CN110661438B - 具低功耗及低成本的电源转换装置 - Google Patents

具低功耗及低成本的电源转换装置 Download PDF

Info

Publication number
CN110661438B
CN110661438B CN201810920813.0A CN201810920813A CN110661438B CN 110661438 B CN110661438 B CN 110661438B CN 201810920813 A CN201810920813 A CN 201810920813A CN 110661438 B CN110661438 B CN 110661438B
Authority
CN
China
Prior art keywords
synchronous rectification
terminal
coupled
diode
rectification transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810920813.0A
Other languages
English (en)
Other versions
CN110661438A (zh
Inventor
柯柏任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Forest Technology Corp
Original Assignee
Power Forest Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Forest Technology Corp filed Critical Power Forest Technology Corp
Publication of CN110661438A publication Critical patent/CN110661438A/zh
Application granted granted Critical
Publication of CN110661438B publication Critical patent/CN110661438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明提供一种具低功耗及低成本的电源转换装置,其包括同步整流晶体管、同步整流控制器以及阻尼电路。同步整流控制器耦接同步整流晶体管以控制同步整流晶体管。同步整流控制器的接地端耦接同步整流晶体管的源极端,且同步整流控制器的电源端耦接系统电压。阻尼电路的第一端耦接同步整流晶体管的漏极端。阻尼电路的第二端耦接同步整流控制器的电源端。阻尼电路自同步整流晶体管的漏极端获取电力并据以提供系统电压。

Description

具低功耗及低成本的电源转换装置
技术领域
本发明涉及一种电源转换装置,尤其涉及一种具低功耗及低成本的电源转换装置。
背景技术
电源转换装置为现代电子装置中不可或缺的元件。在以脉宽调变(pulse widthmodulation,PWM)控制为基础的电源转换装置中,电源转换装置的二次侧通常具有整流二极管。由于整流二极管于导通状态下的功率消耗较大,因此可采用导通电阻较低的同步整流晶体管来取代整流二极管。在这样的架构下,尚需要同步整流控制器来控制二次侧的同步整流晶体管的启闭。
一般来说,同步整流晶体管通常可配置在电源转换装置的变压器的二次侧的上端或下端。在同步整流晶体管配置于变压器的二次侧的上端的电路架构中,通常可采用以下两种方式来提供同步整流控制器运作所需的工作电源。第一种是通过变压器的辅助线圈来对同步整流控制器供电,然而此种方式会增加变压器的成本以及增加变压器绕线的难度。第二种则是由变压器的二次侧的主线圈通过整流二极管及稳压电路来对同步整流控制器供电,然而,此种方式在二次侧的主线圈的电压较高的情况下会增加功率消耗。因此,如何对同步整流控制器供电,同时避免增加电源转换装置的成本及整体功率消耗,乃是本领域技术人员所要面临的重要课题之一。
发明内容
有鉴于此,本发明提供一种具低功耗及低成本的电源转换装置,可根据其同步整流晶体管的漏极端与源极端之间的跨压产生系统电压以对同步整流控制器供电,以避免增加电源转换装置的成本及整体功率消耗。
本发明的电源转换装置包括同步整流晶体管、同步整流控制器以及阻尼电路。同步整流控制器耦接同步整流晶体管以控制同步整流晶体管,其中同步整流控制器的接地端耦接同步整流晶体管的源极端,且同步整流控制器的电源端接收系统电压。阻尼电路的第一端耦接同步整流晶体管的漏极端,且阻尼电路的第二端耦接同步整流控制器的电源端。阻尼电路自同步整流晶体管的漏极端获取电力并据以提供系统电压。
在本发明的一实施例中,上述的电源转换装置还包括供电电路。供电电路耦接阻尼电路的第二端以及同步整流晶体管的源极端。阻尼电路与供电电路协同运作以抑制同步整流晶体管的漏极端与源极端之间的电压突波,并根据同步整流晶体管的漏极端与源极端之间的跨压产生系统电压。
在本发明的一实施例中,上述的阻尼电路包括电阻器及第一电容器。电阻器的第一端耦接同步整流晶体管的漏极端。第一电容器耦接在电阻器的第二端与供电电路之间。
在本发明的一实施例中,上述的供电电路包括第一二极管、第二二极管以及第二电容器。第一二极管的阳极端耦接同步整流晶体管的源极端,且第一二极管的阴极端耦接阻尼电路的第二端。第二二极管的阳极端耦接第一二极管的阴极端。第二电容器的第一端耦接同步整流晶体管的源极端,且第二电容器的第二端耦接第二二极管的阴极端以提供系统电压。
在本发明的一实施例中,上述的第一二极管为齐纳二极管。
在本发明的一实施例中,上述的供电电路还包括齐纳二极管。齐纳二极管的阳极端耦接第二电容器的第一端,且齐纳二极管的阴极端耦接第二电容器的第二端。
在本发明的一实施例中,当同步整流晶体管的状态为关断状态时,上述跨压通过电阻器、第一电容器及第二二极管对第二电容器充电及对同步整流控制器供电。
在本发明的一实施例中,当同步整流晶体管的状态为导通状态时,第一电容器通过电阻器、同步整流晶体管及第一二极管进行放电,且第二电容器对同步整流控制器供电。
在本发明的一实施例中,同步整流控制器提供控制信号至同步整流晶体管的栅极端。上述的系统电压根据下式决定:
Figure BDA0001764177020000031
其中VCC为上述的系统电压,C为第一电容器的电容值,Vds为上述跨压,Vf为第二二极管的顺向偏压,RL为同步整流控制器的电源端与同步整流控制器的接地端之间的等效阻抗,且f为控制信号的切换频率。
基于上述,在本发明实施例所提出的电源转换装置中,阻尼电路与供电电路可协同运作以抑制同步整流晶体管的漏极端与源极端之间的电压突波,并可根据同步整流晶体管的漏极端与源极端之间的跨压来产生系统电压,以对同步整流控制器供电。因此,同步整流控制器运作所需的系统电压无须由变压器的辅助线圈来提供,故可降低变压器的成本及绕线的难度。此外,同步整流控制器运作所需的系统电压也非由变压器的二次侧的线圈所提供,故可避免二次侧的线圈的电压较高的情况下须通过整流二极管及稳压电路进行降压而产生额外的功率消耗。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。
附图说明
下面的附图是本发明的说明书的一部分,示出了本发明的示例实施例,附图与说明书的描述一起说明本发明的原理。
图1是依照本发明一实施例所示出的电源转换装置的电路方块示意图。
图2是依照本发明一实施例所示出的图1的电源转换装置的电路架构示意图。
图3是依照本发明一实施例所示出的图2的电源转换装置的等效电路示意图。
图4是依照本发明另一实施例所示出的图1的电源转换装置的电路架构示意图。
附图标记说明:
100:电源转换装置;
110:一次侧电源控制电路;
120:同步整流控制器;
130:阻尼电路;
140、140’:供电电路;
C1:第一电容器;
C2、C12:第二电容器;
CO:输出电容;
D1、D11:第一二极管;
D2、D12:第二二极管;
D13:齐纳二极管;
I:电流;
MSR:同步整流晶体管;
Np:一次侧;
Ns:二次侧;
R1:电阻器;
RL:等效阻抗;
T:变压器;
TGND:接地端;
TVcc:电源端;
VCC:系统电压;
VD:漏极端的电压;
Vds:跨压;
VG:控制信号;
VGND:接地电位;
Vf:第二二极管的顺向偏压;
VIN:输入电压;
VO:输出电压;
VS:电源电压。
具体实施方式
为了使本发明的内容可以被更容易明了,以下特举实施例作为本发明确实能够据以实施的范例。另外,凡可能之处,在附图及实施方式中使用相同标号的元件/构件/步骤,代表相同或类似部件。另外,说明书中使用的术语“耦接”可为“间接耦接”或是“直接耦接”。
本发明的电源转换装置的架构可以是返驰式(flyback)、推挽式(push-pull)、顺向式(forward)、半桥式(half-bridge)、全桥式(full-bridge)或是其他类型的架构,本发明并不对电源转换装置的架构加以限制。但为了方便说明,以下将以电源转换装置为返驰式架构为范例进行说明,而电源转换装置为其他架构则可依此类推。
图1是依照本发明一实施例所示出的电源转换装置的电路方块示意图。请参照图1,电源转换装置100可包括一次侧电源控制电路110、变压器T、同步整流晶体管MSR、同步整流控制器120、阻尼电路130以及供电电路140,但本发明不限于此。在本发明的一实施例中,电源转换装置100还可包括耦接在同步整流晶体管MSR的漏极端与接地电位VGND之间的输出电容CO。在本发明的另一实施例中,供电电路140也可整合至同步整流控制器120中。
一次侧电源控制电路110用以接收电源电压VS,且对电源电压VS进行电源转换以产生输入电压VIN,其中电源电压VS可为交流电压或直流电压,其端视实际应用或设计需求而定。
变压器T包括一次侧Np与二次侧Ns。一次侧Np的第一端(例如同名端(common-polarity terminal),即打点处)用以接收输入电压VIN,而二次侧Ns的第一端(例如同名端)耦接接地电位VGND。同步整流晶体管MSR的源极端耦接二次侧Ns的第二端(例如异名端(opposite-polarity terminal,即未打点处)。同步整流晶体管MSR的栅极端接收控制信号VG。同步整流晶体管MSR的漏极端提供输出电压VO给负载(未示出)。
同步整流控制器120耦接同步整流晶体管MSR,用以接收同步整流晶体管MSR的漏极端的电压VD,并据以产生控制信号VG,其中同步整流控制器120的接地端TGND耦接同步整流晶体管MSR的源极端,且同步整流控制器120的电源端TVcc接收系统电压VCC。
阻尼电路130的第一端耦接同步整流晶体管MSR的漏极端。阻尼电路130的第二端通过供电电路140耦接同步整流控制器120的电源端TVcc。阻尼电路130可自同步整流晶体管MSR的漏极端获取电力并据以提供同步整流控制器120运作所需的系统电压VCC。供电电路140耦接阻尼电路130的第二端以及同步整流晶体管MSR的源极端。特别是,阻尼电路130与供电电路140可协同运作以抑制同步整流晶体管MSR的漏极端与源极端之间的电压突波,并可根据同步整流晶体管MSR的漏极端与源极端之间的跨压产生系统电压VCC以对同步整流控制器120供电。
由于同步整流控制器120运作所需的系统电压VCC并非由变压器T的辅助线圈所提供,故可采用不具辅助线圈的变压器T以降低变压器T的成本及绕线的难度。此外,同步整流控制器120运作所需的系统电压VCC也非由变压器T的二次侧Ns的线圈所提供,故可避免二次侧Ns的线圈的电压较高的情况下须通过整流二极管及稳压电路进行降压而产生额外的功率消耗。
在本发明的一实施例中,一次侧电源控制电路110可例如是现有的交流至直流转换电路或是直流至直流转换电路,而同步整流控制器120可例如是现有的同步整流控制电路,但本发明并不以此为限。以下将针对阻尼电路130以及供电电路140的实施方式进行说明。
图2是依照本发明一实施例所示出的图1的电源转换装置的电路架构示意图。请参照图2,图2的一次侧电源控制电路110、变压器T、同步整流晶体管MSR及同步整流控制器120分别类似于图1的一次侧电源控制电路110、变压器T、同步整流晶体管MSR及同步整流控制器120,故请参照上述图1的相关说明,在此不再赘述。阻尼电路130可包括电阻器R1以及第一电容器C1,但不限于此。电阻器R1与第一电容器C1串接在同步整流晶体管MSR的漏极端与供电电路140之间。更进一步来说,电阻器R1的第一端耦接同步整流晶体管MSR的漏极端,而第一电容器C1耦接在电阻器R1的第二端与供电电路140之间。
供电电路140包括第一二极管D1、第二二极管D2以及第二电容器C2,但不限于此。第一二极管D1的阳极端耦接同步整流晶体管MSR的源极端,且第一二极管D1的阴极端耦接阻尼电路130的第二端。第二二极管D2的阳极端耦接第一二极管D1的阴极端。第二电容器C2的第一端耦接同步整流晶体管MSR的源极端,且第二电容器C2的第二端耦接第二二极管D2的阴极端以提供系统电压VCC。在本发明的一实施例中,第一二极管D1可为齐纳二极管,其可用来稳定系统电压VCC,但本发明不限于此。
电阻器R1与第一电容器C1(即阻尼电路130)可抑制同步整流晶体管MSR的漏极端与源极端间的电压突波。此外,当同步整流晶体管MSR的状态为关断状态时,同步整流晶体管MSR的漏极端与源极端之间会产生跨压,其中上述跨压可通过电阻器R1、第一电容器C1及第二二极管D2对第二电容器C2充电及对同步整流控制器120供电。相对地,当同步整流晶体管MSR的状态为导通状态时,第一电容器C1可通过电阻器R1、同步整流晶体管MSR及第一二极管D1进行放电,而同步整流控制器120则由第二电容器C2供电。
图3是依照本发明一实施例所示出的图2的电源转换装置的等效电路示意图。为了方便说明,图3省略示出一次侧电源控制电路110,且同步整流晶体管MSR仅以其漏极端与源极端之间的寄生二极管来表示,而同步整流控制器120的电源端TVcc与接地端TGND之间的等效阻抗(即同步整流控制器120的内部负载)以RL来表示。请参照图3,当同步整流晶体管MSR的状态为关断状态时,同步整流晶体管MSR的漏极端与源极端之间具有跨压Vds,因此,在电阻器R1的电阻值忽略不计的前提下,第一电容器C1的电荷量QC如式(1)所示,其中C为第一电容器C1的电容值,Vf为第二二极管D2的顺向偏压。而提供给同步整流控制器120的电荷量QL如式(2)所示,其中I为提供给同步整流控制器120的电流,且f为图2的控制信号VG的切换频率。
QC=C×(Vds-VCC-Vf) 式(1)
Figure BDA0001764177020000071
可以理解的是,第一电容器C1的电荷量QC实质上等于提供给同步整流控制器120的电荷量QL。因此,根据式(1)及式(2)可得到系统电压VCC如式(3)所示。
Figure BDA0001764177020000072
图4是依照本发明另一实施例所示出的图1的电源转换装置的电路架构示意图。请参照图4,图4的一次侧电源控制电路110、变压器T、同步整流晶体管MSR及同步整流控制器120分别类似于图1的一次侧电源控制电路110、变压器T、同步整流晶体管MSR及同步整流控制器120,故请参照上述图1的相关说明,在此不再赘述。另外,图4的阻尼电路130类似于图2的阻尼电路130,故请参照上述图2的相关说明,在此不再赘述。
图4的供电电路140’包括第一二极管D11、第二二极管D12、齐纳二极管D13以及第二电容器C12,但不限于此。第一二极管D11的阳极端耦接同步整流晶体管MSR的源极端,且第一二极管D11的阴极端耦接阻尼电路130的第二端。第二二极管D12的阳极端耦接第一二极管D11的阴极端。第二电容器C12的第一端耦接同步整流晶体管MSR的源极端,且第二电容器C12的第二端耦接第二二极管D12的阴极端以提供系统电压VCC。齐纳二极管D13与第二电容器C12并联连接,用以稳定系统电压VCC。详细来说,齐纳二极管D13的阳极端耦接第二电容器C12的第一端,且齐纳二极管D13的阴极端耦接第二电容器的第二端。
类似于图2的阻尼电路130与供电电路140的运作,于图4中,当同步整流晶体管MSR的状态为关断状态时,同步整流晶体管MSR的漏极端与源极端之间会产生跨压,其中上述跨压可通过电阻器R1、第一电容器C1及第二二极管D12对第二电容器C12充电及对同步整流控制器120供电。相对地,当同步整流晶体管MSR的状态为导通状态时,第一电容器C1可通过电阻器R1、同步整流晶体管MSR及第一二极管D11进行放电,而同步整流控制器120则由第二电容器C12供电。
综上所述,在本发明实施例所提出的电源转换装置中,阻尼电路与供电电路可协同运作以抑制同步整流晶体管的漏极端与源极端之间的电压突波,并可根据同步整流晶体管的漏极端与源极端之间的跨压来产生系统电压,以对同步整流控制器供电。因此,同步整流控制器运作所需的系统电压无须由变压器的辅助线圈来提供,故可降低变压器的成本及绕线的难度。此外,同步整流控制器运作所需的系统电压也非由变压器的二次侧的线圈所提供,故可避免二次侧的线圈的电压较高的情况下须通过整流二极管及稳压电路进行降压而产生额外的功率消耗。
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视所附权利要求所界定者为准。

Claims (8)

1.一种电源转换装置,其特征在于,包括:
同步整流晶体管;
同步整流控制器,耦接所述同步整流晶体管以控制所述同步整流晶体管,其中所述同步整流控制器的接地端耦接所述同步整流晶体管的源极端,且所述同步整流控制器的电源端接收系统电压;
阻尼电路,所述阻尼电路的第一端耦接所述同步整流晶体管的漏极端,且所述阻尼电路的第二端耦接所述同步整流控制器的所述电源端,其中所述阻尼电路自所述同步整流晶体管的所述漏极端获取电力并据以提供所述系统电压;以及
供电电路,耦接所述阻尼电路的所述第二端以及所述同步整流晶体管的所述源极端,其中所述阻尼电路与所述供电电路协同运作以抑制所述同步整流晶体管的所述漏极端与所述源极端之间的电压突波,并根据所述同步整流晶体管的所述漏极端与所述源极端之间的跨压产生所述系统电压。
2.根据权利要求1所述的电源转换装置,其特征在于,所述阻尼电路包括:
电阻器,所述电阻器的第一端耦接所述同步整流晶体管的所述漏极端;以及
第一电容器,耦接在所述电阻器的第二端与所述供电电路之间。
3.根据权利要求2所述的电源转换装置,其特征在于,所述供电电路包括:
第一二极管,所述第一二极管的阳极端耦接所述同步整流晶体管的所述源极端,且所述第一二极管的阴极端耦接所述阻尼电路的所述第二端;
第二二极管,所述第二二极管的阳极端耦接所述第一二极管的所述阴极端;以及
第二电容器,所述第二电容器的第一端耦接所述同步整流晶体管的所述源极端,且所述第二电容器的第二端耦接所述第二二极管的阴极端以提供所述系统电压。
4.根据权利要求3所述的电源转换装置,其特征在于,所述第一二极管为齐纳二极管。
5.根据权利要求3所述的电源转换装置,其特征在于,所述供电电路还包括:
齐纳二极管,所述齐纳二极管的阳极端耦接所述第二电容器的所述第一端,且所述齐纳二极管的阴极端耦接所述第二电容器的所述第二端。
6.根据权利要求3所述的电源转换装置,其特征在于,当所述同步整流晶体管的状态为关断状态时,所述跨压通过所述电阻器、所述第一电容器及所述第二二极管对所述第二电容器充电及对所述同步整流控制器供电。
7.根据权利要求3所述的电源转换装置,其特征在于,当所述同步整流晶体管的状态为导通状态时,所述第一电容器通过所述电阻器、所述同步整流晶体管及所述第一二极管进行放电,且所述第二电容器对所述同步整流控制器供电。
8.根据权利要求3所述的电源转换装置,其特征在于,所述同步整流控制器提供控制信号至所述同步整流晶体管的栅极端,且所述系统电压根据下式决定:
Figure FDA0002951541410000021
其中VCC为所述系统电压,C为所述第一电容器的电容值,Vds为所述跨压,Vf为所述第二二极管的顺向偏压,RL为所述同步整流控制器的所述电源端与所述接地端之间的等效阻抗,且f为所述控制信号的切换频率。
CN201810920813.0A 2018-06-29 2018-08-14 具低功耗及低成本的电源转换装置 Active CN110661438B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107122497A TWI675540B (zh) 2018-06-29 2018-06-29 具低功耗及低成本的電源轉換裝置
TW107122497 2018-06-29

Publications (2)

Publication Number Publication Date
CN110661438A CN110661438A (zh) 2020-01-07
CN110661438B true CN110661438B (zh) 2021-05-04

Family

ID=67069482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810920813.0A Active CN110661438B (zh) 2018-06-29 2018-08-14 具低功耗及低成本的电源转换装置

Country Status (3)

Country Link
US (1) US10340802B1 (zh)
CN (1) CN110661438B (zh)
TW (1) TWI675540B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855135B (zh) * 2019-11-21 2020-10-09 四川富肯斯科技有限公司 一种基于数字芯片控制的输入浪涌抑制控制电路
US11290021B2 (en) 2020-01-30 2022-03-29 Alpha And Omega Semiconductor (Cayman) Ltd. Method and apparatus for generating control signal and charging DC supply in a secondary synchronous rectifier
CN111478605B (zh) * 2020-04-15 2021-07-06 深圳市稳先微电子有限公司 一种同步整流控制芯片及ac-dc系统
TWI755740B (zh) * 2020-05-26 2022-02-21 力林科技股份有限公司 電壓轉換裝置及其充電方法
TWI723894B (zh) * 2020-06-05 2021-04-01 葉文中 整流電路、電源轉換器、以及相關之電子元件
CN116979819A (zh) * 2022-04-22 2023-10-31 深圳英集芯科技股份有限公司 同步整流器的供电电路及供电装置和供电设备
CN116191631B (zh) * 2023-01-31 2023-09-29 深圳市凌鑫电子有限公司 一种低成本电源充电电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471609A (zh) * 2007-12-28 2009-07-01 尼克森微电子股份有限公司 三端子集成化同步整流器及反激式同步整流电路
CN105429487A (zh) * 2014-09-12 2016-03-23 恩智浦有限公司 开关模式电源的控制器及相关方法
CN106130378A (zh) * 2016-08-31 2016-11-16 广州金升阳科技有限公司 同步整流控制电路及方法
CN106257817A (zh) * 2015-06-19 2016-12-28 三垦电气株式会社 集成电路和开关电源装置
CN106533179A (zh) * 2015-09-11 2017-03-22 万国半导体(开曼)股份有限公司 电压转换器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551097A1 (en) * 2003-12-31 2005-07-06 STMicroelectronics S.r.l. Power conversion device with synchronous rectifier driving and voltage oscillation limitation during a discontinuous operating mode
TWI380565B (en) * 2007-10-26 2012-12-21 Niko Semiconductor Co Ltd Three terminal integrated synchronous rectifier and flyback synchronous rectifying circuit
US7751213B2 (en) * 2008-05-20 2010-07-06 Harris Corporation Self-driven synchronous rectifier
US7869231B2 (en) * 2008-07-31 2011-01-11 Texas Instruments Incorporated System and method for synchronous rectifier drive that enables converters to operate in transition and discontinuous mode
US8711582B2 (en) * 2009-03-31 2014-04-29 Semiconductor Components Industries, Llc Parasitic element compensation circuit and method for compensating for the parasitic element
US20120063175A1 (en) * 2010-09-10 2012-03-15 Dong Wang Compensation circuit and method for a synchronous rectifier driver
JP5768657B2 (ja) * 2011-10-26 2015-08-26 富士電機株式会社 直流−直流変換装置
GB2523386B (en) * 2014-02-24 2016-07-06 Tdk-Lambda Uk Ltd Snubber
US20160049876A1 (en) * 2014-08-12 2016-02-18 Alpha And Omega Semiconductor Incorporated Single package synchronous rectifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471609A (zh) * 2007-12-28 2009-07-01 尼克森微电子股份有限公司 三端子集成化同步整流器及反激式同步整流电路
CN105429487A (zh) * 2014-09-12 2016-03-23 恩智浦有限公司 开关模式电源的控制器及相关方法
CN106257817A (zh) * 2015-06-19 2016-12-28 三垦电气株式会社 集成电路和开关电源装置
CN106533179A (zh) * 2015-09-11 2017-03-22 万国半导体(开曼)股份有限公司 电压转换器
CN106130378A (zh) * 2016-08-31 2016-11-16 广州金升阳科技有限公司 同步整流控制电路及方法

Also Published As

Publication number Publication date
CN110661438A (zh) 2020-01-07
TWI675540B (zh) 2019-10-21
TW202002492A (zh) 2020-01-01
US10340802B1 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
CN110661438B (zh) 具低功耗及低成本的电源转换装置
US9438108B2 (en) Bias voltage generating circuit and switching power supply thereof
US8749996B2 (en) Switching power supply apparatus
US9577530B1 (en) Boost converter with zero voltage switching
US9912241B2 (en) System and method for a cascode switch
CN111010040B (zh) 同步整流控制装置、绝缘同步整流型dc/dc转换器、栅极驱动装置、ac/dc转换器
KR20150003042A (ko) 대기전력소모를 감소시키는 전력변환장치
US10432081B2 (en) Waveform shaping circuit, semiconductor device, and switching power supply device
CN108736748B (zh) 电源转换装置及其同步整流控制器
US11018591B1 (en) Dynamic regulation power controller
US11489451B1 (en) Power conversion apparatus and synchronous rectification controller thereof
US11171567B1 (en) Power supply device for eliminating ringing effect
US7894217B2 (en) DC to DC converter
US20090116264A1 (en) Power supply circuit with voltage converting circuits and control method therefor
CN202906768U (zh) 一种自驱同步整流器控制电路
CN215186489U (zh) 开关电源电路以及多级输出开关电源
CN217240311U (zh) 开关电源过功率保护调节电路
TWI527347B (zh) 電源裝置
JP2004519190A (ja) スイッチング電源
CN220570463U (zh) 一种负载可调电路、电源电路、电路板及电子设备
KR101056420B1 (ko) 출력단의 전압/전류의 직접적인 검출이 가능한 강압형 컨버터방식의 발광 다이오드 구동 회로
CN115833596A (zh) 用于减少辅助变压器绕组匝数的系统和方法
CN114301302A (zh) 一种双驱动变压器的开关电源
CN117060731A (zh) 功率变换电路的控制器及开关电源
TWI445304B (zh) 電源轉換電路及可調適耐壓之電路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant