WO2020168525A1 - 放射治疗系统及其验证装置、验证方法 - Google Patents

放射治疗系统及其验证装置、验证方法 Download PDF

Info

Publication number
WO2020168525A1
WO2020168525A1 PCT/CN2019/075761 CN2019075761W WO2020168525A1 WO 2020168525 A1 WO2020168525 A1 WO 2020168525A1 CN 2019075761 W CN2019075761 W CN 2019075761W WO 2020168525 A1 WO2020168525 A1 WO 2020168525A1
Authority
WO
WIPO (PCT)
Prior art keywords
verification
phantom
slot
image
positioning member
Prior art date
Application number
PCT/CN2019/075761
Other languages
English (en)
French (fr)
Inventor
王雯
闫浩
苟天昌
李金升
李久良
高凡
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN202010398582.9A priority Critical patent/CN111588996B/zh
Priority to CN201980000893.0A priority patent/CN111836665B/zh
Priority to PCT/CN2019/075761 priority patent/WO2020168525A1/zh
Priority to US17/432,901 priority patent/US11819711B2/en
Priority to CN202210842654.3A priority patent/CN115068844A/zh
Publication of WO2020168525A1 publication Critical patent/WO2020168525A1/zh
Priority to US17/710,928 priority patent/US20220219018A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom

Definitions

  • the invention relates to the technical field of radiotherapy, in particular to a radiotherapy system and its verification device and verification method.
  • the radiotherapy system generally includes a rotating gantry and a treatment head arranged on the rotating gantry.
  • the rays emitted from the treatment hair can be used to treat the target point of the patient's affected part.
  • the beam focus ie, the treatment isocenter
  • the beam focus should coincide with the mechanical rotation isocenter of the rotating gantry.
  • the target point is set to the position of the isocenter of the mechanical rotation, the beam focus can be accurately irradiated to the target point, thereby realizing precise treatment.
  • the target point is set to the mechanical rotation isocenter, the beam focus may not be accurately irradiated to this At the location of the target point, precise treatment cannot be achieved.
  • a verification device for verifying the deviation between the treatment isocenter and the mechanical rotation isocenter such as a MIMI Phantom.
  • the verification device can be used to verify whether the treatment isocenter coincides with the mechanical rotation isocenter (that is, whether there is a deviation).
  • the position of the treatment bed can be adjusted in time according to the deviation, so as to improve the coincidence accuracy of the isocenter of mechanical rotation and the isocenter of equipment.
  • the verification device in the related art can only verify whether the isocenter of the mechanical rotation and the isocenter of the equipment overlap, the function is relatively single.
  • This application provides a radiotherapy system and a verification device and a verification method thereof, which can solve the problem of relatively single function of the verification device in the related art.
  • the technical solution is as follows:
  • a verification device for a radiotherapy system includes at least two of the following verification phantoms: a first verification phantom, a second verification phantom, and a third verification phantom;
  • the first verification phantom has a slot for placing a film
  • a first positioning member is provided at the center of the second verification phantom
  • a second positioning member is provided at the center of the third verification phantom.
  • the center point of the first verification phantom, the center point of the first positioning member and the center point of the second positioning member are coaxial.
  • the slots include: a first slot and a second slot;
  • the insertion surface of the first slot is perpendicular to the insertion surface of the second slot, and the center point of the insertion surface of the first slot and the center point of the insertion surface of the second slot are both aligned with the The center points of the first verification phantom coincide.
  • the opening of the first slot and the opening of the second slot are both located on the first outer surface of the first verification mold body.
  • the first verification mold body is provided with a first through hole for connecting the outer surface of the first verification mold body with the first slot, and is used to connect the first verification mold body to the first slot.
  • a second through hole through which the outer surface of the mold body communicates with the second slot;
  • the extending direction of the first through hole intersects the insertion surface of the first slot, and the intersection of the first through hole and the insertion surface of the first slot is the insertion surface of the first slot.
  • the extending direction of the second through hole intersects the insertion surface of the second slot, and the intersection of the second through hole and the insertion surface of the second slot is the insertion surface of the second slot The center point.
  • each group of the calibration lines includes two mutually perpendicular calibration lines, and each group of the calibration lines includes two calibration lines
  • the intersection point of is a target point, and each of the target points in the at least three sets of calibration lines is coplanar;
  • the two sets of calibration lines are respectively set on two opposite sides of the second verification phantom, and one set of the calibration lines is set far away from the second verification phantom.
  • a plurality of third positioning members are further provided in the second verification mold body;
  • the plurality of third positioning elements are not coplanar, and the number of the third positioning elements is not less than four.
  • the distances between any two of the third positioning elements are equal, and the distances between each of the third positioning elements and the first positioning elements are equal.
  • the material of the first positioning member and the material of the third positioning member are at least one of the following materials: aluminum, Teflon, glass, and ceramic.
  • the third verification mold body is a housing with a hollow inside, a second positioning member pipe is arranged inside the housing, and the second positioning member is arranged in the second positioning member pipe.
  • the material of the shell of the first verification phantom and/or the material of the shell of the second verification phantom and/or the material of the shell of the third verification phantom are all: organic glass.
  • the material of the second positioning member is metal tungsten.
  • the verification device includes: in a case where the verification phantom includes the third verification phantom, the third verification phantom and the first verification phantom or the second verification phantom
  • the body can be detached and connected.
  • the verification device includes: the first verification phantom, the second verification phantom, and the third verification phantom;
  • the first verification phantom, the second verification phantom, and the third verification phantom are sequentially arranged along the length direction of the treatment bed.
  • the verification device further includes: a base;
  • At least one of the first verification phantom, the second verification phantom, and the third verification phantom is arranged on the base.
  • a radiotherapy system in another aspect, includes the verification device as described in the above aspect.
  • a verification method for a radiotherapy system including:
  • At least one of the first verification process, the second verification process, and the third verification process At least one of the first verification process, the second verification process, and the third verification process;
  • the first verification process includes:
  • the first image and the second image are after the two films inserted in the slot of the first verification phantom are respectively irradiated with a beam, and then the irradiated Obtained by scanning the two films separately;
  • the second verification process includes:
  • each of the third images is an image obtained by image collection of the first positioning member
  • the third verification process includes:
  • the actual coordinates of the beam focus are determined, and the deviation of the treatment isocenter and the mechanical rotation isocenter is determined according to the actual coordinates of the beam focus.
  • a verification device for a radiotherapy system includes:
  • a processor and a memory and instructions are stored in the memory, and the instructions are loaded and executed by the processor to implement the verification method of the radiotherapy system as described in the above aspects.
  • a storage medium stores instructions, and when the storage medium runs on a processing component, the processing component executes the verification method of the radiation therapy system as described in the above aspect.
  • the embodiments of the present invention provide a radiotherapy system and its verification device and verification method. Since the verification device includes at least two verification phantoms among the first verification phantom, the second verification phantom and the third verification phantom that can implement different functions, the verification device can implement more functions. Compared with the verification device that can only implement a single function in the related art, the verification device provided by the embodiment of the present invention has more abundant functions.
  • Figure 1 is a schematic structural diagram of a verification device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a structure of the first verification phantom in the verification device provided by the embodiment of the present invention
  • FIG. 3 is a side view of the first verification phantom in the verification device provided by the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a structure of a second verification phantom in the verification device provided by an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of the structure of the second verification phantom in the verification device provided by the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a third verification phantom in the verification device provided by an embodiment of the present invention.
  • Figure 7 is a side view of a verification device provided by an embodiment of the present invention.
  • Figure 8 is a top view of a verification device provided by an embodiment of the present invention.
  • Figure 9 is a left side view of a verification device provided by an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method of a first verification process provided by an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for a second verification process provided by an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for a second verification process according to an embodiment of the present invention.
  • FIG. 13 is a block diagram of a first verification module in a verification device provided by an embodiment of the present invention.
  • FIG. 14 is a block diagram of a second verification module in a verification device provided by an embodiment of the present invention.
  • Fig. 15 is a block diagram of a third verification module in a verification device provided by an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a verification device for a radiotherapy system provided by an embodiment of the present invention.
  • the verification device may include: at least two verification phantoms among the first verification phantom 10, the second verification phantom 20 and the third verification phantom 30.
  • the verification device shown in FIG. 1 includes: a first verification phantom 10, a second verification phantom 20, and a third verification phantom 30.
  • the first verification phantom 10 has a slot 101 for placing a film.
  • a first positioning member 40 may be provided at the center of the second verification mold body 20.
  • a second positioning member 50 may be provided at the center of the third verification mold body 30.
  • the center point of the first verification mold body 10, the center point of the first positioning member 40 and the center point of the second positioning member 50 may be coaxial, that is, the center point of the first verification mold body 10, the first The center point of the positioning member 40 and the center point of the second positioning member 50 may be located on the same axis.
  • Figure 1 shows the axis X.
  • both the first verification phantom 10 and the third verification phantom 30 can be used to verify the deviation between the treatment isocenter and the mechanical rotation isocenter.
  • the treatment isocenter may also be referred to as nuclear physics, etc. Center point.
  • the second verification phantom 20 can be used to implement at least one of the following functions: verifying the deviation of the mechanical rotation isocenter, calibrating geometric parameters (for example, detecting whether the position of the laser light is deviated, verifying the installation of the image acquisition component Errors, etc.) and verify the accuracy of the image-guided positioning.
  • the verification device includes a first verification phantom and a second verification phantom, or a second verification phantom and a third verification phantom, or a first verification phantom, a second verification phantom, and a third verification phantom, which can realize different functions.
  • the verification device has more functions than the verification device that can only realize a single function in related technologies.
  • the verification device includes a first verification phantom and a third verification phantom that realize the same function, the verification device has a higher reliability of verification deviation.
  • the verification device is used in advance to verify the deviation between the treatment isocenter and the mechanical rotation isocenter, or to verify the deviation of the mechanical rotation isocenter, to detect whether there is a deviation in the position of the laser light, and to verify the performance of the image acquisition component
  • the installation error and the accuracy of the positioning of the verification image guidance can both enable accurate positioning of the patient according to the verification result during radiotherapy, thereby improving the reliability of radiotherapy.
  • the first verification phantom 10 has a slot 101 for placing the film, when the first verification phantom 10 is used to verify the deviation between the treatment isocenter and the mechanical rotation isocenter, it is only necessary to insert the film The slot 101 is sufficient.
  • the verification device provided by the present invention is more convenient to operate.
  • the film cassette with the film inserted in the related technology needs to be extracted from the verification phantom multiple times, after long-term use, there may be wear between the film cassette and the verification phantom, which may affect the center point deviation of detection and treatment. Accuracy. Therefore, the reliability of the verification device provided by the present invention is also higher.
  • by integrating multiple functions into the second verification phantom 20 it is also possible to save production costs on the premise of enriching the functions of the verification device.
  • the verification device of the radiation therapy system provided by the embodiment of the present invention also It may include other verification phantoms, which may be the same verification phantom as the above-mentioned first verification phantom, second verification phantom, or third verification phantom, or other types of verification phantoms.
  • the embodiment of the present invention provides a verification device for a radiotherapy system. Since the verification device includes at least two verification phantoms among the first verification phantom, the second verification phantom and the third verification phantom that can implement different functions, the verification device can implement more functions. Compared with the verification device that can only realize a single function in the related art, the verification device provided by the present invention has more functions.
  • the radiotherapy system may include: a control host, an image server, an image acquisition component, a laser lamp, a radiation source, a treatment bed, and a scanner.
  • the control host can include an upper computer and a lower computer.
  • the image acquisition component may include a bulb and a detector arranged opposite to the bulb, and may also include a detector arranged opposite to the radiation source, of course, a detector arranged opposite to the bulb and a detector arranged opposite to the radiation source It can be the same detector.
  • the image server can also be connected to the control host or the image server can be directly integrated in the control host.
  • the laser light may be a cross-line laser light (that is, the rays emitted by the laser light are cross-shaped rays).
  • the radiation source can emit radiation (such as ⁇ -ray or X-ray) to the first verification phantom 10 and the third verification phantom 30, and the bulb included in the image acquisition component can emit radiation to the second verification phantom 20.
  • the radioactive source emits radiation to the first verification phantom 10
  • the therapist can take out the film in the first verification phantom 10, and scan the irradiated film with a scanner, so as to make the focal spot formed on the film Show up. Then, the treating physician can upload the image containing the focal spot to the image server.
  • a detector disposed opposite to the radiation source can receive the radiation emitted by the radiation source and collect images based on the radiation.
  • the detector disposed opposite to the bulb can receive the rays emitted by the radiation source, and collect images based on the rays. After that, the detector can send the collected images to the image server.
  • the image server can analyze the acquired images (such as determining the coordinates of the center point of the received image, and determining the deviation between the treatment isocenter and the mechanical rotation isocenter), and send the analysis results to the control host. Furthermore, the control host can directly adjust the position of the treatment bed according to the analysis result (such as deviation).
  • FIG. 2 is a schematic structural diagram of the first verification phantom in the verification device provided by the embodiment of the present invention.
  • the slot 101 of the first verification phantom 10 may include: a first slot 1011 and a second slot 1012.
  • the insertion surface of the first slot 1011 may be perpendicular to the insertion surface of the second slot 1012, and the center point of the insertion surface of the first slot 1011 and the center point of the insertion surface of the second slot 1012 are both aligned with the The center points of the first verification phantom 10 coincide.
  • a film can be inserted into the first slot 1011, and the first verification phantom 10 in the verification phantom Align the center with the mechanical isocenter, and then the radiation source (the initial rotation angle of the gantry can be 0 degrees) irradiates the first verification phantom 10, thereby forming a focal spot on the film inserted in the first slot 1011 to treat
  • the doctor takes out the film inserted in the first slot 1011, and then inserts another film into the second slot 1012, and the radiation source (the rotation angle of the frame can be 90 degrees) irradiates the first verification phantom 10 Therefore, a focal spot is formed on the film inserted in the second slot 1012, and the treating physician can take out the film inserted in the second slot 1011.
  • the image server can analyze the two images containing the focal spot to obtain the actual coordinates of the beam focus, and according to the actual coordinates of the beam focus and The coordinates of the mechanical isocenter point to determine the deviation between the treatment isocenter point and the mechanical rotation isocenter point. After that, the image server can send the deviation to the control host, so that the control host adjusts the position of the treatment bed according to the deviation. In addition, the control host can also store the deviation, and accurately position the patient based on the deviation during radiotherapy.
  • the opening K1 of the first slot 1011 and the opening K2 of the second slot 1012 may both be located on the first outer surface M1 of the first verification mold body 10.
  • the film By arranging the openings of the two slots on the same outer surface, the film can be inserted and taken easily.
  • an extraction groove A may be provided at the junction of the opening K1 of the first slot 1011 and the opening K2 of the second slot 1012.
  • the extraction groove A may be a groove recessed near the intersection of the two slots.
  • the extraction groove A may communicate with both the first slot 1011 and the second slot 1012.
  • the therapist can insert or extract the film from the extraction groove A.
  • the cross section of the extraction groove A may be circular, or the cross section of the extraction groove A may also be other shapes, such as a rectangle or a triangle.
  • the cross section is a plane parallel to the first outer surface M1.
  • the extraction groove A may be disposed at the intersection of the first slot 1011 and the second slot 1012 on the first outer surface M1.
  • the extraction groove A can be set at the center of the first outer surface M1.
  • the film inserted in the slot can use auto-developing no-clean film.
  • the size of the film inserted in the slot can match the size of the slot without shaking, that is, the size of the film inserted into the first slot 1011 can match the size of the first slot 1011, and it can be inserted to
  • the size of the film in the second slot 1012 can match the size of the second slot 1012.
  • the shape of the film may also match the overall shape formed by the first slot 1011 and the second slot 1012.
  • the film may be a film composed of two sub-films that are perpendicular and intersecting each other.
  • the size of the film before inserting the film into the slot, the size of the film may be cut to a size matching the slot.
  • the size of the film By setting the size of the film to match the size of the slot, it can be ensured that the film inserted into the slot will not shake, and the reliability of verifying the deviation of the treatment isocenter and mechanical rotation isocenter can be improved.
  • Fig. 4 is a schematic diagram of another structure of the first verification phantom 10 in the verification device provided by the embodiment of the present invention.
  • the first verification mold body 10 may also be provided with a first through hole T1 for connecting the outer surface of the first verification mold body 10 with the first slot 1011, and a first through hole T1 for connecting A second through hole T2 through which the outer surface of the first verification mold body 10 is in communication with the second slot 1012.
  • the extending direction of the first through hole T1 intersects with the insertion surface of the first slot 1011, and the intersection of the first through hole T1 and the insertion surface of the first slot 1011 is the point of the insertion surface of the first slot 1011 Center point.
  • the extending direction of the second through hole T2 intersects the insertion surface of the second slot 1012, and the intersection of the second through hole T2 and the insertion surface of the second slot 1012 is also the center of the insertion surface of the second slot 1012 point.
  • a first through hole T1 is provided on one side of the first verification mold body 10; a second through hole T2 is provided on the top surface.
  • the extension direction of the first through hole T1 is perpendicular to the insertion surface of the first slot 1011, and the extension direction of the second through hole T1 is perpendicular to the insertion surface of the second slot 1012.
  • a needle or a colored pen core can be used to pass through the first through hole T1, and the film inserted in the first slot 1011 Mark the center; and mark the center of the film inserted in the second slot 1012 through the second through hole T2. Then, the image of the focal spot formed in the two films is obtained through the radiation source in the image acquisition component and the analysis of the scanner. Since at this time, the center point of the first verification phantom 10 theoretically coincides with the mechanical rotation isocenter, the mark can be used as a mechanical isocenter mark. In turn, it is convenient for the control host to determine the deviation between the subsequent mechanical isocenter and the treatment isocenter, thereby improving the accuracy and efficiency of determining the deviation.
  • the first verification phantom 10 may be a solid structure, and as shown in FIGS. 1, 2 and 4, the shape of the first verification phantom 10 may be a cube. Alternatively, the first verification phantom 10 may also be a structure of other shapes, for example, it may be a prism. The embodiment of the present invention does not limit the shape of the first verification phantom 10.
  • FIG. 5 is a schematic diagram of a structure of the second verification phantom 20 in the verification device provided by the embodiment of the present invention.
  • the outer surface of the second verification phantom 20 may be provided with at least three sets of calibration lines (for example, FIG. 5 only shows three sets of calibration lines), and each set of calibration lines includes two sets of calibration lines perpendicular to each other.
  • the two sets of calibration lines are respectively set on two opposite sides of the second verification phantom 20, and one set of calibration lines is set on the second verification phantom 20 away from the second verification phantom.
  • Body 20 is one side of the support body.
  • the support can be a treatment bed or a base.
  • the second verification phantom 20 has a rectangular parallelepiped structure. It can be seen with reference to FIG. 5 that the top surface and two opposite side surfaces of the second verification phantom 20 are respectively Two calibration lines L1 and L2 perpendicular to each other are provided.
  • the mechanical rotation isocenter may also be deviated, so the radiotherapy system can use the second verification phantom 20 to verify the deviation of the mechanical rotation isocenter.
  • the verification device when using the second verification phantom 20 to verify the deviation of the mechanical rotation isocenter, can be placed on the treatment bed first. And make the two mutually perpendicular calibration lines L1 and L2 set on each outer surface of the second verification phantom 20 coincide with the cross rays emitted by the laser light. Then, the control host can adjust the position of the treatment bed so that the first positioning member 40 inside the second verification phantom 20 is aligned with the mechanical rotation isocenter. At this time, the bulb can irradiate the second verification phantom 20 at least twice at different angles. Correspondingly, the detector installed opposite to the bulb can receive the radiation emitted by the radiation source and collect at least Two images of the first positioning member 40.
  • the detector can send the generated at least two images to the image server.
  • the image server can analyze the at least two images to determine the deviation of the mechanical rotation isocenter.
  • the determined deviation is sent to the control host, so that the control host can accurately adjust the position of the treatment bed according to the deviation, so as to avoid the effect of the deviation on the accuracy of radiotherapy.
  • the control host can also store the determined deviation, so that during radiotherapy, the control host can accurately position the patient according to the deviation.
  • control host may also pre-store the relative position of the center point of the first verification phantom 10 and the center point of the first positioning member 40 (that is, where the first verification phantom 10 and the second verification phantom 20 are located. Location coordinates).
  • the control host aligns the first positioning member 40 with the mechanical rotation isocenter according to the deviation, the position of the treatment bed can be adjusted according to the pre-stored relative position, so that the center point of the first verification phantom 10 is aligned with the mechanical rotation, etc. Align the center point.
  • two calibration lines L1 and L2 perpendicular to each other can be carved on the outer surface (for example, on the top surface and two opposite side surfaces) of the second verification mold body 20.
  • two calibration lines L1 and L2 perpendicular to each other may be printed on the outer surface of the second verification mold body 20.
  • two perpendicular lines can be attached to the outer surface of the second verification mold body 20 as the calibration lines L1 and L2.
  • the radiotherapy system may include three laser lamps, and each laser lamp can emit cross-shaped rays.
  • One of the laser lights can be set on the opposite side of the rotating frame (for example, it can be set on the wall opposite to the rotating frame), and the setting height of the laser light can be higher than the height of the rotating frame, the laser light can be used for verification Whether the patient is lying upright on the treatment bed.
  • the remaining two laser lights can be respectively arranged on the left and right sides of the rotating frame (for example, can be arranged on the walls on the left and right sides), and each of the remaining two laser lights can emit longitudinal and transverse rays respectively.
  • Axial rays, and the vertical and horizontal rays emitted by each laser lamp can be perpendicular to each other (that is, rays intersecting into a cross shape).
  • the intersection of the cross-shaped rays emitted by the three laser lights is the reference point when positioning the patient, that is, the reference coordinate when positioning the phantom. Therefore, by arranging two calibration lines L1 and L2 perpendicular to each other on the top surface and two opposite side surfaces of the second verification phantom 20, it is possible to detect whether the rays emitted by the laser light are perpendicular to each other, and then to detect the laser light Whether the position is deviated. When the position deviation of the laser lamp is detected, the position of the laser lamp can be adjusted in time according to the deviation, which further ensures the reliability during radiotherapy.
  • multiple third positioning members 60 may also be provided in the second verification mold body 20.
  • the plurality of third positioning members 60 are not coplanar, and the number of the third positioning members 60 is not less than 4 (four third positioning members 60 are shown in FIG. 5).
  • a plurality of third positioning member pipes G3 corresponding to the plurality of third positioning members 60 one-to-one may also be provided in the second verification mold body 20.
  • Each third positioning member 60 may be located in a corresponding third positioning member pipe G3.
  • the second verification mold body 20 is provided with four third positioning member pipes G3, and each of the four third positioning members 60 may be located in a third positioning member. Pieces in the pipeline G3.
  • a first positioning member pipe G1 may be further provided in the second verification mold body 20, and the first positioning member 40 may be located in the first positioning member pipe G1.
  • the first positioning member 40 and the third positioning member 60 may both be spherical in shape. Therefore, the first positioning member 40 may also be called a first positioning ball.
  • the three positioning member 60 may also be referred to as a third positioning ball.
  • the diameter of the first positioning member 40 and the third positioning member 60 may both be 6 millimeters (mm).
  • the distance between any two third positioning members is equal. That is, for any two third positioning members 60 of the plurality of third positioning members 60, the distance between the two third positioning members 60 in the first direction and the distance in the second direction may both be 60 mm. Wherein, the first direction is perpendicular to the second direction.
  • the distance between each of the plurality of third positioning members 60 and the first positioning member 40 may be equal to (Approximately 51.96mm).
  • the first direction may be the length direction of the second verification phantom 20, and the second direction may be the second verification phantom 20; or, the first direction may be the length direction of the second verification mold 20, and the second direction may be the height direction of the second verification mold 20; or, the first direction may be the second verification mold
  • the width direction of the body 20, the second direction may be the height direction of the second verification mold body 20. 5, it can be seen that the distance d1 between the two third positioning members 60 in the width direction of the second verification mold body 20 is 60 mm, and the distance d2 between the length direction of the second verification mold body 20 is also 60 mm. .
  • the second verification phantom 20 can also be used as a geometric calibration phantom, that is, the second verification phantom can be used.
  • the phantom 20 detects the geometric calibration parameters in the radiotherapy system, such as the installation error of the image acquisition component (ie, the detector or the tube).
  • the second verification phantom 20 can also be used to verify the accuracy of the image guiding positioning.
  • the first positioning member 40 may be used to simulate a target point of the patient's affected part, and a plurality of third positioning members 60 may be used to simulate reference points located around the target point. Because errors may occur when the treating physician positions the patient, in order to verify the accuracy of the image-guided positioning correction, an image acquisition component can be obtained to perform image acquisition on the first positioning member 40 and the multiple third positioning members 60 Based on the obtained image, and according to the CT plan of the second verification phantom 20, it is determined whether the position of the target point (or the position of other points except the target point) and its actual position meet the requirements of relevant standards.
  • the density of materials selected for the first positioning member 40 and the plurality of third positioning members 60 may be similar to the density of the bones of the human body.
  • the materials of the first positioning member 40 and the plurality of third positioning members 60 may be at least one of aluminum, Teflon, glass, or ceramic. The embodiment of the present invention does not limit this.
  • the second verification phantom 20 may also be a solid structure. And referring to Fig. 1 and Fig. 5, it can be seen that the shape of the second verification phantom 20 may be a rectangular parallelepiped.
  • FIG. 6 is a schematic structural diagram of the third verification phantom 30 in the verification device provided by the embodiment of the present invention. As shown in Fig. 6, the third verification phantom 30 may be a hollow shell.
  • a second positioning member pipe G2 may be provided inside the housing.
  • the second positioning member 50 can be arranged in the second positioning member pipe G2.
  • the first positioning piece pipe G1, the second positioning piece pipe G2, and the third positioning piece pipe G3 may all be referred to as fixed position measuring rods.
  • the third verification phantom 30 may be irradiated at least twice at different angles using a radioactive source, and
  • the detector installed opposite to the radiation source can receive the radiation emitted by the radiation source, and collect at least two images according to the received radiation. Then, the detector can send the generated at least two images to the image server.
  • the image server analyzes the at least two images to obtain the coordinates of the center points of the at least two images (that is, the coordinates of the second positioning member 50).
  • the image server can determine the actual coordinates of the beam focus according to the coordinates of the second positioning member 50, and then determine the deviation between the treatment isocenter and the mechanical rotation isocenter.
  • the image server can also send the deviation to the control host, and the control host can accurately adjust the position of the treatment bed according to the deviation.
  • the control host can also store the deviation.
  • the third verification phantom 30 By designing the third verification phantom 30 as a hollow shell, it is possible to avoid the radiation of different angles (such as cobalt source rays) emitted by the radiation source when the thickness of each outer surface of the third verification phantom 30 is different.
  • the problem of different degrees of attenuation occurs when the second positioning member 50 performs imaging. Furthermore, it is possible to avoid the problem that the brightness of the light spot generated on the second positioning member 50 during imaging is not uniform, and it is difficult to analyze the image later.
  • the material of the second positioning member 50 may be metallic tungsten, and the second positioning member 50 may be a sphere, so the second positioning member 50 may also be called a tungsten bead, and the diameter of the second positioning member may be It is 7mm.
  • the shape of the third verification phantom 30 may be a rectangular parallelepiped.
  • the third verification mold body 30 may also be a structure with other shapes.
  • the third verification mold body 30 may be a hemisphere. The embodiment of the present invention does not limit this.
  • FIG. 7 is a side view of a verification device provided by an embodiment of the present invention.
  • the verification device includes: a first verification phantom 10, a second verification phantom 20, and a third verification phantom 30.
  • the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 may be arranged in sequence along the length direction Y of the treatment bed.
  • Fig. 8 is a top view of a verification device provided by an embodiment of the present invention.
  • Fig. 9 is a left side view of a verification device provided by an embodiment of the present invention.
  • the first verification phantom 10 may be a cube
  • the second verification phantom 20 may be a rectangular parallelepiped
  • the third verification phantom 30 may be a hemisphere.
  • the opening K1 of the first slot and the opening K2 of the second slot of the first verification phantom 10 are both located on the same outer surface, and the outer surface is also provided with the first insert The slot and the second slot are connected to the extraction groove A.
  • a pasting tool (such as medical glue) may be used to paste the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 in sequence, and the corresponding first verification phantom 10 and the The distance between the second verification phantom 20 and the distance between the second verification phantom 20 and the third verification phantom 30 are all zero.
  • a connecting component (such as a connecting rod) may be used to connect the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 in sequence, and accordingly, the first verification phantom 10 and the second
  • the distance between the verification phantom 20 and the distance between the second verification phantom 20 and the third verification phantom 30 may both be zero or both may not be zero. The embodiment of the present invention does not limit this.
  • the verification device includes the third verification mold body 30
  • the second positioning member 50 made of a metal material is provided at the center of the third verification mold body 30. Therefore, in order to avoid the second positioning member 50 having an impact on the verification result when the third verification phantom 30 is used to verify the deviation between the treatment isocenter and the mechanical rotation isocenter under NMR scanning, the third verification phantom 30 can be compared with The first verification mold body 10 or the second verification mold body 20 can be detachably connected, that is, the third verification mold body 30 can be detached.
  • the verification device may further include a base 70.
  • the first verification phantom 10 the second verification phantom 20, and the third verification phantom 30
  • At least one verification phantom can be set on the base 70.
  • the base 70 can be set on the treatment bed.
  • the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 may be connected in sequence and fixed on the base 70 by a fixing member (such as a screw); or, the first verification The phantom 10, the second verification phantom 20, and the third verification phantom 30 can also be connected in sequence and placed directly on the treatment bed without the need for a base.
  • a fixing member such as a screw
  • the first verification The phantom 10, the second verification phantom 20, and the third verification phantom 30 can also be connected in sequence and placed directly on the treatment bed without the need for a base.
  • the embodiment of the present invention does not limit this.
  • the verification device by sequentially connecting the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 with different functions to form a verification device, compared to the related art, only a single function can be realized.
  • the verification device provided by the embodiment of the present invention has more functions.
  • the materials of the shells of the first verification phantom 10, the second verification phantom 20, and the third verification phantom 30 may all be organic glass. Since the plexiglass has a small resistance to rays, that is, the attenuation of the rays when passing through the plexiglass is small, so the reliability of detecting the deviation between the treatment isocenter and the mechanical rotation isocenter is ensured. Moreover, the cost of plexiglass is also lower.
  • the embodiment of the present invention provides a verification device for a radiotherapy system. Since the verification device includes at least two verification phantoms among the first verification phantom, the second verification phantom and the third verification phantom that can implement different functions, the verification device can implement more functions. Compared with the verification device that can only realize a single function in the related art, the verification device provided by the present invention has more functions.
  • the embodiment of the present invention also provides a radiotherapy system.
  • the radiotherapy system may include: a verification device as shown in any one of FIGS. 1 to 9 and radiotherapy equipment.
  • the radiotherapy equipment may include: a radioactive source and a treatment bed.
  • the radiotherapy equipment may further include: an image acquisition component including a detector arranged opposite to the radiation source, and/or an imaging device (including a bulb and a flat panel detector arranged opposite).
  • the radiotherapy system may also include: a control host, an image server, a scanner and three laser lights.
  • the verification device can be set on the treatment bed
  • the image acquisition component can be connected to an image server
  • the image server can be connected to the control host
  • the control host can be connected to the treatment bed.
  • the image server can also be directly integrated into the control host.
  • the radioactive source may be the radioactive source of the treatment head in the radiotherapy equipment, that is, the radiation emitted by the radioactive source of the radioactive source can also be used to irradiate the target of the patient, thereby performing radiotherapy on the patient.
  • the scanner can be used to scan the film in the verification device after the radiation source is irradiated, so that the focal spot formed on the film is revealed, and the treating physician can send the image containing the focal spot to the image server .
  • the image collection component and the radioactive source can be used to collect images of the verification device and send the collected images to the image server.
  • the image server can be used to analyze the acquired images and determine the deviation according to the analysis result (such as determining the deviation between the treatment isocenter and the mechanical rotation isocenter), and the image server can also send the determined deviation to the control host.
  • the control host can be used to adjust the position of the treatment bed according to the received deviation, and the control host can store the deviation. .
  • Each laser light can be used to emit radiation to the verification device.
  • the rays emitted by the laser lamp may be cross-shaped rays.
  • control host may include an upper computer and a lower computer
  • the upper computer may be connected to the lower computer
  • the lower computer may be connected to other components (such as the treatment bed and the image acquisition component) in the radiotherapy system.
  • the upper computer can be used to send control instructions to the lower computer, and the lower computer can control the working status of other components according to the received control instructions.
  • embodiments of the present invention provide a radiotherapy system, which includes a verification device.
  • the radiation source in the radiotherapy equipment and the tube in the image acquisition component can emit radiation to the verification device, and the detector arranged opposite to the radiation source and the detector arranged opposite to the tube can receive radiation and collect images according to the radiation. And the detector can send the collected images to the image server.
  • the scanner can scan the film in the verification device after the radiation source is irradiated to make the focal spot formed on the film appear, and the treating physician can send the image containing the focal spot to the image server.
  • the image server can analyze the acquired images to determine the deviation of the treatment isocenter and the mechanical rotation isocenter or determine the deviation of the mechanical rotation isocenter, and send the deviation to the control host, and the control host will treat the patient according to the deviation Precise positioning improves the accuracy of radiotherapy and ensures the quality of radiotherapy.
  • the embodiment of the present invention provides a verification method for a radiotherapy system.
  • the method may include: at least one of the first verification process, the second verification process, and the third verification process.
  • Fig. 10 is a flow chart of a method for a first verification process provided by an embodiment of the present invention. As shown in Figure 10, the first verification process may include:
  • Step 1001 Obtain a first image and a second image.
  • the first image and the second image may be the two films inserted in the slot of the first verification phantom after being irradiated with a beam, and then the two films after the irradiation Scan it separately.
  • the first image may be obtained by scanning the film inserted in the first slot of the first verification phantom by a radiation source using a beam.
  • the second image may be obtained by scanning the irradiated film after the radiation source uses a beam to radiate the film inserted in the second slot of the first verification phantom.
  • the radiation source can emit radiation to the verification device, and at this time, a focal spot will be formed in the center of the film inserted in the first verification mold.
  • the therapist can then take the film out of the first verification phantom and scan the film with a scanner to make the focal spot formed on the film appear.
  • the treating physician can also upload the first image and the second image containing the focal spot to the image server. That is, the image server can obtain the first image and the second image.
  • the image server determines the deviation between the treatment isocenter and the mechanical rotation isocenter based on the mark, that is, the accuracy and efficiency of determining the deviation between the treatment isocenter and the mechanical rotation isocenter can be improved.
  • Step 1002 Determine the actual coordinates of the beam focus of the beam according to the first image and the second image, and determine the deviation between the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus.
  • the image server can also determine the actual coordinates of the beam focus of the beam according to the first image and the second image.
  • the coordinates of the focal spot in the first image and the second image are the coordinates in the two-dimensional image coordinate system
  • the image server can compare the acquired coordinates of the focal spot in the first image with the coordinates in the second image
  • the coordinates of the focal spot are converted to coordinates to obtain the coordinates of the focal spot in the three-dimensional device coordinate system.
  • the coordinates are the actual coordinates of the beam focus.
  • the image server can also determine the deviation of the coordinates of the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus (that is, the actual coordinates of the treatment isocenter) .
  • the image server can send the determined deviation to the control host, so that the control host stores the determined deviation, and then, during radiotherapy, the control host can directly accurately position the patient based on the deviation.
  • the control host may directly adjust the position of the treatment bed according to the deviation after the deviation is verified, so that the center point of the first verification phantom is aligned with the beam focus.
  • the center point of the first verification phantom can be used to simulate the target point of the affected part, the target point can be aligned with the actual beam focus after the position of the treatment bed is adjusted. It avoids the problem that the beam focus cannot be accurately irradiated to the target point when the center point of the treatment is deviated due to installation errors, improves the accuracy of radiotherapy, and ensures the quality of radiotherapy.
  • FIG. 11 is a flowchart of a method for a second verification process provided by an embodiment of the present invention. As shown in Figure 11, the second verification process may include:
  • Step 1101 Adjust the position of the second verification phantom so that the first positioning member arranged at the center of the second verification phantom is aligned with the mechanical rotation isocenter.
  • the rays emitted by the laser lamp may be cross-shaped rays.
  • the intersection of the cross rays emitted by the laser light is the reference coordinate when the phantom is placed.
  • the position of the treatment bed can be adjusted first, and the second verification phantom can be moved to the treatment space , So that the first positioning member arranged inside the second verification phantom is aligned with the isocenter of the mechanical rotation.
  • the center point of the second verification phantom (that is, the first positioning member) is the theoretical coordinate of the isocenter of the mechanical rotation.
  • control host can be connected to the treatment bed, and the treating physician can first place the verification device on the bed on the treatment bed. Then, the control host can adjust the position of the treatment bed so that each calibration line set on each outer surface of the second verification phantom coincides with the radiation emitted by the laser light.
  • the therapist can directly adjust the position of the second verification phantom, so that each calibration line set on each outer surface of the second verification phantom coincides with the rays emitted by the laser light. Then, the control host can continue to adjust the position of the treatment bed so that the center point of the second verification phantom is aligned with the mechanical rotation isocenter.
  • Step 1102 Acquire at least two third images.
  • the image server can acquire at least two third images.
  • Each third image may be an image obtained by the image capturing component of the first positioning member in the second verification phantom.
  • the tube in the image acquisition component can emit X-rays to the second verification phantom.
  • a detector disposed opposite to the tube can receive the X-rays, thereby realizing the first positioning member Image acquisition. Further, the detector may send the collected third image to the image server.
  • the image server can obtain at least two third images.
  • Step 1103 Determine the deviation of the mechanical rotation isocenter according to the first coordinates of the first positioning member in each third image and the reference coordinates of the center point in each third image.
  • the image server After the image server obtains at least two three images, it can further obtain the first coordinates of the first positioning member in each third image and the reference coordinates of the center point in each third image. Then, the image server can also determine the deviation of the mechanical rotation isocenter according to the acquired first coordinates and reference coordinates. Since at this time, the center point of the second verification phantom is theoretically aligned with the mechanical rotation isocenter, the image server can determine the reference coordinates of the center point of the acquired third image as the mechanical rotation isocenter. Theoretical coordinates.
  • the first coordinate of the first positioning member is the actual coordinate of the isocenter of the mechanical rotation.
  • the above theoretical coordinates and actual coordinates are all coordinates in the two-dimensional image coordinate system.
  • the image server may also perform coordinate conversion on the at least two obtained first coordinates to obtain the actual coordinates of the mechanical rotation isocenter in the three-dimensional device coordinate system, and may perform coordinate conversion on the obtained at least two reference coordinates
  • the theoretical coordinates of the isocenter of mechanical rotation in the three-dimensional equipment coordinate system are obtained.
  • the image server can calculate the deviation of the mechanical rotation isocenter according to the determined actual and theoretical coordinates of the mechanical isocenter, and send the determined deviation to the control host.
  • the control host can also store the deviation of the mechanical rotation isocenter, so that the patient can be accurately positioned directly based on the deviation during the subsequent radiotherapy.
  • Fig. 12 is a flowchart of a third verification process method provided by an embodiment of the present invention. As shown in Figure 12, the method may include:
  • Step 1201 Acquire at least two fourth images.
  • the fourth image may be an image acquired after the radiation source in the image acquisition component irradiates the second positioning member with a beam.
  • the radioactive source in the image acquisition component can irradiate the third verification phantom at least twice, that is, the radioactive source can emit radiation to the third verification phantom at least twice.
  • the detector disposed opposite to the radiation source can receive the radiation and collect at least two fourth images according to the received radiation. And, the detector can send the generated at least two fourth images to the image server. That is, the image server can obtain the images collected by the image collection component.
  • Step 1202 according to each acquired fourth image, determine the actual coordinates of the beam focus, and determine the deviation between the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus.
  • the imaging point is the beam focus of the rays emitted by the radiation source. Therefore, after the image server obtains at least two fourth images, it can also determine the actual coordinates of the beam focal point according to each of the at least two images.
  • the image server may analyze each fourth image of the acquired at least two fourth images, and obtain the coordinates of the center point of each fourth image. For example, the image server may obtain two images, and analyze the two fourth images to obtain the coordinates of the center point of each fourth image. Since the actual coordinates of the beam focus are the coordinates in the three-dimensional device coordinate system, and the coordinates of the center point of the fourth image are the coordinates in the two-dimensional image coordinate system, by acquiring at least two fourth images, the image server can compare at least two The coordinates of the center point of each fourth image in the fourth image are transformed to obtain the coordinates of the center point of the fourth image in the three-dimensional device coordinate system. Correspondingly, the image server can determine the coordinates of the center point of the fourth image in the three-dimensional device coordinate system as the actual coordinates of the beam focus.
  • the image server can also determine the deviation between the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus (ie, the actual coordinates of the treatment isocenter). Then, the image server may send the determined deviation to the control host, and the control host adjusts the position of the treatment bed according to the deviation, so that the center point beam of the third verification phantom is focused. In addition, the control host can also store the determined deviation, and then, during radiotherapy, the control host can directly accurately position the patient based on the deviation.
  • the target point of the third verification phantom can be used to simulate the target point of the affected part, the target point can be aligned with the actual beam focus after adjusting the position of the treatment bed. It avoids the problem that the beam focus cannot be accurately irradiated to the target point when the center point of the treatment is deviated due to installation errors, improves the accuracy of radiotherapy, and ensures the quality of radiotherapy.
  • the embodiment of the present invention provides a verification method for a radiotherapy system. Since the method includes at least one of the first verification process, the second verification process, and the third verification process, the radiotherapy system can use the verification device to verify the deviation between the treatment isocenter and the mechanical rotation isocenter At least one function of verifying the deviation of the isocenter of mechanical rotation. Therefore, the verification method of the radiotherapy system can achieve rich functions.
  • the radiotherapy system can also adjust the position of the treatment bed according to the deviation, so that the first positioning member in the second verification phantom is aligned with the mechanical rotation isocenter.
  • the control host can adjust the position of the treatment bed according to the received deviation, so that the first positioning member in the second verification phantom is aligned with the mechanical rotation isocenter.
  • the radiotherapy system can adjust the position of the treatment bed according to the relative position between the center point of the first verification phantom and the first positioning member, so that the center point of the first verification phantom is aligned with the mechanical rotation isocenter.
  • the control host may pre-store the relative position between the center point of the first verification phantom and the first positioning member (that is, the control host may pre-store the first verification phantom and the second verification phantom in Coordinates in the three-dimensional device coordinate system).
  • control host can adjust the position of the treatment bed according to the relative position between the center point of the first verification phantom and the first positioning member, so that the center point of the first verification phantom is equal to the center point of the mechanical rotation. alignment.
  • the imaging server in the radiotherapy system can also use the first verification phantom to continue to verify the treatment isocenter and mechanical rotation, etc. Whether there is a deviation between the center points. That is, the above-mentioned first verification process (that is, the above-mentioned steps 1001 and 1002) can be continued.
  • the radiotherapy system can also adjust the position of the treatment bed according to the relative position between the second positioning member and the first positioning member, so that the second positioning member rotates with the machine. Isocentric point alignment.
  • the control host may pre-store the relative position between the second positioning part and the first positioning part arranged in the center of the third verification phantom (that is, the control host may also pre-store the third verification phantom in Coordinates in the three-dimensional device coordinate system).
  • the control host can adjust the position of the treatment bed according to the relative position between the second positioning member and the first positioning member, so that the second positioning member is aligned with the isocenter of the mechanical rotation.
  • the imaging server in the radiotherapy system can also use the third verification phantom to continue to verify whether there is between the treatment isocenter and the mechanical rotation isocenter. deviation. That is, the third verification process (that is, the above steps 1201 and 1202) can be continued. That is, the radiotherapy system can sequentially execute the second verification process, the first verification process, and the third verification process.
  • control host may also pre-store the relative position between the second positioning member provided in the third verification phantom and the center point of the first verification phantom (that is, the control host may pre-store the first verification The coordinates of the phantom and the third verification phantom in the three-dimensional device coordinate system).
  • control host can also adjust the position of the treatment bed according to the relative position, so that the center point of the first verification phantom is aligned with the mechanical rotation isocenter.
  • the image server and control host in the radiotherapy system can continue to perform the first verification process, that is, continue to verify whether there is a deviation between the center point of the first verification phantom and the center point of mechanical rotation.
  • the control host can also adjust the position of the treatment bed according to the relative position, so that the second positioning member is aligned with the mechanical rotation isocenter.
  • the control host may also continue to perform the third verification process. That is, the first verification process and the third verification process can mutually verify the deviation of the treatment isocenter and the mechanical rotation isocenter, which improves the reliability of determining the deviation.
  • the embodiment of the present invention provides a verification method for a radiotherapy system. Since the method includes at least one of the first verification process, the second verification process, and the third verification process, the radiotherapy system can use the verification device to verify the deviation between the treatment isocenter and the mechanical rotation isocenter At least one function of verifying the deviation of the isocenter of mechanical rotation. Therefore, the verification method of the radiotherapy system can achieve rich functions.
  • the embodiment of the present invention provides a verification device, which may include: at least one verification module of a first verification module, a second verification module, and a third verification module.
  • the verification device may include at least two verification modules.
  • Fig. 13 is a block diagram of a first verification module provided by an embodiment of the present invention. As shown in FIG. 13, the first verification module may include:
  • the first acquisition sub-module 1301 is used to acquire the first image and the second image.
  • the first image and the second image may be obtained by separately irradiating the two films inserted in the slot of the first verification phantom with a beam, and then respectively scanning the two films after the irradiation.
  • the first determining sub-module 1302 is used to determine the actual coordinates of the beam focus of the beam according to the first image and the second image, and determine the deviation between the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus .
  • Fig. 14 is a block diagram of a second verification module provided by an embodiment of the present invention. As shown in Figure 14, the second verification module may include:
  • the adjustment sub-module 1401 is used to adjust the position of the second verification phantom, so that the first positioning member arranged at the center of the second verification phantom is aligned with the mechanical rotation isocenter.
  • the second acquisition sub-module 1402 is configured to acquire at least two third images.
  • Each third image is an image obtained by image collection of the first positioning member.
  • the second determining sub-module 1403 is used for determining the deviation of the mechanical rotation isocenter according to the first coordinates of the first positioning member in the third image and the reference coordinates of the center point of each third image.
  • Fig. 15 is a block diagram of a third verification module provided by an embodiment of the present invention. As shown in FIG. 15, the third verification module may include:
  • the third acquisition sub-module 1501 is configured to acquire at least two fourth images.
  • the fourth image is an image acquired after irradiating the second positioning member arranged at the center of the third verification phantom with a beam.
  • the third determining sub-module 1502 is used to determine the actual coordinates of the beam focus according to each acquired fourth image, and determine the deviation between the treatment isocenter and the mechanical rotation isocenter according to the actual coordinates of the beam focus.
  • each sub-module of the first verification module, the second verification module, and the third verification module may all be set in the same device in the radiotherapy system.
  • they can all be set in the control host.
  • each sub-module of the first verification module, the second verification module, and the third verification module may be set in different devices in the radiotherapy system.
  • the first acquisition sub-module 1301 in the first verification module, the second acquisition sub-module 1402 in the second verification module, and the third acquisition sub-module 1501 in the third verification module may all be set in the image acquisition component
  • the first determination sub-module 1302 in the first verification module, the second determination sub-module 1403 in the second verification module, and the third determination sub-module 1502 in the third verification module may all be set in the image server.
  • the embodiment of the present invention provides a verification device for a radiotherapy system. Since the device includes at least one verification module among the first verification module, the second verification module, and the third verification module that can implement different functions, the verification device of the radiotherapy system has more functions.
  • the embodiment of the present invention provides a verification device for a radiotherapy system.
  • the positioning device may include a processor and a memory, and instructions are stored in the memory, and the instructions may be loaded and executed by the processor to implement the verification method of the radiotherapy system as shown in any one of FIGS. 10 to 12.
  • an embodiment of the present invention provides a storage medium that stores instructions in the storage medium.
  • the processing component can perform the radiotherapy shown in any one of FIGS. 10 to 12 System verification method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明提供了一种放射治疗系统及其验证装置、验证方法。由于该验证装置包括能够实现不同功能的第一验证模体、第二验证模体和第三验证模体中的至少两个验证模体,因此该验证装置可以实现的功能较多。相对于相关技术中仅能实现单一功能的验证装置,本发明实施例提供的验证装置功能更为丰富。

Description

放射治疗系统及其验证装置、验证方法 技术领域
本发明涉及放疗技术领域,特别涉及一种放射治疗系统及其验证装置、验证方法。
背景技术
放射治疗系统一般可以包括:旋转机架和设置在该旋转机架上的治疗头。从该治疗头发出的射线可以用来对患者患部的靶点进行治疗。正常情况下,从该治疗头发出的射线的射束焦点(即治疗等中心点)应该与该旋转机架的机械旋转等中心点重合。当将靶点摆位至机械旋转等中心点的位置处时,即可以使得射束焦点准确照射至该靶点,从而实现精确治疗。但是由于安装误差等原因,可能会导致治疗等中心点与机械旋转等中心点之间出现偏差,此时若将靶点摆位至机械旋转等中心点,射束焦点即可能无法准确照射至该靶点的位置处,从而无法实现精确治疗。
相关技术中,为了确保放射治疗的精度,提供了一种用于验证治疗等中心点与机械旋转等中心点的偏差的验证装置,如MIMI模体(MIMI Phantom)。在进行放射治疗前,可以使用该验证装置来验证治疗等中心点与机械旋转等中心点是否重合(即是否存在偏差),当治疗等中心点与机械旋转等中心点之间存在偏差时,即可以根据偏差大小及时调整治疗床的位置,提高机械旋转等中心点和设备等中心的重合精度。
但是,由于相关技术中的验证装置仅可以对机械旋转等中心点和设备等中心是否重合进行验证,功能较为单一。
发明内容
本申请提供了一种放射治疗系统及其验证装置、验证方法,可以解决相关技术中验证装置的功能较为单一的问题。所述技术方案如下:
一方面,提供了一种放射治疗系统的验证装置,所述验证装置包括以下验证模体中的至少两个:第一验证模体、第二验证模体和第三验证模体;
其中,所述第一验证模体具有用于放置胶片的插槽,所述第二验证模体的中心处设置有第一定位件,所述第三验证模体的中心处设置有第二定位件,且所述第一验证模体的中心点、所述第一定位件的中心点和所述第二定位件的中心点共轴线。
可选的,所述插槽包括:第一插槽和第二插槽;
所述第一插槽的插入面垂直于所述第二插槽的插入面,且所述第一插槽的插入面的中心点与所述第二插槽的插入面的中心点均与所述第一验证模体的中心点重合。
可选的,所述第一插槽的开口和所述第二插槽的开口均位于所述第一验证模体的第一外表面上。
可选的,所述第一验证模体上设置有用于将所述第一验证模体的外表面与所述第一插槽导通的第一通孔,以及用于将所述第一验证模体的外表面与所述第二插槽导通的第二通孔;
所述第一通孔的延伸方向与所述第一插槽的插入面相交,且所述第一通孔与所述第一插槽的插入面的交点为所述第一插槽的插入面的中心点;
所述第二通孔的延伸方向与所述第二插槽的插入面相交,且所述第二通孔与所述第二插槽的插入面的交点为所述第二插槽的插入面的中心点。
可选的,所述第二验证模体的外表面上设置有至少三组标定线,每组所述标定线包括相互垂直的两条标定线,每组所述标定线包括的两条标定线的交点为目标点,所述至少三组标定线中的各个所述目标点共面;
其中,所述至少三组标定线中,两组所述标定线分别设置在所述第二验证模体两个相对的侧面上,一组所述标定线设置在所述第二验证模体远离用于支撑所述第二验证模体的支撑体的一面。
可选的,所述第二验证模体内还设置有多个第三定位件;
所述多个第三定位件不共面,且所述第三定位件的数量不小于4。
可选的,任意两个所述第三定位件之间的距离均相等,且每个所述第三定位件与所述第一定位件之间的距离均相等。
可选的,所述第一定位件的材料和所述第三定位件的材料均为下述材料中的至少一种:铝、特氟龙、玻璃和陶瓷。
可选的,所述第三验证模体为内部中空的壳体,所述壳体内侧设置有第二定位件管道,所述第二定位件设置在所述第二定位件管道内。
可选的,所述第一验证模体的外壳的材料和/或所述第二验证模体的外壳的材料和/或所述第三验证模体的外壳的材料均为:有机玻璃。
可选的,所述第二定位件的材料为:金属钨。
可选的,所述验证装置包括:在所述验证模体包括所述第三验证模体的情况下,所述第三验证模体与所述第一验证模体或所述第二验证模体均可拆卸连接。
可选的,所述验证装置包括:所述第一验证模体、所述第二验证模体和所述第三验证模体;
所述第一验证模体、所述第二验证模体和所述第三验证模体沿治疗床的长度方向依次排布。
可选的,所述验证装置还包括:底座;
所述第一验证模体、所述第二验证模体和所述第三验证模体中的至少一个验证模体设置在所述底座上。
另一方面,提供了一种放射治疗系统,所述系统包括:如上述方面所述的验证装置。
又一方面,提供了一种放射治疗系统的验证方法,所述方法包括:
第一验证过程、第二验证过程和第三验证过程中的至少一种验证过程;
其中,所述第一验证过程包括:
获取第一图像和第二图像,所述第一图像和所述第二图像为采用射束对所述第一验证模体的插槽内插入的两张胶片分别进行辐射后,再对辐射后的所述两张胶片分别进行扫描得到的;
根据所述第一图像和第二图像,确定射束的射束焦点的实际坐标,并根据所述射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差;
所述第二验证过程包括:
调整第二验证模体的位置,使得所述第二验证模体中心处设置的第一定位件与机械旋转等中心点对准;
获取至少两张第三图像,每张所述第三图像为对所述第一定位件进行影像采集得到的图像;
根据每张所述第三图像中所述第一定位件的第一坐标,以及每张所述第三图像中心点的参考坐标,确定所述机械旋转等中心点的偏差;
所述第三验证过程包括:
获取至少两张第四图像,所述第四图像为采用射束对所述第三验证模体中心处设置的第二定位件进行照射后采集得到的图像;
根据获取到的每张所述第四图像,确定所述射束焦点的实际坐标,并根据所述射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
再一方面,提供了一种放射治疗系统的验证装置,所述装置包括:
处理器和存储器,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如上述方面所述的放射治疗系统的验证方法。
再一方面,提供了一种存储介质,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如上述方面所述的放射治疗系统的验证方法。
综上所述,本发明实施例提供了一种放射治疗系统及其验证装置、验证方法。由于该验证装置包括能够实现不同功能的第一验证模体、第二验证模体和第三验证模体中的至少两个验证模体,因此该验证装置可以实现的功能较多。相对于相关技术中仅能实现单一功能的验证装置,本发明实施例提供的验证装置的功能更为丰富。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种验证装置的结构示意图;
图2是本发明实施例提供的验证装置中第一验证模体的一种结构示意图;
图3是本发明实施例提供的验证装置中第一验证模体的侧视图;
图4是本发明实施例提供的验证装置中第二验证模体的一种结构示意图;
图5是本发明实施例提供的验证装置中第二验证模体的另一种结构示意图;
图6是本发明实施例提供的验证装置中第三验证模体的一种结构示意图;
图7是本发明实施例提供的一种验证装置的侧视图;
图8是本发明实施例提供的一种验证装置的俯视图;
图9是本发明实施例提供的一种验证装置的左视图;
图10是本发明实施例提供的一种第一验证过程的方法流程图;
图11是本发明实施例提供的一种第二验证过程的方法流程图;
图12是本发明实施例提供的一种第二验证过程的方法流程图;
图13是本发明实施例提供的一种验证装置中的第一验证模块的框图;
图14是本发明实施例提供的一种验证装置中的第二验证模块的框图;
图15是本发明实施例提供的一种验证装置中的第三验证模块的框图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种放射治疗系统的验证装置的结构示意图。如图1所示,该验证装置可以包括:第一验证模体10、第二验证模体20和第三验证模体30中的至少两个验证模体。例如,图1示出的验证装置包括:第一验证模体10、第二验证模体20和第三验证模体30。
参考图1,该第一验证模体10具有用于放置胶片的插槽101。第二验证模体20的中心处可以设置有第一定位件40。第三验证模体30的中心处可以设置有第二定位件50。并且,该第一验证模体10的中心点、该第一定位件40的中心点和该第二定位件50的中心点可以共轴线,即该第一验证模体10的中心点、第一定位件40的中心点和该第二定位件50的中心点可以位于同一条轴线上。例如,图1示出的轴线X。
可选的,该第一验证模体10和该第三验证模体30均可以用于验证治疗等中心点与机械旋转等中心点之间的偏差,治疗等中心点也可以称为核物理等中心点。该第二验证模体20可以用于实现下述功能中的至少一种:验证机械旋转等中心点的偏差、标定几何参数(例如,检测激光灯的位置是否出现偏差、验证影像采集组件的安装误差等)和验证图像引导摆位的精度。
当该验证装置包括可以实现不同功能的第一验证模体和第二验证模体,或 者第二验证模体和第三验证模体,或者第一验证模体、第二验证模体和第三验证模体时,该验证装置相对于相关技术中仅可以实现单一功能的验证装置,功能更为丰富。当该验证装置包括实现相同功能的第一验证模体和第三验证模体时,该验证装置验证偏差的可靠性更高。并且,通过预先使用该验证装置来验证治疗等中心点与机械旋转等中心点之间的偏差,或者,验证机械旋转等中心点的偏差、检测激光灯的位置是否出现偏差、验证影像采集组件的安装误差和验证图像引导摆位的精度,均可以使得在放射治疗时,根据该验证结果对患者进行精准摆位,提高放射治疗的可靠性。
另外,由于该第一验证模体10具有用于放置胶片的插槽101,因此在使用该第一验证模体10验证治疗等中心点与机械旋转等中心点的偏差时,仅需要将胶片插入插槽101内即可。相对于相关技术中需要先将胶片插入胶片盒,再将插有胶片的胶片盒放入验证模体内,本发明提供的验证装置操作更为方便。并且,由于相关技术中插有胶片的胶片盒需要从验证模体内多次抽取,在长期使用后,胶片盒和验证模体之间可能会存在磨损,该磨损可能会影响检测治疗等中心点偏差的精度。因此本发明提供的验证装置的可靠性也更高。并且,通过将多个功能均集成于第二验证模体20,还可以在丰富验证装置功能的前提下,节省生产成本。
这里需要说明的是,本发明实施例提供的放射治疗系统的验证装置除了包括上述第一验证模体、第二验证模体和第三验证模体中的至少两个验证模体之外,还可以包括其他验证模体,可以是与上述第一验证模体、第二验证模体或第三验证模体相同的验证模体,也可以是其他类型的验证模体。
综上所述,本发明实施例提供了一种放射治疗系统的验证装置。由于该验证装置包括能够实现不同功能的第一验证模体、第二验证模体和第三验证模体中的至少两个验证模体,因此该验证装置可以实现的功能较多。相对于相关技术中仅能实现单一功能的验证装置,本发明提供的验证装置功能更为丰富。
可选的,在本发明实施例中,该放射治疗系统可以包括:控制主机、影像服务器、影像采集组件、激光灯、放射源、治疗床和扫描仪。该控制主机可以包括上位机和下位机。该影像采集组件可以包括:球管和与球管相对设置的探测器,还可以包括与放射源相对设置的探测器,当然,与球管相对设置的探测器和与放射源相对设置的探测器可以为同一探测器。该影像服务器还可以与控 制主机连接或者该影像服务器可以直接集成在控制主机中。该激光灯可以为十字线激光灯(即该激光灯发出的射线为十字形射线)。
其中,该放射源可以向第一验证模体10和第三验证模体30发射射线(如γ射线或X射线),影像采集组件包括的球管可以向第二验证模体20发射射线。当放射源向第一验证模体10发射射线后,治疗医师可以将第一验证模体10内的胶片取出,并通过扫描仪对该照射后的胶片进行扫描,从而使得胶片上形成的焦斑显现出来。然后,治疗医师可以将包含有焦斑的图像上传至影像服务器。当放射源向第三验证模体30发射射线后,与该放射源相对设置的探测器可以接收到放射源发出的射线,并根据该射线采集图像。当球管向第二验证模体20发射射线后,与该球管相对设置的探测器可以接收到放射源发出的射线,并根据该射线采集图像。之后,探测器可以将采集到的图像发送至影像服务器。影像服务器可以对获取到的图像进行分析(如确定接收到的图像的中心点的坐标,和确定治疗等中心点和机械旋转等中心点的偏差),以及将分析结果发送至控制主机。进而控制主机即可以直接根据分析结果(如偏差)调整治疗床的位置。
可选的,图2是本发明实施例提供的验证装置中第一验证模体的一种结构示意图。如图2所示,该第一验证模体10的插槽101可以包括:第一插槽1011和第二插槽1012。该第一插槽1011插入面可以垂直于第二插槽1012的插入面,且该第一插槽1011的插入面的中心点,和该第二插槽1012的插入面的中心点均与该第一验证模体10的中心点重合。
在使用该第一验证模体10验证治疗等中心点与机械旋转等中心点的偏差时,可以先将一胶片插入第一插槽1011内,并将验证模体中的第一验证模体10的中心与机械等中心对齐,然后放射源(机架初始的旋转角度可以为0度)对第一验证模体10进行照射,从而在第一插槽1011内插入的胶片上形成焦斑,治疗医师将第一插槽1011内插入的胶片取出,之后,再将另一胶片插入第二插槽1012内,放射源(机架的旋转角度可以为90度)对第一验证模体10进行照射,从而在第二插槽1012内插入的胶片上形成焦斑,治疗医师可以将第二插槽1011内插入的胶片取出。通过扫描仪对两张胶片进行扫描从而得到包含焦斑的两张图像。之后,治疗医师还可以将包含焦斑的两张图像上传至影像服务器。由于放射源的射束焦点与机械等中心点理论上是重合的,因此影像服务器可以根据对包含焦斑的两张图像进行分析得到射束焦点的实际坐标,并根 据射束焦点的实际坐标和机械等中心点的坐标,确定治疗等中心点与机械旋转等中心点的偏差。之后,影像服务器可以将该偏差发送至控制主机,使得控制主机根据该偏差调整治疗床的位置。另外,控制主机还可以存储该偏差,并在放射治疗的过程中,根据该偏差对患者进行精准摆位。
可选的,参考图2,该第一插槽1011的开口K1和第二插槽1012的开口K2可以均位于第一验证模体10的第一外表面M1上。
通过将两个插槽的开口均设置在同一个外表面上,可以便于插取胶片。
可选的,参考图3,在该第一外表面M1上,该第一插槽1011的开口K1和第二插槽1012的开口K2的交界处可以设置有抽取凹槽A。
在本发明实施例中,该抽取凹槽A可以为向靠近两个插槽的交点处凹陷的凹槽。并且,该抽取凹槽A可以与该第一插槽1011和第二插槽1012均连通。治疗医师可以从该抽取凹槽A处插入胶片或抽取胶片。通过在第一外表面M1上设置与两个插槽分别连通的抽取凹槽A,可以更加便于治疗医师插取胶片。
可选的,参考图3,该抽取凹槽A的横截面可以为圆形,或者该抽取凹槽A的横截面也可以为其他形状,例如矩形或者三角形等。其中,该横截面为平行于第一外表面M1的平面。
可选的,该抽取凹槽A可以设置于第一插槽1011和第二插槽1012在第一外表面M1上的交点位置处。例如,当第一插槽1011和第二插槽1012的交点位于第一外表面M1的中心位置处时,该抽取凹槽A即可以设置于该第一外表面M1的中心位置。
可选的,该插槽内插入的胶片可使用自显影免洗胶片。该插槽内插入的胶片的尺寸可以与该插槽的尺寸相匹配且保证不晃动,即插入至第一插槽1011的胶片的尺寸可以与该第一插槽1011的尺寸相匹配,插入至第二插槽1012的胶片的尺寸可以与该第二插槽1012的尺寸相匹配。或者,该胶片的形状也可以与第一插槽1011和第二插槽1012组成的整体形状相匹配,例如,该胶片可以为由相互垂直且相交的两个子胶片组成的一张胶片。
在本发明实施例中,可以在将胶片插入插槽之前,将该胶片的尺寸裁剪为与该插槽相匹配的尺寸。通过将胶片的尺寸设置为与插槽相匹配的尺寸,可以保证插入至插槽内的胶片不会发生晃动,提高验证治疗等中心点与机械旋转等中心点的偏差时的可靠性。
图4是本发明实施例提供的验证装置中第一验证模体10的另一种结构示 意图。如图4所示,该第一验证模体10上还可以设置有用于将该第一验证模体10的外表面与该第一插槽1011导通的第一通孔T1,以及用于将该第一验证模体10的外表面与该第二插槽1012导通的第二通孔T2。
该第一通孔T1的延伸方向与第一插槽1011的插入面相交,且该第一通孔T1与该第一插槽1011的插入面的交点为该第一插槽1011的插入面的中心点。该第二通孔T2的延伸方向与第二插槽1012的插入面相交,且第二通孔T2与该第二插槽1012的插入面的交点也为第二插槽1012的插入面的中心点。
示例的,参考图4,该第一验证模体10的一个侧面上设置有第一通孔T1;顶面上设置有第二通孔T2。该第一通孔T1的延伸方向与该第一插槽1011的插入面垂直,该第二通孔T1的延伸方向与该第二插槽1012的插入面垂直。
通过设置第一通孔T1和第二通孔T2,可以在进行偏差验证时,先使用针或者带有颜色的笔芯穿过该第一通孔T1,在第一插槽1011内插入的胶片中心进行标记;以及穿过该第二通孔T2,在第二插槽1012内插入的胶片中心进行标记。然后,再通过影像采集组件中的放射源照射以及扫描仪分析得到在两张胶片中形成的焦斑图像。由于此时,第一验证模体10的中心点理论上与机械旋转等中心点是重合的,因此该标记即可以作为机械等中心点的标记。进而可以便于控制主机确定后续机械等中心点与治疗等中心点的偏差,提高确定偏差的精度和效率。
可选的,该第一验证模体10可以为实心结构,且如图1、图2和图4所示,该第一验证模体10的形状可以为立方体。或者该第一验证模体10也可以为其他形状的结构,例如可以为棱柱体。本发明实施例对该第一验证模体10的形状不做限定。
图5是本发明实施例提供的验证装置中第二验证模体20的一种结构示意图。如图5所示,该第二验证模体20的外表面上可以设置有至少三组标定线(例如,图5仅示出了三组标定线),每组标定线包括相互垂直的两条标定线L1和L2。假设每组标定线包括的两条标定线L1和L2的交点为目标点,则参考图5可以看出,该至少三组标定线中的各个目标点可以共面。
其中,该至少三组标定线中,两组标定线分别设置在第二验证模体20两个相对的侧面上,一组标定线设置在第二验证模体20远离用于支撑第二验证模体20的支撑体的一面。该支撑体可以为治疗床或底座。
示例的,假设如图1和图5所示,该第二验证模体20为长方体结构,则 参考图5可以看出,该第二验证模体20的顶面和相对的两个侧面上分别设置有相互垂直的两条标定线L1和L2。
由于安装误差或使用时间较长,机械旋转等中心点也可能出现偏差,因此放射治疗系统可以使用第二验证模体20验证机械旋转等中心点的偏差。
可选的,在使用第二验证模体20验证机械旋转等中心点的偏差时,可以先将该验证装置放置在治疗床上。并使得第二验证模体20的每个外表面上设置的两条相互垂直的标定线L1和L2与激光灯发出的十字射线重合。然后,控制主机可以调整治疗床的位置,使得第二验证模体20内部的第一定位件40与机械旋转等中心点对准。此时,球管可以在不同角度对第二验证模体20进行至少两次照射,相应的,与该球管相对安装的探测器可以接收到放射源发出的射线,并根据该射线采集到至少两张第一定位件40的图像。然后,探测器可以将该生成的至少两张图像发送至影像服务器。然后,影像服务器可以对该至少两张图像进行分析,确定机械旋转等中心点的偏差。并将确定的偏差发送至控制主机中,使得控制主机可以根据该偏差准确调整治疗床的位置,以避免该偏差对放射治疗精度的影响。并且,控制主机还可以存储该确定的偏差,使得在进行放射治疗时,控制主机可以根据该偏差对患者进行精准摆位。
可选的,控制主机中还可以预先存储有第一验证模体10的中心点与第一定位件40的中心点的相对位置(即第一验证模体10和第二验证模体20所处位置的坐标)。当控制主机根据偏差将第一定位件40与机械旋转等中心点对准后,即可以根据预先存储的相对位置调整治疗床的位置,从而使得第一验证模体10的中心点与机械旋转等中心点对准。
可选的,在本发明实施例中,在第二验证模体20的外表面(如顶面和两个相对的侧面上)上可以雕刻相互垂直的两条标定线L1和L2。或者在第二验证模体20的外表面上也可以印刷相互垂直的两条标定线L1和L2。或者在第二验证模体20的外表面上还可以贴附两条相互垂直的线条作为标定线L1和L2。
在本发明实施例中,放射治疗系统中可以包括三个激光灯,且每个激光灯均可以发出十字形的射线。其中一个激光灯可以设置在旋转机架的对面(例如可以设置在旋转机架对面的墙壁上),且该激光灯的设置高度可以高于该旋转机架的高度,该激光灯可以用于验证患者在治疗床上是否躺直。剩余两个激光灯可以分别设置在旋转机架的左右两侧(例如可以设置在左右两侧的墙壁上), 该剩余两个激光灯中的每个激光灯可以分别发射出纵轴射线和横轴射线,且每个激光灯发出的纵轴射线和横轴射线可以相互垂直(即相交成十字形的射线)。
该三个激光灯发出的十字形的射线的交点是对患者进行摆位时的参考点,即是模体摆位时的参考坐标。因此通过在该第二验证模体20的顶面和两个相对的侧面上设置相互垂直的两条标定线L1和L2,可以检测激光灯发出的射线之间是否相互垂直,进而检测激光灯的位置是否出现偏差。当检测到激光灯的位置偏差时,可以及时根据该偏差调整激光灯的位置,进一步确保了放射治疗时的可靠性。
可选的,如图5所示,该第二验证模体20内还可以设置有多个第三定位件60。并且,该多个第三定位件60不共面,该第三定位件60的数量不小于4(图5中示出了4个第三定位件60)。
第二验证模体20内还可以设置有与多个第三定位件60一一对应的多条第三定位件管道G3。每个第三定位件60可以位于对应的一条第三定位件管道G3内。
示例的,参考图5,该第二验证模体20内设置有4条第三定位件管道G3,该四个第三定位件60中的每个第三定位件60可以分别位于一条第三定位件管道G3内。可选的,如图1和图5所示,该第二验证模体20内还可以设置有第一定位件管道G1,该第一定位件40可以位于该第一定位件管道G1内。
可选的,如图1和图5所示,该第一定位件40和该第三定位件60的形状可以均为球体,因此该第一定位件40也可以称为第一定位球,第三定位件60也可以称为第三定位球。相应的,该第一定位件40和第三定位件60的直径可以均为6毫米(mm)。任意两个第三定位件之间的距离均相等。即对于该多个第三定位件60中任意两个第三定位件60,该两个第三定位件60在第一方向上的间距,以及在第二方向上的间距可以均为60mm。其中,该第一方向垂直于第二方向。该多个第三定位件60中的每个第三定位件60与第一定位件40之间的距离可以均为
Figure PCTCN2019075761-appb-000001
(约为51.96mm)。
示例的,假设如图1和图5所示,该第二验证模体20为立方体,则该第一方向可以为第二验证模体20的长度方向,第二方向可以为第二验证模体20的宽度方向;或者,该第一方向可以为第二验证模体20的长度方向,第二方向可以为第二验证模体20的高度方向;又或者,第一方向可以为第二验证模体20的宽度方向,该第二方向可以为第二验证模体20的高度方向。参考图5 可以看出,其中两个第三定位件60在第二验证模体20的宽度方向上的间距d1为60mm,在第二验证模体20的长度方向上间的间距d2也为60mm。
在本发明实施例中,当该第一定位件40和多个第三定位件60满足上述几何关系时,该第二验证模体20还可以作为几何标定模体,即可以使用该第二验证模体20对放射治疗系统中的几何标定参数,例如影像采集组件(即探测器或球管)的安装误差等进行检测。并且还可以使用该第二验证模体20验证图像引导摆位的精度。
示例的,可以使用该第一定位件40模拟患者患部的靶点,且可以使用多个第三定位件60模拟位于该靶点周围的参考点。由于治疗医师在对患者进行摆位时可能会出现误差,因此为了验证图像引导摆位校正的准确性,可以获取影像采集组件对该第一定位件40和多个第三定位件60进行影像采集得到的图像,并根据该第二验证模体20的CT计划,确定靶点位置(或除靶点外的其它点位置)与其实际位置是否满足相关标准的要求。
可选的,为了避免定位球的材料对放射治疗产生不必要的影响。当采用第二验证模体20进行CT扫描并做治疗计划,该第一定位件40和多个第三定位件60选用的材料密度可以与人体的骨骼密度相近。例如,第一定位件40和多个第三定位件60的材料可以均为铝、特氟龙、玻璃或陶瓷中的至少一种。本发明实施例对此不作限定。
可选的,该第二验证模体20也可以为实心结构。且参考图1和图5可以看出,该第二验证模体20的形状可以为长方体。
图6是本发明实施例提供的验证装置中第三验证模体30的一种结构示意图。如图6所示,该第三验证模体30可以为内部中空的壳体。
相应的,为了使得第二定位件50可以位于第三验证模体30的中心,参考图1和图6,该壳体内侧可以设置有第二定位件管道G2。此时,该第二定位件50即可以设置在该第二定位件管道G2内。可选的,该第一定位件管道G1、第二定位件管道G2和第三定位件管道G3可以均称为固定位置测量棒。
可选的,在使用该第三验证模体30验证治疗等中心点和机械旋转等中心点的偏差时,可以使用放射源在不同角度对该第三验证模体30进行至少两次照射,与该放射源相对安装的探测器可以接收到放射源发出的射线,并根据接收到的射线采集到至少两张图像。然后,探测器可以将生成的至少两张图像发送至影像服务器。并由影像服务器对该至少两张图像进行分析,得到该至少两 张图像的中心点的坐标(即第二定位件50的坐标)。然后,影像服务器可以根据第二定位件50的坐标确定射束焦点的实际坐标,进而确定治疗等中心点与机械旋转等中心点的偏差。并且,影像服务器还可以将该偏差发送至控制主机,并由控制主机根据该偏差准确调整治疗床的位置。另外,控制主机还可以存储该偏差。
通过将第三验证模体30设计为内部中空的壳体,可以避免由于第三验证模体30的每个外表面的厚度不同时,放射源发出的不同角度的射线(如钴源射线)照射至第二定位件50进行成像时发生不同程度衰减的问题。进而可以避免由于成像时在第二定位件50上产生的光斑亮度不均匀,后期分析图像时较为困难的问题。
可选的,该第二定位件50的材料可以为金属钨,且该第二定位件50可以为球体,因此该第二定位件50也可以称为钨珠,该第二定位件的直径可以为7mm。且参考图1和图6可以看出,该第三验证模体30的形状可以为长方体。或者该第三验证模体30也可以为其他形状的结构,例如,为了结构美观,该第三验证模体30可以为半球体。本发明实施例对此不做限定。
图7是本发明实施例提供的一种验证装置的侧视图,如图7所示,该验证装置包括:第一验证模体10、第二验证模体20和第三验证模体30。且该第一验证模体10、第二验证模体20和第三验证模体30可以沿治疗床的长度方向Y依次排布。
图8是本发明实施例提供的一种验证装置的俯视图。图9是本发明实施例提供的一种验证装置的左视图。参考图7至图8可以看出,在本发明实施例中,该第一验证模体10、第二验证模体20和第三验证模体30可以沿治疗床的长度方向依次连接。第一验证模体10可以为立方体,第二验证模体20可以为长方体,该第三验证模体30可以为半球体。并且参考图9可以看出,该第一验证模体10的第一插槽的开口K1和第二插槽的开口K2均位于同一个外表面,且该外表面上还设置有与第一插槽和第二插槽均连通的抽取凹槽A。
可选的,可以采用粘贴工具(如医用胶),将该第一验证模体10、第二验证模体20和第三验证模体30依次粘贴,相应的该第一验证模体10和第二验证模体20的距离,以及第二验证模体20和第三验证模体30的距离均为0。或者还可以采用连接组件(如连接杆),将该第一验证模体10、第二验证模体20和第三验证模体30依次连接,相应的,该第一验证模体10和第二验证模体 20的距离,以及第二验证模体20和第三验证模体30的距离可以均为0,也可以均不为0。本发明实施例对此均不作限定。
另外,当该验证装置包括第三验证模体30时,由于第三验证模体30的中心处设置有材料为金属材料的第二定位件50。因此为了避免在采用第三验证模体30在核磁扫描下验证治疗等中心点与机械旋转等中心点的偏差时,第二定位件50对验证结果产生影响,该第三验证模体30可以与第一验证模体10或第二验证模体20可拆卸连接,也即是该第三验证模体30可以拆卸。
可选的,在本发明实施例中,参考图7至图9,该验证装置还可以包括底座70,该第一验证模体10、第二验证模体20和第三验证模体30中的至少一个验证模体可以设置在该底座70上。该底座70可以设置在治疗床上。
可选的,该第一验证模体10、第二验证模体20和第三验证模体30可以依次连接后,通过固定部件(如螺钉)固定在该底座70上;或者,该第一验证模体10、第二验证模体20和第三验证模体30还可以依次连接后,直接放置在治疗床上,而无需设置底座。本发明实施例对此不做限定。
在本发明实施例中,通过将具有不同功能的第一验证模体10、第二验证模体20和第三验证模体30依次连接组成一个验证装置,相对于相关技术中仅可以实现单一功能的验证装置,本发明实施例提供的验证装置功能更为丰富。
可选的,在本发明实施例中,该第一验证模体10、第二验证模体20和第三验证模体30的外壳的材料可以均为有机玻璃。由于有机玻璃对射线造成的阻挡较小,即射线穿过该有机玻璃时的衰减较小,因此保证了检测治疗等中心点与机械旋转等中心点的偏差时的可靠性。并且,有机玻璃的成本也较低。
综上所述,本发明实施例提供了一种放射治疗系统的验证装置。由于该验证装置包括能够实现不同功能的第一验证模体、第二验证模体和第三验证模体中的至少两个验证模体,因此该验证装置可以实现的功能较多。相对于相关技术中仅能实现单一功能的验证装置,本发明提供的验证装置功能更为丰富。
本发明实施例还提供了一种放射治疗系统。该放射治疗系统可以包括:如图1至图9任一所示的验证装置以及放射治疗设备。
可选的,该放射治疗设备可以包括:放射源和治疗床。在此基础上,该放射治疗设备还可以包括:影像采集组件,该影像采集组件包括与放射源相对设置的探测器,和/或成像装置(包括球管以及相对设置的平板探测器)。该放射 治疗系统还可以包括:控制主机、影像服务器、扫描仪和三个激光灯。
其中,该验证装置可以设置在治疗床上,该影像采集组件可以与影像服务器连接,该影像服务器可以与控制主机连接,该控制主机可以与治疗床连接。或者,该影像服务器还可以直接集成在控制主机中。该放射源可以为放射治疗设备中治疗头的放射源,即该放射源放射源发射的射线还可以用于照射患者的靶点,从而对患者进行放射治疗。
在本发明实施例中,该扫描仪可以用于扫描放射源照射后的验证装置中的胶片,从而使得胶片上形成的焦斑显现出来,治疗医师可以将包含有焦斑的图像发送至影像服务器。该影像采集组件和放射源可以用于采集该验证装置的图像,并将采集到的图像发送至影像服务器。影像服务器可以用于分析获取到的图像,并根据分析结果确定偏差(如确定治疗等中心点和机械旋转等中心点的偏差),并且,该影像服务器还可以将确定的偏差发送至控制主机。该控制主机可以用于根据接收到的偏差来调整治疗床的位置,且该控制主机可以存储该偏差。。每个激光灯可以用于向验证装置发射射线。可选的,该激光灯发射的射线可以为十字形射线。
可选的,该控制主机可以包括上位机和下位机,该上位机可以与下位机连接,下位机可以与放射治疗系统中的其他部件(如治疗床和影像采集组件)连接。该上位机可以用于向下位机发送控制指令,该下位机可以根据接收到的控制指令控制其他部件的工作状态。
综上所述,本发明实施例提供了一种放射治疗系统,该放射治疗系统包括验证装置。放射治疗设备中的放射源和影像采集组件中的球管可以向该验证装置发射射线,与放射源相对设置的探测器,以及与球管相对设置的探测器可以接收射线并根据射线采集图像,且该探测器可以将采集到的图像发送至影像服务器。扫描仪可以扫描放射源照射后的验证装置中的胶片,使得胶片上形成的焦斑显现出来,治疗医师可以将包含有焦斑的图像发送至影像服务器。影像服务器可以对获取到的图像进行分析以确定治疗等中心点和机械旋转等中心点的偏差或者确定机械旋转等中心点的偏差,并将偏差发送至控制主机,由控制主机根据该偏差对患者进行精确摆位,提高了放射治疗的精度,保证了放射治疗的质量。
本发明实施例提供了一种放射治疗系统的验证方法。该方法可以包括:第 一验证过程、第二验证过程和第三验证过程中的至少一种验证过程。
图10是本发明实施例提供的一种第一验证过程的方法流程图。如图10所示,该第一验证过程可以包括:
步骤1001、获取第一图像和第二图像。
在本发明实施例中,该第一图像和该第二图像可以为采用射束对该第一验证模体的插槽内插入的两张胶片分别进行辐射后,再对辐射后的两张胶片分别进行扫描得到的。示例的,该第一图像可以为放射源采用射束对第一验证模体的第一插槽内插入的胶片进行辐射后,再对辐射后的胶片进行扫描得到的。该第二图像可以为该放射源采用射束对第一验证模体的第二插槽内插入的胶片进行辐射后,再对辐射后的胶片进行扫描得到的。
示例的,放射源可以向该验证装置发出射线,此时即会在该第一验证模体内插入的胶片中心形成焦斑。然后治疗医师可以将胶片从该第一验证模体取出并使用扫描仪对该胶片进行扫描,使得在胶片上形成的焦斑显现出来。最后,治疗医师还可以将包含有焦斑的第一图像和第二图像上传至影像服务器。即影像服务器可以获取到第一图像和第二图像。
另外,在向插槽内放置胶片之后,还可以先使用针或者带有颜色的笔芯穿过通孔,在两张胶片的中心位置处分别进行标记。由于此时第一验证模体的中心与机械旋转等中心点对准,因此该标记即可以作为机械旋转等中心点的理论坐标。相应的,可以便于影像服务器根据该标记确定治疗等中心点与机械旋转等中心点的偏差,即可以提高确定治疗等中心点和机械旋转等中心点的偏差的精度和效率。
步骤1002、根据该第一图像和第二图像,确定射束的射束焦点的实际坐标,并根据该射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
由于成像点即为放射源发出的射线的射束焦点。因此影像服务器还可以根据该第一图像和第二图像,确定射束的射束焦点的实际坐标。
其中,第一图像和第二图像中焦斑的坐标均为二维图像坐标系中的坐标,因此影像服务器可以将获取到的该第一图像中焦斑的坐标,和该第二图像中的焦斑的坐标进行坐标转换,从而得到焦斑在三维设备坐标系中的坐标,该坐标即为射束焦点的实际坐标。进一步的,影像服务器在获取到射束焦点的实际坐标之后,还可以根据射束焦点的实际坐标(即治疗等中心点的实际坐标)确定治疗等中心点和机械旋转等中心点的坐标的偏差。然后,影像服务器可以将确 定的偏差发送至控制主机,以便控制主机存储该确定的偏差,之后,在进行放射治疗时,控制主机即可以直接根据该偏差对患者进行精确摆位。或者,控制主机可以在验证得到偏差后,直接根据该偏差调整治疗床的位置,从而使得第一验证模体的中心点与射束焦点对准。
由于可以使用该第一验证模体的中心点模拟患部的靶点,因此也即是可以在调整治疗床的位置后,使得靶点与实际的射束焦点对准。避免了由于安装误差造成治疗等中心点出现偏差时,射束焦点无法准确照射至靶点的问题,提高了放射治疗的精度,保证了放射治疗的质量。
图11是本发明实施例提供的一种第二验证过程的方法流程图。如图11所示,该第二验证过程可以包括:
步骤1101、调整第二验证模体的位置,使得第二验证模体中心处设置的第一定位件与机械旋转等中心点对准。
在本发明实施例中,激光灯发出的射线可以为十字形射线。理论上,在将第二验证模体放置在治疗床上时,该激光灯发出的十字射线的交点即为模体摆位时的参考坐标。进一步的,当第二验证模体的每个外表面上设置的两条标定线均与激光灯发出的十字射线重合时,可以先调整治疗床的位置,将第二验证模体移动至治疗空间,使得第二验证模体内部设置的第一定位件与机械旋转等中心点对准。此时,第二验证模体的中心点(即第一定位件)即为机械旋转等中心点的理论坐标。
可选的,控制主机可以与治疗床连接,治疗医师可以先将验证装置放置于治疗床的上床位置上。然后,控制主机可以通过调整治疗床的位置,使得第二验证模体的每个外表面上设置的每条标定线均与激光灯发出的射线重合。或者,治疗医师可以直接调整第二验证模体的位置,使得第二验证模体的每个外表面上设置的每条标定线均与激光灯发出的射线重合。然后,控制主机可以继续调整治疗床的位置,使得将第二验证模体中心点与机械旋转等中心点对准。
步骤1102、获取至少两张第三图像。
在本发明实施例中,在将第二验证模体移动至其中心点与机械等中心坐标对准后,影像服务器可以获取至少两张第三图像。该每张第三图像可以为影像采集组件对第二验证模体中的第一定位件进行影像采集得到的图像。
可选的,影像采集组件中的球管可以发出X射线至第二验证模体,此时与该球管相对设置的探测器即可以接收到该X射线,进而即实现了对第一定位件 的图像采集。进一步,探测器可以将采集到的第三图像发送至影像服务器。相应的,影像服务器即可以获取到至少两张第三图像。
步骤1103、根据每张第三图像中第一定位件的第一坐标,以及该每张第三图像中中心点的参考坐标,确定机械旋转等中心点的偏差。
当影像服务器获取到至少两张三图像后,可以进一步获取每张第三图像中第一定位件的第一坐标,以及每张第三图像中中心点的参考坐标。然后,影像服务器还可以根据获取到的第一坐标和参考坐标来确定机械旋转等中心点的偏差。由于此时,第二验证模体的中心点理论上已与机械旋转等中心点对准,因此该影像服务器可以将获取到的第三图像的中心点的参考坐标确定为机械旋转等中心点的理论坐标。第一定位件的第一坐标为机械旋转等中心点的实际坐标。上述理论坐标和实际坐标均为二维图像坐标系中的坐标。
进一步的,影像服务器还可以将获取到的至少两个第一坐标进行坐标转换得到机械旋转等中心点在三维设备坐标系中的实际坐标,并且可以将获取到的至少两个参考坐标进行坐标转换得到机械旋转等中心点在三维设备坐标系中的理论坐标。然后,影像服务器可以根据确定的机械等中心点的实际坐标和理论坐标,计算得到机械旋转等中心点的偏差,并将确定的偏差发送至控制主机中。可选的,控制主机还可以存储该机械旋转等中心点的偏差,以便后续在进行放射治疗的过程中,可以直接根据该偏差对患者进行精确摆位。
图12是本发明实施例提供的一种第三验证过程的方法流程图。如图12所示,该方法可以包括:
步骤1201、获取至少两张第四图像。
其中,该第四图像可以为影像采集组件中的放射源采用射束对第二定位件进行照射后采集得到的图像。可选的,影像采集组件中的放射源可以向第三验证模体进行至少两次照射,即放射源可以向第三验证模体发出至少两次射线。相应的,与该放射源相对设置的探测器即可以接收到该射线,并根据接收到的射线采集到至少两张第四图像。并且,该探测器可以将生成的至少两张第四图像发送至影像服务器。即影像服务器可以获取由影像采集组件采集到的图像。
步骤1202、根据获取到的每张第四图像,确定射束焦点的实际坐标,并根据射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
由于成像点即为放射源发出的射线的射束焦点。因此当影像服务器获取到至少两张第四图像后,还可以根据该至少两张图像中的每张图像来确定射束焦 点的实际坐标。
影像服务器可以对获取到的至少两张第四图像中的每张第四图像进行分析,获取到每张第四图像的中心点的坐标。例如,影像服务器可以获取到两张图像,并对该两张第四图像进行分析得到每张第四图像的中心点的坐标。由于射束焦点的实际坐标为三维设备坐标系中的坐标,第四图像的中心点的坐标为二维图像坐标系中的坐标,因此通过获取至少两张第四图像,影像服务器可以对至少两张第四图像中的每张第四图像的中心点的坐标进行坐标转换,得到第四图像的中心点在三维设备坐标系中的坐标。相应的,影像服务器即可以将该第四图像的中心点在三维设备坐标系中的坐标确定为射束焦点的实际坐标。
进一步的,当影像服务器获取到射束焦点的实际坐标之后,还可以根据该射束焦点的实际坐标(即治疗等中心点的实际坐标)确定治疗等中心点与机械旋转等中心点的偏差。然后,影像服务器可以将确定的偏差发送至控制主机,由控制主机根据该偏差调整治疗床的位置,从而使得第三验证模体的中心点射束焦点对准。另外,控制主机还可以存储确定的偏差,之后,在进行放射治疗时,控制主机即可以直接根据该偏差对患者进行精确摆位。
由于可以使用该第三验证模体的中心点模拟患部的靶点,因此也即是可以在调整治疗床的位置后,使得靶点与实际的射束焦点对准。避免了由于安装误差造成治疗等中心点出现偏差时,射束焦点无法准确照射至靶点的问题,提高了放射治疗的精度,保证了放射治疗的质量。
综上所述,本发明实施例提供了一种放射治疗系统的验证方法。由于该方法包括:第一验证过程、第二验证过程和第三验证过程中的至少一种验证过程,即放射治疗系统可以使用验证装置来实现验证治疗等中心点与机械旋转等中心点的偏差和验证机械旋转等中心点的偏差中的至少一种功能。因此该放射治疗系统的验证方法所能实现的功能较为丰富。
可选的,当该方法包括:第一验证过程、第二验证过程和第三验证过程时。在执行完第二验证过程(即上述步骤1103)后,放射治疗系统还可以根据偏差调整治疗床的位置,使得第二验证模体中的第一定位件与机械旋转等中心点对准。例如,控制主机可以根据接收到的偏差调整治疗床的位置,从而使得第二验证模体中的第一定位件与机械旋转等中心点对准。
进一步的,放射治疗系统可以根据第一验证模体的中心点与第一定位件之 间的相对位置,调整治疗床的位置,使得第一验证模体的中心点与该机械旋转等中心点对准。可选的,控制主机中可以预先存储有第一验证模体的中心点与第一定位件之间的相对位置(即控制主机中可以预先存储有第一验证模体和第二验证模体在三维设备坐标系中的坐标)。相应的,控制主机即可以根据第一验证模体的中心点与第一定位件之间的相对位置,调整治疗床的位置,使得第一验证模体的中心点与所述机械旋转等中心点对准。
另外,在使得第一验证模体的中心点与所述机械旋转等中心点对准之后,放射治疗系统中的影像服务器还可以使用第一验证模体来继续验证治疗等中心点与机械旋转等中心点之间是否存在偏差。也即是可以继续执行上述第一验证过程(即上述步骤1001和1002)。
在执行完第一验证过程(即上述步骤1002)后,放射治疗系统还可以根据第二定位件与第一定位件之间的相对位置,调整治疗床的位置,使得第二定位件与机械旋转等中心点对准。可选的,控制主机中可以预先存储有第三验证模体的中心设置的第二定位件与第一定位件之间的相对位置(即控制主机中还可以预先存储有第三验证模体在三维设备坐标系中的坐标)。相应的,控制主机即可以根据第二定位件与第一定位件之间的相对位置,调整治疗床的位置,使得第二定位件与机械旋转等中心点对准。
另外,在使得第二定位件与机械旋转等中心点对准之后,放射治疗系统中的影像服务器还可以使用第三验证模体来继续验证治疗等中心点与机械旋转等中心点之间是否存在偏差。也即是可以继续执行第三验证过程(即上述步骤1201和1202)。即放射治疗系统可以依次执行第二验证过程、第一验证过程和第三验证过程。
可选的,控制主机中还可以预先存储有第三验证模体内部设置的第二定位件与第一验证模体的中心点之间的相对位置(即控制主机中可以预先存储有第一验证模体和第三验证模体在三维设备坐标系中的坐标)。相应的,在执行完上述第三验证过程(即上述步骤1202)后,控制主机还可以根据该相对位置调整治疗床的位置,使得第一验证模体中心点与机械旋转等中心点对准。
但是由于上位机在调整治疗床的位置时,也可能会出现误差,也即是虽然上位机已经将第二定位件调整至与实际的射束焦点对准了。但是当上位机再次调整治疗床的位置后,射束焦点可能又会出现偏差,即第一验证模体的中心点可能并没有与实际的射束焦点对准。此时为了确保放射治疗的精度,放射治疗 系统中的影像服务器和控制主机可以继续执行第一验证过程,即继续验证第一验证模体的中心点与机械旋转等中心点之间是否存在偏差。或者,在执行完第一验证过程后,即根据射束焦点的实际坐标与机械旋转等中心点的坐标的偏差,调整治疗床的位置,使得该第一验证模体的中心点与射束焦点对准之后,控制主机还可以根据该相对位置调整治疗床的位置,使得第二定位件与机械旋转等中心点对准。相应的,为了进一步确保调整治疗床之后,第二定位件与实际的射束焦点对准,提高放射治疗的精度,控制主机还可以继续执行上述第三验证过程。也即是,第一验证过程和第三验证过程可以互为验证治疗等中心点和机械旋转等中心点的偏差,提高了确定偏差的可靠性。
综上所述,本发明实施例提供了一种放射治疗系统的验证方法。由于该方法包括:第一验证过程、第二验证过程和第三验证过程中的至少一种验证过程,即放射治疗系统可以使用验证装置来实现验证治疗等中心点与机械旋转等中心点的偏差和验证机械旋转等中心点的偏差中的至少一种功能。因此该放射治疗系统的验证方法所能实现的功能较为丰富。
本发明实施例提供了一种验证装置,该验证装置可以包括:第一验证模块、第二验证模块和第三验证模块中的至少一种验证模块。例如,该验证装置可以包括至少两种验证模块。
图13是本发明实施例提供的一种第一验证模块的框图。如图13所示,该第一验证模块可以包括:
第一获取子模块1301,用于获取第一图像和第二图像。
该第一图像和第二图像可以为采用射束对第一验证模体的插槽内插入的两张胶片分别进行辐射后,再对辐射后的两张胶片分别进行扫描得到的。
第一确定子模块1302,用于根据第一图像和第二图像,确定射束的射束焦点的实际坐标,并根据射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
图14是本发明实施例提供的一种第二验证模块的框图。如图14所示,该第二验证模块可以包括:
调整子模块1401,用于调整第二验证模体的位置,使得第二验证模体中心处设置的第一定位件与机械旋转等中心点对准。
第二获取子模块1402,用于获取至少两张第三图像。
该每张第三图像为对第一定位件进行影像采集得到的图像。
第二确定子模块1403,用于根据第三图像中第一定位件的第一坐标,以及每张该第三图像中心点的参考坐标,确定机械旋转等中心点的偏差。
图15是本发明实施例提供的一种第三验证模块的框图。如图15所示,该第三验证模块可以包括:
第三获取子模块1501,用于获取至少两张第四图像。
该第四图像为采用射束对第三验证模体中心处设置的第二定位件进行照射后采集得到的图像。
第三确定子模块1502,用于根据获取到的每张第四图像,确定射束焦点的实际坐标,并根据射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
可选的,该第一验证模块、第二验证模块和第三验证模块中的各子模块可以均设置在放射治疗系统中的同一个器件中。例如,可以均设置在控制主机中。或者,该第一验证模块、第二验证模块和第三验证模块中的各子模块可以设置在放射治疗系统中的不同器件中。例如,该第一验证模块中的第一获取子模块1301、第二验证模块中的第二获取子模块1402和第三验证模块中的第三获取子模块1501可以均设置在影像采集组件中,该第一验证模块中的第一确定子模块1302、第二验证模块中的第二确定子模块1403和第三验证模块中的第三确定子模块1502可以均设置在影像服务器中。
综上所述,本发明实施例提供了一种放射治疗系统的验证装置。由于该装置包括可以实现不同功能的第一验证模块、第二验证模块和第三验证模块中的至少一种验证模块,因此该放射治疗系统的验证装置的功能较为丰富。
关于上述实施例中的放射治疗系统的验证装置,其中各个模块执行操作的具体方式已在有关该方法的实施例中进行了详细描述,此处将不做详细阐述。
本发明实施例提供了一种放射治疗系统的验证装置。该摆位装置可以包括:处理器和存储器,该存储器中存储有指令,该指令可以由处理器加载并执行以实现如图10至图12任一所示的放射治疗系统的验证方法。
另外,本发明实施例提供了一种存储介质,该存储介质中存储有指令,当该存储介质在处理组件上运行时,可以使得处理组件执行如图10至图12任一所示的放射治疗系统的验证方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述 的放射治疗系统及其验证装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本发明的可选实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种放射治疗系统的验证装置,其特征在于,所述验证装置包括以下验证模体中的至少两个:
    第一验证模体、第二验证模体和第三验证模体;
    其中,所述第一验证模体具有用于放置胶片的插槽,所述第二验证模体的中心处设置有第一定位件,所述第三验证模体的中心处设置有第二定位件,且所述第一验证模体的中心点、所述第一定位件的中心点和所述第二定位件的中心点共轴线。
  2. 根据权利要求1所述的验证装置,其特征在于,所述插槽包括:第一插槽和第二插槽;
    所述第一插槽的插入面垂直于所述第二插槽的插入面,且所述第一插槽的插入面的中心点与所述第二插槽的插入面的中心点均与所述第一验证模体的中心点重合。
  3. 根据权利要求2所述的验证装置,其特征在于,所述第一插槽的开口和所述第二插槽的开口均位于所述第一验证模体的第一外表面上。
  4. 根据权利要求3所述的验证装置,其特征在于,所述第一外表面上,所述第一插槽的开口和所述第二插槽的开口的交界处设置有抽取凹槽。
  5. 根据权利要求2所述的验证装置,其特征在于,所述第一验证模体上设置有用于将所述第一验证模体的外表面与所述第一插槽导通的第一通孔,以及用于将所述第一验证模体的外表面与所述第二插槽导通的第二通孔;
    所述第一通孔的延伸方向与所述第一插槽的插入面相交,且所述第一通孔与所述第一插槽的插入面的交点为所述第一插槽的插入面的中心点;
    所述第二通孔的延伸方向与所述第二插槽的插入面相交,且所述第二通孔与所述第二插槽的插入面的交点为所述第二插槽的插入面的中心点。
  6. 根据权利要求1所述的验证装置,其特征在于,所述第二验证模体的外表面上设置有至少三组标定线,每组所述标定线包括相互垂直的两条标定线, 每组所述标定线包括的两条标定线的交点为目标点,所述至少三组标定线中的各个所述目标点共面;
    其中,所述至少三组标定线中,两组所述标定线分别设置在所述第二验证模体两个相对的侧面上,一组所述标定线设置在所述第二验证模体远离用于支撑所述第二验证模体的支撑体的一面。
  7. 根据权利要求1所述的验证装置,其特征在于,所述第二验证模体内还设置有多个第三定位件;
    所述多个第三定位件不共面,且所述第三定位件的数量不小于4。
  8. 根据权利要求7所述的验证装置,其特征在于,
    任意两个所述第三定位件之间的距离均相等,且每个所述第三定位件与所述第一定位件之间的距离均相等。
  9. 根据权利要求7所述的验证装置,其特征在于,
    所述第一定位件的材料和所述第三定位件的材料均为下述材料中的至少一种:铝、特氟龙、玻璃和陶瓷。
  10. 根据权利要求1所述的验证装置,其特征在于,所述第三验证模体为内部中空的壳体,所述壳体内侧设置有第二定位件管道,所述第二定位件设置在所述第二定位件管道内。
  11. 根据权利要求1至10任一所述的验证装置,其特征在于,所述第一验证模体的外壳的材料和/或所述第二验证模体的外壳的材料和/或所述第三验证模体的外壳的材料为:有机玻璃。
  12. 根据权利要求1至10任一所述的验证装置,其特征在于,所述第二定位件的材料为:金属钨。
  13. 根据权利要求1至10任一所述的验证装置,其特征在于,在所述验证装置包括所述第三验证模体的情况下,所述第三验证模体与所述第一验证模体 或所述第二验证模体均可拆卸连接。
  14. 根据权利要求1至10任一所述的验证装置,其特征在于,所述验证装置包括:所述第一验证模体、所述第二验证模体和所述第三验证模体;
    所述第一验证模体、所述第二验证模体和所述第三验证模体沿治疗床的长度方向依次排布。
  15. 根据权利要求1至10任一所述的验证装置,其特征在于,所述验证装置还包括:底座;
    所述第一验证模体、所述第二验证模体和所述第三验证模体中的至少一个验证模体设置在所述底座上。
  16. 一种放射治疗系统,其特征在于,所述系统包括:如权利要求1至15任一所述的验证装置。
  17. 一种放射治疗系统的验证方法,其特征在于,所述方法包括:
    第一验证过程、第二验证过程和第三验证过程中的至少一种验证过程;
    其中,所述第一验证过程包括:
    获取第一图像和第二图像,所述第一图像和所述第二图像为采用射束对所述第一验证模体的插槽内插入的两张胶片分别进行辐射后,再对辐射后的所述两张胶片分别进行扫描得到的;
    根据所述第一图像和第二图像,确定射束的射束焦点的实际坐标,并根据所述射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差;
    所述第二验证过程包括:
    调整第二验证模体的位置,使得所述第二验证模体中心处设置的第一定位件与机械旋转等中心点对准;
    获取至少两张第三图像,每张所述第三图像为对所述第一定位件进行影像采集得到的图像;
    根据每张所述第三图像中所述第一定位件的第一坐标,以及每张所述第三图像中心点的参考坐标,确定所述机械旋转等中心点的偏差;
    所述第三验证过程包括:
    获取至少两张第四图像,所述第四图像为采用射束对所述第三验证模体中心处设置的第二定位件进行照射后采集得到的图像;
    根据获取到的每张所述第四图像,确定所述射束焦点的实际坐标,并根据所述射束焦点的实际坐标确定治疗等中心点与机械旋转等中心点的偏差。
  18. 一种放射治疗系统的验证装置,其特征在于,所述装置包括:
    处理器和存储器,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如权利要求17所述的放射治疗系统的验证方法。
  19. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如权利要求17所述的放射治疗系统的验证方法。
PCT/CN2019/075761 2019-02-21 2019-02-21 放射治疗系统及其验证装置、验证方法 WO2020168525A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010398582.9A CN111588996B (zh) 2019-02-21 2019-02-21 验证模体及放射治疗系统的验证装置
CN201980000893.0A CN111836665B (zh) 2019-02-21 2019-02-21 放射治疗系统及其验证装置、验证方法
PCT/CN2019/075761 WO2020168525A1 (zh) 2019-02-21 2019-02-21 放射治疗系统及其验证装置、验证方法
US17/432,901 US11819711B2 (en) 2019-02-21 2019-02-21 Radiotherapy system, and device and method for verifying same
CN202210842654.3A CN115068844A (zh) 2019-02-21 2019-02-21 验证模体及放射治疗系统的验证装置
US17/710,928 US20220219018A1 (en) 2019-02-21 2022-03-31 Verification phantom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075761 WO2020168525A1 (zh) 2019-02-21 2019-02-21 放射治疗系统及其验证装置、验证方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/432,901 A-371-Of-International US11819711B2 (en) 2019-02-21 2019-02-21 Radiotherapy system, and device and method for verifying same
US17/710,928 Continuation-In-Part US20220219018A1 (en) 2019-02-21 2022-03-31 Verification phantom

Publications (1)

Publication Number Publication Date
WO2020168525A1 true WO2020168525A1 (zh) 2020-08-27

Family

ID=72144833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075761 WO2020168525A1 (zh) 2019-02-21 2019-02-21 放射治疗系统及其验证装置、验证方法

Country Status (3)

Country Link
US (1) US11819711B2 (zh)
CN (1) CN111836665B (zh)
WO (1) WO2020168525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200744A1 (en) * 2022-04-14 2023-10-19 Varian Medical Systems, Inc. Phantom holder for radiation therapy system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022240894A1 (en) * 2021-05-11 2022-11-17 Celestial Oncology Inc. Coupled robotic radiation therapy system
CN115591135B (zh) * 2022-09-29 2023-05-05 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种治疗设备的多功能质控方法及模体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230462A1 (en) * 2011-03-07 2012-09-13 James Leonard Robar Methods and apparatus for imaging in conjunction with radiotherapy
CN108525140A (zh) * 2018-04-10 2018-09-14 新瑞阳光粒子医疗装备(无锡)有限公司 一种带影像设备的质子放疗机架
CN109350865A (zh) * 2018-11-26 2019-02-19 泰山医学院 一种磁共振引导的放射治疗系统成像质量控制体模

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668073B1 (en) 1998-11-12 2003-12-23 The University Of British Columbia Anthropomorphic film phantom for three-dimensional dosimetry
WO2006007584A2 (en) 2004-07-01 2006-01-19 East Carolina University Radiation isocenter measurement devices and methods and 3-d radiation isocenter visualization systems and related methods
US7453984B2 (en) * 2006-01-19 2008-11-18 Carestream Health, Inc. Real-time target confirmation for radiation therapy
CN200951265Y (zh) 2006-08-11 2007-09-26 天津医科大学附属肿瘤医院 放疗设备的射野测量及等中心检测装置
DE102007011153A1 (de) 2007-03-07 2008-09-11 Siemens Ag Halterungsvorrichtung für Phantome und Verfahren für die Qualitätsüberprüfung einer Strahlentherapieanlage sowie Strahlentherapieanlage
DE102007011154A1 (de) * 2007-03-07 2008-09-11 Siemens Ag Phantom und Verfahren für die Qualitätsüberprüfung einer medizintechnischen Anlage sowie Partikeltherapieanlage
KR101027330B1 (ko) 2009-04-08 2011-04-11 가톨릭대학교 산학협력단 Imrt용 선형가속기의 정도관리를 위한 팬텀
JP5613925B2 (ja) 2010-05-14 2014-10-29 国立大学法人群馬大学 多目的ファントム及びその使用方法
KR101229686B1 (ko) 2010-10-21 2013-02-04 최진호 조립식 욕실방수판용 가변형 몰드장치 및 이를 이용한 조립식 욕실방수판
CN201936015U (zh) 2010-11-08 2011-08-17 李国庆 一种用于放射治疗吸收剂量测量及验证的固体体模和胶片盒
KR101300780B1 (ko) 2011-01-05 2013-09-10 학교법인 건국대학교 회전 조사식 체적 기반 세기조절방사선치료의 선량 검증을 위한 팬톰장치
CN203138520U (zh) 2012-11-20 2013-08-21 新疆医科大学附属肿瘤医院 图像引导放疗质量保证模体
CN103353602B (zh) 2013-07-19 2017-12-01 北京中康联医疗器械开发有限公司 多功能测量模体
CN203483752U (zh) 2013-09-02 2014-03-19 张伟 放射治疗等中心及射野验证模体
CN104415459A (zh) 2013-09-02 2015-03-18 张伟 放射治疗等中心及射野验证模体
US9643029B2 (en) 2013-09-26 2017-05-09 Varian Medical Systems International Ag Dosimetric end-to-end verification devices, systems, and methods
US9483850B2 (en) * 2013-11-19 2016-11-01 Toshiba Medical Systems Corporation Cylinder source software-positioning method for PET calibration and image quality assurance
CN203802968U (zh) 2014-02-26 2014-09-03 中国人民解放军第三〇七医院 一种用于立体定向放射治疗系统焦点位置检测的装置
US9616251B2 (en) * 2014-07-25 2017-04-11 Varian Medical Systems, Inc. Imaging based calibration systems, devices, and methods
CN105983182B (zh) 2015-02-27 2020-10-16 苏州雷泰医疗科技有限公司 一种复合型质量保证模体
US20170050052A1 (en) * 2015-07-09 2017-02-23 Eric A. Burgett Patient-specific, multi-material, multi-dimensional anthropomorphic human equivalent phantom and hardware fabrication method
CN105233427B (zh) 2015-10-22 2016-08-31 山东省医学科学院放射医学研究所 用于立体定向放射治疗系统质量控制检测的模体及方法
CN205460526U (zh) 2016-03-21 2016-08-17 中国医学科学院肿瘤医院 一种术中图像引导放疗的多功能质控模体
CN206252739U (zh) 2016-08-29 2017-06-16 上海伽玛星科技发展有限公司 一种头模检测放疗装置
CN206381505U (zh) 2016-08-29 2017-08-08 上海伽玛星科技发展有限公司 一种放疗装置检测模型
US10569105B2 (en) * 2017-05-26 2020-02-25 Accuray Incorporated Radiation based treatment beam position calibration and verification
US20200129785A1 (en) * 2017-06-02 2020-04-30 Our United Corporation Calibration method, device and storage medium of radiotherapy equipment
EP3421086B1 (en) * 2017-06-28 2020-01-15 OptiNav Sp. z o.o. Determination of geometrical information about a medical treatment arrangement comprising a rotatable treatment radiation source unit
CN208243929U (zh) 2017-07-13 2018-12-18 华中科技大学同济医学院附属协和医院 一种立体定向放射治疗质控多功能模体
GB2565119A (en) * 2017-08-02 2019-02-06 Vision Rt Ltd Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
WO2019035093A1 (en) * 2017-08-18 2019-02-21 Ohio State Innovation Foundation QUALITY ASSURANCE PHANTOM AT SIX DEGREES OF FREEDOM FOR LINEAR RADIOTHERAPY ACCELERATORS
DE102017009040A1 (de) * 2017-09-27 2019-03-28 Städtisches Klinikum Dessau Verfahren zur EPID-basierten Überprüfung, Korrektur und Minimierung des Isozentrums eines Strahlentherapiegeräts
CN208405799U (zh) 2017-10-30 2019-01-22 重庆医科大学附属第一医院 一种用于放射治疗质量保证工作时使用的星形束照射模体
US10702718B2 (en) * 2017-11-20 2020-07-07 The Board Of Trustees Of The Leland Stanford Junior University Integrated multi-modal phantom for combined dosimetry and positioning verification
US10668304B2 (en) * 2018-04-30 2020-06-02 Elekta, Inc. Phantom for adaptive radiotherapy
US11311747B2 (en) * 2020-07-16 2022-04-26 Uih America, Inc. Systems and methods for isocenter calibration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230462A1 (en) * 2011-03-07 2012-09-13 James Leonard Robar Methods and apparatus for imaging in conjunction with radiotherapy
CN108525140A (zh) * 2018-04-10 2018-09-14 新瑞阳光粒子医疗装备(无锡)有限公司 一种带影像设备的质子放疗机架
CN109350865A (zh) * 2018-11-26 2019-02-19 泰山医学院 一种磁共振引导的放射治疗系统成像质量控制体模

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023200744A1 (en) * 2022-04-14 2023-10-19 Varian Medical Systems, Inc. Phantom holder for radiation therapy system

Also Published As

Publication number Publication date
CN111836665A (zh) 2020-10-27
US20220203131A1 (en) 2022-06-30
CN111836665B (zh) 2022-09-30
US11819711B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US10933258B2 (en) Method of calibration of a stereoscopic camera system for use with a radio therapy treatment apparatus
US7907699B2 (en) Radiotherapeutic apparatus
US11504552B2 (en) Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
CN111132730B (zh) 与放射治疗设备一起使用的患者监测系统的校准方法
US9211101B2 (en) Method and apparatus for real-time mechanical and dosimetric quality assurance measurements in radiation therapy
WO2020168525A1 (zh) 放射治疗系统及其验证装置、验证方法
US9283405B2 (en) Method for real-time quality assurance assessment of gantry rotation and collimator rotation in radiation therapy
KR101470522B1 (ko) 방사선 치료용 레이저 정렬 장치 및 정렬 방법
JP6578574B2 (ja) 放射線治療装置較正用ファントム
JP6009705B1 (ja) 放射線照射アイソセンタ分析器具
WO2018218684A1 (zh) 放疗设备标定方法、图像标定工装、存储介质和程序产品
US20170312547A1 (en) Method to reconstruct the 3d map of the radiation treatment isocenter of a medical accelerator
JP2019141581A (ja) 患者プランニング及び治療システム用の多目的オブジェクト
CN1765326A (zh) X线体层照相机的调整装置和调整方法
JP2010178989A (ja) 放射線治療装置校正用ファントム、放射線治療装置、及び放射線治療装置校正方法
CN111588996B (zh) 验证模体及放射治疗系统的验证装置
JP2005027743A (ja) 放射線治療位置決め装置
US20220219018A1 (en) Verification phantom
JP2008046422A (ja) 放射線治療装置の精度管理用カセッテ及び放射線治療装置の精度管理方法
JP2017060551A (ja) アイソセンタ評価装置
CN215741438U (zh) 验证模体
CN104955397B (zh) 用于精确生成感兴趣区域的辐射图像的方法
EP4201333A1 (en) Universal phantom for calibration and verification of optical and radiation systems
CN219539274U (zh) 一种放射治疗质控模体
CN215195100U (zh) 验证模体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916112

Country of ref document: EP

Kind code of ref document: A1