WO2020168512A1 - 一种隔膜压缩机油缸内油压监测装置及方法 - Google Patents

一种隔膜压缩机油缸内油压监测装置及方法 Download PDF

Info

Publication number
WO2020168512A1
WO2020168512A1 PCT/CN2019/075694 CN2019075694W WO2020168512A1 WO 2020168512 A1 WO2020168512 A1 WO 2020168512A1 CN 2019075694 W CN2019075694 W CN 2019075694W WO 2020168512 A1 WO2020168512 A1 WO 2020168512A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain gauge
oil pressure
piston rod
diaphragm compressor
strain
Prior art date
Application number
PCT/CN2019/075694
Other languages
English (en)
French (fr)
Inventor
彭学院
李雪莹
陈嘉豪
贾晓晗
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US17/280,923 priority Critical patent/US20210340974A1/en
Priority to CN201980000253.XA priority patent/CN110073190B/zh
Priority to PCT/CN2019/075694 priority patent/WO2020168512A1/zh
Publication of WO2020168512A1 publication Critical patent/WO2020168512A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/053Pumps having fluid drive
    • F04B45/0533Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/103Responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1457Piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0002Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • G01L9/045Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges with electric temperature compensating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1201Rotational speed of the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1208Angular position of the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1212Oil pressure in the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/043Settings of time

Definitions

  • the application belongs to the technical field of compressors, and in particular relates to a device and method for monitoring oil pressure in an oil cylinder of a diaphragm compressor.
  • Diaphragm compressor is a special equipment for gas compression that only allows minor leakage or does not allow leakage. Because of its good sealing performance, wide pressure range, and relatively large compression, it is widely used in the petrochemical industry such as hydrogen refueling stations to compress and transport various high-purity gases, precious rare gases, toxic and harmful gases and corrosive gases. .
  • the piston pushes the working fluid in the cylinder oil cavity, and then pushes the diaphragm to reciprocate in the diaphragm cavity to change the working volume of the air cavity, and achieve no leakage with the cooperation of the suction and exhaust valves Cyclical work process.
  • the oil leaking through the hydraulic piston ring is compensated by the compensation circuit, and the oil supplement is adjusted by installing an oil relief valve on the hydraulic cylinder head.
  • the oil pressure change of a diaphragm compressor is a comprehensive reflection of the compressor’s working performance and operating status.
  • the oil pressure change curve of the diaphragm compressor’s working process can reflect the piston position, the suction process time, the opening and closing actions of the suction valve, The opening and closing action of the exhaust valve, the time of the exhaust process, the action of the spill valve and the oil replenishment process, so the oil pressure change curve is the most effective tool for diagnosing the fault of the diaphragm compressor, and the oil pressure of the diaphragm compressor is dynamically monitored It is an effective method to improve the reliability and safety of equipment operation. It is also a strong demand for diaphragm compressor designers and users to ensure the monitoring of equipment operation status.
  • the exhaust pressure can reach up to 300 MPa.
  • the pressure is monitored by machining a pressure measuring hole on the cylinder block, it will seriously damage the integrity of the cylinder and affect the strength of the cylinder. Security threats, and will cause leakage.
  • the exhaust pressure can reach up to 300MPa, but if the pressure is monitored by machining a pressure measuring hole on the cylinder, the cylinder wall opening will cause leakage and affect the strength of the cylinder.
  • This application provides a device and method for monitoring oil pressure in an oil cylinder of a diaphragm compressor.
  • the present application provides an oil pressure monitoring device in the oil cylinder of a diaphragm compressor, which includes a piston rod and a strain gauge circuit.
  • the strain gauge circuit includes a strain gauge assembly and a bridge circuit connected to each other.
  • the sheet assembly is arranged on the surface of the piston rod.
  • the strain gauge assembly includes a first strain gauge, and the first strain gauge is connected to the bridge circuit.
  • the strain gauge assembly includes a second strain gauge and a third strain gauge, the second strain gauge is arranged along the axial direction of the piston rod, and the third strain gauge and the second strain gauge are perpendicular to each other ;
  • the second strain gauge is connected to the first bridge arm, and the third strain gauge is connected to the second bridge arm.
  • the strain gauge assembly includes a fourth strain gauge, a fifth strain gauge, a sixth strain gauge, and a seventh strain gauge;
  • the fourth strain gauge is arranged along the axial direction of the piston rod, and the fifth strain gauge The gauge and the fourth strain gauge are perpendicular to each other, the fourth strain gauge is connected to the full bridge circuit, the fifth strain gauge is connected to the full bridge circuit; the sixth strain gauge is along the axial direction of the piston rod It is provided that the seventh strain gauge and the sixth strain gauge are perpendicular to each other, the sixth strain gauge is connected to a full bridge circuit, and the seventh strain gauge is connected to a full bridge circuit.
  • the photoelectric sensor unit includes a flywheel, the flywheel and the photoelectric sensor are arranged correspondingly, the signal acquisition unit is connected to the strain gauge assembly, and the signal The collection unit is connected with the photoelectric sensor; the signal collection unit is connected with the data processing unit.
  • the data processing unit is an intelligent terminal.
  • the signal acquisition unit includes an acquisition card and a signal conditioning module.
  • This application also provides a method for monitoring the oil pressure in the oil cylinder of a diaphragm compressor.
  • the method includes the following steps:
  • Step 1 Synchronously collect the first voltage signal and the second voltage signal output by the strain gauge circuit through the signal collection unit, and at the same time convert the collected first voltage signal into a first digital signal for storage, and convert the collected second voltage signal into The second digital signal is stored;
  • Step 2 Determine the start and end time of a complete cycle according to the first digital signal
  • Step 3 According to the start and end time of the complete cycle, process the second digital signal to obtain an oil pressure value.
  • processing of the second digital signal in step 3 includes:
  • is the crank angle
  • ⁇ ( ⁇ ) is the strain
  • e( ⁇ ) is the second digital signal
  • v is the Poisson's ratio
  • E is the elastic modulus
  • K s is the strain gauge sensitivity coefficient
  • AR is the cross-sectional area of the piston rod
  • F( ⁇ ) is the piston rod load
  • the first voltage signal is filtered, amplified, adjusted, and A/D converted, and then converted into a first digital signal and transmitted to an intelligent terminal for processing.
  • the second voltage signal is filtered, Amplification, conditioning and A/D conversion are converted into a second digital signal and transmitted to the smart terminal for processing.
  • the device and method for monitoring the oil pressure in the oil cylinder of the diaphragm compressor provided in the present application have the following beneficial effects:
  • the oil pressure monitoring device in the oil cylinder of the diaphragm compressor connects the strain gauge assembly with the bridge circuit by arranging the strain gauge assembly on the surface of the piston rod to improve the sensitivity of the strain gauge assembly and make the input and output linear relationship. Since the diaphragm compressor is non-invasively provided with a strain gauge assembly on the piston rod to measure the piston rod load, the oil pressure can be measured indirectly, and the oil pressure of the diaphragm compressor can be measured without loss. There is no damage to the diaphragm compressor, and the non-invasive monitoring is safe and reliable, especially under high pressure conditions, which can realize accurate monitoring of oil pressure.
  • Fig. 1 is a schematic diagram of the first structure of the strain gauge of the present application
  • Figure 2 is a schematic diagram of the second structure of the strain gauge of the present application.
  • FIG. 3 is a schematic diagram of the first structure of the oil pressure monitoring device in the oil cylinder of the diaphragm compressor of the present application;
  • FIG. 4 is a schematic diagram of the second structure of the oil pressure monitoring device in the oil cylinder of the diaphragm compressor of the present application;
  • Figure 5 is a schematic diagram of the principle of the oil pressure monitoring device in the oil cylinder of the diaphragm compressor of the present application
  • FIG. 6 is a schematic diagram of the first structure of the diaphragm compressor of the present application.
  • FIG. 7 is a schematic diagram of the second structure of the diaphragm compressor of the present application.
  • FIG. 8 is a schematic diagram of the connection of the half bridge circuit in the oil pressure monitoring device in the oil cylinder of the diaphragm compressor of the present application;
  • Figure 9 is a schematic diagram of the piston rod structure of the present application.
  • FIG. 10 is a schematic diagram of a force curve in one cycle in the method for monitoring oil pressure in a cylinder of a diaphragm compressor of the present application;
  • FIG. 11 is an oil pressure curve in one cycle in the method for monitoring oil pressure in the oil cylinder of the diaphragm compressor of the present application
  • Strain gauge is a component used to measure strain composed of a sensitive grid.
  • the working principle of the resistance strain gauge is made based on the strain effect, that is, when the conductor or semiconductor material is mechanically deformed under the action of external force, its resistance value changes accordingly. This phenomenon is called the "strain effect".
  • the quadrilateral measuring bridge circuit composed of resistors, capacitors, inductances and other components is called a bridge, and the four sides of the bridge are bridge arms.
  • a DC power supply is connected to both ends of a diagonal line of the quadrilateral, and the voltage at both ends of the other diagonal line is drawn.
  • the measured value can be obtained according to the value of the known component in the bridge arm
  • the parameter of the component (such as resistance, resistance, capacitance, inductance).
  • the present application provides an oil pressure monitoring device in a diaphragm compressor oil cylinder, which includes a piston rod 1 and a strain gage circuit.
  • the strain gage circuit includes a strain gage assembly 2 and a bridge circuit connected to each other.
  • the strain gauge assembly 2 is arranged on the surface of the piston rod 1.
  • the strain gauge assembly 2 is attached to the surface of the piston rod 1 by an adhesive.
  • the component with the strain gauge assembly 2 is always in a certain temperature field. If the linear expansion coefficient of the strain gauge sensitive grid is not equal to the linear expansion coefficient of the construction material, when the temperature changes, due to the extension of the sensitive grid and the component The amount of length (or compression) varies, causing the sensitive grid to receive additional tension (or compression), and the resistance of the sensitive grid will change, resulting in inaccurate measurement. This phenomenon is a temperature effect.
  • the strain gauge assembly 2 is a sensor whose resistance changes with stress. Almost all strain gauge components 2 have relatively low sensitivity. Using a bridge circuit can double their sensitivity and make the input and output have a linear relationship. The use of a bridge circuit to detect changes in strain gauge components also has the advantages of extremely low current passing through and low self-heating of the strain gauge. Therefore, bridge circuits are often used in strain gauge sensor applications.
  • the bridge circuit includes a quarter bridge connection mode, a half bridge connection mode and a full bridge connection mode.
  • the lead wire of the strain gauge is a 25mm silver-coated copper wire (0.12mm ⁇ 0.16mm in diameter). The diameter of the piston rod of different units is different, and the selected strain gauge model can also be different. In other words, you can select the corresponding variants according to actual needs.
  • the strain gauge assembly 2 includes a first strain gauge 3, and the first strain gauge 3 is connected to the bridge circuit.
  • the surface of the piston rod 1 is provided with only one strain gauge, that is, the first strain gauge 3, where the first strain gauge 3 is also called a working gauge and can be used to measure the strain of the piston rod 1.
  • the first strain gauge 3 is attached to the piston rod 1.
  • the length of the piston rod 1 changes, and the first strain gauge 3 will be compressed or stretched accordingly. Therefore, the resistance of the first strain gauge 3 will change, and the resistance change will cause a bridge.
  • the output voltage of the circuit changes. After processing the collected voltage signal, the oil pressure is obtained.
  • the strain gauge assembly 2 includes a second strain gauge 4 and a third strain gauge 5.
  • the second strain gauge 4 is arranged along the axial direction of the piston rod 1, and the third strain gauge 5 is connected to the The two strain gauges 4 are perpendicular to each other; the second strain gauge 4 is connected to the first bridge arm 6, and the third strain gauge 5 is connected to the second bridge arm 7.
  • strain gauges Two strain gauges are used, one is the working piece, the second strain gauge 4, and the other is the compensation piece, the third strain gauge 5.
  • the working piece is pasted along the axial direction, and the compensation piece is pasted perpendicular to it, distinguished by the direction of pasting.
  • the strain of strain gauge 1 is ⁇ 1
  • the strain of the compensation piece is ⁇ 2
  • ⁇ 1 includes the deformation caused by axial tension and compression and temperature induced
  • the deformation of ⁇ 2 only includes the deformation caused by temperature, so that by subtracting, the deformation caused by temperature is cancelled out. Thus eliminating temperature effects.
  • strain gauges There are three methods for attaching strain gauges: quarter bridge, half bridge and full bridge, all of which are reasonable. Only 2 strain gauges are connected to the quarter bridge and half bridge connection, and 4 strain gauges are connected to the full bridge.
  • a half-bridge method is used to construct the bridge circuit to increase the output of the strain gauge and eliminate the temperature influence of the wire; paste a working piece along the axial direction along the side of the piston rod, and place the other compensation piece close to the working piece and perpendicular to it Paste.
  • Figure 8 is the half-bridge connection method.
  • a working sheet and a temperature compensation sheet are connected to two adjacent bridge arms, namely the first bridge arm 6 and the second bridge arm 7, and the other two bridge arms are connected to a fixed resistor. .
  • the strain gauge assembly 2 includes a fourth strain gauge, a fifth strain gauge, a sixth strain gauge, and a seventh strain gauge;
  • the fourth strain gauge is arranged along the axial direction of the piston rod 1, and the fifth strain gauge The strain gauge and the fourth strain gauge are perpendicular to each other, the fourth strain gauge is connected to the full bridge circuit, and the fifth strain gauge is connected to the full bridge circuit;
  • the sixth strain gauge is along the piston rod 1 It is arranged in an axial direction, the seventh strain gauge and the sixth strain gauge are perpendicular to each other, the sixth strain gauge is connected to a full bridge circuit, and the seventh strain gauge is connected to the full bridge circuit.
  • the full bridge method is used to construct the bridge circuit.
  • the half bridge method is the best way to construct the bridge circuit.
  • the photoelectric sensor unit includes a flywheel 9, the flywheel 9 is arranged corresponding to the photoelectric sensor 10, and the signal acquisition unit 8 is connected to the strain gauge assembly 2.
  • the signal acquisition unit 8 is connected with the photoelectric sensor unit; the signal acquisition unit 8 is connected with the data processing unit 11.
  • Hall type and photoelectric sensors are commonly used in compressor technology.
  • the transmitter of the sensor is generally arranged on the flywheel 9, and the photoelectric sensor 10 is generally reflective.
  • the probe installation position of the photoelectric sensor 10 Accurate positioning is required, that is, rotate the flywheel 9 to make the pistons at the inner and outer dead points respectively, and then align the probe at the sending point (magnetic steel, iron block or reflective strip).
  • the flywheel 9 rotates around the central vertical axis, and the crank finds the position where the piston moves to the top dead center, which is used as a reference for phase reference. At this time, make a mark at any position of the flywheel 9 and install a light spot sensor on the frame to make it Alignment marks. Under normal circumstances, the photoelectric sensor 10 collects a stable signal, and when the mark is turned to the photoelectric sensor 10, an impact signal appears as the cycle start position, and there is a cycle between every two consecutive impact signals.
  • the photoelectric sensor unit is to obtain the periodic signal to judge a complete period.
  • the photoelectric sensor 10 is installed at the flywheel 9, and the initial value of the compressor crank angle ⁇ is determined by the obtained outer dead point signal; the analog signal output by the photoelectric sensor 10 is converted into the final required digital signal through the signal acquisition unit 8 and stored for subsequent follow-up Analysis and processing.
  • the signal acquisition used here is the strain acquisition card NI9237, NI9205 and acquisition chassis cDAQ-9185 of National Instruments (NI) Co., Ltd., and the data acquisition is carried out by writing a LabVIEW program.
  • the data processing unit 11 is an intelligent terminal.
  • the smart terminal here refers to a device that can calculate and analyze data, such as a computer.
  • the computer In addition to storing data, the computer also runs a data collection program to control the sampling and display of signals, such as setting sampling frequency and sample storage length and other parameters.
  • the computer displays the collected photoelectric sensor 10 dead-point signal and the output voltage signal of the strain gauge circuit. The display can be monitored in real time.
  • the signal acquisition unit 8 includes an acquisition card and a signal conditioning module. Set the data sampling frequency and the corresponding acquisition channel.
  • the signal acquisition unit 8 implements a series of functions of signal filtering, amplification, conditioning and A/D conversion.
  • This application also provides a method for monitoring oil pressure in a diaphragm compressor oil cylinder, which is characterized in that the method includes the following steps:
  • Step 1 Synchronously collect the first voltage signal output by the photoelectric sensor and the second voltage signal output by the strain gauge circuit through the signal collection unit, and at the same time convert the collected first voltage signal into the first digital signal for storage, and store the collected second voltage signal.
  • the voltage signal is converted into a second digital signal for storage;
  • Step 2 Determine the start and end time of a complete cycle according to the first digital signal
  • Step 3 According to the start and end time of the complete cycle, process the second digital signal to obtain an oil pressure value.
  • the first voltage signal is the output of the photoelectric sensor 10, that is, the dead point signal.
  • processing the second digital signal in step 3 includes:
  • is the crank angle
  • ⁇ ( ⁇ ) is the strain
  • e( ⁇ ) is the second digital signal
  • v is the Poisson's ratio
  • E is the elastic modulus
  • K s is the strain gauge sensitivity coefficient
  • AR is the cross-sectional area of the piston rod
  • F( ⁇ ) is the piston rod load
  • the first voltage signal is filtered, amplified, adjusted, and A/D converted, and then converted into a first digital signal to be transmitted to the smart terminal for processing
  • the second voltage signal is filtered and amplified , Conditioning and A/D conversion, converted into a second digital signal and transmitted to the smart terminal for processing.
  • the oil pressure monitoring device in the oil cylinder of the diaphragm compressor connects the strain gage assembly 2 with the bridge circuit by arranging the strain gage assembly 2 on the surface of the piston rod 1 to improve the sensitivity of the strain gage assembly and make the input and The output is linear. Since the strain gauge assembly 2 is provided on the piston rod 1 to measure the piston rod load on the diaphragm compressor non-invasively, the oil pressure can be measured indirectly, and the oil pressure of the diaphragm compressor can be measured without loss. There is no damage to the diaphragm compressor, and the non-invasive monitoring is safe and reliable, especially under high pressure conditions, which can realize accurate monitoring of oil pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种隔膜压缩机油缸内油压监测装置,包括活塞杆(1)和应变片电路,应变片电路包括相互连接的应变片组件(2)和桥式电路,应变片组件(2)设置于活塞杆(1)表面。以及一种隔膜压缩机油缸内油压监测方法。由于在隔膜压缩机上非侵入式地在活塞杆(1)上设置应变片组件(2)测量活塞杆(1)载荷,使得油压间接被测量,可以无损安全测量隔膜压缩机油压,并可在高压的工况下实现油压的准确监测。

Description

一种隔膜压缩机油缸内油压监测装置及方法 技术领域
本申请属于压缩机技术领域,特别是涉及一种隔膜压缩机油缸内油压监测装置及方法。
背景技术
隔膜式压缩机是一种只允许微量泄漏或不允许泄漏的气体压缩专用设备。由于其所能提供的密封性能好、压力范围广、压缩比较大,因此被广泛应用于加氢站等石油化工领域中压缩输送各种高纯气体、贵重稀有气体、有毒有害气体和腐蚀性气体。在隔膜压缩机中,通过活塞推动气缸油腔中的工作油液,进而推动膜片在膜腔中做往复运动,以改变气腔的工作容积,在吸、排气阀的配合下实现无泄漏的周期性工作过程。在隔膜压缩机的液压油循环系统中,通过补偿回路补偿经过液压活塞环泄漏的油液,并通过在油压缸头上安装溢油阀以调节补油量。
隔膜压缩机的油压变化是压缩机工作性能和运行状态的综合反映,通过隔膜压缩机工作过程的油压变化曲线可以反映出活塞位置、吸气过程时间、吸气阀开启和关闭的动作、排气阀开启和关闭的动作、排气过程时间、溢油阀动作和补油过程,因此油压变化曲线是诊断隔膜压缩机压缩机故障最有效的工具,对隔膜压缩机油压进行动态监测是提高设备运行的可靠性、安全性的有效方法,保障设备的运行状态监测也是隔膜压缩机设计者和使用者的强烈需求。
由于隔膜压缩机可运行的压力范围广,排气压力最高可达300MPa,但是如果通过在缸体上加工出测压孔监测压力,会严重损害气缸的完整性、影响气缸强度,存在极大的安全威胁,且会造成泄漏。
发明内容
1.要解决的技术问题
基于由于隔膜压缩机可运行的压力范围广,排气压力最高可达300MPa,但是如果通过在缸体上加工出测压孔监测压力,则缸壁开孔会造成泄漏,影响气缸强度的问题,本申请提供了一种隔膜压缩机油缸内油压监测装置及方法。
2.技术方案
为了达到上述的目的,本申请提供了一种隔膜压缩机油缸内油压监测装置,包括活塞杆和应变片电路,所述应变片电路包括相互连接的应变片组件和桥式电路,所述应变片组件设置于所述活塞杆表面。
可选地,所述应变片组件包括第一应变片,所述第一应变片与所述桥式电路相连接。
可选地,所述应变片组件包括第二应变片和第三应变片,所述第二应变片沿所述活塞杆轴向设置,所述第三应变片与所述第二应变片相互垂直;所述第二应变片与第一桥臂相连接,所述第三应变片与第二桥臂相连接。
可选地,所述应变片组件包括第四应变片、第五应变片、第六应变片和第七应变片;所述第四应变片沿所述活塞杆轴向设置,所述第五应变片与所述第四应变片相互垂直,所述第四应变片与全桥电路相连接,所述第五应变片与全桥电路相连接;所述第六应变片沿所述活塞杆轴向设置,所述第七应变片与所述第六应变片相互垂直,所述第六应变片与全桥电路相连接,所述第七应变片与全桥电路相连接。
可选地,还包括光电传感单元和信号采集单元,所述光电传感单元包括飞轮,所述飞轮与光电传感器相应设置,所述信号采集单元与所述应变片组件相连接,所述信号采集单元与所述光电传感器相连接;所述信号采集单元与数据处理单元相连接。
可选地,所述数据处理单元为智能终端。
可选地,所述信号采集单元包括采集卡和信号调理模块。
本申请还提供一种隔膜压缩机油缸内油压监测方法,所述方法包括如下步骤:
步骤1、通过信号采集单元同步采集第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;
步骤2、根据第一数字信号判断一个完整周期的起止时间;
步骤3、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压值。
可选地,所述步骤3中对所述第二数字信号进行处理包括:
(1)计算出活塞杆应变:
Figure PCTCN2019075694-appb-000001
其中,θ为曲柄转角,ε(θ)为应变,e(θ)为第二数字信号,v为泊松比,E为弹性模量,K s为应变片灵敏度系数;
(2)计算活塞杆载荷:F p(θ)=A Rε(θ),
其中,A R为活塞杆横截面积,F(θ)为活塞杆载荷;
(3)计算油压:F o(θ)=F p(θ)-F I(θ),p o(θ)=F o(θ)/A P
其中,F o(θ)为油侧压力,F I(θ)为往复惯性力,往复惯性力F I(θ)=m p2(cosθ+λcos2θ),其中m p为往复惯性质量,r为曲拐半径,ω为压缩机转速,λ为曲柄半径连杆比,θ为曲柄转角,p o(θ)为油压,A P为活塞横截面积。
可选地,所述步骤1中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
3.有益效果
与现有技术相比,本申请提供的隔膜压缩机油缸内油压监测装置及方法的有益效果在于:
本申请提供的隔膜压缩机油缸内油压监测装置,通过将应变片组件设置于活塞杆表面,将应变片组件与桥式电路相连接,提高应变片组件的灵敏度,并使输入和输出呈线性关系。由于在隔膜压缩机上非侵入式地在活塞杆上设置应变片组件测量活塞杆载荷,使得油压可以间接被测量,可以无损安全测量隔膜压缩机油压。对隔膜压缩机无损伤,非侵入式监测安全可靠尤其在高压的工况下可实现油压的准确监测。
附图说明
图1是本申请的应变片第一结构示意图;
图2是本申请的应变片第二结构示意图;
图3是本申请的隔膜压缩机油缸内油压监测装置第一结构示意图;
图4是本申请的隔膜压缩机油缸内油压监测装置第二结构示意图;
图5是本申请的隔膜压缩机油缸内油压监测装置原理示意图;
图6是本申请的隔膜压缩机第一结构示意图;
图7是本申请的隔膜压缩机第二结构示意图;
图8是本申请的隔膜压缩机油缸内油压监测装置中半桥电路连接示意图;
图9是本申请的活塞杆结构示意图;
图10是本申请的隔膜压缩机油缸内油压监测方法中一个周期内受力曲线示意图;
图11是本申请的隔膜压缩机油缸内油压监测方法中一个周期内的油压曲线;
图中:1-活塞杆、2-应变片组件、3-第一应变片、4-第二应变片、5-第三应变片、6-第一桥臂、7-第二桥臂、8-信号采集单元、9-飞轮、10-光电传感器、11-数据处理单元。
具体实施方式
在下文中,将参考附图对本申请的具体实施例进行详细地描述,依照这些详细的描述,所属领域技术人员能够清楚地理解本申请,并能够实施本申请。在不违背本申请原理的情况 下,各个不同的实施例中的特征可以进行组合以获得新的实施方式,或者替代某些实施例中的某些特征,获得其它优选的实施方式。
应变片是由敏感栅等构成用于测量应变的元件。电阻应变片的工作原理是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。
由电阻、电容、电感等元件组成的四边形测量桥式电路叫电桥,电桥四条边为桥臂。作为测量电路,在四边形的一条对角线两端接上直流电源,引出另一条对角线两端的电压,利用电桥平衡方程,即可根据桥臂中的已知元件的数值求得被测元件的参量(如电阻、电阻、电容、电感)。
参见图1~11,本申请提供一种隔膜压缩机油缸内油压监测装置,包括活塞杆1和应变片电路,所述应变片电路包括相互连接的应变片组件2和桥式电路,所述应变片组件2设置于所述活塞杆1表面。
应变片组件2通过粘合剂粘贴在活塞杆1的表面。贴有应变片组件2的构件总是处于某一温度场中,若应变片敏感栅的线性膨胀系数与构建材料的线型膨胀系数不相等,则温度发生变化时,由于敏感栅和构件的伸长(或压缩)量不等,从而引起敏感栅收到附加拉伸(或压缩),敏感栅的电阻会发生变化,造成测量不准确,这种现象是温度效应。
应变片组件2是一种本身电阻随应力变化而改变的传感器。几乎所有的应变片组件2,其灵敏度都比较低,利用桥式电路可以成倍提高其灵敏度,并使输入和输出呈线性关系。利用桥式电路检测应变片组件的变化,还具有通过的电流极低,应变片自身发热低的优点。所以,应变片传感器应用中,经常采用桥式电路。桥式电路包括四分之一桥连接方式、半桥连接方式和全桥连接方式。应变片的导线为带25mm包银铜线(直径为0.12mm~0.16mm),不同的机组活塞杆的直径不同,选择的应变片型号也可以不同。也就是说,根据实际需要对应变片进行选择即可。
进一步地,所述应变片组件2包括第一应变片3,所述第一应变片3与所述桥式电路相连接。
活塞杆1的表面只设置有一片应变片即第一应变片3,这里的第一应变片3也叫作工作片,可以用来测量活塞杆1应变。第一应变片3贴在活塞杆1上,活塞杆1长度发生变化,第一应变片3也会随之被压缩或拉伸,因此第一应变片3的电阻会发生变化,电阻变化引起桥式电路输出电压发生改变。随后对采集的电压信号进行处理后,得出油压。
进一步地,所述应变片组件2包括第二应变片4和第三应变片5,所述第二应变片4沿 所述活塞杆1轴向设置,所述第三应变片5与所述第二应变片4相互垂直;所述第二应变片4与第一桥臂6相连接,所述第三应变片5与第二桥臂7相连接。
采用两片应变片,一片为工作片即第二应变片4,另一片为补偿片即第三应变片5,工作片沿着轴向粘贴,补偿片与其垂直粘贴,通过粘贴的方向区分。通过粘贴一片补偿片在相同构件但是不受力(垂直于轴向)的方向,应变片1的应变及为ε1,补偿片的应变为ε2,ε1包括轴向拉伸压缩引起的形变和温度引起的形变,ε2仅包括温度引起的形变,这样相减,温度引起的形变就被抵消了。从而排除温度效应。应变片的粘贴方法有四分之一桥,半桥和全桥3种,均合理。四分之一桥,半桥连接只接入2个应变片,全桥接入4个应变片。这里采用半桥法构建电桥电路,实现加大应变片的输出和消除导线的温度影响;沿着活塞杆侧面沿着轴向粘贴一片工作片,将另一片补偿片紧靠工作片并与其垂直粘贴。如图8中所示为半桥接法,将一个工作片和一个温度补偿片分别接入两个相邻桥臂即第一桥臂6和第二桥臂7,另外两个桥臂接固定电阻。
进一步地,所述应变片组件2包括第四应变片、第五应变片、第六应变片和第七应变片;所述第四应变片沿所述活塞杆1轴向设置,所述第五应变片与所述第四应变片相互垂直,所述第四应变片与全桥电路相连接,所述第五应变片与全桥电路相连接;所述第六应变片沿所述活塞杆1轴向设置,所述第七应变片与所述第六应变片相互垂直,所述第六应变片与全桥电路相连接,所述第七应变片与全桥电路相连接。
这里为全桥法构建电桥电路,对于本申请而言,半桥法构建电桥电路为最佳方式。
进一步地,还包括光电传感单元和信号采集单元8,所述光电传感单元包括飞轮9,所述飞轮9与光电传感器10相应设置,所述信号采集单元8与所述应变片组件2相连接,所述信号采集单元8与所述光电传感单元相连接;所述信号采集单元8与数据处理单元11相连接。
活塞止点信号的检测方法较多,压缩机技术中常用霍尔式和光电式传感器,传感器的发信端一般布置在飞轮9上,光电传感器10一般采用反射式,光电传感器10的探头安装位置需要精确定位,即转动飞轮9使活塞分别处于内外止点,然后将探头对准发信点(磁钢、铁块或者反光条)。
飞轮9绕中心垂直轴转动,盘车找到活塞运动到上止点的位置,作为相位参考的基准,此时在飞轮9的任意位置做一个标记,在机架上安装一个光点传感器,使其对准标记。正常情况下,光电传感器10采集到稳定的信号,待标记转到光电传感器10时,则出现冲击信号,作为周期起始位置,每两个连续的冲击信号之间为一个周期。
光电传感单元是为了得到周期信号,以判断一个完整的周期。在飞轮9处安装光电传感 器10,通过得到的外止点信号,确定压缩机曲柄转角θ初始值0;光电传感器10输出的模拟信号经过信号采集单元8转换成最终所需要的数字信号存储供后续分析和处理。
信号采集这里用到的是美国国家仪器(NI)有限公司的应变采集卡NI9237、NI9205和采集机箱cDAQ-9185,数据采集通过编写LabVIEW程序进行。
进一步地,所述数据处理单元11为智能终端。
这里的智能终端指可以对数据进行计算分析的设备,例如计算机,计算机除了存储数据外,还要运行数据采集程序,控制信号的采样及显示,如设置采样频率和样本保存长度等参数。计算机显示采集到的光电传感器10止点信号和应变片电路输出电压信号。显示可以实时监测。
进一步地,所述信号采集单元8包括采集卡和信号调理模块。设置数据采样频率,以及对应的采集通道。
信号采集单元8实现信号滤波、放大,调理及A/D转换这一系列功能。
本申请还提供一种隔膜压缩机油缸内油压监测方法,其特征在于:所述方法包括如下步骤:
步骤1、通过信号采集单元同步采集光电传感器输出的第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;
步骤2、根据第一数字信号判断一个完整周期的起止时间;
步骤3、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压值。
第一电压信号为光电传感器10输出,也即止点信号。
进一步所述步骤3中对所述第二数字信号进行处理包括:
(1)计算出活塞杆应变:
Figure PCTCN2019075694-appb-000002
其中,θ为曲柄转角,ε(θ)为应变,e(θ)为第二数字信号,v为泊松比,E为弹性模量,K s为应变片灵敏度系数;
(2)计算活塞杆载荷:F p(θ)=A Rε(θ),
其中,A R为活塞杆横截面积,F(θ)为活塞杆载荷;
(3)计算油压:F o(θ)=F p(θ)-F I(θ),p o(θ)=F o(θ)/A P
其中,F o(θ)为油侧压力,F I(θ)为往复惯性力,往复惯性力F I(θ)=m p2(cosθ+λcos2θ),其中m p为往复惯性质量,r为曲拐半径,ω为压缩机转速,λ为曲柄半径连杆比,θ为曲柄转角,p o(θ)为油压,A P为活塞横截面积。
计算时用计算机按照公式计算,实现方式可以是用软件编程,也可以是excel。
根据采集到的数据,利用公式计算即可,此处用到的就是计算机,编写LabVIEW程序进行做计算。
进一步地,所述步骤1中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
本申请提供的隔膜压缩机油缸内油压监测装置,通过将应变片组件2设置于活塞杆1表面,将应变片组件2与桥式电路相连接,提高应变片组件的灵敏度,并使输入和输出呈线性关系。由于在隔膜压缩机上非侵入式地在活塞杆1上设置应变片组件2测量活塞杆载荷,使得油压可以间接被测量,可以无损安全测量隔膜压缩机油压。对隔膜压缩机无损伤,非侵入式监测安全可靠尤其在高压的工况下可实现油压的准确监测。
本申请中的“第一、第二......”只是为了对应变片进行区分,其结构均相同。
尽管在上文中参考特定的实施例对本申请进行了描述,但是所属领域技术人员应当理解,在本申请公开的原理和范围内,可以针对本申请公开的配置和细节做出许多修改。本申请的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。

Claims (10)

  1. 一种隔膜压缩机油缸内油压监测装置,其特征在于:包括活塞杆(1)和应变片电路,所述应变片电路包括相互连接的应变片组件(2)和桥式电路,所述应变片组件(2)设置于所述活塞杆(1)表面。
  2. 如权利要求1所述的隔膜压缩机油缸内油压监测装置,其特征在于:所述应变片组件(2)包括第一应变片(3),所述第一应变片(3)与所述桥式电路相连接。
  3. 如权利要求1所述的隔膜压缩机油缸内油压监测装置,其特征在于:所述应变片组件(2)包括第二应变片(4)和第三应变片(5),所述第二应变片(4)沿所述活塞杆(1)轴向设置,所述第三应变片(5)与所述第二应变片(4)相互垂直;所述第二应变片(4)与第一桥臂(6)相连接,所述第三应变片(5)与第二桥臂(7)相连接。
  4. 如权利要求1所述的隔膜压缩机油缸内油压监测装置,其特征在于:所述应变片组件(2)包括第四应变片、第五应变片、第六应变片和第七应变片;所述第四应变片沿所述活塞杆(1)轴向设置,所述第五应变片与所述第四应变片相互垂直,所述第四应变片与全桥电路相连接,所述第五应变片与全桥电路相连接;所述第六应变片沿所述活塞杆(1)轴向设置,所述第七应变片与所述第六应变片相互垂直,所述第六应变片与全桥电路相连接,所述第七应变片与全桥电路相连接。
  5. 如权利要求1~4中任一项所述的隔膜压缩机油缸内油压监测装置,其特征在于:还包括光电传感单元和信号采集单元(8),所述光电传感单元包括飞轮(9),所述飞轮(9)与光电传感器(10)相应设置,所述信号采集单元(8)与所述应变片组件(2)相连接,所述信号采集单元(8)与所述光电传感器(10)相连接;所述信号采集单元(8)与数据处理单元(11)相连接。
  6. 如权利要求5所述的隔膜压缩机油缸内油压监测装置,其特征在于:所述数据处理单元(11)为智能终端。
  7. 如权利要求5所述的隔膜压缩机油缸内油压监测装置,其特征在于:所述信号采集单元(8)包括采集卡和信号调理模块。
  8. 一种隔膜压缩机油缸内油压监测方法,其特征在于:所述方法包括如下步骤:
    步骤1、通过信号采集单元同步采集第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;
    步骤2、根据第一数字信号判断一个完整周期的起止时间;
    步骤3、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压 值。
  9. 如权利要求8所述的隔膜压缩机油缸内油压监测方法,其特征在于:所述步骤3中对所述第二数字信号进行处理包括:
    (1)计算出活塞杆应变:
    Figure PCTCN2019075694-appb-100001
    其中,θ为曲柄转角,ε(θ)为应变,e(θ)为第二数字信号,v为泊松比,E为弹性模量,K s为应变片灵敏度系数;
    (2)计算活塞杆载荷:F p(θ)=A Rε(θ),
    其中,A R为活塞杆横截面积,F(θ)为活塞杆载荷;
    (3)计算油压:F o(θ)=F p(θ)-F I(θ),p o(θ)=F o(θ)/A P
    其中,F o(θ)为油侧压力,F I(θ)为往复惯性力,往复惯性力F I(θ)=m p2(cosθ+λcos2θ),其中m p为往复惯性质量,r为曲拐半径,ω为压缩机转速,λ为曲柄半径连杆比,θ为曲柄转角,p o(θ)为油压,A P为活塞横截面积。
  10. 如权利要求9所述的隔膜压缩机油缸内油压监测方法,其特征在于:所述步骤1中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
PCT/CN2019/075694 2019-02-21 2019-02-21 一种隔膜压缩机油缸内油压监测装置及方法 WO2020168512A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/280,923 US20210340974A1 (en) 2019-02-21 2019-02-21 Device and method for monitoring oil pressure in oil cylinder of diaphragm compressor
CN201980000253.XA CN110073190B (zh) 2019-02-21 2019-02-21 一种隔膜压缩机油缸内油压监测装置及方法
PCT/CN2019/075694 WO2020168512A1 (zh) 2019-02-21 2019-02-21 一种隔膜压缩机油缸内油压监测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075694 WO2020168512A1 (zh) 2019-02-21 2019-02-21 一种隔膜压缩机油缸内油压监测装置及方法

Publications (1)

Publication Number Publication Date
WO2020168512A1 true WO2020168512A1 (zh) 2020-08-27

Family

ID=67372759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075694 WO2020168512A1 (zh) 2019-02-21 2019-02-21 一种隔膜压缩机油缸内油压监测装置及方法

Country Status (3)

Country Link
US (1) US20210340974A1 (zh)
CN (1) CN110073190B (zh)
WO (1) WO2020168512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113946921A (zh) * 2021-10-28 2022-01-18 北京博华信智科技股份有限公司 往复压缩机故障诊断监测信号整周期截取方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111927749B (zh) * 2020-07-14 2021-08-10 西安交通大学 一种隔膜压缩机气压无损监测系统及方法
CN111927752B (zh) * 2020-07-14 2021-11-23 西安交通大学 一种隔膜压缩机故障诊断仪
CN113007081B (zh) * 2021-04-15 2023-04-18 沈阳理工大学 基于工业互联网平台实现监控的完全平衡型高速隔膜压缩机
CN113310614B (zh) * 2021-05-26 2022-06-24 上海交通大学 一种船用低速机摩擦力测量系统及其测量方法
CN114320827B (zh) * 2021-11-19 2022-10-25 西安交通大学 一种液驱活塞压缩机示功图无损监测装置及方法
CN116181632B (zh) * 2022-12-01 2023-10-13 上海羿弓氢能科技有限公司 一种电磁激振式隔膜压缩机膜片氢气环境寿命试验装置
CN116591949B (zh) * 2023-07-18 2023-10-03 合肥通用机械研究院有限公司 一种高压隔膜压缩机非侵入式气压监测装置及监测方法
CN116677593B (zh) * 2023-08-03 2023-11-28 江苏恒久机械股份有限公司 一种隔膜式压缩机开机的控制系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1435733A (en) * 1972-05-17 1976-05-12 Toyo Soda Mfg Co Ltd Liquid supply apparatus
CN1056933A (zh) * 1990-05-21 1991-12-11 德莱塞·兰特公司 一种用于往复部件的单向负载检测器
CN201203494Y (zh) * 2008-06-03 2009-03-04 华南理工大学 一种液压油油压测量装置
CN201433801Y (zh) * 2009-04-24 2010-03-31 昆明理工大学 应变片式机油压力表
CN202836840U (zh) * 2012-08-31 2013-03-27 苏州托克斯冲压设备有限公司 电子压力机的压力间接测量装置
CN105628267A (zh) * 2014-10-31 2016-06-01 中国飞行试验研究院 一种支柱式起落架垂向载荷测量的应变计布局组桥方法
CN106596144A (zh) * 2016-12-26 2017-04-26 北汽福田汽车股份有限公司 约束组件及具有其减振器标定装置
CN106626238A (zh) * 2016-12-20 2017-05-10 宁波华美达机械制造有限公司 一种注塑机头板与拉杆自动连接设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2577005Y (zh) * 2002-10-11 2003-10-01 北京汇知机电设备有限责任公司 对称平衡型金属隔膜压缩机
US7742866B2 (en) * 2007-10-01 2010-06-22 Gm Global Technology Operations, Inc. Fuel volatility compensation for engine cold start speed control
US8297944B2 (en) * 2008-11-04 2012-10-30 Wen San Chou Air compressor having quick coupling device
CN102128052B (zh) * 2010-12-28 2015-01-21 章祖文 低沸点介质蒸汽推动曲轴多缸活塞发动机
DE102012010348A1 (de) * 2012-05-25 2013-11-28 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Vorrichtung zur Steuerung eineselektrischen Stellantriebes für eineWastegate-Ventilanordnung eines Abgasturboladers
CN103244399B (zh) * 2013-04-17 2015-05-20 台州环天机械有限公司 大型往复式压缩机气量无级调节方法与装置
CN103939345B (zh) * 2014-04-02 2016-01-20 西安交通大学 一种针对双螺杆压缩机的轴向力自动调节装置及调节方法
CN204099262U (zh) * 2014-09-02 2015-01-14 衢州巨化锦纶有限责任公司 一种离心压缩机用油路
CN104597222B (zh) * 2015-01-13 2016-08-24 河南大学 具有补水功能和冻胀测试功能的大型冻土模型试验系统
CN105973551B (zh) * 2015-03-13 2019-06-14 谭乃根 钻孔动力学模拟测试系统
CN105090001B (zh) * 2015-07-20 2017-05-03 北京化工大学 一种基于相似性分析的往复压缩机信号整周期相位校准方法
CN108775281B (zh) * 2018-06-25 2019-07-23 西安交通大学 一种往复式压缩机的f-v图监测方法及装置
CN108593454B (zh) * 2018-07-13 2024-01-09 湖南科技大学 一种冲击扰动下充填承压溶洞突泥试验装置及试验方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1435733A (en) * 1972-05-17 1976-05-12 Toyo Soda Mfg Co Ltd Liquid supply apparatus
CN1056933A (zh) * 1990-05-21 1991-12-11 德莱塞·兰特公司 一种用于往复部件的单向负载检测器
CN201203494Y (zh) * 2008-06-03 2009-03-04 华南理工大学 一种液压油油压测量装置
CN201433801Y (zh) * 2009-04-24 2010-03-31 昆明理工大学 应变片式机油压力表
CN202836840U (zh) * 2012-08-31 2013-03-27 苏州托克斯冲压设备有限公司 电子压力机的压力间接测量装置
CN105628267A (zh) * 2014-10-31 2016-06-01 中国飞行试验研究院 一种支柱式起落架垂向载荷测量的应变计布局组桥方法
CN106626238A (zh) * 2016-12-20 2017-05-10 宁波华美达机械制造有限公司 一种注塑机头板与拉杆自动连接设备
CN106596144A (zh) * 2016-12-26 2017-04-26 北汽福田汽车股份有限公司 约束组件及具有其减振器标定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113946921A (zh) * 2021-10-28 2022-01-18 北京博华信智科技股份有限公司 往复压缩机故障诊断监测信号整周期截取方法及装置

Also Published As

Publication number Publication date
CN110073190A (zh) 2019-07-30
US20210340974A1 (en) 2021-11-04
CN110073190B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2020168512A1 (zh) 一种隔膜压缩机油缸内油压监测装置及方法
CN109973354B (zh) 一种往复压缩机非侵入式气缸内气压监测装置及方法
CN110374857B (zh) 一种隔膜压缩机油压和气压监测装置及方法
CN111927749B (zh) 一种隔膜压缩机气压无损监测系统及方法
CN108757425A (zh) 一种压裂泵健康状态监视系统及方法
CN109781330A (zh) 基于周向阵列的套装梁压容感知六维力传感器
CN105973525A (zh) 一种高可靠性压阻式压力传感器
CN114320827B (zh) 一种液驱活塞压缩机示功图无损监测装置及方法
WO2021003669A1 (zh) 一种隔膜压缩机油压和气压监测装置及方法
CN203396529U (zh) 双向轴向力测量装置
CN110145462B (zh) 一种微型无油压缩机活塞环环隙压力的测量结构及方法
US9207140B2 (en) Differential pressure transmitter with intrinsic verification
CN201819763U (zh) 电动式超高压活塞式压力计
CN208921648U (zh) 容积式计量站的电子式油水比例检测机构
CN209485598U (zh) 一种大头抗震压力表
CN116591949B (zh) 一种高压隔膜压缩机非侵入式气压监测装置及监测方法
CN208060070U (zh) 一种土木工程用光纤光栅孔隙水压测试系统
CN205370551U (zh) 一种基于蓝牙的便携式无线智能示功仪
CN201653379U (zh) 双层弓形微应变敏感器
CN113404483A (zh) 一种利用游梁式抽油机电机电参计量油井产量的方法
CN111307443A (zh) 一种呼吸阀开度测试的方法
CN115681115A (zh) 往复压缩机故障检测方法和装置
CN203534732U (zh) 应变远传压力表
CN213022123U (zh) 一种用于差压变送器静压补偿的装置
CN101339099A (zh) 液压破碎锤性能检测装置的采样分析系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915727

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19915727

Country of ref document: EP

Kind code of ref document: A1