WO2020170469A1 - Spun yarn, method for producing same, and cloth comprising same - Google Patents

Spun yarn, method for producing same, and cloth comprising same Download PDF

Info

Publication number
WO2020170469A1
WO2020170469A1 PCT/JP2019/029677 JP2019029677W WO2020170469A1 WO 2020170469 A1 WO2020170469 A1 WO 2020170469A1 JP 2019029677 W JP2019029677 W JP 2019029677W WO 2020170469 A1 WO2020170469 A1 WO 2020170469A1
Authority
WO
WIPO (PCT)
Prior art keywords
spun yarn
mass
fiber
polypropylene
yarn
Prior art date
Application number
PCT/JP2019/029677
Other languages
French (fr)
Japanese (ja)
Inventor
西山豊一
山内洋
水橋秀章
Original Assignee
ダイワボウホールディングス株式会社
ダイワボウノイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウホールディングス株式会社, ダイワボウノイ株式会社 filed Critical ダイワボウホールディングス株式会社
Priority to JP2019565047A priority Critical patent/JP6653791B1/en
Priority to CN201980091671.4A priority patent/CN113423883B/en
Publication of WO2020170469A1 publication Critical patent/WO2020170469A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist

Definitions

  • the present invention relates to a spun yarn containing a polypropylene fiber and a cellulose fiber, a method for producing the spun yarn, and a cloth including the spun yarn.
  • Patent Document 1 describes a multi-layered yarn in which fibers that mainly absorb water are arranged in the inner layer portion, and fibers that mainly exhibit water repellency are arranged in the outer layer portion.
  • Patent Document 2 in a spun yarn composed of a fiber bundle A exhibiting water repellency and a fiber bundle B exhibiting water absorbency, a fiber bundle A having a twist angle larger than that of the fiber bundle B is wound around the fiber bundle B.
  • Patent Document 3 describes a mixed yarn containing a non-hygroscopic fiber and a hygroscopic fiber.
  • Patent Document 4 describes a yarn composed of a hydrophobic fiber and a hydrophilic fiber.
  • Patent Documents 1 to 4 do not consider improving the anti-pilling property of a fabric using a spun yarn having a water-absorbing and quick-drying property.
  • the present invention provides a spun yarn having a high water-absorbing quick-drying property and an improved pilling resistance, a method for producing the spun yarn, and a fabric including the spun yarn.
  • the present invention relates to a spun yarn containing polypropylene-based fibers and cellulose-based fibers, wherein the spun yarn contains 20 to 80% by mass of polypropylene-based fibers and 20 to 80% by mass of cellulose-based fibers. And a twist coefficient of 2.4 to 6.0, and a twist angle of 21.5° or more.
  • the present invention is also the above-mentioned method for producing a spun yarn, wherein in the ring spinning, when the total mass of the two rovings is 100% by mass, the content of the polypropylene fiber in the two rovings is Is 20 to 80% by mass and the content of the cellulosic fiber is 20 to 80% by mass.
  • a step of preparing two roving yarns, after feeding the two roving yarns to the draft zone and drafting The present invention relates to a method for producing a spun yarn, including a step of supplying the twisted yarn to the twisted yarn zone while aligning the yarn, and a step of twisting the yarn.
  • the present invention also relates to a fabric including the spun yarn described above.
  • the present invention can provide a spun yarn that has a high water-absorbing quick-drying property and a fabric with an improved anti-pilling property, and a fabric with a high water-absorbing quick-drying property and an improved anti-pilling property. Further, according to the present invention, it is possible to obtain a spun yarn that has a high water-absorbing and quick-drying property and can obtain a fabric with improved pilling resistance.
  • FIG. 1 is a partial perspective view of an example ring spinning machine used in one embodiment of the present invention.
  • FIG. 2 is a partial perspective view of an example ring spinning machine used in another embodiment of the present invention.
  • FIG. 3 is a schematic explanatory view of an example of an extruder used in one embodiment of the present invention.
  • FIG. 4 is a side view photograph of the spun yarn illustrating the twist angle of the spun yarn.
  • FIG. 5 is a side view photograph of the spun yarn illustrating the diameter of the spun yarn.
  • FIG. 6 is a side view photograph (magnification: 100 times) of the spun yarn in one embodiment (Example 1) of the present invention.
  • FIG. 7 is a cross-sectional photograph (magnification: 270 times) of a spun yarn in one embodiment (Example 1) of the present invention.
  • the inventors of the present invention diligently studied to improve the anti-pilling property while maintaining the high water-absorbing and quick-drying properties of the fabric using the spun yarn in which the water-absorbing fiber and the water-repellent fiber are used in combination. ..
  • the spun yarn contains a predetermined amount of polypropylene-based fibers and cellulose-based fibers, and the twist coefficient and the twist angle of the spun yarn are set within a predetermined range, so that the fabric using the spun yarn has a high water-absorbing and quick-drying property. It was found that it has heat retention and anti-pilling properties are improved.
  • the cellulosic fibers include natural fibers such as cotton, hemp, and pulp, viscose rayon, cupra, solvent-spun cellulose fibers, regenerated fibers such as polynosic, and semisynthetic fibers such as acetate.
  • cotton is preferable from the viewpoint of excellent texture and durability.
  • the average fiber length is preferably 25 to 45 mm, more preferably 26 to 33 mm.
  • the average fineness is preferably 2.8 to 5.5 micronaire (1.1 to 2.2 dtex), and more preferably 3.5 to 4.9 micronaire (1.3 to 1.9 dtex). ..
  • the polypropylene fiber is not particularly limited, and a fiber containing polypropylene may be used.
  • the polypropylene may be a homopolymer of propylene or a copolymer containing propylene and a component copolymerizable therewith, in which the content of propylene exceeds 50 mol %.
  • the component copolymerizable with propylene is not particularly limited, but examples thereof include olefin-based monomers such as ethylene, butene, and methylpentene.
  • Polypropylene is preferably a propylene homopolymer.
  • the said polypropylene may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polypropylene has a melt mass flow rate (MFR) of preferably 5 to 60 g/10 min, more preferably 7 to 45 g/10 min, further preferably 10 to 30 g/10 min. preferable.
  • MFR melt mass flow rate
  • the MFR of polypropylene is measured according to ISO1133 at 230° C. under a load of 2.16 kg.
  • the polypropylene fiber can be manufactured by a conventional method. For example, polypropylene or a resin composition containing polypropylene is melt-spun to form an unstretched yarn using a spinneret, the obtained unstretched yarn is stretched, and a fiber treatment agent (also referred to as an oil agent) is applied thereto, It can be obtained by crimping with a crimper and drying.
  • a fiber treatment agent also referred to as an oil agent
  • the polypropylene-based fiber may be a single component fiber of polypropylene, or may be a composite fiber of polypropylenes or a composite fiber of polypropylene and another resin.
  • the pigment may be mixed with polypropylene or may be mixed with a component that is easily dyed to form a single type. It may be shaped.
  • the fiber cross-sectional shape of the polypropylene fiber is not particularly limited, and may be circular or non-circular (so-called irregular cross section).
  • the above fiber treatment agent is preferably a hydrophilic oil agent.
  • hydrophilic oil agent By adding the hydrophilic oil agent, static electricity is suppressed and the productivity in the spinning process tends to be improved.
  • the polypropylene fiber may include a hydrophilic component.
  • the polypropylene-based fiber containing no hydrophilic component has a water content of less than 0.15% by mass, but the hydrophilic polypropylene-based fiber containing the hydrophilic component has a water content of 0.15% by mass or more. Fibers can be obtained.
  • the moisture content is measured according to JIS L 1015 (2010).
  • the hydrophilic component is not particularly limited as long as it has water solubility or water dispersibility.
  • the water-soluble hydrophilic component include ionic surfactants and nonionic surfactants. Among them, nonionic surfactants are preferable.
  • the ester type nonionic surfactant include glycerin fatty acid ester, sorbitan fatty acid ester and sucrose fatty acid ester
  • examples of the ether type nonionic surfactant include polyoxyethylene (POE) alkyl ether and polyoxyethylene ( POE) alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol and the like. Among these, polyoxyethylene alkyl ether or polyoxyalkylene derivative (both compounds are, for example, Kao Corporation, trade name "Emulgen”) is preferable.
  • the water-soluble hydrophilic component preferably has a molecular weight of 200 to 5,000, more preferably 300 to 3,000.
  • the molecular weight of the hydrophilic surfactant is preferably 1000 or less.
  • water-dispersible hydrophilic component examples include clay minerals such as kaolinite, smectite, montmorillonite, and bentonite, hydrophilic silica such as fumed silica, colloidal silica, and silica gel, talc, a multilayer structure such as zeolite, or an amorphous inorganic material.
  • Natural polymer polysaccharides such as particles and cellulose, amino polymer polysaccharides such as chitin and chitosan are used.
  • the high molecular polysaccharides may be added as nanofibers. Since clay minerals and nanofibers are added as solids, they also have an effect as a water retention agent.
  • the average particle diameter of the inorganic particles is preferably as small as possible, and is preferably 100 nm or less. In addition, the average particle diameter is measured by a phase drip method particle diameter measuring device.
  • the hydrophilic polypropylene fiber can be obtained by melt spinning a polypropylene resin composition containing polypropylene and a masterbatch resin composition containing a hydrophilic component.
  • the polypropylene-based resin composition preferably contains 1 to 10 parts by mass of the masterbatch resin composition with respect to 100 parts by mass of polypropylene.
  • the masterbatch resin composition contains polypropylene as a heat-meltable base resin and a hydrophilic component.
  • the masterbatch resin composition preferably contains 1 to 10% by mass of the hydrophilic component, more preferably 2 to 8% by mass of the hydrophilic component.
  • the polypropylene as the base resin may be the same as or different from the polypropylene constituting the polypropylene fibers.
  • the masterbatch resin composition preferably further contains a compatibilizer.
  • a compatibilizer for example, an ethylene-based copolymer containing a polar group (an acid anhydride group) such as an ethylene-acrylic acid (ester) copolymer and an ethylene-acrylic acid (ester)-maleic acid copolymer is preferable.
  • the polar group-containing ethylene-based copolymer is preferable because it has a polar group, so that it has a high affinity with the hydrophilic component and has a relatively lower melting point than polypropylene, so that it is easy to knead.
  • the melting point (DSC method) of the compatibilizer is preferably 70 to 110°C. A more preferable melting point is 80 to 105°C.
  • the masterbatch resin composition may further include a high MFR polypropylene having a higher MFR than the polypropylene of the base resin, and the MFR of the high MFR polypropylene is preferably 10 times or more higher than the MFR of the base resin.
  • the high MFR polypropylene preferably has an MFR of 100 to 3000 g/10 minutes, more preferably 500 to 2500 g/10 minutes.
  • One type of high MFR polypropylene may be used alone, or two or more types may be used in combination.
  • the method for producing the masterbatch resin composition includes a primary processing step of melt-kneading a base resin polypropylene and a hydrophilic component, cooling and chipping, and melting the high-MFR polypropylene in the chipped resin composition. It is preferable to include a secondary processing step of kneading, cooling and chipping.
  • the “chip” may be referred to as “pellet”.
  • an extruder is used to continuously connect an extruding section to a kneading chamber equipped with a decompression line, and in the kneading chamber, a hydrophilic component (liquid) or water, etc., if necessary.
  • a hydrophilic component liquid or water, etc.
  • a compatibilizing agent because the base resin and the hydrophilic component can be efficiently mixed.
  • a water retention agent as a solid hydrophilic component among the hydrophilic components in some cases.
  • the hydrophilic polypropylene fiber can be produced by a conventional method except that a polypropylene resin composition containing polypropylene and a masterbatch resin composition containing a hydrophilic component is used.
  • a polypropylene resin composition containing polypropylene and a masterbatch resin composition containing a hydrophilic component is used.
  • polypropylene using a spinneret, polypropylene-based resin composition containing a masterbatch resin composition containing a hydrophilic component is melt-spun to an undrawn yarn, the obtained undrawn yarn is drawn, fiber treatment It can be obtained by applying an agent (oil agent), crimping with a crimper, and drying.
  • hydrophilic polypropylene fiber (undrawn yarn) can be produced as described below.
  • a polypropylene-based resin composition obtained by mixing the masterbatch resin composition (secondary processed resin) in an amount of about 1 to 10 parts by mass and 100 parts by mass of polypropylene is melt-spun to obtain a hydrophilic polypropylene-based fiber.
  • the hydrophilic polypropylene fiber may be a single component of polypropylene or a composite component of polypropylenes or a composite component of polypropylene and another resin.
  • the pigment may be mixed with polypropylene or mixed with a component that is easily dyed to form a single type, or combined with a component that is easily dyed to form a core-sheath type. You may make it a shape.
  • the fiber cross-sectional shape of the hydrophilic polypropylene fiber is not particularly limited, and may be circular or non-circular (so-called irregular cross section).
  • the single fiber strength of the polypropylene fiber is preferably 1.8 to 9.0 cN/dtex, more preferably 2.0 to 8.0 cN/dtex, and 3.0 to 7.5 cN/dtex. It is more preferable that there is.
  • the single fiber strength is 1.8 cN/dtex or more, the fiber is hard to be broken even when an external force (for example, spinning tension) when processing the fiber is applied. Further, when the single fiber strength is 9.0 cN/dtex or less, a fiber having better anti-pilling property can be obtained.
  • the elongation of the polypropylene fiber is preferably 5 to 70%, more preferably 10 to 40%. When the elongation is 5 to 70%, fibers having a soft texture can be obtained.
  • the spun yarn contains 20 to 80% by mass of polypropylene fibers and 20 to 80% by mass of cellulose fibers. It is possible to improve the water absorption quick-drying property and the anti-pilling property of the fabric. From the viewpoint of further increasing the twist angle of the spun yarn to further enhance the anti-pilling property of the fabric, the spun yarn preferably contains 30 to 80% by mass of polypropylene fiber and 20 to 70% by mass of cellulose fiber, More preferably, it contains 35 to 75% by mass of polypropylene fibers and 25 to 65% by mass of cellulosic fibers.
  • the spun yarn preferably contains 5% by mass or more of hydrophilic polypropylene fiber.
  • the hydrophilic polypropylene fibers can be used within the above mixing ratio range.
  • the polypropylene fiber an ordinary polypropylene fiber having a water content of less than 0.15 mass% and a hydrophilic polypropylene fiber having a water content of 0.15 mass% or more may be used in combination. Good.
  • the ratio of the hydrophilic polypropylene-based fibers to the entire polypropylene-based fibers may be, for example, 5% by mass or more, and is not particularly limited, but from the viewpoint of productivity in the spinning process, hydrophilic polypropylene is used.
  • the proportion of the system fibers is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 100% by mass.
  • the polypropylene fiber and the cellulose fiber are substantially mixed. Substantially mixed, not only that polypropylene-based fibers and cellulose-based fibers are uniformly mixed, even if there is a polypropylene-based fibers or cellulose-based fibers are unevenly distributed,
  • the thread as a whole also includes a thread having a predetermined content.
  • the spun yarn may include other fibers in addition to the polypropylene fiber and the cellulose fiber.
  • Other fibers are not particularly limited, and examples thereof include polyolefin fibers other than polypropylene fibers, acrylic fibers, polyester fibers, polyamide fibers, acetate fibers, ethylene vinyl alcohol fibers, urethane fibers, and the like.
  • the spun yarn may appropriately contain other fibers in an amount of 20% by mass or less, 15% by mass or less, 10% by mass or less, or 5% by mass or less, depending on applications and purposes. It is particularly preferable that the spun yarn substantially consists of polypropylene-based fibers and cellulose-based fibers from the viewpoint of further improving water absorption and quick-drying property and anti-pilling property.
  • the polypropylene fiber and other fibers are not particularly limited, but may have a single fiber fineness of 0.1 to 100 dtex, for example.
  • the polypropylene fiber and other fibers have a single fiber fineness of preferably 0.4 to 5 dtex, more preferably 0.5 to 3.5 dtex, and 0 More preferably, it is from 6 to 2.5 dtex.
  • the polypropylene fiber and other fibers are not particularly limited, but for example, the fiber length is preferably 24 to 75 mm, more preferably 28 to 65 mm, further preferably 32 to 54 mm, and 34 A size of up to 48 mm is particularly preferred. Further, regarding the average fiber length of the polypropylene-based fiber and the cellulose-based fiber, it is preferable that the average fiber length of the polypropylene-based fiber is longer than the average fiber length of the cellulose-based fiber. The structure of the yarn cross section described later is easily obtained, and the pilling resistance tends to be improved.
  • the twisting coefficient of the spun yarn is 2.4 to 6.0, so that the fabric has good pilling resistance.
  • the twist coefficient is preferably 2.8 to 4.5, and more preferably 3.0 to 4.0, from the viewpoint of the anti-pilling property and the soft touch of the cloth.
  • the twist angle of the spun yarn is 21.5° or more, preferably 22° or more, so that the anti-pilling property of the fabric can be enhanced regardless of the number of fluffs of the spun yarn. From the viewpoint of further enhancing the anti-pilling property of the fabric, the twist angle is more preferably 23° or more, further preferably 24° or more, and particularly preferably 25° or more.
  • the upper limit of the twist angle is not particularly limited, but is preferably 45° or less from the viewpoint of enhancing the knitting property, for example. In the present specification, the twist angle of the spun yarn can be measured as described later.
  • the spun yarn is not particularly limited, but for example, from the viewpoint of further improving anti-pilling property, the number of fluffs having a length of 3 mm or more is preferably 200 fibers/10 m or less, and more preferably 160 fibers/10 m or less. It is preferably 80 lines/10 m or less.
  • the number of fluffs having a length of 5 mm or more is preferably 40 fibers/10 m or less, more preferably 30 fibers/10 m or less, and further preferably 10 fibers/10 m or less.
  • the number of fluffs having a length of 10 mm or more is preferably 1.5 fibers/10 m or less, more preferably 1 fiber/10 m or less, and further preferably 0 fibers/10 m. In the present specification, the number of fluffs of the spun yarn can be measured as described later.
  • the spun yarn is not particularly limited, but for example, from the viewpoint of anti-pilling property and soft texture, the porosity is preferably 40 to 80%, more preferably 50 to 80%.
  • the porosity means the ratio of air in the yarn, and as described later, the yarn diameter is calculated from the side observation of the yarn by an electron microscope, and based on the yarn diameter, mass and fiber specific gravity. To calculate.
  • the count of the spun yarn is not particularly limited, but may be in the range of 5 to 100 S for English cotton count, preferably 10 to 90 S, more preferably 15 to 85 S, and further preferably 20 to It is 80S.
  • the spun yarn is preferably a twisted yarn composed of two fiber bundles.
  • the fact that the spun yarn is composed of two fiber bundles may be confirmed by unraveling into two fiber bundles when the spun yarn is twisted in the direction opposite to the twisting direction and untwisted.
  • the twisted yarn is composed of two fiber bundles, when the drafted fiber bundles from each roving yarn are aligned and twisted, each fiber bundle is also subjected to a sweet twist, and the fiber bundles are twisted together. It will be in the state of being.
  • the twisted yarn composed of two fiber bundles can be manufactured by silo spinning or silo compact spinning described later.
  • the fiber bundle is preferably a mixture of polypropylene fibers and cellulosic fibers, and a twisted yarn composed of two fiber bundles improves the water absorption and quick-drying property of the cloth.
  • polypropylene fibers are relatively concentrated in the vicinity of the core of the yarn cross section, and cellulose fibers, such as cotton, are applied to the outer periphery of the yarn cross section.
  • a relatively large amount can be concentrated in the vicinity, and the anti-pilling property tends to be improved, which is preferable. It is presumed that a relatively large amount of the polypropylene fiber is concentrated near the core of the yarn cross section because the fiber length of the polypropylene fiber is longer than that of cotton.
  • the spinning method of the spun yarn is not particularly limited, but can be produced by performing spinning in the ring method in the following steps.
  • the content of the polypropylene fiber in the two rovings is 20 to 80% by mass
  • the content of the cellulosic fiber is 20 to 80% by mass.
  • a spun yarn can be obtained by preparing two roving yarns as described above, feeding and drafting the two roving yarns to the draft zone, and then feeding them to the twisting zone while aligning and twisting them.
  • the spinning method is referred to as silo spinning, and the spun yarn obtained by the spinning method is also referred to as silo yarn.
  • the content of polypropylene fibers in the two rovings is 20 to 80% by mass
  • Two roving yarns are prepared so that the content is 20 to 80% by mass
  • the two roving yarns are fed to the draft zone and drafted, and then fed to the twisting yarn zone while being aligned, and then to the twisting yarn zone.
  • the spinning method is a method using both silo spinning and compact spinning, and is also called silo compact spinning.
  • the spun yarn obtained by the spinning method is also called silo compact yarn or compact silo yarn. ..
  • the twisting coefficient is preferably 2.8 to 4.5, and more preferably 3.0 to 4.0, from the viewpoint of enhancing the anti-pilling property and soft feeling of the cloth.
  • the content of each fiber of the polypropylene fiber and the cellulosic fiber with respect to the total mass of the two rovings may satisfy the above range, the content of each fiber in each roving is , May be the same or different.
  • the content of each fiber in the two rovings satisfies the above-mentioned range, one roving is 100% by mass of polypropylene fiber, and the other roving is 100% by mass of cellulosic fiber. It is also possible to use it as%. It is preferable to use a roving prepared by mixing polypropylene fibers and cellulose fibers for both of the two rovings.
  • each roving contains 20 to 80% by mass of polypropylene fibers, and a cellulose fiber. 20 to 80% by mass of fibers, more preferably 30 to 80% by mass of polypropylene fibers, and 20 to 70% by mass of cellulosic fibers, and even more preferably 35 to 75% by mass of polypropylene fibers, And 25 to 65% by mass of cellulosic fibers. It is easier to obtain a predetermined twist angle when both polypropylene yarns and cellulose fibers are mixed in both rovings.
  • the fabric comprises the spun yarn described above.
  • the cloth may be knitted or woven.
  • the fabric preferably contains 50% by mass or more of the spun yarn, more preferably 75% by mass or more, further preferably 85% by mass or more, and further preferably 95% by mass or more. It is even more preferable that it is 100% by mass, and it is particularly preferable that it is 100% by mass.
  • the fabric may contain other yarns, for example, other spun yarns and/or filament yarns, in addition to the spun yarns, as long as the effect of the present invention is not impaired.
  • the cloth may have a single-layer structure or may include two or more layers.
  • the spun yarn can be used for the front surface layer and/or the back surface layer. By using the spun yarn for both the front surface layer and the back surface layer, the water absorbing and quick drying property and the heat retaining property are further improved.
  • Woven fabric may be a single woven fabric such as plain weave, twill weave, satin weave, or double woven fabric.
  • the cloth may be dyed after the refining process, and may be subjected to water absorption processing, SR (Soil release) processing, antibacterial processing, antistatic processing, etc. at the time of finishing processing.
  • SR Soil release
  • the above-mentioned cloth has a pilling degree of 3 grade or higher, preferably 3.5 grade or higher, and more preferably 4 grade or higher based on JIS L 1076 A method. Is more preferable.
  • the fabric has a transpiration rate in the transpiration (II) test (based on BOKEN standard BQE A028) of preferably 25% or more, and 30% or more 20 minutes after the start of the test. Is more preferable.
  • the fabric is not particularly limited, but from the viewpoint of moisture retention and the like, it is preferable that the transpiration rate in the transpiration (II) test (in accordance with Bauken standard BQE A028) is 70% or less 20 minutes after the start of the test. ..
  • the transpiration (II) test is a test for compositely evaluating both water absorption and quick-drying property, and the transpiration rate is specifically measured as described later.
  • the cloth preferably has a heat retention rate of 22.0% or more, and preferably 25.0% or more, measured by a dry contact method using Thermolabo 2 manufactured by Kato Tech. More preferable.
  • the specific method for measuring the heat retention rate is as described below.
  • the cloth is not particularly limited, but for example, from the viewpoint of ensuring air permeability, it is preferable that the heat retention rate is 80.0% or less.
  • the ventilation resistance is preferably 0.210 kPa ⁇ s/m or less, more preferably 0.200 kPa ⁇ s/m or less, and 0 It is more preferably not more than 150 kPa ⁇ s/m.
  • the cloth is not particularly limited, but preferably has a ventilation resistance of 0.120 kPa ⁇ s/m or more from the viewpoint of heat retention.
  • the fabric preferably has a thickness of 0.50 mm or more, and more preferably 0.70 mm or more, from the viewpoint of heat retention.
  • the cloth is not particularly limited, but preferably has a thickness of 4.0 mm or less, for example, from the viewpoint of wearing feeling.
  • the fabric when the knitted fabric, for example, from the viewpoint of light weight, it is preferable that a bulk density of 0.200 g / cm 3 or less, more preferably 0.195 g / cm 3 or less, 0.170 g / More preferably, it is not more than cm 3 .
  • the cloth is not particularly limited, but preferably has a bulk density of 0.050 g/cm 3 or more from the viewpoint of ensuring heat retention.
  • the fabric has a basis weight of, for example, 450 g/m 2 or less, preferably 400 g/m 2 or less, and more preferably 300 g/m 2 or less from the viewpoint of wearability such as lightness. Is more preferable, and 200 g/m 2 or less is particularly preferable.
  • the fabric is not particularly limited, but preferably has a basis weight of 50 g/m 2 or more from the viewpoint of heat retention and the like.
  • the cloth can be used for clothing, industrial base materials and the like.
  • clothing include underwear, underwear, shirts, jumpers, sweaters, pants, training wear, tights, bandages, mufflers, hats, gloves, socks and ear pads.
  • industrial base material include carpet, bedding, furniture, and the like.
  • FIG. 1 is a partial perspective view of an example of a ring spinning machine (for silospinning) used in one embodiment of the present invention.
  • the two roving yarns 1a and 1b are supplied in parallel to a draft zone composed of a back roller 103, a middle roller 104, an apron 105 and a front roller 106 via a guide bar 101 and a trumpet 102, while drafting in parallel. Supply to the twisting zone.
  • the roving yarns 2a and 2b supplied to the twisting zone are twisted through the snail wire 111, the traveler 112 and the ring 113 to obtain a spun yarn (silo yarn) 10.
  • FIG. 2 is a partial perspective view of an example of a ring spinning machine (for silo compact spinning) used in another embodiment of the present invention.
  • the two roving yarns 11a and 11b are supplied in parallel to a draft zone composed of a back roller 203, a middle roller 204, an apron 205 and a front roller 206 via a guide bar 201 and a trumpet 202, while drafting in parallel. Supply to the twisting zone.
  • the two drafted roving yarns (fiber bundles) 12a and 12b immediately after being supplied to the twisting zone are air-cooled by using a focusing device including an air suction unit 207, a ventilation apron 208, a rotating roller 209, and an auxiliary roller 210. After the fibers are converged by sucking them in the advancing direction of the roving yarn, the spun yarn (silo compact yarn) 20 is obtained by twisting through the snail wire 211, the traveler 212 and the ring 213.
  • FIG. 3 is a schematic explanatory view of an extruder used in one embodiment of the present invention.
  • the extruder 301 includes a raw material supply port 302, a resin melting section 303, a kneading and dispersing section 304, a decompression line 305, an extruding section 306, and a taking-out section 307.
  • a polymer base resin that can be melted by heating
  • a hydrophilic component liquid
  • a hydrophilic component dissolved in water as necessary are supplied from a raw material supply port 302 of the resin melting section 303. Both may be mixed before supply.
  • the mixture is sent to the kneading/dispersing section 304.
  • kneading/dispersing section 304 a plurality of kneading plates are rotated, where the polymer and the hydrophilic component dissolved in water are uniformly mixed.
  • water is removed from the depressurization line 305 in the form of water vapor.
  • the resin composition is extruded from the extruding portion 306, cooled, taken out from the taking-out portion 307, and cut into a pelletized resin composition (primary processed resin) by cutting after cooling.
  • Melt mass flow rate According to ISO1133, it measured at 230 degreeC and a 2.16 kg load.
  • Moisture content According to JIS L 1015 (2010), it was measured under a standard condition of a temperature of 20° C. and a relative humidity of 65%.
  • Number of fluff The number was measured according to JIS L 1095 (2010) 9.22.2 B method.
  • Twisting factor Number of twists per inch of yarn length / ⁇ count (6) Twisting angle (a) Placing the yarn in the horizontal direction and using a KEYENCE electron microscope VE-9800, a side image of the yarn (100 times) Got (B) The midpoint of the cross-sectional direction of the yarn was obtained at the left end and the right end of the side image of the obtained yarn, and the knotting yarn axis was obtained by a straight line between the two points.
  • the obtained yarn shaft was used as a reference line.
  • C and D are the midpoints in the cross-sectional direction of the thread at the left end and the right end of the side surface image of the thread, and Lb is the reference line.
  • C The twist angle was measured by measuring the acute angle formed by the reference line and the fiber on the twisted yarn surface.
  • the acute angle ⁇ formed by the reference line Lb and the fiber on the yarn surface is the twist angle.
  • the twist angle was calculated at five arbitrarily selected points, and the average value thereof was calculated.
  • the cross-section of the thread was embedded in epoxy to preserve the cross-sectional shape, then faced with a glass knife using a microtome (Leica EM UC6) and photographed with a KEYENCE electron microscope VE-9800 (magnification 270 times). .. (III) Method of calculating porosity
  • the volume Vm of a cylinder having the same specific gravity as the fiber material forming an arbitrary thread and the same weight as the thread was calculated. Further, using the yarn diameter measured in (I), the cross section of the yarn was approximated to a circle, and the yarn volume Vy was calculated. Dividing Vm by Vy and multiplying by 100 gives the volume ratio of the fiber in the yarn.
  • the porosity which is the proportion of air in the yarn.
  • the fiber specific gravity described in JIS L 1096:2010 8.11 Apparent specific gravity and pore volume ratio was used for the calculation.
  • Pilling test Based on JIS L 1076 A method, a pilling test was conducted using an ICI type tester to confirm the degree of pilling.
  • Fiber physical properties Single fiber strength and elongation were measured according to JIS L 1015.
  • Unit weight, thickness and bulk density The unit weight and thickness were measured according to JIS L 1096 (2010). The bulk density was calculated based on the basis weight and the thickness.
  • Boken general product standard is 30% or more.
  • the transpiration rate was specifically measured and calculated by the following method.
  • A The mass (W) of a test piece having a diameter of about 9 cm and a petri dish was measured.
  • B 0.1 mL of water was added dropwise to the petri dish, the test piece was placed thereon, and the total mass (W0) was measured.
  • C The sample was left under standard conditions (20° C., 65% RH), the total mass (Wt) was measured every predetermined time, and the transpiration rate (%) after 20 minutes was calculated.
  • Evaporation rate (%) [(W0-Wt)/(W0-W)] x 100 (14)
  • Thermal insulation was evaluated by measuring the thermal insulation rate by the dry contact method using Thermolabo 2 manufactured by Kato Tech. Specifically, in a constant air flow (30 cm/s), the heat dissipation rate (power consumption) of radiating heat from a hot plate set to an environmental temperature +10°C through a test piece (20 x 20 cm) is measured to maintain the heat retention rate. I asked. It is judged that the larger the heat retention rate, the higher the heat retention.
  • Ventilation resistance Using a KES-F8 breathability tester manufactured by Kato Tech Co., Ltd., a mechanism that sends a constant flow rate air to the sample by the piston motion of the cylinder, discharges it through the air into the atmosphere, and sucks it in 10 seconds. Within, the pressure loss due to the sample was measured using a semiconductor differential pressure gauge.
  • the resin melting section 303 feeds the feed forward along the rotation axis, and the kneading and dispersing section 304 rotates a plurality of kneading plates, where the base resin and the hydrophilic component are uniformly mixed, and then the depressurization line 305. At the same time, water was removed by applying a vacuum (negative pressure) to the. (5) Next, the resin composition was extruded from the extruding section 306, cooled, and taken out from the take-out port 307. (6) It was introduced into a pelletizer and pelletized (primarily processed resin).
  • ⁇ Fiber production example 1 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and the extruder was used with a conventional melt spinning machine. After melt-kneading with, melt spinning was performed. After that, it is stretched using a known stretching machine, and a commonly used hydrophilic fiber treating agent is applied so that the adhesion amount becomes 0.15% by mass, crimping is performed with a crimper, and the monofilament fineness is cut.
  • a polypropylene fiber hereinafter, also referred to as PP fiber a
  • ⁇ Fiber production example 2 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and an extruder was used using a conventional melt spinning machine. After melt-kneading with, melt spinning was performed.
  • MFR 20 g/10 min polypropylene
  • a polypropylene fiber having a single fiber fineness of about 1.30 dtex and a fiber length of 38 mm (hereinafter, also referred to as PP fiber b) was produced.
  • ⁇ Fiber production example 3 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and an extruder was used using a conventional melt spinning machine. After melt-kneading with, melt spinning was performed.
  • MFR 20 g/10 min polypropylene
  • a polypropylene fiber having a single fiber fineness of about 1.69 dtex and a fiber length of 38 mm (hereinafter, also referred to as PP fiber c) was produced.
  • ⁇ Fiber Production Example 4> 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape having a diameter of 2 mm and a height of 2 mm), and 2 parts by mass of the masterbatch resin composition obtained in Production Example 1 of masterbatch resin composition , 2 parts by mass of carbon black were mixed.
  • the mixed resin composition (pellets) of (1) is supplied from a raw material supply port of an extruder for melt spinning, melt-kneaded by an extruder using a conventional melt spinning machine, and then melt-spun. did.
  • hydrophilic PP fiber d a hydrophilic polypropylene fiber (hereinafter, also referred to as hydrophilic PP fiber d).
  • ⁇ Fiber production example 5> 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape having a diameter of 2 mm and a height of 2 mm), and 2 parts by mass of the masterbatch resin composition obtained in Production Example 1 of masterbatch resin composition , 0.4 parts by mass of carbon black and 2.0 parts by mass of phthalocyanine blue were mixed.
  • the mixed resin composition (pellets) of (1) is supplied from a raw material supply port of an extruder for melt spinning, melt-kneaded by an extruder using a conventional melt spinning machine, and then melt-spun. did.
  • hydrophilic PP fiber e a hydrophilic polypropylene fiber (hereinafter, also referred to as hydrophilic PP fiber e).
  • Example 1 40 parts by mass of the polypropylene fiber obtained in Production Example 1 of fiber and 60 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 60 gelen/12 yd rough product. I got a thread. Next, using two rovings composed of 40% by mass of the polypropylene fiber and 60% by mass of cotton, a draft of 36 times was imparted by a ring spinning machine, and twisted with a twist coefficient of 3.39. A spun yarn (silo yarn) of the formula cotton count 30s was produced. Specifically, as shown in FIG.
  • roving yarns 1a and 1b composed of two polypropylene-based fibers 40% by mass and cotton 60% by mass are used to guide a back roller 103, a middle roller, and a back roller 103 via a guide bar 101 and a trumpet 102. It is supplied in parallel to a draft zone composed of the roller 104, the apron 105 and the front roller 106, is supplied to the twisting zone while being drafted in parallel, and is twisted through the snail wire 111, the traveler 112 and the ring 113 to form two yarns. A spun yarn (silo yarn) 10 in which the fiber bundles were aligned and twisted was obtained.
  • a knitted fabric having a plain weave structure with a basis weight of about 143 g/m 2 was knitted using a 28-gauge circular knitting machine.
  • Example 2 40 parts by mass of the polypropylene-based fiber obtained in Production Example 2 of fiber and 60 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 60 gelen/12 yd rough product. I got a thread.
  • roving yarns 11a and 11b made of two polypropylene-based fibers 40% by mass and cotton 60% by mass are used as a back roller 203 and a middle roller via a guide bar 201 and a trumpet 202.
  • a spun yarn (silo compact yarn) 20 in which two fiber bundles were aligned and twisted was obtained by twisting the yarn via the 211, the traveler 212, and the ring 213.
  • a 24-gauge circular knitting machine was used to knit a knitted fabric having a plain cloth structure having a basis weight of about 154 g/m 2 .
  • Example 3 32 parts by mass of the polypropylene-based fiber obtained in Production Example 3 of fiber, 8 parts by weight of the hydrophilic polypropylene-based fiber obtained in Production Example 4 of fiber and 60 parts by weight of cotton (Australian cotton) are mixed and beaten and carded. Then, they were sequentially put into the drawing step and the roving step to obtain a roving of 60 gellen/12 yd. A spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
  • a knitted fabric having a plain weave structure having a basis weight of about 148 g/m 2 was knitted using a 28 gauge circular knitting machine.
  • Example 4 40 parts by weight of the hydrophilic polypropylene fiber obtained in Production Example 4 of fiber and 60 parts by weight of cotton (Australian cotton) were sequentially added to the blending cotton step, the card step, the drawing step, and the roving step to obtain 60 gelene/12 yd. Of roving was obtained.
  • a spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
  • a knitted fabric having a plain weave structure having a basis weight of about 147 g/m 2 was knitted using a 28-gauge circular knitting machine.
  • Example 5 40 parts by weight of the hydrophilic polypropylene fiber obtained in Production Example 5 of fiber and 60 parts by weight of cotton (Australian cotton) were sequentially added to the blending cotton step, the card step, the drawing step, and the roving step to obtain 60 gelene/12 yd. Of roving was obtained.
  • a spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
  • a knitted fabric having a plain weave structure having a basis weight of about 148 g/m 2 was knitted using a 28 gauge circular knitting machine.
  • a 24-gauge circular knitting machine was used to knit a knitted fabric having a plain weave structure having a basis weight of about 137 g/m 2 .
  • a 18-gauge circular knitting machine was used to knit a knitted fabric having a plain weave structure having a basis weight of about 135 g/m 2 .
  • a knitted fabric having a plain weave structure having a basis weight of about 133 g/m 2 was knitted using an 18 gauge circular knitting machine.
  • a knitted fabric having a plain weave structure having a basis weight of about 124 g/m 2 was knitted using an 18 gauge circular knitting machine.
  • the fabric using the spun yarn of the example had grade 3 or more pilling and had good anti-pilling property.
  • the fabric using the silo yarn of Comparative Example 1 having a twist angle of less than 21.5° and the ring yarns of Comparative Examples 2 to 4 had a pilling grade of 1.5 and was inferior in pilling resistance. ..
  • the fabrics using the spun yarns of the examples were good in water absorption and fast drying and good heat retention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The present invention relates to a spun yarn comprising a polypropylene-based fiber and a cellulose-based fiber, wherein the spun yarn contains the polypropylene-based fiber and the cellulose-based fiber in amounts of 20 to 80% by mass and 20 to 80% by mass, respectively, and the spun yarn has a twist factor of 2.4 to 6.0 and a twist angle of 21.5° or more. The spun yarn can be produced by: providing two crude yarns in such a manner that the contents of the polypropylene-based fiber and the cellulose-based fiber in the two crude yarns can become 20 to 80% by mass and 20 to 80% by mass, respectively, relative to the whole mass, i.e., 100% by mass, of the two crude yarns in ring spinning; feeding the two crude yarns to a draft zone to draft the two crude yarns; feeding the two crude yarns to a twisting zone while paralleling the two crude yarns; and spinning the two crude yarns. It is possible to provide: a spun yarn which enables the production of a cloth having high water-absorbing and quick-drying performance and having improved anti-pilling properties; a method for producing the spun yarn; and a cloth comprising the spun yarn.

Description

紡績糸、その製造方法及びそれを含む布帛Spun yarn, method for producing the same, and fabric containing the same
 本発明は、ポリプロピレン系繊維及びセルロース系繊維を含む紡績糸、その製造方法及びそれを含む布帛に関する。 The present invention relates to a spun yarn containing a polypropylene fiber and a cellulose fiber, a method for producing the spun yarn, and a cloth including the spun yarn.
 従来から、吸水速乾性を有する紡績糸として、吸水性を有する繊維と、撥水性を有する繊維を併用した紡績糸が提案されていた。例えば、特許文献1には、内層部には主として水を吸収する繊維を配置し、外層部には主として撥水性を示す繊維を配置した多層構造糸条が記載されている。特許文献2には、撥水性を示す繊維束Aと吸水性を示す繊維束Bからなる紡績糸において、繊維束Bより大きい撚角度を持つ繊維束Aが繊維束Bに巻き付いた構造をしている紡績糸が記載されている。特許文献3には、非吸湿繊維と吸湿性繊維を含有する混紡糸が記載されている。特許文献4には、疎水性繊維及び親水性繊維からなる糸が記載されている。 Conventionally, as a spun yarn having a water-absorbing and quick-drying property, a spun yarn in which a water-absorbent fiber and a water-repellent fiber are used in combination has been proposed. For example, Patent Document 1 describes a multi-layered yarn in which fibers that mainly absorb water are arranged in the inner layer portion, and fibers that mainly exhibit water repellency are arranged in the outer layer portion. In Patent Document 2, in a spun yarn composed of a fiber bundle A exhibiting water repellency and a fiber bundle B exhibiting water absorbency, a fiber bundle A having a twist angle larger than that of the fiber bundle B is wound around the fiber bundle B. The spun yarn is described. Patent Document 3 describes a mixed yarn containing a non-hygroscopic fiber and a hygroscopic fiber. Patent Document 4 describes a yarn composed of a hydrophobic fiber and a hydrophilic fiber.
特開平04-091240号公報Japanese Patent Laid-Open No. 04-091240 特開平05-033234号公報Japanese Patent Laid-Open No. 05-033234 特開昭63-42929号公報JP-A-63-42929 特表2001-505628号公報Japanese Patent Publication No. 2001-505628
 しかしながら、特許文献1~4では、吸水速乾性を有する紡績糸を用いた布帛の抗ピリング性を向上させることについては検討されていない。 However, Patent Documents 1 to 4 do not consider improving the anti-pilling property of a fabric using a spun yarn having a water-absorbing and quick-drying property.
 本発明は、前記従来の問題を解決するため、吸水速乾性が高く、抗ピリング性が向上した布帛が得られる紡績糸、その製造方法及びそれを含む布帛を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a spun yarn having a high water-absorbing quick-drying property and an improved pilling resistance, a method for producing the spun yarn, and a fabric including the spun yarn.
 本発明は、ポリプロピレン系繊維及びセルロース系繊維を含む紡績糸であって、前記紡績糸は、ポリプロピレン系繊維を20~80質量%、及びセルロース系繊維を20~80質量%含み、前記紡績糸は、撚り係数が2.4~6.0であり、かつ撚り角度が21.5°以上であることを特徴とする紡績糸に関する。 The present invention relates to a spun yarn containing polypropylene-based fibers and cellulose-based fibers, wherein the spun yarn contains 20 to 80% by mass of polypropylene-based fibers and 20 to 80% by mass of cellulose-based fibers. And a twist coefficient of 2.4 to 6.0, and a twist angle of 21.5° or more.
 本発明は、また、前記の紡績糸の製造方法であって、リング精紡において、二本の粗糸の全質量を100質量%とした場合、二本の粗糸におけるポリプロピレン系繊維の含有量が20~80質量%、及びセルロース系繊維の含有量が20~80質量%になるように二本の粗糸を準備する工程、ドラフトゾーンに前記二本の粗糸を供給しドラフトした後、引き揃えながら撚糸ゾーンに供給する工程、及び、撚糸する工程を含むことを特徴とする紡績糸の製造方法に関する。 The present invention is also the above-mentioned method for producing a spun yarn, wherein in the ring spinning, when the total mass of the two rovings is 100% by mass, the content of the polypropylene fiber in the two rovings is Is 20 to 80% by mass and the content of the cellulosic fiber is 20 to 80% by mass. A step of preparing two roving yarns, after feeding the two roving yarns to the draft zone and drafting, The present invention relates to a method for producing a spun yarn, including a step of supplying the twisted yarn to the twisted yarn zone while aligning the yarn, and a step of twisting the yarn.
 本発明は、また、前記の紡績糸を含むことを特徴とする布帛に関する。 The present invention also relates to a fabric including the spun yarn described above.
 本発明は、吸水速乾性が高く、抗ピリング性が向上した布帛が得られる紡績糸、及び吸水速乾性が高く、抗ピリング性が向上した布帛を提供することができる。また、本発明によれば、吸水速乾性が高く、抗ピリング性が向上した布帛が得られる紡績糸を得ることができる。 The present invention can provide a spun yarn that has a high water-absorbing quick-drying property and a fabric with an improved anti-pilling property, and a fabric with a high water-absorbing quick-drying property and an improved anti-pilling property. Further, according to the present invention, it is possible to obtain a spun yarn that has a high water-absorbing and quick-drying property and can obtain a fabric with improved pilling resistance.
図1は、本発明の一実施態様で使用する一例のリング精紡機の部分的斜視図である。FIG. 1 is a partial perspective view of an example ring spinning machine used in one embodiment of the present invention. 図2は、本発明の他の一実施態様で使用する一例のリング精紡機の部分的斜視図である。FIG. 2 is a partial perspective view of an example ring spinning machine used in another embodiment of the present invention. 図3は、本発明の一実施態様で使用する一例の押出機の模式的説明図である。FIG. 3 is a schematic explanatory view of an example of an extruder used in one embodiment of the present invention. 図4は、紡績糸の撚り角度を説明する紡績糸の側面写真である。FIG. 4 is a side view photograph of the spun yarn illustrating the twist angle of the spun yarn. 図5は、紡績糸の直径を説明する紡績糸の側面写真である。FIG. 5 is a side view photograph of the spun yarn illustrating the diameter of the spun yarn. 図6は、本発明の一実施態様(実施例1)における紡績糸の側面写真(倍率100倍)である。FIG. 6 is a side view photograph (magnification: 100 times) of the spun yarn in one embodiment (Example 1) of the present invention. 図7は、本発明の一実施態様(実施例1)における紡績糸の断面写真(倍率270倍)である。FIG. 7 is a cross-sectional photograph (magnification: 270 times) of a spun yarn in one embodiment (Example 1) of the present invention.
 本発明の発明者らは、吸水性を有する繊維と、撥水性を有する繊維を併用した紡績糸を用いた布帛の高い吸水速乾性を維持しつつ、抗ピリング性を向上することについて鋭意検討した。その結果、紡績糸にポリプロピレン系繊維及びセルロース系繊維を所定量含ませるとともに、紡績糸の撚り係数及び撚り角度を所定の範囲にすることで、該紡績糸を用いた布帛が高い吸水速乾性及び保温性を有するとともに、抗ピリング性が向上することを見出した。 The inventors of the present invention diligently studied to improve the anti-pilling property while maintaining the high water-absorbing and quick-drying properties of the fabric using the spun yarn in which the water-absorbing fiber and the water-repellent fiber are used in combination. .. As a result, the spun yarn contains a predetermined amount of polypropylene-based fibers and cellulose-based fibers, and the twist coefficient and the twist angle of the spun yarn are set within a predetermined range, so that the fabric using the spun yarn has a high water-absorbing and quick-drying property. It was found that it has heat retention and anti-pilling properties are improved.
 前記セルロース系繊維としては、例えば、コットン、麻、パルプ等の天然繊維、ビスコースレーヨン、キュプラ、溶剤紡糸セルロース繊維、ポリノジック等の再生繊維、アセテート等の半合成繊維等が挙げられる。中でも、風合い及び耐久性に優れる観点から、コットンが好ましい。コットンの場合、平均繊維長は25~45mmであることが好ましく、26~33mmであることがより好ましい。また平均繊度は2.8~5.5マイクロネア(1.1~2.2dtex)であることが好ましく、3.5~4.9マイクロネア(1.3~1.9dtex)であることがより好ましい。 Examples of the cellulosic fibers include natural fibers such as cotton, hemp, and pulp, viscose rayon, cupra, solvent-spun cellulose fibers, regenerated fibers such as polynosic, and semisynthetic fibers such as acetate. Among them, cotton is preferable from the viewpoint of excellent texture and durability. In the case of cotton, the average fiber length is preferably 25 to 45 mm, more preferably 26 to 33 mm. The average fineness is preferably 2.8 to 5.5 micronaire (1.1 to 2.2 dtex), and more preferably 3.5 to 4.9 micronaire (1.3 to 1.9 dtex). ..
 前記ポリプロピレン系繊維としては、特に限定されず、ポリプロピレンを含む繊維を用いればよい。前記ポリプロピレンは、プロピレンの単独重合体であってもよく、プロピレンの含有量が50モル%を超えている、プロピレン及びそれと共重合可能な成分を含む共重合体であってもよい。プロピレンと共重合可能な成分としては、特に限定されないが、例えば、エチレン、ブテン、メチルペンテン等のオレフィン系モノマーが挙げられる。ポリプロピレンは、好ましくは、プロピレン単独重合体である。前記ポリプロピレンは、一種を単独で用いても良く、二種以上を組み合わせて用いても良い。 The polypropylene fiber is not particularly limited, and a fiber containing polypropylene may be used. The polypropylene may be a homopolymer of propylene or a copolymer containing propylene and a component copolymerizable therewith, in which the content of propylene exceeds 50 mol %. The component copolymerizable with propylene is not particularly limited, but examples thereof include olefin-based monomers such as ethylene, butene, and methylpentene. Polypropylene is preferably a propylene homopolymer. The said polypropylene may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記ポリプロピレンは、紡糸性の観点から、メルトマスフローレイト(MFR)が5~60g/10minであることが好ましく、7~45g/10minであることがより好ましく、10~30g/10minであることがさらに好ましい。本明細書において、ポリプロピレンのMFRは、ISO1133に準じて、230℃、2.16kg荷重下で測定する。 From the viewpoint of spinnability, the polypropylene has a melt mass flow rate (MFR) of preferably 5 to 60 g/10 min, more preferably 7 to 45 g/10 min, further preferably 10 to 30 g/10 min. preferable. In the present specification, the MFR of polypropylene is measured according to ISO1133 at 230° C. under a load of 2.16 kg.
 前記ポリプロピレン系繊維は、常法により製造できる。例えば、紡糸口金を用いてポリプロピレン又はポリプロピレンを含む樹脂組成物を溶融紡糸して未延伸糸とし、得られた未延伸糸を延伸し、繊維処理剤(油剤とも称される。)を付与し、クリンパーで捲縮を付与し、乾燥することによって得ることができる。 The polypropylene fiber can be manufactured by a conventional method. For example, polypropylene or a resin composition containing polypropylene is melt-spun to form an unstretched yarn using a spinneret, the obtained unstretched yarn is stretched, and a fiber treatment agent (also referred to as an oil agent) is applied thereto, It can be obtained by crimping with a crimper and drying.
 前記ポリプロピレン系繊維は、ポリプロピレンの単一成分繊維であってもよく、ポリプロピレン同士又はポリプロピレンと他の樹脂との複合繊維であってよい。ポリプロピレン系繊維を着色する場合は、顔料をポリプロピレンに混合するか、染料に染まり易い成分と混合して単一型の形状にしてもよく、染料に染まり易い成分と複合して芯鞘型等の形状にしてもよい。 The polypropylene-based fiber may be a single component fiber of polypropylene, or may be a composite fiber of polypropylenes or a composite fiber of polypropylene and another resin. In the case of coloring polypropylene fibers, the pigment may be mixed with polypropylene or may be mixed with a component that is easily dyed to form a single type. It may be shaped.
 前記ポリプロピレン系繊維の繊維断面形状は特に限定されず、円形又は非円形(いわゆる異形断面)のいずれであってよい。 The fiber cross-sectional shape of the polypropylene fiber is not particularly limited, and may be circular or non-circular (so-called irregular cross section).
 前記繊維処理剤は、親水性油剤であることが好ましい。親水性油剤を付与することにより、静電気が抑えられ、紡績工程での生産性は良くなる傾向にある。 The above fiber treatment agent is preferably a hydrophilic oil agent. By adding the hydrophilic oil agent, static electricity is suppressed and the productivity in the spinning process tends to be improved.
 前記ポリプロピレン系繊維は、親水性成分を含んでも良い。通常、親水性成分を含まないポリプロピレン系繊維は、水分率が0.15質量%未満であるが、親水性成分を含ませることで、水分率が0.15質量%以上である親水性ポリプロピレン系繊維を得ることができる。ここで、水分率は、JIS L 1015(2010)に準じて測定されるものである。 The polypropylene fiber may include a hydrophilic component. Usually, the polypropylene-based fiber containing no hydrophilic component has a water content of less than 0.15% by mass, but the hydrophilic polypropylene-based fiber containing the hydrophilic component has a water content of 0.15% by mass or more. Fibers can be obtained. Here, the moisture content is measured according to JIS L 1015 (2010).
 前記親水性成分は、水溶性又は水分散性を有するものであればよく、特に限定されない。水溶性の親水性成分としては、例えば、イオン性界面活性剤、非イオン性界面活性剤等が挙げられるが、なかでも非イオン界面活性剤であることが好ましい。エステル型非イオン界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル及びショ糖脂肪酸エステル等が挙げられ、エーテル型非イオン界面活性剤としては、ポリオキシエチレン(POE)アルキルエーテル、ポリオキシエチレン(POE)アルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等が挙げられる。この中でもポリオキシエチレンアルキルエーテル又はポリオキシアルキレン誘導体(両化合物とも例えば花王社製、商品名“エマルゲン”)が好ましい。 The hydrophilic component is not particularly limited as long as it has water solubility or water dispersibility. Examples of the water-soluble hydrophilic component include ionic surfactants and nonionic surfactants. Among them, nonionic surfactants are preferable. Examples of the ester type nonionic surfactant include glycerin fatty acid ester, sorbitan fatty acid ester and sucrose fatty acid ester, and examples of the ether type nonionic surfactant include polyoxyethylene (POE) alkyl ether and polyoxyethylene ( POE) alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol and the like. Among these, polyoxyethylene alkyl ether or polyoxyalkylene derivative (both compounds are, for example, Kao Corporation, trade name "Emulgen") is preferable.
 前記水溶性の親水性成分は、分子量が200~5000であることが好ましく、より好ましくは300~3000である。前記水溶性の親水性成分として親水性の界面活性剤を単独で用いる場合は、親水性の界面活性剤の分子量は1000以下であることが好ましい。 The water-soluble hydrophilic component preferably has a molecular weight of 200 to 5,000, more preferably 300 to 3,000. When a hydrophilic surfactant is used alone as the water-soluble hydrophilic component, the molecular weight of the hydrophilic surfactant is preferably 1000 or less.
 水分散性の親水性成分としては、例えば、カオリナイト、スメクタイト、モンモリロナイト、ベントナイト等の粘土鉱物、ヒュームドシリカ、コロイダルシリカ、シリカゲル等の親水性シリカ、タルク、ゼオライト等の多層構造又はアモルファスの無機粒子、セルロース等の天然高分子多糖類、キチン、キトサン等のアミノ系高分子多糖類等が用いられる。高分子多糖類は、ナノファイバーとして添加するとよい。粘土鉱物やナノファイバー等は固体で添加されるので、保水剤としての効果も奏する。無機粒子の平均粒子径はできるだけ細かいものが好ましく、100nm以下であることが好ましい。なお、平均粒子径は、位相ドラップ法粒子径測定装置で測定したものとする。 Examples of the water-dispersible hydrophilic component include clay minerals such as kaolinite, smectite, montmorillonite, and bentonite, hydrophilic silica such as fumed silica, colloidal silica, and silica gel, talc, a multilayer structure such as zeolite, or an amorphous inorganic material. Natural polymer polysaccharides such as particles and cellulose, amino polymer polysaccharides such as chitin and chitosan are used. The high molecular polysaccharides may be added as nanofibers. Since clay minerals and nanofibers are added as solids, they also have an effect as a water retention agent. The average particle diameter of the inorganic particles is preferably as small as possible, and is preferably 100 nm or less. In addition, the average particle diameter is measured by a phase drip method particle diameter measuring device.
 前記親水性ポリプロピレン系繊維は、ポリプロピレンと、親水性成分を含むマスターバッチ樹脂組成物とを含むポリプロピレン系樹脂組成物を溶融紡糸することで得ることができる。前記ポリプロピレン系樹脂組成物は、ポリプロピレン100質量部に対してマスターバッチ樹脂組成物を1~10質量部含むことが好ましい。 The hydrophilic polypropylene fiber can be obtained by melt spinning a polypropylene resin composition containing polypropylene and a masterbatch resin composition containing a hydrophilic component. The polypropylene-based resin composition preferably contains 1 to 10 parts by mass of the masterbatch resin composition with respect to 100 parts by mass of polypropylene.
 前記マスターバッチ樹脂組成物は、加熱溶融可能なベース樹脂としてのポリプロピレンと、親水性成分を含む。前記マスターバッチ樹脂組成物は、前記親水性成分を1~10質量%含むことが好ましく、より好ましくは、前記親水性成分を2~8質量%含む。ベース樹脂としてのポリプロピレンは、前記ポリプロピレン系繊維を構成するポリプロピレンと同様のものであってもよく、異なるものであってもよい。 The masterbatch resin composition contains polypropylene as a heat-meltable base resin and a hydrophilic component. The masterbatch resin composition preferably contains 1 to 10% by mass of the hydrophilic component, more preferably 2 to 8% by mass of the hydrophilic component. The polypropylene as the base resin may be the same as or different from the polypropylene constituting the polypropylene fibers.
 前記マスターバッチ樹脂組成物は、さらに相溶化剤を含むことが好ましい。相溶化剤としては、例えば、エチレン-アクリル酸(エステル)コポリマー、エチレン-アクリル酸(エステル)-マレイン酸コポリマー等の極性基(酸無水基)を含むエチレン系コポリマーが好ましい。極性基を含有するエチレン系コポリマーは、極性基を有することにより、親水性成分との親和性が高くなり、また、ポリプロピレンよりも融点が比較的低いので、混練しやすく、好ましい。相溶化剤の融点(DSC法)は、70~110℃であることが好ましい。より好ましい融点は、80~105℃である。 The masterbatch resin composition preferably further contains a compatibilizer. As the compatibilizer, for example, an ethylene-based copolymer containing a polar group (an acid anhydride group) such as an ethylene-acrylic acid (ester) copolymer and an ethylene-acrylic acid (ester)-maleic acid copolymer is preferable. The polar group-containing ethylene-based copolymer is preferable because it has a polar group, so that it has a high affinity with the hydrophilic component and has a relatively lower melting point than polypropylene, so that it is easy to knead. The melting point (DSC method) of the compatibilizer is preferably 70 to 110°C. A more preferable melting point is 80 to 105°C.
 前記マスターバッチ樹脂組成物は、さらに前記ベース樹脂のポリプロピレンよりMFRが高い高MFRポリプロピレンを含んでよく、高MFRポリプロピレンのMFRは、前記ベース樹脂のMFRよりも10倍以上高いことが好ましい。例えば、高MFRポリプロピレンはMFRが100~3000g/10分であることが好ましく、より好ましくは500~2500g/10分である。高MFRポリプロピレンは、一種を単独で用いても良く、二種以上を組み合わせて用いても良い。 The masterbatch resin composition may further include a high MFR polypropylene having a higher MFR than the polypropylene of the base resin, and the MFR of the high MFR polypropylene is preferably 10 times or more higher than the MFR of the base resin. For example, the high MFR polypropylene preferably has an MFR of 100 to 3000 g/10 minutes, more preferably 500 to 2500 g/10 minutes. One type of high MFR polypropylene may be used alone, or two or more types may be used in combination.
 前記マスターバッチ樹脂組成物の製造方法は、ベース樹脂のポリプロピレンと、親水性成分を溶融混練し、冷却してチップ化する一次加工工程と、前記チップ化した樹脂組成物に、高MFRポリプロピレンを溶融混練し、冷却してチップ化する二次加工工程を含むことが好ましい。なお、「チップ」を「ペレット」と称する場合がある。 The method for producing the masterbatch resin composition includes a primary processing step of melt-kneading a base resin polypropylene and a hydrophilic component, cooling and chipping, and melting the high-MFR polypropylene in the chipped resin composition. It is preferable to include a secondary processing step of kneading, cooling and chipping. The “chip” may be referred to as “pellet”.
 前記一次加工工程において、まず押出機を使用し、減圧ラインを備えた混練チャンバーに、押し出し部を連続して接続し、前記混練チャンバー内に、親水性成分(液状)又は必要に応じて水等の溶媒に溶解又は分散された親水性成分と、ベース樹脂のポリプロピレンとを供給し、混合と同時に前記減圧ラインから溶媒を気体の状態で除去し、次いで、押し出し部から樹脂組成物を押し出すことにより、樹脂組成物が得られる。さらに相溶化剤を加えるとベース樹脂と親水性成分の混合が効率的となるため好ましい。また、前記二次加工工程において、場合によっては親水性成分のうち固体の親水性成分として保水剤を加えるのが好ましい。 In the primary processing step, first, an extruder is used to continuously connect an extruding section to a kneading chamber equipped with a decompression line, and in the kneading chamber, a hydrophilic component (liquid) or water, etc., if necessary. By supplying a hydrophilic component dissolved or dispersed in the solvent of, and polypropylene of the base resin, removing the solvent in a gaseous state from the decompression line simultaneously with mixing, and then extruding the resin composition from the extruding section. A resin composition is obtained. Further, it is preferable to add a compatibilizing agent because the base resin and the hydrophilic component can be efficiently mixed. In addition, in the secondary processing step, it is preferable to add a water retention agent as a solid hydrophilic component among the hydrophilic components in some cases.
 前記親水性ポリプロピレン系繊維は、ポリプロピレンと、親水性成分を含むマスターバッチ樹脂組成物とを含むポリプロピレン系樹脂組成物を用いる以外は、常法により製造できる。例えば、紡糸口金を用いてポリプロピレンと、親水性成分を含むマスターバッチ樹脂組成物とを含むポリプロピレン系樹脂組成物を溶融紡糸して未延伸糸とし、得られた未延伸糸を延伸し、繊維処理剤(油剤)を付与し、クリンパーで捲縮を付与し、乾燥することにより得ることができる。 The hydrophilic polypropylene fiber can be produced by a conventional method except that a polypropylene resin composition containing polypropylene and a masterbatch resin composition containing a hydrophilic component is used. For example, polypropylene using a spinneret, polypropylene-based resin composition containing a masterbatch resin composition containing a hydrophilic component is melt-spun to an undrawn yarn, the obtained undrawn yarn is drawn, fiber treatment It can be obtained by applying an agent (oil agent), crimping with a crimper, and drying.
 具体的には、下記のように、前記親水性ポリプロピレン系繊維(未延伸糸)を作製することができる。
(1)ベース樹脂のポリプロピレン:親水性成分(例えばポリオキシエチレンアルキルエーテル):相溶化剤=100:2~8:2~8(質量部)にて一次加工する(一次加工樹脂)。
(2)二次加工として、一次加工樹脂:高MFRポリプロピレン=100:5~15(質量部)の加工をしてマスターバッチ樹脂組成物(二次加工樹脂)とする。
(3)前記マスターバッチ樹脂組成物(二次加工樹脂)を1~10質量部程度、ポリプロピレン100質量部に混合して得られたポリプロピレン系樹脂組成物を溶融紡糸して、親水性ポリプロピレン系繊維を得る。
Specifically, the hydrophilic polypropylene fiber (undrawn yarn) can be produced as described below.
(1) Base resin polypropylene: hydrophilic component (eg, polyoxyethylene alkyl ether): compatibilizer = 100:2 to 8:2 to 8 (parts by mass) for primary processing (primary processing resin).
(2) As a secondary processing, a processing of primary processed resin: high MFR polypropylene=100:5 to 15 (parts by mass) is performed to obtain a masterbatch resin composition (secondary processed resin).
(3) A polypropylene-based resin composition obtained by mixing the masterbatch resin composition (secondary processed resin) in an amount of about 1 to 10 parts by mass and 100 parts by mass of polypropylene is melt-spun to obtain a hydrophilic polypropylene-based fiber. To get
 前記親水性ポリプロピレン系繊維は、ポリプロピレンの単一成分、又はポリプロピレン同士あるいはポリプロピレンと他の樹脂との複合成分であってよい。親水性ポリプロピレン系繊維を着色する場合は、顔料をポリプロピレンに混合するか、染料に染まり易い成分と混合して単一型の形状にしてもよく、染料に染まり易い成分と複合して芯鞘型等の形状にしてもよい。 The hydrophilic polypropylene fiber may be a single component of polypropylene or a composite component of polypropylenes or a composite component of polypropylene and another resin. When coloring hydrophilic polypropylene fibers, the pigment may be mixed with polypropylene or mixed with a component that is easily dyed to form a single type, or combined with a component that is easily dyed to form a core-sheath type. You may make it a shape.
 親水性ポリプロピレン系繊維の繊維断面形状は特に限定されず、円形又は非円形(いわゆる異形断面)のいずれであってよい。 The fiber cross-sectional shape of the hydrophilic polypropylene fiber is not particularly limited, and may be circular or non-circular (so-called irregular cross section).
 前記ポリプロピレン系繊維の単繊維強度は1.8~9.0cN/dtexであることが好ましく、2.0~8.0cN/dtexであることがより好ましく、3.0~7.5cN/dtexであることがさらに好ましい。単繊維強度が1.8cN/dtex以上であると、繊維を加工する際の外力(例えば、紡績張力等)を受けても、繊維が切れにくい。また、単繊維強度が9.0cN/dtex以下であると、抗ピリング性がさらによい繊維が得られる。 The single fiber strength of the polypropylene fiber is preferably 1.8 to 9.0 cN/dtex, more preferably 2.0 to 8.0 cN/dtex, and 3.0 to 7.5 cN/dtex. It is more preferable that there is. When the single fiber strength is 1.8 cN/dtex or more, the fiber is hard to be broken even when an external force (for example, spinning tension) when processing the fiber is applied. Further, when the single fiber strength is 9.0 cN/dtex or less, a fiber having better anti-pilling property can be obtained.
 前記ポリプロピレン系繊維の伸度は5~70%であることが好ましく、10~40%であることがより好ましい。伸度が5~70%であると、やわらかな風合いの繊維が得られる。 The elongation of the polypropylene fiber is preferably 5 to 70%, more preferably 10 to 40%. When the elongation is 5 to 70%, fibers having a soft texture can be obtained.
 前記紡績糸は、ポリプロピレン系繊維を20~80質量%、及びセルロース系繊維を20~80質量%含む。布帛の吸水速乾性及び抗ピリング性を高めることができる。紡績糸の撚り角度をより高めて布帛の抗ピリング性をより高める観点から、前記紡績糸は、好ましくは、ポリプロピレン系繊維を30~80質量%、及びセルロース系繊維を20~70質量%含み、より好ましくは、ポリプロピレン系繊維を35~75質量%、及びセルロース系繊維を25~65質量%含む。紡績工程での静電気の発生を抑制すること、それに伴い混打綿工程及びカード工程の生産性が向上する観点から、前記紡績糸は、親水性ポリプロピレン系繊維を5質量%以上含むことが好ましい。ポリプロピレン系繊維として親水性ポリプロピレン系繊維のみを用いる場合、親水性ポリプロピレン系繊維を上述した混合率の範囲で用いることができる。 The spun yarn contains 20 to 80% by mass of polypropylene fibers and 20 to 80% by mass of cellulose fibers. It is possible to improve the water absorption quick-drying property and the anti-pilling property of the fabric. From the viewpoint of further increasing the twist angle of the spun yarn to further enhance the anti-pilling property of the fabric, the spun yarn preferably contains 30 to 80% by mass of polypropylene fiber and 20 to 70% by mass of cellulose fiber, More preferably, it contains 35 to 75% by mass of polypropylene fibers and 25 to 65% by mass of cellulosic fibers. From the standpoint of suppressing the generation of static electricity in the spinning process and, accordingly, improving the productivity of the mixed wadding process and the card process, the spun yarn preferably contains 5% by mass or more of hydrophilic polypropylene fiber. When only the hydrophilic polypropylene fibers are used as the polypropylene fibers, the hydrophilic polypropylene fibers can be used within the above mixing ratio range.
 前記紡績糸においては、ポリプロピレン系繊維として、水分率が0.15質量%未満の通常のポリプロピレン系繊維と、水分率が0.15質量%以上である親水性ポリプロピレン系繊維とを併用してもよい。その場合、紡績糸において、ポリプロピレン系繊維全体に対する親水性ポリプロピレン系繊維の割合は、例えば、5質量%以上であってもよく、特に限定されないが、紡績工程の生産性の観点から、親水性ポリプロピレン系繊維の割合は30質量%以上であることが好ましく、50質量%以上であることがより好ましく、100質量%であることが特に好ましい。 In the spun yarn, as the polypropylene fiber, an ordinary polypropylene fiber having a water content of less than 0.15 mass% and a hydrophilic polypropylene fiber having a water content of 0.15 mass% or more may be used in combination. Good. In that case, in the spun yarn, the ratio of the hydrophilic polypropylene-based fibers to the entire polypropylene-based fibers may be, for example, 5% by mass or more, and is not particularly limited, but from the viewpoint of productivity in the spinning process, hydrophilic polypropylene is used. The proportion of the system fibers is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 100% by mass.
 前記紡績糸において、前記ポリプロピレン系繊維及び前記セルロース系繊維は実質的に混綿されていることが好ましい。実質的に混綿されているとは、ポリプロピレン系繊維とセルロース系繊維とが均一に混合されているものだけでなく、ポリプロピレン系繊維又はセルロース系繊維が偏って存在している箇所があっても、糸全体としては所定の含有量を有しているものも含む。 In the spun yarn, it is preferable that the polypropylene fiber and the cellulose fiber are substantially mixed. Substantially mixed, not only that polypropylene-based fibers and cellulose-based fibers are uniformly mixed, even if there is a polypropylene-based fibers or cellulose-based fibers are unevenly distributed, The thread as a whole also includes a thread having a predetermined content.
 前記紡績糸は、ポリプロピレン系繊維及びセルロース系繊維に加えて他の繊維を含んでも良い。他の繊維としては、特に限定されないが、例えば、ポリプロピレン系繊維以外のポリオレフィン系繊維、アクリル系繊維、ポリエステル系繊維、ポリアミド系繊維、アセテート繊維、エチレンビニルアルコール繊維及びウレタン系繊維等が挙げられる。前記紡績糸は、用途及び目的等に応じて、適宜他の繊維を20質量%以下含んでもよく、15質量%以下含んでもよく、10質量%以下含んでもよく、5質量%以下含んでもよい。前記紡績糸は、吸水速乾性及び抗ピリング性をより高める観点から、実質的にポリプロピレン系繊維及びセルロース系繊維からなることが特に好ましい。 The spun yarn may include other fibers in addition to the polypropylene fiber and the cellulose fiber. Other fibers are not particularly limited, and examples thereof include polyolefin fibers other than polypropylene fibers, acrylic fibers, polyester fibers, polyamide fibers, acetate fibers, ethylene vinyl alcohol fibers, urethane fibers, and the like. The spun yarn may appropriately contain other fibers in an amount of 20% by mass or less, 15% by mass or less, 10% by mass or less, or 5% by mass or less, depending on applications and purposes. It is particularly preferable that the spun yarn substantially consists of polypropylene-based fibers and cellulose-based fibers from the viewpoint of further improving water absorption and quick-drying property and anti-pilling property.
 前記ポリプロピレン系繊維及び他の繊維は、特に限定されないが、例えば、単繊維繊度が0.1~100dtexであってもよい。前記紡績糸を衣料に用いる場合は、前記ポリプロピレン系繊維及び他の繊維は、単繊維繊度が0.4~5dtexであることが好ましく、0.5~3.5dtexであることがより好ましく、0.6~2.5dtexであることがさらに好ましい。 The polypropylene fiber and other fibers are not particularly limited, but may have a single fiber fineness of 0.1 to 100 dtex, for example. When the spun yarn is used for clothing, the polypropylene fiber and other fibers have a single fiber fineness of preferably 0.4 to 5 dtex, more preferably 0.5 to 3.5 dtex, and 0 More preferably, it is from 6 to 2.5 dtex.
 前記ポリプロピレン系繊維及び他の繊維は、特に限定されないが、例えば、繊維長が24~75mmであることが好ましく、28~65mmであることがより好ましく、32~54mmであることがさらに好ましく、34~48mmが特に好ましい。また、ポリプロピレン系繊維とセルロース系繊維の平均繊維長は、ポリプロピレン系繊維の平均繊維長がセルロース系繊維の平均繊維長よりも長いことが好ましい。後述する糸断面の構造が得られやすく、抗ピリング性がよくなる傾向にある。 The polypropylene fiber and other fibers are not particularly limited, but for example, the fiber length is preferably 24 to 75 mm, more preferably 28 to 65 mm, further preferably 32 to 54 mm, and 34 A size of up to 48 mm is particularly preferred. Further, regarding the average fiber length of the polypropylene-based fiber and the cellulose-based fiber, it is preferable that the average fiber length of the polypropylene-based fiber is longer than the average fiber length of the cellulose-based fiber. The structure of the yarn cross section described later is easily obtained, and the pilling resistance tends to be improved.
 前記紡績糸は、撚り係数が2.4~6.0であることで、布帛の抗ピリング性が良好になる。布帛の抗ピリング性及び柔らかい風合いの観点から、撚り係数は、2.8~4.5であることが好ましく、3.0~4.0であることがより好ましい。 The twisting coefficient of the spun yarn is 2.4 to 6.0, so that the fabric has good pilling resistance. The twist coefficient is preferably 2.8 to 4.5, and more preferably 3.0 to 4.0, from the viewpoint of the anti-pilling property and the soft touch of the cloth.
 前記紡績糸は、撚り角度が21.5°以上、好ましくは22°以上であることで、紡績糸の毛羽数に依ることなく、布帛の抗ピリング性を高めることができる。布帛の抗ピリング性をより高める観点から、撚り角度は23°以上であることがより好ましく、24°以上であることがさらに好ましく、25°以上であることが特に好ましい。なお、前記紡績糸において、撚り角度の上限は、特に限定されないが、例えば、編立性を高める観点から、45°以下であることが好ましい。本明細書において、紡績糸の撚り角度は、後述するとおりに測定することができる。 The twist angle of the spun yarn is 21.5° or more, preferably 22° or more, so that the anti-pilling property of the fabric can be enhanced regardless of the number of fluffs of the spun yarn. From the viewpoint of further enhancing the anti-pilling property of the fabric, the twist angle is more preferably 23° or more, further preferably 24° or more, and particularly preferably 25° or more. In the spun yarn, the upper limit of the twist angle is not particularly limited, but is preferably 45° or less from the viewpoint of enhancing the knitting property, for example. In the present specification, the twist angle of the spun yarn can be measured as described later.
 前記紡績糸は、特に限定されないが、例えば、抗ピリング性をより高める観点から、長さ3mm以上の毛羽数が200本/10m以下であることが好ましく、160本/10m以下であることがより好ましく、80本/10m以下であることがさらに好ましい。また、長さ5mm以上の毛羽数が40本/10m以下であることが好ましく、30本/10m以下であることがより好ましく、10本/10m以下であることがさらに好ましい。また、長さ10mm以上の毛羽数が1.5本/10m以下であることが好ましく、1本/10m以下であることがより好ましく、0本/10mであることがさらに好ましい。本明細書において、紡績糸の毛羽数は、後述するとおりに測定することができる。 The spun yarn is not particularly limited, but for example, from the viewpoint of further improving anti-pilling property, the number of fluffs having a length of 3 mm or more is preferably 200 fibers/10 m or less, and more preferably 160 fibers/10 m or less. It is preferably 80 lines/10 m or less. The number of fluffs having a length of 5 mm or more is preferably 40 fibers/10 m or less, more preferably 30 fibers/10 m or less, and further preferably 10 fibers/10 m or less. The number of fluffs having a length of 10 mm or more is preferably 1.5 fibers/10 m or less, more preferably 1 fiber/10 m or less, and further preferably 0 fibers/10 m. In the present specification, the number of fluffs of the spun yarn can be measured as described later.
 前記紡績糸は、特に限定されないが、例えば、抗ピリング性及び柔らかい風合いの観点から、気孔率が40~80%であることが好ましく、50~80%であることがより好ましい。本明細書において、気孔率は、糸の中の空気の占める割合を意味し、後述するように、電子顕微鏡による糸の側面観察から糸直径を算出し、糸の直径、質量及び繊維比重に基づいて算出する。 The spun yarn is not particularly limited, but for example, from the viewpoint of anti-pilling property and soft texture, the porosity is preferably 40 to 80%, more preferably 50 to 80%. In the present specification, the porosity means the ratio of air in the yarn, and as described later, the yarn diameter is calculated from the side observation of the yarn by an electron microscope, and based on the yarn diameter, mass and fiber specific gravity. To calculate.
 前記紡績糸の番手は、特に限定されないが、英式綿番手で5~100Sの範囲であってもよく、好ましくは10~90Sであり、より好ましくは15~85Sであり、さらに好ましくは20~80Sである。 The count of the spun yarn is not particularly limited, but may be in the range of 5 to 100 S for English cotton count, preferably 10 to 90 S, more preferably 15 to 85 S, and further preferably 20 to It is 80S.
 前記紡績糸は、2本の繊維束からなる撚糸であることが好ましい。2本の繊維束からなる撚糸であることは、紡績糸を加撚方向と逆方向に撚りをかけ解撚したときに、2本の繊維束に解けることにより確認できる場合がある。2本の繊維束からなる撚糸であると、各々の粗糸からドラフトされた繊維束が引き揃えられて撚られるときに、それぞれの繊維束にも甘い撚りがかかるとともに、繊維束が互いに交撚された状態となる。そのため、繊維束と繊維束が互いに絡み合い(繊維束同士の絡みつき)、糸断面での繊維の凝集性が向上し、毛羽を抑える効果及び撚り角度を高めることでき、布帛にしたときの抗ピリング性が著しく向上する。2本の繊維束からなる撚糸は、後述するサイロスピニング又はサイロコンパクトスピニングにより製造できる。前記繊維束は、ポリプロピレン系繊維とセルロース系繊維を混綿したものであることが好ましく、繊維束2本からなる撚糸であることにより、布帛の吸水速乾性がより良好になる。また、糸断面での各繊維の分布において、素材、繊度、繊維長等の調整により、ポリプロピレン系繊維を糸断面のコア付近に比較的多く集中させ、セルロース系繊維、例えばコットンを糸断面の外周付近に比較的多く集中させることができ、抗ピリング性が向上する傾向にあり、好ましい。ポリプロピレン系繊維の繊維長がコットンの繊維長よりも長いこと等により糸断面のコア付近に比較的多く集中するものと推定される。 The spun yarn is preferably a twisted yarn composed of two fiber bundles. The fact that the spun yarn is composed of two fiber bundles may be confirmed by unraveling into two fiber bundles when the spun yarn is twisted in the direction opposite to the twisting direction and untwisted. When the twisted yarn is composed of two fiber bundles, when the drafted fiber bundles from each roving yarn are aligned and twisted, each fiber bundle is also subjected to a sweet twist, and the fiber bundles are twisted together. It will be in the state of being. Therefore, the fiber bundle and the fiber bundle are entangled with each other (entanglement of the fiber bundles), the fiber cohesiveness in the yarn cross section is improved, the effect of suppressing fluff and the twist angle can be increased, and the anti-pilling property when formed into a fabric Is significantly improved. The twisted yarn composed of two fiber bundles can be manufactured by silo spinning or silo compact spinning described later. The fiber bundle is preferably a mixture of polypropylene fibers and cellulosic fibers, and a twisted yarn composed of two fiber bundles improves the water absorption and quick-drying property of the cloth. In addition, in the distribution of each fiber in the yarn cross section, by adjusting the material, fineness, fiber length, etc., polypropylene fibers are relatively concentrated in the vicinity of the core of the yarn cross section, and cellulose fibers, such as cotton, are applied to the outer periphery of the yarn cross section. A relatively large amount can be concentrated in the vicinity, and the anti-pilling property tends to be improved, which is preferable. It is presumed that a relatively large amount of the polypropylene fiber is concentrated near the core of the yarn cross section because the fiber length of the polypropylene fiber is longer than that of cotton.
 前記紡績糸の紡績方法は、特に限定されないが、リング法において、精紡を下記のような工程で行うことで作製することができる。予め、二本の粗糸の全質量を100質量%とした場合、二本の粗糸におけるポリプロピレン系繊維の含有量が20~80質量%、及びセルロース系繊維の含有量が20~80質量%になるように二本の粗糸を準備し、前記二本の粗糸をドラフトゾーンに供給しドラフトした後、引き揃えながら撚糸ゾーンに供給し、撚糸することで紡績糸を得ることができる。該紡績方法は、サイロスピニングと称されるものであり、該紡績方法で得られた紡績糸は、サイロ糸とも称される。毛羽数を低減する観点から、予め、二本の粗糸の全質量を100質量%とした場合、二本の粗糸におけるポリプロピレン系繊維の含有量が20~80質量%、及びセルロース系繊維の含有量が20~80質量%になるように二本の粗糸を準備し、前記二本の粗糸をドラフトゾーンに供給しドラフトした後、引き揃えながら撚糸ゾーンに供給し、前記撚糸ゾーンに供給された直後の二本の粗糸を空気で粗糸の進行方向に吸引して繊維を収束させた後に撚糸することで紡績糸を得ることもできる。該紡績方法は、サイロスピニングとコンパクトスピニングを併用した方法であり、サイロコンパクトスピニングとも称されており、該紡績方法で得られた紡績糸は、サイロコンパクト糸、又は、コンパクトサイロ糸とも称される。 The spinning method of the spun yarn is not particularly limited, but can be produced by performing spinning in the ring method in the following steps. When the total mass of the two rovings is set to 100% by mass in advance, the content of the polypropylene fiber in the two rovings is 20 to 80% by mass, and the content of the cellulosic fiber is 20 to 80% by mass. Thus, a spun yarn can be obtained by preparing two roving yarns as described above, feeding and drafting the two roving yarns to the draft zone, and then feeding them to the twisting zone while aligning and twisting them. The spinning method is referred to as silo spinning, and the spun yarn obtained by the spinning method is also referred to as silo yarn. From the viewpoint of reducing the number of fluffs, when the total mass of the two rovings is set to 100% by mass in advance, the content of polypropylene fibers in the two rovings is 20 to 80% by mass, and Two roving yarns are prepared so that the content is 20 to 80% by mass, the two roving yarns are fed to the draft zone and drafted, and then fed to the twisting yarn zone while being aligned, and then to the twisting yarn zone. It is also possible to obtain a spun yarn by sucking two rovings immediately after being supplied with air in the traveling direction of the rovings to converge the fibers and then twisting the fibers. The spinning method is a method using both silo spinning and compact spinning, and is also called silo compact spinning. The spun yarn obtained by the spinning method is also called silo compact yarn or compact silo yarn. ..
 サイロスピニング又はサイロコンパクトスピニングにおいて、撚り係数を2.4~6.0の範囲に調整することで、撚り角度が21.5°以上、好ましくは22°以上の紡績糸が得られやすく、布帛の抗ピリング性を高めることができる。布帛の抗ピリング性及び柔らかい風合いを高める観点から、撚り係数は、2.8~4.5であることが好ましく、3.0~4.0であることがより好ましい。 By adjusting the twisting coefficient in the range of 2.4 to 6.0 in silo spinning or silo compact spinning, it is easy to obtain a spun yarn having a twisting angle of 21.5° or more, preferably 22° or more. The anti-pilling property can be enhanced. The twist coefficient is preferably 2.8 to 4.5, and more preferably 3.0 to 4.0, from the viewpoint of enhancing the anti-pilling property and soft feeling of the cloth.
 二本の粗糸において、二本の粗糸の全質量に対するポリプロピレン系繊維及びセルロース系繊維のそれぞれの繊維の含有量が上述した範囲を満たせばよく、それぞれの粗糸における各繊維の含有量は、同じであってもよく、異なってもよい。例えば、二本の粗糸においてそれぞれの繊維の含有量が上述した範囲を満たすのであれば、一本の粗糸をポリプロピレン系繊維100質量%とし、もう一本の粗糸をセルロース系繊維100質量%として用いることも可能である。好ましくは、二本の粗糸ともにポリプロピレン系繊維とセルロース系繊維を混綿した粗糸を用いることであり、より好ましくは、いずれの粗糸も、ポリプロピレン系繊維を20~80質量%、及びセルロース系繊維を20~80質量%含み、さらに好ましくは、ポリプロピレン系繊維を30~80質量%、及びセルロース系繊維を20~70質量%含み、さらにより好ましくは、ポリプロピレン系繊維を35~75質量%、及びセルロース系繊維を25~65質量%含む。二本の粗糸ともポリプロピレン系繊維とセルロース系繊維を混綿したほうが、所定の撚り角度を得やすい傾向にある。 In the two rovings, the content of each fiber of the polypropylene fiber and the cellulosic fiber with respect to the total mass of the two rovings may satisfy the above range, the content of each fiber in each roving is , May be the same or different. For example, if the content of each fiber in the two rovings satisfies the above-mentioned range, one roving is 100% by mass of polypropylene fiber, and the other roving is 100% by mass of cellulosic fiber. It is also possible to use it as%. It is preferable to use a roving prepared by mixing polypropylene fibers and cellulose fibers for both of the two rovings. More preferably, each roving contains 20 to 80% by mass of polypropylene fibers, and a cellulose fiber. 20 to 80% by mass of fibers, more preferably 30 to 80% by mass of polypropylene fibers, and 20 to 70% by mass of cellulosic fibers, and even more preferably 35 to 75% by mass of polypropylene fibers, And 25 to 65% by mass of cellulosic fibers. It is easier to obtain a predetermined twist angle when both polypropylene yarns and cellulose fibers are mixed in both rovings.
 本発明の1以上の実施形態において、布帛は、上述した紡績糸を含む。布帛は、編物であってもよく、織物であってもよい。前記布帛は、抗ピリング性を高める観点から、前記紡績糸を50質量%以上含むことが好ましく、75質量%以上含むことがより好ましく、85質量%以上含むことがさらに好ましく、95質量%以上含むことがさらにより好ましく、100質量%からなることが特に好ましい。前記布帛は、本発明の効果を阻害しない範囲において、前記紡績糸に加えて、他の糸、例えば他の紡績糸及び/又はフィラメント糸を含んでも良い。なお、前記布帛は、単層構造であってもよく、二層以上の層を含んでもよい。 In one or more embodiments of the present invention, the fabric comprises the spun yarn described above. The cloth may be knitted or woven. From the viewpoint of enhancing the anti-pilling property, the fabric preferably contains 50% by mass or more of the spun yarn, more preferably 75% by mass or more, further preferably 85% by mass or more, and further preferably 95% by mass or more. It is even more preferable that it is 100% by mass, and it is particularly preferable that it is 100% by mass. The fabric may contain other yarns, for example, other spun yarns and/or filament yarns, in addition to the spun yarns, as long as the effect of the present invention is not impaired. The cloth may have a single-layer structure or may include two or more layers.
 編物の場合、単面編みの天竺編みでもよく、単面編みの変形編みである鹿の子編み、メッシュ編み、裏毛編みであってもよく、両面編でのスムース編み、ダンボール編み、ワッフル編みでもよい。両面編みの場合、前記紡績糸は表面層及び/又は裏面層に用いることができる。表面層及び裏面層のいずれにも前記紡績糸を用いることで、より吸水速乾性及び保温性が向上する。 In the case of knitting, it may be single-sided plain knitting, single-sided deformation kanogo knitting, mesh knitting, fleece knitting, or double-sided smooth knitting, cardboard knitting, and waffle knitting. .. In the case of double-sided knitting, the spun yarn can be used for the front surface layer and/or the back surface layer. By using the spun yarn for both the front surface layer and the back surface layer, the water absorbing and quick drying property and the heat retaining property are further improved.
 織物の場合、平織、綾織、朱子織等の一重織でもよく、二重織でもよい。 Woven fabric may be a single woven fabric such as plain weave, twill weave, satin weave, or double woven fabric.
 前記布帛は、精錬工程の後に染色加工してもよく、仕上げ加工時に吸水加工、SR(Soil release)加工、抗菌加工、帯電防止加工等を併用してもよい。 The cloth may be dyed after the refining process, and may be subjected to water absorption processing, SR (Soil release) processing, antibacterial processing, antistatic processing, etc. at the time of finishing processing.
 前記布帛は、JIS L 1076 A法に基づき、ICI形試験機を使用して測定したピリングが3級以上であることが好ましく、3.5級以上であることがより好ましく、4級以上であることがさらに好ましい。 The above-mentioned cloth has a pilling degree of 3 grade or higher, preferably 3.5 grade or higher, and more preferably 4 grade or higher based on JIS L 1076 A method. Is more preferable.
 前記布帛は、吸水速乾性が高い観点から、蒸散性(II)試験(ボーケン規格BQE A 028準拠)における蒸散率が試験開始20分後で25%以上であることが好ましく、30%以上であることがより好ましい。また、前記布帛は、特に限定されないが、保湿性等の観点から、蒸散性(II)試験(ボーケン規格BQE A 028準拠)における蒸散率が試験開始20分後で70%以下であることが好ましい。蒸散性(II)試験は、吸水性と速乾性の両方を複合的に評価する試験であり、蒸散率は、具体的には後述するとおりに測定する。 From the viewpoint of high water-absorbing and quick-drying properties, the fabric has a transpiration rate in the transpiration (II) test (based on BOKEN standard BQE A028) of preferably 25% or more, and 30% or more 20 minutes after the start of the test. Is more preferable. In addition, the fabric is not particularly limited, but from the viewpoint of moisture retention and the like, it is preferable that the transpiration rate in the transpiration (II) test (in accordance with Bauken standard BQE A028) is 70% or less 20 minutes after the start of the test. .. The transpiration (II) test is a test for compositely evaluating both water absorption and quick-drying property, and the transpiration rate is specifically measured as described later.
 前記布帛は、保温性が高い観点から、カトーテック社製のサーモラボ2を用いてドライコンタクト法で測定した保温率が22.0%以上であることが好ましく、25.0%以上であることがより好ましい。保温率の具体的な測定方法は後述のとおりである。また、前記布帛は、特に限定されないが、例えば、通気性の確保の観点から、保温率が80.0%以下であることが好ましい。 From the viewpoint of high heat retention, the cloth preferably has a heat retention rate of 22.0% or more, and preferably 25.0% or more, measured by a dry contact method using Thermolabo 2 manufactured by Kato Tech. More preferable. The specific method for measuring the heat retention rate is as described below. The cloth is not particularly limited, but for example, from the viewpoint of ensuring air permeability, it is preferable that the heat retention rate is 80.0% or less.
 前記布帛は編物の場合、例えば、蒸れ感を低減する観点から、通気抵抗が0.210kPa・s/m以下であることが好ましく、0.200kPa・s/m以下であることがより好ましく、0.150kPa・s/m以下であることがより好ましい。また、前記布帛は、特に限定されないが、例えば、保温性の観点から、通気抵抗が0.120kPa・s/m以上であることが好ましい。 In the case of knitting the fabric, for example, from the viewpoint of reducing the feeling of dampness, the ventilation resistance is preferably 0.210 kPa·s/m or less, more preferably 0.200 kPa·s/m or less, and 0 It is more preferably not more than 150 kPa·s/m. The cloth is not particularly limited, but preferably has a ventilation resistance of 0.120 kPa·s/m or more from the viewpoint of heat retention.
 前記布帛は、編物の場合、例えば、保温性の観点から、厚みが0.50mm以上であることが好ましく、0.70mm以上であることがより好ましい。また、前記布帛は、特に限定されないが、例えば、着用感の観点から、厚みが4.0mm以下であることが好ましい。 In the case of knitting, the fabric preferably has a thickness of 0.50 mm or more, and more preferably 0.70 mm or more, from the viewpoint of heat retention. The cloth is not particularly limited, but preferably has a thickness of 4.0 mm or less, for example, from the viewpoint of wearing feeling.
 前記布帛は、編物の場合、例えば、軽量性の観点から、嵩密度が0.200g/cm3以下であることが好ましく、0.195g/cm3以下であることがより好ましく、0.170g/cm3以下であることがさらに好ましい。また、前記布帛は、特に限定されないが、例えば、保温性の確保の観点から、嵩密度が0.050g/cm3以上であることが好ましい。 The fabric, when the knitted fabric, for example, from the viewpoint of light weight, it is preferable that a bulk density of 0.200 g / cm 3 or less, more preferably 0.195 g / cm 3 or less, 0.170 g / More preferably, it is not more than cm 3 . The cloth is not particularly limited, but preferably has a bulk density of 0.050 g/cm 3 or more from the viewpoint of ensuring heat retention.
 前記布帛は、編物の場合、軽量性等の着用性の観点から、例えば、目付が450g/m2以下であることが好ましく、400g/m2以下であることがより好ましく、300g/m2以下であることがさらに好ましく、200g/m2以下であることが特に好ましい。また、前記布帛は、特に限定されないが、保温性等の観点から、目付が50g/m2以上であることが好ましい。 In the case of a knit, the fabric has a basis weight of, for example, 450 g/m 2 or less, preferably 400 g/m 2 or less, and more preferably 300 g/m 2 or less from the viewpoint of wearability such as lightness. Is more preferable, and 200 g/m 2 or less is particularly preferable. The fabric is not particularly limited, but preferably has a basis weight of 50 g/m 2 or more from the viewpoint of heat retention and the like.
 前記布帛は、衣料や産業基材等に用いることができる。衣料としては、例えば、肌着、下着、シャツ、ジャンパー、セーター、パンツ、トレーニングウエア、タイツ、腹巻、マフラー、帽子、手袋、靴下、耳あて等が挙げられる。産業基材としては、例えば、カーペット、寝具、家具等が挙げられる。 The cloth can be used for clothing, industrial base materials and the like. Examples of clothing include underwear, underwear, shirts, jumpers, sweaters, pants, training wear, tights, bandages, mufflers, hats, gloves, socks and ear pads. Examples of the industrial base material include carpet, bedding, furniture, and the like.
 以下、図面を用いて説明する。 The following will be explained using the drawings.
 図1は本発明の一実施態様で使用する一例のリング精紡機(サイロスピニング用)の部分的斜視図である。二本の粗糸1a、1bを、ガイドバー101及びトランペット102を介して、バックローラ103、ミドルローラ104、エプロン105及びフロントローラ106からなるドラフトゾーンに並列に供給し、並行してドラフトしながら撚糸ゾーンに供給する。撚糸ゾーンに供給された粗糸2a、2bを、スネイルワイヤー111、トラベラー112及びリング113を介して撚糸して紡績糸(サイロ糸)10を得る。 FIG. 1 is a partial perspective view of an example of a ring spinning machine (for silospinning) used in one embodiment of the present invention. The two roving yarns 1a and 1b are supplied in parallel to a draft zone composed of a back roller 103, a middle roller 104, an apron 105 and a front roller 106 via a guide bar 101 and a trumpet 102, while drafting in parallel. Supply to the twisting zone. The roving yarns 2a and 2b supplied to the twisting zone are twisted through the snail wire 111, the traveler 112 and the ring 113 to obtain a spun yarn (silo yarn) 10.
 図2は本発明の他の一実施態様で使用する一例のリング精紡機(サイロコンパクトスピニング用)の部分的斜視図である。二本の粗糸11a、11bを、ガイドバー201及びトランペット202を介して、バックローラ203、ミドルローラ204、エプロン205及びフロントローラ206からなるドラフトゾーンに並列に供給し、並行してドラフトしながら撚糸ゾーンに供給する。撚糸ゾーンに供給された直後の二本のドラフトされた粗糸(繊維束)12a、12bを、空気吸引部207、通気エプロン208、回転ローラ209、補助ローラ210からなる集束装置を用いて、空気で粗糸の進行方向に吸引して繊維を収束させた後に、スネイルワイヤー211、トラベラー212及びリング213を介して撚糸して紡績糸(サイロコンパクト糸)20を得る。 FIG. 2 is a partial perspective view of an example of a ring spinning machine (for silo compact spinning) used in another embodiment of the present invention. The two roving yarns 11a and 11b are supplied in parallel to a draft zone composed of a back roller 203, a middle roller 204, an apron 205 and a front roller 206 via a guide bar 201 and a trumpet 202, while drafting in parallel. Supply to the twisting zone. The two drafted roving yarns (fiber bundles) 12a and 12b immediately after being supplied to the twisting zone are air-cooled by using a focusing device including an air suction unit 207, a ventilation apron 208, a rotating roller 209, and an auxiliary roller 210. After the fibers are converged by sucking them in the advancing direction of the roving yarn, the spun yarn (silo compact yarn) 20 is obtained by twisting through the snail wire 211, the traveler 212 and the ring 213.
 図3は本発明の一実施態様で使用する押出機の模式的説明図である。この押出機301は、原料供給口302と、樹脂溶融部303と、混練分散部304と、減圧ライン305と、押し出し部306と、取り出し部307で構成されている。まず、樹脂溶融部303の原料供給口302からポリマー(加熱溶融可能なベース樹脂)と、親水性成分(液状)又は必要に応じて水に溶解させた親水性成分を供給する。供給前に両者を混合しておいても良い。次に混練分散部304に送り、混練分散部304では複数枚の混練プレートが回転しており、ここでポリマーと水に溶解させた親水性成分は均一混合される。次いで減圧ライン305から水分が水蒸気の状態で除去される。次いで押し出し部306から樹脂組成物が押し出され、冷却して取り出し部307から取り出され、冷却後カットすればペレット状の樹脂組成物(一次加工樹脂)となる。 FIG. 3 is a schematic explanatory view of an extruder used in one embodiment of the present invention. The extruder 301 includes a raw material supply port 302, a resin melting section 303, a kneading and dispersing section 304, a decompression line 305, an extruding section 306, and a taking-out section 307. First, a polymer (base resin that can be melted by heating) and a hydrophilic component (liquid) or a hydrophilic component dissolved in water as necessary are supplied from a raw material supply port 302 of the resin melting section 303. Both may be mixed before supply. Next, the mixture is sent to the kneading/dispersing section 304. In the kneading/dispersing section 304, a plurality of kneading plates are rotated, where the polymer and the hydrophilic component dissolved in water are uniformly mixed. Next, water is removed from the depressurization line 305 in the form of water vapor. Next, the resin composition is extruded from the extruding portion 306, cooled, taken out from the taking-out portion 307, and cut into a pelletized resin composition (primary processed resin) by cutting after cooling.
 以下、実施例により本発明をさらに具体的に説明する。本発明は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples below.
 (測定方法)
(1)メルトマスフローレイト(MFR)
 ISO1133に準じて、230℃、2.16kg荷重下で測定した。
(2)水分率
 JIS L 1015(2010)に準じ、温度20℃、相対湿度65%の標準状態下で測定した。
(3)毛羽数
 JIS L 1095(2010) 9.22.2 B法に準じて測定した。毛羽試験機としてF-INDEX TESTER(敷島紡績株式会社)を用い、試験条件は、糸速30m/分、試験長10m、N=30とした。
(4)英式綿番手
 JIS L 1095(2010) 9.4.1の一般紡績糸の正量テックス・番手測定の綿番手測定方法に準じて測定した。
(5)撚り係数
 JIS L 1095(2010) 9.15.1A法に準じて撚り数を測定し、下記式にて撚り係数を算出した。
 撚り係数=糸長1インチあたりの撚り数/√番手
(6)撚り角度
(a)糸を水平方向に置いて、KEYENCE製電子顕微鏡VE-9800を用いて、糸の側面の画像(100倍)を取得した。
(b)取得した糸の側面画像の左端と右端でそれぞれ糸の断面方向の中点を得て、2点間を直線で結び糸軸を得た。得られた糸軸を基準線とした。例えば、図4において、C及びDは、それぞれ、糸の側面画像の左端と右端の糸の断面方向の中点であり、Lbは基準線である。
(c)基準線と撚られた糸表面の繊維のなす鋭角を測定して撚り角度とした。例えば、図4において、基準線Lbと糸表面の繊維のなす鋭角αが撚り角度となる。任意に選択した5箇所において、撚り角度を求め、それらの平均値を求めた。
(7)気孔率、見掛け密度
(I)糸の側面観察からの紡績糸直径の算出
 糸の側面は、KEYENCE製電子顕微鏡VE-9800により(倍率40倍から100倍にて)張力のない状態の糸の側面を撮影した。例えば図5に示されているように、糸の任意の箇所の糸の最も外側の繊維(以後、最外端繊維)に対して糸の長手方向へ接線をひき、その接線に対する垂線を糸の中心軸(長手方向)に対して垂直に下ろした。その垂線と糸を構成する最外端繊維の交点Aとした。さらに糸の中心軸を挟み交点Aの反対側の最外端繊維の交点Bとした。AB間の距離から糸の直径を測定した。1つのサンプルに対して異なる箇所の画像5枚を撮影した。各画像について5箇所の糸直径を求め、その画像の代表値とした。さらに画像5枚の平均値を求め、その糸サンプルの代表値とした。
(II)紡績糸の見掛け密度の算出
 単位長さあたりの重さを正量番手(JIS L 1095 9.4.1 正量テックス及び番手)から算出した(I)で測定した紡績糸直径を用いて、糸の断面を円に近似させることで算出した体積で、単位長さあたりの重さを除算することで糸の見掛け密度を定義した。見掛け密度が小さいほど糸の単位長さあたりの嵩が大きい。
 糸の断面は、断面形状を保存するためにエポキシで包埋した後にミクロトーム(Leica EM UC6)を用いてガラスナイフで面出しし、KEYENCE製電子顕微鏡VE-9800(倍率270倍)にて撮影した。
(III)気孔率の算出方法
 任意の糸を構成する繊維素材と同じ比重で、かつその糸と同じ重さになる円柱の体積Vmを算出した。さらに(I)で測定した糸直径を用いて、その糸の断面を円に近似させて糸の体積Vyを算出した。VmをVyで除算し100倍すると糸の中に繊維が占める体積の割合が得られる。これを100から引算することで糸内の空気の占める割合である気孔率が導出される。ただし算出にはJIS L 1096:2010 8.11 見掛け比重及び気孔容積率に記載される繊維比重を用いた。
(8)ピリング試験
 JIS L 1076 A法に基づき、ICI形試験機を使用してピリング試験を行い、ピリングの発生の程度を確認した。
(9)繊維物性
 JIS L 1015に準じて、単繊維強度及び伸度を測定した。
(10)目付、厚み及び嵩密度
 目付及び厚みは、JIS L 1096(2010)に準じて測定した。嵩密度は、目付及び厚みに基づいて算出した。
(11)紡績工程の生産性
 紡績工程内の各工程((I)混打綿、(II)カード、(III)練条、(IV)粗紡、(V)精紡、(VI)巻糸)における生産性を以下の5段階基準で評価し、その平均点を総合評価点とした。
 5:良好
 4:概ね良好
 3:普通
 2:トラブル多い
 1:生産不可
(12)布帛の編立性
 布帛作製時の編立性を以下の5段階基準で評価した。
 5:良好
 4:概ね良好
 3:普通
 2:トラブル多い
 1:生産不可
(13)吸水速乾性
 一般財団法人ボーケン品質評価機構の蒸散性(II)試験(ボーケン規格BQE A 028)に準じて、20分後の蒸散率を求めた。ボーケン一般製品基準は30%以上である。蒸散率は、具体的には以下の方法で測定・算出した。
(a)直径約9cmの試験片とシャーレの質量(W)を測定した。
(b)シャーレに水0.1mLを滴下し、その上に試験片を載せ、合計質量(W0)を測定した。
(c)標準状態(20℃,65%RH)下に放置して所定時間ごとの合計質量(Wt)を測定し、20分後の蒸散率(%)を算出した。
   蒸散率(%)=[(W0-Wt)/(W0-W)]×100
(14)保温性
 カトーテック社製のサーモラボ2を用いてドライコンタクト法で保温率を測定し、保温性を評価した。具体的には、一定の空気流れ(30cm/s)において、環境温度+10℃に設定した熱板から試験片(20×20cm)を介して放熱する熱放散速度(消費電力)を測定し保温率を求めた。保温率の数字が大きいほど保温性が高いと判定している。
(15)通気抵抗
 カトーテック(株)製のKES-F8通気性試験機を用いて、シリンダーのピストン運動によって定流量空気を試料に送り、大気中へ試料を通して放出、吸引する機構で、10秒以内に試料による圧力損失を、半導体差圧ゲージを用いて測定した。
(Measuring method)
(1) Melt mass flow rate (MFR)
According to ISO1133, it measured at 230 degreeC and a 2.16 kg load.
(2) Moisture content According to JIS L 1015 (2010), it was measured under a standard condition of a temperature of 20° C. and a relative humidity of 65%.
(3) Number of fluff The number was measured according to JIS L 1095 (2010) 9.22.2 B method. F-INDEX TESTER (Shikishima Spinning Co., Ltd.) was used as a fluff tester, and the test conditions were a yarn speed of 30 m/min, a test length of 10 m, and N=30.
(4) English cotton count It was measured according to the cotton count measurement method of JIS L 1095 (2010) 9.4.1 General tex/count of regular spun yarn.
(5) Twisting coefficient The number of twists was measured according to JIS L 1095 (2010) 9.15.1A method, and the twisting coefficient was calculated by the following formula.
Twisting factor = Number of twists per inch of yarn length / √ count (6) Twisting angle (a) Placing the yarn in the horizontal direction and using a KEYENCE electron microscope VE-9800, a side image of the yarn (100 times) Got
(B) The midpoint of the cross-sectional direction of the yarn was obtained at the left end and the right end of the side image of the obtained yarn, and the knotting yarn axis was obtained by a straight line between the two points. The obtained yarn shaft was used as a reference line. For example, in FIG. 4, C and D are the midpoints in the cross-sectional direction of the thread at the left end and the right end of the side surface image of the thread, and Lb is the reference line.
(C) The twist angle was measured by measuring the acute angle formed by the reference line and the fiber on the twisted yarn surface. For example, in FIG. 4, the acute angle α formed by the reference line Lb and the fiber on the yarn surface is the twist angle. The twist angle was calculated at five arbitrarily selected points, and the average value thereof was calculated.
(7) Porosity, apparent density
(I) Calculation of Spun Yarn Diameter from Side Observation of Yarn The side surface of the yarn was photographed with a KEYENCE electron microscope VE-9800 (at a magnification of 40 to 100 times). For example, as shown in FIG. 5, a tangent line is drawn in the longitudinal direction of the yarn with respect to the outermost fiber (hereinafter, outermost fiber) of the yarn at an arbitrary position of the yarn, and the perpendicular line to the tangent line is drawn. It was lowered perpendicular to the central axis (longitudinal direction). It was set as the intersection A of the perpendicular and the outermost fiber constituting the yarn. Further, it was set as an intersection B of the outermost end fibers on the opposite side of the intersection A with the central axis of the yarn sandwiched therebetween. The diameter of the yarn was measured from the distance between AB. Five images at different positions were taken for one sample. For each image, the yarn diameter at five locations was determined and used as the representative value for that image. Furthermore, the average value of five images was determined and used as the representative value of the yarn sample.
(II) Calculation of apparent density of spun yarn Using the spun yarn diameter measured in (I), the weight per unit length was calculated from a positive count (JIS L 1095 9.4.1 positive tex and count). The apparent density of the yarn was defined by dividing the weight per unit length by the volume calculated by approximating the cross section of the yarn to a circle. The smaller the apparent density, the larger the bulk per unit length of yarn.
The cross-section of the thread was embedded in epoxy to preserve the cross-sectional shape, then faced with a glass knife using a microtome (Leica EM UC6) and photographed with a KEYENCE electron microscope VE-9800 (magnification 270 times). ..
(III) Method of calculating porosity The volume Vm of a cylinder having the same specific gravity as the fiber material forming an arbitrary thread and the same weight as the thread was calculated. Further, using the yarn diameter measured in (I), the cross section of the yarn was approximated to a circle, and the yarn volume Vy was calculated. Dividing Vm by Vy and multiplying by 100 gives the volume ratio of the fiber in the yarn. By subtracting this from 100, the porosity, which is the proportion of air in the yarn, is derived. However, the fiber specific gravity described in JIS L 1096:2010 8.11 Apparent specific gravity and pore volume ratio was used for the calculation.
(8) Pilling test Based on JIS L 1076 A method, a pilling test was conducted using an ICI type tester to confirm the degree of pilling.
(9) Fiber physical properties Single fiber strength and elongation were measured according to JIS L 1015.
(10) Unit weight, thickness and bulk density The unit weight and thickness were measured according to JIS L 1096 (2010). The bulk density was calculated based on the basis weight and the thickness.
(11) Productivity of spinning process Each process in the spinning process ((I) blended cotton, (II) card, (III) drawing, (IV) roving, (V) spinning, (VI) winding) The productivity was evaluated according to the following five-stage criteria, and the average score was used as the overall evaluation score.
5: Good 4: Generally good 3: Normal 2: Many troubles 1: Not producible (12) Fabric knitting property The knitting property at the time of fabric production was evaluated according to the following five-stage criteria.
5: Good 4: Generally good 3: Normal 2: Many troubles 1: Not productionable (13) Water absorption and quick drying 20 according to the transpiration (II) test (Boken standard BQE A 028) of the Boken Quality Assessment Organization. The transpiration rate after minutes was calculated. Boken general product standard is 30% or more. The transpiration rate was specifically measured and calculated by the following method.
(A) The mass (W) of a test piece having a diameter of about 9 cm and a petri dish was measured.
(B) 0.1 mL of water was added dropwise to the petri dish, the test piece was placed thereon, and the total mass (W0) was measured.
(C) The sample was left under standard conditions (20° C., 65% RH), the total mass (Wt) was measured every predetermined time, and the transpiration rate (%) after 20 minutes was calculated.
Evaporation rate (%) = [(W0-Wt)/(W0-W)] x 100
(14) Thermal insulation The thermal insulation was evaluated by measuring the thermal insulation rate by the dry contact method using Thermolabo 2 manufactured by Kato Tech. Specifically, in a constant air flow (30 cm/s), the heat dissipation rate (power consumption) of radiating heat from a hot plate set to an environmental temperature +10°C through a test piece (20 x 20 cm) is measured to maintain the heat retention rate. I asked. It is judged that the larger the heat retention rate, the higher the heat retention.
(15) Ventilation resistance Using a KES-F8 breathability tester manufactured by Kato Tech Co., Ltd., a mechanism that sends a constant flow rate air to the sample by the piston motion of the cylinder, discharges it through the air into the atmosphere, and sucks it in 10 seconds. Within, the pressure loss due to the sample was measured using a semiconductor differential pressure gauge.
 <マスターバッチ樹脂組成物の製造例1>
 [一次加工樹脂]
(1)水溶性の親水性成分として、ポリオキシエチレンアルキルエーテル(花王(株)製、エマルゲン1108、有効成分100質量%、分子量473)を準備した。
(2)ベース樹脂として、ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)を準備した。
(3)図3に示す押出機の原料供給口302からベース樹脂ペレット80質量部と、ポリオキシエチレンアルキルエーテルを4質量%含むポリプロピレン(MFR800g/10分)12.5質量部、親水性成分2.5質量部と、相溶化剤(エチレン-アクリル酸-マレイン酸共重合体(MFR80g/10分(190℃、2.16kg)、融点(DSC法)98℃)5質量部を供給した。
(4)押出機内における加工温度を170~190℃に設定した。樹脂溶融部303では回転軸に沿って供給物を前に送り、混練分散部304では複数枚の混練プレートが回転しており、ここでベース樹脂と親水性成分は均一混合され、次いで減圧ライン305を真空(負圧)にすることで同時に水分を取り除いた。
(5)次いで、押し出し部306から樹脂組成物を押出、冷却して取り出し口307から取り出した。
(6)ペレタイザーに導き、ペレット化(一次加工樹脂)した。(一次加工工程)
 [二次加工樹脂]
(1)前記押出機を用いて、一次工程で得られたペレット化した樹脂組成物(一次加工樹脂)100質量部に、高MFRプロピレンとしてMFR2000g/10分の低立体規則性ポリプロピレン(商品名「エルモーデュ」S400、出光興産(株)製)を10質量部混合して原料供給口302から供給した。
(2)溶融混練して、冷却して、ペレタイザーでペレット化して、直径2mm、高さ2mmの円柱形のポリプロピレン系マスターバッチ樹脂組成物(二次加工樹脂)を得た。
<Production Example 1 of masterbatch resin composition>
[Primary processing resin]
(1) As a water-soluble hydrophilic component, polyoxyethylene alkyl ether (manufactured by Kao Corporation, Emulgen 1108, 100% by mass of active ingredient, molecular weight 473) was prepared.
(2) As a base resin, polypropylene (MFR 20 g/10 min) pellets (cylindrical shape having a diameter of 2 mm and a height of 2 mm) were prepared.
(3) 80 parts by mass of the base resin pellets from the raw material supply port 302 of the extruder shown in FIG. 3, 12.5 parts by mass of polypropylene containing 4% by mass of polyoxyethylene alkyl ether (MFR 800 g/10 minutes), hydrophilic component 2 0.5 parts by mass and 5 parts by mass of a compatibilizer (ethylene-acrylic acid-maleic acid copolymer (MFR 80 g/10 min (190° C., 2.16 kg), melting point (DSC method) 98° C.)) were supplied.
(4) The processing temperature in the extruder was set to 170 to 190°C. The resin melting section 303 feeds the feed forward along the rotation axis, and the kneading and dispersing section 304 rotates a plurality of kneading plates, where the base resin and the hydrophilic component are uniformly mixed, and then the depressurization line 305. At the same time, water was removed by applying a vacuum (negative pressure) to the.
(5) Next, the resin composition was extruded from the extruding section 306, cooled, and taken out from the take-out port 307.
(6) It was introduced into a pelletizer and pelletized (primarily processed resin). (Primary processing process)
[Secondary processing resin]
(1) Using the extruder, 100 parts by mass of the pelletized resin composition (primary processed resin) obtained in the primary step was added to the low stereoregular polypropylene (MFR 2000 g/10 min as high MFR propylene) (trade name " 10 parts by mass of "Elmodu" S400, manufactured by Idemitsu Kosan Co., Ltd. was mixed and supplied from the raw material supply port 302.
(2) Melt kneading, cooling, and pelletizing with a pelletizer to obtain a cylindrical polypropylene masterbatch resin composition (secondary processed resin) having a diameter of 2 mm and a height of 2 mm.
 <繊維の製造例1>
 ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)100質量部を溶融紡糸用の押出機の原料供給口から供給し、常法の溶融紡糸機を用いて、押出機で溶融混練した後、溶融紡糸した。その後、公知の延伸機を用いて延伸、常用の親水性の繊維処理剤を付着量が0.15質量%となるように付与し、クリンパーで捲縮を付与し、カットして、単繊維繊度が約1.24dtex、繊維長が38mmのポリプロピレン系繊維(以下において、PP繊維aとも記す。)を作製した。
<Fiber production example 1>
100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and the extruder was used with a conventional melt spinning machine. After melt-kneading with, melt spinning was performed. After that, it is stretched using a known stretching machine, and a commonly used hydrophilic fiber treating agent is applied so that the adhesion amount becomes 0.15% by mass, crimping is performed with a crimper, and the monofilament fineness is cut. Was about 1.24 dtex and the fiber length was 38 mm to prepare a polypropylene fiber (hereinafter, also referred to as PP fiber a).
 <繊維の製造例2>
 ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)100質量部を溶融紡糸用の押出機の原料供給口から供給し、常法の溶融紡糸機を用いて、押出機で溶融混練した後、溶融紡糸した。その後、公知の延伸機を用いて延伸、製造例1と同じ親水性の繊維処理剤を付着量が0.15質量%となるように付与し、クリンパーで捲縮を付与し、カットして、単繊維繊度が約1.30dtex、繊維長が38mmのポリプロピレン系繊維(以下において、PP繊維bとも記す。)を作製した。
<Fiber production example 2>
100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and an extruder was used using a conventional melt spinning machine. After melt-kneading with, melt spinning was performed. Then, using a known stretching machine, stretched, the same hydrophilic fiber treatment agent as in Production Example 1 was applied so that the adhesion amount was 0.15 mass%, crimped with a crimper, and cut, A polypropylene fiber having a single fiber fineness of about 1.30 dtex and a fiber length of 38 mm (hereinafter, also referred to as PP fiber b) was produced.
 <繊維の製造例3>
 ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)100質量部を溶融紡糸用の押出機の原料供給口から供給し、常法の溶融紡糸機を用いて、押出機で溶融混練した後、溶融紡糸した。その後、公知の延伸機を用いて延伸、製造例1と同じ親水性の繊維処理剤を付着量が0.15質量%となるように付与し、クリンパーで捲縮を付与し、カットして、単繊維繊度が約1.69dtex、繊維長が38mmのポリプロピレン系繊維(以下において、PP繊維cとも記す。)を作製した。
<Fiber production example 3>
100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm) were supplied from a raw material supply port of an extruder for melt spinning, and an extruder was used using a conventional melt spinning machine. After melt-kneading with, melt spinning was performed. Then, using a known stretching machine, stretched, the same hydrophilic fiber treatment agent as in Production Example 1 was applied so that the adhesion amount was 0.15 mass%, crimped with a crimper, and cut, A polypropylene fiber having a single fiber fineness of about 1.69 dtex and a fiber length of 38 mm (hereinafter, also referred to as PP fiber c) was produced.
 <繊維の製造例4>
 (1)ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)100質量部と、マスターバッチ樹脂組成物の製造例1で得られたマスターバッチ樹脂組成物2質量部と、カーボンブラック2質量部を混合した。
(2)(1)の混合した樹脂組成物(ペレット)を溶融紡糸用の押出機の原料供給口から供給し、常法の溶融紡糸機を用いて、押出機で溶融混練した後、溶融紡糸した。その後、公知の延伸機を用いて延伸、常用の親水性の繊維処理剤を付着量が0.15質量%となるように付与し、クリンパーで捲縮を付与し、カットして、単繊維繊度が約1.97dtex、繊維長が38mmの親水性ポリプロピレン系繊維(以下において、親水性PP繊維dとも記す。)を作製した。
<Fiber Production Example 4>
(1) 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape having a diameter of 2 mm and a height of 2 mm), and 2 parts by mass of the masterbatch resin composition obtained in Production Example 1 of masterbatch resin composition , 2 parts by mass of carbon black were mixed.
(2) The mixed resin composition (pellets) of (1) is supplied from a raw material supply port of an extruder for melt spinning, melt-kneaded by an extruder using a conventional melt spinning machine, and then melt-spun. did. After that, it is stretched using a known stretching machine, and a commonly used hydrophilic fiber treating agent is applied so that the adhered amount becomes 0.15% by mass, crimping is performed with a crimper, and the monofilament fineness is cut. Was about 1.97 dtex, and the fiber length was 38 mm to prepare a hydrophilic polypropylene fiber (hereinafter, also referred to as hydrophilic PP fiber d).
 <繊維の製造例5>
 (1)ポリプロピレン(MFR20g/10分)のペレット(直径2mm、高さ2mmの円柱形)100質量部と、マスターバッチ樹脂組成物の製造例1で得られたマスターバッチ樹脂組成物2質量部と、カーボンブラック0.4質量部、フタロシアニンブルー2.0質量部を混合した。
(2)(1)の混合した樹脂組成物(ペレット)を溶融紡糸用の押出機の原料供給口から供給し、常法の溶融紡糸機を用いて、押出機で溶融混練した後、溶融紡糸した。その後、公知の延伸機を用いて延伸、常用の親水性の繊維処理剤を付着量が0.15質量%となるように付与し、クリンパーで捲縮を付与し、カットして、単繊維繊度が約1.78dtex、繊維長が38mmの親水性ポリプロピレン系繊維(以下において、親水性PP繊維eとも記す。)を作製した。
<Fiber production example 5>
(1) 100 parts by mass of polypropylene (MFR 20 g/10 min) pellets (cylindrical shape having a diameter of 2 mm and a height of 2 mm), and 2 parts by mass of the masterbatch resin composition obtained in Production Example 1 of masterbatch resin composition , 0.4 parts by mass of carbon black and 2.0 parts by mass of phthalocyanine blue were mixed.
(2) The mixed resin composition (pellets) of (1) is supplied from a raw material supply port of an extruder for melt spinning, melt-kneaded by an extruder using a conventional melt spinning machine, and then melt-spun. did. After that, it is stretched using a known stretching machine, and a commonly used hydrophilic fiber treating agent is applied so that the adhered amount becomes 0.15% by mass, crimping is performed with a crimper, and the monofilament fineness is cut. Was about 1.78 dtex, and the fiber length was 38 mm to prepare a hydrophilic polypropylene fiber (hereinafter, also referred to as hydrophilic PP fiber e).
 (実施例1)
 繊維の製造例1で得られたポリプロピレン系繊維40質量部とコットン(オーストラリア綿)60質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、60ゲレン/12ydの粗糸を得た。次に、得られたポリプロピレン系繊維40質量%及びコットン60質量%からなる粗糸を2本用い、リング精紡機にて、36倍のドラフトを付与し、撚り係数3.39で撚糸し、英式綿番手30sの紡績糸(サイロ糸)を作製した。具体的には、図1に示すように、二本のポリプロピレン系繊維40質量%及びコットン60質量%からなる粗糸1a、1bを、ガイドバー101及びトランペット102を介して、バックローラ103、ミドルローラ104、エプロン105及びフロントローラ106からなるドラフトゾーンに並列に供給し、並行してドラフトしながら撚糸ゾーンに供給し、スネイルワイヤー111、トラベラー112及びリング113を介して撚糸して、2本の繊維束が引き揃えられ撚られた紡績糸(サイロ糸)10を得た。
(Example 1)
40 parts by mass of the polypropylene fiber obtained in Production Example 1 of fiber and 60 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 60 gelen/12 yd rough product. I got a thread. Next, using two rovings composed of 40% by mass of the polypropylene fiber and 60% by mass of cotton, a draft of 36 times was imparted by a ring spinning machine, and twisted with a twist coefficient of 3.39. A spun yarn (silo yarn) of the formula cotton count 30s was produced. Specifically, as shown in FIG. 1, roving yarns 1a and 1b composed of two polypropylene-based fibers 40% by mass and cotton 60% by mass are used to guide a back roller 103, a middle roller, and a back roller 103 via a guide bar 101 and a trumpet 102. It is supplied in parallel to a draft zone composed of the roller 104, the apron 105 and the front roller 106, is supplied to the twisting zone while being drafted in parallel, and is twisted through the snail wire 111, the traveler 112 and the ring 113 to form two yarns. A spun yarn (silo yarn) 10 in which the fiber bundles were aligned and twisted was obtained.
 上記で得られた紡績糸を用いて、28ゲージの丸編機を用いて目付が約143g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure with a basis weight of about 143 g/m 2 was knitted using a 28-gauge circular knitting machine.
 (実施例2)
 繊維の製造例2で得られたポリプロピレン系繊維40質量部とコットン(オーストラリア綿)60質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、60ゲレン/12ydの粗糸を得た。次に、得られたポリプロピレン系繊維40質量%及びコットン60質量%からなる粗糸を2本用い、コンパクトスピニングシステムを導入したリング精紡機にて、36倍のドラフトを付与し、空気で粗糸の進行方向に吸引して繊維を収束させた後に、撚り係数3.41で撚糸し、英式綿番手30sの紡績糸(サイロコンパクト糸)を作製した。具体的には、図2に示すように、二本のポリプロピレン系繊維40質量%及びコットン60質量%からなる粗糸11a、11bを、ガイドバー201及びトランペット202を介して、バックローラ203、ミドルローラ204、エプロン205及びフロントローラ206からなるドラフトゾーンに並列に供給し、並行してドラフトしながら撚糸ゾーンに供給し、撚糸ゾーンに供給された直後の二本のドラフトされた粗糸(繊維束)12a、12bを、空気吸引部207、通気エプロン208、回転ローラ209、補助ローラ210からなる集束装置を用いて、空気で粗糸の進行方向に吸引して繊維を収束させた後に、スネイルワイヤー211、トラベラー212及びリング213を介して撚糸して、2本の繊維束が引き揃えられ撚られた紡績糸(サイロコンパクト糸)20を得た。
(Example 2)
40 parts by mass of the polypropylene-based fiber obtained in Production Example 2 of fiber and 60 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 60 gelen/12 yd rough product. I got a thread. Next, using two rovings consisting of 40% by mass of polypropylene fiber and 60% by mass of cotton obtained, a draft of 36 times is applied by a ring spinning machine having a compact spinning system, and the roving is air After the fibers were converged by sucking in the traveling direction, the yarn was twisted with a twist coefficient of 3.41 to produce a spun yarn (silo compact yarn) of English cotton count 30s. Specifically, as shown in FIG. 2, roving yarns 11a and 11b made of two polypropylene-based fibers 40% by mass and cotton 60% by mass are used as a back roller 203 and a middle roller via a guide bar 201 and a trumpet 202. It is supplied in parallel to a draft zone composed of a roller 204, an apron 205, and a front roller 206, is supplied to a twisting yarn zone while drafting in parallel, and two drafted roving yarns (fiber bundles immediately after being supplied to the twisting yarn zone (fiber bundle ) 12a and 12b are sucked with air in the advancing direction of the roving using a focusing device composed of an air suction unit 207, a ventilation apron 208, a rotating roller 209, and an auxiliary roller 210, and then the fibers are converged. A spun yarn (silo compact yarn) 20 in which two fiber bundles were aligned and twisted was obtained by twisting the yarn via the 211, the traveler 212, and the ring 213.
 上記で得られた紡績糸を用いて、24ゲージの丸編機を用いて目付が約154g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a 24-gauge circular knitting machine was used to knit a knitted fabric having a plain cloth structure having a basis weight of about 154 g/m 2 .
 (実施例3)
 繊維の製造例3で得られたポリプロピレン系繊維32質量部、繊維の製造例4で得られた親水性ポリプロピレン系繊維8質量部とコットン(オーストラリア綿)60質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、60ゲレン/12ydの粗糸を得た。得られた粗糸を2本用いた以外は、実施例1と同様にして紡績糸(サイロ糸)を得た。
(Example 3)
32 parts by mass of the polypropylene-based fiber obtained in Production Example 3 of fiber, 8 parts by weight of the hydrophilic polypropylene-based fiber obtained in Production Example 4 of fiber and 60 parts by weight of cotton (Australian cotton) are mixed and beaten and carded. Then, they were sequentially put into the drawing step and the roving step to obtain a roving of 60 gellen/12 yd. A spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
 上記で得られた紡績糸を用いて、28ゲージの丸編機を用いて目付が約148g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure having a basis weight of about 148 g/m 2 was knitted using a 28 gauge circular knitting machine.
 (実施例4)
 繊維の製造例4で得られた親水性ポリプロピレン系繊維40質量部とコットン(オーストラリア綿)60質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、60ゲレン/12ydの粗糸を得た。得られた粗糸を2本用いた以外は、実施例1と同様にして紡績糸(サイロ糸)を得た。
(Example 4)
40 parts by weight of the hydrophilic polypropylene fiber obtained in Production Example 4 of fiber and 60 parts by weight of cotton (Australian cotton) were sequentially added to the blending cotton step, the card step, the drawing step, and the roving step to obtain 60 gelene/12 yd. Of roving was obtained. A spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
 上記で得られた紡績糸を用いて、28ゲージの丸編機を用いて目付が約147g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure having a basis weight of about 147 g/m 2 was knitted using a 28-gauge circular knitting machine.
 (実施例5)
 繊維の製造例5で得られた親水性ポリプロピレン系繊維40質量部とコットン(オーストラリア綿)60質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、60ゲレン/12ydの粗糸を得た。得られた粗糸を2本用いた以外は、実施例1と同様にして紡績糸(サイロ糸)を得た。
(Example 5)
40 parts by weight of the hydrophilic polypropylene fiber obtained in Production Example 5 of fiber and 60 parts by weight of cotton (Australian cotton) were sequentially added to the blending cotton step, the card step, the drawing step, and the roving step to obtain 60 gelene/12 yd. Of roving was obtained. A spun yarn (silo yarn) was obtained in the same manner as in Example 1 except that the two obtained roving yarns were used.
 上記で得られた紡績糸を用いて、28ゲージの丸編機を用いて目付が約148g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure having a basis weight of about 148 g/m 2 was knitted using a 28 gauge circular knitting machine.
 (比較例1)
 繊維の製造例1で得られたポリプロピレン系繊維に代えて、市販のレギュラーポリエチレンテレフタレート系繊維(単繊維繊度1.32dtex、繊維長38mm)を用いた以外は、実施例1と同様にして、ポリエチレンテレフタレート系繊維40質量%及びコットン60質量%からなる紡績糸(サイロ糸)を作製した。
(Comparative Example 1)
Polyethylene was produced in the same manner as in Example 1 except that a commercially available regular polyethylene terephthalate fiber (single fiber fineness: 1.32 dtex, fiber length: 38 mm) was used in place of the polypropylene fiber obtained in Fiber Production Example 1. A spun yarn (silo yarn) composed of 40% by mass of terephthalate fiber and 60% by mass of cotton was produced.
 上記で得られた紡績糸を用いて、24ゲージの丸編機を用いて目付が約137g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a 24-gauge circular knitting machine was used to knit a knitted fabric having a plain weave structure having a basis weight of about 137 g/m 2 .
 (比較例2)
 繊維の製造例2で得られたポリプロピレン系繊維75質量部とコットン(オーストラリア綿)25質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、90ゲレン/12ydの粗糸を得た。次に、得られたポリプロピレン系繊維75質量%及びコットン25質量%からなる粗糸を1本用い、リング精紡機にて、41.4倍のドラフトを付与し、撚り係数3.47で撚糸し、英式綿番手約46sの紡績糸(リング糸)を作製した。
(Comparative example 2)
75 parts by mass of the polypropylene-based fiber obtained in Production Example 2 of fiber and 25 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the drawing process, and the roving process to obtain a 90 gelen/12 yd rough product. I got a thread. Next, using one roving yarn composed of 75% by mass of the obtained polypropylene fiber and 25% by mass of cotton, a draft of 41.4 times was imparted by a ring spinning machine and twisted with a twisting coefficient of 3.47. A spun yarn (ring yarn) having an English cotton count of about 46 s was produced.
 上記で得られた紡績糸を用いて、18ゲージの丸編機を用いて目付が約135g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a 18-gauge circular knitting machine was used to knit a knitted fabric having a plain weave structure having a basis weight of about 135 g/m 2 .
 (比較例3)
 繊維の製造例2で得られたポリプロピレン系繊維50質量部とコットン(オーストラリア綿)50質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、90ゲレン/12ydの粗糸を得た。次に、得られたポリプロピレン系繊維50質量%及びコットン50質量%からなる粗糸を1本用い、リング精紡機にて、39.6倍のドラフトを付与し、撚り係数3.80で撚糸し、英式綿番手約44sの紡績糸(リング糸)を作製した。
(Comparative example 3)
50 parts by mass of the polypropylene-based fiber obtained in Production Example 2 of fiber and 50 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 90 gelen/12 yd rough product. I got a thread. Next, using one roving yarn composed of 50% by mass of polypropylene fiber and 50% by mass of cotton obtained, a draft of 39.6 times was imparted with a ring spinning machine, and twisted with a twist coefficient of 3.80. A spun yarn (ring yarn) having an English cotton count of about 44 s was produced.
 上記で得られた紡績糸を用いて、18ゲージの丸編機を用いて目付が約133g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure having a basis weight of about 133 g/m 2 was knitted using an 18 gauge circular knitting machine.
 (比較例4)
 繊維の製造例2で得られたポリプロピレン系繊維25質量部とコットン(オーストラリア綿)75質量部を混打綿工程、カード工程、練条工程、粗紡工程に順次投入し、90ゲレン/12ydの粗糸を得た。次に、得られたポリプロピレン系繊維25質量%及びコットン75質量%からなる粗糸を1本用い、リング精紡機にて、40.5倍のドラフトを付与し、撚り係数3.38で撚糸し、英式綿番手約45sの紡績糸(リング糸)を作製した。
(Comparative example 4)
25 parts by mass of the polypropylene fiber obtained in Production Example 2 of fibers and 75 parts by mass of cotton (Australian cotton) were sequentially added to the blending cotton process, the card process, the kneading process, and the roving process to obtain a 90 gelen/12 yd rough product. I got a thread. Next, using one roving yarn consisting of 25% by mass of the obtained polypropylene fiber and 75% by mass of cotton, a draft of 40.5 times was imparted by a ring spinning machine and twisted with a twisting factor of 3.38. A spun yarn (ring yarn) having an English cotton count of about 45 s was produced.
 上記で得られた紡績糸を用いて、18ゲージの丸編機を用いて目付が約124g/m2の天竺組織の編物を編成した。 Using the spun yarn obtained above, a knitted fabric having a plain weave structure having a basis weight of about 124 g/m 2 was knitted using an 18 gauge circular knitting machine.
 実施例及び比較例の編物を用いて上述したとおりにピリング試験を行い、その結果を下記表1に示した。実施例及び比較例の編物の保温性、吸水速乾性、通気抵抗、厚み及び嵩密度を上述したとおりに評価し、その結果を下記表1に示した。下記表1には、上述したとおりに測定した繊維の単繊維繊度及び水分率、紡績糸の英式綿番手、撚り係数、撚り角度、毛羽数、見かけ密度及び気孔率の結果も示した。図6に実施例1で得られた紡績糸の側面写真(倍率100倍)を示し、図7に同紡績糸の断面写真(倍率270倍)を示した。実施例1の糸断面での各繊維の分布において、糸断面のコア付近にポリプロピレン系繊維が比較的多く集中しており、糸断面の外周付近にコットンが比較的多く集中していることが確認できた。下記表1には、紡績工程の生産性及び布帛の編立性の結果も併せて示した。下記表1において、PETはポリエチレンテレフタレート系繊維を意味し、「-」は未測定を意味する。 The pilling test was performed as described above using the knitted fabrics of Examples and Comparative Examples, and the results are shown in Table 1 below. The heat retention properties, water absorption and quick drying properties, ventilation resistance, thickness and bulk density of the knitted fabrics of Examples and Comparative Examples were evaluated as described above, and the results are shown in Table 1 below. Table 1 below also shows the results of the monofilament fineness and moisture content of the fiber, the English cotton count of the spun yarn, the twisting coefficient, the twisting angle, the number of fluffs, the apparent density and the porosity, which were measured as described above. FIG. 6 shows a side photograph (magnification: 100 times) of the spun yarn obtained in Example 1, and FIG. 7 shows a cross-sectional photograph (magnification: 270 times) of the spun yarn. In the distribution of each fiber in the yarn cross section of Example 1, it was confirmed that polypropylene fibers were relatively concentrated near the core of the yarn cross section and cotton was relatively concentrated near the outer periphery of the yarn cross section. did it. Table 1 below also shows the results of the productivity in the spinning process and the knitting property of the fabric. In Table 1 below, PET means polyethylene terephthalate fiber, and “−” means unmeasured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から分かるように、実施例の紡績糸を用いた布帛は、ピリングが3級以上であり、抗ピリング性が良好であった。一方、撚り角度が21.5°未満である比較例1のサイロ糸、及び比較例2~4のリング糸を用いた布帛は、ピリングが1.5級であり、抗ピリング性が劣っていた。また、実施例の紡績糸を用いた布帛は、吸水速乾性及び保温性も良好であった。 As can be seen from the results in Table 1 above, the fabric using the spun yarn of the example had grade 3 or more pilling and had good anti-pilling property. On the other hand, the fabric using the silo yarn of Comparative Example 1 having a twist angle of less than 21.5° and the ring yarns of Comparative Examples 2 to 4 had a pilling grade of 1.5 and was inferior in pilling resistance. .. In addition, the fabrics using the spun yarns of the examples were good in water absorption and fast drying and good heat retention.
 1a、1b、11a、11b 粗糸
 2a、2b、12a、12b ドラフトされた粗糸(繊維束)
 10、20 紡績糸
 101、201 ガイドバー
 102、202 トランペット
 103、203 バックローラ
 104、204 ミドルローラ
 105、205 エプロン
 106、206 フロントローラ
 207 空気吸引部
 208 通気エプロン
 209 回転ローラ
 210 補助ローラ
 111、211 スネイルワイヤー
 112、212 トラベラー
 113、213 リング
 301 押出機
 302 原料供給口
 303 樹脂溶融部
 304 混練分散部
 305 減圧ライン
 306 押し出し部
 307 取り出し部
1a, 1b, 11a, 11b roving 2a, 2b, 12a, 12b drafted roving (fiber bundle)
10, 20 Spun yarn 101, 201 Guide bar 102, 202 Trumpet 103, 203 Back roller 104, 204 Middle roller 105, 205 Apron 106, 206 Front roller 207 Air suction part 208 Ventilation apron 209 Rotating roller 210 Auxiliary roller 111, 211 Snail Wires 112, 212 Traveler 113, 213 Ring 301 Extruder 302 Raw material supply port 303 Resin melting part 304 Kneading dispersion part 305 Decompression line 306 Extrusion part 307 Extraction part

Claims (10)

  1.  ポリプロピレン系繊維及びセルロース系繊維を含む紡績糸であって、
     前記紡績糸は、ポリプロピレン系繊維を20~80質量%、及びセルロース系繊維を20~80質量%含み、
     前記紡績糸は、撚り係数が2.4~6.0であり、かつ撚り角度が21.5°以上であることを特徴とする紡績糸。
    A spun yarn containing polypropylene fiber and cellulose fiber,
    The spun yarn contains 20 to 80% by mass of polypropylene fibers and 20 to 80% by mass of cellulose fibers,
    The spun yarn has a twist coefficient of 2.4 to 6.0 and a twist angle of 21.5° or more.
  2.  前記紡績糸は、撚り角度が22°以上である請求項1に記載の紡績糸。 The spun yarn according to claim 1, wherein the spun yarn has a twist angle of 22° or more.
  3.  前記紡績糸は、撚り角度が25°以上である請求項1又は2に記載の紡績糸。 The spun yarn according to claim 1 or 2, wherein the spun yarn has a twist angle of 25° or more.
  4.  JIS L 1015(2010)に準じて測定される水分率が0.15質量%以上である親水性ポリプロピレン系繊維を5質量%以上含む請求項1~3のいずれかに記載の紡績糸。 The spun yarn according to any one of claims 1 to 3, which contains 5% by mass or more of hydrophilic polypropylene fiber having a water content of 0.15% by mass or more measured according to JIS L 1015 (2010).
  5.  前記ポリプロピレン系繊維及び前記セルロース系繊維は実質的に混綿されている請求項1~4のいずれかに記載の紡績糸。 The spun yarn according to any one of claims 1 to 4, wherein the polypropylene fiber and the cellulose fiber are substantially mixed.
  6.  前記セルロース系繊維がコットンである請求項1~5のいずれかに記載の紡績糸。 The spun yarn according to any one of claims 1 to 5, wherein the cellulosic fiber is cotton.
  7.  請求項1~6のいずれかに記載の紡績糸の製造方法であって、
     リング精紡において、
     二本の粗糸の全質量を100質量%とした場合、二本の粗糸におけるポリプロピレン系繊維の含有量が20~80質量%、及びセルロース系繊維の含有量が20~80質量%になるように二本の粗糸を準備する工程、
     ドラフトゾーンに前記二本の粗糸を供給しドラフトした後、引き揃えながら撚糸ゾーンに供給する工程、及び、
     撚糸する工程を含むことを特徴とする紡績糸の製造方法。
    A method for producing a spun yarn according to any one of claims 1 to 6,
    In ring spinning,
    When the total mass of the two rovings is 100% by mass, the content of polypropylene fibers in the two rovings is 20 to 80% by mass, and the content of cellulose fibers is 20 to 80% by mass. The process of preparing two rovings,
    Supplying the two rovings to the draft zone, drafting them, and then supplying them to the twisting zone while aligning, and
    A method for producing a spun yarn, which comprises the step of twisting.
  8.  前記撚糸ゾーンに供給された直後の二本の粗糸を空気で粗糸の進行方向に吸引して繊維を収束させた後に撚糸する請求項7に記載の紡績糸の製造方法。 The method for producing a spun yarn according to claim 7, wherein the two roving yarns immediately after being supplied to the twisting yarn zone are sucked with air in the advancing direction of the roving yarns to converge the fibers and then twisted.
  9.  請求項1~6のいずれかに記載の紡績糸を含むことを特徴とする布帛。 A fabric comprising the spun yarn according to any one of claims 1 to 6.
  10.  前記布帛は、抗ピリング性が3級以上である請求項9に記載の布帛。 The cloth according to claim 9, wherein the cloth has an anti-pilling property of grade 3 or higher.
PCT/JP2019/029677 2019-02-19 2019-07-29 Spun yarn, method for producing same, and cloth comprising same WO2020170469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019565047A JP6653791B1 (en) 2019-02-19 2019-07-29 Spun yarn, method for producing the same, and fabric containing the same
CN201980091671.4A CN113423883B (en) 2019-02-19 2019-07-29 Textile yarn, process for producing the same, and fabric comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027351 2019-02-19
JP2019027351 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170469A1 true WO2020170469A1 (en) 2020-08-27

Family

ID=72143956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029677 WO2020170469A1 (en) 2019-02-19 2019-07-29 Spun yarn, method for producing same, and cloth comprising same

Country Status (3)

Country Link
CN (1) CN113423883B (en)
TW (1) TWI803735B (en)
WO (1) WO2020170469A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359309B2 (en) 2018-12-21 2022-06-14 Target Brands, Inc. Ring spun yarn and method
WO2023033087A1 (en) * 2021-08-31 2023-03-09 大和紡績株式会社 Knitted fabric, method for manufacturing same, and garment including same
US11639564B1 (en) * 2022-07-15 2023-05-02 Wetsox, LLC Twisted yarns and methods of manufacture thereof
WO2024015563A1 (en) * 2022-07-15 2024-01-18 Wetsox, LLC Twisted yarns and methods of manufacture thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256974B2 (en) * 1982-12-02 1990-12-03 Daido Steel Co Ltd
EP0742296A1 (en) * 1995-05-12 1996-11-13 N.V. Kortrijkse Technische Spinnerij, Kts Method for manufacturing a yarn, and a yarn manufactured according to this method
WO2011062007A1 (en) * 2009-11-17 2011-05-26 倉敷紡績株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same
CN105316825A (en) * 2014-08-04 2016-02-10 张连根 Blended yarn simultaneously containing polypropylene staple fiber and cotton
JP2018087329A (en) * 2016-11-22 2018-06-07 ダイワボウホールディングス株式会社 Masterbatch resin composition, method for producing the same, and molded body containing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543207C (en) * 2005-07-06 2009-09-23 山东岱银纺织集团股份有限公司 Production method of short staple enveloped composite yarn
JP5307623B2 (en) * 2009-05-08 2013-10-02 旭化成せんい株式会社 Composite spun yarn and fabric
JP2015203159A (en) * 2014-04-11 2015-11-16 東レ株式会社 Anti-pilling knitted fabric and clothing
KR101758204B1 (en) * 2015-07-28 2017-07-17 주식회사 아모그린텍 Twisted Composite Yarn Based Nanofibers and Method for Manufacturing the Same
JP2018062714A (en) * 2016-10-11 2018-04-19 ユニチカトレーディング株式会社 Water-absorbing and quick-drying woven or knitted fabric
WO2019146787A1 (en) * 2018-01-29 2019-08-01 ダイワボウホールディングス株式会社 Spun yarn, method for producing same, and cloth containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256974B2 (en) * 1982-12-02 1990-12-03 Daido Steel Co Ltd
EP0742296A1 (en) * 1995-05-12 1996-11-13 N.V. Kortrijkse Technische Spinnerij, Kts Method for manufacturing a yarn, and a yarn manufactured according to this method
WO2011062007A1 (en) * 2009-11-17 2011-05-26 倉敷紡績株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same
CN105316825A (en) * 2014-08-04 2016-02-10 张连根 Blended yarn simultaneously containing polypropylene staple fiber and cotton
JP2018087329A (en) * 2016-11-22 2018-06-07 ダイワボウホールディングス株式会社 Masterbatch resin composition, method for producing the same, and molded body containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359309B2 (en) 2018-12-21 2022-06-14 Target Brands, Inc. Ring spun yarn and method
US11767618B2 (en) 2018-12-21 2023-09-26 Target Brands, Inc. Ring spun yarn and method
WO2023033087A1 (en) * 2021-08-31 2023-03-09 大和紡績株式会社 Knitted fabric, method for manufacturing same, and garment including same
JP7284882B1 (en) * 2021-08-31 2023-05-31 大和紡績株式会社 Knitted fabric, its manufacturing method and clothing containing it
US11639564B1 (en) * 2022-07-15 2023-05-02 Wetsox, LLC Twisted yarns and methods of manufacture thereof
WO2024015563A1 (en) * 2022-07-15 2024-01-18 Wetsox, LLC Twisted yarns and methods of manufacture thereof

Also Published As

Publication number Publication date
TW202043562A (en) 2020-12-01
CN113423883A (en) 2021-09-21
TWI803735B (en) 2023-06-01
CN113423883B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP6556974B1 (en) Spun yarn, method for producing the same, and fabric including the same
WO2020170469A1 (en) Spun yarn, method for producing same, and cloth comprising same
KR101432928B1 (en) Process of producing polyester/lyocell air-jet belnded spun yarn having exellent sweat-absorbing and rapid-drying and antibacterial property
JP7130193B2 (en) Fabric and clothing using it
JP2014167185A (en) Spun yarn containing polymethylpentene hollow fiber, and fiber structure comprising the same
KR20150086235A (en) Composite spinneret, conjugated fiber, and process for manufacturing conjugated fiber
KR20070020042A (en) High-strength yarn made through stretch breaking and process for producing the same
KR101554614B1 (en) Fabric with Sweat-absorption and Rapid-drying Function
JP6653791B1 (en) Spun yarn, method for producing the same, and fabric containing the same
JP2019157301A (en) Knitted fabric for clothing and clothing therewith
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
KR101869415B1 (en) Process Of Producing Flaim―Retardant Polyester Airjet Spun Yarn Having Excellent Flaim―Retardant Property, Uniformity And Friction Resistance
JP7344388B2 (en) Spun yarn, its manufacturing method, and fabrics containing it
JP4507389B2 (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JP7505185B2 (en) Spun yarn and textile structures
JP6536591B2 (en) Knitting fabric excellent in heat retention and method for producing the same
JP2002327323A (en) Glove
EP3746588A1 (en) Multi-length, multi-denier, multi-cross section fiber blend yarn
TW201443303A (en) Spun yarn that contains polymethylpentene fiber, and fiber structure made of same
WO2020203286A1 (en) Drawn composite fibers, non-woven cloth, and production method for drawn composite fibers
JP2013028868A (en) Long and short composite spun yarn, fabric including the same and method for producing the same
WO2021070674A1 (en) Staple fiber for airlaying, and method for producing same
JP2009084726A (en) Fine spun-twisted union yarn
JP2024047460A (en) Spun yarn, its manufacturing method and fabric containing same
WO2022080086A1 (en) Carbon-powder-containing fiber and fibrous structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916086

Country of ref document: EP

Kind code of ref document: A1