TW202002492A - 具低功耗及低成本的電源轉換裝置 - Google Patents

具低功耗及低成本的電源轉換裝置 Download PDF

Info

Publication number
TW202002492A
TW202002492A TW107122497A TW107122497A TW202002492A TW 202002492 A TW202002492 A TW 202002492A TW 107122497 A TW107122497 A TW 107122497A TW 107122497 A TW107122497 A TW 107122497A TW 202002492 A TW202002492 A TW 202002492A
Authority
TW
Taiwan
Prior art keywords
terminal
synchronous rectifier
coupled
diode
capacitor
Prior art date
Application number
TW107122497A
Other languages
English (en)
Other versions
TWI675540B (zh
Inventor
柯柏任
Original Assignee
力林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力林科技股份有限公司 filed Critical 力林科技股份有限公司
Priority to TW107122497A priority Critical patent/TWI675540B/zh
Priority to CN201810920813.0A priority patent/CN110661438B/zh
Priority to US16/114,257 priority patent/US10340802B1/en
Application granted granted Critical
Publication of TWI675540B publication Critical patent/TWI675540B/zh
Publication of TW202002492A publication Critical patent/TW202002492A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一種電源轉換裝置,其包括同步整流電晶體、同步整流控制器以及阻尼電路。同步整流控制器耦接同步整流電晶體以控制同步整流電晶體。同步整流控制器的接地端耦接同步整流電晶體的源極端,且同步整流控制器的電源端耦接系統電壓。阻尼電路的第一端耦接同步整流電晶體的汲極端。阻尼電路的第二端耦接同步整流控制器的電源端。阻尼電路自同步整流電晶體的汲極端擷取電力並據以提供系統電壓。

Description

具低功耗及低成本的電源轉換裝置
本發明是有關於一種電源轉換裝置,且特別是有關於一種具低功耗及低成本的電源轉換裝置。
電源轉換裝置為現代電子裝置中不可或缺的元件。在以脈寬調變(pulse width modulation,PWM)控制為基礎的電源轉換裝置中,電源轉換裝置的二次側通常具有整流二極體。由於整流二極體於導通狀態下的功率消耗較大,因此可採用導通電阻較低的同步整流電晶體來取代整流二極體。在這樣的架構下,尚需要一同步整流控制器來控制二次側的同步整流電晶體的啟閉。
一般來說,同步整流電晶體通常可配置在電源轉換裝置的變壓器的二次側的上端或下端。在同步整流電晶體配置於變壓器的二次側的上端的電路架構中,通常可採用以下兩種方式來提供同步整流控制器運作所需的工作電源。第一種是透過變壓器的輔助線圈來對同步整流控制器供電,然而此種方式會增加變壓器的成本以及增加變壓器繞線的難度。第二種則是由變壓器的二次側的主線圈透過整流二極體及穩壓電路來對同步整流控制器供電,然而,此種方式在二次側的主線圈的電壓較高的情況下會增加功率消耗。因此,如何對同步整流控制器供電,同時避免增加電源轉換裝置的成本及整體功率消耗,乃是本領域技術人員所要面臨的重要課題之一。
有鑑於此,本發明提供一種電源轉換裝置,可根據其同步整流電晶體的汲極端與源極端之間的跨壓產生系統電壓以對同步整流控制器供電,以避免增加電源轉換裝置的成本及整體功率消耗。
本發明的電源轉換裝置包括同步整流電晶體、同步整流控制器以及阻尼電路。同步整流控制器耦接同步整流電晶體以控制同步整流電晶體,其中同步整流控制器的接地端耦接同步整流電晶體的源極端,且同步整流控制器的電源端接收系統電壓。阻尼電路的第一端耦接同步整流電晶體的汲極端,且阻尼電路的第二端耦接同步整流控制器的電源端。阻尼電路自同步整流電晶體的汲極端擷取電力並據以提供系統電壓。
在本發明的一實施例中,上述的電源轉換裝置更包括供電電路。供電電路耦接阻尼電路的第二端以及同步整流電晶體的源極端。阻尼電路與供電電路協同運作以抑制同步整流電晶體的汲極端與源極端之間的電壓突波,並根據同步整流電晶體的汲極端與源極端之間的跨壓產生系統電壓。
在本發明的一實施例中,上述的阻尼電路包括電阻器及第一電容器。電阻器的第一端耦接同步整流電晶體的汲極端。第一電容器耦接在電阻器的第二端與供電電路之間。
在本發明的一實施例中,上述的供電電路包括第一二極體、第二二極體以及第二電容器。第一二極體的陽極端耦接同步整流電晶體的源極端,且第一二極體的陰極端耦接阻尼電路的第二端。第二二極體的陽極端耦接第一二極體的陰極端。第二電容器的第一端耦接同步整流電晶體的源極端,且第二電容器的第二端耦接第二二極體的陰極端以提供系統電壓。
在本發明的一實施例中,上述的第一二極體為齊納二極體。
在本發明的一實施例中,上述的供電電路更包括齊納二極體。齊納二極體的陽極端耦接第二電容器的第一端,且齊納二極體的陰極端耦接第二電容器的第二端。
在本發明的一實施例中,當同步整流電晶體的狀態為關斷狀態時,上述跨壓透過電阻器、第一電容器及第二二極體對第二電容器充電及對同步整流控制器供電。
在本發明的一實施例中,當同步整流電晶體的狀態為導通狀態時,第一電容器透過電阻器、同步整流電晶體及第一二極體進行放電,且第二電容器對同步整流控制器供電。
在本發明的一實施例中,同步整流控制器提供控制信號至同步整流電晶體的閘極端。上述的系統電壓根據下式決定:
Figure 02_image001
,其中VCC為上述的系統電壓,C為第一電容器的電容值,Vds為上述跨壓,Vf為第二二極體的順向偏壓,RL為同步整流控制器的電源端與同步整流控制器的接地端之間的等效阻抗,且f為控制信號的切換頻率。
基於上述,在本發明實施例所提出的電源轉換裝置中,阻尼電路與供電電路可協同運作以抑制同步整流電晶體的汲極端與源極端之間的電壓突波,並可根據同步整流電晶體的汲極端與源極端之間的跨壓來產生系統電壓,以對同步整流控制器供電。因此,同步整流控制器運作所需的系統電壓無須由變壓器的輔助線圈來提供,故可降低變壓器的成本及繞線的難度。此外,同步整流控制器運作所需的系統電壓亦非由變壓器的二次側的線圈所提供,故可避免二次側的線圈的電壓較高的情況下須透過整流二極體及穩壓電路進行降壓而產生額外的功率消耗。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。另外,說明書中使用的術語“耦接”可為“間接耦接”或是“直接耦接”。
本發明的電源轉換裝置的架構可以是返馳式(flyback)、推挽式(push-pull)、順向式(forward)、半橋式(half-bridge)、全橋式(full-bridge)或是其他類型的架構,本發明並不對電源轉換裝置的架構加以限制。但為了方便說明,以下將以電源轉換裝置為返馳式架構為範例進行說明,而電源轉換裝置為其他架構則可依此類推。
圖1是依照本發明一實施例所繪示的電源轉換裝置的電路方塊示意圖。請參照圖1,電源轉換裝置100可包括一次側電源控制電路110、變壓器T、同步整流電晶體MSR、同步整流控制器120、阻尼電路130以及供電電路140,但本發明不限於此。在本發明的一實施例中,電源轉換裝置100更可包括耦接在同步整流電晶體MSR的汲極端與接地電位VGND之間的輸出電容CO。在本發明的另一實施例中,供電電路140也可整合至同步整流控制器120中。
一次側電源控制電路110用以接收電源電壓VS,且對電源電壓VS進行電源轉換以產生輸入電壓VIN,其中電源電壓VS可為交流電壓或直流電壓,其端視實際應用或設計需求而定。
變壓器T包括一次側Np與二次側Ns。一次側Np的第一端(例如同名端(common-polarity terminal),即打點處)用以接收輸入電壓VIN,而二次側Ns的第一端(例如同名端)耦接接地電位VGND。同步整流電晶體MSR的源極端耦接二次側Ns的第二端(例如異名端(opposite-polarity terminal,即未打點處)。同步整流電晶體MSR的閘極端接收控制信號VG。同步整流電晶體MSR的汲極端提供輸出電壓VO給負載(未繪示)。
同步整流控制器120耦接同步整流電晶體MSR,用以接收同步整流電晶體MSR的汲極端的電壓VD,並據以產生控制信號VG,其中同步整流控制器120的接地端TGND耦接同步整流電晶體MSR的源極端,且同步整流控制器120的電源端TVcc接收系統電壓VCC。
阻尼電路130的第一端耦接同步整流電晶體MSR的汲極端。阻尼電路130的第二端透過供電電路140耦接同步整流控制器120的電源端TVcc。阻尼電路130可自同步整流電晶體MSR的汲極端擷取電力並據以提供同步整流控制器120運作所需的系統電壓VCC。供電電路140耦接阻尼電路130的第二端以及同步整流電晶體MSR的源極端。特別是,阻尼電路130與供電電路140可協同運作以抑制同步整流電晶體MSR的汲極端與源極端之間的電壓突波,並可根據同步整流電晶體MSR的汲極端與源極端之間的跨壓產生系統電壓VCC以對同步整流控制器120供電。
由於同步整流控制器120運作所需的系統電壓VCC並非由變壓器T的輔助線圈所提供,故可採用不具輔助線圈的變壓器T以降低變壓器T的成本及繞線的難度。此外,同步整流控制器120運作所需的系統電壓VCC亦非由變壓器T的二次側Ns的線圈所提供,故可避免二次側Ns的線圈的電壓較高的情況下須透過整流二極體及穩壓電路進行降壓而產生額外的功率消耗。
在本發明的一實施例中,一次側電源控制電路110可例如是現有的交流至直流轉換電路或是直流至直流轉換電路,而同步整流控制器120可例如是現有的同步整流控制電路,但本發明並不以此為限。以下將針對阻尼電路130以及供電電路140的實施方式進行說明。
圖2是依照本發明一實施例所繪示的圖1的電源轉換裝置的電路架構示意圖。請參照圖2,圖2的一次側電源控制電路110、變壓器T、同步整流電晶體MSR及同步整流控制器120分別類似於圖1的一次側電源控制電路110、變壓器T、同步整流電晶體MSR及同步整流控制器120,故請參照上述圖1的相關說明,在此不再贅述。阻尼電路130可包括電阻器R1以及第一電容器C1,但不限於此。電阻器R1與第一電容器C1串接在同步整流電晶體MSR的汲極端與供電電路140之間。更進一步來說,電阻器R1的第一端耦接同步整流電晶體MSR的汲極端,而第一電容器C1耦接在電阻器R1的第二端與供電電路140之間。
供電電路140包括第一二極體D1、第二二極體D2以及第二電容器C2,但不限於此。第一二極體D1的陽極端耦接同步整流電晶體MSR的源極端,且第一二極體D1的陰極端耦接阻尼電路130的第二端。第二二極體D2的陽極端耦接第一二極體D1的陰極端。第二電容器C2的第一端耦接同步整流電晶體MSR的源極端,且第二電容器C2的第二端耦接第二二極體D2的陰極端以提供系統電壓VCC。在本發明的一實施例中,第一二極體D1可為齊納二極體,其可用來穩定系統電壓VCC,但本發明不限於此。
電阻器R1與第一電容器C1(即阻尼電路130)可抑制同步整流電晶體MSR的汲極端與源極端間的電壓突波。此外,當同步整流電晶體MSR的狀態為關斷狀態時,同步整流電晶體MSR的汲極端與源極端之間會產生跨壓,其中上述跨壓可透過電阻器R1、第一電容器C1及第二二極體D2對第二電容器C2充電及對同步整流控制器120供電。相對地,當同步整流電晶體MSR的狀態為導通狀態時,第一電容器C1可透過電阻器R1、同步整流電晶體MSR及第一二極體D1進行放電,而同步整流控制器120則由第二電容器C2供電。
圖3是依照本發明一實施例所繪示的圖2的電源轉換裝置的等效電路示意圖。為了方便說明,圖3省略繪示一次側電源控制電路110,且同步整流電晶體MSR僅以其汲極端與源極端之間的寄生二極體Dr來表示,而同步整流控制器120的電源端TVcc與接地端TGND之間的等效阻抗(即同步整流控制器120的內部負載)以RL來表示。請參照圖3,當同步整流電晶體MSR的狀態為關斷狀態時,同步整流電晶體MSR的汲極端與源極端之間具有跨壓Vds,因此,在電阻器R1的電阻值忽略不計的前提下,第一電容器C1的電荷量QC如式(1)所示,其中C為第一電容器C1的電容值,Vf為第二二極體D2的順向偏壓。而提供給同步整流控制器120的電荷量QL如式(2)所示,其中I為提供給同步整流控制器120的電流,且f為圖2的控制信號VG的切換頻率。
Figure 02_image003
式(1)
Figure 02_image005
式(2)
可以理解的是,第一電容器C1的電荷量QC實質上等於提供給同步整流控制器120的電荷量QL。因此,根據式(1)及式(2)可得到系統電壓VCC如式(3)所示。
Figure 02_image001
式(3)
圖4是依照本發明另一實施例所繪示的圖1的電源轉換裝置的電路架構示意圖。請參照圖4,圖4的一次側電源控制電路110、變壓器T、同步整流電晶體MSR及同步整流控制器120分別類似於圖1的一次側電源控制電路110、變壓器T、同步整流電晶體MSR及同步整流控制器120,故請參照上述圖1的相關說明,在此不再贅述。另外,圖4的阻尼電路130類似於圖2的阻尼電路130,故請參照上述圖2的相關說明,在此不再贅述。
圖4的供電電路140’包括第一二極體D11、第二二極體D12、齊納二極體D13以及第二電容器C12,但不限於此。第一二極體D11的陽極端耦接同步整流電晶體MSR的源極端,且第一二極體D11的陰極端耦接阻尼電路130的第二端。第二二極體D12的陽極端耦接第一二極體D11的陰極端。第二電容器C12的第一端耦接同步整流電晶體MSR的源極端,且第二電容器C12的第二端耦接第二二極體D12的陰極端以提供系統電壓VCC。齊納二極體D13與第二電容器C12並聯連接,用以穩定系統電壓VCC。詳細來說,齊納二極體D13的陽極端耦接第二電容器C12的第一端,且齊納二極體D13的陰極端耦接第二電容器的第二端。
類似於圖2的阻尼電路130與供電電路140的運作,於圖4中,當同步整流電晶體MSR的狀態為關斷狀態時,同步整流電晶體MSR的汲極端與源極端之間會產生跨壓,其中上述跨壓可透過電阻器R1、第一電容器C1及第二二極體D12對第二電容器C12充電及對同步整流控制器120供電。相對地,當同步整流電晶體MSR的狀態為導通狀態時,第一電容器C1可透過電阻器R1、同步整流電晶體MSR及第一二極體D11進行放電,而同步整流控制器120則由第二電容器C12供電。
綜上所述,在本發明實施例所提出的電源轉換裝置中,阻尼電路與供電電路可協同運作以抑制同步整流電晶體的汲極端與源極端之間的電壓突波,並可根據同步整流電晶體的汲極端與源極端之間的跨壓來產生系統電壓,以對同步整流控制器供電。因此,同步整流控制器運作所需的系統電壓無須由變壓器的輔助線圈來提供,故可降低變壓器的成本及繞線的難度。此外,同步整流控制器運作所需的系統電壓亦非由變壓器的二次側的線圈所提供,故可避免二次側的線圈的電壓較高的情況下須透過整流二極體及穩壓電路進行降壓而產生額外的功率消耗。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧電源轉換裝置110‧‧‧一次側電源控制電路120‧‧‧同步整流控制器130‧‧‧阻尼電路140、140’‧‧‧供電電路C1‧‧‧第一電容器C2、C12‧‧‧第二電容器CO‧‧‧輸出電容D1、D11‧‧‧第一二極體D2、D12‧‧‧第二二極體D13‧‧‧齊納二極體I‧‧‧電流MSR‧‧‧同步整流電晶體Np‧‧‧一次側Ns‧‧‧二次側R1‧‧‧電阻器RL‧‧‧等效阻抗T‧‧‧變壓器TGND‧‧‧接地端TVcc‧‧‧電源端VCC‧‧‧系統電壓VD‧‧‧汲極端的電壓Vds‧‧‧跨壓VG‧‧‧控制信號VGND‧‧‧接地電位Vf‧‧‧第二二極體的順向偏壓VIN‧‧‧輸入電壓VO‧‧‧輸出電壓VS‧‧‧電源電壓
下面的所附圖式是本發明的說明書的一部分,繪示了本發明的示例實施例,所附圖式與說明書的描述一起說明本發明的原理。 圖1是依照本發明一實施例所繪示的電源轉換裝置的電路方塊示意圖。 圖2是依照本發明一實施例所繪示的圖1的電源轉換裝置的電路架構示意圖。 圖3是依照本發明一實施例所繪示的圖2的電源轉換裝置的等效電路示意圖。 圖4是依照本發明另一實施例所繪示的圖1的電源轉換裝置的電路架構示意圖。
100‧‧‧電源轉換裝置
110‧‧‧一次側電源控制電路
120‧‧‧同步整流控制器
130‧‧‧阻尼電路
140‧‧‧供電電路
CO‧‧‧輸出電容
MSR‧‧‧同步整流電晶體
Np‧‧‧一次側
Ns‧‧‧二次側
T‧‧‧變壓器
TGND‧‧‧接地端
TVcc‧‧‧電源端
VCC‧‧‧系統電壓
VD‧‧‧汲極端的電壓
VG‧‧‧控制信號
VGND‧‧‧接地電位
VIN‧‧‧輸入電壓
VO‧‧‧輸出電壓
VS‧‧‧電源電壓

Claims (9)

  1. 一種電源轉換裝置,包括: 一同步整流電晶體; 一同步整流控制器,耦接該同步整流電晶體以控制該同步整流電晶體,其中該同步整流控制器的一接地端耦接該同步整流電晶體的源極端,且該同步整流控制器的一電源端接收一系統電壓;以及 一阻尼電路,該阻尼電路的第一端耦接該同步整流電晶體的汲極端,且該阻尼電路的第二端耦接該同步整流控制器的該電源端, 其中該阻尼電路自該同步整流電晶體的該汲極端擷取電力並據以提供該系統電壓。
  2. 如申請專利範圍第1項所述的電源轉換裝置,更包括: 一供電電路,耦接該阻尼電路的該第二端以及該同步整流電晶體的該源極端, 其中該阻尼電路與該供電電路協同運作以抑制該同步整流電晶體的該汲極端與該源極端之間的一電壓突波,並根據該同步整流電晶體的該汲極端與該源極端之間的一跨壓產生該系統電壓。
  3. 如申請專利範圍第2項所述的電源轉換裝置,其中該阻尼電路包括: 一電阻器,該電阻器的第一端耦接該同步整流電晶體的該汲極端;以及 一第一電容器,耦接在該電阻器的第二端與該供電電路之間。
  4. 如申請專利範圍第3項所述的電源轉換裝置,其中該供電電路包括: 一第一二極體,該第一二極體的陽極端耦接該同步整流電晶體的該源極端,且該第一二極體的陰極端耦接該阻尼電路的該第二端; 一第二二極體,該第二二極體的陽極端耦接該第一二極體的該陰極端;以及 一第二電容器,該第二電容器的第一端耦接該同步整流電晶體的該源極端,且該第二電容器的第二端耦接該第二二極體的陰極端以提供該系統電壓。
  5. 如申請專利範圍第4項所述的電源轉換裝置,其中該第一二極體為一齊納二極體。
  6. 如申請專利範圍第4項所述的電源轉換裝置,其中該供電電路更包括: 一齊納二極體,該齊納二極體的陽極端耦接該第二電容器的該第一端,且該齊納二極體的陰極端耦接該第二電容器的該第二端。
  7. 如申請專利範圍第4項所述的電源轉換裝置,其中當該同步整流電晶體的狀態為關斷狀態時,該跨壓透過該電阻器、該第一電容器及該第二二極體對該第二電容器充電及對該同步整流控制器供電。
  8. 如申請專利範圍第4項所述的電源轉換裝置,其中當該同步整流電晶體的狀態為導通狀態時,該第一電容器透過該電阻器、該同步整流電晶體及該第一二極體進行放電,且該第二電容器對該同步整流控制器供電。
  9. 如申請專利範圍第4項所述的電源轉換裝置,其中該同步整流控制器提供一控制信號至該同步整流電晶體的閘極端,且該系統電壓根據下式決定:
    Figure 03_image001
    , 其中VCC為該系統電壓,C為該第一電容器的電容值,Vds為該跨壓,Vf為該第二二極體的順向偏壓,RL為該同步整流控制器的該電源端與該接地端之間的等效阻抗,且f為該控制信號的切換頻率。
TW107122497A 2018-06-29 2018-06-29 具低功耗及低成本的電源轉換裝置 TWI675540B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107122497A TWI675540B (zh) 2018-06-29 2018-06-29 具低功耗及低成本的電源轉換裝置
CN201810920813.0A CN110661438B (zh) 2018-06-29 2018-08-14 具低功耗及低成本的电源转换装置
US16/114,257 US10340802B1 (en) 2018-06-29 2018-08-28 Power conversion apparatus with low power consumption and low cost

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107122497A TWI675540B (zh) 2018-06-29 2018-06-29 具低功耗及低成本的電源轉換裝置

Publications (2)

Publication Number Publication Date
TWI675540B TWI675540B (zh) 2019-10-21
TW202002492A true TW202002492A (zh) 2020-01-01

Family

ID=67069482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107122497A TWI675540B (zh) 2018-06-29 2018-06-29 具低功耗及低成本的電源轉換裝置

Country Status (3)

Country Link
US (1) US10340802B1 (zh)
CN (1) CN110661438B (zh)
TW (1) TWI675540B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755740B (zh) * 2020-05-26 2022-02-21 力林科技股份有限公司 電壓轉換裝置及其充電方法
US11290021B2 (en) 2020-01-30 2022-03-29 Alpha And Omega Semiconductor (Cayman) Ltd. Method and apparatus for generating control signal and charging DC supply in a secondary synchronous rectifier

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855135B (zh) * 2019-11-21 2020-10-09 四川富肯斯科技有限公司 一种基于数字芯片控制的输入浪涌抑制控制电路
CN111478605B (zh) * 2020-04-15 2021-07-06 深圳市稳先微电子有限公司 一种同步整流控制芯片及ac-dc系统
TWI723894B (zh) * 2020-06-05 2021-04-01 葉文中 整流電路、電源轉換器、以及相關之電子元件
CN116979819A (zh) * 2022-04-22 2023-10-31 深圳英集芯科技股份有限公司 同步整流器的供电电路及供电装置和供电设备
CN116191631B (zh) * 2023-01-31 2023-09-29 深圳市凌鑫电子有限公司 一种低成本电源充电电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551097A1 (en) * 2003-12-31 2005-07-06 STMicroelectronics S.r.l. Power conversion device with synchronous rectifier driving and voltage oscillation limitation during a discontinuous operating mode
TWI380565B (en) * 2007-10-26 2012-12-21 Niko Semiconductor Co Ltd Three terminal integrated synchronous rectifier and flyback synchronous rectifying circuit
CN101471609B (zh) * 2007-12-28 2011-08-10 尼克森微电子股份有限公司 三端子集成化同步整流器及反激式同步整流电路
US7751213B2 (en) * 2008-05-20 2010-07-06 Harris Corporation Self-driven synchronous rectifier
US7869231B2 (en) * 2008-07-31 2011-01-11 Texas Instruments Incorporated System and method for synchronous rectifier drive that enables converters to operate in transition and discontinuous mode
US8711582B2 (en) * 2009-03-31 2014-04-29 Semiconductor Components Industries, Llc Parasitic element compensation circuit and method for compensating for the parasitic element
US20120063175A1 (en) * 2010-09-10 2012-03-15 Dong Wang Compensation circuit and method for a synchronous rectifier driver
JP5768657B2 (ja) * 2011-10-26 2015-08-26 富士電機株式会社 直流−直流変換装置
GB2523386B (en) * 2014-02-24 2016-07-06 Tdk-Lambda Uk Ltd Snubber
US20160049876A1 (en) * 2014-08-12 2016-02-18 Alpha And Omega Semiconductor Incorporated Single package synchronous rectifier
EP2996231B1 (en) * 2014-09-12 2019-03-20 Nxp B.V. A controller for a switched mode power supply and associated methods
CN106533179B (zh) * 2015-09-11 2019-04-26 万国半导体(开曼)股份有限公司 电压转换器
US9735694B2 (en) * 2015-06-19 2017-08-15 Sanken Electric Co., Ltd. Integrated circuit and switching power-supply device with charging control circuit
CN106130378B (zh) * 2016-08-31 2019-05-21 广州金升阳科技有限公司 同步整流控制电路及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11290021B2 (en) 2020-01-30 2022-03-29 Alpha And Omega Semiconductor (Cayman) Ltd. Method and apparatus for generating control signal and charging DC supply in a secondary synchronous rectifier
TWI767535B (zh) * 2020-01-30 2022-06-11 加拿大商萬國半導體國際有限合夥公司 用於在次級同步整流器中產生控制訊號和充電直流電源的方法與裝置
TWI755740B (zh) * 2020-05-26 2022-02-21 力林科技股份有限公司 電壓轉換裝置及其充電方法
US11290002B2 (en) 2020-05-26 2022-03-29 Power Forest Technology Corporation Power conversion apparatus and charging method thereof

Also Published As

Publication number Publication date
CN110661438B (zh) 2021-05-04
CN110661438A (zh) 2020-01-07
TWI675540B (zh) 2019-10-21
US10340802B1 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
TWI675540B (zh) 具低功耗及低成本的電源轉換裝置
US9991787B2 (en) Fast startup control circuit for switch mode power supply
US10116222B2 (en) Soft switching flyback converter with primary control
US10686361B2 (en) Synchronous rectifier gate driver with active clamp
US9356521B2 (en) Switching power-supply device having wide input voltage range
CN108696135B (zh) 具有用于控制输出晶体管的自适应参考电压的开关模式电源
US7760519B2 (en) Primary only control quasi resonant convertor
US7830676B2 (en) Primary only constant voltage/constant current (CVCC) control in quasi resonant convertor
US10056845B1 (en) Power conversion apparatus and synchronous rectification controller thereof
US20190089264A1 (en) Synchronous rectifier circuit and switching power supply apparatus
US11018591B1 (en) Dynamic regulation power controller
TW202203565A (zh) 消除振鈴效應之電源供應器
CN113872428B (zh) 一种氮化镓晶体管的驱动控制电路、方法、设备、介质
US11489451B1 (en) Power conversion apparatus and synchronous rectification controller thereof
CN114070015B (zh) 一种功率器件的驱动控制方法及其驱动系统
JP4790530B2 (ja) スイッチング電源装置
TWI837670B (zh) 電源供應器
US20230402928A1 (en) Power control system with zero voltage switching
US20240022175A1 (en) Power supply device with high efficiency
TW202310540A (zh) 電源轉換裝置及其同步整流控制器
CN117674603A (zh) 电源供应器
TW201635683A (zh) 電源裝置
TW202347935A (zh) 電源供應器
TW202224323A (zh) 零電壓切換的電源控制系統
CN116488444A (zh) 交换式电源供应器的开关控制模组