WO2020169006A1 - 超声刀组织自适应切割止血控制方法及装置 - Google Patents

超声刀组织自适应切割止血控制方法及装置 Download PDF

Info

Publication number
WO2020169006A1
WO2020169006A1 PCT/CN2020/075624 CN2020075624W WO2020169006A1 WO 2020169006 A1 WO2020169006 A1 WO 2020169006A1 CN 2020075624 W CN2020075624 W CN 2020075624W WO 2020169006 A1 WO2020169006 A1 WO 2020169006A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processor
target
biological tissue
ultrasonic
Prior art date
Application number
PCT/CN2020/075624
Other languages
English (en)
French (fr)
Inventor
王锟湃
王堪佑
肖寒柳
张天翔
Original Assignee
深圳市世格赛思医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市世格赛思医疗科技有限公司 filed Critical 深圳市世格赛思医疗科技有限公司
Publication of WO2020169006A1 publication Critical patent/WO2020169006A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade

Definitions

  • the present application relates to the technical field of medical devices, for example, to a method and device for adaptively cutting hemostasis of tissue with an ultrasonic knife.
  • Modern electrosurgery has well solved the shortcomings of bleeding during scalpel surgery in related technologies.
  • the most widely used are high-frequency electrosurgical knives and ultrasonic knives.
  • ultrasonic knives can operate under a preset frequency of AC excitation signals.
  • the therapeutic blade is mechanically oscillated at a preset frequency to vaporize the water molecules in the tissue, break the hydrogen bond of the protein, and disintegrate the cells, thereby causing the tissue to be cut or coagulated.
  • the lower temperature of the blade causes thermal damage and The potential danger is relatively small.
  • the human body contains many types of biological tissues, such as muscles, fats, nerves, and blood vessels.
  • the bioimpedances of different types of biological tissues are quite different. Therefore, the optimal current value of the applicable AC excitation signal is different.
  • the ultrasonic knife cannot generate an AC excitation signal for the biological tissue type according to the biological impedance of the biological tissue, so that in the process of cutting the biological tissue to stop bleeding, either large thermal damage is caused, or the cutting efficiency is not high.
  • the present application provides an ultrasonic knife tissue adaptive cutting hemostasis control method and device, which can adjust the drive signal generated by the knife drive module, so that the knife can work in a state of high cutting efficiency and low thermal damage in real time.
  • an embodiment of the present application provides a method for adaptively cutting hemostasis of tissue with an ultrasonic knife, and the method includes:
  • the control signal generator generates a detection signal with a preset frequency so that the detection signal with a preset frequency is transmitted to the target biological tissue held by the tool through the tool;
  • the method before controlling the signal generator to generate the detection signal with the preset frequency, the method further includes: acquiring the turn-on signal, and after acquiring the turn-on signal, performing an operation of controlling the signal generator to generate the detection signal with the preset frequency.
  • obtaining the target current value or the target voltage value of the driving signal required to be generated by the tool driving module according to the biological impedance of the target biological tissue includes:
  • the biological tissue database is queried to determine the target current value or the target voltage value of the driving signal required by the target biological tissue.
  • the tool drive module includes an ultrasonic drive unit and an ultrasonic transducer, and adjusts the drive signal generated by the tool drive module according to the target current value or the target voltage value, including:
  • the method further includes:
  • the embodiment of the present application provides an ultrasonic knife tissue adaptive cutting hemostasis control device, which includes a processor, a signal generator, a knife, a signal collector, and a knife drive module;
  • the processor is respectively connected with the signal generator, the signal collector and the tool drive module, and the tool is connected with the tool drive module;
  • the signal generator is configured to generate a detection signal with a preset frequency
  • the cutter is configured to transmit the detection signal of the preset frequency to the target biological tissue held by the cutter;
  • the signal collector is configured to collect feedback signals generated by the target biological tissue
  • the processor is configured to control the signal generator to generate the detection signal of the preset frequency, so that the detection signal of the preset frequency is transmitted through the tool to the target biological tissue held by the tool
  • the processor is also configured to obtain the feedback signal generated by the target biological tissue collected by the signal collector and calculate the biological impedance of the target biological tissue; the processor is also configured to The biological impedance of the biological tissue determines the target current value or the target voltage value of the drive signal that the tool drive module needs to generate, and adjusts all the values generated by the tool drive module according to the target current value or the target voltage value.
  • the driving signal is configured to control the signal generator to generate the detection signal of the preset frequency, so that the detection signal of the preset frequency is transmitted through the tool to the target biological tissue held by the tool
  • the cutter driving module is configured to generate the driving signal, so that the cutter performs cutting or hemostasis operation on the target biological tissue.
  • the ultrasonic knife tissue adaptive cutting hemostasis control device calculates the bioimpedance of the target biological tissue in real time through a processor to obtain the target current value or target voltage of the driving signal applicable to the target biological tissue under the bioimpedance Value, and then adjust the drive signal generated by the tool drive module to make the tool work in real time in a state of high cutting efficiency and low thermal damage, so as to solve the problem of not being able to control the ultrasonic knife according to the bioimpedance of the target biological tissue in related technologies.
  • the problem of large thermal damage or low cutting efficiency can achieve the effect of high cutting efficiency and small thermal damage.
  • FIG. 1 is a method for adaptively cutting hemostasis by ultrasonic knife tissue cutting according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a tool provided by an embodiment of the present application.
  • 3 is a graph of cutting efficiency-current characteristics of an ultrasonic knife provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an ultrasonic knife tissue adaptive cutting hemostasis control device provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another ultrasonic knife tissue adaptive cutting hemostasis control device provided by an embodiment of the present application.
  • FIG. 6 is a physical diagram of the ultrasonic knife tissue adaptive cutting hemostasis control device shown in FIG. 5;
  • Fig. 7 is a working flow chart of an ultrasonic knife tissue adaptive cutting hemostasis control device provided by an embodiment of the present application.
  • Fig. 1 is a method for controlling hemostasis through adaptive tissue cutting with an ultrasonic knife according to an embodiment of the present application. The method includes:
  • S110 Control the signal generator to generate a detection signal with a preset frequency, so that the detection signal with a preset frequency is transmitted through the tool to the target biological tissue held by the tool.
  • the detection signal is an AC signal.
  • the AC signal has better anti-interference ability.
  • the biological impedance of the target biological tissue is usually a composite impedance.
  • the phase shift of the AC signal after passing through the target biological tissue can be based on
  • the voltage or current lead after the AC signal flows through the target biological tissue is used to determine the biological impedance type of the target biological tissue.
  • the biological impedance type of the target biological tissue is inductive impedance; when the current leads, the biological impedance of the target biological tissue is The type of biological impedance is capacitive impedance.
  • the equivalent current of the detection signal is small to avoid damage to the target biological tissue when it flows through the target biological tissue.
  • FIG. 2 is a schematic structural diagram of a tool provided in an embodiment of the present application.
  • the tool includes a sleeve rod 171 and a probe 172.
  • the processor controls the signal generator to generate an AC detection signal with a preset frequency.
  • the AC detection signal flows through the sleeve rod 171 of the tool, is transmitted to the target biological tissue 30 held by the tool, and then transmitted to the signal acquisition through the probe 172 of the tool Device, so that the signal collection device can collect the feedback signal generated by the target biological tissue 30.
  • S120 Obtain the feedback signal generated by the target biological tissue collected by the signal collector, and calculate the biological impedance of the target biological tissue.
  • the processor calculates the bioimpedance of the target biological tissue in real time according to the voltage value and the current value of the feedback signal.
  • S130 Determine the target current value or the target voltage value of the drive signal that the tool drive module needs to generate according to the biological impedance of the target biological tissue.
  • Fig. 3 is an ultrasonic knife cutting efficiency-current characteristic diagram provided by an embodiment of the present application.
  • a constant current source ultrasonic knife when the bioimpedance of the target biological tissue is the resistance R, the relationship between the current value of the drive signal generated by the knife drive module and the cutting efficiency of the knife on the target biological tissue is shown in Figure 2.
  • the current value of the drive signal reaches a certain current value I 1 , as the drive With the increase of the signal current value, the cutting efficiency of the tool slows down, that is, if the current value of the drive signal continues to increase at this time, the cutting efficiency cannot be significantly increased, but it will cause the tool to heat up and cause more damage to the target biological tissue. Thermal damage. Therefore, when the current value of the driving signal is I 1 , the ultrasonic knife cutting efficiency is high and the thermal damage is small, and the current value I 1 is the target current value.
  • the driving signal is usually an AC signal, and the current value of the driving signal is the effective value.
  • the specific meaning of the target voltage value is similar to the meaning of the target current value, and will not be repeated here.
  • S140 Adjust the drive signal generated by the tool drive module according to the target current value or the target voltage value.
  • the processor adjusts the drive signal generated by the tool drive module according to the target current value or the target voltage value, so that the current value of the drive signal generated by the tool drive module It is the target current value, or the voltage value of the drive signal generated by the tool drive module is the target voltage value, so that the tool can work in a state of high cutting efficiency and low thermal damage.
  • the target current value or target voltage value is adjusted in real time, and the drive signal generated by the tool drive module is adjusted in real time, so that the tool can work in real time with high cutting efficiency and low thermal damage.
  • the ultrasonic knife tissue adaptive cutting hemostasis control method calculates the biological impedance of the target biological tissue in real time to obtain the target current value or the target voltage value of the driving signal applicable to the target biological tissue under the biological impedance. Then adjust the drive signal generated by the tool drive module to make the tool work in real time in a state of high cutting efficiency and low thermal damage, and solve the problem of heat caused by the inability to control the ultrasonic knife according to the biological impedance of the target biological tissue in the related technology.
  • the problem of large damage or low cutting efficiency can achieve the effect of high cutting efficiency and small thermal damage.
  • S130 includes: querying the biological tissue database according to the biological impedance of the target biological tissue to determine the target current value or the target voltage value of the driving signal required by the target biological tissue.
  • the biological tissue database is queried for the target current value or the target voltage value corresponding to the biological impedance.
  • S140 includes: adjusting the effective current value of the AC excitation signal generated by the ultrasonic driving unit according to the target current value to adjust the vibration amplitude of the mechanical vibration signal generated by the ultrasonic transducer; or adjusting the ultrasonic driving unit according to the target voltage value
  • the effective voltage value of the generated AC excitation signal is used to adjust the vibration amplitude of the mechanical vibration signal generated by the ultrasonic transducer.
  • the ultrasonic drive unit is set to generate an AC excitation signal under the control of the processor, that is, the drive signal generated by the tool drive module, and the ultrasonic transducer is set to convert the electrical energy of the AC excitation signal generated by the ultrasonic drive unit into mechanical energy to control the tool Perform mechanical vibration to achieve the purpose of cutting or stopping bleeding of the target biological tissue.
  • the processor adjusts the equivalent current of the AC excitation signal generated by the ultrasonic drive unit according to the target current value, and then controls the cutting efficiency of the cutter to the target biological tissue through the ultrasonic transducer, so that the cutter works at the same time as the cutting efficiency is high. State with little thermal damage.
  • the processor obtains the activation signal sent by the activation switch, it controls the signal generator to generate a detection signal with a preset frequency, so that the detection signal with a preset frequency is transmitted through the tool to the target biological tissue held by the tool.
  • the method further includes:
  • the temperature of the knife tip of the knife is relatively high, and the water in the target biological tissue will be evaporated in a short time, so the conductivity of the target biological tissue will be reduced. Decrease, that is, the bio-impedance increases.
  • the target biological tissue is cut and thinner, and the bio-impedance becomes smaller and smaller. Therefore, during the cutting process of the target biological tissue, the bio-impedance presents a trend of rising first and then falling.
  • the display module includes a liquid crystal display, and the impedance characteristic map of the target biological tissue is drawn through the liquid crystal display, wherein the horizontal axis label of the impedance characteristic map is time, and the vertical axis label is biological impedance.
  • This setting allows the surgeon to better grasp the current cutting degree of the target biological tissue by observing the bioimpedance characteristic map in an environment with inconvenient vision.
  • the bioimpedances of different types of biological tissues are quite different, when the bioimpedance characteristic diagram shows drastic changes in bioimpedance at a certain time, the surgeon can learn that other types of biological tissues have been cut from the bioimpedance characteristic diagram. , That is, wrong cutting, cutting should be stopped to reduce the risk of surgery.
  • the liquid crystal display can also display information such as the composite impedance type of the target biological tissue.
  • the liquid crystal display can have input and output functions, and the user can use the liquid crystal display Perform human-computer interaction with the processor, for example, in the human-computer interaction interface, including basic settings such as host brightness, volume, date, work log query, biological log query, biological impedance characteristic map and output power information.
  • FIG. 4 is a schematic structural diagram of an ultrasonic knife tissue adaptive cutting hemostasis control device provided in an embodiment of the present application.
  • the device specifically includes: a processor 110, a signal generator 120, a tool 130, a signal collector 140, and a tool drive module 150.
  • the processor 110 is respectively connected to the signal generator 120, the signal collector 140 and the tool drive module 150, and the tool 130 Connect with the tool drive module 150.
  • the signal generator 120 is configured to generate a detection signal with a preset frequency.
  • the cutter 130 is configured to transmit a detection signal of a preset frequency to the target biological tissue clamped by the cutter 130.
  • the signal collector 140 is configured to collect feedback signals generated by the target biological tissue.
  • the processor 110 is configured to control the signal generator 120 to generate a detection signal with a preset frequency, so that the detection signal with a preset frequency is transmitted to the target biological tissue held by the tool 130 through the tool 130; the processor 110 is also configured to acquire signal collection The feedback signal generated by the target biological tissue collected by the device 140 and calculate the biological impedance of the target biological tissue; the processor 110 is also configured to determine the target current value or the target current value of the drive signal required to be generated by the tool drive module 150 according to the biological impedance of the target biological tissue The target voltage value, and the driving signal generated by the tool driving module 150 is adjusted according to the target current value or the target voltage value.
  • the cutter driving module 150 is configured to generate a driving signal, so that the cutter 130 performs a cutting or hemostasis operation on the target biological tissue.
  • the ultrasonic knife tissue adaptive cutting hemostasis control device calculates the bioimpedance of the target biological tissue in real time through a processor to obtain the target current value or target voltage of the driving signal applicable to the target biological tissue under the bioimpedance Value, and then adjust the drive signal generated by the tool drive module to make the tool work in real time in a state of high cutting efficiency and low thermal damage, so as to solve the problem of not being able to control the ultrasonic knife according to the bioimpedance of the target biological tissue in related technologies.
  • the problem of large thermal damage or low cutting efficiency can achieve the effect of high cutting efficiency and small thermal damage.
  • the device further includes an activation switch 160, a display module 170, and a power supply (not shown in FIG. 4).
  • the activation switch 160 is connected to the processor 110, and the display module 170 is connected to the processor 110 to supply
  • the power supply is respectively connected to the processor 110, the signal generator 120, the signal collector 140, the activation switch 160, the display module 170 and the tool drive module 150.
  • the activation switch 160 is configured to generate an on signal to instruct the processor 110 to perform an operation of controlling the tool driving module 150 to generate a driving signal.
  • the display module 170 is configured to display the biological impedance of the target biological tissue sent by the processor 110.
  • the display module 170 includes a liquid crystal display. This setting allows the surgeon to better grasp the current cutting degree of the target biological tissue by observing the bioimpedance characteristic map in an environment with inconvenient vision, thereby reducing the risk of surgery.
  • the liquid crystal display can also display information such as the composite impedance type of the target biological tissue.
  • the liquid crystal display can have input and output functions, and the user can use the liquid crystal display Human-computer interaction with the processor.
  • the power supply is set to supply power to the processor 110, the signal generator 120, the signal collector 140, the activation switch 160, the display module 170, and the tool driving module 150.
  • the tool driving module 150 includes an ultrasonic driving unit 151 and an ultrasonic transducer 152.
  • the ultrasonic driving unit 151 is respectively connected to the processor 110, the power supply, and the ultrasonic transducer 152, and the ultrasonic transducer 152 Connect with the cutter 130.
  • the ultrasonic driving unit 151 is configured to generate an AC excitation signal
  • the ultrasonic transducer 152 is configured to convert the AC excitation signal into a mechanical vibration signal, so that the cutter 130 is mechanically vibrated, thereby achieving the purpose of stopping bleeding or cutting the target biological tissue .
  • Fig. 5 is a schematic structural diagram of another ultrasonic knife tissue adaptive cutting hemostasis control device provided by an embodiment of the present application.
  • Fig. 6 is a physical diagram of the ultrasonic knife tissue adaptive cutting hemostasis control device shown in Fig. 5.
  • the ultrasonic knife tissue adaptive cutting hemostasis control device includes an ultrasonic knife 10 and a host 20, the processor 110 includes a first processor 111 and a second processor 112, the first processor 111 and a signal generator respectively 120, the signal collector 140, the excitation switch 160, the power supply (not shown in FIGS. 4 and 5), and the second processor 112, which are connected to the ultrasonic driving unit 151, the power supply, and the display module 170, respectively connection.
  • the first processor 111, the signal generator 120, the cutter 130, the signal collector 140, the excitation switch 160, and the ultrasonic transducer 152 are integrated on the ultrasonic knife 10.
  • the module 170 is integrated on the host 20 (refer to FIG. 5).
  • the first processor 111 is configured to obtain the turn-on signal generated by the activation switch 160, and execute the operation of controlling the signal generator 120 to generate a detection signal of a preset frequency, so that the detection signal of the preset frequency is transmitted to the tool 130 through the tool 130 Clamped target biological tissue; the first processor 111 is also configured to obtain the feedback signal generated by the target biological tissue collected by the signal collector 140, calculate the biological impedance of the target biological tissue, and send the biological impedance of the target biological tissue to all Mentioned second processor 112.
  • the second processor 112 is configured to obtain the biological impedance of the target biological tissue sent by the first processor 111, and determine the target current value or the target voltage value of the drive signal that the tool drive module 150 needs to generate according to the biological impedance of the target biological tissue , Adjust the effective current value of the AC excitation signal generated by the ultrasonic drive unit 151 according to the target current value to adjust the vibration amplitude of the mechanical vibration signal generated by the ultrasonic transducer 152; or adjust the AC generated by the ultrasonic drive unit 151 according to the target voltage value The effective voltage value of the excitation signal is used to adjust the vibration amplitude of the mechanical vibration signal generated by the ultrasonic transducer 152.
  • the feedback signal collected by the signal collector 140 is an analog signal, which has poor anti-interference ability.
  • the second processor 112 calculates according to the feedback signal.
  • the feedback signal is susceptible to interference during the transmission process, which makes the calculation error of the biological impedance relatively large.
  • the first processor 111 calculates the biological impedance of the target biological tissue, and transmits the calculation result to the second processor 112 in the form of a digital signal.
  • the required transmission distance is short and the digital signal has strong anti-interference ability, so that the error of the biological impedance of the target biological tissue finally obtained by the second processor 112 is small, which is beneficial to accurately determine the target current value or the target voltage value.
  • the first processor 111 and the second processor 112 communicate through a cable; or the ultrasonic knife 10 further includes a first communication module, and the host 20 further includes a second communication module.
  • the first processor 111 and the second processor The device 112 communicates through the first communication module and the second communication module.
  • the ultrasonic knife tissue adaptive cutting hemostasis control device Since any of the ultrasonic knife tissue adaptive cutting hemostasis control methods provided in the above embodiments can be executed by the ultrasonic knife tissue adaptive cutting hemostasis control device, the ultrasonic knife tissue adaptive cutting hemostasis control device has the ultrasound in the above embodiment
  • the knife tissue adaptive cutting hemostasis control method has the same or corresponding beneficial effects. For the parts that are not explained in detail, please refer to the above for understanding, and will not be repeated here.
  • FIG. 7 is a working flow chart of an ultrasonic knife tissue adaptive cutting hemostasis control device provided by an embodiment of the present application. Referring to FIG. 7, the working process is as follows:
  • the switch 160 is activated to send an on signal.
  • the first processor 111 obtains the turn-on signal, and controls the signal generator 120 to generate a detection current with a preset frequency.
  • the detection current is transmitted to the target biological tissue 30 held by the cutter head of the cutter 130 through the sleeve rod 171, and then transmitted to the signal collector 140 through the probe 172.
  • the signal collector 140 captures the feedback signal flowing through the target biological tissue 30, and outputs it to the first processor 111 for bioimpedance calculation.
  • the first processor 111 outputs the bioimpedance calculation result to the second processor 112 in the host 20.
  • the second processor 112 determines the target current value corresponding to the target biological tissue 30 under the biological impedance by querying the biological tissue database according to the biological impedance calculation result.
  • the second processor 112 adjusts the equivalent current of the AC excitation signal output by the ultrasonic driving unit 151 according to the target current value, so as to adjust the cutting efficiency of the cutter 130 on the target biological tissue 30.
  • the second processor 112 displays the bioimpedance characteristic graph of the target biological tissue 30 in real time through the liquid crystal display.

Abstract

一种超声刀组织自适应切割止血控制装置,包括处理器(110)、信号发生器(120)、刀具(130)、信号采集器(140)和刀具驱动模块(150);处理器(110)分别与信号发生器(120)、信号采集器(140)以及刀具驱动模块(150)连接,刀具(130)与刀具驱动模块(150)连接;信号发生器(120)设置为产生预设频率的检测信号;刀具(130)设置为将检测信号传输至刀具(130)夹持的目标生物组织;信号采集器(140)设置为采集目标生物组织产生的反馈信号;处理器(110)设置为控制检测信号;处理器(110)还设置为获取反馈信号,并计算目标生物组织的生物阻抗;处理器(110)还设置为根据生物阻抗确定刀具驱动模块(150)所需产生的驱动信号的目标电流值或目标电压值,以及根据目标电流值或目标电压值调节驱动信号;刀具驱动模块(150)设置为产生驱动信号,使刀具对目标生物组织进行切割或止血。该控制装置能够实现切割效率高同时热损伤小的效果。

Description

超声刀组织自适应切割止血控制方法及装置
本申请要求申请日为2019年2月19日、申请号为201910124064.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,例如涉及一种超声刀组织自适应切割止血控制方法及装置。
背景技术
现代电外科手术已经很好的解决了相关技术中的手术刀术中出血的缺点,其应用最广泛的就是高频电刀和超声刀,其中,超声刀能够在预设频率的交流激励信号下使治疗刀头以预设的频率进行机械振荡,使组织内水分子汽化、蛋白氢键断裂,细胞崩解,进而使得组织被切开或是凝固,由于刀头温度较低,所以热损伤和潜在危险相对较小。
人体中包含多种生物组织类型,比如肌肉、脂肪、神经以及血管等,不同类型的生物组织的生物阻抗相差较大,因此所适用的交流激励信号的最佳电流值不同,但是,相关技术中的超声刀不能根据生物组织的生物阻抗产生针对该生物组织类型的交流激励信号,使得在对生物组织进行切割止血的过程中要么造成较大的热损伤,要么切割效率不高。
发明内容
本申请提供了一种超声刀组织自适应切割止血控制方法及装置,能够调节刀具驱动模块产生的驱动信号,使刀具实时工作在切割效率高同时热损伤小的状态。
第一方面,本申请实施例提供了一种超声刀组织自适应切割止血控制方法,该方法包括:
控制信号发生器产生预设频率的检测信号,以使预设频率的检测信号通过刀具传输至刀具夹持的目标生物组织;
获取信号采集器采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗;
根据目标生物组织的生物阻抗获取刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值;
根据目标电流值或目标电压值调节刀具驱动模块产生的驱动信号。
可选的,控制信号发生器产生预设频率的检测信号之前还包括:获取开启信号,并在获取开启信号后,执行控制信号发生器产生预设频率的检测信号的操作。
可选的,根据目标生物组织的生物阻抗获取刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值,包括:
根据目标生物组织的生物阻抗查询生物组织数据库确定目标生物组织所需的驱动信号的目标电流值或目标电压值。
可选的,刀具驱动模块包括超声驱动单元和超声换能器,根据目标电流值或目标电压值调节刀具驱动模块产生的驱动信号,包括:
根据目标电流值调整超声驱动单元产生的交流激励信号的有效电流值,以调整超声换能器产生的机械振动信号的振动幅度;或,根据目标电压值调整超声驱动单元产生的交流激励信号的有效电压值,以调整超声换能器产生的机械振动信号的振动幅度。
可选的,在获取信号采集器采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗之后,还包括:
向显示模块发送目标生物组织的生物阻抗,以指示显示模块将目标生物组织的生物阻抗实时显示出来。
本申请实施例提供了一种超声刀组织自适应切割止血控制装置,该装置包括:处理器、信号发生器、刀具、信号采集器和刀具驱动模块;
所述处理器分别与所述信号发生器、所述信号采集器以及所述刀具驱动模块连接,所述刀具与所述刀具驱动模块连接;
所述信号发生器设置为产生预设频率的检测信号;
所述刀具设置为将所述预设频率的检测信号传输至刀具夹持的目标生物组织;
所述信号采集器设置为采集所述目标生物组织产生的反馈信号;
所述处理器,设置为控制所述信号发生器产生所述预设频率的检测信号,以使所述预设频率的检测信号通过所述刀具传输至所述刀具夹持的所述目标生物组织;所述处理器还设置为获取所述信号采集器采集的所述目标生物组织产 生的所述反馈信号,并计算所述目标生物组织的生物阻抗;所述处理器还设置为根据所述目标生物组织的所述生物阻抗确定所述刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值,以及根据所述目标电流值或所述目标电压值调节所述刀具驱动模块产生的所述驱动信号;
所述刀具驱动模块设置为产生所述驱动信号,以使所述刀具对所述目标生物组织进行切割或止血操作。
本申请实施例提供的超声刀组织自适应切割止血控制装置,通过处理器实时计算目标生物组织的生物阻抗,以获得目标生物组织在该生物阻抗下所适用的驱动信号的目标电流值或目标电压值,进而调节刀具驱动模块产生的驱动信号,以使刀具实时工作在切割效率高同时热损伤小的状态,解决相关技术中由于不能针对性地根据目标生物组织的生物阻抗控制超声刀而带来的热损伤较大或切割效率低的问题,实现切割效率高同时热损伤小的效果。
附图说明
图1是本申请实施例提供的一种超声刀组织自适应切割止血控制方法;
图2是本申请实施例提供的一种刀具的结构示意图;
图3是本申请实施例提供的一种超声刀切割效率-电流特性图;
图4是本申请实施例提供的一种超声刀组织自适应切割止血控制装置的结构示意图;
图5是本申请实施例提供的另一种超声刀组织自适应切割止血控制装置的结构示意图;
图6是图5所示超声刀组织自适应切割止血控制装置的实物图;
图7是本申请实施例提供的一种超声刀组织自适应切割止血控制装置的工作流程图。
具体实施方式
图1是本申请实施例提供的一种超声刀组织自适应切割止血控制方法,该方法包括:
S110、控制信号发生器产生预设频率的检测信号,以使预设频率的检测信号通过刀具传输至刀具夹持的目标生物组织。
其中,检测信号选用交流信号,一方面,交流信号具有较好的抗干扰能力, 另一方面,目标生物组织的生物阻抗通常为复合阻抗,交流信号通过目标生物组织后会发生相移,可根据交流信号流过目标生物组织后的电压超前或电流超前情况来判断目标生物组织的生物阻抗类型,当电压超前时,目标生物组织的生物阻抗类型为感性阻抗;当电流超前时,目标生物组织的生物阻抗类型为容性阻抗。此外,检测信号的等效电流较小,以免流经目标生物组织时对目标生物组织造成损伤。
示例性的,图2是本申请实施例提供的一种刀具的结构示意图。刀具包括套杆171和导波杆172。处理器控制信号发生器产生预设频率的交流检测信号,该交流检测信号流经刀具的套杆171,传输至刀具夹持的目标生物组织30,然后经过刀具的导波杆172传输至信号采集装置,以使信号采集装置得以采集目标生物组织30产生的反馈信号。
S120、获取信号采集器采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗。
示例性地,处理器根据反馈信号的电压值和电流值实时计算目标生物组织的生物阻抗。
S130、根据目标生物组织的生物阻抗确定刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值。
其中,超声刀有两种类型,恒流源型和恒压源型。图3是本申请实施例提供的一种超声刀切割效率-电流特性图。以恒流源型超声刀为例,当目标生物组织的生物阻抗为电阻R时,刀具驱动模块产生的驱动信号的电流值与刀具对目标生物组织的切割效率的关系如图2所示,随着刀具驱动模块产生的驱动信号的电流值越大,刀具的振幅越大,切割速度越高,即切割效率越大,但是当驱动信号的电流值达到某一电流值I 1后,随着驱动信号的电流值的增大,刀具的切割效率增加速度放缓,即此时继续增大驱动信号的电流值,并不能明显增大切割效率,反而会导致刀具发热,对目标生物组织造成更大的热损伤。因此,当驱动信号的电流值为I 1时,超声刀切割效率高的同时热损伤较小,该电流值I 1即为目标电流值。在一实施例中,驱动信号通常为交流信号,上述驱动信号的电流值即指有效值。目标电压值的具体含义与目标电流值的含义相似,此处不再赘述。
示例性地,对于恒流源型超声刀,则需确定刀具驱动模块所需产生的驱动信号的目标电流值,对于恒压源型超声刀,则需确定刀具驱动模块所需产生的驱动信号的目标电压值。
S140、根据目标电流值或目标电压值调节刀具驱动模块产生的驱动信号。
示例性地,当驱动信号的目标电流值或目标电压值确定之后,处理器根据目标电流值或目标电压值,调节刀具驱动模块产生的驱动信号,以使刀具驱动模块产生的驱动信号的电流值为目标电流值,或使刀具驱动模块产生的驱动信号的电压值为目标电压值,进而使得刀具能够工作在切割效率高且热损伤小的状态。在一实施例中,在对刀具所夹持的目标生物组织进行切割的过程中,随着目标生物组织不断被切割,其生物阻抗实时变化,因而需要实时确定刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值,进而实时调节刀具驱动模块产生的驱动信号,以使刀具实时工作在切割效率高同时热损伤小的状态。
本申请实施例提供的超声刀组织自适应切割止血控制方法,通过实时计算目标生物组织的生物阻抗,以获得目标生物组织在该生物阻抗下所适用的驱动信号的目标电流值或目标电压值,进而调节刀具驱动模块产生的驱动信号,以使刀具实时工作在切割效率高同时热损伤小的状态,解决相关技术中由于不能针对性地根据目标生物组织的生物阻抗控制超声刀而带来的热损伤较大或切割效率低的问题,实现切割效率高同时热损伤小的效果。
在上述技术方案的基础上,可选的,S130包括:根据目标生物组织的生物阻抗查询生物组织数据库,以确定目标生物组织所需的驱动信号的目标电流值或目标电压值。
其中,通过对不同类型的生物组织进行大量切割止血实验,以获得每种类型的生物组织在被刀具所夹持的部分的生物阻抗不同时,不同生物阻抗所对应的目标电流值以及目标电压值,从而建立生物组织数据库。
示例性地,当获取刀具所夹持的目标生物组织的生物阻抗后,在生物组织数据库中查询该生物阻抗所对应的目标电流值或目标电压值。
可选的,S140包括:根据目标电流值调整超声驱动单元产生的交流激励信号的有效电流值,以调整超声换能器产生的机械振动信号的振动幅度;或,根据目标电压值调整超声驱动单元产生的交流激励信号的有效电压值,以调整超声换能器产生的机械振动信号的振动幅度。
其中,超声驱动单元设置为在处理器控制下产生交流激励信号,即刀具驱动模块产生的驱动信号,超声换能器设置为将超声驱动单元产生的交流激励信号的电能转换为机械能,以控制刀具进行机械振动,从而达到对目标生物组织进行切割或止血的目的。
示例性的,处理器根据目标电流值调整超声驱动单元产生的交流激励信号的等效电流的大小,进而通过超声换能器控制刀具对目标生物组织的切割效率,使得刀具工作在切割效率高同时热损伤小的状态。
在上述技术方案的基础上,继续参见图1,可选的,在控制刀具驱动模块产生驱动信号之前还包括:
S100、获取开启信号。
示例性地,处理器在获取到激发开关发送的开启信号后,控制信号发生器产生预设频率的检测信号,以使预设频率的检测信号通过刀具传输至刀具夹持的目标生物组织。
可选的,在获取信号采集器采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗之后,还包括:
S150、向显示模块发送目标生物组织的生物阻抗,以指示显示模块将目标生物组织的生物阻抗实时显示出来。
其中,刀具所夹持的目标生物组织在切割过程中,在切割初始阶段,刀具的刀头温度较高,目标生物组织内水分会在短时间内被蒸发掉,则目标生物组织的导电性能会下降,即生物阻抗上升,目标生物组织越切与薄,生物阻抗越来越小,因此,目标生物组织在切割过程中,生物阻抗呈现先上升后下降的趋势。
示例性的,显示模块包括液晶显示屏,通过液晶显示屏将目标生物组织的阻抗特性图描绘出来,其中,阻抗特性图的横轴标签为时间,纵轴标签为生物阻抗。
这样设置使得外科医生在视野不便的环境中能过通过观察生物阻抗特性图,更好把握目标生物组织的当前切割的程度。此外,由于不同类型生物组织的生物阻抗相差较大,当生物阻抗特性图在某一时候显示出生物阻抗剧烈变化时,外科医生根据该生物阻抗特性图可以获知当前已经切割到其它类型的生物组织,即误切割,应当停止切割,从而减小手术风险。
示例性地,液晶显示屏还可以将目标生物组织的复合阻抗类型等信息显示出来,此外,若液晶显示屏具有触摸功能,可以使该液晶显示屏具有输入输出功能,则用户可通过液晶显示屏与处理器进行人机交互,例如,人机交互界面内,包括主机亮度、音量、日期等基本设置,工作日志查询,生物日志查询,生物阻抗特性图及输出功率等信息。
本申请实施例还提供了一种超声刀组织自适应切割止血控制装置,图4是本申请实施例提供的一种超声刀组织自适应切割止血控制装置的结构示意图。该装置具体包括:处理器110、信号发生器120、刀具130、信号采集器140和刀具驱动模块150,处理器110分别与信号发生器120、信号采集器140以及刀具驱动模块150连接,刀具130与刀具驱动模块150连接。
其中,信号发生器120设置为产生预设频率的检测信号。刀具130设置为将预设频率的检测信号传输至刀具130夹持的目标生物组织。信号采集器140设置为采集目标生物组织产生的反馈信号。处理器110,设置为控制信号发生器120产生预设频率的检测信号,以使预设频率的检测信号通过刀具130传输至刀具130夹持的目标生物组织;处理器110还设置为获取信号采集器140采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗;处理器110还设置为根据目标生物组织的生物阻抗确定刀具驱动模块150所需产生的驱动信号的目标电流值或目标电压值,以及根据目标电流值或目标电压值调节刀具驱动模块150产生的所述驱动信号。刀具驱动模块150设置为产生驱动信号,以使刀具130对目标生物组织进行切割或止血操作。
本申请实施例提供的超声刀组织自适应切割止血控制装置,通过处理器实时计算目标生物组织的生物阻抗,以获得目标生物组织在该生物阻抗下所适用的驱动信号的目标电流值或目标电压值,进而调节刀具驱动模块产生的驱动信号,以使刀具实时工作在切割效率高同时热损伤小的状态,解决相关技术中由于不能针对性地根据目标生物组织的生物阻抗控制超声刀而带来的热损伤较大或切割效率低的问题,实现切割效率高同时热损伤小的效果。
继续参见图4,可选的,该装置还包括激发开关160、显示模块170和供应电源(图4未示出),激发开关160与处理器110连接,显示模块170与处理器110连接,供应电源分别与处理器110、信号发生器120、信号采集器140、激发开关160、显示模块170以及刀具驱动模块150连接。
其中,激发开关160设置为产生开启信号,以指示处理器110执行控制刀具驱动模块150产生驱动信号的操作。
其中,显示模块170设置为显示处理器110发送的目标生物组织的生物阻抗。示例性的,显示模块170包括液晶显示屏。这样设置使得外科医生在视野不便的环境中能过通过观察生物阻抗特性图,更好把握目标生物组织的当前切割的程度,进而减小手术风险。
示例性地,液晶显示屏还可以将目标生物组织的复合阻抗类型等信息显示出来,此外,若液晶显示屏具有触摸功能,可以使该液晶显示屏具有输入输出功能,则用户可通过液晶显示屏与处理器进行人机交互。
其中,供应电源设置为为处理器110、信号发生器120、信号采集器140、激发开关160、显示模块170以及刀具驱动模块150供电。
继续参见图4,可选的,刀具驱动模块150包括超声驱动单元151和超声换能器152,超声驱动单元151分别与处理器110、供应电源以及超声换能器152连接,超声换能器152与刀具130连接。
其中,超声驱动单元151设置为产生交流激励信号,超声换能器152设置为将交流激励信号转换为机械振动信号,以使刀具130进行机械振动,进而达到对目标生物组织进行止血或切割的目的。
图5是本申请实施例提供的另一种超声刀组织自适应切割止血控制装置的结构示意图。图6是图5所示超声刀组织自适应切割止血控制装置的实物图。参见图5和图6,超声刀组织自适应切割止血控制装置包括超声刀10以及主机20,处理器110包括第一处理器111和第二处理器112,第一处理器111分别与信号发生器120、信号采集器140、激发开关160、供应电源(图4和图5中未示出)以及第二处理器112连接,第二处理器112分别与超声驱动单元151、供电电源以及显示模块170连接。第一处理器111、信号发生器120、刀具130、信号采集器140、激发开关160以及超声换能器152集成于超声刀10上,第二处理器112、超声驱动单元151、供应电源以及显示模块170集成于主机20上(参考图5)。
其中,第一处理器111设置为获取激发开关160产生的开启信号,并执行控制信号发生器120产生预设频率的检测信号的操作,以使预设频率的检测信号通过刀具130传输至刀具130夹持的目标生物组织;第一处理器111还设置为获取信号采集器140采集的目标生物组织产生的反馈信号,并计算目标生物组织的生物阻抗,并将目标生物组织的生物阻抗发送至所述第二处理器112。
其中,第二处理器112设置为获取第一处理器111发送的目标生物组织的生物阻抗,根据目标生物组织的生物阻抗确定刀具驱动模块150所需产生的驱动信号的目标电流值或目标电压值,根据目标电流值调整超声驱动单元151产生的交流激励信号的有效电流值,以调整超声换能器152产生的机械振动信号的振动幅度;或,根据目标电压值调整超声驱动单元151产生的交流激励信号的有效电压值,以调整超声换能器152产生的机械振动信号的振动幅度。
可选的,信号采集器140采集的反馈信号为模拟信号,模拟信号抗干扰能力较差,若反馈信号通过线缆直接传输至第二处理器112,再由第二处理器112根据反馈信号计算目标生物组织的生物阻抗,则由于线缆较长,反馈信号在传输过程中易受到干扰,使得生物阻抗的计算误差相对较大。然而,通过在超声刀10中设置第一处理器111,由第一处理器111计算目标生物组织的生物阻抗,并将计算结果以数字信号的形式传输至第二处理器112,由于反馈信号所需传输距离较短,且数字信号抗干扰能力强,使得第二处理器112最终获得的目标生物组织的生物阻抗的误差较小,有利于准确判定目标电流值或目标电压值。
可选的,第一处理器111与第二处理器112通过线缆进行通讯;或超声刀10还包括第一通讯模块,主机20还包括第二通讯模块,第一处理器111与第二处理器112通过第一通讯模块以及第二通讯模块进行通讯。
由于上述实施方式提供的任一种超声刀组织自适应切割止血控制方法均可以由超声刀组织自适应切割止血控制装置执行,因此,超声刀组织自适应切割止血控制装置具有上述实施方式中的超声刀组织自适应切割止血控制方法相同或相应的有益效果,未详尽解释之处,可参照上文理解,在此不再赘述。
本申请还提供了一种图5所示的超声刀组织自适应切割止血控制装置的应用实例(即图6所示)。图7是本申请实施例提供的一种超声刀组织自适应切割止血控制装置的工作流程图,参见图7,工作过程如下:
S610、激发开关160发出开启信号。
S620、第一处理器111获取到开启信号,控制信号发生器120产生预设频率的检测电流。
S630、检测电流通过套杆171传输至刀具130的刀头所夹持的目标生物组织30,再经过导波杆172传输至信号采集器140。
S640、信号采集器140捕获流经目标生物组织30的反馈信号,输出至第一处理器111进行生物阻抗计算。
S650、第一处理器111将生物阻抗计算结果输出至主机20中的第二处理器112。
S660、第二处理器112根据生物阻抗计算结果,通过查询生物组织数据库确定目标生物组织30在该生物阻抗下对应的目标电流值。
S670、第二处理器112根据目标电流值,调整超声驱动单元151输出的交流激励信号的等效电流,以调整刀具130对目标生物组织30的切割效率。
S680、第二处理器112通过液晶显示屏将目标生物组织30的生物阻抗特性图形进行实时显示。

Claims (5)

  1. 一种超声刀组织自适应切割止血控制装置,包括:
    处理器、信号发生器、刀具、信号采集器和刀具驱动模块;
    所述处理器分别与所述信号发生器、所述信号采集器以及所述刀具驱动模块连接,所述刀具与所述刀具驱动模块连接;
    所述信号发生器设置为产生预设频率的检测信号;
    所述刀具设置为将所述预设频率的检测信号传输至所述刀具夹持的目标生物组织;
    所述信号采集器设置为采集所述目标生物组织产生的反馈信号;
    所述处理器,设置为控制所述信号发生器产生所述预设频率的检测信号,以使所述预设频率的检测信号通过所述刀具传输至所述刀具夹持的所述目标生物组织;所述处理还设置为获取所述信号采集器采集的所述目标生物组织产生的所述反馈信号,并计算所述目标生物组织的生物阻抗;所述处理器还设置为根据所述目标生物组织的所述生物阻抗确定所述刀具驱动模块所需产生的驱动信号的目标电流值或目标电压值,以及根据所述目标电流值或所述目标电压值调节所述刀具驱动模块产生的所述驱动信号;
    所述刀具驱动模块设置为产生所述驱动信号,以使所述刀具对所述目标生物组织进行切割或止血操作。
  2. 根据权利要求1所述的超声刀组织自适应切割止血控制装置,还包括激发开关、显示模块;
    所述激发开关与所述处理器连接;所述显示模块与所述处理器连接;
    所述激发开关设置为产生开启信号,以指示所述处理器执行控制所述刀具驱动模块产生所述驱动信号的操作;
    所述显示模块设置为显示所述处理器发送的所述目标生物组织的所述生物阻抗。
  3. 根据权利要求2所述的超声刀组织自适应切割止血控制装置,其中,所述刀具驱动模块包括超声驱动单元和超声换能器;
    所述超声驱动单元分别与所述处理器以及所述超声换能器连接,所述超声换能器与所述刀具连接;
    所述超声驱动单元设置为产生交流激励信号;
    所述超声换能器设置为将所述交流激励信号转换为机械振动信号,以使所述刀具对所述目标生物组织进行止血或切割操作。
  4. 根据权利要求3所述的超声刀组织自适应切割止血控制装置,包括超声刀以及主机;
    所述处理器包括第一处理器和第二处理器;
    所述第一处理器分别与所述信号发生器、所述信号采集器、所述激发开关以及所述第二处理器连接;
    所述第二处理器分别与所述超声驱动单元以及所述显示模块连接;
    所述第一处理器设置为获取所述激发开关产生的所述开启信号,并执行控制所述信号发生器产生预设频率的所述检测信号的操作,以使所述预设频率的检测信号通过所述刀具传输至所述刀具夹持的所述目标生物组织;所述第一处理器还设置为获取所述信号采集器采集的所述目标生物组织产生的反馈信号,计算所述目标生物组织的生物阻抗,并将所述生物阻抗发送至所述第二处理器;
    所述第二处理器设置为:根据从第一处理器获取到的所述生物阻抗确定所述刀具驱动模块所需产生的驱动信号的目标电流值,并根据所述目标电流值调整所述超声驱动单元产生的交流激励信号的有效电流值,以调整所述超声换能器产生的机械振动信号的振动幅度;或
    根据从第一处理器获取到的所述生物阻抗确定所述刀具驱动模块所需产生的驱动信号的目标电压值,并根据所述目标电压值调整所述超声驱动单元产生的交流激励信号的有效电压值,以调整所述超声换能器产生的机械振动信号的振动幅度;
    所述第一处理器、所述信号发生器、所述刀具、所述信号采集器、所述激发开关以及所述超声换能器集成于所述超声刀上;
    所述第二处理器、所述超声驱动单元、所述供应电源以及所述显示模块集成于所述主机上。
  5. 根据权利要求4所述的超声刀组织自适应切割止血控制装置,其中,所述第一处理器与所述第二处理器通过线缆进行通讯;或者
    所述超声刀还包括第一通讯模块,所述主机还包括第二通讯模块,所述第一处理器与所述第二处理器通过所述第一通讯模块以及所述第二通讯模块进行通讯。
PCT/CN2020/075624 2019-02-19 2020-02-18 超声刀组织自适应切割止血控制方法及装置 WO2020169006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910124064.5 2019-02-19
CN201910124064.5A CN109646109B (zh) 2019-02-19 2019-02-19 一种超声刀组织自适应切割止血控制方法及装置

Publications (1)

Publication Number Publication Date
WO2020169006A1 true WO2020169006A1 (zh) 2020-08-27

Family

ID=66123296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075624 WO2020169006A1 (zh) 2019-02-19 2020-02-18 超声刀组织自适应切割止血控制方法及装置

Country Status (2)

Country Link
CN (1) CN109646109B (zh)
WO (1) WO2020169006A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646109B (zh) * 2019-02-19 2021-04-13 深圳市世格赛思医疗科技有限公司 一种超声刀组织自适应切割止血控制方法及装置
CN110508920B (zh) * 2019-09-19 2024-04-26 东莞市新玛博创超声波科技有限公司 一种脉冲电流发热的超声焊接装置
CN113520528A (zh) * 2020-07-10 2021-10-22 厚凯(北京)医疗科技有限公司 一种超声刀控制系统
CN113274096B (zh) * 2020-11-03 2023-01-24 以诺康医疗科技(苏州)有限公司 一种用于结束组织剪切的超声刀自适应控制方法及系统
CN113274097B (zh) * 2020-11-03 2023-03-28 以诺康医疗科技(苏州)有限公司 用于结束组织剪切的超声刀自适应控制方法及系统
CN114052841B (zh) * 2021-11-24 2024-01-23 重庆迈科唯医疗科技有限公司 一种超声刀控制方法、系统、介质及电子终端
CN114191041B (zh) * 2021-12-09 2024-04-02 上海益超医疗器械有限公司 向外科器械输出驱动信号的方法、设备、装置及电子设备
CN114305600B (zh) * 2022-03-15 2022-06-03 厚凯(北京)医疗科技有限公司 超声手术器械的控制方法及装置、手术设备及存储介质
CN114430161A (zh) * 2022-03-31 2022-05-03 厚凯(北京)医疗科技有限公司 超声刀驱动电源及其过载保护方法和装置、超声刀设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110388A (ja) * 2006-01-23 2006-04-27 Olympus Corp 超音波切開凝固装置
CN101045015A (zh) * 2006-03-29 2007-10-03 伊西康内外科公司 超声外科系统及方法
CN104582606A (zh) * 2012-06-29 2015-04-29 伊西康内外科公司 用于电外科装置的封闭反馈控制
CN205814419U (zh) * 2016-06-02 2016-12-21 易剑锋 基于生物电阻抗智能识别的融合切割系统
WO2018217547A1 (en) * 2017-05-22 2018-11-29 Ethicon Llc Combination ultrasonic and electrosurgical instrument with clamp arm position input and method for identifying tissue state
CN109646109A (zh) * 2019-02-19 2019-04-19 深圳市世格赛思医疗科技有限公司 一种超声刀组织自适应切割止血控制方法及装置
CN109646108A (zh) * 2019-02-19 2019-04-19 深圳市世格赛思医疗科技有限公司 一种超声刀以及切割止血系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225624B2 (ja) * 1998-08-27 2009-02-18 オリンパス株式会社 高周波処置装置
JP4136118B2 (ja) * 1998-09-30 2008-08-20 オリンパス株式会社 電気手術装置
EP1429678B1 (en) * 2001-09-28 2006-03-22 Rita Medical Systems, Inc. Impedance controlled tissue ablation apparatus
PL2453813T3 (pl) * 2009-07-15 2017-11-30 Ethicon Llc Elektrochirurgiczne narzędzie ultradźwiękowe
US9168054B2 (en) * 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
KR20140102668A (ko) * 2011-12-06 2014-08-22 도메인 서지컬, 인크. 수술 기기로의 전원공급 제어 시스템 및 그 방법
CN103417263A (zh) * 2012-05-18 2013-12-04 北京速迈医疗科技有限公司 一种超声切割止血手术系统
US9636165B2 (en) * 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
CN203710057U (zh) * 2013-12-26 2014-07-16 深圳迈瑞生物医疗电子股份有限公司 超声切割止血刀、超声切割止血系统
US11051873B2 (en) * 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11006997B2 (en) * 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110388A (ja) * 2006-01-23 2006-04-27 Olympus Corp 超音波切開凝固装置
CN101045015A (zh) * 2006-03-29 2007-10-03 伊西康内外科公司 超声外科系统及方法
CN104582606A (zh) * 2012-06-29 2015-04-29 伊西康内外科公司 用于电外科装置的封闭反馈控制
CN205814419U (zh) * 2016-06-02 2016-12-21 易剑锋 基于生物电阻抗智能识别的融合切割系统
WO2018217547A1 (en) * 2017-05-22 2018-11-29 Ethicon Llc Combination ultrasonic and electrosurgical instrument with clamp arm position input and method for identifying tissue state
CN109646109A (zh) * 2019-02-19 2019-04-19 深圳市世格赛思医疗科技有限公司 一种超声刀组织自适应切割止血控制方法及装置
CN109646108A (zh) * 2019-02-19 2019-04-19 深圳市世格赛思医疗科技有限公司 一种超声刀以及切割止血系统

Also Published As

Publication number Publication date
CN109646109B (zh) 2021-04-13
CN109646109A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2020169006A1 (zh) 超声刀组织自适应切割止血控制方法及装置
EP3634268B1 (en) Combination ultrasonic and electrosurgical instrument with a production clamp force based ultrasonic seal process and related methods
CN201213840Y (zh) 手术用处理装置
EP1894532B1 (en) Surgical instruments
JP2021065727A (ja) 組織のパラメータに基づく同時エネルギーモダリティを使用するユーザーが適合可能な技法を有する外科用システム
EP2105102A2 (en) Electrosurgical apparatus with predictive RF source control
CN113397656A (zh) 双极高频超声双输出手术系统
WO2013042498A1 (ja) 手術システム
JP4679416B2 (ja) 手術装置
JP5067992B2 (ja) 手術用装置
CN217907967U (zh) 集超声刀和单极电刀于一体的手术设备
CN109646108B (zh) 一种超声刀以及切割止血系统
CN203524765U (zh) 一种用于开放式手术的超声刀具和超声手术装置
CN208864424U (zh) 超声波手术刀系统和超声波手术器械
CN202699277U (zh) 高频手术治疗仪
CN2912549Y (zh) 高频电刀手术装置
JPH11318919A (ja) 手術装置及び手術システム
CN113491562B (zh) 动态调节超声刀的输出能量的方法和超声波手术刀系统
CN109528271B (zh) 一种具有双水平脉冲输出模式的超声刀
CN111991058B (zh) 一种超声刀
CN211534677U (zh) 一种超声刀单键控制装置以及多功能超声刀
CN113520528A (zh) 一种超声刀控制系统
CN219835656U (zh) 一种实时监测组织温度自适应调节能量输出的超声刀设备
CN218960909U (zh) 一种超声高频外科集成手术设备
CN116983078A (zh) 一种双能量组织切割系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758993

Country of ref document: EP

Kind code of ref document: A1