WO2020168531A1 - 一种镁锑基热电元件及其制备方法和应用 - Google Patents

一种镁锑基热电元件及其制备方法和应用 Download PDF

Info

Publication number
WO2020168531A1
WO2020168531A1 PCT/CN2019/075799 CN2019075799W WO2020168531A1 WO 2020168531 A1 WO2020168531 A1 WO 2020168531A1 CN 2019075799 W CN2019075799 W CN 2019075799W WO 2020168531 A1 WO2020168531 A1 WO 2020168531A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
antimony
based thermoelectric
thermoelectric element
layer
Prior art date
Application number
PCT/CN2019/075799
Other languages
English (en)
French (fr)
Inventor
赵怀周
杨佳伟
常思轶
高君玲
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to PCT/CN2019/075799 priority Critical patent/WO2020168531A1/zh
Priority to US17/299,779 priority patent/US11404621B2/en
Publication of WO2020168531A1 publication Critical patent/WO2020168531A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • Thermoelectric material is a kind of functional material that can realize the direct mutual conversion of heat energy and electric energy.
  • Thermoelectric components made of thermoelectric materials have the advantages of light weight, small size, simple structure, no noise, zero emission, and long service life. This is of great significance for solving serious problems such as the energy crisis and environmental pollution, and therefore it has been highly valued by countries all over the world.
  • thermoelectric materials have been gradually optimized and improved.
  • thermoelectric devices have also been commercialized to a certain extent, especially for near room temperature thermoelectric refrigeration devices, bismuth telluride materials have been widely promoted and applied.
  • bismuth telluride materials have been widely promoted and applied.
  • the development of new near-room temperature thermoelectric materials and devices is a strategic demand for the development of the entire thermoelectric field, and it is also a bottleneck problem in the development of the thermoelectric refrigeration industry.
  • Magnesium-antimony-based alloy is a new type of thermoelectric material, which has become a research hotspot in the thermoelectric field since 2016. After a lot of research, scientific researchers have made the thermoelectric figure of merit of n-type magnesium antimony-based thermoelectric materials have been greatly improved through various methods, and the thermoelectric figure of merit ZT at room temperature has been able to approach or reach 0.8.
  • thermoelectric refrigeration devices that are now widely used in automotive air-conditioning seats and environmentally friendly refrigerators, traditional bismuth telluride-based thermoelectric materials are still used.
  • the cost of bismuth telluride-based thermoelectric materials is too high, and the prices of raw materials such as tellurium and bismuth are much higher than those of raw materials such as magnesium and antimony.
  • the application of bismuth telluride-based thermoelectric materials in thermoelectric refrigeration devices was irreplaceable.
  • thermoelectric materials In thermoelectric devices, only good thermoelectric performance is far from enough. It is also necessary to prepare such thermoelectric materials into thermoelectric components before they can be further assembled into thermoelectric refrigeration systems. .
  • the key to preparing thermoelectric elements is to develop an electrode layer that can match with magnesium-antimony-based thermoelectric materials. So far, there is no report on the electrode layer matched with magnesium antimony-based thermoelectric materials.
  • Some traditional electrode materials such as aluminum, silver, copper, nickel, etc.
  • cannot be closely combined with magnesium-antimony-based thermoelectric materials some have excessive contact resistance, and some may react with the material matrix. The difficulty of preparing electrode materials affects the further application of magnesium-antimony-based thermoelectric materials in devices.
  • the purpose of the present invention is to develop an electrode layer suitable for magnesium-antimony-based thermoelectric materials in view of the limitations and shortcomings of the prior art. Further invented a magnesium-antimony-based thermoelectric component that can replace N-type bismuth telluride and a preparation method thereof.
  • the thermoelectric components prepared by this method which are composed of N-type magnesium-antimony-based thermoelectric materials and P-type bismuth telluride, can achieve the performance of existing bismuth telluride-based thermoelectric refrigeration components, and at the same time achieve a substantial reduction in cost. At present, there is no report about this kind of thermoelectric components and preparation methods in the world.
  • the present invention provides a magnesium-antimony-based thermoelectric element.
  • the magnesium-antimony-based thermoelectric element includes: a magnesium-antimony-based thermoelectric material matrix layer located in the center of the thermoelectric element, a transition layer attached to two surfaces of the matrix layer, and respective The two electrode layers attached to the surfaces of the two transition layers, wherein the transition layer is made of magnesium copper alloy and/or magnesium aluminum alloy, and the electrode layer is made of copper.
  • the composition of the magnesium-copper alloy is Mg m Cu, 0.5 ⁇ m ⁇ 3, and the composition of the magnesium-aluminum alloy is Mg n Al, 0.05 ⁇ n ⁇ 0.95.
  • the composition of the magnesium-antimony-based thermoelectric material is Mg 3.3-x Z x Bi 0.5 Sb 1.5-y Te y , wherein 0 ⁇ x ⁇ 0.1, 0.01 ⁇ y ⁇ 0.05, Z is one or more elements selected from Mn, Ni, Cr and Nb.
  • the thickness of the substrate layer can be adjusted according to actual applications, and usually can be 0.5-2 mm.
  • the thickness of the transition layer may be 2 to 500 ⁇ m, preferably 2 to 100 ⁇ m, and the thickness of the electrode layer may be 2 to 500 ⁇ m, preferably 2 to 100 ⁇ m.
  • the present invention also provides a preparation method of the magnesium-antimony-based thermoelectric element.
  • the preparation method includes: mixing the elements of the transition layer material into a uniform transition layer powder according to the chemical formula ratio, and then mixing the magnesium-antimony-based thermoelectric element
  • the material matrix layer, the transition layer powder, and the copper foil used to form the electrode layer are placed in a mold for spark plasma sintering or pressed in a hot isostatic press to obtain the magnesium antimony-based thermoelectric element; or
  • the preparation method includes: forming the transition layer and the electrode layer on both surfaces of the magnesium-antimony-based thermoelectric material matrix layer by magnetron sputtering and/or thermal spraying methods to prepare the magnesium-antimony-based thermoelectric element .
  • the conditions of the spark plasma sintering include: heating up to 450-550°C at a heating rate of 30-80°C per minute, and keeping the temperature for 1-10 minutes.
  • the magnetron sputtering method may include: fixing the magnesium antimony-based thermoelectric material matrix layer on a magnetron sputtering apparatus having a copper target, a magnesium target and a selective aluminum target
  • a magnesium-copper alloy and/or magnesium-aluminum alloy is deposited on one surface of the matrix layer to form a transition layer, and then only a copper layer is deposited to form an electrode layer; then magnesium-copper alloy and/or magnesium-copper alloy and/or are deposited on the other surface of the matrix layer Or a magnesium-aluminum alloy forms a transition layer, and then only a copper layer is deposited to form an electrode layer to prepare the magnesium-antimony-based thermoelectric element.
  • the thermal spraying method may include: sandblasting the two surfaces of the magnesium-antimony-based thermoelectric material matrix layer with emery, and using flame wire spraying to heat the magnesium-aluminum alloy wire through gas combustion to melt and spray it to the place A transition layer is formed on the surface of the matrix layer. After cooling, flame wire spraying is used to heat the copper wire to melt and spray to the surface of the transition layer through gas combustion. After cooling, the other side is sprayed in the same way to make The magnesium-antimony-based thermoelectric element.
  • the preparation method further comprises preparing the magnesium antimony-based thermoelectric material matrix layer by a spark plasma sintering method.
  • the specific preparation process may include: putting the elemental elements in the magnesium-antimony-based thermoelectric material into a ball milling tank according to the chemical formula ratio and ball milling for 4-24 hours to obtain a uniform powder, and then loading it into a graphite mold for sintering to make the powder into a block.
  • the sintering process is as follows: firstly heat up to 550-650°C at a temperature rise rate of 30-80°C per minute, hold for 1-10 minutes, and then heat up to 750-850°C at a temperature rise rate of 30-80°C per minute. 1 to 10 minutes.
  • the preparation process of the magnesium-antimony-based thermoelectric material is as follows: first, the elemental elements in the material components are put into a ball milling tank according to the chemical formula ratio and ball milled for 10 to 14 hours to obtain uniform powder, and then loaded Into the graphite mold for sintering to make the powder into a block.
  • the sintering process is as follows: firstly heat up to 580-620°C at a heating rate of 45-55°C per minute, hold for 1 to 3 minutes, and then heat up to 780-820°C at a heating rate of 45-55°C per minute, hold for 1 to 3 minute.
  • the magnetron sputtering method includes: first putting the magnesium-antimony-based thermoelectric material matrix layer into a beaker filled with alcohol, cleaning with an ultrasonic cleaner for 5-30 minutes, and then using electricity Air blowing or drying device for drying treatment, after the treatment is completed, fixed in a magnetron sputtering instrument containing copper and magnesium targets, evacuated until the vacuum is less than 0.00066Pa, the magnesium target power is adjusted to 90 ⁇ 110W, and the copper target power is adjusted To 70 ⁇ 80W, the transition layer of magnesium-copper alloy is formed by magnetron sputtering, magnesium and copper are co-deposited for 15-20 minutes, then the magnesium target is turned off, and the copper layer is deposited continuously, and copper is deposited for 20-40 minutes at a power of 90-110W Then turn off the instrument, open the chamber, take out the sample, turn the sample over, fix the sample again, and continue to use the same process to deposit the transition layer and the electrode layer on the other surface of the magnesium-antimony
  • the thermal spraying method includes: cleaning the surface impurities of the above-mentioned matrix material by traditional chemical or physical methods, and then sandblasting with dry emery, and spraying process using traditional flame
  • the wire can be sprayed, that is, burn with gas (the gas can be acetylene, propane or hydrogen, etc.), heat the prepared magnesium-aluminum alloy linear material to melt, and spray it directly on the surface of the material substrate. After the spraying is even, cool to room temperature. Then heat the copper wire to melt, continue spraying on the surface of the transition layer, cool it to room temperature, and then spray the other side with the same process.
  • the present invention also provides a thermoelectric refrigeration device, the thermoelectric refrigeration device comprising an assembled n-type thermoelectric element and a p-type bismuth telluride-based thermoelectric element, wherein the n-type thermoelectric element is the present invention Supplied with magnesium-antimony based thermoelectric elements.
  • the n-type thermoelectric element and the p-type bismuth telluride-based thermoelectric element can be assembled together by a conventional soldering process.
  • the transition layer and electrode layer that can be applied to magnesium-antimony-based thermoelectric materials developed by the invention have important application significance and prospects.
  • This electrode layer enables magnesium-antimony-based thermoelectric materials to enter the market and realize industrialization.
  • the thermoelectric device prepared by the invention has a lower cost, and can also save the rare element tellurium, which is also beneficial for energy conservation and environmental protection.
  • the magnesium-antimony-based thermoelectric material components provided by the present invention can replace the bismuth telluride-based thermoelectric refrigeration devices on the existing market, can realize a new breakthrough in the cost of the existing commercial thermoelectric refrigeration devices, and have great potential for improving economic benefits .
  • Fig. 1 is a schematic diagram of a magnesium-antimony-based thermoelectric element provided by the present invention.
  • the schematic diagram of the magnesium-antimony-based thermoelectric element provided by the present invention is shown in FIG. 1.
  • the magnesium-antimony-based thermoelectric element includes: a magnesium-antimony-based thermoelectric material matrix layer located in the center of the thermoelectric element 1, two transition layers 21 and 22 attached to two surfaces of the matrix layer, and two transition layers attached respectively Two electrode layers 31 and 32 on the surface.
  • the base thermoelectric material, the transition layer powder and the copper foil as the electrode layer in the mold according to the position shown in Figure 1 for sintering.
  • the sintering process is as follows: the heating rate is 50°C per minute, the temperature is kept at 500°C for 5 minutes, and the pressure during the sintering process is 50Mpa.
  • the thickness of the transition layer obtained after sintering is 50 ⁇ m, and the thickness of the electrode layer is 25 ⁇ m. Then the obtained sample is cut into small particles with a size of 1.45mm ⁇ 1.45mm ⁇ 1.20mm, which is the magnesium-antimony-based thermoelectric element of the present invention.
  • thermoelectric element prepared in step (3) and the p-type bismuth telluride-based thermoelectric element with a size of 1.0mm ⁇ 1.0mm ⁇ 1.20mm are assembled by soldering process to produce 127 pairs of thermoelectric arm refrigeration devices. After 12 volts DC voltage, the cold and hot ends can produce a temperature difference of more than 50 °C, which can meet the commercial application standard.
  • step (2) Put the magnesium-antimony-based thermoelectric material matrix layer prepared in step (1) into a beaker full of alcohol, clean it with an ultrasonic cleaner for 20 minutes, then dry it with a hair dryer or a drying device, and then fix it to In a magnetron sputtering apparatus with a copper target and a magnesium target. Evacuate until the vacuum is less than 0.00066Pa, first co-deposit magnesium and copper for about 20 minutes, adjust the power of the magnesium target to 90-110W, and adjust the power of the copper target to 70-80W to form a magnesium-copper alloy transition layer, and then turn off the magnesium target. Continue to deposit the copper layer, as the electrode material, adjust the power to about 75W for about 30 minutes.
  • the copper layer deposition After the copper layer deposition is completed, turn off the instrument, open the chamber and take out the sample. After re-fixing the sample, continue to use the same process to deposit the transition layer and electrode layer on the other surface of the magnesium-antimony-based thermoelectric material matrix layer.
  • the thickness of the transition layer is 2 to 3 ⁇ m, and the thickness of the electrode layer is 3 to 4 ⁇ m. Then the obtained sample is cut into small particles with a size of 1.45mm ⁇ 1.45mm ⁇ 1.20mm, which is the magnesium-antimony-based thermoelectric element of the present invention.
  • thermoelectric element prepared in step (3) and the p-type bismuth telluride-based thermoelectric element with a size of 1.0mm ⁇ 1.0mm ⁇ 1.20mm are assembled by soldering process to produce 127 pairs of thermoelectric arm refrigeration devices. After 12 volts DC voltage, the cold and hot ends can produce a temperature difference of more than 50 °C, which can meet the commercial application standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种镁锑基热电元件及其制备方法和应用,所述镁锑基热电元件包括:位于该热电元件中心的镁锑基热电材料基质层、附着在所述基质层的两个表面的过渡层以及分别附着在两个过渡层表面的两个电极层,其中,所述过渡层的材料为镁铜合金和/或镁铝合金,所述电极层的材料为铜。本发明开发出的能够适用于镁锑基热电材料的过渡层和电极层具有重要的应用意义和前景,此电极层使得镁锑基热电材料有机会进入市场,实现产业化成为可能。本发明制得的热电器件与市场上现有的碲化铋热电器件相比具有更低的成本,同时还能够节约稀有元素碲,对于节约能源,保护环境方面也是有益的。

Description

一种镁锑基热电元件及其制备方法和应用 技术领域
本发明涉及一种镁锑基热电元件及其制备方法和包含该镁锑基热电元件的热电制冷器件。
背景技术
热电材料是能够实现热能和电能直接相互转化的一种功能材料。由热电材料制成的热电元器件具有质量轻、体积小、结构简单、无噪声、零排放、使用寿命长等优点。这对于解决能源危机和环境污染等严峻问题具有重大意义,也因此受到了世界各国的高度重视。
随着新材料设计理念以及器件制备新工艺与新技术的发展,热电材料的性能逐步得到优化与提升。与此同时,热电器件也一定程度上实现了商业化,尤其是在近室温热电制冷器件方面,碲化铋材料得到了较为广泛推广和应用。然而,由于碲化铋材料成本高昂,并且有一定的毒性,限制了这类材料在热电制冷方面进一步的大规模使用。因此,发展新型近室温热电材料与器件是整个热电领域发展的战略需求,也是热电制冷产业发展的瓶颈性问题。
镁锑基合金是一种新型热电材料,从2016年开始成为了热电领域的一个研究热点。科研人员经过大量的研究,通过各种手段使得n型镁锑基热电材料的热电优值得到了很大的提高,室温热电优值ZT已经能够接近或达到0.8。
然而,相比于材料而言,有关镁锑基热电元器件的报道非常少。对于现在广泛应用在汽车空调座椅、环保型冰箱等方面的热电制冷器件,仍然使用的是传统的碲化铋基热电材料。碲化铋基热电材料与镁锑基热电材料相比成本过高,碲、铋等原料的价格远远高于镁锑等原料的价格。在高性能镁锑基热电材料被发现之前,碲化铋基热电材料在热电制冷器件方面的应用是无可替代的。但随着不断研究,镁锑基热电材料的性能也在不断的提高,在室温温区内已经可以和碲化铋基热电材料相当,这为镁锑基热电材料在制冷器件上的应用提供了基础和可能性。
然而想要实现镁锑基热电材料在热电器件中的应用,只有好的热电性能是远远不够的,还需要将这种热电材料制备成热电元器件,才能够将其进一步组装成热电制冷系统。制备热电元件的关键是开发出能与镁锑基热电材料 相匹配的电极层。到目前为止,还没有关于与镁锑基热电材料相匹配的电极层的报道。传统的电极材料(例如铝、银、铜、镍等)有的无法和镁锑基热电材料紧密结合,有的接触电阻过大,有的还会与材料基体发生反应。电极材料的制备困难影响了镁锑基热电材料在器件方面的进一步应用。
因此,亟需开发一种与镁锑基热电材料相匹配的电极层,以实现镁锑基热电材料在热电器件中的应用,从而在保证室温温区内热电制冷性能的同时,降低热电制冷材料的成本,推动热电制冷产业的发展。
发明内容
为了实现镁锑基热电材料在器件方面的应用,节约材料成本,提高经济效益,本发明的目的是针对现有技术存在的局限性和缺点,开发出适用于镁锑基热电材料的电极层,进一步发明一种可以替代N型碲化铋的、基于镁锑基的热电元器件及其制备方法。利用此方法制备的,由N型镁锑基热电材料和P型碲化铋搭配组成的热电元器件能够达到现有碲化铋基热电制冷元器件的性能,同时实现成本上的大幅降低。目前国际上尚未发现有关这种热电元器件及制备方法的报道。
本发明提供了一种镁锑基热电元件,所述镁锑基热电元件包括:位于该热电元件中心的镁锑基热电材料基质层、附着在所述基质层的两个表面的过渡层以及分别附着在两个过渡层表面的两个电极层,其中,所述过渡层的材料为镁铜合金和/或镁铝合金,所述电极层的材料为铜。
根据本发明提供的镁锑基热电元件,其中,所述镁铜合金的组成为Mg mCu,0.5≤m≤3,所述镁铝合金的组成为Mg nAl,0.05≤n≤0.95。
根据本发明提供的镁锑基热电元件,其中,所述镁锑基热电材料的组成为Mg 3.3-xZ xBi 0.5Sb 1.5-yTe y,其中,0≤x≤0.1,0.01≤y≤0.05,Z为选自Mn、Ni、Cr和Nb中的一种或多种元素。
根据本发明提供的镁锑基热电元件,其中,所述基质层的厚度可以根据实际应用而进行调整,通常可以为0.5~2mm。所述过渡层的厚度可以为2~500μm,优选为2~100μm,电极层厚度可以为2~500μm,优选为2~100μm。
根据本发明提供的镁锑基热电元件,其中,在所述基质层的上下两个表面上分别具有过渡层和电极层,位于上表面的过渡层的厚度与位于下表面的过渡层的厚度可以相同或不同;位于上表面的电极层的厚度与位于下表面的电极层的厚度可以相同或不同。所述过渡层与电极层的厚度可以相同或不同。
另一方面,本发明还提供了所述镁锑基热电元件的制备方法,所述制备方法包括:将过渡层材料各元素单质按化学式比例混合成均匀的过渡层粉末,然后将镁锑基热电材料基质层、过渡层粉末以及用于构成电极层的铜箔置于模具中进行放电等离子烧结或者置于热等静压机中压制,制得所述镁锑基热电元件;或者
所述制备方法包括:通过磁控溅射和/或热喷涂方法在所述镁锑基热电材料基质层的两个表面分别形成所述过渡层和电极层,制得所述镁锑基热电元件。
根据本发明提供的制备方法,其中,所述放电等离子烧结的条件包括:以每分钟30~80℃的升温速率升温到450~550℃,保温1~10分钟。
根据本发明提供的制备方法,其中,所述磁控溅射方法可以包括:将所述镁锑基热电材料基质层固定在具有铜靶、镁靶以及选择性的铝靶的磁控溅射仪中,先在所述基质层的一个表面沉积镁铜合金和/或镁铝合金形成过渡层,再仅沉积铜层形成电极层;然后在所述基质层的另一个表面沉积镁铜合金和/或镁铝合金形成过渡层,再仅沉积铜层形成电极层,制得所述镁锑基热电元件。
所述热喷涂方法可以包括:用金刚砂对所述镁锑基热电材料基质层的两个表面进行喷砂处理,采用火焰线材喷涂的方法通过燃气燃烧将镁铝合金线加热至融化并喷到所述基质层的表面形成过渡层,冷却后再采用火焰线材喷涂的方法通过燃气燃烧将铜线加热至融化并喷到所述过渡层的表面,冷却后再用同样的方式喷涂另一面,制得所述镁锑基热电元件。
根据本发明提供的制备方法,其中,所述制备方法还包括通过放电等离子烧结法制备所述镁锑基热电材料基质层。具体的制备过程可以包括:将镁锑基热电材料中各元素单质按化学式比例放入球磨罐中球磨4~24小时得到均匀粉末,然后装入石墨模具进行烧结使粉末成为块体。优选地,烧结工艺为:以每分钟30~80℃的升温速率先升温到550~650℃,保温1~10分钟,再以每分钟30~80℃的升温速率升温至750~850℃,保温1~10分钟。
在一种最优选的制备方案中,所述镁锑基热电材料的制备工艺为:首先将材料组分中各元素单质按化学式比例放入球磨罐中球磨10~14小时得到均匀粉末,然后装入石墨模具进行烧结使粉末成为块体。烧结工艺为:以每分钟45~55℃的升温速率先升温到580~620℃,保温1~3分钟,再以每分钟45~55℃的升温速率升温至780~820℃,保温1~3分钟。
在一种最优选的制备方案中,所述磁控溅射方法包括:首先把镁锑基 热电材料基质层放入盛满酒精的烧杯中,用超声波清洗仪清洗5~30分钟,然后用电吹风或烘干装置进行干燥处理,处理完成后固定到含有铜靶和镁靶的磁控溅射仪中,抽真空至真空度小于0.00066Pa,镁靶功率调至90~110W,铜靶功率调至70~80W,通过磁控溅射形成镁铜合金的过渡层,共沉积镁和铜15~20分钟后关掉镁靶,继续沉积铜层,以90~110W的功率沉积20~40分钟铜层,形成电极层;然后关闭仪器,开舱取出样品,把样品翻过来,重新固定样品,继续用同样的工艺在镁锑基热电材料基质层的另一个表面沉积过渡层和电极层。
在一种最优选的制备方案中,所述热喷涂方法包括:通过传统的化学或物理方法将上述基体材料的表面杂质清理干净,然后用干燥的金刚砂进行喷砂处理,喷涂工艺用传统的火焰线材喷涂即可,即用燃气(燃气可以选用乙炔、丙烷或者氢气等)燃烧,将制作好的镁铝合金线状材料加热至融化,直接喷到材料基底表面,喷涂均匀后,冷却至室温,然后将铜丝加热至融化,继续喷涂到过渡层表面,冷却至室温,然后用同样的工艺喷涂另一面即可。
再一方面,本发明还提供了一种热电制冷器件,所述热电制冷器件包括组装在一起的n型热电元件和p型碲化铋基热电元件,其中,所述n型热电元件为本发明提供的镁锑基热电元件。
根据本发明提供的制备方法,其中,可以通过常规锡焊工艺将所述n型热电元件与p型碲化铋基热电元件组装在一起。
本发明开发出的能够适用于镁锑基热电材料的过渡层和电极层具有重要的应用意义和前景,此电极层使得镁锑基热电材料有机会进入市场,实现产业化成为可能。本发明制得的热电器件与市场上现有的碲化铋热电器件相比具有更低的成本,同时还能够节约稀有元素碲,对于节约能源,保护环境方面也是有益的。本发明提供的镁锑基热电材料元器件可以替代现有市场上的碲化铋基热电制冷器件,能够实现对现有商业化热电制冷器件成本上的一个新突破,在提升经济效益方面潜力巨大。
附图的简要说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为本发明提供的镁锑基热电元件的示意图。
实施发明的最佳方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。
本发明提供的镁锑基热电元件的示意图如图1所示。所述镁锑基热电元件包括:位于该热电元件中心的镁锑基热电材料基质层1、附着在所述基质层的两个表面的两个过渡层21和22以及分别附着在两个过渡层表面的两个电极层31和32。
实施例1
(1)将Mg屑、Mn粉、Bi颗粒、Sb颗粒、Te粉按照化学式Mg 3.275Mn 0.025Bi 0.5Sb 1.49Te 0.01称量后球磨12小时得到混合物粉末,通过放电等离子烧结成厚度1.2mm,直径12.7mm的圆柱状块体材料。烧结工艺为:升温速率50℃每分钟,600℃保温2分钟后再升温至800℃保温两分钟后随炉冷却,烧结过程中压力为50Mpa。
(2)将Mg屑和Cu粉按照化学式Mg 2Cu称量后球磨6小时得到过渡层粉末。
(3)将基体热电材料、过渡层粉末和作为电极层的铜箔按照图1所示的位置摆放在模具中进行烧结。烧结工艺为:升温速率50℃每分钟,500℃保温5分钟,烧结过程中压力为50Mpa。烧结完毕后得到的过渡层厚度为50μm,电极层厚度为25μm。再将得到的样品切割成尺寸为1.45mm×1.45mm×1.20mm的小颗粒,即为本发明的镁锑基热电元件。
(4)将步骤(3)制得的镁锑基热电元件与尺寸为1.0mm×1.0mm×1.20mm的p型碲化铋基热电元件经过焊锡工艺组装制得127对热电臂制冷器件,通过12伏特直流电压后,冷热端能够产生50℃以上的温差,可以达到商业应用标准。
实施例2
(1)将Mg屑、Mn粉、Bi颗粒、Sb颗粒、Te粉按照化学式Mg 3.275Mn 0.025Bi 0.5Sb 1.49Te 0.01称量后球磨12小时得到混合物粉末,通过放电等离子烧结成厚度1.2mm,直径12.7mm的圆柱状块体镁锑基热电材料基质层。烧结工艺为:升温速率50℃每分钟,600℃保温2分钟后再升温至800℃ 保温两分钟后随炉冷却,烧结过程中压力为50Mpa。
(2)将步骤(1)制得的镁锑基热电材料基质层放入盛满酒精的烧杯中,用超声波清洗仪清洗20分钟,然后用电吹风或烘干装置进行干燥处理,然后固定到具有铜靶和镁靶的磁控溅射仪中。抽真空至真空度小于0.00066Pa,先共沉积镁和铜20分钟左右,镁靶功率调至90~110W,铜靶功率调至70~80W,形成镁铜合金过渡层,之后关掉镁靶,继续沉积铜层,作为电极材料,功率调至75W左右,时间30分钟左右。铜层沉积完成后,关掉仪器,开舱取出样品,重新固定样品后,继续用同样的工艺在镁锑基热电材料基质层的另一个表面沉积过渡层和电极层。过渡层厚度为2~3μm,电极层厚度为3~4μm。再将得到的样品切割成尺寸为1.45mm×1.45mm×1.20mm的小颗粒,即为本发明的镁锑基热电元件。
(4)将步骤(3)制得的镁锑基热电元件与尺寸为1.0mm×1.0mm×1.20mm的p型碲化铋基热电元件经过焊锡工艺组装制得127对热电臂制冷器件,通过12伏特直流电压后,冷热端能够产生50℃以上的温差,可以达到商业应用标准。
虽然已经说明并描述了本发明的具体实施方案,但是对本领域技术人员显而易见的是,在不背离本发明的精神和范围的前提下,可作出各种其它变化和修改。因此,在所附权利要求中,意图涵盖在本发明的范围内的所有这样的变化和修改。

Claims (10)

  1. 一种镁锑基热电元件,所述镁锑基热电元件包括:位于该热电元件中心的镁锑基热电材料基质层、附着在所述基质层的两个表面的过渡层以及分别附着在两个过渡层表面的两个电极层,其中,所述过渡层的材料为镁铜合金和/或镁铝合金,所述电极层的材料为铜。
  2. 根据权利要求1所述的镁锑基热电元件,其中,所述镁铜合金的组成为Mg mCu,0.5≤m≤3,所述镁铝合金的组成为Mg nAl,0.05≤n≤0.95。
  3. 根据权利要求1或2所述的镁锑基热电元件,其中,所述镁锑基热电材料的组成为Mg 3.3-xZ xBi 0.5Sb 1.5-yTe y,其中,0≤x≤0.1,0.01≤y≤0.05,Z为选自Mn、Ni、Cr和Nb中的一种或多种元素。
  4. 根据权利要求1至3中任一项所述的镁锑基热电元件,其中,所述过渡层的厚度为2~500μm,优选为2~100μm,电极层厚度为2~500μm,优选为2~100μm。
  5. 权利要求1至4中任一项所述镁锑基热电元件的制备方法,所述制备方法包括:将过渡层材料各元素单质按化学式比例混合成均匀的过渡层粉末,然后将镁锑基热电材料基质层、过渡层粉末以及用于构成电极层的铜箔置于模具中进行放电等离子烧结或者置于热等静压机中压制,制得所述镁锑基热电元件;或者
    所述制备方法包括:通过磁控溅射和/或热喷涂方法在所述镁锑基热电材料基质层的两个表面分别形成所述过渡层和电极层,制得所述镁锑基热电元件。
  6. 根据权利要求5所述的制备方法,其中,所述放电等离子烧结的条件包括:以每分钟30~80℃的升温速率升温到450~550℃,保温1~10分钟。
  7. 根据权利要求5所述的制备方法,其中,所述磁控溅射方法包括:将所述镁锑基热电材料基质层固定在具有铜靶、镁靶以及选择性的铝靶的磁控溅射仪中,先在所述基质层的一个表面沉积镁铜合金和/或镁铝合金形成过渡层,再仅沉积铜层形成电极层;然后在所述基质层的另一个表面沉积镁铜合金和/或镁铝合金形成过渡层,再仅沉积铜层形成电极层,制得所述镁锑基热电元件;
    优选地,所述热喷涂方法包括:用金刚砂对所述镁锑基热电材料基质层的两个表面进行喷砂处理,然后采用火焰线材喷涂的方法通过燃气燃烧将镁铝合金线加热至融化并喷到所述基质层的表面形成过渡层,冷却后再采用火焰线材喷涂的方法通过燃气燃烧将铜线加热至融化并喷到所述过渡层的表面,冷却后再用同样的方式喷涂另一面,制得所述镁锑基热电元件。
  8. 根据权利要求5至7中任一项所述的制备方法,其中,所述制备方法还包括通过放电等离子烧结法制备所述镁锑基热电材料基质层:将镁锑基热电材料中各元素单质按化学式比例放入球磨罐中球磨4~24小时得到均匀粉末,然后装入石墨模具进行烧结使粉末成为块体。
  9. 根据权利要求8所述的制备方法,其中,烧结工艺为:以每分钟30~80℃的升温速率先升温到550~650℃,保温1~10分钟,再以每分钟30~80℃的升温速率升温至750~850℃,保温1~10分钟。
  10. 一种热电制冷器件,所述热电制冷器件包括组装在一起的n型热电元件和p型碲化铋基热电元件,其中,所述n型热电元件为权利要求1至4中任一项所述的镁锑基热电元件或者按照权利要求5至9中任一项所述方法制得的镁锑基热电元件。
PCT/CN2019/075799 2019-02-22 2019-02-22 一种镁锑基热电元件及其制备方法和应用 WO2020168531A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075799 WO2020168531A1 (zh) 2019-02-22 2019-02-22 一种镁锑基热电元件及其制备方法和应用
US17/299,779 US11404621B2 (en) 2019-02-22 2019-02-22 Mg-Sb-based thermoelement, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075799 WO2020168531A1 (zh) 2019-02-22 2019-02-22 一种镁锑基热电元件及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020168531A1 true WO2020168531A1 (zh) 2020-08-27

Family

ID=72144867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075799 WO2020168531A1 (zh) 2019-02-22 2019-02-22 一种镁锑基热电元件及其制备方法和应用

Country Status (2)

Country Link
US (1) US11404621B2 (zh)
WO (1) WO2020168531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212476A4 (en) * 2020-09-10 2024-03-13 Nat Inst Materials Science THERMOELECTRIC MATERIAL, ITS PRODUCTION METHOD AND THERMOELECTRIC ENERGY GENERATION ELEMENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695774A (zh) * 2016-02-20 2016-06-22 北京工业大学 Mg3Sb2基热电材料的制备方法
CN106986315A (zh) * 2016-01-21 2017-07-28 中国科学院上海硅酸盐研究所 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN108701749A (zh) * 2016-02-24 2018-10-23 三菱综合材料株式会社 镁系热电转换材料的制造方法、镁系热电转换元件的制造方法、镁系热电转换材料、镁系热电转换元件及热电转换装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121953B2 (en) * 2015-10-27 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion material
JP6798339B2 (ja) * 2016-02-24 2020-12-09 三菱マテリアル株式会社 マグネシウム系熱電変換材料の製造方法、マグネシウム系熱電変換素子の製造方法、マグネシウム系熱電変換材料、マグネシウム系熱電変換素子、熱電変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986315A (zh) * 2016-01-21 2017-07-28 中国科学院上海硅酸盐研究所 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN105695774A (zh) * 2016-02-20 2016-06-22 北京工业大学 Mg3Sb2基热电材料的制备方法
CN108701749A (zh) * 2016-02-24 2018-10-23 三菱综合材料株式会社 镁系热电转换材料的制造方法、镁系热电转换元件的制造方法、镁系热电转换材料、镁系热电转换元件及热电转换装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4212476A4 (en) * 2020-09-10 2024-03-13 Nat Inst Materials Science THERMOELECTRIC MATERIAL, ITS PRODUCTION METHOD AND THERMOELECTRIC ENERGY GENERATION ELEMENT

Also Published As

Publication number Publication date
US11404621B2 (en) 2022-08-02
US20220020909A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN102449790B (zh) 涂覆有保护层的热电材料
CN101421185B (zh) 用于热电应用的掺杂碲化铅
US7317159B2 (en) Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
GB2416244A (en) Thermoelectric element and thermoelectric module
TW201042788A (en) Thermoelectric module with insulated substrate
CA2996898C (en) Thermoelectric conversion element and thermoelectric conversion module
WO2021036544A1 (zh) 一种镁锑基热电元件及其制备方法和应用
WO2020168531A1 (zh) 一种镁锑基热电元件及其制备方法和应用
CN111613715B (zh) 一种镁锑基热电元件及其制备方法和应用
CN1962416A (zh) 一种碲化铋基热电材料的制备工艺
CN106399937A (zh) 一种制备择优取向碲化铋热电薄膜的方法
CN103555986B (zh) 一种(Bi0.8Sb0.2)2Te3纳米热电材料的制备方法
Pei et al. Design and Fabrication of Segmented GeTe/(Bi, Sb) 2Te3 Thermoelectric Module with Enhanced Conversion Efficiency
CN110429172A (zh) 一种热电器件及其制备方法
CN105220119A (zh) 一种Ag掺杂Mg2Si基热电薄膜及其制备方法
JP4457215B2 (ja) 熱電発電機能を有する管材
CN112376028A (zh) 一种Sn掺杂Ge2Sb2Te5热电薄膜及其制备方法
CA3203562C (en) Silicon-based anode material and preparation method thereof, lithium ion battery
CN105200382B (zh) 一种Ge掺杂Mg2Si基热电薄膜及其制备方法
CN109811302B (zh) 一种n型碲化铋基热电薄膜的制备方法
WO2024060115A1 (zh) 一种含防护层的热电器件及制备方法
CN105220118B (zh) 一种Al掺杂Mg2Si基热电薄膜及其制备方法
CN115165088A (zh) 一种基于反常能斯特效应的激光功率探头及其制作方法
CN117535614A (zh) 一种先驱体陶瓷-半导体粉末复合高温热电涂层及其制备方法
CN113488578A (zh) 一种具有高转换效率的低品位废热回收锑化物热电模块及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19916378

Country of ref document: EP

Kind code of ref document: A1