WO2020171134A1 - シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法 - Google Patents

シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2020171134A1
WO2020171134A1 PCT/JP2020/006609 JP2020006609W WO2020171134A1 WO 2020171134 A1 WO2020171134 A1 WO 2020171134A1 JP 2020006609 W JP2020006609 W JP 2020006609W WO 2020171134 A1 WO2020171134 A1 WO 2020171134A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
polishing
silica
mass
content
Prior art date
Application number
PCT/JP2020/006609
Other languages
English (en)
French (fr)
Inventor
智裕 京谷
栄治 出島
住谷 直子
友寛 加藤
毅 沢井
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72144964&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020171134(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217025935A priority Critical patent/KR20210130146A/ko
Priority to EP20759610.7A priority patent/EP3929155A4/en
Priority to JP2020533047A priority patent/JP6756423B1/ja
Priority to CN202080015562.7A priority patent/CN113474289A/zh
Priority to CN202410521235.9A priority patent/CN118439623A/zh
Publication of WO2020171134A1 publication Critical patent/WO2020171134A1/ja
Priority to US17/406,220 priority patent/US20210380844A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/148Concentration; Drying; Dehydration; Stabilisation; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to silica particles and a manufacturing method thereof, silica sol, a polishing composition, a polishing method, a semiconductor wafer manufacturing method, and a semiconductor device manufacturing method.
  • a polishing method using a polishing liquid As a method of polishing the surface of a material such as a metal or an inorganic compound, a polishing method using a polishing liquid is known. Among them, final finish polishing of prime silicon wafers for semiconductors and recycled silicon wafers, and chemical mechanical polishing (CMP) such as flattening of interlayer insulating film at the time of semiconductor device manufacturing, formation of metal plugs, and formation of embedded wiring. ), the surface condition greatly affects the semiconductor characteristics, and therefore the surfaces and end faces of these components are required to be polished with extremely high precision.
  • CMP chemical mechanical polishing
  • colloidal silica is widely used as the abrasive grains as the main component.
  • Colloidal silica is produced by thermal decomposition of silicon tetrachloride (fumed silica, etc.), by deionization of alkali silicates such as water glass, and by hydrolysis and condensation reaction of alkoxysilane (generally, " The so-called "sol-gel method”) is known.
  • Patent Documents 1 to 3 disclose methods for producing silica particles by a hydrolysis reaction and a condensation reaction of an alkoxysilane.
  • Patent Document 4 discloses a method of producing silica particles by performing a heat treatment under basicity after a hydrolysis reaction and a condensation reaction of an alkoxysilane.
  • Patent Document 5 discloses a method for producing silica particles by performing a heat treatment under acidic conditions after a hydrolysis reaction and a condensation reaction of an alkoxysilane.
  • silanol groups on the silica particle surface and the silanol groups on the silicon wafer surface are dehydrated and condensed to form a siloxane bond. If polishing proceeds by this mechanism, it means that a certain amount of silanol groups is required on the surface of silica particles. On the other hand, when the silanol groups are excessive, water molecules hydrogen-bonded to the silanol groups form a film and cover the surface of the silica particles, reducing the chances of contact between the silica particles and the silicon wafer, making polishing impossible. End up.
  • the silanol groups are excessive, the siloxane bond is strengthened and the amount of silica particles remaining on the surface of the silicon wafer increases, deteriorating the quality of the silicon wafer. Further, if the silanol group is excessive, it becomes a reaction active point and the storage stability is deteriorated. In this way, it is also required that the content of silanol groups existing on the surface be kept below a certain amount.
  • silica particles in the silica sol obtained by the hydrolysis reaction and the condensation reaction of the alkoxysilane have a sufficiently high degree of condensation. It is considered that the reason is that the hydrolysis reaction and the condensation reaction proceed at the same time, and the alkoxy group or silanol group tends to remain.
  • Silica particles having a low degree of condensation do not sufficiently form a member ring formed by connecting SiO 4 tetrahedra, the member ring size is small, the strain is large, and the mechanical strength is poor.
  • silica particles having such a low degree of condensation When silica particles having such a low degree of condensation are used for polishing, the silica particles are broken during polishing, and the broken silica particles adhere to the object to be polished, which adversely affects the polishing. Further, since silica particles having a low degree of condensation have a large amount of silanol groups remaining, the silanol groups remaining during storage serve as reaction active points, deteriorating storage stability.
  • the method of producing a silica sol by hydrolysis reaction and condensation reaction of alkoxysilane disclosed in Patent Documents 1 to 3 is a treatment for increasing the degree of condensation of silica particles, such as subjecting the obtained silica sol to pressure heating treatment. It is considered that the obtained silica particles have insufficient member ring formation, large strain, poor mechanical strength, and poor storage stability. Similarly, the silica particles obtained by the methods disclosed in Patent Documents 4 and 5 are also inferior in mechanical strength and in storage stability, and the heat treatment under acidic or alkaline conditions causes aggregation of silica particles. And may cause destruction of the silica skeleton.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide silica particles having excellent polishing characteristics and storage stability, a method for producing the same, a silica sol, and a polishing composition. .. Another object of the present invention is to provide a polishing method, a semiconductor wafer manufacturing method, and a semiconductor device manufacturing method, which are excellent in productivity of an object to be polished.
  • silica particles particularly silica particles obtained by a hydrolysis reaction and a condensation reaction of an alkoxysilane, cannot be said to have sufficient polishing characteristics and storage stability.
  • the present inventors calculated from the content of surface silanol groups measured by the Sears method and the content of bulk silanol groups measured by solid 29 Si-DD/MAS-NMR. By optimizing the proportion of silanol groups present on the surface, the inventors have found that the polishing characteristics and storage stability of silica particles are improved, and have completed the present invention.
  • the gist of the present invention is as follows. [1] When the content of surface silanol groups measured by the Sears method is x mass% and the content of bulk silanol groups measured by solid 29 Si-DD/MAS-NMR is y mass%, (x/y) Silica particles in which the ratio of silanol groups present on the surface represented by ⁇ 100% is 15% or less. [2] The silica particles according to [1], wherein the ratio of silanol groups present on the surface is 10% or less. [3] The silica particles according to [1] or [2], wherein the ratio of silanol groups present on the surface is 1% or more.
  • silica particles according to [7], wherein the tetraalkoxysilane condensate contains a tetramethoxysilane condensate [9] A method for producing silica particles, which comprises subjecting the silica particles to pressure heating treatment to obtain the silica particles according to any one of [1] to [8]. [10] A silica sol containing the silica particles according to any one of [1] to [8]. [11] The silica sol according to the above [10], wherein the content of the silica particles is 3% by mass to 50% by mass in the total amount of the silica sol. [12] A polishing composition containing the silica sol according to the above [10] or [11].
  • a method for producing a semiconductor wafer comprising a step of polishing with the polishing composition according to the above [12].
  • a method for manufacturing a semiconductor device comprising a step of polishing with the polishing composition according to [12].
  • the silica particles of the present invention, the silica particles obtained by the production method of the present invention, the silica sol of the present invention, and the polishing composition of the present invention have excellent polishing characteristics and storage stability. Further, the polishing method of the present invention, the method of manufacturing a semiconductor wafer of the present invention, and the method of manufacturing a semiconductor device of the present invention are excellent in the productivity of the object to be polished.
  • the content of surface silanol groups of silica particles is a value measured by the Sears method. Specifically, the measurement is performed under the following conditions. A silica sol corresponding to 1.5 g of silica particles is collected, and pure water is added to make the liquid volume 90 mL. In a 25°C environment, add 0.1 mol/L hydrochloric acid aqueous solution until pH becomes 3.6, add 30 g of sodium chloride, and gradually add pure water to completely dissolve sodium chloride, and finally test. Pure water is added until the total amount of the liquid reaches 150 mL to obtain a test liquid.
  • the obtained test solution was placed in an automatic titrator, and a 0.1 mol/L sodium hydroxide aqueous solution was added dropwise to it to adjust the pH to 4.0 to 9.0.
  • the titer A (mL) of the aqueous solution is measured.
  • the consumption V (mL) of a 0.1 mol/L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0 was calculated.
  • the content x (mass %) of the surface silanol groups of the silica particles is calculated using the following formula (2).
  • V (A ⁇ f ⁇ 100 ⁇ 1.5)/(W ⁇ C) (1)
  • x (B ⁇ 17/M) ⁇ 100
  • the content of the surface silanol groups of the silica particles is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 1.4% by mass or less, more preferably 1.0% by mass or less. ..
  • the silica particles When the content of the surface silanol groups of the silica particles is 0.01% by mass or more, the silica particles have an appropriate surface repulsion and the silica sol has excellent dispersion stability. Further, when the content of the surface silanol groups of the silica particles is 1.4% by mass or less, the silica particles have an appropriate surface repulsion, and the aggregation of the silica particles can be suppressed.
  • the content of bulk silanol groups in the silica particles is a value measured by solid-state 29 Si-DD/MAS-NMR. Specifically, the measurement is performed under the following conditions. A silica sol containing silica particles is freeze-dried to obtain a measurement sample. A nuclear magnetic resonance apparatus of 400 MHz is used, a CP/MAS probe having a diameter of 7.5 mm is attached, the observation nucleus is 29 Si, and measurement is performed by the DD/MAS method. Measurement conditions, 79.43MHz the 29 Si resonance frequency, 29 Si90 ° pulse width 5 ⁇ seconds, 1 H resonance frequency 399.84MHz, 50 kHz and 1 H decoupling frequency, 4 kHz the MAS speed 30 the spectral width.
  • the measurement temperature is 49 kHz and the measurement temperature is 23°C.
  • optimization calculation is performed by the nonlinear least squares method using the center position, height, and half width of the peak shape created by mixing Lorentz waveform and Gaussian waveform as variable parameters. ..
  • Bulk silanol using the following formula (3) from the obtained Q1 content rate, Q2 content rate, Q3 content rate, and Q4 content rate for the four structural units of Q1, Q2, Q3, and Q4.
  • the content of the bulk silanol group of the silica particles is measured by the DD/MAS method (Dipolar Decoupling/Magic Angle Spinning), not by the CP/MAS method (Cross Polarization/Magic Angle Spinning). ..
  • the CP/MAS method since 1 H sensitizes and detects Si existing in the vicinity, the peaks obtained accurately measure the Q1 content rate, Q2 content rate, Q3 content rate, and Q4 content rate. Not reflected in.
  • the DD/MAS method does not have the sensitizing effect like the CP/MAS method, the obtained peak accurately reflects the Q1 content rate, the Q2 content rate, the Q3 content rate, and the Q4 content rate. Suitable for quantitative analysis.
  • the structural units are classified into Q1 to Q4 according to the degree of connection of the SiO 4 tetrahedra, and are as follows.
  • Q1 via the oxygen around the Si means a structural unit having a single Si, SiO 4 tetrahedrons be linked with one other SiO 4 tetrahedra, solid 29 Si-DD / MAS-NMR It has a peak near -80 ppm in the spectrum.
  • Q2 via the oxygen around the Si means a structural unit having two Si, SiO 4 tetrahedrons be linked with the other two SiO 4 tetrahedral solid 29 Si-DD / MAS-NMR It has a peak near -91 ppm in the spectrum.
  • Q3 via the oxygen around the Si means a structural unit having three Si, SiO 4 tetrahedrons be linked with the other three SiO 4 tetrahedra, solid 29 Si-DD / MAS-NMR It has a peak near ⁇ 101 ppm in the spectrum.
  • Q4 via the oxygen around the Si means a structural unit having four Si, SiO 4 tetrahedrons be linked with other four SiO 4 tetrahedra, solid 29 Si-DD / MAS-NMR It has a peak near ⁇ 110 ppm in the spectrum.
  • the content of the bulk silanol group in the silica particles is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and preferably 8.0% by mass or less, more preferably 7.5% by mass or less. ..
  • the silica particles can be easily produced.
  • the content of the bulk silanol groups of the silica particles is 8 mass% or less, the formation of the member ring is promoted while sharing the oxygen of the SiO 4 tetrahedron, the member ring size becomes large, the number of defects is small, and the silica is Excellent mechanical strength of particles and excellent polishing characteristics of the polishing composition.
  • the ratio of silanol groups present on the surface of the silica particles is x mass% of the content of surface silanol groups measured by the Sears method, and y mass of the content of bulk silanol groups measured by solid 29 Si-DD/MAS-NMR. When expressed as %, it is represented by (x/y) ⁇ 100%.
  • the ratio of silanol groups existing on the surface of the silica particles is preferably 1% or more, more preferably 2% or more, because the silica particles can be easily produced.
  • the proportion of silanol groups present on the surface of the silica particles is such that the formation of a member ring is promoted while sharing the oxygen of the SiO 4 tetrahedron while maintaining the amorphous structure, and the number of defects of the silica particles is small, and the mechanical properties of the silica particles are small. It is 15% or less, preferably 10% or less, because it has excellent strength and excellent polishing characteristics of the polishing composition.
  • the proportion of silanol groups existing on the surface of silica particles can be set in a desired range by adjusting the conditions of the hydrolysis reaction and condensation reaction of the alkoxysilane and the conditions of the subsequent treatment.
  • the silica sol obtained by the hydrolysis reaction and condensation reaction of the alkoxysilane is heated under pressure; the hydrolysis reaction and the condensation reaction are performed separately; and the reaction accelerator is added in the hydrolysis reaction and the condensation reaction. And the like.
  • the content of surface silanol groups of silica particles and the content of bulk silanol groups of silica particles are easy to control, and the proportion of silanol groups present on the surface of silica particles can be precisely controlled. Since it is possible, the method of subjecting the silica sol obtained by the hydrolysis reaction and condensation reaction of the alkoxysilane to pressure heating treatment is preferable.
  • the average primary particle diameter of the silica particles is preferably 5 nm or more, more preferably 10 nm or more, preferably 100 nm or less, more preferably 60 nm or less.
  • the storage stability of the silica sol is excellent.
  • the average primary particle diameter of the silica particles is 100 nm or less, the surface roughness and scratches of the object to be polished represented by a silicon wafer can be reduced and the sedimentation of silica particles can be suppressed.
  • the average primary particle diameter of silica particles can be set within a desired range by known conditions and methods.
  • the average secondary particle diameter of the silica particles is preferably 10 nm or more, more preferably 20 nm or more, and preferably 200 nm or less, more preferably 100 nm or less.
  • the average secondary particle diameter of the silica particles is 10 nm or more, the removal property of particles and the like in the cleaning after polishing is excellent, and the storage stability of the silica sol is excellent.
  • the average secondary particle diameter of the silica particles is 200 nm or less, the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing can be reduced, the removability of particles and the like in the cleaning after polishing can be excellent, and silica can be used. The sedimentation of particles can be suppressed.
  • the average secondary particle diameter of silica particles is measured by the DLS method. Specifically, the measurement is performed using a dynamic light scattering particle size measuring device.
  • the average secondary particle diameter of silica particles can be set within a desired range by known conditions and methods.
  • the cv value of the silica particles is preferably 15 or more, more preferably 20 or more, even more preferably 25 or more, and preferably 50 or less, more preferably 40 or less, still more preferably 35 or less.
  • the polishing rate for an object to be polished represented by a silicon wafer is excellent, and the productivity of the silicon wafer is excellent.
  • the cv value of the silica particles is 50 or less, the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing can be reduced, and the removability of particles and the like in the cleaning after polishing is excellent.
  • the association ratio of the silica particles is preferably 1.0 or higher, more preferably 1.1 or higher, and is preferably 4.0 or lower, more preferably 3.0 or lower.
  • the association ratio of the silica particles is 1.0 or more, the polishing rate for an object to be polished represented by a silicon wafer is excellent and the productivity of the silicon wafer is excellent.
  • the association ratio of the silica particles is 4.0 or less, the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing can be reduced and the aggregation of silica particles can be suppressed.
  • the content of metal impurities in silica particles is preferably 5 ppm or less, more preferably 2 ppm or less.
  • ppm showing the said metal impurity content rate means mass ppm.
  • metal impurities adhere to and contaminate the surface of the object to be polished, which adversely affects the wafer characteristics and diffuses inside the wafer to deteriorate the quality.
  • the performance of the manufactured semiconductor device is significantly reduced.
  • metal impurities are present in the silica particles, a coordinated interaction occurs between the surface silanol groups exhibiting acidity and the metal impurities, changing the chemical properties (acidity etc.) of the surface silanol groups, It changes the three-dimensional environment of the particle surface (eg, the ease of aggregation of silica particles) and affects the polishing rate.
  • the content of metallic impurities in silica particles is measured by high frequency inductively coupled plasma mass spectrometry (ICP-MS). Specifically, weigh accurately a silica sol containing 0.4 g of silica particles, add sulfuric acid and hydrofluoric acid, heat, dissolve, and evaporate, so that the total amount of the remaining sulfuric acid droplets will be exactly 10 g. Is added to prepare a test solution, and measurement is performed using a high frequency inductively coupled plasma mass spectrometer.
  • the target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver, nickel, and the total content of these metals is defined as the metal impurity content. To do.
  • the metal impurity content rate of the silica particles can be 5 ppm or less by performing a hydrolysis reaction and a condensation reaction using alkoxysilane as a main raw material to obtain silica particles.
  • alkoxysilane as a main raw material to obtain silica particles.
  • Examples of the shape of the silica particles include spherical shape, chain shape, cocoon shape (also referred to as hump shape and peanut shape), and irregular shape (eg, wart shape, bent shape, branched shape).
  • spherical shape chain shape
  • cocoon shape also referred to as hump shape and peanut shape
  • irregular shape eg, wart shape, bent shape, branched shape.
  • a spherical shape is preferable, and the polishing rate for the object to be polished represented by a silicon wafer is preferable. If it is desired to increase the height, a different shape is preferable.
  • the silica particles according to the present embodiment preferably have no pores because they are excellent in mechanical strength and storage stability.
  • the presence or absence of pores in the silica particles is confirmed by BET multipoint analysis using an adsorption isotherm using nitrogen as an adsorption gas.
  • the silica particles according to the present embodiment preferably have an alkoxysilane condensate as a main component, and more preferably have a tetraalkoxysilane condensate as a main component, because they are excellent in mechanical strength and storage stability.
  • the main component means that it is 50% by mass or more based on all components constituting the silica particles.
  • tetraalkoxysilane condensate examples include condensates of tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane and the like. These tetraalkoxysilane condensates may be used alone or in combination of two or more. Among these tetraalkoxysilane condensates, hydrolysis reaction is fast, unreacted substances are hard to remain, excellent productivity, and stable silica sol can be easily obtained. Therefore, tetramethoxysilane condensate, tetraethoxysilane Condensates are preferred, and tetramethoxysilane condensates are more preferred.
  • silica particles containing an alkoxysilane condensate as a main component it is preferable to use alkoxysilane as a main raw material.
  • alkoxysilane it is preferable to use tetraalkoxysilane as a main raw material.
  • the main raw material means that it is 50% by mass or more in all the raw materials constituting the silica particles.
  • Method for producing silica particles examples include a method by thermal decomposition of silicon tetrachloride, a method by deionization of alkali silicate such as water glass, a method by hydrolysis reaction and condensation reaction of alkoxysilane, and the like.
  • the method by hydrolysis reaction and condensation reaction of alkoxysilane is preferable because the content of metal impurities can be reduced and the shape of silica particles can be easily controlled. More preferred is a method involving hydrolysis reaction and condensation reaction of tetraalkoxysilane.
  • tetraalkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, hydrolysis reaction is fast, unreacted substances are unlikely to remain, excellent productivity, and stable silica sol can be easily obtained. Therefore, tetramethoxysilane and tetraethoxysilane are preferable, and tetramethoxysilane is preferable. Methoxysilane is more preferred.
  • a raw material other than tetraalkoxysilane such as a low condensate of tetraalkoxysilane may be used, but since it is excellent in reactivity, all the raw materials constituting the silica particles have tetraalkoxysilane. It is preferable that the raw materials other than tetraalkoxysilane are 50% by mass or more and 50% by mass or less, the tetraalkoxysilane is 90% by mass or more, and the raw materials other than tetraalkoxysilane are 10% by mass or less. ..
  • solvent or dispersion medium used in the reaction during the hydrolysis reaction and the condensation reaction examples include water, methanol, ethanol, propanol, isopropanol, ethylene glycol and the like. These solvents or dispersion media may be used alone or in combination of two or more. Among these solvents or dispersion media, those used as by-products in the hydrolysis reaction and condensation reaction are the same as those produced as by-products, and water and alcohol are preferable, and water and methanol are more preferable because they are excellent in convenience in production. ..
  • the hydrolysis reaction and the condensation reaction When carrying out the hydrolysis reaction and the condensation reaction, it may be in the presence of a catalyst or in the absence of a catalyst, but the presence of a catalyst is preferred because the hydrolysis reaction and the condensation reaction can be promoted.
  • the catalyst include acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, formic acid, and citric acid, and alkali metals such as ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, and tetramethylammonium hydroxide. Examples thereof include catalysts.
  • an alkaline catalyst is preferable because it is excellent in catalytic action and the particle shape can be easily controlled, and it is possible to suppress the mixing of metal impurities, and since the volatility is high and the removability after the condensation reaction is excellent.
  • Alkaline catalysts are preferred, and ammonia is more preferred.
  • the silica particles obtained may be subjected to pressure heating treatment. preferable.
  • the pressure of the pressure heat treatment is preferably 0.10 MPa or more, more preferably 0.14 MPa or more, preferably 2.3 MPa or less, more preferably 1.0 MPa or less.
  • the pressure of the pressure heat treatment is 0.10 MPa or more, the degree of condensation of silica particles can be increased.
  • silica particles can be produced without significantly changing the average primary particle diameter, the average secondary particle diameter, the cv value, and the association ratio, and the silica sol. Excellent dispersion stability.
  • the temperature of the pressure heat treatment is preferably 100° C. or higher, more preferably 110° C. or higher, preferably 220° C. or lower, more preferably 180° C. or lower.
  • the temperature of the pressure heat treatment is 100° C. or higher, the degree of condensation of silica particles can be increased.
  • the temperature of the pressure heat treatment is 220° C. or lower, the silica particles can be produced without significantly changing the average primary particle diameter, the average secondary particle diameter, the cv value, and the association ratio, and the dispersion stability of the silica sol is stable. Excellent in performance.
  • the time of the pressure heat treatment is preferably 0.25 hours or longer, more preferably 0.5 hours or longer, preferably 6 hours or shorter, and more preferably 4 hours or shorter.
  • the pressure heat treatment time is 0.25 hours or more, the degree of condensation of silica particles can be increased.
  • the time of the pressure heating treatment is 6 hours or less, the silica particles can be produced without largely changing the average primary particle diameter, the average secondary particle diameter, the cv value, and the association ratio, and the dispersion stability of the silica sol is stable. Excellent in performance.
  • the heat treatment under pressure may be performed in air or in a solvent or a dispersion medium, but it is preferable to perform the treatment in a solvent or a dispersion medium because the dispersion stability of silica sol is excellent, and the average primary Since it is possible to precisely control the proportion of silanol groups existing on the surface of silica particles without significantly changing the particle size, average secondary particle size, cv value, and association ratio, it is carried out in an aqueous dispersion. Is more preferable.
  • the heat treatment under pressure may be carried out immediately after the completion of the hydrolysis reaction and the condensation reaction. Of the components in the reaction solution after the hydrolysis reaction and the condensation reaction, unnecessary components were removed and necessary components were added. It may be carried out later, but since the operating pressure can be kept low, it should be carried out after removing unnecessary components from the components in the reaction solution after the hydrolysis reaction and condensation reaction and adding the necessary components. Is preferable, and it is more preferable to perform after removing the organic compound and adding water.
  • the pH when the heat treatment under pressure is performed in an aqueous dispersion is preferably 6.0 or higher, more preferably 6.5 or higher, and preferably 8.0 or lower, more preferably 7.8 or lower.
  • the pH of the silica sol being 6.0 or more can suppress gelation of the silica sol.
  • the pH is 8.0 or less when the pressure heat treatment is performed in the aqueous dispersion, structural destruction due to dissolution is prevented, and the average primary particle diameter, average secondary particle diameter, cv value, association ratio. It is possible to precisely control the proportion of silanol groups present on the surface of the silica particles without significantly changing the particle size, it is possible to suppress the aggregation of the silica particles, and the dispersion stability of the silica sol is excellent.
  • the silica sol according to this embodiment preferably contains the silica particles according to this embodiment and a solvent or a dispersion medium.
  • Examples of the solvent or dispersion medium of silica sol include water, methanol, ethanol, propanol, isopropanol, ethylene glycol and the like.
  • the solvent or dispersion medium of these silica sols may be used alone or in combination of two or more.
  • water and alcohol are preferable, and water is more preferable, because they have excellent affinity with silica particles.
  • the content of silica particles in the silica sol is preferably 3% by mass or more, more preferably 4% by mass or more, further preferably 5% by mass or more, and preferably 50% by mass or less, and 40% by mass or less, based on the total amount of the silica sol. Is more preferable, and 30% by mass or less is further preferable.
  • the polishing rate for the object to be polished represented by a silicon wafer is excellent.
  • the content of the silica particles in the silica sol is 50% by mass or less, aggregation of the silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent.
  • the content of the solvent or the dispersion medium in the silica sol is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and preferably 97% by mass or less, and 96% by mass in the total amount of the silica sol. % Or less is more preferable, and 95% by mass or less is further preferable.
  • the content of the solvent or the dispersion medium in the silica sol is 50% by mass or more, aggregation of silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent.
  • the content of the solvent or dispersion medium in the silica sol is 97% by mass or less, the polishing rate for the object to be polished represented by a silicon wafer is excellent.
  • the content of the silica particles or the solvent or the dispersion medium in the silica sol is desired by removing unnecessary components from the components in the reaction solution after completion of the hydrolysis reaction and the condensation reaction and adding the necessary components. It can be set in the range of.
  • the silica sol according to the present embodiment is, in addition to silica particles and a solvent or a dispersion medium, within a range that does not impair the performance thereof, if necessary, an oxidizing agent, a preservative, a fungicide, a pH adjusting agent, a pH buffering agent, an interface. It may also contain other components such as activators, chelating agents, antibacterial/biocides. In particular, since the silica sol is excellent in storage stability, it is preferable to include an antibacterial/biocide in the silica sol.
  • antibacterial/biocide examples include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, methyl p-hydroxybenzoate, sodium chlorite and the like. .. These antibacterial/biocides may be used alone or in combination of two or more. Among these antibacterial/biocide agents, hydrogen peroxide is preferable because it has excellent affinity with silica sol. Biocides also include what are commonly referred to as fungicides.
  • the content of the antibacterial/biocide agent in the silica sol is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and further preferably 10% by mass or less, and 1% by mass or less in the total amount of the silica sol. More preferable.
  • the content of the antibacterial/biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent.
  • the content of the antibacterial/biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.
  • the pH of the silica sol is preferably 6.0 or higher, more preferably 6.5 or higher, and is preferably 9.0 or lower, more preferably 7.8 or lower.
  • the pH of the silica sol can be set in a desired range by adding a pH adjuster.
  • the reaction liquid after completion of the hydrolysis reaction and condensation reaction may be used as it is, and unnecessary components are removed from the components in the reaction liquid after completion of the hydrolysis reaction and condensation reaction. Alternatively, it may be produced by adding necessary components.
  • a filtration step may be included in order to remove coarse particles and to avoid aggregation due to fine particles.
  • the filtration method include natural filtration under normal pressure, reduced pressure filtration, pressure filtration, and centrifugal filtration. Filtration may be performed at any timing and any number of times, but it is preferable to perform filtration immediately before preparation of the polishing composition, because the polishing composition has excellent storage stability and polishing characteristics.
  • the polishing composition according to this embodiment preferably contains the silica sol according to this embodiment and further contains a water-soluble polymer.
  • the water-soluble polymer enhances the wettability of the polishing composition with respect to the object to be polished represented by a silicon wafer.
  • the water-soluble polymer is preferably a polymer having a functional group having a high water affinity, and the functional group having a high water affinity has a high affinity with the silanol group on the surface of the silica particles, so that Thus, the silica particles and the water-soluble polymer are stably dispersed closer to each other. Therefore, the effects of the silica particles and the water-soluble polymer function synergistically when polishing an object to be polished represented by a silicon wafer.
  • water-soluble polymers examples include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, polymers having a polyoxyalkylene structure, and the like.
  • Examples of the cellulose derivative include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethylmethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like.
  • Examples of the copolymer having a polyvinylpyrrolidone skeleton include a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
  • Examples of the polymer having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and a copolymer of ethylene oxide and propylene oxide.
  • water-soluble polymers may be used alone or in combination of two or more.
  • a cellulose derivative is preferable because it has a high affinity with the surface silanol groups of silica particles and acts synergistically to give good hydrophilicity to the surface of the object to be polished, and thus hydroxyethyl cellulose is preferable. Is more preferable.
  • the mass average molecular weight of the water-soluble polymer is preferably 1,000 or more, more preferably 5,000 or more, further preferably 10,000 or more, and preferably 3,000,000 or less, and 2,000,000 or less. Is more preferable, and 1,000,000 or less is further preferable.
  • the weight average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved.
  • the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with silica sol is excellent, and the polishing rate for an object to be polished represented by a silicon wafer is excellent.
  • ⁇ Mass-average molecular weight of water-soluble polymer is measured by size exclusion chromatography under the condition of 0.1 mol/L NaCl solution as mobile phase in terms of polyethylene oxide.
  • the content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass or more, more preferably 0.05% by mass or more, and further preferably 10% by mass or less, based on the total amount of the polishing composition. % Or less is more preferable.
  • the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Further, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, the aggregation of silica particles during the preparation of the polishing composition can be suppressed.
  • the polishing composition according to the present embodiment in addition to the silica sol and the water-soluble polymer, a basic compound, a polishing accelerator, a surfactant, a hydrophilic compound, a preservative, if necessary, within a range that does not impair the performance thereof.
  • a basic compound such as an antifungal agent, a pH adjusting agent, a pH buffering agent, a surfactant, a chelating agent, and an antibacterial/biocide may be contained.
  • chemical polishing (chemical etching) can be performed by giving a chemical action to the surface of an object to be polished represented by a silicon wafer, and the synergistic effect with the surface silanol groups of silica particles allows the object represented by a silicon wafer to be chemically synthesized. Since the polishing rate of the polishing body can be improved, it is preferable to include a basic compound in the polishing composition.
  • Examples of the basic compound include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, ammonia and the like. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, high tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogencarbonate, and ammonium carbonate are preferred because they have high water solubility and excellent affinity with silica particles and water-soluble polymers. , Ammonia, tetramethylammonium hydroxide and tetraethylammonium hydroxide are more preferable, and ammonia is still more preferable.
  • the content of the basic compound in the polishing composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 5% by mass or less, based on the total amount of the polishing composition. The following are more preferable.
  • the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing rate of the object to be polished represented by a silicon wafer can be improved.
  • the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.
  • the pH of the polishing composition is preferably 8.0 or higher, more preferably 9.0 or higher, and preferably 12.0 or lower, more preferably 11.0 or lower.
  • the pH of the polishing composition can be set in a desired range by adding a pH adjuster.
  • the polishing composition according to the present embodiment can be obtained by mixing the silica sol according to the present embodiment, and, if necessary, a water-soluble polymer and other components, but once in consideration of storage and transportation, a high concentration is obtained. Alternatively, it may be diluted with water or the like immediately before polishing.
  • Silica particles according to the present embodiment silica particles obtained by the production method according to the present embodiment, silica sol according to the present embodiment, the polishing composition according to the present embodiment can be suitably used for polishing applications, for example, Polishing of semiconductor materials such as silicon wafers, polishing of electronic materials such as hard disk substrates, polishing in the planarization process when manufacturing integrated circuits (chemical mechanical polishing), polishing of synthetic quartz glass substrates used for photomasks and liquid crystals It can be used for polishing a magnetic disk substrate or the like, and particularly preferably for polishing a silicon wafer or chemical mechanical polishing.
  • the polishing method according to this embodiment is preferably a method of polishing using the polishing composition according to this embodiment.
  • a specific polishing method for example, a method of pressing the surface of a silicon wafer against a polishing pad, dropping the polishing composition according to this embodiment onto the polishing pad, and polishing the surface of the silicon wafer can be mentioned.
  • the method for producing a semiconductor wafer according to this embodiment is a method including a step of polishing with the polishing composition according to this embodiment, and the specific polishing method is as described above.
  • Examples of semiconductor wafers include silicon wafers and compound semiconductor wafers.
  • the method for manufacturing a semiconductor device according to this embodiment is a method including a step of polishing with the polishing composition according to this embodiment, and the specific polishing method is as described above.
  • association ratio average secondary particle diameter/average primary particle diameter (6)
  • the pH electrode was removed from the tall beaker, and 30 g of sodium chloride was added while continuously stirring with a magnetic stirrer, and pure water was gradually added to completely dissolve the sodium chloride. Pure water was added until the total amount of the test liquid finally reached 150 mL, and the test liquid was stirred for 5 minutes by a magnetic stirrer to obtain a test liquid.
  • the tall beaker containing the obtained test solution was set in an automatic titrator "COM-1600" (manufactured by Hiranuma Sangyo Co., Ltd.), and the pH electrode and the burette attached to the apparatus were inserted into the tall beaker. While stirring the test solution with a magnetic stirrer, a 0.1 mol/L sodium hydroxide aqueous solution was added dropwise through a buret to obtain a 0.1 mol/L sodium hydroxide required for the pH to change from 4.0 to 9.0. The titer A (mL) of the aqueous solution was measured.
  • the consumption V (mL) of a 0.1 mol/L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0 was calculated.
  • the content x (mass %) of the surface silanol groups of the silica particles was calculated using the following formula (2).
  • V (A ⁇ f ⁇ 100 ⁇ 1.5)/(W ⁇ C) (1)
  • x (B ⁇ 17/M) ⁇ 100
  • the silica sols obtained in Examples and Comparative Examples were freeze-dried to obtain measurement samples.
  • a 400 MHz nuclear magnetic resonance apparatus model name “Varian NMR Systems 400WB”, manufactured by Varian
  • a CP/MAS probe with a diameter of 7.5 mm was attached, and the observed nucleus was 29 Si, and the measurement was performed by the DD/MAS method. did.
  • Measurement conditions 79.43MHz the 29 Si resonance frequency, 29 Si90 ° pulse width 5 ⁇ seconds, 1 H resonance frequency 399.84MHz, 50 kHz and 1 H decoupling frequency, 4 kHz the MAS speed 30 the spectral width.
  • the measurement temperature was 49 kHz and the measurement temperature was 23°C.
  • the content of metal impurities in the silica particles is sodium 1.1 ppm, potassium 0.140 ppm, iron 0.015 ppm, aluminum 0.135 ppm, calcium 0.075 ppm, zinc 0.07 ppm, magnesium, cobalt, Chromium, copper, manganese, lead, titanium, silver, and nickel were all less than 0.005 ppm. From this, it is considered that the content of metal impurities in the silica particles of Examples 1 to 3 and Comparative Examples 2 and 3 is 5 ppm or less.
  • the resulting silica sol was heated to remove methanol and ammonia while adjusting the liquid amount by adding pure water so that the content of silica particles was about 20% by mass. About 20% by mass of silica sol was obtained. Table 1 shows the evaluation results of the obtained silica particles.
  • Examples 1 to 3 and Comparative Examples 2 and 3 The silica sol obtained in Comparative Example 1 was heated under pressure under the conditions shown in Table 1 to obtain a silica sol having a silica particle content of about 20% by mass.
  • Table 1 shows the evaluation results of the silica particles contained in the obtained silica sol.
  • “ ⁇ ” representing the physical properties of particles of Comparative Examples 2 and 3 means that the measurement could not be performed due to remarkable particle aggregation.
  • the heating treatment under pressure since the heating treatment under pressure is performed, it is considered that the content of the alkoxy group or the silanol group is reduced, the number of reaction-active sites is small, and the storage stability of the silica sol is expected to be excellent.
  • the surface silanol group ratio is small, it is expected that the silica particles will be stable and will not easily sediment.
  • Comparative Example 2 in which the heating treatment under pressure was performed but under alkaline condition and Comparative Example 3 under acidic condition, the silica particles were remarkably aggregated, and the ratio of silanol groups present on the surface was measured. could not.
  • Comparative Example 4 which is a commercially available silica sol, it was observed that sedimentation of silica particles occurred and that it did not occur, and the storage stability was moderate.
  • Comparative Example 1 in which the pressurizing and heating treatment was not performed, the precipitated silica particles were not visually confirmed in this evaluation, but it is considered that the content of the alkoxy groups and silanol groups is higher than that in Examples 1 to 3. Since there are many reactive sites, it is considered that the silica particles precipitate when stored for a longer period of time. Further, in Comparative Examples 1 and 4, the surface silanol group ratio was large.
  • the silica particles of the present invention, the silica particles obtained by the production method of the present invention, the silica sol of the present invention, and the polishing composition of the present invention can be suitably used for polishing applications, for example, polishing of semiconductor materials such as silicon wafers.
  • polishing electronic materials such as hard disk substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、研磨特性、保存安定性に優れたシリカ粒子を提供することを目的とする。本発明は、表面シラノール基の含有率をx質量%、バルクシラノール基の含有率をy質量%としたとき、(x/y)×100%で表される表面に存在するシラノール基の割合が、15%以下である、シリカ粒子に関する。

Description

シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
 本発明は、シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法に関する。
 金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。
 このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾルゲル法」と称される)によるもの等が知られている。
 コロイダルシリカの製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1~3には、アルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造する方法が開示されている。特許文献4には、アルコキシシランの加水分解反応及び縮合反応後に塩基性下で加熱処理を行うことによりシリカ粒子を製造する方法が開示されている。特許文献5には、アルコキシシランの加水分解反応及び縮合反応後に酸性下で加熱処理を行うことによりシリカ粒子を製造する方法が開示されている。
日本国特開平11-60232号公報 国際公開第2008/123373号 国際公開第2008/015943号 日本国特開2010-83744号公報 日本国特開2018-90798号公報
 シリカ粒子によるシリコンウェハの研磨機構の一つに、シリカ粒子表面のシラノール基とシリコンウェハ表面のシラノール基とが脱水縮合してシロキサン結合を形成することが知られている。この機構で研磨が進むとすれば、シリカ粒子表面には、一定量のシラノール基が必要ということになる。一方、シラノール基が過剰であると、シラノール基に水素結合した水分子が被膜となってシリカ粒子表面を覆ってしまい、シリカ粒子とシリコンウェハの接触機会が減少してしまい、研磨ができなくなってしまう。あるいは、シラノール基が過剰であると、シロキサン結合が強固となってシリコンウェハ表面に残留するシリカ粒子が多くなり、シリコンウェハの品質を悪化させる。更に、シラノール基が過剰であると、そこが反応活性点となり、保存安定性も悪化させる。このように、表面に存在するシラノール基の含有率を一定量以下とすることも要求される。
 ところで、一般的に、アルコキシシランの加水分解反応及び縮合反応により得られるシリカゾル中のシリカ粒子は、縮合度が十分に高いとは言えない。その理由として、加水分解反応と縮合反応が同時に進行し、アルコキシ基又はシラノール基が残存しやすいためであると考えられる。縮合度が低いシリカ粒子は、SiO四面体が連結してできる員環の形成が不十分で、員環サイズが小さく、歪が大きく、機械的強度に劣る。そのような縮合度が低いシリカ粒子を研磨に用いると、研磨中にシリカ粒子が破壊され、破壊されたシリカ粒子が被研磨体に付着する等、研磨において悪影響を及ぼす。また、縮合度が低いシリカ粒子は、シラノール基が多く残存しているため、保存中に残存しているシラノール基が反応活性点となり、保存安定性を悪化させる。
 特許文献1~3に開示されているアルコキシシランの加水分解反応及び縮合反応によりシリカゾルを製造する方法は、得られたシリカゾルに対して加圧加熱処理を行う等のシリカ粒子の縮合度を高める処理を行っておらず、得られたシリカ粒子は、員環の形成が不十分で歪が大きく、機械的強度に劣り、保存安定性に劣ると考えられる。また、特許文献4及び5に開示されている方法により得られるシリカ粒子も同様に、機械的強度に劣り、保存安定性に劣ると共に、酸性下やアルカリ性下での加熱処理は、シリカ粒子の凝集やシリカ骨格の破壊を引き起こす恐れがある。
 本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、研磨特性、保存安定性に優れたシリカ粒子とその製造方法、シリカゾル、研磨組成物を提供することにある。また、本発明のもう1つの目的は、被研磨体の生産性に優れた研磨方法、半導体ウェハの製造方法、半導体デバイスの製造方法を提供することにある。
 従来のシリカ粒子、特に、アルコキシシランの加水分解反応及び縮合反応により得られたシリカ粒子は、その研磨特性、保存安定性が必ずしも十分と言えるものではなかった。しかしながら、本発明者らは、鋭意検討を重ねた結果、シアーズ法により測定した表面シラノール基の含有率と固体29Si-DD/MAS-NMRにより測定したバルクシラノール基の含有率とから算出される表面に存在するシラノール基の割合を最適化することで、シリカ粒子の研磨特性、保存安定性が向上することを見出し、本発明を完成するに至った。
 即ち、本発明の要旨は、以下の通りである。
 [1]シアーズ法により測定した表面シラノール基の含有率をx質量%、固体29Si-DD/MAS-NMRにより測定したバルクシラノール基の含有率をy質量%としたとき、(x/y)×100%で表される表面に存在するシラノール基の割合が、15%以下である、シリカ粒子。
 [2]前記表面に存在するシラノール基の割合が、10%以下である、前記[1]に記載のシリカ粒子。
 [3]前記表面に存在するシラノール基の割合が、1%以上である、前記[1]又は[2]に記載のシリカ粒子。
 [4]BET法により測定した平均1次粒子径が、10nm~60nmである、前記[1]~[3]のいずれか1に記載のシリカ粒子。
 [5]DLS法により測定した平均2次粒子径が、20nm~100nmである、前記[1]~[4]のいずれか1に記載のシリカ粒子。
 [6]金属不純物含有率が、5ppm以下である、前記[1]~[5]のいずれか1に記載のシリカ粒子。
 [7]テトラアルコキシシラン縮合物を主成分とする、前記[1]~[6]のいずれか1に記載のシリカ粒子。
 [8]前記テトラアルコキシシラン縮合物が、テトラメトキシシラン縮合物を含む、前記[7]に記載のシリカ粒子。
 [9]シリカ粒子を加圧加熱処理して、前記[1]~[8]のいずれか1に記載のシリカ粒子を得る、シリカ粒子の製造方法。
 [10]前記[1]~[8]のいずれか1に記載のシリカ粒子を含む、シリカゾル。
 [11]シリカ粒子の含有率が、シリカゾル全量中、3質量%~50質量%である、前記[10]に記載のシリカゾル。
 [12]前記[10]又は[11]に記載のシリカゾルを含む、研磨組成物。
 [13]前記[12]に記載の研磨組成物を用いて研磨する、研磨方法。
 [14]前記[12]に記載の研磨組成物を用いて研磨する工程を含む、半導体ウェハの製造方法。
 [15]前記[12]に記載の研磨組成物を用いて研磨する工程を含む、半導体デバイスの製造方法。
 本発明のシリカ粒子、本発明の製造方法により得られるシリカ粒子、本発明のシリカゾル、本発明の研磨組成物は、研磨特性、保存安定性に優れる。また、本発明の研磨方法、本発明の半導体ウェハの製造方法、本発明の半導体デバイスの製造方法は、被研磨体の生産性に優れる。
 以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。
 (シリカ粒子)
 本実施形態にかかるシリカ粒子は、シアーズ法により測定した表面シラノール基の含有率をx質量%、固体29Si-DD/MAS-NMRにより測定したバルクシラノール基の含有率をy質量%としたとき、(x/y)×100%で表される表面に存在するシラノール基の割合が、15%以下である。表面に存在するシラノール基の割合が、15%以下であると、SiO四面体の酸素を共有しながら員環の形成が促進され員環サイズが大きくなって歪が小さくなり、シリカ粒子が弾性変形しづらくなり、機械的強度に優れ、研磨組成物の研磨特性に優れる。
 シリカ粒子の表面シラノール基の含有率は、シアーズ法により測定した値とする。具体的には、下記に示す条件で測定する。
 シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
 得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
 下記式(1)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(2)を用いて、シリカ粒子の表面シラノール基の含有率x(質量%)を算出する。
  V=(A×f×100×1.5)/(W×C) ・・・ (1)
   A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
   f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
   C:シリカゾル中のシリカ粒子の濃度(質量%)
   W:シリカゾルの採取量(g)
  x=(B×17/M)×100 ・・・ (2)
   B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
   M:シリカ粒子量(1.5g)
 尚、前記シリカ粒子の表面シラノール基の含有率の測定・算出方法は、「G.W.Sears,Jr.,Analytical Chemistry,Vol.28,No.12,pp.1981-1983(1956).」、「羽場真一,半導体集積回路プロセス用研磨剤の開発,高知工科大学博士論文,pp.39-45,2004年3月」、「日本国特許第5967118号公報」、「日本国特許第6047395号公報」を参考にした。
 シリカ粒子の表面シラノール基の含有率は、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、また、1.4質量%以下が好ましく、1.0質量%以下がより好ましい。シリカ粒子の表面シラノール基の含有率が0.01質量%以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基の含有率が1.4質量%以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。
 シリカ粒子のバルクシラノール基の含有率は、固体29Si-DD/MAS-NMRにより測定した値とする。具体的には、下記に示す条件で測定する。
 シリカ粒子を含むシリカゾルを凍結乾燥させ、測定サンプルとする。400MHzの核磁気共鳴装置を用い、直径7.5mmのCP/MAS用プローブを装着し、観測核を29Siとし、DD/MAS法で測定する。測定条件は、29Si共鳴周波数を79.43MHz、29Si90°パルス幅を5μ秒、H共鳴周波数を399.84MHz、Hデカップリング周波数を50kHz、MAS回転数を4kHz、スペクトル幅を30.49kHz、測定温度を23℃とする。データ解析は、フーリエ変換後のスペクトルの各ピークについて、ローレンツ波形とガウス波形の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行う。Q1、Q2、Q3及びQ4の4つの構造単位を対象とし、得られたQ1の含有率、Q2の含有率、Q3の含有率及びQ4の含有率から、下記式(3)を用いてバルクシラノール基の含有率y(質量%)を算出する。
  y={(Q3の含有率×17+Q2の含有率×17×2+Q1の含有率×17×3)/(60+Q3の含有率×1+Q2の含有率×2+Q1の含有率×3)}×100 ・・・ (3)
 本実施形態において、シリカ粒子のバルクシラノール基の含有率は、CP/MAS法(Cross Polarization/Magic Angle Spinning)でなく、DD/MAS法(Dipolar Decoupling/Magic Angle Spinning)により測定されたものである。
 CP/MAS法であると、Hが近傍に存在するSiを増感して検出するため、得られるピークがQ1の含有率、Q2の含有率、Q3の含有率及びQ4の含有率を正確に反映しない。
 一方、DD/MAS法は、CP/MAS法のような増感効果がないため、得られるピークがQ1の含有率、Q2の含有率、Q3の含有率及びQ4の含有率を正確に反映し、定量的な解析に適する。
 構造単位は、SiO四面体の連結度合いにより、Q1~Q4に分類され、それぞれ以下の通りである。
 Q1は、Siの周りに酸素を介して1つのSiを有する構造単位のことで、SiO四面体が他の1つのSiO四面体と連結していて、固体29Si-DD/MAS-NMRスペクトルにおいて-80ppm付近にピークを有する。
 Q2は、Siの周りに酸素を介して2つのSiを有する構造単位のことで、SiO四面体が他の2つのSiO四面体と連結していて、固体29Si-DD/MAS-NMRスペクトルにおいて-91ppm付近にピークを有する。
 Q3は、Siの周りに酸素を介して3つのSiを有する構造単位のことで、SiO四面体が他の3つのSiO四面体と連結していて、固体29Si-DD/MAS-NMRスペクトルにおいて-101ppm付近にピークを有する。
 Q4は、Siの周りに酸素を介して4つのSiを有する構造単位のことで、SiO四面体が他の4つのSiO四面体と連結していて、固体29Si-DD/MAS-NMRスペクトルにおいて-110ppm付近にピークを有する。
 シリカ粒子のバルクシラノール基の含有率は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、また、8.0質量%以下が好ましく、7.5質量%以下がより好ましい。シリカ粒子のバルクシラノール基の含有率が0.1質量%以上であると、シリカ粒子の製造を容易に行うことができる。また、シリカ粒子のバルクシラノール基の含有率が8質量%以下であると、SiO四面体の酸素を共有しながら員環の形成が促進されて員環サイズが大きくなり、欠陥が少なく、シリカ粒子の機械的強度に優れ、研磨組成物の研磨特性に優れる。
 シリカ粒子の表面に存在するシラノール基の割合は、シアーズ法により測定した表面シラノール基の含有率をx質量%、固体29Si-DD/MAS-NMRにより測定したバルクシラノール基の含有率をy質量%としたとき、(x/y)×100%で表される。
 シリカ粒子の表面に存在するシラノール基の割合は、シリカ粒子の製造を容易に行うことができることから、1%以上が好ましく、2%以上がより好ましい。
 シリカ粒子の表面に存在するシラノール基の割合は、アモルファス構造を維持しながら、SiO四面体の酸素を共有しながら員環の形成が促進されてシリカ粒子の欠陥が少なく、シリカ粒子の機械的強度に優れ、研磨組成物の研磨特性に優れることから、15%以下であり、10%以下が好ましい。
 シリカ粒子の表面に存在するシラノール基の割合は、アルコキシシランの加水分解反応及び縮合反応の条件やその後の処理の条件を調整することで、所望の範囲に設定することができる。具体的には、アルコキシシランの加水分解反応及び縮合反応で得られたシリカゾルを加圧加熱処理する;加水分解反応と縮合反応とを別々に行う;加水分解反応及び縮合反応において反応促進剤を添加する等の方法が挙げられる。これらの方法の中でも、シリカ粒子の表面シラノール基の含有率とシリカ粒子のバルクシラノール基の含有率とを制御が容易で、シリカ粒子の表面に存在するシラノール基の割合を精密に制御することが可能であることから、アルコキシシランの加水分解反応及び縮合反応で得られたシリカゾルを加圧加熱処理する方法が好ましい。
 シリカ粒子の平均1次粒子径は、5nm以上が好ましく、10nm以上がより好ましく、また、100nm以下が好ましく、60nm以下がより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
 シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(4)を用いて平均1次粒子径を算出する。
  平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (4)
 シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。
 シリカ粒子の平均2次粒子径は、10nm以上が好ましく、20nm以上がより好ましく、また、200nm以下が好ましく、100nm以下がより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。
 シリカ粒子の平均2次粒子径は、DLS法により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。
 シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。
 シリカ粒子のcv値は、15以上が好ましく、20以上がより好ましく、25以上が更に好ましく、また、50以下が好ましく、40以下がより好ましく、35以下が更に好ましい。シリカ粒子のcv値が15以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子のcv値が50以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。
 シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(5)を用いて算出される値であり、均一な粒子径の指標となる値である。
  cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (5)
 シリカ粒子の会合比は、1.0以上が好ましく、1.1以上がより好ましく、また、4.0以下が好ましく、3.0以下がより好ましい。シリカ粒子の会合比が1.0以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子の会合比が4.0以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。
 シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(6)を用いて会合比を算出する。
  会合比=平均2次粒子径/平均1次粒子径 ・・・ (6)
 シリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。尚、本明細書において、上記金属不純物含有率を表すppmとは質量ppmを意味する。
 半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着・汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
 また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
 シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP-MS)により測定する。具体的には、シリカ粒子を0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温、溶解、及び蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作製し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。
 シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応及び縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
 水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
 シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。
 本実施形態にかかるシリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
 シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
 本実施形態にかかるシリカ粒子は、機械的強度、保存安定性に優れることから、アルコキシシラン縮合物を主成分とすることが好ましく、テトラアルコキシシラン縮合物を主成分とすることがより好ましい。主成分とは、シリカ粒子を構成する全成分中、50質量%以上であることをいう。
 テトラアルコキシシラン縮合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等の縮合物が挙げられる。これらのテトラアルコキシシラン縮合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシラン縮合物の中でも、加水分解反応が早く、未反応物が残留しづらく、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン縮合物、テトラエトキシシラン縮合物が好ましく、テトラメトキシシラン縮合物がより好ましい。
 アルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、アルコキシシランを主原料とすることが好ましい。テトラアルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、テトラアルコキシシランを主原料とすることが好ましい。主原料とは、シリカ粒子を構成する全原料中、50質量%以上であることをいう。
 (シリカ粒子の製造方法)
 シリカ粒子の製造方法としては、例えば、四塩化珪素の熱分解による方法、水ガラス等の珪酸アルカリの脱イオンによる方法、アルコキシシランの加水分解反応及び縮合反応による方法等が挙げられる。これらのシリカ粒子の製造方法の中でも、金属不純物含有率を低減させることができ、シリカ粒子の形状の制御が容易であることから、アルコキシシランの加水分解反応及び縮合反応による方法が好ましく。テトラアルコキシシランの加水分解反応及び縮合反応による方法がより好ましい。
 テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等が挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が早く、未反応物が残留しづらく、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。
 シリカ粒子を構成する原料は、テトラアルコキシシランの低縮合物等のテトラアルコキシシラン以外の原料を用いてもよいが、反応性に優れることから、シリカ粒子を構成する全原料中、テトラアルコキシシランが50質量%以上で、テトラアルコキシシラン以外の原料が50質量%以下であることが好ましく、テトラアルコキシシランが90質量%以上で、テトラアルコキシシラン以外の原料が10質量%以下であることがより好ましい。
 加水分解反応及び縮合反応を行う際の反応に用いる溶媒又は分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒又は分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒又は分散媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水、メタノールがより好ましい。
 加水分解反応及び縮合反応を行う際、触媒存在下であってもよく、無触媒下であってもよいが、加水分解反応及び縮合反応を促進できることから、触媒存在下が好ましい。
 触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、ギ酸、クエン酸等の酸触媒、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等のアルカリ触媒等が挙げられる。これらの触媒の中でも、触媒作用に優れ、粒子形状を制御しやすいことから、アルカリ触媒が好ましく、金属不純物の混入を抑制することができ、揮発性が高く縮合反応後の除去性に優れることから、アルカリ触媒が好ましく、アンモニアがより好ましい。
 シリカ粒子の縮合度を高めるため、本実施形態にかかるシリカ粒子の製造方法においては、アルコキシシランの加水分解反応及び縮合反応終了後、得られたシリカ粒子に対して加圧加熱処理を行うことが好ましい。
 加圧加熱処理の圧力は、0.10MPa以上が好ましく、0.14MPa以上がより好ましく、また、2.3MPa以下が好ましく、1.0MPa以下がより好ましい。加圧加熱処理の圧力が0.10MPa以上であると、シリカ粒子の縮合度を高めることができる。また、加圧加熱処理の圧力が2.3MPa以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。
 加圧加熱処理の温度は、100℃以上が好ましく、110℃以上がより好ましく、また、220℃以下が好ましく、180℃以下がより好ましい。加圧加熱処理の温度が100℃以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の温度が220℃以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。
 加圧加熱処理の時間は、0.25時間以上が好ましく、0.5時間以上がより好ましく、また、6時間以下が好ましく、4時間以下がより好ましい。加圧加熱処理の時間が0.25時間以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の時間が6時間以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。
 加圧加熱処理は、空気中で行ってもよく、溶媒又は分散媒中で行ってもよいが、シリカゾルの分散安定性に優れることから、溶媒又は分散媒中で行うことが好ましく、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の表面に存在するシラノール基の割合を精密に制御することが可能であることから、水分散液中で行うことがより好ましい。
 加圧加熱処理は、加水分解反応及び縮合反応終了直後に行ってもよく、加水分解反応及び縮合反応後の反応液中の成分のうち、不必要な成分を除去し、必要な成分を添加した後に行ってもよいが、操作圧力を低く保つことができることから、加水分解反応及び縮合反応後の反応液中の成分のうち、不必要な成分を除去し、必要な成分を添加した後に行うことが好ましく、有機化合物を除去し、水を添加した後に行うことがより好ましい。
 加圧加熱処理を水分散液中で行う際のpHは、6.0以上が好ましく、6.5以上がより好ましく、また、8.0以下が好ましく、7.8以下がより好ましい。加圧加熱処理を水分散液中で行う際のpHが6.0以上であると、シリカゾルのゲル化を抑制することができる。また、加圧加熱処理を水分散液中で行う際のpHが8.0以下であると、溶解による構造破壊を防いで、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の表面に存在するシラノール基の割合を精密に制御することが可能であり、シリカ粒子の凝集を抑制することができ、シリカゾルの分散安定性に優れる。
 (シリカゾル)
 本実施形態にかかるシリカゾルは、本実施形態にかかるシリカ粒子及び溶媒又は分散媒を含むことが好ましい。
 シリカゾルの溶媒又は分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらのシリカゾルの溶媒又は分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾルの溶媒又は分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
 シリカゾル中のシリカ粒子の含有率は、シリカゾル全量中、3質量%以上が好ましく、4質量%以上がより好ましく、5質量%以上が更に好ましく、また、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。
 シリカゾル中の溶媒又は分散媒の含有率は、シリカゾル全量中、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、また、97質量%以下が好ましく、96質量%以下がより好ましく、95質量%以下が更に好ましい。シリカゾル中の溶媒又は分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の溶媒又は分散媒の含有率が97質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。
 シリカゾル中のシリカ粒子や溶媒又は分散媒の含有率は、加水分解反応及び縮合反応終了後の反応液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。
 本実施形態にかかるシリカゾルは、シリカ粒子及び溶媒又は分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
 特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌・殺生物剤を含ませることが好ましい。
 抗菌・殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、p-ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌・殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌・殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
 殺生物剤は、一般に殺菌剤と言われるものも含む。
 シリカゾル中の抗菌・殺生物剤の含有率は、シリカゾル全量中、0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、また、10質量%以下が好ましく、1質量%以下がより好ましい。シリカゾル中の抗菌・殺生物剤の含有率が0.0001質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌・殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。
 シリカゾルのpHは、6.0以上が好ましく、6.5以上がより好ましく、また、9.0以下が好ましく、7.8以下がより好ましい。シリカゾルのpHが6.0以上であると、シリカゾルの長期間の保存安定性に優れる。また、シリカゾルのpHが9.0以下であると、シリカ粒子の凝集を抑制することができ、シリカゾルの分散安定性に優れる。
 シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
 (シリカゾルの製造方法)
 本実施形態にかかるシリカゾルは、加水分解反応及び縮合反応終了後の反応液をそのまま用いてもよく、加水分解反応及び縮合反応終了後の反応液中の成分のうち、不必要な成分を除去し、必要な成分を添加して製造してもよい。
 シリカゾルの製造において、粗大粒子を除去したり、微粒子による凝集を回避したりするため、ろ過工程を含んでもよい。
 ろ過の方法としては、例えば、常圧下での自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過等が挙げられる。
 ろ過は、任意のタイミング、任意の回数行ってもよいが、研磨組成物の保存安定性や研磨特性に優れることから、研磨組成物の調製直前に行うことが好ましい。
 (研磨組成物)
 本実施形態にかかる研磨組成物は、本実施形態にかかるシリカゾルを含み、更に水溶性高分子を含むことが好ましい。
 水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。
 水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。
 セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
 ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
 ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
 これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。
 水溶性高分子の質量平均分子量は、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、また、3,000,000以下が好ましく、2,000,000以下がより好ましく、1,000,000以下が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。
 水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。
 研磨組成物中の水溶性高分子の含有率は、研磨組成物全量中、0.02質量%以上が好ましく、0.05質量%以上がより好ましく、また、10質量%以下が好ましく、5質量%以下がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。
 本実施形態にかかる研磨組成物は、シリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
 特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
 塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。
 研磨組成物中の塩基性化合物の含有率は、研磨組成物全量中、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、また、5質量%以下が好ましく、3質量%以下がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。
 研磨組成物のpHは、8.0以上が好ましく、9.0以上がより好ましく、また、12.0以下が好ましく、11.0以下がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
 研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
 本実施形態にかかる研磨組成物は、本実施形態にかかるシリカゾル、及び必要に応じて、水溶性高分子や他の成分を混合することで得られるが、保管・運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。
 (用途)
 本実施形態にかかるシリカ粒子、本実施形態にかかる製造方法により得られるシリカ粒子、本実施形態にかかるシリカゾル、本実施形態にかかる研磨組成物は、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
 (研磨方法)
 本実施形態にかかる研磨方法は、本実施形態にかかる研磨組成物を用いて研磨する方法が好ましい。
 具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に本実施形態にかかる研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
 (半導体ウェハの製造方法)
 本実施形態にかかる半導体ウェハの製造方法は、本実施形態にかかる研磨組成物を用いて研磨する工程を含む方法であり、具体的な研磨の方法は、前述した通りである。
 半導体ウェハとしては、例えば、シリコンウェハ、化合物半導体ウェハ等が挙げられる。
 (半導体デバイスの製造方法)
 本実施形態にかかる半導体デバイスの製造方法は、本実施形態にかかる研磨組成物を用いて研磨する工程を含む方法であり、具体的な研磨の方法は、前述した通りである。
 以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。
 (平均1次粒子径の測定)
 実施例・比較例で得られたシリカ粒子を含むシリカゾルを凍結乾燥し、比表面積自動測定装置「フローソーブII」(機種名、株式会社島津製作所製)を用いて、シリカ粒子の比表面積を測定し、下記式(4)を用い、密度を2.2g/cmとし、平均1次粒子径を算出した。
  平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm)) ・・・ (4)
 (平均2次粒子径・cv値の測定)
 実施例・比較例で得られたシリカ粒子を含むシリカゾルを、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(5)を用いてcv値を算出した。
  cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (5)
 (会合比の算出)
 測定した平均1次粒子径と平均2次粒子径とから、下記式(6)を用いて会合比を算出した。
  会合比=平均2次粒子径/平均1次粒子径 ・・・ (6)
 (表面シラノール基の含有率の測定)
 実施例・比較例で得られたシリカ粒子を含むシリカゾルの、シリカ粒子1.5gに相当する量を、200mLトールビーカーに採取し、純水を加えて液量を90mLにした。
 25℃の環境下、トールビーカーにpH電極を挿入し、マグネティックスターラーにより試験液を5分間撹拌させた。マグネティックスターラーによる攪拌を続けた状態で、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加えた。トールビーカーからpH電極を取り外し、マグネティックスターラーによる攪拌を続けた状態で、塩化ナトリウムを30g加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させた。最終的に試験液の総量が150mLになるまで純水を加え、マグネティックスターラーにより試験液を5分間撹拌させ、試験液を得た。
 得られた試験液の入ったトールビーカーを、自動滴定装置「COM-1600」(平沼産業株式会社製)にセットし、装置付属のpH電極とビュレットをトールビーカーに挿入した。マグネティックスターラーにより試験液を撹拌させながら、ビュレットを通じて0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定した。
 下記式(1)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(2)を用いて、シリカ粒子の表面シラノール基の含有率x(質量%)を算出した。
  V=(A×f×100×1.5)/(W×C) ・・・ (1)
   A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
   f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
   C:シリカゾル中のシリカ粒子の濃度(質量%)
   W:シリカゾルの採取量(g)
  x=(B×17/M)×100 ・・・ (2)
   B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
   M:シリカ粒子量(1.5g)
 (バルクシラノール基の含有率の測定)
 実施例・比較例で得られたシリカゾルを凍結乾燥させ、測定サンプルとした。400MHzの核磁気共鳴装置(機種名「Varian NMR Systems 400WB」、Varian社製)を用い、直径7.5mmのCP/MAS用プローブを装着し、観測核を29Siとし、DD/MAS法で測定した。測定条件は、29Si共鳴周波数を79.43MHz、29Si90°パルス幅を5μ秒、H共鳴周波数を399.84MHz、Hデカップリング周波数を50kHz、MAS回転数を4kHz、スペクトル幅を30.49kHz、測定温度を23℃とした。データ解析は、フーリエ変換後のスペクトルの各ピークについて、ローレンツ波形とガウス波形の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行った。Q1、Q2、Q3及びQ4の4つの構造単位を対象とし、得られたQ1の含有率、Q2の含有率、Q3の含有率及びQ4の含有率から、下記式(3)を用いてバルクシラノール基の含有率y(質量%)を算出した。
  y={(Q3の含有率×17+Q2の含有率×17×2+Q1の含有率×17×3)/(60+Q3の含有率×1+Q2の含有率×2+Q1の含有率×3)}×100 ・・・ (3)
 (金属不純物含有率の測定)
 比較例1で得られたシリカ粒子を0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温、溶解、及び蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作製し、高周波誘導結合プラズマ質量分析装置「ELEMENT2」(機種名、サーモフィッシャーサイエンティフィック社製)を用いて、金属不純物含有率を測定した。
 シリカ粒子中の金属不純物含有率は、ナトリウムが1.1ppm、カリウムが0.140ppm、鉄が0.015ppm、アルミニウムが0.135ppm、カルシウムが0.075ppm、亜鉛が0.07ppm、マグネシウム、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルがいずれも0.005ppm未満であった。
 これより、実施例1~3及び比較例2、3のシリカ粒子における金属不純物含有率も、いずれも5ppm以下であると考えられる。
 (保存安定性)
 実施例・比較例で得られたシリカ粒子に対し、購入又は製造後1年経過後、肉眼でシリカ粒子の沈降の有無を確認して保存安定性の評価を行った。
 沈降したシリカ粒子が肉眼で確認されない場合を保存安定性が良好であるとして表中「A」で示した。沈降したシリカ粒子が確認される場合とされない場合の両方存在する場合を保存安定性が中程度であるとして表中「B」で示した。多量のシリカ粒子が沈降する場合を保存安定性がないものとして表中「C」で示した。
 [比較例1]
 テトラメトキシシランとメタノールとを3:1(体積比)で混合し、原料溶液を調製した。温度計、攪拌機、供給管、留出ラインを備えた反応槽に、予めメタノール、純水、アンモニアを混合した反応溶媒を仕込んだ。反応溶媒中の水の濃度は15質量%、反応溶媒中のアンモニアの濃度は1質量%であった。
 反応溶媒の温度を20℃に保持しながら、反応溶媒と原料溶液とを9.2:1(体積比)とし、原料溶液を25分間、均等速度で反応槽へ滴下し、シリカゾルを得た。得られたシリカゾルを、シリカ粒子の含有率が約20質量%になるように、液量を純水追加で調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
 得られたシリカ粒子の評価結果を、表1に示す。
 [実施例1~3、及び比較例2、3]
 比較例1で得られたシリカゾルを、表1の条件で加圧加熱処理し、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
 得られたシリカゾルに含まれるシリカ粒子の評価結果を、表1に示す。尚、表中、比較例2及び3の粒子物性を表す「-」は、著しい粒子凝集のために測定できなかったことを意味する。
 [比較例4]
 市販のシリカゾル(商品名「PL-3」、扶桑化学工業株式会社製)をそのまま用いた。
 かかるシリカゾルに含まれるシリカ粒子の評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、加圧加熱処理を行わなかった比較例1や加圧加熱処理を行ったか不明な比較例4に対し、加圧加熱処理を行った実施例1~3で得られたシリカゾル中のシリカ粒子は、平均1次粒子径、平均2次粒子径、cv値、会合比の変化がほぼなく、表面に存在するシラノール基の割合が低減した。平均1次粒子径、平均2次粒子径、cv値、会合比の変化がほぼない状況での表面に存在するシラノール基の割合の低減は、大きな員環の形成を表し、SiO四面体の酸素を共有することによる員環の形成が促進されてシリカ粒子の欠陥が少ないことを意味する。これは4員環が少ないことを意味するので歪が少なく弾性変形し難いことからシリカ粒子の機械的強度に優れ、研磨組成物の研磨特性に優れることが期待される。また、加圧加熱処理を行っているので、アルコキシ基やシラノール基の含有量が低減していると考えられ、反応活性なサイトが少なく、シリカゾルの保存安定性にも優れることが期待される。また、表面シラノール基割合が小さいことで、沈降しにくい安定なシリカ粒子となっていることが期待される。
 また、加圧加熱処理を行ったものの、アルカリ性下で処理した比較例2及び酸性下で処理した比較例3は、シリカ粒子が著しく凝集してしまい、表面に存在するシラノール基の割合の測定ができなかった。
 市販のシリカゾルである比較例4では、シリカ粒子の沈降が発生する場合とそうでない場合とが見られ、保存安定性は中程度であった。
 加圧加熱処理を行なわなかった比較例1では、今回の評価で沈降したシリカ粒子が肉眼で確認されなかったが、実施例1~3よりもアルコキシ基やシラノール基の含有量が多いと考えられ、反応活性なサイトが多く、更なる長期保存をした場合には、シリカ粒子の沈降が発生すると考えられる。
 更に、比較例1及び比較例4では、表面シラノール基割合が大きかった。表面シラノール基割合が大きいことで、大きな員環の形成が行われず、SiO四面体の酸素を共有することによる員環の形成が促進されず、シリカ粒子の欠陥が多いと考えられる。これは4員環が多いことを意味するので歪が多く弾性変形しやすいことからシリカ粒子の機械的強度に劣り、研磨組成物の研磨特性に劣ることが予想される。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年2月21日出願の日本特許出願(特願2019-029141)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のシリカ粒子、本発明の製造方法により得られるシリカ粒子、本発明のシリカゾル、本発明の研磨組成物は、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。

Claims (15)

  1.  シアーズ法により測定した表面シラノール基の含有率をx質量%、固体29Si-DD/MAS-NMRにより測定したバルクシラノール基の含有率をy質量%としたとき、(x/y)×100%で表される表面に存在するシラノール基の割合が、15%以下である、シリカ粒子。
  2.  前記表面に存在するシラノール基の割合が、10%以下である、請求項1に記載のシリカ粒子。
  3.  前記表面に存在するシラノール基の割合が、1%以上である、請求項1又は2に記載のシリカ粒子。
  4.  BET法により測定した平均1次粒子径が、10nm~60nmである、請求項1~3のいずれか1項に記載のシリカ粒子。
  5.  DLS法により測定した平均2次粒子径が、20nm~100nmである、請求項1~4のいずれか1項に記載のシリカ粒子。
  6.  金属不純物含有率が、5ppm以下である、請求項1~5のいずれか1項に記載のシリカ粒子。
  7.  テトラアルコキシシラン縮合物を主成分とする、請求項1~6のいずれか1項に記載のシリカ粒子。
  8.  前記テトラアルコキシシラン縮合物が、テトラメトキシシラン縮合物を含む、請求項7に記載のシリカ粒子。
  9.  シリカ粒子を加圧加熱処理して、請求項1~8のいずれか1項に記載のシリカ粒子を得る、シリカ粒子の製造方法。
  10.  請求項1~8のいずれか1項に記載のシリカ粒子を含む、シリカゾル。
  11.  シリカ粒子の含有率が、シリカゾル全量中、3質量%~50質量%である、請求項10に記載のシリカゾル。
  12.  請求項10又は11に記載のシリカゾルを含む、研磨組成物。
  13.  請求項12に記載の研磨組成物を用いて研磨する、研磨方法。
  14.  請求項12に記載の研磨組成物を用いて研磨する工程を含む、半導体ウェハの製造方法。
  15.  請求項12に記載の研磨組成物を用いて研磨する工程を含む、半導体デバイスの製造方法。
PCT/JP2020/006609 2019-02-21 2020-02-19 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法 WO2020171134A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217025935A KR20210130146A (ko) 2019-02-21 2020-02-19 실리카 입자와 그 제조 방법, 실리카졸, 연마 조성물, 연마 방법, 반도체 웨이퍼의 제조 방법 및 반도체 디바이스의 제조 방법
EP20759610.7A EP3929155A4 (en) 2019-02-21 2020-02-19 SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
JP2020533047A JP6756423B1 (ja) 2019-02-21 2020-02-19 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
CN202080015562.7A CN113474289A (zh) 2019-02-21 2020-02-19 二氧化硅粒子及其制造方法、硅溶胶、研磨组合物、研磨方法、半导体晶片的制造方法和半导体器件的制造方法
CN202410521235.9A CN118439623A (zh) 2019-02-21 2020-02-19 二氧化硅粒子及其制造方法、硅烷醇基的测定方法、研磨组合物、研磨方法、半导体晶片的制造方法和半导体器件的制造方法
US17/406,220 US20210380844A1 (en) 2019-02-21 2021-08-19 Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-029141 2019-02-21
JP2019029141 2019-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/406,220 Continuation US20210380844A1 (en) 2019-02-21 2021-08-19 Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2020171134A1 true WO2020171134A1 (ja) 2020-08-27

Family

ID=72144964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006609 WO2020171134A1 (ja) 2019-02-21 2020-02-19 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法

Country Status (7)

Country Link
US (1) US20210380844A1 (ja)
EP (1) EP3929155A4 (ja)
JP (1) JP6756423B1 (ja)
KR (1) KR20210130146A (ja)
CN (2) CN118439623A (ja)
TW (1) TWI846823B (ja)
WO (1) WO2020171134A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211147B2 (ja) * 2019-02-21 2023-01-24 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
CN113912070A (zh) * 2021-11-19 2022-01-11 湖北鼎龙控股股份有限公司 一种硅溶胶及其制备方法
WO2023136331A1 (ja) * 2022-01-13 2023-07-20 日産化学株式会社 粒度分布を有するシリカゾル及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047395B2 (ja) 1980-03-03 1985-10-21 住友化学工業株式会社 セルロ−ズ系繊維の染色法
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
WO2008015943A1 (en) 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
WO2008123373A1 (ja) 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. コロイダルシリカ及びその製造方法
JP2010083744A (ja) 2008-09-05 2010-04-15 Jsr Corp シリカ粒子分散液およびその製造方法
JP2012224524A (ja) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd 非晶質シリカ粒子
JP5967118B2 (ja) 2009-08-19 2016-08-10 日立化成株式会社 Cmp研磨液及び研磨方法
WO2016159167A1 (ja) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
JP2018090798A (ja) 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
JP2018109074A (ja) * 2016-12-28 2018-07-12 花王株式会社 研磨液組成物の製造方法
JP2019029141A (ja) 2017-07-27 2019-02-21 株式会社デンソーテン センサ選択装置およびセンサ選択方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714411B2 (ja) * 1988-12-12 1998-02-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー ウェハーのファイン研摩用組成物
JP4257687B2 (ja) * 1999-01-11 2009-04-22 株式会社トクヤマ 研磨剤および研磨方法
JP2002338951A (ja) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd 研磨剤用水熱処理コロイダルシリカ
DE102007055879A1 (de) * 2007-12-19 2009-06-25 Wacker Chemie Ag Hydrophobierung von Kieselsäuren und oxidierenden Bedingungen
JP5893706B2 (ja) * 2013-10-25 2016-03-23 花王株式会社 シリコンウェーハ用研磨液組成物
WO2015087965A1 (ja) * 2013-12-12 2015-06-18 日産化学工業株式会社 シリカ粒子及びその製造方法並びにシリカゾル
US10058918B2 (en) * 2014-05-09 2018-08-28 United Technologies Corporation Surface treatment of powers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047395B2 (ja) 1980-03-03 1985-10-21 住友化学工業株式会社 セルロ−ズ系繊維の染色法
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
WO2008015943A1 (en) 2006-07-31 2008-02-07 Fuso Chemical Co.Ltd. Silica sol and process for production thereof
WO2008123373A1 (ja) 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. コロイダルシリカ及びその製造方法
JP2010083744A (ja) 2008-09-05 2010-04-15 Jsr Corp シリカ粒子分散液およびその製造方法
JP5967118B2 (ja) 2009-08-19 2016-08-10 日立化成株式会社 Cmp研磨液及び研磨方法
JP2012224524A (ja) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd 非晶質シリカ粒子
WO2016159167A1 (ja) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
JP2018090798A (ja) 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
JP2018109074A (ja) * 2016-12-28 2018-07-12 花王株式会社 研磨液組成物の製造方法
JP2019029141A (ja) 2017-07-27 2019-02-21 株式会社デンソーテン センサ選択装置およびセンサ選択方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G.W. SEARS, JR., ANALYTICAL CHEMISTRY, vol. 28, no. 12, 1956, pages 1981 - 1983
See also references of EP3929155A4
SHINICHI HABA: "Development of Polishing Agent for Semiconductor Integrated Circuit Process", March 2004, KOCHI UNIVERSITY OF TECHNOLOGY DOCTORAL DISSERTATION, pages: 39 - 45

Also Published As

Publication number Publication date
CN118439623A (zh) 2024-08-06
KR20210130146A (ko) 2021-10-29
EP3929155A4 (en) 2022-04-06
US20210380844A1 (en) 2021-12-09
TWI846823B (zh) 2024-07-01
JPWO2020171134A1 (ja) 2021-03-11
EP3929155A1 (en) 2021-12-29
JP6756423B1 (ja) 2020-09-16
TW202100464A (zh) 2021-01-01
CN113474289A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7552669B2 (ja) シリカゾル、研磨組成物、シリコンウェーハの研磨方法、シリコンウェーハの製造方法、化学的機械的研磨組成物及び半導体デバイスの製造方法
JP6756423B1 (ja) シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2021147267A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
WO2021153502A1 (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2021116225A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2024097789A (ja) 研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2021147266A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7444298B2 (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP6756422B1 (ja) シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7331437B2 (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2021123526A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2020132478A (ja) シリカ粒子の製造方法、シリカゾルの製造方法及び研磨方法
JP2021116209A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7464201B2 (ja) シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7516763B2 (ja) シリカ粒子の製造方法、シリカゾルの製造方法、中間生成物の除去方法及び研磨方法
JP7331436B2 (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP7552145B2 (ja) シリカゾル、シリカゾルの製造方法、研磨組成物、研磨方法及び半導体デバイスの製造方法
JP2021123527A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2020180010A (ja) シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2024131533A (ja) シリカゾルの製造方法、研磨組成物の製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
TW202436223A (zh) 二氧化矽粒子、二氧化矽粒子之製造方法、二氧化矽溶膠、研磨組合物、研磨方法、半導體晶圓之製造方法以及半導體裝置之製造方法
WO2024122583A1 (ja) シリカ粒子、シリカ粒子の製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2022001545A (ja) シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020759610

Country of ref document: EP

Effective date: 20210921