitrate is added.
  • the temperature required for heating is 160-190°C, for example 170-180°C.
  • the temperature of the insulation reaction is 160-190°C, for example 170-180°C; the time of the insulation reaction may be 0.3-1.5h, for example 0.5-1h.
  • the mass-volume ratio of the silver nanowires to the methanol may be 1-20 mg/mL, for example, 1-10 mg/mL.
  • the mass-volume ratio may be 2 mg /mL, 4mg/mL, 6mg/mL, 8mg/mL.
  • the mass-volume ratio of the 2-methylimidazole to the methanol may be 5-25 mg/mL, for example 10-20 mg/mL, as an example, the 2- The mass-volume ratio of methylimidazole to the methanol may be 5 mg/mL or 10 mg/mL.
  • the 2-methylimidazole After the addition of the 2-methylimidazole is completed, it can be sonicated for 0.3-1.5h, for example, sonicated for 0.5-1h.
  • the mass-volume ratio of the cobalt nitrate to the methanol may be 5-25 mg/mL, such as 10-20 mg/mL.
  • the cobalt nitrate and the methanol The mass-to-volume ratio of methanol can be 5 mg/mL or 10 mg/mL.
  • ultrasonic treatment can be performed for 1-3 hours, such as 1.5-2.5 hours.
  • the cobalt nitrate is added after 2-methylimidazole.
  • the mass-volume ratio of the purple-gray product to ethanol may be 5-50 mg/mL, such as 8-40 mg/mL, 15-30 mg/mL, as an example, The ratio can be 10 mg/mL, 20 mg/mL, 25 mg/mL, 35 mg/mL.
  • the mass-volume ratio of nickel nitrate and ethanol may be 5-25 mg/mL, for example, 10-20 mg/mL.
  • the mass-volume ratio of nickel nitrate and ethanol The ratio can be 5 mg/mL, 10 mg/mL.
  • the temperature of the heating reaction may be 50-70°C, such as 55-65°C, and as an example, the temperature may be 60°C.
  • the heating reaction time may be 50-200 minutes, for example 60-180 minutes, 80-150 minutes, 100-130 minutes.
  • the mass-volume ratio of the Ag@Co-Ni LDH to the ethanol solution of p-aminothiophenol may be 1-50 mg/mL, for example, 8-40 mg/mL , 15-30mg/mL, as an example, the mass-volume ratio can be 10mg/mL, 20mg/mL, 25mg/mL, 35mg/mL.
  • the concentration of p-aminothiophenol in the ethanol solution of p-aminothiophenol may be (0.5-1.5) ⁇ 10 -4 mol/L, for example, the concentration may be (0.8-1.2) ⁇ 10 -4 mol/L, as an example, the concentration is 1.0 ⁇ 10 -4 mol/L.
  • the ultrasonic treatment time can be 0.5-3h, for example 1-2h, 1.3-1.8h.
  • steps (1) and (2) those skilled in the art can select a suitable dispersion method according to needs, for example, an ultrasonic dispersion method can be used.
  • the obtained product can be collected by centrifugation.
  • the operation of centrifugation to collect the product can be the same or different, and those skilled in the art can choose according to the actual situation, for example
  • the rotation speed of the centrifugation may be 2000-5000 rpm, for example, the rotation speed is 3000-4000 rpm.
  • the time of centrifugation may be 3-10 minutes, for example, the time may be 5-8 minutes.
  • the obtained product can also be washed.
  • the solvent used for washing can be ethanol, and the number of washings can be one, two, three or more times.
  • the preparation method of the surface enhanced Raman scattering base material includes the following steps:
  • step 2 Disperse the core-shell structure of the silver nanowires and the hollow cobalt-nickel double hydroxide obtained in step 2) in 10-20mL, (0.5-1.5) ⁇ 10 -4 mol/L p-aminothiophenol by ultrasonic treatment In the ethanol solution, continue sonication for 1-2h, centrifuge at 2000-5000rpm for 5-8 minutes to collect the gray-green product and wash the substrate material with ethanol.
  • the present invention also provides a base material prepared by the above preparation method.
  • the invention also provides the application of the base material in surface enhanced Raman scattering, aldehyde gas Raman detection, Raman imaging method of test results, RGB barcode or two-dimensional code encoding display of Raman imaging results.
  • the present invention provides a method for detecting aldehyde molecules.
  • the method includes: coating the base material on a silicon wafer, and then placing the silicon wafer in an aldehyde atmosphere for reaction, and then pulling the reacted silicon wafer with a Raman spectrometer. Mann signal acquisition.
  • the specifications of the silicon wafer may be 1 cm ⁇ 1 cm.
  • the aldehyde concentration in the aldehyde atmosphere may be 1ppb-1000ppm, preferably 1ppb-500ppm, 1ppb-100ppm; as an example, the aldehyde concentration may be 1ppb, 10ppb, 100ppb, 1ppm, 10ppm, 50ppm.
  • the reaction temperature may be 50-70°C, preferably 55-65°C, as an example, the temperature is 60°C;
  • the reaction time may be 0.5-4h, preferably 1-3h, as an example, the time is 1h , 1.5h, 2h, 2.5h, 3h.
  • the aldehyde in the aldehyde atmosphere may be 4-ethylbenzaldehyde, benzaldehyde, salicylaldehyde, glutaraldehyde, p-nitrobenzaldehyde, and the like.
  • the present invention provides the detection result aldehyde molecule encoding method, the method comprising: 1060-1080cm -1 Raman peak intensity for the normalization of the strength thereof is 1000; for at 1600-1650cm -1 The intensity of Raman peak intensity is used for intensity RGB imaging, and the color range is 0-300. Read the R, G, and B three-digit values of the RGB imaging image respectively, and use the 9-digit RGB number, the type of aldehyde molecule to be measured and its concentration Information, encode it.
  • the detection result of the aldehyde molecule is obtained by the above detection method.
  • barcodes or QR codes can be obtained after encoding.
  • the surface-enhanced Raman scattering substrate material provided by the present invention improves the adsorption efficiency of gas molecules due to the confinement effect of the hollow structure on gas molecules, and can realize the adsorption and detection of trace gas molecules.
  • the modification of p-aminothiophenol on the surface of the base material can effectively capture aldehyde gas molecules and realize qualitative and quantitative detection of aldehydes.
  • reading the RGB value of the Raman imaging map after the standardized processing of the Raman spectrum signal, and the barcode or two-dimensional code encoding of the test result can realize the visualization and simple reading of complex data, and realize the information portability of the test result display.
  • Figure 1 is a scanning electron micrograph of Ag@Co-Ni LDH prepared in Example 1 of the present invention.
  • Figure 2 is a Raman spectrum of 4-ethylbenzaldehyde at different concentrations detected in Example 1 of the present invention
  • Figure 3 is the linear relationship between the concentration of aldehydes to be tested and the Raman intensity in Example 1 of the present invention
  • Fig. 4 is a Raman imaging diagram and barcode code of 100 ppm 4-ethylbenzaldehyde in Example 1 of the present invention
  • Figure 5 is a schematic diagram of a detection result encoding process in Embodiment 1 of the present invention.
  • Raman spectrometer LabRAM HR Evolution of Horiba Company.
  • the silver nanowires produced in step 1) were dispersed in 20 mL of methanol through ultrasonic treatment, and 0.1 g of 2-methylimidazole was added to the mixture to continue ultrasonication for 0.5 h. Then add 0.1 g of cobalt nitrate to the mixture, and sonicate for 1 hour. The purple ash product was collected by centrifugation at 5000 rpm for 5 minutes and washed with ethanol three times. The purple-gray product was dispersed in 10 mL of ethanol by ultrasonic treatment, 0.1 nickel nitrate was added, and the mixture was heated to 60°C.
  • a core-shell structure (Ag@Co-Ni LDH) of silver nanowires and cobalt-nickel double hydroxides with a hollow structure is obtained.
  • silver nanowires accounted for 29% of the material mass
  • cobalt-nickel double metal hydroxide accounted for 70% of the material mass.
  • Step 2 The obtained silver nanowires and the core-shell structure of the hollow cobalt-nickel double metal hydroxide are dispersed in 10 mL, 1 ⁇ 10 -4 mol/L ethanol solution of p-aminothiophenol by ultrasonic treatment, and continue to ultrasonic For 1 hour, the gray-green product was collected by centrifugation at 5000 rpm for 5 minutes and washed with ethanol three times. A core-shell structure of silver nanowires modified with p-aminothiophenol and cobalt-nickel double metal hydroxide with hollow structure is obtained.
  • the core-shell structure of the p-aminothiophenol-modified silver nanowire and the hollow cobalt-nickel double metal hydroxide obtained in step 3) is coated on a silicon wafer of 1 cm ⁇ 1 cm. Place the silicon wafer in an atmosphere containing 1ppb-1000ppm of 4-ethylbenzaldehyde and react at 60°C for 1h.
  • Raman signal collection is performed on the silicon wafer after the reaction with a Raman spectrometer.
  • the Raman peak intensity at 1070 cm -1 is normalized to make the intensity value 1000.
  • RGB imaging of the intensity of the Raman peak intensity at 1623 cm -1 is performed.
  • the color range is 0-300. Read the R, G, and B three-digit values of the RGB imaging image respectively. Use 9-digit RGB numbers and density information for barcode encoding. Barcode scanning can display test results on other devices.
  • Figure 1 shows the Ag@Co-Ni LDH scanning electron micrograph prepared in Example 1.
  • the length of the silver nanowires is 4 ⁇ m, the diameter is 60 nm, and the particle size of the hollow cobalt-nickel double hydroxide is 250 nm.
  • Figure 3 shows the linear relationship between the intensity and concentration of the Raman spectrum of the 4-ethylbenzaldehyde modified by the p-aminothiophenol-modified Ag@Co-Ni LDH prepared in Example 1.
  • 0.5 g of polyvinylpyrrolidone was added to 50 mL of ethylene glycol. Then, the mixture was heated to 180°C, and 2 mL of a 0.025 g/mL silver chloride ethylene glycol mixture was quickly added with vigorous stirring, and the addition was continued to 180°C. Under vigorous stirring, 2 mL of 0.05 g/mL silver nitrate in ethylene glycol mixture was added dropwise. After stirring for 0.5-1 hour at 180°C, the off-white product was collected by centrifugation at 2000 rpm for 8 minutes and washed with ethanol three times.
  • the silver nanowires produced in step 1) were dispersed in 20 mL of methanol through ultrasonic treatment, and 0.2 g of 2-methylimidazole was added to the mixture to continue ultrasonication for 1 h. Then add 0.2 g of cobalt nitrate to the mixture and ultrasonicate for 3 hours. The purple ash product was collected by centrifugation at 2000 rpm for 8 minutes and washed three times with ethanol. The purple-gray product was dispersed in 10-20 mL of ethanol by ultrasonic treatment, 0.2 g of nickel nitrate was added, and the mixture was heated to 60°C.
  • Step 2 The obtained silver nanowires and the core-shell structure of the hollow cobalt-nickel double metal hydroxide are dispersed in 20 mL, 1 ⁇ 10 -4 mol/L ethanol solution of p-aminothiophenol by ultrasonic treatment, and continue to ultrasonicate 2h, centrifuge at 2000 rpm for 8 minutes to collect the gray-green product and wash with ethanol three times.
  • a core-shell structure of silver nanowires modified with p-aminothiophenol and cobalt-nickel double metal hydroxide with hollow structure is obtained.
  • the core-shell structure of the p-aminothiophenol-modified silver nanowire and the hollow cobalt-nickel double metal hydroxide obtained in step 3) is coated on a silicon wafer of 1 cm ⁇ 1 cm.
  • the silicon wafers were placed in an atmosphere containing 1 ppb, 10 ppb, 100 ppb, 1 ppm, 100 ppm, and 1000 ppm 4-ethylbenzaldehyde, and reacted at 60° C. for 3 hours.
  • Raman signal collection is performed on the silicon wafer after the reaction with a Raman spectrometer.
  • the Raman peak intensity at 1070 cm -1 is normalized to make the intensity value 1000.
  • RGB imaging of the intensity of the Raman peak intensity at 1623 cm -1 is performed.
  • the color range is 0-300. Read the R, G, and B three-digit values of the RGB imaging image respectively. Use RGB 9-digit numbers and density information to encode a two-dimensional code. Scan the QR code to display the test results on

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Powder Metallurgy (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种表面增强拉曼散射基底材料、其制备方法与应用。表面增强拉曼散射基底材料由银纳米线和空心结构的钴镍双金属氢氧化物(Co-Ni LDH)的核壳结构组成(Ag@Co-Ni LDH),该基底材料表面修饰对氨基苯硫酚,可实现醛类分子的捕获,实现醛类分子的定性定量检测。对1623cm -1处的拉曼峰强度进行强度的RGB成像。色彩范围为0-300。分别读取RGB成像图的R、G、B三位数值。利用RGB的9位数字及待测分子浓度信息,进行条形码或二维码编码。

Description

一种表面增强拉曼散射基底材料、其制备方法与应用 技术领域
本发明涉及一种基底材料,具体涉及一种表面增强拉曼散射基底材料、其制备方法与应用。
背景技术
癌变细胞的细胞新陈代谢变化,导致肺癌病人呼出物中的挥发性有机气体(VOCs)种类与含量与常人差异较大。醛类分子是VOCs中重要的一类分子,可作为呼吸标志物,根据其含量判断组织细胞的代谢情况,进而实现对癌症的早期诊断。目前,主要通过固相微萃取联合气相色谱-质谱联用(GC-MS)技术、热解析仪联合气相色谱等进行VOCs检测分析。此类方法前处理繁琐、仪器设备要求高。
表面增强拉曼散射(SERS)是一种根据不同分子振动能级及结构信息实现待测物的检测的分析技术。该技术具有灵敏度高、特异性强、原位无损检测等优点,广泛应用于物理、化学、生物等领域。但待测分子需要吸附在等离子体热点区域,对于流动性强的气体难以吸附,进而无法实现醛类气体分子的检测。
发明内容
本发明提供一种基底材料,所述基底材料包括银纳米线和空心结构的钴镍双金属氢氧化物Co-Ni LDH,所述基底材料具有核壳结构:核为银纳米线,壳为所述Co-Ni LDH;优选地,所述基底材料可以以Ag@Co-Ni LDH表示。
根据本发明的基底材料,所述银纳米线的长度可以为1.5-7μm,例如长度可以为2.3-5.6μm,作为示例,长度为2.5μm、3μm、3.6μm、4μm、4.5μm、5μm。所述银纳米线的直径可以为30-120nm,例如直径可以为50-100nm、55-90nm,作为示例,直径可以为60nm、70nm、80nm。
根据本发明的基底材料,所述银纳米线占所述基底材料质量的24-49%,例如25-45%、30-40%;作为示例,所述银纳米线占所述基底材料质量的29%、33%、36%。
根据本发明的基底材料,所述Co-Ni LDH占所述基底材料质量的50-75%,例如55-70%、 60-65%;作为示例,所述Co-Ni LDH占所述基底材料质量的63%、66%、70%。
根据本发明的基底材料,所述的空心结构的钴镍双金属氢氧化物的粒径为150-400nm,例如粒径可以为200-300nm,作为示例,粒径可以为220nm、240nm、250nm、275nm、290nm。
根据本发明的基底材料,所述基底材料的银纳米线还可以采用对氨基苯硫酚修饰。优选地,所述修饰是通过对氨基苯硫酚的巯基与所述银纳米线表面的银原子结合。优选地,所述对氨基苯硫酚在所述银纳米线表面的接枝量可以为0.0002-0.4wt‰(相对于银纳米线的质量比)。
本发明还提供上述基底材料的制备方法,所述方法包括如下步骤:
(1)将银纳米线分散于甲醇中,向其中加入2-甲基咪唑、硝酸钴,超声,收集紫灰产物;将洗涤后的紫灰色产物分散于乙醇中,向其中加入硝酸镍,加热反应,收集灰绿色产物,得到所述Ag@Co-Ni LDH;
(2)将所述Ag@Co-Ni LDH分散于对氨基苯硫酚的乙醇溶液中,超声处理,收集灰绿色产物,得到所述基底材料。
根据本发明的制备方法,步骤(1)中,所述银纳米线可以自行制备或者直接购买市售产品。例如,所示银纳米线的制备过程包括:将聚乙烯吡咯烷酮加入到乙二醇中,将混合物加热,并在剧烈搅拌下向所述混合物中快速加入氯化银和硝酸银,保温反应,待反应完成后,离心收集灰白色产物并洗涤产物。其中,所述聚乙烯吡咯烷酮与所述乙二醇的质量体积比可以为5-30mg/mL,例如10-20mg/mL,作为示例,所述质量体积比可以为10mg/mL、15mg/mL。其中,所述氯化银可以以氯化银的乙二醇混合物的形式加入,例如,所述氯化银的乙二醇混合物中氯化银的浓度可以为0.02-0.04g/mL,如0.025-0.03g/mL。其中,所述硝酸银可以以硝酸银的乙二醇混合物的形式加入,例如,所述硝酸银的乙二醇混合物中硝酸银的浓度可以为0.03-0.08g/mL,如0.04-0.06g/mL,作为示例,浓度可以为0.05g/mL。其中,所述氯化银与所述聚乙烯吡咯烷酮的质量比可以为(0.03-0.2):1,例如(0.05-0.15):1、(0.07-0.12):1,作为示例,质量比可以为0.083:1、0.1:1。其中,所述硝酸银与所述聚乙烯吡咯烷酮的质量比可以为(0.05-0.8):1,例如(0.1-0.7):1、(0.15-0.5):1,作为示例,质量比可以为0.1:1、0.33:1。优选地,所述氯化银和硝酸银可以同时加入或者分先后加入,例如,先加入氯化银,再加入硝酸银。其中,加热需要达到的温度为160-190℃,例如170-180℃。其中,所述保温反应的温度为160-190℃,例如170-180℃;所述保温反应的时间可以为0.3-1.5h,例如0.5-1h。
根据本发明的制备方法,步骤(1)中,所述银纳米线与所述甲醇的质量体积比可以为1-20mg/mL,例如1-10mg/mL,作为示例,质量体积比可以为2mg/mL、4mg/mL、6mg/mL、 8mg/mL。
根据本发明的制备方法,步骤(1)中,所述2-甲基咪唑与所述甲醇的质量体积比可以为5-25mg/mL,例如10-20mg/mL,作为示例,所述2-甲基咪唑与所述甲醇的质量体积比可以为5mg/mL、10mg/mL。所述2-甲基咪唑添加完成后,可以超声处理0.3-1.5h,例如超声0.5-1h。
根据本发明的制备方法,步骤(1)中,所述硝酸钴与所述甲醇的质量体积比可以为5-25mg/mL,例如10-20mg/mL,作为示例,所述硝酸钴与所述甲醇的质量体积比可以为5mg/mL、10mg/mL。所述硝酸钴添加完成后,可以超声处理1-3h,例如1.5-2.5h。优选地,所述硝酸钴在2-甲基咪唑之后加入。
根据本发明的制备方法,步骤(1)中,所述紫灰色产物与乙醇的质量体积比可以为5-50mg/mL,例如8-40mg/mL、15-30mg/mL,作为示例,质量体积比可以为10mg/mL、20mg/mL、25mg/mL、35mg/mL。
根据本发明的制备方法,步骤(1)中,所述硝酸镍与乙醇的质量体积比可以为5-25mg/mL,例如10-20mg/mL,作为示例,所述硝酸镍与乙醇的质量体积比可以为5mg/mL、10mg/mL。所述加热反应的温度可以为50-70℃,例如55-65℃,作为示例,温度可以为60℃。所述加热反应的时间可以为50-200分钟,例如60-180分钟、80-150分钟、100-130分钟。
根据本发明的制备方法,步骤(2)中,所述Ag@Co-Ni LDH与所述对氨基苯硫酚的乙醇溶液的质量体积比可以为1-50mg/mL,例如8-40mg/mL、15-30mg/mL,作为示例,质量体积比可以为10mg/mL、20mg/mL、25mg/mL、35mg/mL。
根据本发明的制备方法,步骤(2)中,所述对氨基苯硫酚的乙醇溶液中对氨基苯硫酚的浓度可以为(0.5-1.5)×10 -4mol/L,例如浓度可以为(0.8-1.2)×10 -4mol/L,作为示例,浓度为1.0×10 -4mol/L。
根据本发明的制备方法,步骤(2)中,所述超声处理的时间可以为0.5-3h,例如1-2h、1.3-1.8h。
根据本发明的制备方法,步骤(1)和(2)中,本领域技术人员可以根据需要选择合适的分散方式,例如可以采用超声分散方式。
根据本发明的制备方法,步骤(1)和(2)中,所得到的产物可以采用离心方式进行收集,离心收集产物的操作可以相同或不同,本领域技术人员可以根据实际情况进行选择,例如,所述离心的转速可以为2000-5000rpm,比如转速为3000-4000rpm。例如,所述离心的时间可以为3-10分钟,比如时间可以为5-8分钟。
根据本发明的制备方法,步骤(1)和(2)中,还可以对得到的产物进行洗涤处理,本 领域技术人员可以根据需要选择洗涤所用的溶剂和洗涤的次数,例如,所述洗涤用的溶剂可以为乙醇,所述洗涤的次数可以为一次、两次、三次或者更多次。
根据本发明示例性的技术方案,所述表面增强拉曼散射基底材料的制备方法包括如下步骤:
1)银纳米线的合成
将0.3-0.5g聚乙烯吡咯烷酮加入到20-50mL乙二醇中。然后,将混合物加热至180℃,并在剧烈搅拌下快速加入0.02-0.04g/mL的氯化银的乙二醇混合物1-2mL,继续加入至180℃;并在剧烈搅拌下逐滴加入0.03-0.08g/mL的硝酸银的乙二醇混合物1-2ml;在180℃下搅拌0.5-1小时后,以2000-5000rpm离心5-8分钟收集灰白色产物并用乙醇洗涤;
2)银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构的合成
将步骤1)制成的银纳米线通过超声处理分散在10-20mL甲醇中,向混合物中加入0.1-0.2g的2-甲基咪唑继续超声0.5h-1h;再向混合物中加入0.1-0.2g的硝酸钴,超声1-3h;以2000-5000rpm离心5-8分钟收集紫灰产物并用乙醇洗涤;将紫灰色产物通过超声处理分散在10-20mL乙醇中,加入0.1-0.2g的硝酸镍,加热至60℃,反应60-180分钟后,以2000-5000rpm离心5-8分钟收集灰绿色产物并用乙醇洗涤,获得银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构(Ag@Co-Ni LDH);
3)Ag@Co-Ni LDH的修饰
将步骤2)获得的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构通过超声处理分散在10-20mL,(0.5-1.5)×10 -4mol/L对氨基苯硫酚的乙醇溶液中,继续超声1-2h,以2000-5000rpm离心5-8分钟收集灰绿色产物并用乙醇洗涤,所述基底材料。
本发明还提供由上述制备方法制备得到的基底材料。
本发明还提供所述基底材料在表面增强拉曼散射、醛类气体拉曼检测、测试结果拉曼成像方法、拉曼成像结果的RGB的条形码或二维码编码显示方面的应用。
本发明提供醛类分子的检测方法,所述方法包括:将所述的基底材料涂在硅片上,然后将硅片置于醛类气氛中反应,反应后的硅片用拉曼光谱仪进行拉曼信号采集。例如,本领域技术人员可以根据需要调整硅片的规格,例如硅片的规格可以为1cm×1cm。例如,所述醛类气氛中醛的浓度可以为1ppb-1000ppm,优选为1ppb-500ppm、1ppb-100ppm;作为示例,醛的浓度可以为1ppb、10ppb、100ppb、1ppm、10ppm、50ppm。例如,所述反应的温度可以为50-70℃,优选55-65℃,作为示例,温度为60℃;所述反应的时间可以为0.5-4h,优选1-3h,作为示例,时间为1h、1.5h、2h、2.5h、3h。例如,所述醛类气氛中的醛可以为4- 乙基苯甲醛、苯甲醛、水杨醛、戊二醛,对硝基苯甲醛等。
本发明提供将醛类分子的检测结果进行编码的方法,所述方法包括:对1060-1080cm -1处的拉曼峰强度进行标准化处理,使其强度值为1000;对1600-1650cm -1处的拉曼峰强度进行强度的RGB成像,色彩范围为0-300,分别读取RGB成像图的R、G、B三位数值,利用RGB的9位数字、待测醛类分子种类及其浓度信息,进行编码。例如,所述醛类分子的检测结果由上述检测方法得到。例如,编码后可以得到条形码或二维码。
本发明的有益效果:
本发明提供的表面增强拉曼散射基底材料,由于空心结构对气体分子的限域效应,使得该材料对气体分子的吸附效率提升,可以实现微量气体分子的吸附与检测。基底材料表面的对氨基苯硫酚的修饰可有效地捕获醛类气体分子,实现醛类的定性定量检测。同时,对拉曼光谱信号标准化处理后的拉曼成像图的RGB值读取,及测试结果的条形码或二维码编码,可实现复杂数据的可视化、简单读取,以及实现测试结果的信息便携显示。
附图说明
图1为本发明实施例1中制备得到的Ag@Co-Ni LDH的扫描电镜图;
图2为本发明实施例1中检测不同浓度的4-乙基苯甲醛的拉曼光谱;
图3为本发明实施例1中待测醛类浓度与拉曼强度的线性关系;
图4为本发明实施例1中100ppm 4-乙基苯甲醛的拉曼成像图及条形码编码;
图5为本发明实施例1中检测结果编码过程的示意图。
具体实施方式
下文将结合具体实施例对本发明的晶体材料及其制备方法和应用做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
以下实施例和对比例所用仪器信息:
扫描电子显微镜(SEM):日本日立公司的S-4800。
拉曼光谱仪:Horiba公司的LabRAM HR Evolution。
实施例1
1)银纳米线的合成
将0.3g聚乙烯吡咯烷酮加入到20mL乙二醇中,然后,将混合物加热至180℃,并在剧烈搅拌下快速加入0.025g/mL的氯化银的乙二醇混合物1mL,继续加热至180℃。并在剧烈搅拌下逐滴加入0.05g/mL的硝酸银的乙二醇混合物2mL。在180℃下搅拌1小时后,以5000rpm离心5分钟收集灰白色产物并用乙醇洗涤三次。
2)银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构的合成
将步骤1)制成的银纳米线通过超声处理分散在20mL甲醇中,向混合物中加入0.1g的2-甲基咪唑继续超声0.5h。再向混合物中加入0.1g的硝酸钴,超声1小时。以5000rpm离心5分钟收集紫灰产物并用乙醇洗涤三次。将紫灰色产物通过超声处理分散在10mL乙醇中,加入0.1的硝酸镍,加热至60℃。反应60分钟后,以2000rpm离心5分钟收集灰绿色产物并用乙醇洗涤三次。获得银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构(Ag@Co-Ni LDH)。其中,银纳米线占材料质量的29%,钴镍双金属氢氧化物占材料质量的70%。
3)Ag@Co-Ni LDH的修饰
步骤2)获得的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构通过超声处理分散在10mL,1×10 -4mol/L对氨基苯硫酚的乙醇溶液中,继续超声1小时,以5000rpm离心5分钟收集灰绿色产物并用乙醇洗涤三次。获得对氨基苯硫酚修饰的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构。
4)醛类分子的检测及测试结构的条形码编码
将步骤3)获得的对氨基苯硫酚修饰的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构底涂在1cm×1cm的硅片上。将硅片置于含有1ppb-1000ppm的4-乙基苯甲醛的气氛中,60℃反应1h。将反应后的硅片用拉曼光谱仪进行拉曼信号采集。对1070cm -1处的拉曼峰强度进行标准化处理,使其强度值为1000。对1623cm -1处的拉曼峰强度进行强度的RGB成像。色彩范围为0-300。分别读取RGB成像图的R、G、B三位数值。利用RGB的9位数字及浓度信息,进行条形码编码。通过条形码扫描便可在其他设备显示测试结果。
如图1所示是实施例1所制备的Ag@Co-Ni LDH扫描电镜图,银纳米线的长度为4μm,直径为60nm,空心结构的钴镍双金属氢氧化物粒径为250nm。
图2给出了实施例1所制备的对氨基苯硫酚修饰的Ag@Co-Ni LDH检测不同浓度的4-乙基苯甲醛的拉曼光谱。结果表明:在1623cm -1出现C=N双键对应的伸缩振动峰,并且随着浓度增强,峰强度逐渐增强。
图3给出了实施例1所制备的对氨基苯硫酚修饰的Ag@Co-Ni LDH检测不同浓度的4-乙基苯甲醛的拉曼光谱强度与浓度的线性关系。结果表明:在10 -4~10 -8(v/v,体积浓度)范围内,对应C=N双键伸缩振动峰强度与浓度呈现线性关系,方差R 2=0.996。
图4给出了实施例1所制备的对氨基苯硫酚修饰的Ag@Co-Ni LDH检测100ppm的4-乙基苯甲醛的拉曼光谱强度成像图,所得到的强度对于R=255,G=031,B=000。采用待测分子4-乙基苯甲醛及浓度100ppm与RGB值进行条形码编码,编码过程如图5所示。
实施例2
1)银纳米线的合成
将0.5g聚乙烯吡咯烷酮加入到50mL乙二醇中。然后,将混合物加热至180℃,并在剧烈搅拌下快速加入0.025g/mL的氯化银的乙二醇混合物2mL,继续加入至180℃。并在剧烈搅拌下逐滴加入0.05g/mL的硝酸银的乙二醇混合物2mL。在180℃下搅拌0.5-1小时后,以2000rpm离心8分钟收集灰白色产物并用乙醇洗涤三次。
2)银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构的合成
将步骤1)制成的银纳米线通过超声处理分散在20mL甲醇中,向混合物中加入0.2g的2-甲基咪唑继续超声1h。再向混合物中加入0.2g的硝酸钴,超声3h。以2000rpm离心8分钟收集紫灰产物并用乙醇洗涤三次。将紫灰色产物通过超声处理分散在10-20mL乙醇中,加入0.2g的硝酸镍,加热至60℃。反应180分钟后,以2000rpm离心8分钟收集灰绿色产物并用乙醇洗涤三次。获得银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构(Ag@Co-Ni LDH)。
3)Ag@Co-Ni LDH的修饰
步骤2)获得的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构通过超声处理分散在20mL,1×10 -4mol/L对氨基苯硫酚的乙醇溶液中,继续超声2h,以2000rpm离心8分钟收集灰绿色产物并用乙醇洗涤三次。获得对氨基苯硫酚修饰的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构。
4)醛类分子的检测及测试结果的二维码编码
将步骤3)获得的对氨基苯硫酚修饰的银纳米线与空心结构的钴镍双金属氢氧化物的核壳结构底涂在1cm×1cm的硅片上。将硅片分别置于含有1ppb、10ppb、100ppb、1ppm、100ppm、1000ppm的4-乙基苯甲醛的气氛中,60℃反应3h。将反应后的硅片用拉曼光谱仪进行拉曼信号采集。对1070cm -1处的拉曼峰强度进行标准化处理,使其强度值为1000。对 1623cm -1处的拉曼峰强度进行强度的RGB成像。色彩范围为0-300。分别读取RGB成像图的R、G、B三位数值。利用RGB的9位数字及浓度信息,进行二维码编码。通过二维码扫描便可在其他设备显示测试结果。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基底材料,其特征在于,所述基底材料包括银纳米线和空心结构的钴镍双金属氢氧化物Co-Ni LDH,所述基底材料具有核壳结构:核为银纳米线,壳为所述Co-Ni LDH;
    优选地,所述基底材料以Ag@Co-Ni LDH表示。
  2. 根据权利要求1所述的基底材料,其特征在于,所述银纳米线的长度为1.5-7μm,所述银纳米线的直径为30-120nm;
    优选地,所述银纳米线占所述基底材料质量的24-49%。
  3. 根据权利要求1或2所述的基底材料,其特征在于,所述的空心结构的钴镍双金属氢氧化物的粒径为150-400nm;
    优选地,所述Co-Ni LDH占所述基底材料质量的50-75%。
  4. 根据权利要求1-3任一项所述的基底材料,其特征在于,所述基底材料的银纳米线采用对氨基苯硫酚修饰;
    优选地,所述修饰是通过对氨基苯硫酚的巯基与所述银纳米线表面的银原子结合;
    优选地,所述对氨基苯硫酚在所述银纳米线表面的接枝量为0.0002-0.4wt‰。
  5. 权利要求1-4任一项所述基底材料的制备方法,其特征在于,所述方法包括如下步骤:
    (1)将银纳米线分散于甲醇中,向其中加入2-甲基咪唑、硝酸钴,超声,离心收集紫灰产物;将所述紫灰色产物分散于乙醇中,向其中加入硝酸镍,加热反应,收集灰绿色产物,得到所述Ag@Co-Ni LDH;
    (2)将所述Ag@Co-Ni LDH分散于对氨基苯硫酚的乙醇溶液中,超声处理,收集产物,得到所述基底材料。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述银纳米线的制备过程包括:将聚乙烯吡咯烷酮加入到乙二醇中,将混合物加热,并在剧烈搅拌下向所述混合物中快速加入氯化银和硝酸银,保温反应,待反应完成后,离心收集灰白色产物并洗涤产物;
    优选地,所述银纳米线与所述甲醇的质量体积比为1-20mg/mL;
    优选地,所述2-甲基咪唑与所述甲醇的质量体积比为5-25mg/mL;
    优选地,所述硝酸钴与所述甲醇的质量体积比为5-25mg/mL;
    优选地,所述紫灰色产物与乙醇的质量体积比可以为5-50mg/mL;
    优选地,所述硝酸镍与乙醇的质量体积比为5-25mg/mL;
    优选地,步骤(1)所述加热反应的温度为50-70℃,所述加热反应的时间为50-200分钟。
  7. 根据权利要求5或6所述的制备方法,其特征在于,步骤(2)中,所述Ag@Co-Ni LDH与所述对氨基苯硫酚的乙醇溶液的质量体积比为1-50mg/mL;
    优选地,所述对氨基苯硫酚的乙醇溶液中对氨基苯硫酚的浓度为(0.5-1.5)×10 -4mol/L;
    优选地,所述超声处理的时间为0.5-3h。
  8. 权利要求1-4任一项所述基底材料在表面增强拉曼散射、醛类气体拉曼检测、测试结果拉曼成像方法、拉曼成像结果的RGB的条形码或二维码编码显示方面的应用。
  9. 醛类分子的检测方法,其特征在于,所述方法包括:将权利要求1-4任一项所述的基底材料涂在硅片上,然后将硅片置于醛类气氛中反应,反应后的硅片用拉曼光谱仪进行拉曼信号采集;
    优选地,所述醛类气氛中醛的浓度为1ppb-1000ppm;
    优选地,所述反应的温度为50-70℃,所述反应的时间为0.5-4h;
    优选地,所述醛类气氛中的醛为4-乙基苯甲醛、苯甲醛、水杨醛、戊二醛和对硝基苯甲醛中的至少一种。
  10. 醛类分子的检测结果进行编码的方法,其特征在于,所述方法包括:对1060-1080cm -1处的拉曼峰强度进行标准化处理,使其强度值为1000;对1600-1650cm -1处的拉曼峰强度进行强度的RGB成像,色彩范围为0-300,分别读取RGB成像图的R、G、B三位数值,利用RGB的9位数字、待测醛类分子种类及其浓度信息,进行编码;
    优选地,所述醛类分子的检测结果由权利要求9所述的检测方法得到;
    优选地,编码后得到条形码或二维码。
PCT/CN2019/076203 2019-02-26 2019-02-26 一种表面增强拉曼散射基底材料、其制备方法与应用 WO2020172801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076203 WO2020172801A1 (zh) 2019-02-26 2019-02-26 一种表面增强拉曼散射基底材料、其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076203 WO2020172801A1 (zh) 2019-02-26 2019-02-26 一种表面增强拉曼散射基底材料、其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020172801A1 true WO2020172801A1 (zh) 2020-09-03

Family

ID=72238776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076203 WO2020172801A1 (zh) 2019-02-26 2019-02-26 一种表面增强拉曼散射基底材料、其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2020172801A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092442A (zh) * 2021-04-09 2021-07-09 上海海洋大学 一种快速检测组胺的方法
CN114082410A (zh) * 2021-11-01 2022-02-25 佛山市高明佛水供水有限公司 一种基于新型复合材料的sers基底及其制备方法
CN114113032A (zh) * 2021-11-01 2022-03-01 佛山市高明佛水供水有限公司 基于新型sers基底的同时检测两种异味物质的方法
CN114147221A (zh) * 2021-12-03 2022-03-08 中北大学 一种Ag@CoMoO4析氧电催化剂的制备方法
CN114420373A (zh) * 2022-01-22 2022-04-29 安徽粤智徽源生物科技有限公司 一种透明且油墨强粘附性的柔性透明导电电极的制备方法及应用
CN114414484A (zh) * 2022-01-19 2022-04-29 山东大学 一种膜过滤-表面增强拉曼光谱联用检测痕量环境纳米污染物的装置、方法及应用
CN115194147A (zh) * 2022-07-18 2022-10-18 中国计量大学 一种SERS基底材料Au@ZnAl-LDHs及其制备方法与应用
CN115219473A (zh) * 2021-04-14 2022-10-21 天津师范大学 基于后修饰银多面体粒子的自组装二维超表面材料及其制备方法和应用
CN116818742A (zh) * 2023-05-25 2023-09-29 哈尔滨工业大学 一种基于表面增强拉曼散射技术的促甲状腺素无标记定量检测的方法
CN116818742B (zh) * 2023-05-25 2024-07-12 哈尔滨工业大学 一种基于表面增强拉曼散射技术的促甲状腺素无标记定量检测的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
JP2013125901A (ja) * 2011-12-15 2013-06-24 Samsung Yokohama Research Institute Co Ltd 磁性ナノ粒子
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法
CN107436300A (zh) * 2016-05-26 2017-12-05 中国科学院化学研究所 表面增强拉曼散射基底材料及其制备方法
CN108439442A (zh) * 2018-04-24 2018-08-24 北京化工大学 一种制备多壳层空心结构水滑石材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
JP2013125901A (ja) * 2011-12-15 2013-06-24 Samsung Yokohama Research Institute Co Ltd 磁性ナノ粒子
CN107436300A (zh) * 2016-05-26 2017-12-05 中国科学院化学研究所 表面增强拉曼散射基底材料及其制备方法
CN107349964A (zh) * 2017-07-15 2017-11-17 北京化工大学 一种纳米颗粒@小尺寸金属有机框架材料的制备方法
CN108439442A (zh) * 2018-04-24 2018-08-24 北京化工大学 一种制备多壳层空心结构水滑石材料的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092442B (zh) * 2021-04-09 2023-12-22 上海海洋大学 一种快速检测组胺的方法
CN113092442A (zh) * 2021-04-09 2021-07-09 上海海洋大学 一种快速检测组胺的方法
CN115219473A (zh) * 2021-04-14 2022-10-21 天津师范大学 基于后修饰银多面体粒子的自组装二维超表面材料及其制备方法和应用
CN115219473B (zh) * 2021-04-14 2024-04-23 天津师范大学 基于后修饰银多面体粒子的自组装二维超表面材料及其制备方法和应用
CN114082410A (zh) * 2021-11-01 2022-02-25 佛山市高明佛水供水有限公司 一种基于新型复合材料的sers基底及其制备方法
CN114113032A (zh) * 2021-11-01 2022-03-01 佛山市高明佛水供水有限公司 基于新型sers基底的同时检测两种异味物质的方法
CN114082410B (zh) * 2021-11-01 2024-02-06 佛山市高明佛水供水有限公司 一种基于复合材料的sers基底及其制备方法
CN114147221B (zh) * 2021-12-03 2023-10-27 中北大学 一种Ag@CoMoO4析氧电催化剂的制备方法
CN114147221A (zh) * 2021-12-03 2022-03-08 中北大学 一种Ag@CoMoO4析氧电催化剂的制备方法
CN114414484A (zh) * 2022-01-19 2022-04-29 山东大学 一种膜过滤-表面增强拉曼光谱联用检测痕量环境纳米污染物的装置、方法及应用
CN114414484B (zh) * 2022-01-19 2024-01-19 山东大学 一种膜过滤-表面增强拉曼光谱联用检测痕量环境纳米污染物的装置、方法及应用
CN114420373A (zh) * 2022-01-22 2022-04-29 安徽粤智徽源生物科技有限公司 一种透明且油墨强粘附性的柔性透明导电电极的制备方法及应用
CN115194147A (zh) * 2022-07-18 2022-10-18 中国计量大学 一种SERS基底材料Au@ZnAl-LDHs及其制备方法与应用
CN116818742A (zh) * 2023-05-25 2023-09-29 哈尔滨工业大学 一种基于表面增强拉曼散射技术的促甲状腺素无标记定量检测的方法
CN116818742B (zh) * 2023-05-25 2024-07-12 哈尔滨工业大学 一种基于表面增强拉曼散射技术的促甲状腺素无标记定量检测的方法

Similar Documents

Publication Publication Date Title
WO2020172801A1 (zh) 一种表面增强拉曼散射基底材料、其制备方法与应用
CN109926578B (zh) 一种表面增强拉曼散射基底材料、其制备方法与应用
Wang et al. Dual-readout immunosensor constructed based on brilliant photoelectrochemical and photothermal effect of polymer dots for sensitive detection of sialic acid
Xie et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer–surface‐enhanced Raman spectroscopic nanosensor
Bai et al. Individual and simultaneous voltammetric determination of Cd (II), Cu (II) and Pb (II) applying amino functionalized Fe3O4@ carbon microspheres modified electrode
CN109187481B (zh) 一种基于Fe3O4@Au NPs和分子印迹的农药检测方法
CN112505017B (zh) 一种基于sers技术检测血液中il-6的方法
CN107192704A (zh) 唾液诊断传感器及其制备方法与应用
CN111208101A (zh) 一种基于黄酮苷及其衍生物合成的碳量子点便捷式检测铝离子的方法
CN105606585B (zh) 一种呼气传感器及其制备方法
CN111220592A (zh) 基于表面增强拉曼光谱的羟基山椒素快速检测方法
Dai et al. A molecularly imprinted ratiometric fluorescence sensor based on blue/red carbon quantum dots for the visual determination of thiamethoxam
Sun et al. A novel surface-enhanced Raman scattering method for simultaneous detection of ketamine and amphetamine
CN110018146B (zh) 一种基于荧光碳量子点检测钯离子的方法
Tan et al. The Electrochemiluminescent Immunosensors for Point‐of‐Care Testing of Methamphetamine Using a Portable Meter
CN110687100A (zh) 一种高sers增强活性的核壳型纳米粒子及sers定量检测基底
Lee et al. Galvanic engineering of interior hotspots in 3D Au/Ag bimetallic SERS nanocavities for ultrasensitive and rapid recognition of phthalate esters
Cao et al. Au-doped MOFs catalyzed electrochemiluminescence platform coupled with target-induced self-enrichment for detection of synthetic cannabinoid RCS-4
CN113857486A (zh) 表面增强拉曼散射基底材料及其制备方法和应用
CN113125408A (zh) 一种人体呼出气中挥发性苯甲醛的现场快速检测方法
Zhang et al. A surface‐enhanced Raman sensor for trace identification and analysis of high‐priority drugs of abuse with portable and handheld Raman devices
CN109975267A (zh) 一种融合液液微萃取与sers技术检测铬离子的方法
CN109975268A (zh) 一种基于金银核壳纳米颗粒sers技术检测亚硝酸根离子的方法
Feng et al. Ultrasensitive and rapid detection for multiple dopings in saliva and urine using surface-enhanced Raman spectroscopy
Zheng et al. Determination of dopamine in cerebrospinal fluid by MALDI-TOF mass spectrometry with a functionalized graphene oxide matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916752

Country of ref document: EP

Kind code of ref document: A1