WO2020170556A1 - 漏電検出装置、車両用電源システム - Google Patents

漏電検出装置、車両用電源システム Download PDF

Info

Publication number
WO2020170556A1
WO2020170556A1 PCT/JP2019/048018 JP2019048018W WO2020170556A1 WO 2020170556 A1 WO2020170556 A1 WO 2020170556A1 JP 2019048018 W JP2019048018 W JP 2019048018W WO 2020170556 A1 WO2020170556 A1 WO 2020170556A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
resistor
power storage
leakage
Prior art date
Application number
PCT/JP2019/048018
Other languages
English (en)
French (fr)
Inventor
中山 正人
智徳 國光
泰輔 濱田
田中 康晴
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US17/427,990 priority Critical patent/US11879948B2/en
Priority to JP2021501593A priority patent/JP7431212B2/ja
Priority to EP19916528.3A priority patent/EP3929021A4/en
Priority to CN201980092479.7A priority patent/CN113453942A/zh
Publication of WO2020170556A1 publication Critical patent/WO2020170556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/325Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors involving voltage comparison

Definitions

  • the present invention relates to an electric leakage detection device for detecting electric leakage of a load in a vehicle insulated from a chassis ground, and a vehicle power supply system.
  • hybrid vehicles HV
  • plug-in hybrid vehicles PSV
  • electric vehicles EV
  • a high-voltage drive battery traction battery
  • auxiliary battery generally a lead battery with 12V output
  • a high-voltage drive battery, an inverter, a high-power circuit including a drive motor, and a vehicle body (chassis ground) are insulated from each other.
  • Y capacitors are inserted between the positive wiring on the vehicle side of the high-voltage circuit and the chassis ground, and between the negative wiring on the vehicle side of the high-voltage circuit and the chassis ground, and are supplied from the high-voltage drive battery to the vehicle-side load.
  • the power supply is stable.
  • a leakage detector is installed to detect the leakage by monitoring the insulation resistance between the high voltage circuit and chassis ground.
  • the current leakage detection methods are roughly classified into AC method and DC method.
  • a pulse voltage is applied to the positive electrode terminal or the negative electrode terminal of the driving battery via the resistor and the coupling capacitor, and the voltage at the connection point between the resistor and the coupling capacitor is measured, The presence or absence of electric leakage is detected (for example, refer to Patent Document 1).
  • a resistance voltage dividing circuit is connected between the positive wiring and the negative wiring of the high-voltage circuit, and the presence or absence of leakage is determined from the ratio of the divided voltage and the total voltage of the driving battery (for example, , Patent Document 2).
  • a high-voltage driving battery and a high-voltage vehicle load including an inverter are connected via a contactor.
  • the resistance voltage divider circuit is usually connected to the battery side of the contactor.
  • a switch having high insulation performance for example, a photo MOS relay
  • a switch having high insulation performance is expensive, which has been a factor of increasing the cost of the leakage detection device.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technology for suppressing total cost without using expensive parts while ensuring detection accuracy in an electric leakage detection device mounted on a vehicle. To do.
  • an earth leakage detection device is mounted in a state of being insulated from a chassis ground of a vehicle, a power storage unit that supplies power to a load in the vehicle, and a power storage unit
  • a vehicle provided with a first switch inserted into a positive wiring to which a positive electrode and one end of the load are connected, and a second switch inserted into a negative wiring to which a negative electrode of the power storage unit and the other end of the load are connected.
  • a leakage detection device mounted on a vehicle, the coupling capacitor having one end connected to a current path of the power storage unit, and an AC output for applying a predetermined AC voltage to the other end of the coupling capacitor via an impedance element.
  • a first voltage measuring section that measures the voltage at the connection point between the coupling capacitor and the impedance element, and the presence or absence of electrical leakage is determined based on the voltage detected by the first voltage measuring section.
  • a second voltage measurement unit that detects a potential or a potential difference between the two, and a second determination unit that determines the presence or absence of leakage based on the potential or the potential difference detected by the second voltage measurement unit.
  • the voltage dividing circuit is connected between the positive wiring between the first switch and one end of the load and the negative wiring between the second switch and the other end of the load.
  • the present invention in the earth leakage detection device mounted on a vehicle, it is possible to suppress detection costs while ensuring total detection accuracy without using expensive parts.
  • FIG. 6 is a diagram for explaining the configuration of a power supply system including an AC leakage detection device according to Comparative Example 1.
  • 2A and 2B are diagrams showing an example of a rectangular wave pulse waveform applied from the AC output unit to the measurement point A and a voltage waveform of the measurement point A measured by the voltage measurement unit.
  • 9 is a diagram for explaining the configuration of a power supply system including a DC type leakage detection device according to Comparative Example 2.
  • FIG. It is a figure for demonstrating the structure of the power supply system provided with the earth leakage detection apparatus which concerns on embodiment of this invention. It is a figure for demonstrating the structure of the power supply system provided with the earth leakage detection apparatus which concerns on the modification of this invention.
  • FIG. 1 is a diagram for explaining the configuration of a power supply system 5 including an AC-type leakage detection device 10 according to Comparative Example 1.
  • the power supply system 5 is mounted on an electric vehicle.
  • the power supply system 5 is provided separately from an auxiliary battery (usually a 12V output lead battery is used) in the electric vehicle.
  • the power supply system 5 includes a high-voltage power storage unit 20 and a leakage detection device 10.
  • Power storage unit 20 includes a plurality of cells E1-En connected in series.
  • As the cell a lithium ion battery cell, a nickel hydrogen battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6 to 3.7 V
  • the electric vehicle is equipped with an inverter 2 and a motor 3 as a high voltage load.
  • the positive electrode of power storage unit 20 and one end of inverter 2 are connected by plus wiring Lp, and the negative electrode of power storage unit 20 and the other end of inverter 2 are connected by negative wiring Lm.
  • Positive side main relay MRp is inserted in plus line Lp, and negative side main relay MRm is inserted in minus line Lm.
  • Positive side main relay MRp and negative side main relay MRm function as contactors that control conduction/interruption between power storage unit 20 and a high-voltage load in the electric vehicle. Instead of the relay, it is possible to use a semiconductor switch with high withstand voltage and high insulation.
  • the inverter 2 is a bidirectional inverter connected between the power storage unit 20 and the motor 3.
  • the inverter 2 converts the DC power supplied from the power storage unit 20 into AC power and supplies the AC power to the motor 3.
  • the AC power supplied from the motor 3 is converted into DC power and supplied to the power storage unit 20.
  • the motor 3 for example, a three-phase AC motor is used.
  • the motor 3 rotates according to the AC power supplied from the inverter 2.
  • the rotational energy due to deceleration is converted into AC power and supplied to the inverter 2.
  • the power storage unit 20 is mounted on an electric vehicle while being insulated from the chassis ground of the electric vehicle.
  • the auxiliary battery is mounted on the electric vehicle with the negative electrode electrically connected to the chassis ground.
  • the positive wiring Lp on the inverter 2 side of the positive main relay MRp and the chassis ground are connected via the positive Y capacitor Cp.
  • the negative wiring Lm on the inverter 2 side of the negative side main relay MRm and the chassis ground are connected via the negative side Y capacitor Cm.
  • the positive Y-capacitor Cp and the negative Y-capacitor Cm electrically insulate the positive wiring Lp and the chassis ground, and the negative wiring Lm and the chassis ground, respectively, and stabilize the voltage of the positive wiring Lp and the negative wiring Lm. Has the effect of causing.
  • the intermediate voltage of the power storage unit 20 is maintained near the chassis ground voltage.
  • the positive electrode potential of the power storage unit 20 is maintained around +200V and the negative electrode potential thereof is maintained around -200V.
  • the leakage detection device 10 it is necessary to mount the leakage detection device 10 and monitor the insulation state between the high-voltage vehicle load including the inverter 2 and the chassis ground.
  • the insulation state between the positive wiring Lp and the chassis ground is represented by the positive side leakage resistance Rlp
  • the insulation state between the negative wiring Lm and the chassis ground is represented by the negative side leakage resistance Rlm.
  • the earth leakage detection device 10 mainly includes a coupling capacitor Cc, a resistor Ra, and a controller 13.
  • the control unit 13 includes an AC output unit 13a, a voltage measurement unit 13b, and a leakage determination unit 13c.
  • the control unit 13 can be configured by, for example, a microcomputer and a non-volatile memory (for example, EEPROM, flash memory).
  • One end of the coupling capacitor Cc is connected to the current path of the power storage unit 20.
  • one end of the coupling capacitor Cc is connected to the negative electrode of the power storage unit 20.
  • one end of coupling capacitor Cc may be connected to the positive electrode of power storage unit 20 or may be connected to any node of a plurality of cells E1-En in power storage unit 20.
  • the other end of the coupling capacitor Cc is connected to the AC output terminal of the controller 13 via the resistor Ra.
  • Other impedance elements may be used instead of the resistor Ra.
  • a connection point (measurement point A) between the coupling capacitor Cc and the resistor Ra is connected to the measurement voltage input terminal of the control unit 13.
  • the first Zener diode ZD1 is connected between the connection point between the resistor Ra and the AC output terminal of the control unit 13 and the chassis ground.
  • the second Zener diode ZD2 is connected between the measurement point A and the chassis ground.
  • the first Zener diode ZD1 and the second Zener diode ZD2 prevent the overvoltage from being applied to the control unit 13 due to the switching of the main relays MRp and MRm and the load fluctuation of the power supply system 5. Further, the control unit 13 is protected from surge current and static electricity.
  • the coupling capacitor Cc is often an aluminum electrolytic capacitor that can be relatively inexpensive and large in capacity.
  • the coupling capacitor Cc may be configured by connecting a plurality of capacitors (for example, aluminum electrolytic capacitors) in series. In this case, even if one capacitor is short-circuited, the remaining capacitors can maintain insulation.
  • the AC output unit 13a applies a predetermined AC voltage to the other end of the coupling capacitor Cc via the resistor Ra.
  • the AC output unit 13a includes a local oscillator, shapes the rectangular wave pulse generated by the local oscillator into a rectangular wave pulse signal having a preset frequency and duty ratio, and outputs the rectangular wave pulse signal.
  • the voltage measuring unit 13b measures the voltage at the measurement point A. If the control unit 13 does not include an A/D converter, an A/D converter (not shown) is provided between the measurement point A and the voltage measurement unit 13b, and the A/D converter is connected to the measurement point A. The analog voltage is converted into a digital value and output to the voltage measuring unit 13b.
  • the leakage determination unit 13c compares the voltage at the measurement point A measured by the voltage measurement unit 13b with the set value to determine the presence or absence of leakage.
  • the leakage determination unit 13c determines the presence or absence of leakage based on the degree of bluntness of the applied rectangular wave pulse signal.
  • 2A and 2B are diagrams showing an example of a rectangular wave pulse waveform applied from the AC output unit 13a to the measurement point A and a voltage waveform of the measurement point A measured by the voltage measurement unit 13b. ..
  • the leakage determination unit 13c measures the voltage of the measurement point A sampled at the timing immediately before the rising edge of the applied rectangular wave pulse waveform and the measurement point sampled at the timing immediately before the falling edge of the applied rectangular wave pulse waveform.
  • the difference voltage Vp-p from the voltage of A is calculated.
  • the leakage determination unit 13c determines that leakage has occurred.
  • the bluntness of the applied rectangular wave pulse waveform becomes large.
  • a decrease in the calculated differential voltage Vp-p means that the bluntness of the rectangular wave pulse waveform increases.
  • the set value is determined based on the blunting of the rectangular wave pulse waveform at the time of occurrence of leakage, which is derived in advance by experiments and simulations by the designer.
  • FIG. 1 shows a state in which electric leakage occurs between the node between the first cell E1 and the second cell E2 in the power storage unit 20 and the chassis ground. Also in this case, the bluntness of the applied rectangular wave pulse waveform becomes large.
  • the welding detection unit 30 has a potential difference between the potential of the positive wiring Lp between the positive main relay MRp and one end of the inverter 2 and the potential of the negative wiring Lm between the negative main relay MRm and the other end of the inverter 2. Is detected and output to the control unit 13.
  • the control unit 13 detects welding of the positive side main relay MRp or the negative side main relay MRm based on the potential difference input from the welding detection unit 30.
  • the control unit 13 controls the positive main It is determined that the relay MRp is welded.
  • the control unit 13 causes the negative side main relay MRm to detect the potential difference. It is determined that MRm is welded.
  • FIG. 3 is a diagram for explaining the configuration of the power supply system 5 including the DC type leakage detection device 10 according to the second comparative example.
  • the leakage detection device 10 according to the comparative example 2 includes a voltage dividing circuit 11, a voltage measuring unit 12, and a control unit 13.
  • the voltage dividing circuit 11 includes a positive side voltage dividing switch SWp, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, and a negative side divider connected in series between the positive wiring Lp and the negative wiring Lm.
  • the pressure switch SWm is included.
  • the connection point between the second resistor R2 and the third resistor R3 is connected to the chassis ground.
  • the voltage dividing circuit 11 includes a positive wiring Lp between the positive main relay MRp and the positive electrode of the power storage unit 20, and a negative wiring Lm between the negative main relay MRm and the negative electrode of the power storage unit 20. Connected in between.
  • the voltage measuring unit 12 has a potential at a connection point between the first resistor R1 and the second resistor R2 (hereinafter, referred to as a first connection point) and a connection point between the third resistor R3 and the fourth resistor R4 ( Hereinafter, the voltage Vob between the potentials of the second connection point) is measured.
  • the voltage measuring unit 12 is composed of a differential amplifier. The differential amplifier outputs the voltage Vob between the first connection point and the second connection point to the control unit 13.
  • the control unit 13 determines the presence/absence of leakage based on the voltage Vob measured by the voltage measurement unit 12.
  • the control unit 13 controls the positive main relay MRp and the negative main relay MRm to be in the ON state (closed state).
  • the control unit 13 sends the relevant information via an in-vehicle network (for example, CAN (Controller Area Network)).
  • the ECU is instructed to turn on the positive main relay MRp and the negative main relay MRm.
  • the positive main relay MRp and the negative main relay MRm are turned on.
  • the control unit 13 does not need to instruct the ON state.
  • the control unit 13 controls the positive side voltage dividing switch SWp and the negative side main relay MRm to be in the ON state when the positive side main relay MRp and the negative side main relay MRm are in the ON state.
  • first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 have the same resistance value.
  • the control unit 13 can detect the presence or absence of electric leakage between arbitrary nodes of the plurality of cells E1 to En in the power storage unit 20 and the chassis ground as follows. When both the positive side main relay MRp and the negative side main relay MRm are off (open), the control unit 13 turns the positive side voltage dividing switch SWp off and the negative side voltage dividing switch SWm on or the positive side. The voltage division switch SWp is turned on, and the negative side voltage division switch SWm is turned off. In this state, control unit 13 determines whether or not there is a leak in power storage unit 20 based on voltage Vob measured by voltage measurement unit 12. When the measured voltage Vob shows a significant value other than 0V, control unit 13 determines that electric leakage occurs in power storage unit 20. When the measured voltage Vob is substantially 0 V, control unit 13 determines that electric leakage has not occurred in power storage unit 20.
  • the welding detection unit 30 has a potential difference between the potential of the positive wiring Lp between the positive main relay MRp and one end of the inverter 2 and the potential of the negative wiring Lm between the negative main relay MRm and the other end of the inverter 2. Is detected and output to the control unit 13.
  • the control unit 13 detects welding of the positive side main relay MRp or the negative side main relay MRm based on the potential difference input from the welding detection unit 30.
  • the detection method is the same as in the AC method described above.
  • the AC leakage detection device 10 shown in FIG. 1 Comparing the AC leakage detection device 10 shown in FIG. 1 with the DC leakage detection device 10 shown in FIG. 3, there are the following differences.
  • the AC method when the total voltage Vbat of the power storage unit 20 fluctuates, the fluctuation is also superimposed on the pulse waveform at the measurement point A, so that it is difficult to correctly determine the presence or absence of leakage.
  • measures such as inserting a bandpass filter and making a determination based on the peak-peak value of the measured voltage can be considered, but the circuit configuration becomes complicated.
  • the presence or absence of electric leakage is determined based on the ratio of the total voltage Vbat of the power storage unit 20 and the voltage Vob obtained by dividing the total voltage Vbat. Whether or not there is a leak can be accurately determined. Although an error may occur due to the synchronization shift, the error is smaller than that in the AC method.
  • the design of the leakage detection device 10 is restricted by the positive Y capacitor Cp and the negative Y capacitor Cm on the vehicle side.
  • the frequency of the pulse voltage is set to a frequency in an appropriate range according to the capacities of the positive side Y capacitor Cp and the negative side Y capacitor Cm, and the capacity of the coupling capacitor Cc is changed to It is necessary to set the capacity so that it can pass through. In this case, it is necessary to design the capacity of the coupling capacitor Cc to be sufficiently larger than the capacity of the positive side Y capacitor Cp and the negative side Y capacitor Cm.
  • the influence on the design of the earth leakage detection device 10 is less than that of the AC method. ..
  • the coupling capacitor Cc electrically insulates the power storage unit 20 and the leakage detection device 10 from each other in a direct current manner, a high insulation state can be maintained between the two, and the power storage unit 20 and the leakage detection device 10 can be maintained. No current flows into 10.
  • the positive main relay MRp and the negative main relay MRm are turned off (opened), the positive side voltage dividing switch SWp and the negative side voltage dividing switch SWp are arranged so that current does not flow from the power storage unit 20 to the voltage dividing circuit 11. It is necessary to use a switch with high insulation performance (for example, a photo MOS relay) for SWm.
  • a switch having high insulation performance is expensive, and is a factor that increases the cost of the DC type leakage detection device 10.
  • the total voltage Vbat of the power storage unit 20 cannot be measured without providing an independent total voltage measurement unit that measures the total voltage Vbat of the power storage unit 20.
  • the DC method by controlling the positive side voltage dividing switch SWp and the negative side voltage dividing switch SWm to be in the ON state, it is possible to estimate the total voltage Vbat of the power storage unit 20 without providing an independent total voltage measuring unit. (See (Equation 1) above).
  • FIG. 4 is a diagram for explaining the configuration of the power supply system 5 including the leakage detection device 10 according to the embodiment of the present invention.
  • the leakage detection device 10 according to the embodiment is a leakage detection device 10 that uses both the AC method and the DC method.
  • the AC-type leakage detection device 10 according to Comparative Example 1 shown in FIG. 1 and the DC-type leakage detection device 10 according to Comparative Example 2 shown in FIG. 3 will be described.
  • the voltage dividing circuit 11 is provided between the positive wiring Lm between the positive main relay MRp and one end of the inverter 2 and the negative wiring Lm between the negative main relay MRm and the other end of the inverter 2. Connected. Further, in the embodiment, the positive side voltage dividing switch SWp and the negative side voltage dividing switch SWm are removed from the voltage dividing circuit 11. Further, in the embodiment, the welding detection unit 30 is removed.
  • a small capacity capacitor is used as the coupling capacitor Cc.
  • a ceramic capacitor is used instead of the electrolytic capacitor. Since the ceramic capacitor does not have polarity, it is not necessary to consider that the polarity of the coupling capacitor Cc is reversed depending on the leakage location of the power storage unit 20. On the other hand, since the electrolytic capacitor has a polarity, it is necessary to consider that the polarity of the coupling capacitor Cc is inverted depending on the leakage location of the power storage unit 20. In the case of an electrolytic capacitor, the capacity cannot be maintained if the polarity is reversed. In the example shown in FIG.
  • the power storage unit 20 includes eight cells E1 to E8 connected in series, and one end of the coupling capacitor Cc is a node between the fourth cell E4 and the fifth cell E5. Shows an example of connection to.
  • the withstand voltage of the coupling capacitor Cc can be halved as compared with the case of connecting to the positive electrode or the negative electrode of the power storage unit 20. In this case, the withstand voltage of the coupling capacitor Cc can be minimized.
  • the breakdown voltage can be set lower as the node is closer to the midpoint.
  • the presence or absence of leakage between the high-voltage vehicle load including the inverter 2 and the chassis ground is determined by the DC method.
  • the presence or absence of electric leakage in the power storage unit 20 is determined by the AC method.
  • Whether or not the positive main relay MRp and the negative main relay MRm are welded is determined by the DC method.
  • the second leakage determination unit 13d of the control unit 13 causes the voltage Vob measured by the voltage measurement unit 12 as shown in (Equation 1) above. And the ratio of the combined resistance value of the first resistance R1, the second resistance R2, the third resistance R3, and the fourth resistance R4 to the combined resistance value of the second resistance R2 and the third resistance R3. Estimate the total voltage Vbat.
  • the AC leakage detection function stops. Specifically, the AC output unit 13a, the voltage measurement unit 13b, and the first leakage determination unit 13c of the control unit 13 stop their operations.
  • the first leakage determination unit 13c detects the leakage of electricity in the power storage unit 20 based on the voltage at the measurement point A measured by the voltage measurement unit 13b. Determine the presence or absence.
  • the second leakage determination unit 13d determines whether or not the positive main relay MRp is welded based on the voltage Vob measured in this state. When the measured voltage Vob shows a significant value other than 0V, the second leakage determination unit 13d determines that the positive main relay MRp is welded. When the measured voltage Vob is substantially 0V, it is determined that the positive main relay MRp is not welded.
  • the second leakage determination unit 13d supplies an ON signal to the positive side main relay MRp and an OFF signal to the negative side main relay MRm when the electric vehicle is stopped (the inverter 2 is stopped).
  • the control unit 13 determines whether or not the negative side main relay MRm is welded based on the voltage Vob measured in this state.
  • the second leakage determination unit 13d determines that the negative main relay MRm is welded when the measured voltage Vob shows a significant value other than 0V. When the measured voltage Vob is substantially 0V, it is determined that the negative main relay MRm is not welded.
  • the present embodiment it is possible to suppress the total cost in the leakage detection device 10 while ensuring detection accuracy and without using expensive parts. Specifically, when the positive side main relay MRp and the negative side main relay MRm are in the ON state, the electric leakage is detected by the DC method.
  • the DC method is less susceptible to the load fluctuation of the electric vehicle and can detect the electric leakage with higher accuracy than the AC method which is easily affected by the load fluctuation.
  • the capacitance of the coupling capacitor Cc can be determined without being affected by the positive Y capacitor Cp and the negative Y capacitor Cm on the vehicle side. Therefore, the capacitance of the coupling capacitor Cc can be reduced. In that case, a relatively inexpensive ceramic capacitor may be used. Since the ceramic capacitor has no polarity, it is not necessary to consider the reversal of polarity, and the ceramic capacitor can be connected to the middle point of the plurality of cells E1 to E8 connected in series while maintaining the detection accuracy.
  • the voltage dividing circuit 11 and the voltage measuring unit 12 are provided closer to the inverter 2 than the positive main relay MRp and the negative main relay MRm. Therefore, even if the positive side voltage dividing switch SWp and the negative side voltage dividing switch SWm are not provided, current flows from the power storage unit 20 to the voltage dividing circuit 11 when the positive side main relay MRp and the negative side main relay MRm are in the off state. Can be prevented. As described above, in the embodiment, the cost can be greatly reduced by omitting the expensive switch having high insulation performance.
  • the leakage detection device 10 according to the comparative example 2 shown in FIG. 3 is provided with the welding detection unit 30, the leakage detection device 10 according to the embodiment has the welding detection unit 30 removed.
  • the voltage dividing circuit 11 and the voltage measuring unit 12 are provided closer to the power storage unit 20 than the positive main relay MRp and the negative main relay MRm. Therefore, the presence/absence of welding of the positive main relay MRp and the negative main relay MRm cannot be detected by the on/off control of the positive main relay MRp and the negative main relay MRm.
  • the voltage dividing circuit 11 and the voltage measuring unit 12 are provided closer to the inverter 2 than the positive main relay MRp and the negative main relay MRm. Therefore, the presence/absence of welding of the positive main relay MRp and the negative main relay MRm can be detected by the on/off control of the positive main relay MRp and the negative main relay MRm. As described above, according to the embodiment, the welding detection unit 30 can be omitted, and the cost can be reduced.
  • the positive side voltage dividing switch SWp, the negative side voltage dividing switch SWm, and the welding detection unit 30 can be omitted, and the coupling capacitor Cc can be downsized. Since no expensive parts are used, the total cost can be suppressed.
  • FIG. 5 is a diagram for explaining the configuration of the power supply system 5 including the leakage detection device 10 according to the modified example of the present invention.
  • the leakage detection device 10 according to the modification has a configuration in which a fifth resistor R5 and a bypass switch SW1 are added to the voltage dividing circuit 11 of the leakage detection device 10 shown in FIG.
  • the fifth resistor R5 is further connected in series to the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4, which are connected in series between the plus line Lp and the minus line Lm.
  • the bypass switch SW1 is connected in parallel with the fifth resistor R5. When the bypass switch SW1 is on, the fifth resistor R5 is invalid, and when the bypass switch SW1 is off, the fifth resistor R5 is valid.
  • both the positive wiring Lp and the chassis ground and the negative wiring Lm and the chassis ground are leaked in a manner that the positive side leakage resistance Rlp and the negative side leakage resistance Rlm are substantially equal.
  • the parallel circuit of the fifth resistor R5 and the bypass switch SW1 is inserted above the first resistor R1, but the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4. It may be inserted at any position in the series circuit.
  • the resistance values of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are set to different values without adding a parallel circuit of the fifth resistor R5 and the bypass switch SW1.
  • the combined resistance value of and the negative side combined resistance value may be unbalanced.
  • the voltage measuring unit 12 uses the potential of the connection point (hereinafter, referred to as the first connection point) between the first resistor R1 and the second resistor R2, the third resistor R3, and the fourth resistor R4.
  • the voltage measuring unit 12 may separately measure the potential Vop at the first connection point with respect to the chassis ground and the potential Vom at the second connection point with respect to the chassis ground.
  • a sine wave signal may be applied to the coupling capacitor Cc.
  • the first leakage determination unit 13c determines the presence/absence of leakage based on the degree of bluntness of the applied sine wave signal measured at the measurement point A.
  • a power storage unit (20) mounted in a state insulated from the chassis ground of the vehicle and supplying electric power to the load (2) in the vehicle, a positive electrode of the power storage unit (20), and one end of the load (2).
  • the first switch (MRp) inserted into the positive line (Lp) connected thereto and the negative line (Lm) connected to the negative electrode of the power storage unit (20) and the other end of the load (2).
  • a leakage detection device (10) mounted on a vehicle comprising: a second switch (MRm), A coupling capacitor (Cc) having one end connected to the current path of the power storage unit (20); An AC output section (13a) for applying a predetermined AC voltage to the other end of the coupling capacitor (Cc) via an impedance element (Ra); A first voltage measuring unit (13b) for measuring a voltage at a connection point between the coupling capacitor (Cc) and the impedance element (Ra); A first determination unit (13c) that determines the presence or absence of leakage based on the voltage detected by the first voltage measurement unit (13b); A first resistor (R1), a second resistor (R2), a third resistor (R3), and a fourth resistor (R4) connected in series between the plus line (Lp) and the minus line (Lm), A voltage dividing circuit (11) having a connection point between the second resistor (R2) and the third resistor (R3) connected to the chassis ground; The potential of the connection point between the
  • the voltage dividing circuit (11) connects the positive wiring (Lp) between the first switch (MRp) and one end of the load (2), the second switch (MRm) and the load (2).
  • the power storage unit (20) includes a plurality of cells (E1-En) connected in series, 3.
  • the earth leakage detection device (10) according to item 2 wherein one end of the coupling capacitor (Cc) is connected to a midpoint of the plurality of cells (E1-En) connected in series. According to this, the coupling capacitor (Cc) having a low withstand voltage can be used, and the cost of the coupling capacitor (Cc) can be reduced.
  • the electric leakage detection device (10) according to any one of items 1 to 3, further comprising: According to this, the positive side combined resistance value and the negative side combined resistance value can be made unbalanced, and the leakage can be detected even when the positive side and the negative side are simultaneously leaking.
  • the second determination unit (13d) determines the potential or the potential difference detected by the second voltage measurement unit (12) when the first switch (MRp) and the second switch (MRm) are on. 5.
  • the leakage detection device (10) according to any one of items 1 to 4, wherein the presence or absence of leakage between the load (2) in the vehicle and the chassis ground is determined. According to this, it is possible to determine the presence or absence of electric leakage between the load (2) and the chassis ground in a state in which the load (2) is unlikely to be affected.
  • the first determination unit (13c) based on the voltage detected by the first voltage measurement unit (13b) when the first switch (MRp) and the second switch (MRm) are off, The leakage detection device (10) according to any one of items 1 to 5, characterized in that the presence or absence of leakage in the power storage unit (20) is determined.
  • the first switch (MRp) is composed of a first relay
  • the second switch (MRm) is composed of a second relay
  • the second determination unit (13d) Measured by the second voltage measuring unit (12) in a state where the load (2) is stopped and an OFF signal is supplied to the first relay and an ON signal is supplied to the second relay. Based on the electric potential or the electric potential difference, the presence or absence of welding of the first relay is determined, Measured by the second voltage measuring unit (12) in a state where the load (2) is stopped and an ON signal is supplied to the first relay and an OFF signal is supplied to the second relay.
  • the presence or absence of welding of the second relay is determined based on the potential or the potential difference, 7.
  • the leakage detection device (10) according to any one of items 1 to 6, characterized in that. According to this, it is possible to detect welding of the first relay and the second relay without separately providing a welding detection unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

車両に搭載される漏電検出装置(10)において、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑制するために、車両のシャーシアースと絶縁された状態で搭載される蓄電部(20)と、プラス配線(Lp)に挿入される第1スイッチ(MRp)と、マイナス配線(Lm)に挿入される第2スイッチ(MRm)と、を備える車両に搭載される漏電検出装置(10)において、カップリングコンデンサ(Cc)、交流出力部(13a)、第1電圧測定部(13b)、第1判定部(13c)、分圧回路(11)、第2電圧測定部(12)、第2判定部(13d)を備える。分圧回路(11)は、第1スイッチ(MRp)と負荷(2)の一端との間のプラス配線(Lp)と、第2スイッチ(MRm)と負荷(2)の他端との間のマイナス配線(Lm)との間に接続される。

Description

漏電検出装置、車両用電源システム
 本発明は、シャーシアースから絶縁された車両内の負荷の漏電を検出する漏電検出装置、車両用電源システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの電動車両には、補機電池(一般的に12V出力の鉛電池)と別に高電圧の駆動用電池(トラクションバッテリ)が搭載される。感電を防止するために、高電圧の駆動用電池、インバータ、走行用モータを含む強電回路と、車両のボディ(シャーシアース)間は絶縁される。
 強電回路の車両側のプラス配線とシャーシアース間、及び強電回路の車両側のマイナス配線とシャーシアース間には、それぞれYコンデンサが挿入され、高電圧の駆動用電池から車両側の負荷に供給される電源が安定化されている。強電回路とシャーシアース間の絶縁抵抗を監視して漏電を検出する漏電検出装置が搭載される。
 漏電検出方式には大別するとAC方式とDC方式がある。AC方式の漏電検出装置では、駆動用電池の正極端子または負極端子に、抵抗とカップリングコンデンサを介してパルス電圧を印加し、当該抵抗と当該カップリングコンデンサとの接続点の電圧を測定し、漏電の有無を検出する(例えば、特許文献1参照)。
 DC方式の漏電検出装置では、強電回路のプラス配線とマイナス配線の間に抵抗分圧回路を接続し、分圧電圧と、駆動用電池の総電圧との比率から漏電の有無を判定する(例えば、特許文献2参照)。一般的な電動車両では、高電圧の駆動用電池と、インバータを含む高電圧の車両負荷の間はコンタクタを介して接続される。上記の抵抗分圧回路は通常、コンタクタより電池側に接続される。
特開2003-250201号公報 特開2007-327856号公報
 AC方式における上記構成では、駆動用電池の総電圧が変動すると、その変動分がパルスの測定電圧に重畳されるため漏電の有無を正しく判定することが困難になる。車両側の負荷変動の影響を取り除くため、バンドパスフィルタを挿入したり、測定電圧のピークピーク値で判定するなどの対策が考えられるが、回路構成が複雑になる。また、強電回路の車両側の配線とシャーシアース間に接続されたYコンデンサの容量によって、カップリングコンデンサの容量と、印加するパルス電圧の周波数を適切に調整する必要があり、当該Yコンデンサにより設計上の制約を受ける。具体的には、カップリングコンデンサの容量を、Yコンデンサの容量より十分に大きく設計する必要がある。
 DC方式における上記構成ではコンタクタのオープン時に、駆動用電池から上記抵抗分圧回路に電流が流れないように当該抵抗分圧回路内に、絶縁性能の高いスイッチ(例えば、フォトMOSリレー)を接続する必要があった。絶縁性能の高いスイッチは高価であり、漏電検出装置のコストを上昇させる要因となっていた。
 AC方式における上記構成、及びDC方式における上記構成のいずれの場合であっても、コンタクタの溶着の有無を判定するには、別に溶着検出回路を設ける必要があった。
 本発明はこうした状況に鑑みなされたものであり、その目的は、車両に搭載される漏電検出装置において、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の漏電検出装置は、車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷に電力を供給する蓄電部と、前記蓄電部の正極と前記負荷の一端が接続されるプラス配線に挿入される第1スイッチと、前記蓄電部の負極と前記負荷の他端が接続されるマイナス配線に挿入される第2スイッチと、を備える車両に搭載される漏電検出装置であって、前記蓄電部の電流経路に一端が接続されるカップリングコンデンサと、前記カップリングコンデンサの他端にインピーダンス素子を介して所定の交流電圧を印加する交流出力部と、前記カップリングコンデンサと前記インピーダンス素子との間の接続点の電圧を測定する第1電圧測定部と、前記第1電圧測定部により検出された電圧をもとに漏電の有無を判定する第1判定部と、前記プラス配線と前記マイナス配線間に直列接続された第1抵抗、第2抵抗、第3抵抗、及び第4抵抗を含み、前記第2抵抗と前記第3抵抗との間の接続点が前記シャーシアースに接続された分圧回路と、前記第1抵抗と前記第2抵抗との間の接続点の電位、前記第3抵抗と前記第4抵抗との間の接続点の電位、または両者の電位の電位差を検出する第2電圧測定部と、前記第2電圧測定部により検出された電位または電位差をもとに漏電の有無を判定する第2判定部と、を備える。前記分圧回路は、前記第1スイッチと前記負荷の一端との間の前記プラス配線と、前記第2スイッチと前記負荷の他端との間の前記マイナス配線との間に接続される。
 本発明によれば、車両に搭載される漏電検出装置において、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑制することができる。
比較例1に係るAC方式の漏電検出装置を備える電源システムの構成を説明するための図である。 図2(a)、(b)は、交流出力部から測定点Aに印加される矩形波パルス波形、及び電圧測定部により測定される測定点Aの電圧波形の一例を示す図である。 比較例2に係るDC方式の漏電検出装置を備える電源システムの構成を説明するための図である。 本発明の実施の形態に係る漏電検出装置を備える電源システムの構成を説明するための図である。 本発明の変形例に係る漏電検出装置を備える電源システムの構成を説明するための図である。
 図1は、比較例1に係るAC方式の漏電検出装置10を備える電源システム5の構成を説明するための図である。電源システム5は電動車両に搭載される。電源システム5は電動車両内において、補機電池(通常、12V出力の鉛電池が使用される)と別に設けられる。電源システム5は、高電圧の蓄電部20、及び漏電検出装置10を含む。蓄電部20は、直列接続された複数のセルE1-Enを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。
 電動車両は高電圧の負荷として、インバータ2及びモータ3を備える。蓄電部20の正極とインバータ2の一端がプラス配線Lpで接続され、蓄電部20の負極とインバータ2の他端がマイナス配線Lmで接続される。プラス配線Lpに正側メインリレーMRpが挿入され、マイナス配線Lmに負側メインリレーMRmが挿入される。正側メインリレーMRpと負側メインリレーMRmは、蓄電部20と電動車両内の高電圧の負荷との間の導通/遮断を制御するコンタクタとして機能する。なおリレーの代わりに、高耐圧・高絶縁の半導体スイッチを使用することも可能である。
 インバータ2は、蓄電部20とモータ3の間に接続される双方向インバータである。インバータ2は力行時、蓄電部20から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して蓄電部20に供給する。モータ3には例えば、三相交流モータが使用される。モータ3は力行時、インバータ2から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ2に供給する。
 蓄電部20は、電動車両のシャーシアースと絶縁された状態で電動車両に搭載される。補機電池は、負極がシャーシアースと導通した状態で電動車両に搭載される。なお、正側メインリレーMRpよりインバータ2側のプラス配線Lpとシャーシアース間が正側YコンデンサCpを介して接続される。また、負側メインリレーMRmよりインバータ2側のマイナス配線Lmとシャーシアース間が負側YコンデンサCmを介して接続される。正側YコンデンサCp及び負側YコンデンサCmは、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間をそれぞれ直流的に絶縁するとともに、プラス配線Lp及びマイナス配線Lmの電圧を安定化させる作用を有する。
 蓄電部20がシャーシアースから理想的に絶縁されている場合、蓄電部20の中間電圧がシャーシアースの電圧近辺に維持される。例えば、蓄電部20の両端電圧が400Vの場合、蓄電部20の正極電位が+200V近辺、負極電位が-200V近辺に維持される。高電圧の蓄電部20とシャーシアース間が導通した状態で、人間が電動車両の露出した導電部に触れると感電する危険がある。そこで高電圧の蓄電部20を搭載した電動車両では、漏電検出装置10を搭載して、インバータ2を含む高電圧の車両負荷とシャーシアース間の絶縁状態を監視する必要がある。図1では、プラス配線Lpとシャーシアース間の絶縁状態を正側漏電抵抗Rlp、マイナス配線Lmとシャーシアース間の絶縁状態を負側漏電抵抗Rlmと表している。
 漏電検出装置10は主な構成として、カップリングコンデンサCc、抵抗Ra及び制御部13を含む。制御部13は、交流出力部13a、電圧測定部13b及び漏電判定部13cを含む。制御部13は例えば、マイクロコンピュータ及び不揮発メモリ(例えば、EEPROM、フラッシュメモリ)により構成することができる。
 カップリングコンデンサCcは、蓄電部20の電流経路に一端が接続される。図1に示す例では蓄電部20の負極にカップリングコンデンサCcの一端が接続されている。なお、カップリングコンデンサCcの一端は、蓄電部20の正極に接続されてもよいし、蓄電部20内の複数のセルE1-Enのいずれかのノードに接続されてもよい。カップリングコンデンサCcの他端は、抵抗Raを介して制御部13の交流出力端子に接続される。なお、抵抗Raの代わりに他のインピーダンス素子を使用してもよい。カップリングコンデンサCcと抵抗Raとの間の接続点(測定点A)は、制御部13の測定電圧入力端子に接続される。
 抵抗Raと制御部13の交流出力端子との間の接続点と、シャーシアース間に第1ツェナーダイオードZD1が接続される。測定点Aとシャーシアース間に第2ツェナーダイオードZD2が接続される。第1ツェナーダイオードZD1及び第2ツェナーダイオードZD2は、メインリレーMRp、MRmの開閉や電源システム5の負荷変動に起因して、制御部13に過電圧が印加されることを防止する。また、サージ電流や静電気から制御部13を保護する。
 カップリングコンデンサCcには、比較的安価に大容量化することができるアルミ電解コンデンサが使用されることが多い。カップリングコンデンサCcは、複数のコンデンサ(例えば、アルミ電解コンデンサ)が直列に接続されて構成されていてもよい。この場合、1つのコンデンサがショート故障しても、残りのコンデンサにより絶縁を維持することができる。
 交流出力部13aは、抵抗Raを介してカップリングコンデンサCcの他端に所定の交流電圧を印加する。交流出力部13aは局部発振器を含み、局部発振器により生成される矩形波パルスを、予め設定された周波数およびデューティ比の矩形波パルス信号に整形して出力する。電圧測定部13bは測定点Aの電圧を測定する。なお制御部13内にA/Dコンバータが内蔵されていない場合、測定点Aと電圧測定部13bの間にA/Dコンバータ(不図示)が設けられ、当該A/Dコンバータは測定点Aのアナログ電圧をデジタル値に変換して電圧測定部13bに出力する。
 漏電判定部13cは、電圧測定部13bにより測定された測定点Aの電圧と設定値を比較して漏電の有無を判定する。漏電判定部13cは、印加された矩形波パルス信号の鈍りの程度をもとに漏電の有無を判定する。
 図2(a)、(b)は、交流出力部13aから測定点Aに印加される矩形波パルス波形、及び電圧測定部13bにより測定される測定点Aの電圧波形の一例を示す図である。漏電判定部13cは、印加された矩形波パルス波形の立ち上がりエッジの直前のタイミングでサンプリングした測定点Aの電圧と、印加された矩形波パルス波形の立ち下がりエッジの直前のタイミングでサンプリングした測定点Aの電圧との差分電圧Vp-pを算出する。漏電判定部13cは、算出した差分電圧Vp-pが設定値より低い場合、漏電が発生していると判定する。漏電が発生している場合、印加された矩形波パルス波形の鈍りが大きくなる。算出した差分電圧Vp-pが低くなることは、矩形波パルス波形の鈍りが大きくなることを意味する。上記設定値は、設計者による実験やシミュレーションにより予め導出された漏電発生時の矩形波パルス波形の鈍りをもとに決定される。
 図1に示す例は、蓄電部20内の第1セルE1と第2セルE2の間のノードとシャーシアース間に漏電が発生している状態を示している。この場合も、印加された矩形波パルス波形の鈍りが大きくなる。
 溶着検出部30は、正側メインリレーMRpとインバータ2の一端との間のプラス配線Lpの電位と、負側メインリレーMRmとインバータ2の他端との間のマイナス配線Lmの電位との電位差を検出し、制御部13に出力する。制御部13は、溶着検出部30から入力される電位差をもとに、正側メインリレーMRp又は負側メインリレーMRmの溶着を検出する。
 インバータ2が停止しており、かつ正側メインリレーMRpにオフ信号(オープン信号)が供給されている状態で、溶着検出部30により有意な電位差が検出された場合、制御部13は正側メインリレーMRpが溶着していると判定する。インバータ2が停止しており、かつ負極メインリレーMRmにオフ信号(オープン信号)が供給されている状態で、溶着検出部30により有意な電位差が検出された場合、制御部13は負側メインリレーMRmが溶着していると判定する。
 図3は、比較例2に係るDC方式の漏電検出装置10を備える電源システム5の構成を説明するための図である。比較例2に係る漏電検出装置10は、分圧回路11、電圧測定部12及び制御部13を含む。分圧回路11は、プラス配線Lpとマイナス配線Lm間に直列接続された正側分圧スイッチSWp、第1抵抗R1、第2抵抗R2、第3抵抗R3、第4抵抗R4、及び負側分圧スイッチSWmを含む。第2抵抗R2と第3抵抗R3との間の接続点はシャーシアースに接続される。比較例2では分圧回路11は、正側メインリレーMRpと蓄電部20の正極との間のプラス配線Lpと、負側メインリレーMRmと蓄電部20の負極との間のマイナス配線Lmとの間に接続される。
 電圧測定部12は、第1抵抗R1と第2抵抗R2との間の接続点(以下、第1接続点という)の電位と、第3抵抗R3と第4抵抗R4との間の接続点(以下、第2接続点という)の電位間の電圧Vobを測定する。図3に示す例では電圧測定部12は、差動アンプで構成されている。当該差動アンプは、第1接続点と第2接続点間の電圧Vobを制御部13に出力する。
 制御部13は、電圧測定部12により測定された電圧Vobをもとに漏電の有無を判定する。以下、インバータ2を含む高電圧の車両負荷とシャーシアース間の漏電の有無を判定する方法を説明する。まず制御部13は、正側メインリレーMRp及び負側メインリレーMRmをオン状態(クローズ状態)に制御する。なお正側メインリレーMRp及び負側メインリレーMRmが車両側のECU(Electronic Control Unit)で制御されている場合、制御部13は車載ネットワーク(例えば、CAN(Controller Area Network))を介して、当該ECUに正側メインリレーMRp及び負側メインリレーMRmのオンを指示する。当該ECUが当該指示を受け付けると、正側メインリレーMRp及び負側メインリレーMRmをオンする。なお、当該ECUにより正側メインリレーMRp及び負側メインリレーMRmが既にオン状態に制御されている場合、制御部13がオンを指示する必要はない。制御部13は、正側メインリレーMRp及び負側メインリレーMRmがオン状態にある場合において、正側分圧スイッチSWp及び負側メインリレーMRmをオン状態に制御する。
 なお以下の説明では、第1抵抗R1、第2抵抗R2、第3抵抗R3、及び第4抵抗R4の抵抗値が等しいことを前提とする。
 制御部13は、下記(式1)に示すように、電圧測定部12により測定された電圧Vobと、第1抵抗R1と第2抵抗R2と第3抵抗R3と第4抵抗R4の合成抵抗値と第2抵抗R2と第3抵抗R3の合成抵抗値との比率をもとに蓄電部20の総電圧Vbatを推定する。
 Vbat=(R1+R2+R3+R4)/(R2+R3)・Vob ・・・(式1)
 制御部13は、蓄電部20の総電圧Vbatと、測定された電圧Vobとの比率r(=Vob/Vbat)を算出する。インバータ2を含む高電圧の車両負荷とシャーシアース間が理想的に絶縁されている状態(漏電電流が流れていない状態)では比率rは0.5になる。第1抵抗R1、第2抵抗R2、第3抵抗R3、及び第4抵抗R4の抵抗値が等しいため、4つの抵抗により蓄電部20の総電圧Vbatがそれぞれ1/4に分圧される。従って、比率rは0.5(=2/4)になる。制御部13は、算出した比率rが、0.5より所定値以上乖離している場合、インバータ2を含む高電圧の車両負荷とシャーシアース間に漏電が発生していると判定する。
 制御部13は、蓄電部20内の複数のセルE1-Enの任意のノードとシャーシアース間の漏電の有無を以下のように検出することができる。制御部13は、正側メインリレーMRp及び負側メインリレーMRmの両方がオフ(オープン)の状態において、正側分圧スイッチSWpがオフで負側分圧スイッチSWmがオンの状態、又は正側分圧スイッチSWpがオンで負側分圧スイッチSWmがオフの状態を生成する。制御部13はこの状態において、電圧測定部12により測定された電圧Vobをもとに蓄電部20内の漏電の有無を判定する。制御部13は測定された電圧Vobが0V以外の有意な値を示した場合、蓄電部20内で漏電が発生していると判定する。測定された電圧Vobが実質的に0Vの場合、制御部13は蓄電部20内に漏電が発生していないと判定する。
 溶着検出部30は、正側メインリレーMRpとインバータ2の一端との間のプラス配線Lpの電位と、負側メインリレーMRmとインバータ2の他端との間のマイナス配線Lmの電位との電位差を検出し、制御部13に出力する。制御部13は、溶着検出部30から入力される電位差をもとに、正側メインリレーMRp又は負側メインリレーMRmの溶着を検出する。検出方法は、上述したAC方式の場合と同様である。
 図1に示したAC方式の漏電検出装置10と、図3に示したDC方式の漏電検出装置10を比較すると以下の違いがある。まずAC方式では、蓄電部20の総電圧Vbatが変動した場合、測定点Aのパルス波形にも、その変動分が重畳されるため、漏電の有無を正しく判定することが困難になる。車両側の負荷変動の影響を取り除くため、バンドパスフィルタを挿入したり、測定電圧のピークピーク値で判定するなどの対策が考えられるが、回路構成が複雑になる。DC方式では、蓄電部20の総電圧Vbatと、総電圧Vbatを分圧した電圧Vobの比率をもとに漏電の有無を判定するため、蓄電部20の総電圧Vbatが変動しても基本的に漏電の有無を正確に判定できる。なお、同期ずれによる誤差が生じる場合があるが、AC方式より小さな誤差である。
 次にAC方式では、正側YコンデンサCp及び負側YコンデンサCmの容量によって、カップリングコンデンサCcの容量と、印加するパルス電圧の周波数を適切に調整する必要がある。即ち、漏電検出装置10の設計が車両側の正側YコンデンサCp及び負側YコンデンサCmにより制約を受ける。具体的には、パルス電圧の周波数を、正側YコンデンサCp及び負側YコンデンサCmの容量に応じた適切な範囲の周波数に設定し、カップリングコンデンサCcの容量を、当該周波数のパルス電圧が通過できる範囲の容量に設定する必要がある。この場合、カップリングコンデンサCcの容量を、正側YコンデンサCp及び負側YコンデンサCmの容量より十分に大きく設計する必要がある。
 DC方式では、正側YコンデンサCp及び負側YコンデンサCmの容量の影響を排除するために、測定される電圧が安定するまでの待機時間を設定する必要がある。しかしながら、車両側の正側YコンデンサCp及び負側YコンデンサCmの容量に応じてハードウェア部品の変更をする必要はないため、AC方式と比較して漏電検出装置10の設計に与える影響は少ない。
 次にAC方式では、カップリングコンデンサCcにより蓄電部20と漏電検出装置10間が直流的に絶縁されるため、両者の間を高絶縁状態に維持することができ、蓄電部20から漏電検出装置10に電流が流入することはない。DC方式では、正側メインリレーMRp及び負側メインリレーMRmのオフ(オープン)時に、蓄電部20から分圧回路11に電流が流れないように、正側分圧スイッチSWp及び負側分圧スイッチSWmに、絶縁性能の高いスイッチ(例えば、フォトMOSリレー)を使用する必要がある。絶縁性能の高いスイッチは高価であり、DC方式の漏電検出装置10のコストを上昇させる要因となっている。
 次にAC方式では、蓄電部20の総電圧Vbatを、蓄電部20の総電圧Vbatを測定する独立した総電圧測定部を設けずに測定することはできない。DC方式では、正側分圧スイッチSWp及び負側分圧スイッチSWmをオン状態に制御することにより、独立した総電圧測定部を設けずに、蓄電部20の総電圧Vbatを推定することができる(上記(式1)参照)。
 図4は、本発明の実施の形態に係る漏電検出装置10を備える電源システム5の構成を説明するための図である。実施の形態に係る漏電検出装置10は、AC方式とDC方式を併用した漏電検出装置10である。以下、図1に示した比較例1に係るAC方式の漏電検出装置10と、図3に示した比較例2に係るDC方式の漏電検出装置10との相違点を説明する。
 まず図3に示したDC方式の漏電検出装置10との相違点を説明する。実施の形態では、分圧回路11が、正側メインリレーMRpとインバータ2の一端との間のプラス配線Lmと、負側メインリレーMRmとインバータ2の他端との間のマイナス配線Lm間に接続される。また実施の形態では、分圧回路11から正側分圧スイッチSWp及び負側分圧スイッチSWmが取り除かれる。また実施の形態では溶着検出部30が取り除かれる。
 次に図1に示したAC方式の漏電検出装置10との相違点を説明する。実施の形態では、カップリングコンデンサCcに小容量のコンデンサを使用している。例えば、電解コンデンサの代わりにセラミックコンデンサを使用する。セラミックコンデンサは極性を持たないため、蓄電部20の漏電箇所によりカップリングコンデンサCcの極性が反転することを考慮する必要がない。一方、電解コンデンサは極性を持つため、蓄電部20の漏電箇所によりカップリングコンデンサCcの極性が反転することを考慮する必要がある。電解コンデンサの場合、極性が反転すると容量を維持できなくなる。図1に示した例において、蓄電部20の正極、又は複数のセルE1-Enのノードの内、高電圧のノードに接続すると、蓄電部20の漏電箇所が、カップリングコンデンサCcの接続箇所より負極側となる場合、カップリングコンデンサCcの極性が反転する可能性が高くなる。
 これに対してセラミックコンデンサの場合、極性の反転を考慮することなく、複数のセルE1-E8の複数のノードのいずれにも接続することができる。例えば、複数のセルE1-E8の中間のノードに接続することもできる。図4では説明を分かりやすくするために、蓄電部20が直列接続された8個のセルE1-E8を含み、カップリングコンデンサCcの一端が、第4セルE4と第5セルE5の間のノードに接続される例を示している。直列接続された複数のセルE1-E8の中点に接続すると、蓄電部20の正極または負極に接続した場合と比較して、カップリングコンデンサCcの耐圧を半分にすることができる。この場合、カップリングコンデンサCcの耐圧を最も低くすることができる。なお、中点に近いノードに接続するほど、耐圧を低く設定することができる。
 実施の形態に係る漏電検出装置10では、インバータ2を含む高電圧の車両負荷とシャーシアース間の漏電の有無はDC方式で判定する。蓄電部20内の漏電の有無はAC方式で判定する。正側メインリレーMRpと負側メインリレーMRmの溶着の有無はDC方式で判定する。
 正側メインリレーMRp及び負側メインリレーMRmがオン状態のとき、制御部13の第2漏電判定部13dは、上記(式1)に示したように、電圧測定部12により測定された電圧Vobと、第1抵抗R1と第2抵抗R2と第3抵抗R3と第4抵抗R4の合成抵抗値と第2抵抗R2と第3抵抗R3の合成抵抗値との比率をもとに蓄電部20の総電圧Vbatを推定する。
 第2漏電判定部13dは、蓄電部20の総電圧Vbatと、測定された電圧Vobとの比率r(=Vob/Vbat)を算出する。第2漏電判定部13dは、算出した比率rが、0.5に対して所定値以上乖離している場合、インバータ2を含む高電圧の車両負荷とシャーシアース間に漏電が発生していると判定する。第2漏電判定部13dは、算出した比率rが、0.5に対して所定値以上乖離していない場合、インバータ2を含む高電圧の車両負荷とシャーシアース間に漏電が発生していないと判定する。
 正側メインリレーMRp及び負側メインリレーMRmがオン状態のとき、AC方式の漏電検出機能は停止する。具体的には制御部13の交流出力部13a、電圧測定部13b及び第1漏電判定部13cは動作を停止する。
 正側メインリレーMRp及び負側メインリレーMRmがオフ状態のとき、第1漏電判定部13cは、電圧測定部13bにより測定された測定点Aの電圧をもとに、蓄電部20内の漏電の有無を判定する。
 第2漏電判定部13dは、電動車両が停止している(インバータ2が停止している)ときに、正側メインリレーMRpにオフ信号(オープン信号)、負側メインリレーMRmにオン信号(クローズ信号)を供給する。第2漏電判定部13dは、この状態において測定された電圧Vobをもとに正側メインリレーMRpの溶着の有無を判定する。第2漏電判定部13dは、測定された電圧Vobが0V以外の有意な値を示した場合、正側メインリレーMRpが溶着していると判定する。測定された電圧Vobが実質的に0Vの場合、正側メインリレーMRpが溶着していないと判定する。
 第2漏電判定部13dは、電動車両が停止している(インバータ2が停止している)ときに、正側メインリレーMRpにオン信号、負側メインリレーMRmにオフ信号を供給する。制御部13は、この状態において測定された電圧Vobをもとに負側メインリレーMRmの溶着の有無を判定する。第2漏電判定部13dは、測定された電圧Vobが0V以外の有意な値を示した場合、負側メインリレーMRmが溶着していると判定する。測定された電圧Vobが実質的に0Vの場合、負側メインリレーMRmが溶着していないと判定する。
 以上説明したように本実施の形態によれば、漏電検出装置10において、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑えることができる。具体的には、正側メインリレーMRp及び負側メインリレーMRmがオン状態のときDC方式で漏電を検出する。DC方式は、電動車両の負荷変動の影響を受けにくく、負荷変動の影響を受けやすいAC方式と比較して、高精度に漏電を検出することができる。
 正側メインリレーMRp及び負側メインリレーMRmがオフ状態のときに限って、AC方式で蓄電部20内の漏電を検出する。これにより、車両側の正側YコンデンサCp及び負側YコンデンサCmの影響を受けずに、カップリングコンデンサCcの容量を決定することができる。従って、カップリングコンデンサCcを小容量化することができる。その場合、比較的安価なセラミックコンデンサを採用することもできる。セラミックコンデンサは極性を持たないため、極性の反転を考慮する必要がなく、検出精度を維持しつつ、直列接続された複数のセルE1-E8の中点に接続することもできる。
 図3に示した比較例2に係るDC方式の漏電検出装置10の構成では、正側メインリレーMRp及び負側メインリレーMRmがオフ状態のとき、蓄電部20から分圧回路11に電流が流れないように、正側分圧スイッチSWp及び負側分圧スイッチSWmに、高価な絶縁性能の高いスイッチ(例えば、フォトMOSリレー)を使用していた。
 これに対して実施の形態に係る漏電検出装置10では、分圧回路11及び電圧測定部12が正側メインリレーMRp及び負側メインリレーMRmよりインバータ2側に設けられている。従って、正側分圧スイッチSWp及び負側分圧スイッチSWmを設けなくても、正側メインリレーMRp及び負側メインリレーMRmがオフ状態のときに蓄電部20から分圧回路11に電流が流れることを阻止することができる。このように実施の形態では、高価な絶縁性能の高いスイッチを省略することで、コストを大きく削減することができる。
 また図3に示した比較例2に係るDC方式の漏電検出装置10では溶着検出部30が設けられているが、実施の形態に係る漏電検出装置10では溶着検出部30が取り除かれている。比較例2に係るDC方式の漏電検出装置10では、分圧回路11及び電圧測定部12が正側メインリレーMRp及び負側メインリレーMRmより蓄電部20側に設けられている。従って、正側メインリレーMRp及び負側メインリレーMRmのオン/オフ制御により、正側メインリレーMRp及び負側メインリレーMRmの溶着の有無を検出することができない。
 これに対して実施の形態に係る漏電検出装置10では、分圧回路11及び電圧測定部12が正側メインリレーMRp及び負側メインリレーMRmよりインバータ2側に設けられている。従って、正側メインリレーMRp及び負側メインリレーMRmのオン/オフ制御により、正側メインリレーMRp及び負側メインリレーMRmの溶着の有無を検出することができる。このように実施の形態によれば、溶着検出部30を省略することができ、コストを削減することができる。
 このように実施の形態によれば、正側分圧スイッチSWp、負側分圧スイッチSWm、及び溶着検出部30を省略でき、カップリングコンデンサCcを小容量化することができる。高価な部品を使用しないため、トータルコストを抑えることができる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図5は、本発明の変形例に係る漏電検出装置10を備える電源システム5の構成を説明するための図である。変形例に係る漏電検出装置10は、図4に示した漏電検出装置10の分圧回路11に、第5抵抗R5及びバイパススイッチSW1が追加された構成である。第5抵抗R5は、プラス配線Lpとマイナス配線Lm間に直列接続された第1抵抗R1、第2抵抗R2、第3抵抗R3、及び第4抵抗R4に、さらに直列に接続される。バイパススイッチSW1は、第5抵抗R5と並列に接続される。バイパススイッチSW1がオン状態で第5抵抗R5が無効になり、バイパススイッチSW1がオフ状態で第5抵抗R5が有効となる。
 図4に示した漏電検出装置10では、正側漏電抵抗Rlpと負側漏電抵抗Rlmが実質的に等しい態様で、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間の両方が漏電した場合、上記比率r(=Vob/Vbat)は0.5近傍の値になる。正側漏電抵抗Rlpを含む正側の合成抵抗値と、負側漏電抵抗Rlmを含む負側の合成抵抗値が釣り合ってしまうためである。
 これに対して変形例では、バイパススイッチSW1をオン状態にすることにより、正側の合成抵抗値と負側の合成抵抗値を意図的にアンバランスにすることができる。これにより、正側漏電抵抗Rlpと負側漏電抵抗Rlmが実質的に等しい態様で、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間の両方が漏電した場合でも、漏電を検出することができる。
 なお、正側メインリレーMRp及び負側メインリレーMRmがオフの状態では、蓄電部20から分圧回路11に電流が流れないため、バイパススイッチSW1に高価な絶縁性能の高いスイッチを使用する必要はない。例えば、安価なMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を使用してもよい。
 図5では、第5抵抗R5とバイパススイッチSW1の並列回路を、第1抵抗R1の上側に挿入しているが、第1抵抗R1、第2抵抗R2、第3抵抗R3、第4抵抗R4の直列回路のどの位置に挿入してもよい。
 なお第5抵抗R5とバイパススイッチSW1の並列回路を追加せずに、第1抵抗R1、第2抵抗R2、第3抵抗R3、及び第4抵抗R4の抵抗値を異なる値に設定し、正側の合成抵抗値と負側の合成抵抗値をアンバランスにしてもよい。いずれの例においても、漏電していない状態の比率r(=Vob/Vbat)は0.5以外の値になる。
 上述の実施の形態では、電圧測定部12は、第1抵抗R1と第2抵抗R2との間の接続点(以下、第1接続点という)の電位と、第3抵抗R3と第4抵抗R4との間の接続点(以下、第2接続点という)の電位間の電圧Vobを測定した。この点、電圧測定部12は、シャーシアースに対する第1接続点の電位Vopと、シャーシアースに対する第2接続点の電位Vomを別々に測定してもよい。
 第2漏電判定部13dは、下記(式2)に示すように、第1接続点の電位Vopと、第1抵抗R1と第2抵抗R2の合成抵抗値と第2抵抗R2の値との比率をもとに、プラス配線Lpの電位Vbpを推定する。
 Vbp=(R1+R2)/R2・Vop ・・・(式2)
 第2漏電判定部13dは、蓄電部20の総電圧Vbatとプラス配線Lpの電位Vbpとの比率r(=Vbp/Vbat)を算出する。第2漏電判定部13dは、算出した比率rが0.5に対して所定値以上大きい場合、マイナス配線Lmとシャーシアース間に漏電が発生していると判定する。算出した比率rが0.5に対して所定値以上小さい場合、プラス配線Lpとシャーシアース間に漏電が発生していると判定する。なお、蓄電部20の総電圧Vbatとマイナス配線Lmの電位Vbmとの比率r(=Vbm/Vbat)を使用する場合、この関係が逆になる。このように、正側の比率r(=Vbp/Vbat)又は負側の比率r(=Vbm/Vbat)を使用する場合、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間のいずれに漏電が発生したかも特定することができる。
 上述の実施の形態ではAC方式において、交流出力部13aから抵抗Raを介してカップリングコンデンサCcに矩形波パルス信号を印加する例を説明した。この点、正弦波信号をカップリングコンデンサCcに印加してもよい。第1漏電判定部13cは、測定点Aにおいて測定される、印加された正弦波信号の鈍りの程度をもとに漏電の有無を判定する。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷(2)に電力を供給する蓄電部(20)と、前記蓄電部(20)の正極と前記負荷(2)の一端が接続されるプラス配線(Lp)に挿入される第1スイッチ(MRp)と、前記蓄電部(20)の負極と前記負荷(2)の他端が接続されるマイナス配線(Lm)に挿入される第2スイッチ(MRm)と、を備える車両に搭載される漏電検出装置(10)であって、
 前記蓄電部(20)の電流経路に一端が接続されるカップリングコンデンサ(Cc)と、
 前記カップリングコンデンサ(Cc)の他端にインピーダンス素子(Ra)を介して所定の交流電圧を印加する交流出力部(13a)と、
 前記カップリングコンデンサ(Cc)と前記インピーダンス素子(Ra)との間の接続点の電圧を測定する第1電圧測定部(13b)と、
 前記第1電圧測定部(13b)により検出された電圧をもとに漏電の有無を判定する第1判定部(13c)と、
 前記プラス配線(Lp)と前記マイナス配線(Lm)間に直列接続された第1抵抗(R1)、第2抵抗(R2)、第3抵抗(R3)、及び第4抵抗(R4)を含み、前記第2抵抗(R2)と前記第3抵抗(R3)との間の接続点が前記シャーシアースに接続された分圧回路(11)と、
 前記第1抵抗(R1)と前記第2抵抗(R2)との間の接続点の電位、前記第3抵抗(R3)と前記第4抵抗(R4)との間の接続点の電位、または両者の電位の電位差を検出する第2電圧測定部(12)と、
 前記第2電圧測定部(12)により検出された電位または電位差をもとに漏電の有無を判定する第2判定部(13d)と、を備え、
 前記分圧回路(11)は、前記第1スイッチ(MRp)と前記負荷(2)の一端との間の前記プラス配線(Lp)と、前記第2スイッチ(MRm)と前記負荷(2)の他端との間の前記マイナス配線(Lm)との間に接続されることを特徴とする漏電検出装置(10)。
 これによれば、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑えることができる。
[項目2]
 前記カップリングコンデンサ(Cc)は、セラミックコンデンサで構成されることを特徴とする項目1に記載の漏電検出装置(10)。
 これによれば、カップリングコンデンサ(Cc)のコストを削減することができる。
[項目3]
 前記蓄電部(20)は、直列接続された複数のセル(E1-En)を含み、
 前記カップリングコンデンサ(Cc)の一端は、前記直列接続された複数のセル(E1-En)の中点に接続されることを特徴とする項目2に記載の漏電検出装置(10)。
 これによれば、カップリングコンデンサ(Cc)に耐圧が低いものを使用することができ、カップリングコンデンサ(Cc)のコストを削減することができる。
[項目4]
 前記直列接続された第1抵抗(R1)、第2抵抗(R2)、第3抵抗(R3)、及び第4抵抗(R4)に、さらに直列に接続される第5抵抗(R5)と、
 前記第5抵抗(R5)と並列に接続されるバイパススイッチ(SW1)と、
 をさらに備えることを特徴とする項目1から3のいずれか1項に記載の漏電検出装置(10)。
 これによれば、正側の合成抵抗値と負側の合成抵抗値をアンバランスにすることができ、プラス側とマイナス側で同時に漏電している場合でも、漏電を検出することができる。
[項目5]
 前記第2判定部(13d)は、前記第1スイッチ(MRp)と前記第2スイッチ(MRm)がオンの状態で、前記第2電圧測定部(12)により検出された電位または電位差をもとに、前記車両内の負荷(2)と前記シャーシアース間の漏電の有無を判定することを特徴とする項目1から4のいずれか1項に記載の漏電検出装置(10)。
 これによれば、負荷(2)の変動の影響を受けにくい状態で、負荷(2)とシャーシアース間の漏電の有無を判定することができる。
[項目6]
 前記第1判定部(13c)は、前記第1スイッチ(MRp)と前記第2スイッチ(MRm)がオフの状態で、前記第1電圧測定部(13b)により検出された電圧をもとに、前記蓄電部(20)内の漏電を有無を判定することを特徴とする項目1から5のいずれか1項に記載の漏電検出装置(10)。
 これによれば、車両側のYコンデンサの影響を受けずに、蓄電部(20)内の漏電の有無を判定することができる。
[項目7]
 前記第1スイッチ(MRp)は第1リレーで構成され、
 前記第2スイッチ(MRm)は第2リレーで構成され、
 前記第2判定部(13d)は、
 前記負荷(2)の停止中であって、前記第1リレーにオフ信号が供給され、前記第2リレーにオン信号が供給されている状態において前記第2電圧測定部(12)により測定される電位または電位差をもとに、前記第1リレーの溶着の有無を判定し、
 前記負荷(2)の停止中であって、前記第1リレーにオン信号が供給され、前記第2リレーにオフ信号が供給されている状態において前記第2電圧測定部(12)により測定される電位または電位差をもとに、前記第2リレーの溶着の有無を判定する、
 ことを特徴とする項目1から6のいずれか1項に記載の漏電検出装置(10)。
 これによれば、別途に溶着検出部を設けずに、第1リレーと第2リレーの溶着を検出することができる。
[項目8]
 車両のシャーシアースと絶縁された状態で搭載される蓄電部(20)と、
 前記蓄電部(20)の正極と前記負荷(2)の一端が接続されるプラス配線(Lp)に挿入される第1スイッチ(MRp)と、
 前記蓄電部(20)の負極と前記負荷(2)の他端が接続されるマイナス配線(Lm)に挿入される第2スイッチ(MRm)と、
 項目1から7のいずれか1項に記載の漏電検出装置(10)と、
 を備えることを特徴とする車両用電源システム(5)。
 これによれば、検出精度を確保しつつ、高価な部品を使用せずにトータルコストを抑えた漏電検出装置(10)を備える車両用電源システム(5)を実現することができる。
 2 インバータ、 3 モータ、 5 電源システム、 10 漏電検出装置、 11 分圧回路、 12 電圧測定部、 12a 正側差動アンプ、 12b 負側差動アンプ、 13 制御部、 13a 交流出力部、 13b 電圧測定部、 13c 第1漏電判定部、 13d 第2漏電判定部、 20 蓄電部、 30 溶着検出部、 E1-En セル、 Cc カップリングコンデンサ、 Ra 抵抗、 ZD1,ZD2 ツェナーダイオード、 R1-R5 抵抗、 SWp 正側分圧スイッチ、 SWm 負側分圧スイッチ、 MRp 正側メインリレー、 MRm 負側メインリレー、 Lp プラス配線、 Lm マイナス配線、 Cp 正側Yコンデンサ、 Cm 負側Yコンデンサ、 Rlp 正側漏電抵抗、 Rlm 負側漏電抵抗、 RLb 蓄電部内の漏電抵抗、 SW1 バイパススイッチ。

Claims (8)

  1.  車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷に電力を供給する蓄電部と、前記蓄電部の正極と前記負荷の一端が接続されるプラス配線に挿入される第1スイッチと、前記蓄電部の負極と前記負荷の他端が接続されるマイナス配線に挿入される第2スイッチと、を備える車両に搭載される漏電検出装置であって、
     前記蓄電部の電流経路に一端が接続されるカップリングコンデンサと、
     前記カップリングコンデンサの他端にインピーダンス素子を介して所定の交流電圧を印加する交流出力部と、
     前記カップリングコンデンサと前記インピーダンス素子との間の接続点の電圧を測定する第1電圧測定部と、
     前記第1電圧測定部により検出された電圧をもとに漏電の有無を判定する第1判定部と、
     前記プラス配線と前記マイナス配線間に直列接続された第1抵抗、第2抵抗、第3抵抗、及び第4抵抗を含み、前記第2抵抗と前記第3抵抗との間の接続点が前記シャーシアースに接続された分圧回路と、
     前記第1抵抗と前記第2抵抗との間の接続点の電位、前記第3抵抗と前記第4抵抗との間の接続点の電位、または両者の電位の電位差を検出する第2電圧測定部と、
     前記第2電圧測定部により検出された電位または電位差をもとに漏電の有無を判定する第2判定部と、を備え、
     前記分圧回路は、前記第1スイッチと前記負荷の一端との間の前記プラス配線と、前記第2スイッチと前記負荷の他端との間の前記マイナス配線との間に接続されることを特徴とする漏電検出装置。
  2.  前記カップリングコンデンサは、セラミックコンデンサで構成されることを特徴とする請求項1に記載の漏電検出装置。
  3.  前記蓄電部は、直列接続された複数のセルを含み、
     前記カップリングコンデンサの一端は、前記直列接続された複数のセルの中点に接続されることを特徴とする請求項2に記載の漏電検出装置。
  4.  前記直列接続された第1抵抗、第2抵抗、第3抵抗、及び第4抵抗に、さらに直列に接続される第5抵抗と、
     前記第5抵抗と並列に接続されるバイパススイッチと、
     をさらに備えることを特徴とする請求項1から3のいずれか1項に記載の漏電検出装置。
  5.  前記第2判定部は、前記第1スイッチと前記第2スイッチがオンの状態で、前記第2電圧測定部により検出された電位または電位差をもとに、前記車両内の負荷と前記シャーシアース間の漏電の有無を判定することを特徴とする請求項1から4のいずれか1項に記載の漏電検出装置。
  6.  前記第1判定部は、前記第1スイッチと前記第2スイッチがオフの状態で、前記第1電圧測定部により検出された電圧をもとに、前記蓄電部内の漏電を有無を判定することを特徴とする請求項1から5のいずれか1項に記載の漏電検出装置。
  7.  前記第1スイッチは第1リレーで構成され、
     前記第2スイッチは第2リレーで構成され、
     前記第2判定部は、
     前記負荷の停止中であって、前記第1リレーにオフ信号が供給され、前記第2リレーにオン信号が供給されている状態において前記第2電圧測定部により測定される電位または電位差をもとに、前記第1リレーの溶着の有無を判定し、
     前記負荷の停止中であって、前記第1リレーにオン信号が供給され、前記第2リレーにオフ信号が供給されている状態において前記第2電圧測定部により測定される電位または電位差をもとに、前記第2リレーの溶着の有無を判定する、
     ことを特徴とする請求項1から6のいずれか1項に記載の漏電検出装置。
  8.  車両のシャーシアースと絶縁された状態で搭載される蓄電部と、
     前記蓄電部の正極と前記負荷の一端が接続されるプラス配線に挿入される第1スイッチと、
     前記蓄電部の負極と前記負荷の他端が接続されるマイナス配線に挿入される第2スイッチと、
     請求項1から7のいずれか1項に記載の漏電検出装置と、
     を備えることを特徴とする車両用電源システム。
PCT/JP2019/048018 2019-02-19 2019-12-09 漏電検出装置、車両用電源システム WO2020170556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/427,990 US11879948B2 (en) 2019-02-19 2019-12-09 Electrical fault detection device and vehicle power supply system
JP2021501593A JP7431212B2 (ja) 2019-02-19 2019-12-09 漏電検出装置、車両用電源システム
EP19916528.3A EP3929021A4 (en) 2019-02-19 2019-12-09 ELECTRICAL FAILURE DETECTION DEVICE AND VEHICLE POWER SUPPLY SYSTEM
CN201980092479.7A CN113453942A (zh) 2019-02-19 2019-12-09 漏电检测装置、车辆用电源系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019027441 2019-02-19
JP2019-027441 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170556A1 true WO2020170556A1 (ja) 2020-08-27

Family

ID=72143828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048018 WO2020170556A1 (ja) 2019-02-19 2019-12-09 漏電検出装置、車両用電源システム

Country Status (5)

Country Link
US (1) US11879948B2 (ja)
EP (1) EP3929021A4 (ja)
JP (1) JP7431212B2 (ja)
CN (1) CN113453942A (ja)
WO (1) WO2020170556A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム
KR102507827B1 (ko) * 2022-08-16 2023-03-08 펜타아이앤에스 주식회사 태양 전지 모듈의 고장 검출용 센서 모듈
EP4191266A1 (en) * 2021-12-01 2023-06-07 Prime Planet Energy & Solutions, Inc. Electric leakage detection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841059A (zh) * 2019-06-28 2021-12-24 三洋电机株式会社 漏电检测装置、车辆用电源系统
US20230009467A1 (en) * 2019-12-20 2023-01-12 Gs Yuasa International Ltd. Current measuring device and energy storage apparatus
US11402436B2 (en) * 2020-04-15 2022-08-02 Rockwell Automation Technologies, Inc. System and method for ground fault detection
CN113866667A (zh) * 2020-06-12 2021-12-31 宁德时代新能源科技股份有限公司 高压互锁电路及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250201A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置
JP2007240426A (ja) * 2006-03-10 2007-09-20 Yazaki Corp 絶縁検出方法および絶縁検出装置
JP2007327856A (ja) 2006-06-08 2007-12-20 Sanyo Electric Co Ltd 電動車両用漏電検出回路および電動車両用漏電検出方法
JP2014029293A (ja) * 2012-07-31 2014-02-13 Keihin Corp 漏電検出装置
KR101584267B1 (ko) * 2014-11-19 2016-01-11 현대오트론 주식회사 절연 저하 감지 장치 및 방법
JP2018026888A (ja) * 2016-08-08 2018-02-15 株式会社デンソーテン 異常検出装置および組電池システム
JP2018072169A (ja) * 2016-10-31 2018-05-10 日立オートモティブシステムズ株式会社 地絡検出回路逆電圧保護回路
JP2018179835A (ja) * 2017-04-17 2018-11-15 株式会社デンソー 検出装置
WO2018211933A1 (ja) * 2017-05-19 2018-11-22 パナソニックIpマネジメント株式会社 リレー溶着検出装置、それを含む電源制御装置、および溶着検出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE572334C (de) * 1933-03-14 Aeg Einrichtung zur Isolationskontrolle von Gleichstromnetzen waehrend des Betriebes
JP3679750B2 (ja) * 2001-11-30 2005-08-03 三洋電機株式会社 漏電検出回路を備える電動車両の電源装置
JP5401250B2 (ja) * 2009-10-06 2014-01-29 日立オートモティブシステムズ株式会社 地絡検出装置
JP5333619B2 (ja) * 2011-03-30 2013-11-06 株式会社デンソー 電圧検出装置および結合回路
JP5945804B2 (ja) * 2012-03-29 2016-07-05 パナソニックIpマネジメント株式会社 リレー溶着診断装置
JP2014020914A (ja) * 2012-07-18 2014-02-03 Keihin Corp 漏電検出装置
JP2014149276A (ja) 2013-02-04 2014-08-21 Denso Corp 漏電検出装置
GB2556129B (en) * 2016-11-18 2019-08-28 Mahindra Electric Mobility Ltd Systems and methods for monitoring isolation in high voltage systems
JP2021076373A (ja) * 2018-03-15 2021-05-20 三洋電機株式会社 漏電検出回路、車両用電源システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003250201A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置
JP2007240426A (ja) * 2006-03-10 2007-09-20 Yazaki Corp 絶縁検出方法および絶縁検出装置
JP2007327856A (ja) 2006-06-08 2007-12-20 Sanyo Electric Co Ltd 電動車両用漏電検出回路および電動車両用漏電検出方法
JP2014029293A (ja) * 2012-07-31 2014-02-13 Keihin Corp 漏電検出装置
KR101584267B1 (ko) * 2014-11-19 2016-01-11 현대오트론 주식회사 절연 저하 감지 장치 및 방법
JP2018026888A (ja) * 2016-08-08 2018-02-15 株式会社デンソーテン 異常検出装置および組電池システム
JP2018072169A (ja) * 2016-10-31 2018-05-10 日立オートモティブシステムズ株式会社 地絡検出回路逆電圧保護回路
JP2018179835A (ja) * 2017-04-17 2018-11-15 株式会社デンソー 検出装置
WO2018211933A1 (ja) * 2017-05-19 2018-11-22 パナソニックIpマネジメント株式会社 リレー溶着検出装置、それを含む電源制御装置、および溶着検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929021A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム
EP4191266A1 (en) * 2021-12-01 2023-06-07 Prime Planet Energy & Solutions, Inc. Electric leakage detection method
KR102507827B1 (ko) * 2022-08-16 2023-03-08 펜타아이앤에스 주식회사 태양 전지 모듈의 고장 검출용 센서 모듈

Also Published As

Publication number Publication date
EP3929021A4 (en) 2022-04-13
US11879948B2 (en) 2024-01-23
JPWO2020170556A1 (ja) 2021-12-16
EP3929021A1 (en) 2021-12-29
JP7431212B2 (ja) 2024-02-14
CN113453942A (zh) 2021-09-28
US20220120823A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
WO2020170556A1 (ja) 漏電検出装置、車両用電源システム
US9255957B2 (en) Earth fault detection circuit and power source device
JP5972972B2 (ja) 直流電力供給装置
JP7001970B2 (ja) 地絡検出装置、及び蓄電システム
US10962583B2 (en) Monitoring insulation faults in a high-voltage system
WO2015008509A1 (ja) 電源制御装置およびリレーの異常検出方法
WO2020170557A1 (ja) 漏電検出装置、車両用電源システム
KR20140136844A (ko) 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
US10632855B2 (en) Device and method for measuring isolation resistance of battery powered systems
JP7438213B2 (ja) 漏電検出装置、車両用電源システム
US20220357408A1 (en) Leakage detection device and power system for vehicle
JP7276814B2 (ja) 漏電検出装置、車両用電源システム
US9091710B2 (en) Circuit arrangement and method for monitoring electrical isolation
US20220413061A1 (en) Earth leakage detecting device, and vehicular power supply system
JP2009150779A (ja) 非接地回路の絶縁性検出装置
US20220404432A1 (en) Earth leakage detection device and vehicle power supply system
JP7458397B2 (ja) 漏電検出装置、車両用電源システム
JP3910357B2 (ja) 電気車制御装置
WO2021199490A1 (ja) 漏電検出装置、車両用電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019916528

Country of ref document: EP

Effective date: 20210920