WO2020168855A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2020168855A1
WO2020168855A1 PCT/CN2020/071490 CN2020071490W WO2020168855A1 WO 2020168855 A1 WO2020168855 A1 WO 2020168855A1 CN 2020071490 W CN2020071490 W CN 2020071490W WO 2020168855 A1 WO2020168855 A1 WO 2020168855A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
resistor
voltage
power supply
display device
Prior art date
Application number
PCT/CN2020/071490
Other languages
English (en)
French (fr)
Inventor
李本友
田收
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Priority to EP20759042.3A priority Critical patent/EP3748959B1/en
Priority to US16/792,387 priority patent/US11330223B2/en
Publication of WO2020168855A1 publication Critical patent/WO2020168855A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G1/00Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
    • G09G1/005Power supply circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer

Definitions

  • This application relates to the field of circuit technology, and in particular to a display device.
  • the display device can include but not limited to household appliances, industrial appliances, or terminal communication equipment, etc. Electric device.
  • some display devices In order to prevent the impulse voltage and impulse current of the power supply from being suddenly loaded on the load of the display device when it is turned on, some display devices usually add some peripheral circuits to extend the power-on time of the load when the power is turned on. The effect of slow power-on to protect the load from the impact of surge voltage and surge current.
  • the load power-down time is also prolonged during the shutdown process of the display device, which brings about the effect of slow power-down.
  • the load should also be powered down quickly. If the speed of the load power down at this time becomes slow, it may appear in the power down process. At a certain time node, the actual voltage of the load should have fallen below Below the working voltage of the load (that is, the load stops working), but the actual voltage of the load is still above the working voltage of the load (the load can still work). At this time, the sequence of the entire display device will be confused, which will cause the display device Abnormalities, such as a black screen, no screen movement, etc.
  • the embodiment of the present application provides a display device, including: a power supply, a circuit board, and a load.
  • the power supply supplies power to the load through the circuit board;
  • the circuit board at least includes a power supply circuit and a control circuit, wherein the The power supply is used to provide electric energy;
  • the power supply circuit is respectively connected to the power supply and the load, and is used to turn on or disconnect the path between the power supply and the load;
  • the control circuit is connected to the The power supply and the power supply circuit are connected, and are used to control whether the power supply supplies power to the load by controlling the on or off of the power supply circuit.
  • Figure 1A is a schematic diagram of a TV power supply architecture
  • FIG. 1B is a schematic diagram of an application scenario of a display device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit of a display device according to an embodiment of the present application.
  • 3A is a timing diagram of the voltage of the load of the display device according to the embodiment of the present application.
  • 3B is a timing diagram of the voltage of the load of the display device according to the embodiment of the present application.
  • FIG. 4A is a schematic diagram of load voltage changes in a display device according to an embodiment of the present application.
  • FIG. 4B is an example of a partial circuit of the circuit of FIG. 2;
  • FIG. 5 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • FIG. 6 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • Fig. 7 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • FIG. 8 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • FIG. 9 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a circuit voltage waveform when the display device according to an embodiment of the present application is turned on;
  • FIG. 11 is a schematic diagram of a circuit voltage waveform when the display device is turned off according to an embodiment of the present application.
  • Control circuit 31: capacitor; 32: first resistor; 33: second resistor; 34: charging module; 35: grounding switch; 36: auxiliary module; 341: third resistor; diode: 342;
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms . These terms can only be used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Unless the context clearly indicates, terms such as “first”, “second” and other numbers used herein do not imply a sequence or order. Therefore, without departing from the teachings of the exemplary embodiments, the first element, first component, first region, first layer or first portion discussed below may be referred to as a second element, second component, second Area, second layer or second part.
  • spatially relative terms such as “internal”, “external”, “below”, “below”, “lower”, “above”, “upper”, etc. may be used in this text. Used to describe the relationship between one element or feature shown in the figure and another or more elements or features.
  • spatial relative terms may also be intended to cover different orientations of the device in use or operation. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features will be reoriented “above” the other elements or features. Therefore, the exemplary term “under” can include two relative orientations of upper and lower.
  • the device can be oriented in other ways (rotated by 90 degrees or other directions) to explain the spatial relative descriptors used herein.
  • FIG. 1A is a schematic diagram of the TV power structure.
  • the display device may include: a power supply circuit 1, a load 2, a control circuit 3, and a power supply 4.
  • the power supply 4 includes a rectifier bridge 41.
  • the LLC module 43 includes a synchronous rectification circuit (not shown in FIG. 1A).
  • the PFC module 42 is connected to the LLC module 43, and the LLC module 43 is connected to the power supply circuit 1 and the control circuit 3 respectively.
  • the rectifier bridge 41 is used to rectify the input AC power and input a full-wave signal to the PFC module 42.
  • An electromagnetic interference (Electromagnetic Interference, EMI) filter (not shown in FIG. 1A) may be connected before the AC power is input to the PFC module 42 to perform high-frequency filtering on the input AC power.
  • EMI Electromagnetic Interference
  • the PFC module 42 generally includes a PFC inductor, a switching power device, and a PFC control chip, and mainly performs power factor correction on the input AC power supply, and outputs a stable DC bus voltage (such as 380V) to the LLC module 43.
  • the PFC module 41 can effectively improve the power factor of the power supply and ensure that the voltage and current are in the same phase.
  • the LLC module 43 may adopt a dual MOS tube LLC resonant conversion circuit.
  • a synchronous rectification circuit is provided in the LLC module 43.
  • the synchronous rectification circuit may mainly include a transformer, a controller, two MOS tubes, and a diode.
  • the LLC module 43 may also include pulse frequency modulation (Pulse frequency modulation, PFM) circuits, capacitors, inductors and other components.
  • PFM pulse frequency modulation
  • the LLC module 43 can specifically step down or step up the DC bus voltage input by the PFC module 42 and output a constant voltage to the load 2.
  • the LLC module 43 can output a variety of different voltages to meet the requirements of the load 2.
  • the power supply 4 may also include a flyback module (not shown in FIG. 1A) for providing its own power supply voltage and standby power to the PFC module 42 and the LLC module 43.
  • a flyback module (not shown in FIG. 1A) for providing its own power supply voltage and standby power to the PFC module 42 and the LLC module 43.
  • the control circuit 3 is connected to the power supply 4 and the power supply circuit 1 respectively, and can control whether the power supply circuit 1 is turned on, that is, control whether the electric energy output by the LLC module 43 can supply power to the load 2 through the power supply circuit, so as to turn on or off the load.
  • the control circuit 3 can receive the control signal of the main chip (not shown in FIG. 1A ), and is controlled by the main chip to control the working state of the power supply circuit 1.
  • the power supply circuit 1 is also connected to an LLC module and a load. When the power supply circuit 1 is connected, the LLC module 43 can supply power to the load 2; when the power supply circuit 1 is disconnected, the LLC module 43 cannot supply power to the load 2.
  • the power supply circuit 1 usually includes a switching element (not shown in FIG. 1A), such as a MOS tube.
  • the control circuit 3 controls the conduction state of the MOS tube by controlling the voltage of the source and the gate of the MOS tube.
  • the load 2 includes a main board 21, a backlight assembly 22, a display main body 23, etc.
  • the main board 21 includes a control unit and other components, which can receive the voltage output by the LLC module 43, and encode and decode the received audio and video signals into the display main body 23
  • the main board 21 usually requires a 12V voltage.
  • the backlight assembly 22 can receive the voltage output by the LLC module 43 to achieve display on the display body 23.
  • the display body 23 may include, but is not limited to, a liquid crystal display.
  • FIG. 1B is a schematic diagram of an application scenario of the display device provided by this application, and FIG. 1B is a simplification of FIG. 1A.
  • the display device of each embodiment of the present application includes a power source 4, a circuit board (not shown), and a load 2.
  • the power source supplies power to the load 2 through the circuit board;
  • the circuit board includes at least a power supply circuit 1 and a control circuit 3.
  • the power source 4 is used to provide electrical energy; the power supply circuit 1 is connected to the power source 4 and the load 2 to turn on or off the path between the power source 4 and the load 2; the control circuit 3 is connected to the power source 4 respectively , The power supply circuit 1 is connected to control whether the power supply 4 supplies power to the load 2 by controlling the on or off of the power supply circuit 1.
  • the power supply 4 can supply power to the load 2 through the power supply circuit 1.
  • the load 2 may be, for example, the screen of the display device, TCON, or the like.
  • the control circuit 3 is respectively connected to the power supply 4 and the power supply circuit 1, and is used to control whether the power supply circuit 1 can be connected to the load 2 by controlling the conduction or disconnection of the first terminal 11 and the second terminal 12 of the power supply circuit 1. powered by.
  • the control circuit 3 controls the first terminal 11 and the second terminal 12 of the power supply circuit 1 to be in a conductive state
  • the power source 4 supplies power to the load 2 through the power supply circuit 1;
  • the control circuit 3 controls the first terminal of the power supply circuit 1
  • the connection relationship between the power source 4 and the load 2 is disconnected, and the load 2 of the display device is powered off.
  • FIG. 2 is a schematic circuit diagram of the display device provided by this application, and is a specific circuit implementation manner of the display device in FIG. 1.
  • +12V_IN is the output interface of the power supply 4, which is output after the alternating current AC passes through the LLC module 43.
  • VCC-Panel is the input interface of load 2 of the display device. The voltage of VCC-Panel is used to supply power to the load.
  • the input interface of load 2 can be multiple and connect different loads respectively ( Figure 1B not shown);
  • the power supply circuit 1 includes a MOS tube N1, which includes a source (S), a gate (G), and a drain (D).
  • MOS tube N1 which includes a source (S), a gate (G), and a drain (D).
  • S source
  • G gate
  • D drain
  • the source and drain of the MOS transistor N1 form a path, so that the power source 4 can supply power to the load 2.
  • the conduction voltage drop of the MOS tube is also different.
  • the MOS tube N1 is connected to the control circuit 3 and is controlled by the control circuit 3.
  • a capacitor is usually set in the control circuit 3, such as the capacitor shown in Figure 2.
  • C1 using the characteristic that the voltage at both ends of the capacitor cannot change suddenly, that is, using the charging and discharging time of the capacitor C1, thereby prolonging the power-on time of the load, achieving the effect of slow power-on of the load, and protecting the load from the impact of impulse voltage and current .
  • the first end of the capacitor C1 is connected to the +12V_IN port of the power supply 4, and the second end is connected to the gate of the MOS transistor N1.
  • the voltage at the second end will increase.
  • the gate of N1 is connected, that is, as the capacitor C1 is charged, the gate voltage of the MOS transistor N1 will increase.
  • the voltage across the capacitor C1 reaches equilibrium, that is, the capacitor C1 is fully charged, and the branch where the capacitor C1 is located is equivalent to an open circuit.
  • the capacitor C1 is discharged, its second terminal voltage will decrease, and the gate voltage of the MOS transistor N1 will also decrease.
  • the branch where the capacitor C1 is located is equivalent to an open circuit.
  • the source of the MOS transistor N1 Since the source of the MOS transistor N1 is connected to the power source 4, its source voltage remains unchanged, for example, it is always maintained at 12V. Then, as the capacitor C1 is charged and discharged, different voltages appear on the gate of the MOS transistor N1, and a different voltage difference appears between the source and the gate. When the voltage difference meets the turn-on voltage drop of the MOS transistor N1, the MOS transistor N1 The source and drain will be turned on. In summary, the capacitor C1 controls the on or off of the source and drain of the MOS transistor N1 by controlling the voltage of the gate of the MOS transistor N1.
  • the control circuit 3 also includes a triode V1.
  • the first end of the triode V1 is the base, that is, the control signal input end; the second end is the emitter, and the second end is grounded; the third end is the collector, and the second end of the capacitor C1 Terminal and the gate of the MOS tube N1 are connected.
  • the third and second ends of the transistor V1 will be turned on. Since the second end is connected to the ground, when it is turned on, Both the second end and the third end of the transistor V1 will be pulled down.
  • the voltage drop at the second end of the capacitor C1 is also slowly pulled down, that is, the capacitor C1 starts to discharge until it is empty.
  • the third and second ends of the transistor V1 will be cut off. Since the third end is connected to the power supply 4, when it is cut off, The level of the third terminal of the transistor V1 will be slowly pulled up, and at this time the voltage drop at the second terminal of the capacitor C1 will also be slowly pulled up, that is, the capacitor C1 starts to charge until it saturates.
  • the control circuit 3 also includes a resistor R1 and a resistor R2.
  • the resistor R1 is connected in parallel with the capacitor C1, and the resistor R1 is connected in series with the resistor R2 and the transistor V1.
  • the display device is powered on and the MOS transistor N1 is not yet turned on, the transistor V1 is in the off state, and the power source 4 charges the capacitor C1 through the interface +12V_IN until it saturates.
  • the voltage across the capacitor C1 is both At 12V, there is no voltage difference between the source and gate of the MOS tube N1, that is, the MOS tube N1 does not meet the conduction condition, and the MOS tube N1 is in an off state.
  • the voltages at points A, B, C, and D in Figure 2 are the same, all being 12V.
  • the capacitor C1 begins to slowly discharge through the resistor R2, causing the voltage at points A, B, and D to slowly decrease.
  • the power of the capacitor is discharged, that is, when the capacitor C1 is discharged, the branch where the capacitor C1 is located is equivalent to an open circuit, and the voltage at points A, B, and D is stable.
  • A, B, D The voltage at the point is 4V.
  • the gate voltage of the MOS transistor N1 slowly decreases from 12V to 4V.
  • the source voltage of the MOS tube N1 is 12V.
  • the control circuit 3 receives the control signal to when the MOS transistor N1 is turned on, the impulse current and impulse voltage of the power supply 4 will not be applied to the load 2, thereby protecting the load.
  • the above process includes the first time when the control circuit receives the control signal for supplying power to the load, and the second time when the control circuit controls the MOS transistor N1 to turn on according to the control signal to actually supply power to the load, between the first time and the second time
  • the time interval is extended by the discharge of the capacitor.
  • FIG. 3 is a timing diagram of the load voltage of the display device provided by this application.
  • the control circuit receives the control signal for supplying power to the load at the first time t1, so that there is a voltage drop between the first terminal and the second terminal of the transistor V1.
  • the transistor V1 is connected to the ground, that is, the third terminal of the transistor V1 is quickly pulled down to 0V, and similarly, the voltages of A, B, and D are also quickly pulled down.
  • the gate voltage of MOS transistor N1 is quickly pulled down to 0V.
  • the voltage difference between the gate and source of MOS transistor N1 makes the source and drain of MOS transistor N1 turn on at the first time t1, VCC-Panel interface The voltage rises to 12V at the first time t1.
  • a capacitor C1 is provided in the control circuit of the display device, as shown in Fig. 3B, when the control circuit receives the control signal for supplying power to the load at the first time t1, even if the transistor V1 is immediately connected to the ground, the third end of the transistor V1 quickly It is pulled down to 0V. However, since the voltage across the capacitor C1 cannot change suddenly, the voltages of A, B, and D will not be pulled down quickly, that is, the gate voltage of the MOS transistor N1 will not be pulled down quickly.
  • the display device in FIG. 2 can realize the "slow power-on" of the display device through the discharge process of the capacitor set in the control circuit when the display device is turned on. It prevents the impulse voltage and impulse current output from the +12V_IN interface of the power supply 4 from directly loading the load VCC-Panel through the power supply circuit at the moment of turning on the display device and causing damage to the load.
  • the MOS transistor N1 can be turned on only after the capacitor C1 is completely discharged. In some other embodiments, during the process of discharging the capacitor C1, as long as the voltage of the second terminal of the capacitor C1 drops to a certain level, the MOS transistor will be turned on when the turn-on voltage drop of the MOS transistor N1 is satisfied.
  • a certain MOS tube can also be selected to completely discharge the capacitor C1 to meet the conduction conditions of the MOS tube.
  • the capacitor C1 When the display device is turned on and the load 2 is powered on through the input interface VCC-Panel of load 2, the capacitor C1 is discharged. At this time, the voltage of the first terminal +12V_IN of the interface +12V_IN of the capacitor C1 connected to the power supply 4 is 12V, and the capacitor C1 is connected to the MOS
  • the voltage at the second end of the gate of N1 is divided by resistors R1 and R2 to 4V.
  • the voltage difference between the source and the gate of MOS transistor N1 is greater than the turn-on voltage drop of MOS transistor N1, thereby maintaining the voltage of MOS transistor N1.
  • the power supply can continuously supply power to the load 2 through the MOS tube N1.
  • the voltages at points A, B, and D gradually rise, that is, the gate voltage of the MOS transistor N1 gradually rises.
  • the gate voltage of the MOS tube N1 gradually rises, the voltage difference between the source and the gate of the MOS tube N1 is gradually reduced from 8V.
  • the gate of the MOS transistor N1 controls the source and drain of the MOS transistor N1 to disconnect, and the load 2 of the display device will be powered off at this time.
  • the shutdown process of the display device includes the third time when the control circuit receives the control signal to stop power supply to the load, and the fourth time when the control circuit controls the MOS transistor N1 to turn off according to the control signal to actually stop power supply to the load, the third time and the fourth time
  • the time interval between the four times is prolonged by the charging of the capacitor, which results in a lag in the off time of the MOS transistor N1 when the display device stops supplying power to the load during the shutdown process.
  • FIG. 4A shows a schematic diagram of the voltage change of the load of the display device during the process of turning off the display device.
  • FIG. 4B is an example of a partial circuit corresponding to the circuit of the display device in FIG. 2.
  • the MOS tube N1 is connected in series with the load in the display device, and the power supply (12V) supplies power to the load through the MOS tube N1, and the MOS tube N1 and the load have resistances.
  • the voltage at point H is the voltage drop obtained by the load, namely:
  • V H represents the load voltage (at point H)
  • R load represents the resistance of the load in the display device
  • R MOS represents the voltage of the MOS transistor N1.
  • the load of the display device is working normally, that is, when the display device is in a heavy load state, the current supplied by the power supply to the load through the power supply circuit is relatively large. It can be considered that the impedance of the load is very small at this time, and the voltage is also very small; The load of the device stops working, that is, when the display device is in a light load state, the current supplied by the power supply to the load through the power supply circuit is small. It can be considered that the impedance of the load is very large at this time, and it acts as a large resistor to bear the partial pressure of the power supply voltage to the load .
  • the control circuit receives a control signal for controlling the disconnection of the power supply circuit at t0, after the capacitor C1 in the control circuit is charged, the load will not be powered off until t4, and at t0 and Since the time to stop supplying power to the load during t4 is later than the time when the load has stopped working, when the power supply of the load is actually powered off, the actual voltage of the load will rebound, causing the voltage wave of the load to form the "return groove" in Figure 4. ".
  • the load of the display device will not be powered off in time, and cause the load voltage of the display device to have a voltage gap.
  • the load of the display device cannot be powered off in time, which affects the timing of other display functions of the electronic equipment where the display device is located, thereby causing abnormal display of the display device.
  • a charging module is provided in the control circuit, so that when the display device is turned off, the capacitor can be quickly charged by the charging module, so as to realize the "quick shutdown" of turning off the display device. Eliminates the capacitor set for slow power-on in the control circuit of the display device, and the voltage loop of the load of the display device caused by the slow power-down during shutdown, thereby eliminating the timing disorder in the display device caused by the voltage loop, and Prevent abnormal display of the display device.
  • FIG. 5 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • the control circuit 3 specifically includes: a capacitor 31, a first resistor 32, a second resistor 33, a charging module 34, and a ground Switch 35; wherein the first end of the capacitor 31 and the first end of the first resistor 33 are respectively connected to the power source 4, the second end of the first resistor 33 is connected to the first end of the charging module 34, and the second end of the charging module 34 is respectively Connect the second end of the capacitor 31, the first end of the second resistor 33 and the third end 13 of the power supply circuit 1.
  • the second end of the second resistor 33 is connected to the first end of the grounding switch 35 and the second end of the grounding switch 35 Ground.
  • the power supply 4 is used to supply power to the load 2 through the power supply circuit 1, and the control circuit 3 is used to control the opening and closing of the power supply circuit 1.
  • the capacitor 31 is used for discharging when the grounding switch 35 of the control circuit 3 is turned off to delay the closing of the control power supply circuit 1, and for charging when the grounding switch 35 of the control circuit 3 is turned on to speed up the turning off of the control power supply circuit 1. open.
  • the voltage between the first resistor 32 and the charging module 34 charges the capacitor 31.
  • the second resistor 33 is used to discharge the capacitor 31 through the second resistor 33 and the grounding switch 35 when the grounding switch 35 is closed.
  • the charging module 34 is used to charge the capacitor 31 when the display device is turned off; and during the charging of the capacitor 31, the voltage at the second end of the capacitor 31 instructs the third end 13 of the power supply circuit 1 to control the first end 11 and the first end of the power supply circuit 1
  • the two terminals 12 are disconnected to realize the power off of the load 2.
  • the conduction condition of the MOS tube is that the voltage is greater than or equal to the voltage difference between the source and the gate (8V).
  • the process of charging the capacitor 31 when the display device is turned off will be described with reference to FIG. 5.
  • the display device is in a normal working state, the grounding switch 35 in the control circuit 3 is turned on, the voltage on the side of the capacitor 31 connected to the power supply is 12V, and the voltage on the side of the capacitor 31 connected to the power supply circuit is the first voltage.
  • the first voltage is less than 12V because the power supply voltage is divided by the first resistor 32 and the second resistor 33, and the voltage difference between the two sides of the capacitor meets the conduction condition of the power supply circuit, so that the power supply circuit 1 is in the conduction state. 4 Supply power to load 2 through power supply circuit 1.
  • the grounding switch 35 in the control circuit 3 is immediately turned off.
  • the voltage on both sides of the capacitor 31 cannot With the characteristic of abrupt change, the voltage at the second end (point B) of the capacitor 31 maintains the first voltage less than 12V when the grounding switch 35 is turned on.
  • the voltage at the second end of the first resistor 32 connected to the power supply 4 changes to the voltage of the power supply 4 12V.
  • the charging module 34 plays the role of maintaining the voltage difference between point A and point B, so that the voltage at point A can be abruptly changed to 12V according to the voltage of the power supply while the voltage at point B maintains a first voltage less than 12V due to the characteristics of the capacitor 31.
  • point A at the second end of the first resistor 32 can be charged to the capacitor 31 through the charging module 34, so that the voltage at point B rises, that is, the second end of the capacitor 31 The voltage at both ends rises.
  • the second terminal of the capacitor 31 can be connected to the third terminal 13 of the power supply circuit 1 to control the first terminal 11 and the second terminal 12 of the power supply circuit 1 to be disconnected. Open to realize the power off of load 2.
  • the charging time t of the capacitor can be expressed by the following formula:
  • the capacitor is charged through the charging module without the need to pass through the resistor R1, so that the capacitor charging speed is faster than the circuit shown in Figure 2, so that the power supply circuit can be quickly disconnected when the display device is turned off. This can quickly disconnect the power supply to the load, which solves the above-mentioned sequence problem caused by "slow power-down".
  • the capacitor in addition to realizing fast power-down of the display device when it is turned off, the capacitor can also realize slow power-on of the display device when it is turned on. Specifically, when the display device is in the off state, the grounding switch 35 in the control circuit is in the off state, and the voltage on both sides of the capacitor 31 is 12V. When the display device is turned on, after the control circuit 3 receives the control signal for supplying power to the load, the grounding switch 35 in the control circuit 3 is immediately turned on and grounded.
  • charging The module 34 can maintain the voltage difference between point A and point B, while the voltage at point A is maintained at 12V by the power supply 4, and the voltage at point B is maintained at 12V due to the capacitance characteristics. Therefore, when the voltage on the side connecting the second resistor 33 and the grounding switch to ground is set to 0V, the capacitor 31 starts to discharge through the second resistor 33, so that the voltage at point B, that is, the voltage at the second end of the capacitor 31 gradually decreases.
  • the second end of the capacitor 31 can be connected to the third end 13 of the power supply circuit 1 to control the power supply circuit 1
  • the first terminal 11 and the second terminal 12 are turned on, and the power supply can supply power to the load through the power supply circuit. In this way, the slow power-on of the load 2 is realized through the discharge of the capacitor 31.
  • the capacitor C1 in the control circuit is directly connected to the resistor R1, and the characteristic that the voltage on both sides of the capacitor C1 cannot change suddenly makes the transistor V1 disconnected, the point D and B between the resistor R1 and the capacitor C1 The voltage at all points is 0V, and the power source 4 charges the capacitor C1 through the resistor R1.
  • the charging time of the capacitor in the series circuit is related to the resistance of the resistor.
  • the charging module 34 is arranged between the first resistor 32 and the capacitor 31, a voltage difference can be formed between points A and B on both sides of the charging module 34 at the moment when the grounding switch is turned off. According to the voltage difference, the voltage at the first end of the charging module 34 (ie, the voltage at point A 12V) is directly charged to the capacitor connected to the second end of the charging module 34 through the charging module 34. Therefore, the 12V voltage that does not require a power source passes through the first resistor 32 and then charges the capacitor 31.
  • the influence of the first resistor 32 on the charging time of the capacitor is reduced, so that the resistance value of the charging circuit for the capacitor 31 reduces the resistance value of the first resistor 32, so the current charged to the capacitor 31 through the RC series circuit is larger, as shown in the charging The time is shorter. Therefore, the charging speed of the capacitor 31 by the power supply after the grounding switch is turned off is increased, and the capacitor 31 can be quickly charged during the process of turning off the display device.
  • the time required for the charging process of the capacitor 31 is reduced, the voltage at point B on the second side of the capacitor 31 does not meet the conduction condition of the power supply circuit, and the time for the power supply circuit to be disconnected can be earlier than the display device power supply by the heavy load.
  • the time for the state to switch to the light load state is possible to eliminate the problem of voltage backflow of the display device load caused by the slow power-down of the display device in the control circuit of the display device in order to meet the slow power-on setting, and to prevent the voltage backflow caused by the slow power-down.
  • the time sequence in the display device is disordered, and abnormal display of the display device is prevented.
  • the "slow power-on" of the load of the display device is realized when the electronic device is turned on, and the "fast power-off" when the electronic device is turned off is also realized, so as to ensure the normal operation of the display device.
  • FIG. 6 is a schematic circuit diagram of a display device according to an embodiment of the present application. Based on the embodiment shown in FIG. 5, the charging module 34 includes a third resistor 341.
  • the first end of the third resistor 341 is connected to the second end of the first resistor 32, and the second end of the third resistor 341 is respectively connected to the second end of the capacitor 31 and the first end of the second resistor 33.
  • the third resistor 341 can make the grounding switch open at the moment when the voltage at point A is increased to 12V by the power supply 4 and the voltage at point B remains 0V due to the characteristics of the capacitor 31, maintaining the voltage difference between point A and point B, The voltage at point A and point B will not affect each other at the moment the grounding switch is disconnected. And after the grounding switch is turned off, the 12V voltage at point A can directly charge the capacitor 31 through the third resistor 341.
  • the time for the 12V voltage at point A to charge the capacitor 31 is proportional to the resistance of the third resistor 341, in order to achieve a faster voltage at the second end of the first resistor, that is, the voltage at point A
  • the ground charges the capacitor 31 through the third resistor 341.
  • the resistance value of the third resistor 341 provided in this embodiment should be set as a resistor with a small resistance value as much as possible, and its resistance value is approximately equal to 0, or the resistance value of the third resistor 341 is at least It should be smaller than the resistance of the first resistor 32.
  • the 12V voltage at point A charges the capacitor C1 through the smaller third resistor 341, so that the resistance value of the charging circuit for the capacitor 31 is reduced, The current charged by the capacitor 31 increases, and the charging time is shorter.
  • the voltage at the second end of the capacitor 31, that is, the point B can rise relatively quickly, so as to control the power supply circuit to be disconnected as soon as possible.
  • a third resistor 341 is provided between the first resistor 32 and the capacitor 31 for connecting the second end of the first resistor 32 (that is, point A) and the capacitor 31 to the second end.
  • a voltage difference is generated between the terminals (point B).
  • the voltage at point A when the grounding switch 35 is turned off charges the capacitor through the third resistor 341. Therefore, the 12V voltage that does not require a power source passes through the first resistor 32 and then charges the capacitor 31.
  • the influence of the first resistor 32 on the capacitor charging time is reduced in the RC circuit, so that the resistance value of the charging loop for the capacitor 31 is reduced by the resistance value of the first resistor 32, Therefore, the current charged to the capacitor 31 through the RC series circuit is larger, and the charging time is shorter. Therefore, the charging speed of the capacitor 31 by the power supply after the grounding switch is turned off can be increased, and the capacitor 31 can be quickly charged during the process of turning off the display device.
  • the charging module formed by the third resistor 341 has a simple structure, which is convenient for the promotion and realization of technical applications.
  • the circuit shown in Figure 6 can guarantee "slow power-on” when starting up and guarantee “fast power-down” when shutting down.
  • FIG. 7 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • the charging module 34 includes a diode 342.
  • the anode (also referred to as the anode) of the diode 342 is connected to the second end of the first resistor 32, and the cathode (also referred to as the negative electrode) of the diode 342 is respectively connected to the second end of the capacitor 31 and the second resistor.
  • the first end of 33 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • the charging module 34 includes a diode 342.
  • the anode (also referred to as the anode) of the diode 342 is connected to the second end of the first resistor 32
  • the cathode (also referred to as the negative electrode) of the diode 342 is respectively connected to the second end of the capacitor 31 and the second resistor.
  • the first end of 33 is a schematic circuit diagram of a display device according to an embodiment
  • the diode 342 is used to maintain the voltage difference between point A and point B, so that A The voltage of point and B will not affect each other at the moment when the grounding switch is disconnected.
  • the 12V voltage at point A can be charged to the capacitor 31 through the diode 342, and since the resistance of the diode 342 is approximately 0 when the diode 342 is conducting, the resistance of the charging circuit where the capacitor is located is small, making the capacitor The charging speed is very fast, so that the voltage at point B at the second end of the capacitor 31 can rise rapidly.
  • the control circuit including the diode 342 can realize fast power-down of the display device when it is turned off, and also realize slow power-on of the display device when it is turned on. Specifically, when the display device is in the off state, the grounding switch 35 in the control circuit is in the off state, and the voltage on both sides of the capacitor 31 is 12V. When the display device is turned on, after receiving the control signal for supplying power to the load, the grounding switch 35 in the control circuit 3 is immediately turned on and grounded.
  • the diode 342 can maintain The voltage difference between point A and point B, while the voltage at point A is maintained at 12V by the power supply 4, and the voltage at point B cannot be maintained at 12V due to the sudden change on both sides of the capacitor. Therefore, when the voltage on the side where the second resistor 33 is connected to the grounding switch is quickly grounded and set to 0V, the capacitor 31 starts to discharge through the second resistor 33, so that the voltage at the second end of the capacitor 31, namely point B, gradually decreases.
  • the second terminal of the capacitor 31 is connected to the third terminal 13 of the power supply circuit 1 to control the conduction of the first terminal 11 and the second terminal 12 of the power supply circuit 1
  • the power supply can supply power to the load through the power supply circuit. In this way, the slow power-on of the load 2 is realized through the discharge of the capacitor 31.
  • a voltage difference can be formed between the point A and the point B on both sides of the diode 342 at the moment when the grounding switch is turned off. Furthermore, since the anode voltage of the diode 342 is greater than the cathode voltage, according to the conduction characteristics of the diode 342, the voltage difference causes the anode voltage of the diode 342, that is, the 12V voltage at point A to charge the capacitor connected to the cathode of the diode 342 through the diode 342. Therefore, the 12V voltage that does not require a power source passes through the first resistor 32 and then charges the capacitor 31. Therefore, the charging speed of the capacitor 31 by the power supply after the grounding switch is turned off is improved, and the diode 342 is used to quickly charge the capacitor 31 during the process of turning off the display device.
  • FIG. 8 is a schematic circuit diagram of a display device according to an embodiment of the present application.
  • an auxiliary module 36 is provided to further increase the charging speed of the capacitor 31 and reduce the discharge speed of the capacitor 31.
  • the first end of the auxiliary module 36 is respectively connected to the second end of the first resistor 32 and the anode of the diode 342, and the second end of the auxiliary module 36 is respectively connected to the second end of the second resistor 33 and the first end of the grounding switch 35. end.
  • the function of the auxiliary module 36 shown in FIG. 8 will be described in combination with two processes of fast charging of the capacitor 31 when the display device is turned off and slow discharge of the capacitor 31 when the display device is turned on.
  • the grounding switch 35 in the control circuit When the display device shown in FIG. 8 is in a normal working state, the grounding switch 35 in the control circuit is in an on state, the voltage on the side of the capacitor 31 connected to the power supply is 12V, and the voltage on the side of the capacitor 31 connected to the power supply circuit is the second The second voltage is less than 12V because the power supply voltage is divided by the first resistor 32 and the second resistor 33.
  • the voltages at points A, B, and C are all the second voltage, and the voltage difference between the two sides of the capacitor The conduction condition of the power supply circuit is satisfied, so that the power supply circuit 1 is in a conduction state.
  • the power supply 4 supplies power to the load 2 through the power supply circuit 1.
  • the grounding switch 35 in the control circuit 3 is turned off.
  • the voltage on both sides of the capacitor 31 cannot change suddenly.
  • the voltage at the second end (point B) of the capacitor 31 maintains the first voltage less than 12V when the grounding switch 35 is turned on.
  • the voltage at the second end (point A) of the first resistor 32 connected to the power supply 4 changes to the voltage of the power supply 4 at 12V.
  • the auxiliary module 36 is used to connect the anode of the diode 342 (point A) and the second end (point C) of the second resistor 33. Since the grounding switch is disconnected and the voltage at point A is set to 12V by the power supply, the auxiliary module 36 Set the voltage at point C to 12V.
  • the diode 342 plays the role of maintaining the voltage difference between point A and point B at this time, so that the voltage at point A can abruptly change to 12V according to the voltage of the power supply, while the voltage at point B maintains a voltage lower than 12V due to the characteristics of the capacitor 31.
  • the second resistor 33 also plays a role in maintaining the voltage difference between point C and point B, so that the voltage at point C is suddenly changed to 12V based on the auxiliary module 36, while the voltage at point B remains less than 12V due to the characteristics of the capacitor 31 The second voltage.
  • the second end (point A) of the first resistor 32 can charge the capacitor 31 through the diode 342; at the same time, due to the moment when the grounding switch is turned off, point C and The voltage difference between points B can also be charged to the capacitor 31 through the second resistor 33. That is, the capacitor 31 is charged at the same time through the two branches "point A, diode, point B" and "point A, auxiliary module, second resistor, point B" in FIG. 8. Therefore, the charging speed of the capacitor 31 is further improved.
  • the display device as shown in FIG. 8 When the display device as shown in FIG. 8 is turned on, the load 2 of the display device is in the power-off state, the power supply circuit 1 is in the off state, the grounding switch 35 in the control circuit 3 is in the off state, and the voltage on both sides of the capacitor 31 is 12V, the voltages of point A, point B and point C are all 12V, and the power supply 4 cannot supply power to the load 2 through the power supply circuit 1.
  • the display device is turned on, after receiving the control signal for supplying power to the load 2, the grounding switch 35 in the control circuit 3 is immediately turned on and grounded. At the moment when the grounding switch 35 is turned on, the voltage at point C is instantly pulled down to 0V.
  • the auxiliary module connects the anode of the diode 342 (point A) and the second end of the second resistor 33 (point C), so the voltage at point A is also set to 0V.
  • the voltage at point B is maintained at 12V.
  • the anode voltage of the diode 342 is greater than the cathode voltage, and the diode 342 is turned off due to the reverse cut-off characteristic of the diode 342 to maintain point A and point B. The effect of the voltage difference between points.
  • the capacitor 31 will not be grounded through the diode 342 and the auxiliary module, but sequentially discharged through the second resistor 33 and the grounding switch 35.
  • the capacitor 31 is discharged through the second resistor 33 to make the first end of the second resistor 33 (point B)
  • the voltage slowly decreases from 12V.
  • the third terminal 13 of the power supply circuit 1 controls the first terminal 11 and the second terminal 12 of the power supply circuit 1 to conduct.
  • the auxiliary module 36 specifically includes: a connecting circuit.
  • the connecting circuit may be a section of wire for connecting the second end of the first resistor 32 and the second end of the second resistor 33. End, will be further introduced in Figure 9.
  • the charging module 34 is provided with a diode 342 and an auxiliary module 36.
  • the voltage difference between point A and point B at the moment when the grounding switch 35 is disconnected, the second end (point A) of the first resistor 32 can charge the capacitor 31 through the diode 342; at the same time, because the grounding switch is disconnected, the point C and B The voltage difference between the points can also be charged to the capacitor 31 through the second resistor 33.
  • the capacitor can only be discharged through the second resistor 33.
  • the embodiment provided by this embodiment can eliminate the voltage return groove of the load in the display device, thereby realizing the "slow power-on" when starting up, and at the same time, due to the existence of the auxiliary module, realizing fast power-down when shutting down, ensuring the display The normal operation of the device.
  • FIG. 9 is a schematic circuit diagram of a display device according to an embodiment of the present application. This embodiment proposes a specific circuit implementation based on the example shown in FIG. 8.
  • +12V_IN is the interface of the power supply 4 of the display device, and the voltage of the power supply 4 may be 12V.
  • VCC-Panel is the input interface of load 2 of the display device, and power is supplied to the load through the VCC-Panel interface.
  • the power supply circuit 1 is specifically a MOS tube N1.
  • the control circuit 3 specifically includes: a capacitor C1, a first resistor R5, a diode VD1, a second resistor R1, and a fourth resistor R2.
  • the first end of the first resistor R5 is connected to the power interface 12V_IN, the second end of the first resistor R5 is connected to the anode of the diode VD1 and the first end of the third resistor R2, and the cathode of the diode VD1 is connected to the second end of the capacitor C1 and the second end.
  • the first end of the fourth resistor R2 is connected to the second end of the first resistor R5, the anode of the diode VD1 and the second end of the second resistor R1, and the second end of the fourth resistor R2 is grounded through the transistor V2.
  • the power supply circuit shown in FIG. 9 is a high-current MOS tube.
  • the source of the MOS transistor N1 is connected to the power supply
  • the gate of the MOS transistor N1 is connected to the second end of the capacitor C1
  • the first end of the resistor R1 and the drain of the MOS transistor N1 are connected to the load 2.
  • the control circuit shown in FIG. 9 further includes a switching circuit 36 configured to control the on or off of the grounding switch according to a control signal.
  • the switching circuit 36 includes a transistor V2.
  • the first end of the triode V2 is used to receive the control signal PANEL_ON/OFF, the third end of the triode V2 is connected to the second end of the fourth resistor R2, and the second end of the triode V2 is grounded.
  • the control signal PANEL_ON/OFF is specifically used to control the conduction or disconnection of the second end and the third end of the transistor V2 through the first end of the transistor V2.
  • the control signal PANEL_ON/OFF includes: a power switch signal of the display device, and the control signal is used to instruct to supply power to the load or to instruct to stop supplying power to the load.
  • the power supply of the display device is powered on, and the voltage of the interface 12V_IN is 12V.
  • FIG. 10 is a schematic diagram of a circuit voltage waveform when the display device is turned on according to an embodiment of the present application. Assuming that the display device is off before time t1, the power supply of the display device is in the power-on state, the voltage at point C'is maintained at 12V, the voltage at point A', point B'and point D'are all 12V, and the VCC_Panel that supplies power to the load The voltage is 0V. At time t1, after the control circuit receives the control signal to control the conduction of MOS transistor N1, diode V2 is turned on, and the voltages at points A'and D'are quickly grounded due to diode V2 being turned on, and drop to 0V at time t1.
  • the voltage at point B' cannot change suddenly, but gradually discharges through the resistor R2 and the diode V2 to reduce the voltage.
  • the reduced voltage at point B' makes the gate voltage and source voltage of MOS transistor N1 meet the conduction conditions of MOS transistor N1, the source and drain of the MOS transistor are turned on, and the power is passed through the interface 12V_IN through the MOS transistor N1 supplies power to the load, so that the voltage of the load, that is, the VCC_Panel voltage, gradually rises and rises to 12V at t3.
  • the power interface 12V_IN charges the capacitor C1 through two charging branches.
  • the current path of the first charging branch is the power interface 12V_IN, resistor R5 and diode VD1
  • the capacitor C1 cannot change suddenly because of its capacitive characteristic.
  • the voltage at point B' cannot change suddenly and maintains the voltage (for example, 2.42V) after discharge during the boot process.
  • the capacitor C1 can pass through points A'and D'in Figure 9
  • the two charging branches quickly charge to 12V.
  • the first charging branch because there is no need to pass through the resistor R5, it only needs to charge the capacitor directly from the point D'through the diode VD1, thus reducing the resistance in the RC series circuit, thereby increasing the charge to the capacitor
  • the current makes the charging time of capacitor C1 shorter.
  • the voltage at point B' rises rapidly, and the increased voltage at point B'makes the gate voltage and source voltage of the MOS transistor N1 not meet the conduction conditions of the MOS transistor N1, and the source and drain of the MOS transistor are disconnected.
  • the voltage of the load that is, the VCC_Panel voltage
  • the VCC_Panel voltage is quickly powered down from 12V to a voltage value that does not meet the conduction condition of the MOS tube N1, which prevents the slow power down when the display device is turned off.
  • the problem of the load's voltage ditch thereby preventing the timing disorder caused by the voltage ditch and the abnormal display of the display device.
  • FIG. 11 is a schematic diagram of a circuit voltage waveform of the display device according to an embodiment of the present application when it is turned off.
  • the voltage of VCC_Panel supplying power to the load is 12V
  • the voltage of point C' is always 12V because of the power supply
  • the control circuit receives the control signal to control the disconnection of the MOS transistor N1
  • the diode V2 is disconnected, and the voltages at points A'and D'rapidly rise to 12V due to the disconnection of the diode V2.
  • the voltage at point B' cannot be changed suddenly, but instead is charged through two branches at point D'and point A'respectively, causing the voltage at point B'to rise.
  • the increased voltage at point B' causes the voltage difference between the gate and the source of the MOS transistor N1 to fail its conduction condition, and the source and drain of the MOS transistor are disconnected.
  • the load voltage VCC_Panel voltage
  • the load voltage gradually decreases and decreases to 0V at t3.

Abstract

本申请提供一种显示装置,包括:电源、供电电路、负载和控制电路。电源配置为向所述负载供电。供电电路分别与所述电源、所述负载相连,配置为导通或者断开所述电源与所述负载之间的通路。控制电路分别与所述电源、所述供电电路相连,配置为通过控制所述供电电路的导通或断开,控制所述电源是否向所述负载供电。

Description

显示装置
相关申请的交叉引用
本专利申请要求于2019年2月19日提交的、申请号为2019101218783的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本申请涉及电路技术领域,尤其涉及一种显示装置。
背景技术
随着电子技术的发展,人们日常生活中能够使用到越来越多的具有显示装置的电子设备,例如:手机、平板电脑、笔记本电脑或电视等,该些电子设备能够通过显示装置实现内容的可视化。人们在使用电子设备时,将电子设备的电源接入市电交流电后,由市电交流电向电子设备的显示装置供电,其中,显示装置可以包括但不限于家用电器、工业电器或终端通讯设备等用电装置。
某些显示装置为了防止在开启时电源的冲击电压和冲击电流突然加载在显示装置的负载上而对负载造成损害,通常会增加一些外围电路,使得开启电源时延长负载的上电时间,达到负载缓慢上电的效果,来保护负载免受冲击电压和冲击电流的影响。
但是,由于“慢上电”的外围电路存在,使得在显示装置关机的过程中,负载掉电时间也被延长,带来缓慢掉电的效果。通常,显示装置关机时,负载也应该快速的掉电,若此时负载掉电的速度变慢,就可能出现在掉电过程中,在某个时间节点上,负载的实际电压本应跌落在负载工作电压之下(也就是说负载停止工作),然而负载的实际电压仍在负载工作电压之上(负载还能够工作),此时就会带来整个显示装置时序的混乱,从而造成显示装置异常,例如黑屏、画面不动等。
发明内容
本申请实施方式提供一种显示装置,包括:电源、电路板和负载,所述电源通过所述电路板给所述负载供电;所述电路板上至少包括供电电路和控制电路,其中,所述电源,用于提供电能;所述供电电路,分别与所述电源、所述负载相连,用于导通或者断 开所述电源与所述负载之间的通路;所述控制电路,分别与所述电源、所述供电电路相连,用于通过控制所述供电电路的导通或断开,控制所述电源是否向所述负载供电。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为电视电源架构的示意图;
图1B为根据本申请实施方式的显示装置的应用场景示意图;
图2为根据本申请实施方式的显示装置的电路示意图;
图3A为根据本申请实施方式的显示装置的负载的电压的时序图;
图3B为根据本申请实施方式的显示装置的负载的电压的时序图;
图4A为根据本申请实施方式的显示装置中负载电压变化的示意图;
图4B是图2电路的部分电路的示例;
图5为根据本申请实施方式的显示装置的电路示意图;
图6为根据本申请实施方式的显示装置的电路示意图;
图7为根据本申请实施方式的显示装置的电路示意图;
图8为根据本申请实施方式的显示装置的电路示意图;
图9为根据本申请实施方式的显示装置的电路示意图;
图10为根据本申请实施方式的显示装置开启时的电路电压波形示意图;
图11为根据本申请实施方式提供的显示装置关闭时的电路电压波形示意图。
附图标记说明:
1:供电电路;11:供电电路第一端;12:供电电路第二端;13:供电电路第三端;
2:负载;21:主板;22:背光组件;23显示主体;
3:控制电路;31:电容;32:第一电阻;33:第二电阻;34:充电模块;35:接地开 关;36:辅助模块;341:第三电阻;二极管:342;
4:电源;41:整流桥;42:PFC模块;43:LLC模块。
具体实施方式
提供示例性实施例以使本公开是透彻的且将本公开的范围完全传达给本领域技术人员。为了透彻理解本公开实施例,阐述了许多具体细节,例如具体组件,具体设备和具体方法的示例。对本领域技术人员显而易见的是,不需要采用具体细节,示例性实施例可以以许多不同的形式来体现,并且都不应被解释为限制本公开的范围。在一些示例性实施例中,公知过程、公知的设备结构和公知技术并未详细描述。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本文中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。术语“包括”、“包含”和“具有”或者其任何其他变体,意在涵盖非排他性的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地包括对于这些过程、方法、产品或设备固有的其他步骤或单元。除非明确标识为执行顺序,否则本文描述的方法步骤、过程和操作不应被解释为必须以所讨论或图示的特定顺序执行。还应理解可以采用附加步骤或替代步骤。
尽管本文可以使用术语第一,第二,第三等来描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应受这些术语的限制。这些术语仅可用于区分一元件、组件、区域、层或部分与另一元件、组件、区域、层或部分。除非上下文明确指出,否则本文中使用的诸如“第一”、“第二”和其他数字之类的术语并不暗示顺序或次序。因此,在不脱离示例性实施例的教导的情况下,下面讨论的第一元件,第一组件,第一区域,第一层或第一部分可以被称为第二元件,第二组件,第二区域,第二层或第二部分。
为了方便起见,在本文中可以使用空间相对术语,例如“内部”、“外部”、“之下”、“下方”、“下部”、“上方”、“上部”等。用于描述图中所示的一个元件或特征与另一个或多个元件或特征的关系。空间相对术语除了附图中描绘的方位之外,还可以意图涵盖使用或操作中的设备的不同方位。例如,如果附图中的装置被翻转,则被描述为在其他元件或特征“之下”或“下方”的元件将被重新定向在其他元件或特征“之上”。因此,示例性术语“在...下”可以包括上和下两个相对方位。可以其他方式(旋 转90度或其他方向)为设备定向,由此解释本文所用的空间相对描述语。
下面结合说明书附图对本申请实施例进行详细描述。
以电视为例介绍其电源架构,图1A为电视电源架构示意图,如图1A所示,显示装置可以包括:供电电路1、负载2、控制电路3、电源4,其中,电源4包括:整流桥41、功率因数校正(Power Factor Correction,PFC)模块42和谐振变换器(LLC)模块43,LLC模块43中包括同步整流电路(图1A未示出)。PFC模块42与LLC模块43连接,LLC模块43分别供电电路1、控制电路3相连。
其中,整流桥41用于对输入的交流电进行整流,向PFC模块42输入全波信号。在交流电源输入PFC模块42之前可以连接有电磁干扰(Electromagnetic Interference,EMI)滤波器(图1A未示出),对输入的交流电源进行高频滤波。
PFC模块42一般包括PFC电感、开关功率器件和PFC控制芯片,主要对输入的交流电源进行功率因数校正,向LLC模块43输出稳定的直流母线电压(如380V)。PFC模块41可以有效提高电源的功率因数,保证电压和电流同相位。
LLC模块43可以采用双MOS管LLC谐振变换电路,通常同步整流电路设置在LLC模块43中,同步整流电路主要可以包括变压器、控制器、两个MOS管以及二极管。另外,LLC模块43还可以包括脉冲频率调整(Pulse frequency modulation,PFM)电路、电容以及电感等元器件。LLC模块43具体可以对PFC模块42输入的直流母线电压进行降压或升压,并输出恒定的电压给负载2。通常,LLC模块43能够输出多种不同的电压,以满足负载2的需求。
电源4还可以包括反激模块(图1A未示出),用于向PFC模块42和LLC模块43提供自身的供电电压和待机电源。
控制电路3分别与电源4、供电电路1相连,能够控制供电电路1是否导通,即控制LLC模块43输出的电能能否经过供电电路为负载2供电,从而实现负载的开启或关闭。通常,控制电路3能够接收主芯片(图1A中未示出)的控制信号,受主芯片的控制进而控制供电电路1的工作状态。
供电电路1还与LLC模块、负载相连,当供电电路1连通时,LLC模块43能够为负载2供电,当供电电路1断开时,LLC模块43不能够为负载2供电。供电电路1通常包括开关元件(图1A中未示出),例如MOS管,控制电路3通过控制MOS管源极和栅极的电压,来控制MOS管的导通状态。
负载2包括主板21、背光组件22、显示主体23等,主板21包括控制单元等元器件,可以接收LLC模块43输出的电压,并将接收到的音视频信号进行编解码后输入到显示主体23中,可选的,主板21通常需要12V电压。背光组件22可以接收LLC模块43输出的电压,实现对显示主体23的显示。显示主体23可以包括但不限于液晶显示器。
图1B为本申请提供的显示装置的应用场景示意图,图1B是对图1A的简化。如图1B所示,本申请各实施例的显示装置包括电源4、电路板(未示出)和负载2,电源通过电路板给所述负载2供电;电路板至少包括供电电路1和控制电路3,其中,电源4,用于提供电能;供电电路1,分别与电源4、负载2相连,用于导通或者断开电源4与负载2之间的通路;控制电路3,分别与电源4、供电电路1相连,用于通过控制供电电路1的导通或断开,控制电源4是否向负载2供电。
显示装置的负载2通过供电电路1连接电源4后,电源4能够通过供电电路1向负载2供电,负载2可以是例如显示装置的屏幕、TCON等。同时,控制电路3分别与电源4和供电电路1连接,用于通过控制供电电路1的第一端11和第二端12的导通或断开,来控制是否能够通过供电电路1向负载2供电。具体的,当控制电路3控制供电电路1的第一端11和第二端12处于导通状态时,电源4通过供电电路1向负载2供电;当控制电路3控制供电电路1的第一端11和第二端12处于断开状态时,电源4与负载2之间断开连接关系,显示装置的负载2断电。
可选地,图2为本申请提供的显示装置的电路示意图,是图1中的显示装置一种具体的电路实现方式。图中+12V_IN为电源4的输出接口,是交流电AC经过LLC模块43之后输出的。这里以输出12V为例,当然还可以输出5V、18V等。根据负载的需求,可设定电源4不同的输出接口。VCC-面板(VCC-Panel)为显示装置的负载2的输入接口,VCC-Panel的电压用于为负载供电,可选的,负载2的输入接口可以是多个,分别连接不同的负载(图1B未示出);供电电路1包括MOS管N1,MOS管N1包括源极(S)、栅极(G)、漏极(D),当源极和栅极存在压差达到MOS管的导通压降时,MOS管N1的源极就和漏极形成通路,使得电源4能够给负载2供电。可选的,根据MOS管N1的型号选择,MOS管的导通压降也就不同。MOS管N1与控制电路3相连,受控于控制电路3的控制。
为了防止在开启显示装置时,电源的冲击电压和冲击电流通过供电电路1突然加载在显示装置的负载上而对负载造成损害,通常在控制电路3中设置电容,例如图2中所示的电容C1,利用电容两端的电压不能突变的特性,也就是利用电容C1充放电的时间, 从而延长了负载的上电时间,达到负载缓慢上电的效果,保护负载免受冲击电压和冲击电流的影响。
其中,电容C1的第一端连接电源4的接口+12V_IN,第二端连接MOS管N1的栅极,当电容C1充电时,其第二端的电压就会升高,由于第二端与MOS管N1的栅极相连,即随着电容C1充电,MOS管N1的栅极电压会升高。当电容C1两端的电压达到平衡,也就是电容C1完成充电,电容C1所在支路就相当于开路。类似的,当电容C1放电时,其第二端电压就会降低,MOS管N1的栅极电压也会降低。当电容C1放完电后,电容C1所在支路就相当于开路。由于MOS管N1的源极与电源4相连,其源极电压不变,例如始终维持12V。那么,随着电容C1充放电,MOS管N1的栅极就出现不同的电压,源极和栅极就会出现不同的压差,当压差满足MOS管N1的导通压降,MOS管N1的源极和漏极就会导通。综上,电容C1通过控制MOS管N1的栅极的电压控制MOS管N1的源极和漏极的导通或断开。
控制电路3还包括三极管V1,三极管V1的第一端为基极,即控制信号输入端;第二端为发射极,并且第二端接地;第三端为集电极,与电容C1的第二端、MOS管N1的栅极相连。当三极管V1第一端和第二端存在压差满足其导通压降时,三极管V1的第三端和第二端就会导通,由于第二端与地相连,当其导通后,三极管V1的第二端和第三端的电平都会被拉低,此时电容C1第二端的压降也被缓慢拉低,即电容C1开始放电直至放空。当三极管1第一端和第二端存在压差不满足其导通压降时,三极管V1的第三端和第二端就会截止,由于第三端与电源4相连,当其截止后,三极管V1的第三端的电平会被缓慢拉高,此时电容C1第二端的压降也被缓慢拉高,即电容C1开始充电直至饱和。
其中,三极管V1的第一端接收控制信号为“面板_导通/断开(PANEL_ON/OFF)”,该信号是来自于主芯片,示例性的,当PANEL_ON/OFF=1,代表显示装置开机或开启,电源4给负载2供电;而当PANEL_ON/OFF=0,代表显示装置关机或关闭,电源4停止给负载2供电。
控制电路3中还包括电阻R1和电阻R2,电阻R1与电容C1并联,电阻R1和电阻R2及三极管V1串联。
以负载为显示屏为例,详细介绍显示装置开启和关闭后,整个电路各个模块的工作变化。
具体地,如图2所示,显示装置开启电源且MOS管N1还未导通,三极管V1处于断开状态,电源4通过接口+12V_IN给电容C1充电直至饱和,此时电容C1两端的电压都为12V,MOS管N1的源极和栅极不存在压差,即MOS管N1不满足导通条件,MOS管N1处于断开状态。此时,图2中A、B、C和D点处的电压相同,均为12V。
在控制电路3接收到给负载供电的控制信号时,即控制电路3的三极管V1接收到由软件生成的控制信号PANEL_ON/OFF=1,三极管V1导通,电阻R2与三极管V1相接的第一端电压迅速被拉低,而由于电阻R2的第二端与电容C1相接,且电容两端电压不能突变,此时A、B、D点处的电压不能及时拉低。
电容C1开始通过电阻R2缓慢放电,使得A、B、D点处的电压缓慢降低。当电容的电量被放空即电容C1放电完成时,电容C1所在支路相当于开路,A、B、D点处的电压稳定,此时由于电阻R1和电阻R2的分压,A、B、D点处的电压为4V。也就是说,随着电容C1的放电,MOS管N1的栅极电压从12V缓慢降低为4V。此时MOS管N1的源极电压为12V。
假设MOS管N1导通条件为其源极和栅极存在6V的压降,即电压Vgs=Vg-Vs=-6V,其中Vg是MOS管N1的栅极电压,Vs为MOS管N1的源极电压。也就是说,B点处电压缓慢降低过程中,当满足MOS管N1的源极和栅极之间6V的压降时,MOS管的源极和漏极导通,使得电源电依次通过+12V_IN接口、MOS管N1和VCC-Panel接口向负载供电。
可以看出,并不是控制电路3接收到控制信号PANEL_ON/OFF=1,供电电路1中的MOS管N1就能够立马导通,而是等待电容C1放电。然后电容C1放电且MOS管N1达到导通条件,才使得电源4能够给负载2供电,达到负载2“慢上电”的效果。在控制电路3接收控制信号到MOS管N1导通的这段时间内,电源4的冲击电流和冲击电压不会施加在负载2上,从而起到保护负载的效果。
上述过程中包括控制电路接收到给负载供电的控制信号的第一时间、以及控制电路根据控制信号控制MOS管N1导通从而实际给负载供电的第二时间,第一时间和第二时间之间的时间间隔通过电容的放电得到延长。在显示装置开启过程中,延缓了给负载供电时MOS管N1的导通时间,进而调整了显示装置的负载在开机过程的上电斜率。
图3为本申请提供的显示装置的负载的电压的时序图。如图3A所示,若显示装置的控制电路中未设置电容C1,则控制电路在第一时间t1接收到给负载供电的控制信号, 使得三极管V1的第一端和第二端存在压降,三极管V1导通接地,即三极管V1的第三端迅速被拉低到0V,同理A、B、D电压也被迅速拉低。从而迅速将MOS管N1的栅极电压拉低为0V,MOS管N1的栅极和源极的压差使MOS管N1的源极和漏极在第一时间t1就导通,VCC-Panel接口的电压在第一时间t1就升高至12V。
若显示装置的控制电路中设置电容C1,如图3B所示,则当控制电路在第一时间t1接收到给负载供电的控制信号,即使三极管V1立即导通接地,三极管V1的第三端迅速被拉低到0V。但是,由于电容C1两端电压不能突变,因此A、B、D电压不会迅速拉低,即不会迅速将MOS管N1的栅极电压拉低。需要在电容放电过程中的第二时间t2,电容C1才将MOS管N1的栅极电压拉低使得MOS管N1的栅极和源极之间的压差满足导通条件,从而使得VCC-Panel接口的电压在第二时间t2后才会升高至12V。
因此,通过图3A和3B中两幅电压时序图的对比可得,图2中的显示装置能够通过控制电路中设置的电容在显示装置开机时的放电过程实现显示装置的“慢上电”,防止显示装置在开机的瞬间,从电源4的接口+12V_IN输出的冲击电压和冲击电流直接通过供电电路加载在负载VCC-Panel上而对负载造成损害。
在一些实施例中,电容C1完全放电后,MOS管N1才能够导通。在另外一些实施例中,在电容C1放电的过程中,只要电容C1第二端电压下降到一定程度,满足MOS管N1导通压降时,MOS管就会导通。当然,也可以选择某MOS管,使得电容C1完全放电,才能满足MOS管的导通条件。
当显示装置开启通过负载2的输入接口VCC-Panel为负载2上电时,电容C1放电完成,此时电容C1的连接电源4的接口+12V_IN的第一端电压为12V,电容C1连接MOS管N1的栅极的第二端电压通过电阻R1和R2的分压为4V,MOS管N1的源极和栅极之间的压差大于MOS管N1的导通压降,从而保持MOS管N1的导通,电源能够持续通过MOS管N1向负载2供电。
在显示装置关闭过程中,在控制电路3接收到停止给负载供电的控制信号,即当控制电路3接收到由软件生成的用于断开供电电路2的控制信号PANEL_ON/OFF=0,控制电路3中三极管V1断开。由于控制电路3中的电容C1两端电压不能突变,图2中的A、B、D点与电容C1相连,即使A、B、D点通过电阻R1接到电源4的接口+12V_IN,A、B、D点处的电压也不能立刻由4V突变成12V。电源4的接口+12V_IN通过电阻R1向电容C1充电。在电容C1充电过程中,A、B、D点处的电压逐渐上升,也即MOS管N1的栅极电压逐渐上升。随着MOS管N1的栅极电压逐渐上升,MOS管N1的源极 和栅极之间的压差由8V逐渐降低,当不满足MOS管N1的导通条件(仍然假设MOS管N1导通条件是源极和栅极之间存在6V的压降),MOS管N1的栅极控制MOS管N1的源极和漏极断开,此时显示装置的负载2会断电。
在上述实施例中,并不是接收到控制信号PANEL_ON/OFF=0后,MOS管N1就能够立马断开,而是等待电容C1充电,在电容C1充电过程中MOS管N1不满足导通条件,才使得电源断开对负载的供电,实现负载“慢掉电”的效果。
显示装置的关闭过程包括,控制电路接收到停止给负载供电的控制信号第三时间、以及控制电路根据控制信号控制MOS管N1断开从而实际停止向负载供电的第四时间,第三时间和第四时间之间的时间间隔通过电容的充电得到延长,造成了显示装置在关机的过程中,停止给负载供电时MOS管N1的断开时间的滞后。
图4A示出了在关闭显示装置过程中,显示装置负载的电压变化示意图。
图4A的t0-t1时间段,假设t0时刻显示装置的控制电路接收到用于关闭显示装置时控制供电电路断开的控制信号,如图2所示的电路,控制电路内的电容C1开始充电,MOS管N1的栅极电压开始上升,直到t1时刻负载的电压开始掉电。
图4B是图2中显示装置的电路对应的部分电路的示例。图4B中,MOS管N1和显示装置中的负载串联,电源(12V)经过MOS管N1给负载供电,其中,MOS管N1和负载都存在电阻。当负载工作时,H点处的电压为负载分得的压降,即:
Figure PCTCN2020071490-appb-000001
其中,V H代表负载电压(H点处),R 负载代表显示装置中负载的电阻,R MOS代表MOS管N1的电压。
当显示装置的负载停止工作时,相当于开路,R 负载无穷大。较负载正常工作而言,V H会上升到接近12V。也就是说,在负载停止工作时,MOS管仍然导通,电源仍然给负载供电,导致负载的电压“回弹”。
即,由于显示装置的负载正常工作即显示装置处于重负载状态时,电源通过供电电路向负载供电的电流较大,可认为此时负载的阻抗很小,分的电压也很小;而若显示装置的负载停止工作即显示装置处于轻负载状态时,电源通过供电电路向负载供电的电流较小,可认为此时负载的阻抗很大,作为一个大电阻承担电源向负载的供电电压的分压。
图4A的t1-t3时间段,即使负载的电压已经在t1时刻开始掉电,但是由于控制电路 中电容C1的存在,在t3时刻才会断开供电电路,即t1-t3这段时间内电源仍向负载供电,造成负载的电压在t2时刻提升,即负载的电压回弹。
图4A中的t3-t4时间段,随着电容C1继续充电,使得在t3时刻供电电路中MOS管N1断开,电源停止给负载供电,负载的电压又出现了下降。并最终在t4时刻降低至0V而实现负载的断电。
在上述显示装置关机过程中,如果t0时刻控制电路接收到用于控制供电电路断开的控制信号,在控制电路中的电容C1充电后,直到t4时刻才实现负载的断电,并且在t0和t4之间由于停止向负载供电的时间晚于负载已停止工作的时间,负载的电源实际掉电时会造成负载的实际电压出现电压回弹,使负载的电压波形成图4中的“回沟”。因此关机过程中,在显示装置所在电子设备其他装置都断电的情况下,如果不能断开供电电路,会造成显示装置的负载不能及时断电,并造成显示装置的负载电压出现电压回沟。使得显示装置的负载由于不能及时断电而影响显示装置所在电子设备的其他显示功能的时序,进而造成显示装置的异常显示。
因此,本申请提供的显示装置中,控制电路中设置充电模块,使得关闭显示装置时能够通过充电模块对电容进行快速充电,以实现关闭显示装置的“快关机”。消除了显示装置的控制电路中为了缓慢上电而设置的电容,在关机时缓慢掉电所导致的显示装置的负载的电压回沟,进而能够消除电压回沟引起的显示装置内时序错乱,并且防止显示装置的异常显示。
下面结合具体地实施例进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例不再赘述。
图5为根据本申请实施例的显示装置的电路示意图。如图5所示,本实施例的显示装置,在如图1B所示的显示装置的基础上,控制电路3具体包括:电容31、第一电阻32、第二电阻33、充电模块34和接地开关35;其中,电容31的第一端和第一电阻33的第一端分别连接电源4,第一电阻33的第二端连接充电模块34的第一端,充电模块34的第二端分别连接电容31的第二端、第二电阻33的第一端和供电电路1的第三端13,第二电阻33的第二端连接接地开关35的第一端,接地开关35的第二端接地。
电源4用于通过供电电路1向负载2供电,控制电路3用于控制供电电路1的断开和闭合。电容31用于在控制电路3的接地开关35断开时进行放电以延缓控制供电电路1的闭合、以及用于在控制电路3的接地开关35导通时进行充电以加快控制供电电路1 的断开。第一电阻32与充电模块34之间的电压向电容31充电。第二电阻33用于在接地开关35闭合时,电容31经过第二电阻33和接地开关35放电。充电模块34用于在关闭显示装置时,对电容31进行充电;并在电容31充电过程中,电容31第二端的电压指示供电电路1的第三端13控制供电电路的第一端11和第二端12断开,实现负载2的断电。例如:若供电电路包括MOS管,则MOS管的导通条件为电压大于或等于源极和栅极之间的压差(8V)。
结合图5对关闭显示装置时电容31充电的过程进行说明。如图5所示,显示装置处于正常工作状态,控制电路3中的接地开关35导通,电容31连接电源的一侧电压为12V,电容31连接供电电路的一侧电压为第一电压,该第一电压因电源电压经过第一电阻32和第二电阻33的分压而小于12V,且电容两侧的压差满足供电电路的导通条件,使得供电电路1处于导通状态,此时电源4通过供电电路1向负载2供电。
当关闭显示装置时,在控制电路3接收到停止给负载供电的控制信号后,控制电路3中的接地开关35立即断开,而在接地开关35断开的瞬间,由于电容31两侧电压不能突变的特性,电容31第二端(B点)的电压维持接地开关35导通时小于12V的第一电压。但是由于电阻两侧电压能够突变,连接电源4的第一电阻32第二端电压突变为电源4的电压12V。因此,在接地开关35断开的瞬间,充电模块34第一端(A点)的电压突变为12V,充电模块34第二端的B点的电压仍然维持在小于12V的第一电压,而充电模块34此时起到保持A点和B点之间电压差的作用,使得A点的电压能够根据电源的电压突变为12V同时B点的电压由于电容31的特性而维持小于12V的第一电压。
随后,由于接地开关断开瞬间A点和B点之间的电压差,第一电阻32第二端的A点可通过充电模块34向电容31充电,使得B点的电压上升也即电容31的第二端的电压上升。当该上升的电压不满足供电电路的导通条件时,电容31的第二端能够通过与供电电路1的第三端13的连接,控制供电电路1的第一端11和第二端12断开,实现负载2的断电。
图5中通过充电模块给电容进行充电,而图2中通过电源经过电阻R1来给电容充电。假设电源V通过电阻R给电容C充电,V1为电容初始电压,V2为电容充电完成后的电压,则电容的充电过程的电压可通过如下公式表示:
Figure PCTCN2020071490-appb-000002
相应地,电容的充电时间t可通过如下公式表示:
Figure PCTCN2020071490-appb-000003
因此,由电容的充电公式t~RC成正比的关系可知,充电回路中的电阻越大,给电容充电的电流就越小,充电所需时间也就越长;反之充电回路中的电阻越小,给电容充电的电流就越大,充电所需时间也就越短。
因此,在图5所示的电路中,通过充电模块来给电容充电,无需经过电阻R1,使得电容充电速度要快于图2所示的电路,从而在显示装置关机时,供电电路能够快速断开,从而能够快速断开给负载的供电,解决了上述由于“慢掉电”所带来的时序问题。
在本实施例的显示装置中,除了实现显示装置在关机时的快掉电,电容还能够实现显示装置在开机时的慢上电。具体地,当显示装置处于关闭状态,控制电路中的接地开关35处于断开状态,电容31的两侧电压均为12V。当开启显示装置时,在控制电路3接收到给负载供电的控制信号后,控制电路3中的接地开关35立即导通接地,在接地开关35导通的瞬间,由于电路中还没有电流,充电模块34能够保持A点和B点之间的电压差,而A点的电压被电源4维持在12V,B点的电压由于电容特性维持12V。因此,当第二电阻33与接地开关连接一侧的电压接地被置为0V,电容31开始通过第二电阻33进行放电,使得B点的电压即电容31第二端的电压逐渐降低。
在电容31第二端的电压降低过程中,当该降低的电压满足供电电路的导通条件时,电容31的第二端能够通过与供电电路1的第三端13的连接,控制供电电路1的第一端11和第二端12导通,电源能够通过供电电路向负载供电。这样,通过电容31的放电实现了负载2的慢上电。
图2所示的显示装置中,控制电路中的电容C1直接连接了电阻R1,电容C1两侧电压不能突变的特性使得三极管V1断开的瞬间,电阻R1和电容C1之间的D点和B点的电压均为0V,而电源4通过电阻R1向电容C1进行充电。对于电阻和电容串联的电路给电容充电,由于该串联电路中电阻对充电回路中的电流起到限流的作用,在该串联电路中电容的充电时间与电阻的阻值有关。
图5所示的显示装置中,由于第一电阻32和电容31之间设置了充电模块34,在接地开关断开瞬间能够在充电模块34两侧的A点和B点之间形成电压差,并根据该电压差使充电模块34第一端的电压(即A点的电压12V)通过充电模块34向与充电模34第二端连接的电容直接充电。从而不需要电源的12V电压通过第一电阻32后再向电容31充电。减少了第一电阻32对电容充电时间的影响,使得对电容31的充电回路的电阻 值减少了第一电阻32的阻值,因此通过RC串联电路向电容31充电的电流更大,充电所示时间更短。从而提高接地开关断开后电源对电容31的充电速度,进而在关闭显示装置过程中,实现对电容31的快速充电。
因此,当电容31充电过程所需时间减少,就使得电容31第二侧B点的电压不满足供电电路的导通条件使供电电路断开的时间,能够早于显示装置电源的负载由重负载状态切换为轻负载状态的时间。从而就能够消除显示装置的控制电路中为了满足缓慢上电设置的电容,在显示装置关机时同样缓慢掉电所导致的显示装置的负载的电压回沟的问题,进而防止了电压回沟带来的显示装置内时序错乱,并且防止显示装置的异常显示。进而实现了显示装置的负载在电子设备开机时的“慢上电”,同时实现关机时的“快掉电”,保证显示装置的正常工作。
图6为根据本申请实施例的显示装置的电路示意图。在图5所示实施例的基础上,充电模块34包括第三电阻341。
如图6所示,第三电阻341的第一端连接第一电阻32的第二端,第三电阻341的第二端分别连接电容31的第二端和第二电阻33的第一端。第三电阻341能够使得接地开关断开的瞬间,当A点的电压被电源4提高至12V且B点的电压由于电容31的特性保持0V时,保持A点和B点之间的电压差,使A点和B点电压不会在接地开关断开的瞬间而相互影响。并在接地开关断开之后,A点的12V电压能够通过第三电阻341向电容31直接充电。而根据RC串联电路的充电时间计算公式,A点的12V电压向电容31充电的时间与第三电阻341的阻值成正比关系,为了实现第一电阻第二端的电压即A点的电压更快地通过第三电阻341向电容31充电,本实施例提供的第三电阻341的电阻值应尽可能设置为小电阻值的电阻,其电阻值近似等于0,或者第三电阻341的阻值至少应小于第一电阻32的阻值。
与图2中电源的电压通过第一电阻32向电容C充电相比,A点的12V电压通过更小的第三电阻341为电容C1充电,使得对电容31的充电回路的电阻值减少,向电容31充电的电流增大,充电所示时间更短。进而使得电容31的第二端即B点的电压能够较快地升高,以尽快控制供电电路断开。
在本实施例如图6所示的显示装置中,由于第一电阻32和电容31之间设置了第三电阻341,用于在第一电阻32第二端(即A点)和电容31第二端(即B点)之间产生电压差。接地开关35断开瞬间A点的电压通过第三电阻341给电容进行充电。从而不需要电源的12V电压通过第一电阻32后再向电容31充电。基于RC串联电路中对电容 充电的时间计算方式,在RC电路中减少了第一电阻32对电容充电时间的影响,使得对电容31的充电回路的电阻值减少了第一电阻32的阻值,因此通过RC串联电路向电容31充电的电流更大,充电所示时间更短。从而能够提高接地开关断开后电源对电容31的充电速度,进而能够在关闭显示装置过程中,实现对电容31的快速充电。
在上述实施例中,通过第三电阻341构成的充电模块结构简单,方便技术应用的推广与实现。图6所示的电路能够保证开机时“慢上电”且保证关机时“快掉电”。
图7为根据本申请实施例的显示装置的电路示意图。在图5所示基础上,充电模块34包括二极管342。如图7所示,二极管342的阳极(也可称为正极)连接第一电阻32的第二端,二极管342的阴极(也可称为负极)分别连接电容31的第二端和第二电阻33的第一端。在接地开关断开瞬间,当A点的电压被电源4提高至12V且B点的电压由于电容31的特性保持0V时,二极管342用于保持A点和B点之间的电压差,使A点和B点的电压不会在接地开关断开的瞬间而相互影响。并进一步使得接地开关断开之后,A点的12V电压能够通过二极管342向电容31充电,并且由于二极管342正向导通时电阻近似为0,即电容所在的充电回路的电阻很小,使得电容的充电速度很快,从而使得电容31第二端的B点的电压能够迅速升高。
包括二极管342的控制电路除了实现显示装置在关机时的快掉电,还能够实现显示装置在开机时的慢上电。具体地,显示装置处于关闭状态的情况下,控制电路中的接地开关35处于断开状态,电容31的两侧电压均为12V。当开启显示装置时,在接收到给负载供电的控制信号后,控制电路3中的接地开关35立即导通接地,在接地开关35导通的瞬间,由于回路中还没有电流,二极管342能够保持A点和B点之间的电压差,而A点的电压被电源4维持在12V,B点的电压由于电容两侧不能突变维持12V。因此,当第二电阻33与接地开关连接一侧的电压迅速接地被置为0V,电容31开始通过第二电阻33进行放电,使得电容31的第二端即B点的电压逐渐降低。当B点处下降的电压满足供电电路的导通条件时,电容31的第二端通过与供电电路1的第三端13的连接,控制供电电路1的第一端11和第二端12导通,电源能够通过供电电路向负载供电。这样,通过电容31的放电实现了负载2的慢上电。
图7所示的显示装置中,由于第一电阻32和电容31之间设置了二极管342,在接地开关断开瞬间能够在二极管342两侧的A点和B点之间形成电压差。进一步地,由于二极管342的阳极电压大于阴极电压,则根据二极管342的导通特性,该电压差使二极管342的阳极电压即A点的12V电压通过二极管342向与二极管342的阴极连接的 电容充电。从而不需要电源的12V电压通过第一电阻32后再向电容31充电。从而提高接地开关断开后电源对电容31的充电速度,进而在关闭显示装置过程中,通过二极管342实现对电容31的快速充电。
图8为根据本申请实施例的显示装置的电路示意图。在图7所示的基础上,设置了辅助模块36,用于进一步提高电容31的充电速度,并且实现降低电容31的放电速度。
具体地,辅助模块36的第一端分别连接第一电阻32的第二端和二极管342的阳极,辅助模块36的第二端分别连接第二电阻33的第二端和接地开关35的第一端。下面结合关闭显示装置时电容31快速充电、开启显示装置时电容31慢速放电的两个过程,对图8所示辅助模块36的作用进行说明。
1、关闭显示装置:
当如图8所示的显示装置处于正常工作状态,控制电路中的接地开关35处于导通状态,电容31连接电源的一侧电压为12V,电容31连接供电电路的一侧的电压为第二电压,该第二电压因电源电压经过第一电阻32和第二电阻33的分压而小于12V,A点、B点和C点的电压均为该第二电压,且电容两侧的压差满足供电电路的导通条件,使得供电电路1处于导通状态,此时电源4通过供电电路1向负载2供电。
当关闭显示装置时,在控制电路3接收到停止给负载供电的控制信号后,控制电路3中的接地开关35断开,而在接地开关35断开的瞬间,由于电容31两侧电压不能突变的特性,电容31第二端(B点)的电压维持接地开关35导通时小于12V的第一电压。但是由于电阻两侧电压能够突变,连接电源4的第一电阻32第二端(A点)的电压突变为电源4的电压12V。此时,辅助模块36用于连接二极管342的阳极(A点)和第二电阻33的第二端(C点),由于接地开关断开且A点的电压被电源置为12V,辅助模块36将C点的电压也置为12V。
因此,在接地开关35断开的瞬间,对于充电模块34第一端(A点)的电压突变为12V,第二电阻33的第二端(C点)的电压也突变为12V,而二极管342阳极(B点)的电压仍然维持在小于12V的第二电压。同时,二极管342此时起到保持A点和B点之间电压差的作用,使得A点的电压能够根据电源的电压突变为12V同时B点的电压由于电容31的特性而维持小于12V的第二电压;第二电阻33也起到保持C点和B点之间电压差的作用,使得C点的电压基于辅助模块36突变为12V同时B点的电压由于电容31的特性而维持小于12V的第二电压。
随后,由于接地开关断开瞬间A点和B点之间的电压差,第一电阻32第二端(A点)可通过二极管342向电容31充电;同时,由于接地开关断开瞬间C点和B点之间的电压差,也可通过第二电阻33向电容31充电。也就是通过如图8中的“A点、二极管、B点”和“A点、辅助模块、第二电阻、B点”两条支路同时对电容31充电。从而进一步提高了对电容31的充电速度。
2、开启显示装置:
当如图8所示的显示装置在开启前,显示装置的负载2处于断电状态,供电电路1断开状态,控制电路3中的接地开关35处于断开状态,电容31两侧的电压为12V,A点、B点和C点的电压均为12V,此时电源4不能通过供电电路1向负载2供电。当开启显示装置时,在接收到给负载2供电的控制信号后,控制电路3中的接地开关35立即导通接地,而在接地开关35导通的瞬间,C点的电压被瞬间拉低至0V,此时,辅助模块由于连接二极管342的阳极(A点)和第二电阻33的第二端(C点),将A点的电压也置为0V。而由于电容31两侧电压不能突变的特性,B点的电压维持在12V,此时二极管342的阳极电压大于阴极电压,由于二极管342的反向截止特性而关断,起到保持A点和B点之间电压差的作用。结果,电容31不会通过二极管342和辅助模块接地,而是依次通过第二电阻33和接地开关35放电,电容31通过第二电阻33的放电过程使得第二电阻33第一端(B点)的电压缓慢从12V降低。当降低的电压满足供电电路的导通条件时,通过供电电路1的第三端13控制供电电路1的第一端11和第二端12导通。
可选地,在上述图8所示的实施例中,辅助模块36具体包括:连接电路,连接电路可以是一段导线,用于连接第一电阻32的第二端和第二电阻33的第二端,将在图9中进一步介绍。
本实施例如图8提供的显示装置中,充电模块34设置有二极管342和辅助模块36。在接地开关35断开瞬间A点和B点之间的电压差,第一电阻32第二端(A点)可通过二极管342向电容31充电;同时,由于接地开关断开瞬间C点和B点之间的电压差,也可通过第二电阻33向电容31充电。而在接地开关35导通瞬间由于二极管的反向截止特性、以及辅助模块36,使得电容只能通过第二电阻33放电。因此,本实施例提供的实施例能够消除显示装置中负载的电压回沟,进而实现了在开机时的“慢上电”,同时由于辅助模块的存在,实现关机时的快掉电,保证显示装置的正常工作。
图9为根据本申请实施例的显示装置的电路示意图。本实施例基于图8所示的 示例提出一种具体电路实现方式。
图中+12V_IN为显示装置的电源4的接口,电源4的电压可以为12V。VCC-Panel为显示装置的负载2的输入接口,通过VCC-Panel接口为负载供电。供电电路1具体为MOS管N1。控制电路3具体包括:电容C1、第一电阻R5、二极管VD1、第二电阻R1和第四电阻R2。第一电阻R5的第一端连接电源接口12V_IN,第一电阻R5的第二端连接二极管VD1的阳极和第三电阻R2的第一端,二极管VD1的阴极连接电容C1的第二端和第二电阻R1的第一端。第四电阻R2的第一端连接第一电阻R5的第二端、二极管VD1的阳极和第二电阻R1的第二端,第四电阻R2的第二端通过三极管V2接地。
可选地,如图9所示的供电电路为大电流MOS管。其中,MOS管N1的源极分别连接电源、第一电阻R5的第一端和电容C1的第一端,MOS管N1的栅极分别连接电容C1的第二端、二极管VD1的阴极和第二电阻R1的第一端,MOS管N1的漏极连接负载2。
可选地,如图9所示的控制电路中还包括切换电路36,配置为根据控制信号控制所述接地开关的导通或断开。切换电路36包括三极管V2。三极管V2的第一端用于接收控制信号PANEL_ON/OFF,三极管V2的第三端与第四电阻R2的第二端连接,三极管V2的第二端接地。其中,控制信号PANEL_ON/OFF具体用于通过三极管V2的第一端,控制三极管V2的第二端和第三端的导通或断开。可选地,控制信号PANEL_ON/OFF包括:显示装置的电源开关信号,该控制信号用于指示给负载供电,或者用于指示停止给负载供电。
下面结合图9和图10,对显示装置在开启和关闭过程中,当显示装置的控制电路接收到显示装置的电源开关信号后,通过控制二极管V2对电容充电或放电进行说明。
1、在显示装置开机前,且显示装置的电源12V_IN没有上电的情况下,电源12V_IN=0,显示装置用于控制MOS管N1导通或断开的软件未参与控制生成控制信号PANEL_ON/OFF,则PANEL_ON/OFF为高阻状态,由于下拉电阻R3,三极管V2的基极(即第一端)为低电平,三极管V2处于截止状态。则MOS管N1处于断开状态,显示装置的负载2处于断电状态。
2、当显示装置开机前,显示装置的电源上电,则接口12V_IN的电压为12V。此时图9中的A’点、B’点、C’点和D’点电压相等,V(A’)=V(B’)=V(C’)=V(D’)=12V。因 此,MOS管N1的栅极电压与源极电压不满足导通条件,因此MOS管N1处于断开状态。
3、在显示装置开机后,如图9所示,显示装置用于控制MOS管N1导通或断开的软件生成用于连通MOS管N1的控制信号PANEL_ON/OFF=1,则三极管V2导通。而电容C1由于其电容特性两端的电压不能突变,使得B’点的电压维持,且由于二极管VD1的反向截止特性,电容C1只能通过R1和R2放电,电流路径为电容C1、电阻R1、电容R2以及三极管V2。由于A’点和D’点没有直接和电容C1连接。从而当B’点的电压逐渐降低过程中,B’点的电压使得MOS管N1的栅极电压与源极电压(Vgs=-8V)满足MOS管N1的导通条件时,MOS管的源极和漏极导通。随后电源+12V_IN开始通过MOS管N1向VCC_Panel供电使得VCC-Panel=12V。这样,MOS管N1在控制电路接收到控制信号后到导通的时间间隔因电容的放电而延长,延缓了MOS管N1的导通时间,调整了VCC-Panel电压的上电斜率。在电容C1放电完成后,V(A’)=V(D’)=12V*R2/(R2+R5)=2.42V,MOS管栅极和源极之间的电压差达到Vgs=-9.58V,满足MOS管N1的导通条件,从而保持MOS管N1的源极和漏极导通。
图10为根据本申请实施方式的显示装置开机时的电路电压波形示意图。假设t1时刻之前显示装置处于关闭状态,显示装置的电源处于上电状态,在C’点的电压维持12V,A’点、B’点和D’点的电压均为12V,向负载供电的VCC_Panel电压为0V。在t1时刻,控制电路接收到控制MOS管N1导通的控制信号后,二极管V2导通,A’点和D’点的电压由于二极管V2导通而迅速接地而在t1时刻即降低至0V。而由于电容C1的存在,B’点电压不能突变,而是通过电阻R2与二极管V2逐渐放电降低了电压。在t2时刻,B’点所降低的电压使MOS管N1的栅极电压与源极电压满足MOS管N1的导通条件,MOS管的源极和漏极导通,电源通过接口12V_IN经由MOS管N1向负载供电,使得负载的电压即VCC_Panel电压逐渐升高并在t3时刻升高至12V。
4、当显示装置关机时,显示装置用于控制MOS管N1导通或断开的软件生成用于断开MOS管N1的控制信号PANEL_ON/OFF=0,则三极管V2截止。电源接口12V_IN通过两条充电支路向电容C1充电,第一充电支路的电流路径为电源接口12V_IN、电阻R5和二极管VD1,第二充电支路的电流路径为电源接口12V_IN、电阻R5和电阻R1。由于A’点和D’点没有直接和电容C1连接,因此A’点和D’点的电压在V2断开后瞬间为:V(A’)=V(D’)=12V。而电容C1由于其电容特性两端的电压不能突变,B’点的电压不能突变而保持开机过程中完成放电后的电压(例如2.42V),电容C1可 以通过图9中A’点和D’点的两条充电支路快速充电至12V。其中,第一充电支路中,由于不需要再通过电阻R5,而是只需要从D’点经过二极管VD1后直接向电容充电,因此降低了RC串联电路中的电阻,从而增加向电容充电的电流,使得电容C1充电时间更短。B’点的电压快速升高,B’点升高的电压使MOS管N1的栅极电压与源极电压不满足MOS管N1的导通条件,MOS管的源极和漏极断开。
上述过程中,在负载的电压回弹之前,使得负载的电压即VCC_Panel电压迅速从12V掉电至不满足MOS管N1的导通条件的电压值,防止了关闭显示装置时缓慢掉电所导致的负载的电压回沟的问题,由此防止电压回沟带来的时序错乱和显示装置的异常显示。
图11为根据本申请实施方式的显示装置在关闭时的电路电压波形示意图。在t1时刻之前,显示装置处于正常工作状态,向负载供电的VCC_Panel电压为12V,C’点的电压由于接入电源一直为12V,A’点,B’点和D’点的电压均为第三电压。则在t1时刻,控制电路接收到控制MOS管N1断开的控制信号后,二极管V2断开,A’点和D’点的电压由于二极管V2断开而迅速升高至12V。而由于电容的存在,B’点电压不能突变,而是分别通过D’点和A’点两条支路进行充电,引起B’点的电压升高。在t2时刻,B’点升高的电压使MOS管N1的栅极和源极的压差不满足其导通条件,MOS管的源极和漏极断开。从t2时刻开始,负载电压(VCC_Panel电压)逐渐降低并在t3时刻降低至0V。
出于说明和描述的目的,提供了前述实施例,而非旨在穷举或限制本公开。具体实施例的各个元件或特征通常不限于该具体实施例,而是在适用情况下即使未具体示出或描述也可在所选实施例中使用或互换。同样也可以许多形式变型,这种变型不被认为是脱离本公开,而且所有这样的修改被涵盖在本公开的范围内。

Claims (10)

  1. 一种显示装置,包括:
    负载;
    电源,配置为向所述负载供电;
    供电电路,分别与所述电源、所述负载相连,配置为导通或者断开所述电源与所述负载之间的通路;和
    控制电路,分别与所述电源、所述供电电路相连,所述控制电路包括:电容、第一电阻、第二电阻、充电模块和接地开关,其中,所述电容的第一端和所述第一电阻的第一端分别连接所述电源,所述第一电阻的第二端连接所述充电模块的第一端,所述充电模块的第二端分别连接所述电容的第二端、所述第二电阻的第一端和所述供电电路,所述第二电阻的第二端连接所述接地开关的第一端,所述接地开关的第二端接地,配置为通过控制所述供电电路的导通或断开,控制所述电源是否向所述负载供电。
  2. 根据权利要求1所述的显示装置,其中,
    所述充电模块配置为,当所述接地开关断开时,保持所述第一电阻的第二端和所述电容的第二端之间的电压差,以使所述第一电阻的第二端通过所述充电模块向所述电容充电;所述电容配置为当所述电容的第二端的电压不满足所述供电电路的导通条件,控制所述供电电路断开。
  3. 根据权利要求2所述的显示装置,其中,
    所述充电模块包括:第三电阻,所述第三电阻的阻值小于所述第一电阻的阻值。
  4. 根据权利要求2所述的显示装置,其中,
    所述充电模块包括:二极管;
    所述二极管的阳极连接所述第一电阻的第二端,所述二极管的阴极分别连接所述电容的第二端、所述第二电阻的第一端和所述供电电路。
  5. 根据权利要求4所述的显示装置,其中,还包括:辅助模块;
    所述辅助模块的第一端分别连接所述第一电阻的第二端和所述二极管的阳极,所述辅助模块的第二端分别连接所述第二电阻的第二端和所述接地开关的第一端;
    所述辅助模块配置为,当所述接地开关导通时,形成所述二极管的阳极和阴极之间的电压差,以使所述电容通过所述第二电阻和所述接地开关放电;在所述电容的放电过程中所述电容的第二端的电压满足所述供电电路的导通条件时,控制所述供电电路导通。
  6. 根据权利要求5所述的显示装置,其中,
    所述辅助模块包括:连接电路;
    所述连接电路配置为连接所述第一电阻的第二端和所述第二电阻的第二端。
  7. 根据权利要求2-6任一项所述的显示装置,其中,还包括:
    切换电路,配置为根据控制信号控制所述接地开关的导通或断开。
  8. 根据权利要求7所述的显示装置,其中,
    所述切换电路包括:三极管和第四电阻;
    所述三极管的第一端配置为接收所述控制信号,所述三极管的第三端与所述第四电阻的第二端连接,所述三极管的第二端接地;
    所述控制信号配置为通过所述三极管的第一端,控制所述三极管的第二端和所述第三端的导通或断开。
  9. 根据权利要求8所述的显示装置,其中,
    所述控制信号包括:所述显示装置的电源开关的控制信号。
  10. 根据权利要求2-6任一项所述的显示装置,其中,
    所述供电电路包括:大电流金属氧化物半导体场效应晶体管MOS管;
    所述MOS管的源极分别连接所述电源、所述第一电阻的第一端和所述电容的第一端,所述MOS管的栅极分别连接所述电容的第二端、所述二极管的阴极和所述第二电阻的第一端,所述MOS管的漏极连接所述负载。
PCT/CN2020/071490 2019-02-19 2020-01-10 显示装置 WO2020168855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20759042.3A EP3748959B1 (en) 2019-02-19 2020-01-10 Display apparatus
US16/792,387 US11330223B2 (en) 2019-02-19 2020-02-17 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910121878.3A CN109905619B (zh) 2019-02-19 2019-02-19 显示装置
CN201910121878.3 2019-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/792,387 Continuation US11330223B2 (en) 2019-02-19 2020-02-17 Display apparatus

Publications (1)

Publication Number Publication Date
WO2020168855A1 true WO2020168855A1 (zh) 2020-08-27

Family

ID=66944951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071490 WO2020168855A1 (zh) 2019-02-19 2020-01-10 显示装置

Country Status (4)

Country Link
US (1) US11330223B2 (zh)
EP (1) EP3748959B1 (zh)
CN (1) CN109905619B (zh)
WO (1) WO2020168855A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544452B (zh) * 2018-05-28 2021-08-17 京东方科技集团股份有限公司 供电时序控制电路及控制方法、显示驱动电路、显示装置
CN109905619B (zh) 2019-02-19 2020-10-23 海信视像科技股份有限公司 显示装置
CN110601314A (zh) * 2019-10-16 2019-12-20 深圳市欧瑞博科技有限公司 供电电路以及智能照明装置
CN111174390A (zh) * 2020-02-17 2020-05-19 珠海格力电器股份有限公司 取电电路、线控器、空调、电阻控制方法
CN111667785B (zh) * 2020-07-07 2023-11-14 京东方科技集团股份有限公司 控制电路、Tcon板和显示装置
WO2022025309A1 (ko) * 2020-07-28 2022-02-03 엘지전자 주식회사 디스플레이 장치 및 그에 대한 전원 제어 방법
CN113741261B (zh) * 2021-08-27 2023-06-06 普源精电科技股份有限公司 一种上下电控制电路及信号输出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727853A (zh) * 2008-10-31 2010-06-09 瀚宇彩晶股份有限公司 液晶显示器及其控制方法
US20110043711A1 (en) * 2008-04-28 2011-02-24 Sharp Kabushiki Kaisha Video signal line driving circuit and liquid crystal display device
CN108109568A (zh) * 2018-01-10 2018-06-01 京东方科技集团股份有限公司 供电调节电路及方法、测试系统
CN109905619A (zh) * 2019-02-19 2019-06-18 青岛海信电器股份有限公司 显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318121A (ja) * 2003-04-04 2004-11-11 Canon Inc 表示制御装置及び表示システム及びtv装置
TWI242294B (en) * 2004-12-07 2005-10-21 Silicon Touch Tech Inc An accelerated circuit for lightening/turning off LED
US7535691B2 (en) * 2006-03-30 2009-05-19 Power Integrations, Inc. Method and apparatus for an in-rush current limiting circuit
TWI339481B (en) * 2007-01-29 2011-03-21 Chimei Innolux Corp Power supplying and discharging circuit
CN100546355C (zh) * 2007-04-06 2009-09-30 吴壬华 一种平板电视电源的掉电时序保护电路
CN101667774B (zh) * 2008-09-02 2012-05-16 北京兆易创新科技有限公司 一种闭环控制电荷泵电路
CN201438291U (zh) * 2009-07-08 2010-04-14 深圳市易万卷文化产业有限公司 电子书节电电路
CN202261591U (zh) * 2011-02-24 2012-05-30 广州视源电子科技有限公司 掉电加速放电电路
CN102842292A (zh) * 2011-06-24 2012-12-26 鸿富锦精密工业(深圳)有限公司 电源管理电路及使用该电路的显示装置
CN206271398U (zh) * 2016-12-12 2017-06-20 广州视源电子科技股份有限公司 用于液晶屏的驱动电路、控制电路、液晶显示器及终端设备
CN107301849B (zh) * 2017-07-19 2018-08-14 深圳市华星光电半导体显示技术有限公司 显示驱动芯片及液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043711A1 (en) * 2008-04-28 2011-02-24 Sharp Kabushiki Kaisha Video signal line driving circuit and liquid crystal display device
CN101727853A (zh) * 2008-10-31 2010-06-09 瀚宇彩晶股份有限公司 液晶显示器及其控制方法
CN108109568A (zh) * 2018-01-10 2018-06-01 京东方科技集团股份有限公司 供电调节电路及方法、测试系统
CN109905619A (zh) * 2019-02-19 2019-06-18 青岛海信电器股份有限公司 显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748959A4 *

Also Published As

Publication number Publication date
US20200267344A1 (en) 2020-08-20
EP3748959A4 (en) 2021-04-21
EP3748959A1 (en) 2020-12-09
US11330223B2 (en) 2022-05-10
EP3748959B1 (en) 2023-06-07
CN109905619B (zh) 2020-10-23
CN109905619A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020168855A1 (zh) 显示装置
US8724346B2 (en) DC/DC converter, and power supply and electronic device using the same
CN108257570B (zh) 消除关机残影的控制电路、其控制方法及液晶显示装置
US9577511B2 (en) PFC DC/AC/DC power converter with reduced power loss
US9030049B2 (en) Alternating current (AC) to direct current (DC) converter device
WO2013005529A1 (ja) 過電圧保護回路、電源装置、液晶表示装置、電子機器、テレビ
US9281758B1 (en) Constant inrush current circuit for AC input power supply unit
CN110661438B (zh) 具低功耗及低成本的电源转换装置
TW201728064A (zh) 電源供應器及電源供應方法
US20230353057A1 (en) Charger
TW201541838A (zh) 返馳式主動箝位電源轉換器
TW202203046A (zh) 具有多個Type-C介面的系統及其控制方法
US20110110121A1 (en) Power supply circuit
CN216356513U (zh) 离线式开关电源电路及其反馈控制芯片
CN115189585A (zh) 电源电路、电路控制方法、电源装置和电子设备
CN112653324B (zh) 一种无直接供电的升压转换器系统
CN212112264U (zh) 一种电子设备及其供电电路
US8576585B2 (en) Power device
CN209488469U (zh) 比较器型的单边调整器和调整系统
US10148183B1 (en) Load detection circuit and dual-output power supply having the same
US9881589B2 (en) Backlight source driving circuit and display apparatus
US20160205731A1 (en) Hot plug module and driver for illuminating device and illuminating device
US11611208B2 (en) Electronic apparatus
CN210120488U (zh) 电源控制电路、供电电路、背光模组、显示屏和电视机
CN219919005U (zh) 上电时序可控的供电电路及显示设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020759042

Country of ref document: EP

Effective date: 20200903

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE