WO2020171509A1 - 전기분해용 전극 - Google Patents

전기분해용 전극 Download PDF

Info

Publication number
WO2020171509A1
WO2020171509A1 PCT/KR2020/002241 KR2020002241W WO2020171509A1 WO 2020171509 A1 WO2020171509 A1 WO 2020171509A1 KR 2020002241 W KR2020002241 W KR 2020002241W WO 2020171509 A1 WO2020171509 A1 WO 2020171509A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ruthenium
electrolysis
metal substrate
cerium
Prior art date
Application number
PCT/KR2020/002241
Other languages
English (en)
French (fr)
Inventor
엄희준
김연이
김명훈
이동철
정상윤
황교현
정종욱
방용주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021530159A priority Critical patent/JP7121861B2/ja
Priority to EP20759250.2A priority patent/EP3929331A4/en
Priority to US17/311,850 priority patent/US20220018032A1/en
Priority to CN202080006868.6A priority patent/CN113242915A/zh
Publication of WO2020171509A1 publication Critical patent/WO2020171509A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/056Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrode for electrolysis and a method for manufacturing the same, and to an electrode for electrolysis in which a metal base layer of the electrode is planarized, and a method for manufacturing the same.
  • a technology for producing hydroxide, hydrogen and chlorine by electrolyzing inexpensive brine such as seawater is widely known.
  • This electrolysis process is commonly referred to as a chlor-alkali process, and it can be said that the performance and reliability of technology have been proven through commercial operation for decades.
  • an ion exchange membrane is installed inside the electrolyzer to divide the electrolyzer into a cation chamber and an anion chamber, and the ion exchange membrane method that obtains chlorine gas from the anode and hydrogen and caustic soda from the cathode using brine as an electrolyte is currently the most widely used. This is the method being used.
  • the electrolytic voltage should consider both the voltage required for the theoretical brine electrolysis, the overvoltage of the anode, the overvoltage of the cathode, the voltage by the resistance of the ion exchange membrane, and the voltage by the distance between the anode and the cathode. Among these voltages, the overvoltage caused by the electrode acts as an important variable.
  • DSA Differentally Stable Anode
  • Stainless steel or nickel has been mainly used as such a cathode, and recently, to reduce overvoltage, the surface of stainless steel or nickel is coated with nickel oxide, an alloy of nickel and tin, a combination of activated carbon and oxide, ruthenium oxide, platinum, etc. The method of use is being studied.
  • Patent Document 1 JP2003-2977967A
  • An object of the present invention is to provide an electrode for electrolysis in which overvoltage is improved by increasing adhesion to a membrane and reducing gas traps.
  • the present invention is a metal substrate layer having a mesh structure; And a coating layer comprising a ruthenium oxide, a cerium oxide, a platinum oxide, and an amine compound, wherein the coating layer is formed on a surface of the wire constituting the mesh structure, and the aspect ratio of the individual cross-sections of the wire is 120% It provides an electrode for electrolysis that is above.
  • the present invention comprises the steps of flattening the metal substrate having the mesh structure so that the aspect ratio of the individual cross-section of the wire constituting the mesh structure is 120% or more; Applying a coating composition on the surface of the wire of the planarized metal substrate; And drying and firing the metal substrate to which the coating composition is applied, and coating the coating composition, wherein the coating composition comprises a ruthenium-based precursor, a cerium-based precursor, a platinum-based precursor, and an amine-based compound.
  • the coating composition comprises a ruthenium-based precursor, a cerium-based precursor, a platinum-based precursor, and an amine-based compound.
  • the metal substrate is flattened, adhesion to the membrane is high, and thus, gas traps are reduced, thereby effectively enabling gas desorption, thereby improving overvoltage.
  • FIG. 1 is a diagram schematically showing an effect that may appear when a metal substrate is flattened in the present invention.
  • FIG. 2 is a graph showing changes in performance of electrodes of Examples 1 to 2 and Comparative Examples 1 to 2 of the present invention over time.
  • Example 3 is a diagram illustrating the electrode surfaces of Example 1 and Comparative Example 2 of the present invention.
  • a nickel substrate Ni purity 99% or more, diameter 200 ⁇ m, thickness 370 ⁇ m
  • the ruthenium-based precursor was Heraeus' ruthenium chloride hydrate and the platinum-based precursor.
  • Alfa Aesar's platinum chloride platinum (IV) chloride, 99.9%
  • Daejunghwa Geum's urea as an amine-based compound were used.
  • isopropyl alcohol and 2-butoxy ethanol from Daejunghwa Geum were used as a solvent.
  • Metal precursors RuCl 3 ⁇ nH 2 O, Ce(NO 3 ) 3 ⁇ 6H 2 O and PtCl 4 are mixed in a molar ratio of 5:1:0.4, and isopropyl alcohol and 2-butoxy ethanol are mixed in a volume ratio of 1:1 It was dissolved in the mixed solvent. Thereafter, when the metal precursor was dissolved, urea, an amine compound, was added at a molar ratio of 3.13, and stirred at 50° C. overnight to prepare a coating composition solution having a concentration of 100 g/L based on ruthenium.
  • the nickel substrate of the material was rolled to prepare a flattened nickel substrate having a thickness of 170 ⁇ m.
  • the aspect ratio of the cross section of the individual wire of the flattened nickel substrate was measured, and the value was 120 to 169%.
  • the surface of the substrate was sandblasted with aluminum oxide (120 mesh) at 0.4 MPa to form an uneven structure.
  • the processed nickel substrate was put in a 5M H 2 SO 4 aqueous solution at 80° C. and treated for 3 minutes to complete the pretreatment process.
  • the coating composition solution prepared above was coated on the pretreated nickel substrate by a brush method, placed in a convection drying oven at 180° C. and dried for 10 minutes, and then put in an electric heating furnace at 500° C. and fired for 10 minutes.
  • the coating, drying, and firing processes were additionally performed 9 times, and finally, firing in an electric heating furnace heated to 500° C. for 1 hour to prepare an electrode for electrolysis.
  • the electrode for electrolysis was prepared in the same manner.
  • the aspect ratio of the cross section of the individual wire of the flattened nickel substrate was measured, and the value was 132 to 155%.
  • Example 1 except that instead of rolling, pressing was performed in the same manner to prepare an electrode for electrolysis.
  • press treatment flattening was not performed consistently compared to the case of flattening by other methods, but the value of the aspect ratio was 120 to 180%, which was found to be larger than that of flattening by other methods.
  • Example 1 except that the thickness was 170 ⁇ m and a nickel substrate that was not planarized was used, all were carried out in the same manner to prepare an electrode for electrolysis.
  • the aspect ratio of the cross-section of the individual wires of the nickel substrate that was not flattened was 100%.
  • AKC's oxidation electrode which is the electrode used, was used as the anode, and the cathode was measured using a 5X5cm 2 cell capable of realizing a zero gap cell in the form of a nickel mattress mounted on a current meter and an electrode raised. I did. Aciplex's F6808 was used as the membrane, and the experiment was performed at a current density of 6.2kA/m 2 as a constant current. A cathode voltage measurement experiment was performed using a half-cell in Chlor-Alkali Electrolysis.
  • the electrode of the Example having an aspect ratio of 120% or more exhibited a lower overvoltage than the electrode of the Comparative Example which was not subjected to the planarization treatment.
  • the electrode of Comparative Example 1 exhibited a high overvoltage from the beginning, and the electrodes of Examples 1 and 2 exhibited lower values than the electrode of Comparative Example 2 at the convergent overvoltage value after a certain period of time. Confirmed the point.
  • Example 3 The surfaces of the electrodes prepared in Example 1 and Comparative Example 2 were observed, and this is shown in FIG. 3. Observation was performed through a SEM (Scanning Electron Microscope). From FIG. 3, it was confirmed that the wires intersecting in the mesh structure contacted in a large area, and thus a coating layer having a larger area can be secured. That is, it was confirmed that the electrode of Example 1 could smoothly perform the electrolysis reaction compared to Comparative Example 2.
  • spect ratio refers to the ratio of width to height (width/height).
  • mesh structure refers to a mesh structure formed by intertwining wires.
  • the metal substrate may be nickel, titanium, tantalum, aluminum, hafnium, zirconium, molybdenum, tungsten, stainless steel, or alloys thereof, of which nickel is preferable.
  • nickel When nickel is used as a metal substrate, durability and electrode performance may be excellent.
  • the individual wires constituting the mesh structure thereof are planarized so that the aspect ratio of each wire cross section is 120% or more.
  • the lower limit of the aspect ratio may be 120%, 125%, or 130%
  • the upper limit of the aspect ratio may be 180%, 170%, 160% or 150%.
  • the aspect ratio of the cross-section of individual wires constituting the mesh structure is set to be 120% or more by flattening the metal substrate having the mesh structure, the adhesion to the membrane increases, thereby reducing gas traps, and consequently reducing overvoltage. It can be improved, and a smooth electrolysis reaction can be carried out.
  • Planarization can be performed without limitation of the method, as long as the aspect ratio of the cross-section of individual wires constituting the mesh structure can be increased to 120% or more without affecting the durability of the metal substrate, and preferably through pressing, rolling or chemical etching. Can be done.
  • the ruthenium-based oxide, cerium-based oxide, and platinum-based oxide of the coating layer play a role of lowering the overvoltage of the electrode, and in particular, the platinum-based oxide can further improve the stability of the catalyst layer to improve overvoltage, and the cerium-based oxide is durable and the catalyst layer It can improve stability.
  • the thickness of the metal substrate may be 100 to 300 ⁇ m, preferably 120 to 280 ⁇ m, more preferably 150 to 250 ⁇ m. If the metal substrate is too thin, for example, if it is thinner than 100 ⁇ m, the durability of the electrode may be weak and there may be a problem in use. If the metal substrate is too thick, for example, if it exceeds 300 ⁇ m, a lot of cost is consumed in manufacturing the electrode. If a metal substrate having a thick mesh structure is used, the hardness of the substrate is high, so that the adhesion between the electrode and the membrane in the zero-gap cell decreases, and thus the electrolysis reaction may not occur smoothly.
  • the present invention comprises the steps of flattening the metal substrate having the mesh structure so that the aspect ratio of individual cross-sections of the wires constituting the mesh structure is 120% or more; Applying a coating composition on the surface of the wire of the planarized metal substrate; And drying and firing the metal substrate to which the coating composition is applied, and coating the coating composition, wherein the coating composition comprises a ruthenium-based precursor, a cerium-based precursor, a platinum-based precursor, and an amine-based compound.
  • the coating composition comprises a ruthenium-based precursor, a cerium-based precursor, a platinum-based precursor, and an amine-based compound.
  • the planarization may be performed through the same method as described above, and is preferably performed through rolling or chemical etching.
  • the ruthenium-based precursor is a material that provides ruthenium as an active material in the catalyst layer of the cathode for electrolysis.
  • the ruthenium-based precursor is ruthenium hexafluoride (RuF 6 ), ruthenium (III) chloride (RuCl 3 ), ruthenium (III) chloride hydrate (RuCl 3 xH 2 O), ruthenium (III) bromide (RuBr 3 ), ruthenium (III) bromide hydrate (RuBr 3 xH 2 O), ruthenium iodide (RuI 3 ) and may be one or more selected from the group consisting of a ruthenium acetate salt, of which ruthenium (III) chloride hydrate is preferred.
  • the cerium-based precursor is a material that provides a cerium element to the catalyst layer of the cathode for electrolysis.
  • the cerium element can improve the durability of the electrolysis negative electrode to minimize the loss of ruthenium in the catalyst layer of the electrolysis electrode during activation or electrolysis. Specifically, when the cathode for electrolysis is activated or electrolyzed, particles containing ruthenium in the catalyst layer become metallic Ru (metallic Ru) without changing the structure or partially hydrated to reduce to active species. do.
  • the structure of the particles containing the cerium element in the catalyst layer is changed to form a network with the particles containing ruthenium in the catalyst layer, and as a result, the durability of the cathode for electrolysis can be improved, thereby preventing the loss of ruthenium in the catalyst layer.
  • cerium-based precursors are cerium (III) nitrate hexahydrate (Ce (NO 3 ) 3 ⁇ 6H 2 O), cerium (IV) sulfate tetrahydrate (Ce (SO 4 ) 2 ⁇ 4H 2 O) and cerium (III) It is at least one selected from the group consisting of chloride heptahydrate (CeCl 3 7H 2 O), and cerium (III) nitrate hexahydrate is preferable.
  • the catalyst composition may include 0.01 to 0.5 moles or 0.05 to 0.35 moles of the cerium-based precursor per 1 mole of the ruthenium-based precursor, of which 0.05 to 0.35 moles is preferably included.
  • the durability of the electrode to be manufactured can be improved to minimize the loss of ruthenium in the catalyst layer during activation or electrolysis.
  • the platinum-based precursor is a material that provides platinum to the catalyst layer of the cathode for electrolysis.
  • the platinum may improve the overvoltage phenomenon of the electrode.
  • the platinum can minimize the deviation of the initial performance of the electrode and the performance after a certain period of time, and as a result, the electrode does not perform a separate activation process or can be minimized.
  • the platinum-based precursors are chloroplatinic acid hexahydrate (H 2 PtCl 6 6H 2 O), diamine dinitro platinum (Pt(NH 3 ) 2 (NO) 2 ) and platinum (IV) chloride (PtCl 4 ), platinum ( II) chloride (PtCl 2 ), potassium tetrachloroplatinate (K 2 PtCl 4 ), potassium hexachloroplatinate (K 2 PtCl 6 ) It may be one or more selected from the group consisting of, of which platinum (IV) chloride Is preferred.
  • the catalyst composition may contain the platinum-based precursor in an amount of 0.01 to 0.7 moles or 0.02 to 0.5 moles per 1 mole of the ruthenium-based precursor, of which 0.02 to 0.5 moles is preferably included.
  • the overvoltage phenomenon of the electrode can be remarkably improved.
  • the electrode activation process is unnecessary. Accordingly, it is possible to reduce the time and cost required for the electrode activation process.
  • the amine-based compound is known to play a role of reducing the particle phase by introducing it as an additive when preparing nanoparticles, etc., and exhibits an effect of making the ruthenium oxide crystal phase smaller even in electrode coating.
  • the catalyst composition contains an amine-based compound, the cerium network structure formed by increasing the size of the acicular structure of cerium plays a role in fixing the ruthenium particles more firmly, thereby improving the durability of the electrode. And, as a result, even when the electrode is operated for a long time, there is an effect of remarkably reducing the peeling phenomenon of the electrode.
  • the catalyst composition may contain 0.5 to 1 mole or 0.6 to 0.9 mole of the amine compound per 1 mole of the ruthenium-based precursor, of which 0.6 to 0.9 mole is preferably included.
  • the amine-based compound changes the structure of the particles containing cerium element faster than when the amine-based compound is not used after activation of the electrode or during electrolysis to form a network in the catalyst layer. And, as a result, the durability of the electrode can be improved. Specifically, the amine-based compound may improve the durability of the electrode by increasing the acicular structure of particles containing cerium.
  • the amine compound is urea.
  • urea When urea is used, compared to other amine-based compounds, the stability and safety of the coating solution are excellent, and there are advantages of less generation of harmful substances and odors even when manufacturing an electrode in a large area.
  • it may include a step of pretreating the metal substrate before performing the coating step.
  • the pretreatment may be to form irregularities on the surface of the metal substrate by chemical etching, blasting, or thermal spraying of the metal substrate.
  • the pretreatment may be performed by sand blasting the surface of the metal substrate to form fine irregularities, and salt treatment or acid treatment.
  • the surface of the metal substrate may be sandblasted with alumina to form irregularities, immersed in an aqueous sulfuric acid solution, washed and dried to pretreat to form fine irregularities on the surface of the metal substrate.
  • the application is not particularly limited as long as the catalyst composition can be evenly applied on the metal substrate, and may be performed by a method known in the art.
  • the application may be performed by any one method selected from the group consisting of doctor blade, die casting, comma coating, screen printing, spray spraying, electrospinning, roll coating, and brushing.
  • the drying may be performed at 50 to 300°C for 5 to 60 minutes, preferably at 50 to 200°C for 5 to 20 minutes.
  • the solvent can be sufficiently removed while minimizing energy consumption.
  • the sintering may be performed at 400 to 600° C. for 1 hour or less, and is preferably performed at 450 to 550° C. for 5 to 30 minutes.
  • the firing serves to convert a metal precursor into an oxide.
  • sintering satisfies the above-described conditions, impurities in the catalyst layer are easily removed, and strength of the metal substrate may not be affected.
  • the coating may be performed by sequentially repeating application, drying, and firing so that the amount of ruthenium per unit area (m 2) of the metal substrate is 10 g or more. That is, in the manufacturing method according to another embodiment of the present invention, after applying, drying and firing the catalyst composition on at least one surface of a metal substrate, it is applied again on one surface of the metal substrate to which the first catalyst composition is applied, and dried. And coating to be fired can be repeatedly performed. The repetition may be performed 5 to 20 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 평탄화 처리한 금속 기재를 사용함으로써 코팅층의 표면적이 증가되어 멤브레인과의 밀착력을 높이고, 가스 트랩을 줄여 과전압을 개선할 수 있는 전기분해용 전극을 제공한다.

Description

전기분해용 전극
관련 출원과의 상호 인용
본 출원은 2019년2월 22일자 한국 특허 출원 제 10-2019-0021361호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전기분해용 전극 및 이의 제조방법에 관한 것으로, 전극의 금속 기재층이 평탄화 처리된 전기분해용 전극 및 이의 제조방법에 관한 것이다.
해수 등의 저가의 염수(Brine)를 전기분해하여 수산화물, 수소 및 염소를 생산하는 기술이 널리 알려져 있다. 이러한 전기분해 공정은 통상 클로르-알칼리(chlor-alkali) 공정이라고도 불리며, 이미 수십 년 간의 상업운전으로 성능 및 기술의 신뢰성이 입증된 공정이라 할 수 있다.
이러한 염수의 전기분해는 전해조 내부에 이온교환막을 설치하여 전해조를 양이온실과 음이온실로 구분하고, 전해질로 염수를 사용하여 양극에서 염소가스를, 음극에서 수소 및 가성소다를 얻는 이온교환막법이 현재 가장 널리 사용되고 있는 방법이다.
한편, 염수의 전기분해 공정은 하기 전기화학 반응식에 나타낸 바와 같은 반응을 통해 이루어진다.
양극(anode) 반응: 2Cl- → Cl2 + 2e- (E0 = +1.36 V)
음극(cathode) 반응: 2H2O + 2e- → 2OH- + H2 (E0 = -0.83 V)
전체 반응: 2Cl- + 2H2O → 2OH- + Cl2 + H2 (E0 = -2.19 V)
염수의 전기분해를 수행함에 있어 전해전압은 이론적인 염수의 전기분해에 필요한 전압에 양극의 과전압, 음극의 과전압, 이온교환막의 저항에 의한 전압 및 양극과 음극 간 거리에 의한 전압을 모두 고려해야 하며, 이들 전압 중 전극에 의한 과전압이 중요한 변수로 작용하고 있다.
이에, 전극의 과전압을 감소시킬 수 있는 방법이 연구되고 있으며, 예컨대 양극으로는 DSA(Dimensionally Stable Anode)라 불리는 귀금속계 전극이 개발되어 사용되고 있으며, 음극에 대해서도 과전압이 낮고 내구성이 있는 우수한 소재의 개발이 요구되고 있다.
이러한 음극으로는 스테인레스 스틸 또는 니켈이 주로 사용되었으며, 최근에는 과전압을 감소시키기 위하여 스테인레스 스틸 또는 니켈의 표면을 산화니켈, 니켈과 주석의 합금, 활성탄과 산화물의 조합, 산화 루테늄, 백금 등으로 피복하여 사용하는 방법이 연구되고 있다.
또한, 활성물질의 조성을 조절하여 음극의 활성을 높이고자 루테늄과 같은 백금족 원소와 세륨과 같은 란탄족 원소를 사용하여 조성을 조절하는 방법도 연구되고 있다. 하지만, 과전압 현상이 발생하고, 역전류에 의한 열화가 일어나는 문제가 발생하였다.
선행기술문헌
(특허문헌 1) JP2003-2977967A
본 발명의 목적은 멤브레인과의 밀착력이 증가되고, 가스 트랩이 감소됨으로써 과전압이 개선된 전기분해용 전극을 제공하는 것이다.
상기한 과제를 해결하기 위하여, 본 발명은 메쉬 구조를 갖는 금속 기재층; 및 루테늄계 산화물, 세륨계 산화물, 플래티넘계 산화물 및 아민계 화합물을 포함하는 코팅층을 포함하고, 상기 코팅층은 상기 메쉬 구조를 구성하는 와이어의 표면 상에 형성되며, 상기 와이어 개별 단면의 종횡비는 120% 이상인 것인 전기분해용 전극을 제공한다.
또한, 본 발명은 메쉬 구조를 구성하는 와이어 개별 단면의 종횡비가 120% 이상이 되도록, 상기 메쉬 구조를 갖는 금속 기재를 평탄화 처리하는 단계; 상기 평탄화 처리된 금속 기재의 와이어 표면 상에 코팅 조성물을 도포하는 단계; 및 코팅 조성물이 도포된 금속 기재를 건조 및 소성하여 코팅하는 단계를 포함하며, 상기 코팅 조성물은 루테늄계 전구체, 세륨계 전구체, 플래티넘계 전구체 및 아민계 화합물을 포함하는 것인 전기분해용 전극의 제조방법을 제공한다.
본 발명에 따른 전기분해용 전극은 금속 기재가 평탄화되어 멤브레인과의 밀착력이 높고, 이에 따라 가스 트랩이 감소하여 효과적으로 기체 탈착이 가능함에 따라 과전압을 개선할 수 있다.
도 1은 본 발명에서 금속 기재가 평탄화 될 때 나타날 수 있는 효과를 간략하게 나타낸 그림이다.
도 2는 본 발명의 실시예 1 내지 2 및 비교예 1 내지 2의 전극의 시간에 따른 성능 변화를 나타낸 그래프이다.
도 3은 본 발명의 실시예 1 및 비교예 2의 전극 표면을 관찰한 도이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
재료
본 실시예에서는 금속 기재로 일동금망사에서 제조한 니켈 기재(Ni 순도 99% 이상, 직경 200㎛, 두께 370㎛)을 사용하였으며, 루테늄계 전구체로는 Heraeus 사의 염화루테늄 수화물, 플래티넘계 전구체로는 Alfa Aesar사의 염화백금(플래티넘(IV) 클로라이드, 99.9%), 세륨계 전구체로는 Sigma-Aldrich 사의 질산세륨 6수화물, 아민계 화합물로는 대정화금사의 우레아를 사용하였다. 또한 용매로는 대정화금사의 이소프로필 알코올과 2-부톡시 에탄올을 사용하였다.
코팅 조성물의 제조
금속 전구체 RuCl3·nH2O, Ce(NO3)3·6H2O 및 PtCl4를 5:1:0.4의 몰 비율로 혼합하여 이소프로필 알코올과 2-부톡시 에탄올을 1:1의 부피비로 혼합한 용매에 녹였다. 그 후 금속 전구체가 용해되면 아민계 화합물인 우레아를 3.13 몰 비율로 첨가하고, 50℃에서 밤새 교반하여 루테늄 기준 100g/L의 농도를 갖는 코팅 조성물 용액을 제조하였다.
실시예
실시예 1. 압연으로 평탄화한 니켈 기재를 사용한 전기분해용 전극 제조
상기 재료의 니켈 기재를 압연하여 두께 170㎛의 평탄화 처리된 니켈 기재를 제조하였다. 상기 평탄화 처리된 니켈 기재의 개별 와이어 단면의 종횡비를 측정하였으며, 그 값은 120 내지 169% 이었다. 그 후 상기 기재의 표면을 알루미늄 옥사이드(120 mesh)로 0.4MPa 조건에서 샌드 블라스팅 처리하여 요철이 있는 구조로 가공하였다. 이후 80℃의 5M H2SO4 수용액에 가공된 니켈 기재를 넣어 3분 동안 처리하여 전처리 과정을 완료하였다. 이후 전처리된 니켈 기재에 앞서 제조한 코팅 조성물 용액을 브러쉬 방법으로 코팅하고, 180℃의 대류식 건조 오븐에 넣어 10분동안 건조시킨 후, 500℃의 전기 가열로에 넣어 10분간 소성하였다. 이러한 코팅, 건조 및 소성 과정 9회 추가 수행한 후, 최종적으로 500℃로 가열된 전기 가열로에서 1시간 동안 소성하여 전기분해용 전극을 제조하였다.
실시예 2. 화학적 에칭으로 평탄화한 니켈 기재를 사용한 전기분해용 전극 제조
실시예 1에서 압연 대신 화학적 에칭하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. 상기 평탄화 처리된 니켈 기재의 개별 와이어 단면의 종횡비를 측정하였으며, 그 값은 132 내지 155%이었다.
실시예 3. 프레스로 평탄화한 니켈 기재를 사용한 전기분해용 전극 제조
실시예 1에서 압연 대신 프레스하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. 다만 프레스 처리한 경우, 다른 방법으로 평탄화한 경우에 비해 일정하게 평탄화가 이루어지지 않았으나, 그 종횡비의 값은 120 내지 180%로 다른 방법으로 평탄화한 경우에 비해 더 큰 것으로 확인되었다
비교예 1. 상용 전극
프레시 전극을 전해 과정을 통해 전압 안정화를 마친 후, 활성화하여 비교예 1의 상용 전극으로 사용하였다.
비교예 2. 평탄화하지 않은 니켈 기재를 사용한 전기분해용 전극 제조
실시예 1에서 평탄화하지 않았다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. 평탄화하지 않은 니켈 기재의 개별 와이어 단면의 종횡비는 100% 이었다.
비교예 3. 평탄화하지 않고, 얇은 두께의 니켈 기재를 사용한 전기분해용 전극 제조
실시예 1에서 두께가 170㎛이고, 평탄화하지 않은 니켈 기재를 사용하였다는 점을 제외하고는 모두 동일하게 실시하여 전기분해용 전극을 제조하였다. 평탄화하지 않은 니켈 기재의 개별 와이어 단면의 종횡비는 100% 이었다.
상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조한 전극의 정보를 하기 표 1로 정리하였다.
구분 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
평탄화 방법 압연 화학적 에칭 프레스 - - -
종횡비 120-169% 132-155% 120-180% 100% 100% 100%
기재의 두께(㎛) 170 180 160 330 380 170
코팅층의 조성비(Ru:Ce:Pt:우레아) 5:1:0.4:3.13 5:1:0.4:3.13 5:1:0.4:3.13 5:1:0.4:3.13 5:1:0.4:3.13 5:1:0.4:3.13
실험예 1. 제조된 전기분해용 전극의 성능 확인
상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조한 전극의 성능을 확인하기 위하여 정전류에서의 과전압을 측정하는 싱글셀(Single cell) 장치를 사용하였다. 산화 전극(anode)으로는 사용 전극인 AKC사의 산화 전극을 사용하였으며, 환원 전극(cathode)로는 전류 측정기 위에 니켈 매트리스를 올리고 전극을 올린 형태로 제로갭 셀을 구현할 수 있는 5X5cm2 셀을 사용하여 측정하였다. 멤브레인으로는 Aciplex사의 F6808을 사용하였으며, 정전류로는 전류 밀도 6.2kA/m2 조건에서 실험을 수행하였다. 염수 전기 분해(Chlor-Alkali Electrolysis)에서의 반쪽 셀을 이용한 음극 전압 측정 실험을 수행하였다. 산화 전극 측의 전해질은 305g/L의 염화나트륨, 환원 전극 측의 전해질은 30.6%의 수산화나트륨을 사용하였다. 반응 온도는 90℃로 하고, 산화 전극 및 환원 전극 모두 15ml/분의 유량을 흘려주면서 실험을 수행하였다. 그 결과를 하기 표 2로 정리하였으며, 시간에 따른 변화를 도 2로 나타내었다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
성능(V) 3.040 3.035 3.043 3.086 3.045 3.126
상기 표 2에서 확인할 수 있듯이, 평탄화 처리하여 종횡비가 120% 이상인 실시예의 전극이 그렇지 않은 비교예의 전극보다 더 낮은 과전압을 나타낸다는 것을 확인하였다. 또한 도 2에서 확인한 바와 같이 비교예 1의 전극은 초기부터 높은 과전압을 나타내었으며, 일정 시간이 지난 후 수렴하는 과전압 값에서 실시예 1 및 2의 전극이 비교예 2의 전극에 비해 낮은 값을 나타낸다는 점을 확인하였다.
실험예 2. 전극의 표면 관찰
상기 실시예 1 및 비교예 2에서 제조한 전극의 표면을 관찰하였으며, 이를 도 3으로 나타내었다. 관찰은 SEM(Scanning Electron Microscope)를 통해 수행하였다. 도 3으로부터 압연 처리한 경우 메쉬 구조에서 교차되는 와이어가 넓은 면적에서 접촉하고, 이에 따라 더 넓은 면적의 코팅층을 확보할 수 있음을 확인하였다. 즉 실시예 1의 전극이 비교예 2 대비 전기 분해 반응이 원활하게 수행될 수 있음을 확인하였다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 명세서에서 이용되는 바와 같은, "종횡비"는 높이에 대한 폭의 비(폭/높이)를 지칭한다.
본 명세서에서 이용되는 바와 같은, "메쉬 구조"는 와이어가 서로 얽혀 형성된 그물망 구조를 지칭한다.
전기분해용 전극
본 발명은 메쉬 구조를 갖는 금속 기재층; 및 루테늄계 산화물, 세륨계 산화물, 플래티넘계 산화물 및 아민계 화합물을 포함하는 코팅층을 포함하고, 상기 코팅층은 상기 메쉬 구조를 구성하는 와이어의 표면 상에 형성되며, 상기 와이어 개별 단면의 종횡비는 120% 이상인 것인 전기분해용 전극을 제공한다.
상기 금속 기재는 니켈, 티타늄, 탄탈, 알루미늄, 하프늄, 지르코늄, 몰리브덴, 텅스텐, 스테인레스 스틸 또는 이들의 합금일 수 있고, 이 중 니켈인 것이 바람직하다. 금속 기재로 니켈을 사용할 경우, 내구성 및 전극의 성능이 우수할 수 있다.
상기 전기분해용 전극에 포함되는 금속 기재에 있어서, 이의 메쉬 구조를 구성하는 개별 와이어는 평탄화 처리됨으로써 각각의 와이어 단면의 종횡비가 120% 이상인 것이다. 바람직하게, 상기 종횡비의 하한 값은 120%, 125% 또는 130%일 수 있고, 상기 종횡비의 상한 값은 180%, 170%, 160% 또는 150%일 수 있다. 도 1에서 알 수 있듯이, 메쉬 구조를 갖는 금속 기재를 평탄화하여 메쉬 구조를 구성하는 개별 와이어 단면의 종횡비를 120% 이상으로 한 경우, 멤브레인과의 밀착력이 증가하여 가스 트랩을 줄이고, 결과적으로 과전압을 개선할 수 있으며, 원활한 전기 분해 반응을 진행시킬 수 있다. 한편 상기 종횡비가 지나치게 큰 경우라면 금속 기재 자체의 내구성이 약화되는 문제가 발생할 수 있다. 평탄화는 금속 기재의 내구성에 영향을 주지 않고 메쉬 구조를 구성하는 개별 와이어 단면의 종횡비를 120% 이상으로 할 수 있는 방법이라면 방법의 제한 없이 수행 가능하며, 바람직하게는 프레스, 압연 또는 화학적 에칭을 통해 수행될 수 있다.
상기 코팅층의 루테늄계 산화물, 세륨계 산화물 및 플래티넘계 산화물은 전극의 과전압을 낮추는 역할을 수행하며, 특히 플래티넘계 산화물은 추가 과전압 개선 촉매층의 안정성을 개선할 수 있고, 세륨계 산화물은 내구성 및 촉매층의 안정성을 개선할 수 있다.
상기 금속 기재의 두께는 100 내지 300㎛, 바람직하게는 120 내지 280㎛, 더욱 바람직하게는 150 내지 250㎛일 수 있다. 금속 기재가 너무 얇을 경우, 예컨대 100㎛ 보다 얇을 경우, 전극의 내구성이 약하여 사용에 문제가 있을 수 있고, 금속 기재가 너무 두꺼울 경우, 예컨대 300㎛를 초과할 경우, 전극 제조에 많은 비용이 소모되며 두꺼운 메쉬 구조의 금속 기재를 사용하게 되면, 기재의 경도가 높아 제로-갭 셀에서 전극과 멤브레인 사이의 밀착력이 감소하게 되고, 이로 인해 전기 분해 반응이 원활하게 발생하지 않을 수 있다.
전기분해용 전극의 제조방법
본 발명은 메쉬 구조를 구성하는 와이어 개별 단면의 종횡비가 120% 이상이 되도록, 상기 메쉬 구조를 갖는 금속 기재를 평탄화 처리하는 단계; 상기 평탄화 처리된 금속 기재의 와이어 표면 상에 코팅 조성물을 도포하는 단계; 및 코팅 조성물이 도포된 금속 기재를 건조 및 소성하여 코팅하는 단계를 포함하며, 상기 코팅 조성물은 루테늄계 전구체, 세륨계 전구체, 플래티넘계 전구체 및 아민계 화합물을 포함하는 것인 전기분해용 전극의 제조방법을 제공한다.
상기 평탄화는 상술한 것과 같은 방법을 통해 수행될 수 있으며, 압연 또는 화학적 에칭을 통해 수행하는 것이 바람직하다.
상기 루테늄계 전구체는 전기분해용 음극의 촉매층에 활성물질인 루테늄을 제공하는 물질이다. 상기 루테늄계 전구체는 루테늄헥사플루오라이드(RuF6), 루테늄(III) 클로라이드(RuCl3), 루테늄(III) 클로라이드 하이드레이트(RuCl3·xH2O), 루테늄(III) 브로마이드(RuBr3), 루테늄(III) 브로마이드 하이드레이트(RuBr3·xH2O), 루테늄 아이오디드(RuI3) 및 초산 루테늄염으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 루테늄(III) 클로라이드 하이드레이트가 바람직하다.
상기 세륨계 전구체는 전기분해용 음극의 촉매층에 세륨 원소를 제공하는 물질이다. 상기 세륨 원소는 전기분해용 음극의 내구성을 개선시켜 활성화 또는 전기분해 시, 전기분해용 전극의 촉매층 내 루테늄의 손실을 최소화시킬 수 있다. 구체적으로 설명하면, 전기분해용 음극의 활성화 또는 전기분해 시, 촉매층 내 루테늄을 포함하는 입자는 구조가 변화하지 않으면서 금속성 Ru(metallic Ru)이 되거나 부분적으로 수화되어 활성종(active species)로 환원된다. 그리고, 촉매층 내 세륨 원소를 포함하는 입자는 구조가 변화되어 촉매층 내에서 루테늄을 포함하는 입자와 네트워크를 형성하며, 결과적으로 전기분해용 음극의 내구성을 개선시켜 촉매층 내 루테늄의 손실을 방지할 수 있다.
상기 세륨계 전구체는 세륨(III) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O), 세륨(IV) 설페이트 테트라하이드레이트(Ce(SO4)2·4H2O) 및 세륨(III) 클로라이드 헵타하이드레이트(CeCl3·7H2O)으로 이루어진 군에서 선택되는 1종 이상이고, 이 중 세륨(III) 나이트레이트 헥사하이드레이트가 바람직하다.
상기 촉매 조성물은 상기 루테늄계 전구체 1 몰에 대하여, 상기 세륨계 전구체를 0.01 내지 0.5 몰 또는 0.05 내지 0.35 몰로 포함할 수 있고, 이 중 0.05 내지 0.35 몰로 포함하는 것이 바람직하다.
상술한 범위를 만족하면, 제조되는 전극의 내구성을 개선시켜 활성화 또는 전기분해 시, 촉매층 내 루테늄의 손실을 최소화시킬 수 있다.
상기 플래티넘계 전구체는 전기분해용 음극의 촉매층에 플래티넘을 제공하는 물질이다. 상기 플래티넘은 전극의 과전압 현상을 개선시킬 수 있다. 또한, 상기 플래티넘은 전극의 초기 성능과 일정시간 경과한 후의 성능의 편차를 최소화시킬 수 있고, 결과적으로 전극이 별도의 활성화 공정을 수행하지 않게 되거나 최소화시킬 수 있다.
상기 플래티넘계 전구체는 클로로플래티닉산 헥사하이드레이트(H2PtCl6·6H2O), 디아민 디니트로 플래티넘(Pt(NH3)2(NO)2) 및 플래티넘(IV) 클로라이드(PtCl4), 플래티넘(II) 클로라이드(PtCl2), 칼륨 테트라클로로플래티네이트(K2PtCl4), 칼륨 헥사클로로플래티네이트(K2PtCl6)으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 플래티넘(IV) 클로라이드가 바람직하다.
상기 촉매 조성물은 상기 플래티넘계 전구체를 상기 루테늄계 전구체 1 몰에 대하여, 0.01 내지 0.7 몰 또는 0.02 내지 0.5 몰로 포함할 수 있으며, 이 중 0.02 내지 0.5 몰로 포함하는 것이 바람직하다.
상술한 범위를 만족하면, 전극의 과전압 현상을 현저하게 개선시킬 수 있다. 또한, 전극의 초기 성능과 일정시간 경과한 후의 성능을 일정하게 유지할 수 있으므로, 전극의 활성화 공정이 불필요하다. 이에 따라, 전극의 활성화 공정에 소요되는 시간 및 비용을 절감시킬 수 있다.
상기 아민계 화합물은 나노 입자 등을 제조할 때 첨가물로 투입하여 입자상을 작게 해주는 역할을 하는 것으로 알려져 있고, 전극 코팅에서도 산화루테늄 결정상을 작게 만들어주는 효과를 보인다. 또한 상기 촉매 조성물이 아민계 화합물을 포함함으로써, 세륨의 침상구조의 크기를 증대시켜 형성된 세륨 네트워크 구조가 루테늄 입자를 보다 단단하게 고정시켜주는 역할을 하게 되어 전극의 내구성을 개선시킨다. 그리고, 결과적으로 전극이 오랜 시간 작동 시에도 전극의 박리 현상을 현저히 줄일 수 있는 효과가 있다.
상기 촉매 조성물은 상기 루테늄계 전구체 1 몰에 대하여, 상기 아민계 화합물을 0.5 내지 1 몰 또는 0.6 내지 0.9 몰로 포함할 수 있고, 이 중 0.6 내지 0.9 몰로 포함하는 것이 바람직하다.
상술한 함량을 만족하면, 상기 아민계 화합물은 전극의 활성화 이후 또는 전기분해 시에, 아민계 화합물을 사용하지 않았을 때보다 세륨 원소를 포함하는 입자의 구조를 빠르게 변화시켜 촉매층 내에서 네트워크를 형성시킬 수 있고, 결과적으로 전극의 내구성을 개선시킬 수 있다. 구체적으로는 상기 아민계 화합물은 세륨을 포함하는 입자의 침상 구조를 증대시켜 전극의 내구성을 개선시킬 수 있다.
상기 아민계 화합물은 우레아인 것이 바람직하다. 우레아를 사용할 경우, 다른 아민계 화합물은 사용한 것에 비해, 코팅액의 안정성 및 안전성이 우수하며, 대면적으로 전극을 제조할 때에도 유해물질 및 냄새의 발생이 적다는 장점이 있다.
본 발명의 제조방법에 있어서, 상기 코팅 단계를 수행하기 전에 상기 금속 기재를 전처리하는 단계를 포함할 수 있다.
상기 전처리는 금속 기재를 화학적 식각, 블라스팅 또는 열 용사하여 상기 금속 기재 표면에 요철을 형성시키는 것일 수 있다.
상기 전처리는 금속 기재의 표면을 샌드 블라스팅하여 미세 요철을 형성시키고, 염 처리 또는 산처리하여 수행할 수 있다. 예를 들어 금속 기재의 표면을 알루미나로 샌드 블라스팅하여 요철을 형성하고, 황산 수용액에 침지시키고, 세척 및 건조하여 금속 기재의 표면에 세세한 요철이 형성되도록 전처리할 수 있다.
상기 도포는 상기 촉매 조성물이 금속 기재 상에 고르게 도포될 수 있다면 특별히 제한하지 않고 당업계에서 공지된 방법으로 수행할 수 있다.
상기 도포는 닥터 블레이드, 다이캐스팅, 콤마 코팅, 스크린 프린팅, 스프레이 분사, 전기방사, 롤코팅 및 브러슁으로 이루어진 군에서 선택되는 어느 하나의 방법으로 수행될 수 있다.
상기 건조는 50 내지 300℃에서 5 내지 60 분 동안 수행할 수 있으며, 50 내지 200℃에서 5 내지 20 분 동안 수행하는 것이 바람직하다.
상술한 조건을 만족하면, 용매는 충분히 제거될 수 있으면서, 에너지 소비는 최소화할 수 있다.
상기 소성은 400 내지 600℃에서 1시간 이하 동안 수행할 수 있으며, 450 내지 550℃에서 5 내지 30 분 동안 수행하는 것이 바람직하다.
상기 소성은 금속 전구체를 산화물로 전환시키는 역할을 수행한다. 소성이 상술한 조건을 만족하면, 촉매층 내 불순물은 용이하게 제거되면서, 금속 기재의 강도에는 영향을 미치지 않을 수 있다.
한편, 상기 코팅은 금속 기재의 단위 면적(㎡) 당 루테늄 기준으로 10 g 이상이 되도록 도포, 건조 및 소성을 순차적으로 반복하여 수행할 수 있다. 즉, 본 발명의 다른 일실시예에 따른 제조방법은 금속 기재의 적어도 일면 상에 상기 촉매 조성물을 도포, 건조 및 소성한 후, 첫 번째 촉매 조성물을 도포한 금속 기재의 일면 상에 다시 도포, 건조 및 소성하는 코팅을 반복해서 수행할 수 있다. 상기 반복은 5 내지 20회 수행되는 것일 수 있다.

Claims (10)

  1. 메쉬 구조를 갖는 금속 기재층; 및
    루테늄계 산화물, 세륨계 산화물, 플래티넘계 산화물 및 아민계 화합물을 포함하는 코팅층을 포함하고,
    상기 코팅층은 상기 메쉬 구조를 구성하는 와이어의 표면 상에 형성되며,
    상기 와이어 개별 단면의 종횡비는 120% 이상인 것인 전기분해용 전극.
  2. 제1항에 있어서, 상기 종횡비는 120 내지 180% 인 것인 전기분해용 전극.
  3. 제1항에 있어서, 상기 금속은 니켈, 티타늄, 탄탈, 알루미늄, 하프늄, 지르코늄, 몰리브덴, 텅스텐, 스테인레스 스틸 또는 이들의 합금인 것인 전기분해용 전극.
  4. 제1항에 있어서, 상기 금속 기재층의 두께는 100 내지 300㎛인 것인 전기분해용 전극.
  5. 메쉬 구조를 구성하는 와이어 개별 단면의 종횡비가 120% 이상이 되도록, 상기 메쉬 구조를 갖는 금속 기재를 평탄화 처리하는 단계;
    상기 평탄화 처리된 금속 기재의 와이어 표면 상에 코팅 조성물을 도포하는 단계; 및
    코팅 조성물이 도포된 금속 기재를 건조 및 소성하여 코팅하는 단계를 포함하며,
    상기 코팅 조성물은 루테늄계 전구체, 세륨계 전구체, 플래티넘계 전구체 및 아민계 화합물을 포함하는 것인 전기분해용 전극의 제조방법.
  6. 제5항에 있어서, 상기 평탄화는 압연 또는 화학적 에칭을 통해 수행되는 것인 전기분해용 전극의 제조방법.
  7. 제5항에 있어서, 상기 금속 기재는 니켈인 것인 전기분해용 전극의 제조방법.
  8. 제5항에 있어서,
    상기 루테늄계 전구체는 루테늄헥사플루오라이드(RuF6), 루테늄(III) 클로라이드(RuCl3), 루테늄(III) 클로라이드 하이드레이트(RuCl3·xH2O), 루테늄(III) 브로마이드(RuBr3), 루테늄(III) 브로마이드 하이드레이트(RuBr3·xH2O), 루테늄 아이오디드(RuI3) 및 초산 루테늄염으로 이루어진 군에서 선택되는 1종 이상이고,
    상기 세륨계 전구체는 세륨(III) 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O), 세륨(IV) 설페이트 테트라하이드레이트(Ce(SO4)2·4H2O) 및 세륨(III) 클로라이드 헵타하이드레이트(CeCl3·7H2O)으로 이루어진 군에서 선택되는 1종 이상이고,
    상기 플래티넘계 전구체는 클로로플래티닉산 헥사하이드레이트(H2PtCl6·6H2O), 디아민 디니트로 플래티넘(Pt(NH3)2(NO)2) 및 플래티넘(IV) 클로라이드(PtCl4), 플래티넘(II) 클로라이드(PtCl2), 칼륨 테트라클로로플래티네이트(K2PtCl4), 칼륨 헥사클로로플래티네이트(K2PtCl6)으로 이루어진 군에서 선택되는 1종 이상인 것인 전기분해용 전극의 제조방법.
  9. 제5항에 있어서, 상기 아민계 화합물은 우레아인 것인 전기분해용 전극의 제조방법.
  10. 제5항에 있어서, 상기 도포, 건조 및 소성은 각기 5 내지 20회 반복 수행되는 것인 전기분해용 전극의 제조방법.
PCT/KR2020/002241 2019-02-22 2020-02-17 전기분해용 전극 WO2020171509A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021530159A JP7121861B2 (ja) 2019-02-22 2020-02-17 電気分解用電極
EP20759250.2A EP3929331A4 (en) 2019-02-22 2020-02-17 ELECTRODE FOR ELECTROLYSIS
US17/311,850 US20220018032A1 (en) 2019-02-22 2020-02-17 Electrode For Electrolysis
CN202080006868.6A CN113242915A (zh) 2019-02-22 2020-02-17 用于电解的电极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190021361A KR102503553B1 (ko) 2019-02-22 2019-02-22 전기분해용 전극
KR10-2019-0021361 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171509A1 true WO2020171509A1 (ko) 2020-08-27

Family

ID=72145118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002241 WO2020171509A1 (ko) 2019-02-22 2020-02-17 전기분해용 전극

Country Status (6)

Country Link
US (1) US20220018032A1 (ko)
EP (1) EP3929331A4 (ko)
JP (1) JP7121861B2 (ko)
KR (1) KR102503553B1 (ko)
CN (1) CN113242915A (ko)
WO (1) WO2020171509A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102664290B1 (ko) * 2020-11-24 2024-05-10 주식회사 엘지화학 전기분해용 전극의 제조방법
US20230243046A1 (en) * 2022-02-01 2023-08-03 Verdagy, Inc. Flattened wire mesh electrode for use in an electrolyzer cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269763A (ja) * 1995-03-28 1996-10-15 Toyo Seikan Kaisha Ltd 電極及びその製造方法
KR19980702132A (ko) * 1995-02-11 1998-07-15 모어랜드 발레리 앤 전해조용 음극
KR20010034837A (ko) * 1998-05-06 2001-04-25 엘테크 시스템스 코포레이션 메시 표면을 가진 레드 전극 구조체
JP2003297967A (ja) 2002-01-29 2003-10-17 Kyocera Corp 高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージ
KR20070061851A (ko) * 2004-09-01 2007-06-14 엘테크 시스템스 코포레이션 낮은 염소 과전압을 위한 pd-함유 코팅
KR20150060978A (ko) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 전해용 전극의 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200304503A (en) * 2002-03-20 2003-10-01 Asahi Chemical Ind Electrode for generation of hydrogen
ES2533254T3 (es) 2002-11-27 2015-04-08 Asahi Kasei Chemicals Corporation Célula electrolítica bipolar, sin intersticios
US7258778B2 (en) * 2003-03-24 2007-08-21 Eltech Systems Corporation Electrocatalytic coating with lower platinum group metals and electrode made therefrom
JP4673628B2 (ja) * 2005-01-12 2011-04-20 ペルメレック電極株式会社 水素発生用陰極
JP4927006B2 (ja) 2008-03-07 2012-05-09 ペルメレック電極株式会社 水素発生用陰極
JP2010037619A (ja) * 2008-08-07 2010-02-18 Tosoh Corp イオン交換膜法電解槽及びその陰極の性能回復方法
EP2390385B1 (en) * 2010-05-25 2015-05-06 Permelec Electrode Ltd. Anode for electrolysis and manufacturing method thereof
GB201309753D0 (en) * 2013-05-31 2013-07-17 Water Fuel Engineering Ltd Electrolysis cell and electrode
KR102349667B1 (ko) * 2017-01-13 2022-01-12 아사히 가세이 가부시키가이샤 전해용 전극, 전해조, 전극 적층체 및 전극의 갱신 방법
EP3575442B1 (en) * 2017-01-26 2021-01-20 Asahi Kasei Kabushiki Kaisha Bipolar electrolyzer for alkaline water electrolysis, and hydrogen production method
CN107376896A (zh) * 2017-06-26 2017-11-24 上海理工大学 一种铈钨钛复合氧化物scr脱硝催化剂及其制备方法
WO2019031753A1 (ko) * 2017-08-11 2019-02-14 주식회사 엘지화학 전해용 전극 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702132A (ko) * 1995-02-11 1998-07-15 모어랜드 발레리 앤 전해조용 음극
JPH08269763A (ja) * 1995-03-28 1996-10-15 Toyo Seikan Kaisha Ltd 電極及びその製造方法
KR20010034837A (ko) * 1998-05-06 2001-04-25 엘테크 시스템스 코포레이션 메시 표면을 가진 레드 전극 구조체
JP2003297967A (ja) 2002-01-29 2003-10-17 Kyocera Corp 高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージ
KR20070061851A (ko) * 2004-09-01 2007-06-14 엘테크 시스템스 코포레이션 낮은 염소 과전압을 위한 pd-함유 코팅
KR20150060978A (ko) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 전해용 전극의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929331A4

Also Published As

Publication number Publication date
JP7121861B2 (ja) 2022-08-18
EP3929331A4 (en) 2022-04-27
US20220018032A1 (en) 2022-01-20
CN113242915A (zh) 2021-08-10
KR20200102845A (ko) 2020-09-01
KR102503553B1 (ko) 2023-02-27
JP2022509659A (ja) 2022-01-21
EP3929331A1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
TWI409364B (zh) 產生氫之陰極
JPWO2003078694A1 (ja) 水素発生用電極
EP3971328B1 (en) Electrode for electrolysis
JP2006193768A (ja) 水素発生用陰極
WO2020171509A1 (ko) 전기분해용 전극
JP2006104502A (ja) 電解用陰極
WO2016104494A1 (ja) 電解用陰極及びその製造方法、並びに、電解用電解槽
KR102576668B1 (ko) 전기분해용 전극
KR102404706B1 (ko) 전기분해용 환원 전극의 활성층 조성물 및 이로 유래된 환원 전극
KR102347983B1 (ko) 전기분해용 환원전극 및 이의 제조방법
KR20200136765A (ko) 전기분해용 전극
WO2022114626A1 (ko) 전기분해용 전극의 제조방법
WO2021060822A1 (ko) 전기분해용 전극
KR102679027B1 (ko) 전기분해용 전극
EP3971327B1 (en) Electrode for electrolysis
WO2021125720A1 (ko) 전기분해용 전극
KR102393900B1 (ko) 전기분해 음극용 코팅액 조성물
KR20200142463A (ko) 전기분해용 전극
KR20210027903A (ko) 전기분해용 전극
KR20200142464A (ko) 전기분해용 전극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759250

Country of ref document: EP

Effective date: 20210922