WO2021003669A1 - 一种隔膜压缩机油压和气压监测装置及方法 - Google Patents
一种隔膜压缩机油压和气压监测装置及方法 Download PDFInfo
- Publication number
- WO2021003669A1 WO2021003669A1 PCT/CN2019/095259 CN2019095259W WO2021003669A1 WO 2021003669 A1 WO2021003669 A1 WO 2021003669A1 CN 2019095259 W CN2019095259 W CN 2019095259W WO 2021003669 A1 WO2021003669 A1 WO 2021003669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain gauge
- strain
- air pressure
- oil pressure
- cylinder head
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/053—Pumps having fluid drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/053—Pumps having fluid drive
- F04B45/0533—Pumps having fluid drive the fluid being actuated directly by a piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B51/00—Testing machines, pumps, or pumping installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/03—Pressure in the compression chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/04—Pressure in the outlet chamber
Definitions
- the application belongs to the technical field of compressors, and in particular relates to a device and method for monitoring oil pressure and air pressure of a diaphragm compressor.
- Diaphragm compressor is a special equipment for gas compression with no leakage in the compression chamber. Because of its good sealing performance, wide pressure range and relatively large compression, it is widely used in hydrogen refueling stations and petrochemical fields to compress and transport various high-purity gases, precious rare gases, toxic and harmful gases and corrosive gases. .
- the piston pushes the working fluid in the cylinder oil cavity, and then pushes the diaphragm to reciprocate in the diaphragm cavity to change the working volume of the air cavity, and achieve no leakage with the cooperation of the suction and exhaust valves Cyclical work process.
- the oil leakage through the hydraulic piston ring is compensated by the compensation circuit, and the oil supplement is adjusted by installing an oil relief valve on the oil side cylinder head.
- the oil pressure and air pressure change of the diaphragm compressor is a comprehensive reflection of the compressor’s working performance and operating status.
- the oil pressure and air pressure change curve during the working process of the diaphragm compressor can reflect the piston position, the suction process time, the opening of the suction valve and the The closing action, the opening and closing action of the exhaust valve, the time of the exhaust process, the action of the spill valve and the replenishment process, so the oil pressure and air pressure change curve are the most effective tools for diagnosing the fault of the diaphragm compressor.
- Dynamic monitoring of oil pressure is an effective method to improve the reliability and safety of equipment operation. It is also a strong demand for diaphragm compressor designers and users to ensure the monitoring of equipment operation status.
- the discharge pressure can reach up to 300MPa. If the pressure measuring hole is processed on the cylinder block, the hydraulic and air side cylinders in the oil side cylinder head of the diaphragm compressor Monitoring the air pressure in the head not only affects the strength of the cylinder, but may also cause leakage and bring safety hazards. .
- the discharge pressure can reach up to 300MPa. If the pressure measuring hole is processed on the cylinder block, the hydraulic and air side of the oil side cylinder head of the diaphragm compressor Monitoring the air pressure in the cylinder head not only affects the strength of the cylinder, but may also cause leakage and bring potential safety hazards.
- This application provides a device and method for monitoring oil pressure and air pressure of a diaphragm compressor.
- this application provides a diaphragm compressor oil pressure and air pressure monitoring device, including a cylinder and a strain gauge circuit;
- the cylinder includes a cylinder head and an exhaust valve hole, and the exhaust valve hole is arranged on the cylinder head;
- the strain gauge circuit includes a strain gauge assembly and a bridge circuit that are connected to each other, the strain gauge assembly includes a first strain gauge group and a second strain gauge group, and the first strain gauge group is disposed on the outer surface of the cylinder head , The second strain gauge group is arranged on the bottom plane of the exhaust valve hole, the first strain gauge group is connected with the bridge circuit, and the second strain gauge group is connected with the bridge circuit .
- the first strain gauge group includes a first strain gauge and a second strain gauge, and the first strain gauge and the second strain gauge are arranged perpendicular to each other;
- the second strain gauge group includes a third strain gauge and a fourth strain gauge, and the third strain gauge and the fourth strain gauge are arranged perpendicular to each other.
- the strain gauge assembly further includes a third strain gauge group and a fourth strain gauge group;
- the third strain gauge group is arranged on a flange, the flange is arranged on the exhaust pipe, and the fourth strain gauge group is arranged on the flange.
- the strain gauge assembly is connected to the half-bridge circuit.
- the strain gauge assembly is connected to a full bridge circuit.
- the photoelectric sensor unit includes a flywheel, the flywheel and the photoelectric sensor are arranged correspondingly, the data acquisition unit is connected to the strain gauge assembly, and the data The collection unit is connected with the photoelectric sensor; the data collection unit is connected with the data processing unit.
- the present application also provides a method for monitoring the oil pressure and air pressure of a diaphragm compressor.
- the method includes the following steps:
- Step 1 Construct the strain measurement system: select the strain gauge model according to the cylinder head size, paste the selected strain gauge and connect it to the bridge, then install the photoelectric sensor at the flywheel, and configure the data acquisition unit;
- Step 2 Collect the signal: Collect the first voltage signal and the second voltage signal output by the strain gauge circuit synchronously through the data collection unit, and at the same time convert the collected first voltage signal into a first digital signal for storage, and store the collected first voltage signal.
- the second voltage signal is converted into a second digital signal for storage;
- Step 3 Determine the start and end time of a complete cycle according to the first digital signal
- Step 4 According to the start and end time of the one complete cycle, process the second digital signal to obtain an oil pressure value and an air pressure value.
- processing of the second digital signal in step 4 includes:
- ⁇ represents the crank angle
- ⁇ ( ⁇ ) is the strain
- e( ⁇ ) is the collected voltage signal
- ⁇ is the Poisson's ratio
- E is the elastic modulus
- K s is the strain gauge sensitivity coefficient
- the radial stress and circumferential stress of the bottom plane of the exhaust valve hole are calculated, and then the air pressure value is calculated.
- the first voltage signal is filtered, amplified, adjusted, and A/D converted, and then converted into a first digital signal and transmitted to the smart terminal for processing.
- the second voltage signal is filtered, Amplification, conditioning and A/D conversion are converted into a second digital signal and transmitted to the smart terminal for processing.
- the device and method for monitoring the oil pressure and air pressure of the diaphragm compressor provided in this application have the following beneficial effects:
- the diaphragm compressor oil pressure and air pressure monitoring device connects the strain gauge assembly with the bridge circuit by installing the strain gauge assembly on the air side cylinder head, thereby improving the sensitivity of the strain gauge assembly and making the input and output present Linear relationship. Since the strain gauge is attached to the gas side cylinder head of the diaphragm compressor non-invasively, the strain gauge assembly is set to measure the strain of the gas side cylinder head, so that the oil pressure and air pressure can be measured indirectly, and the oil pressure of the diaphragm compressor can be measured without damage. No damage to the diaphragm compressor, safe and reliable, especially under high pressure conditions, it can achieve accurate monitoring of oil pressure and air side pressure.
- Fig. 1 is a schematic diagram of the first structure of a diaphragm compressor oil pressure and air pressure monitoring device of the present application
- Figure 2 is a schematic diagram of the layout of the strain gauges of the present application.
- Figure 3 is a schematic diagram of the strain gauge half-bridge connection mode of the present application.
- FIG. 4 is a schematic diagram of the principle of the oil pressure and air pressure monitoring device of the diaphragm compressor of the present application
- Figure 5 is a schematic diagram of the comparison between the oil pressure measured by the sensor and the oil pressure measured by the strain gauge on the air side cylinder head;
- Figure 6 is a schematic diagram of the comparison between the air pressure measured by the sensor and the air pressure data measured by the air side cylinder head strain gauge;
- Strain gauge is a component used to measure strain composed of a sensitive grid.
- the working principle of the resistance strain gauge is made based on the strain effect, that is, when the conductor or semiconductor material is mechanically deformed under the action of external force, its resistance value changes accordingly. This phenomenon is called the "strain effect".
- the quadrilateral measuring bridge circuit composed of resistors, capacitors, inductances and other components is called a bridge, and the four sides of the bridge are bridge arms.
- a DC power supply is connected to both ends of a diagonal line of the quadrilateral, and the voltage at both ends of the other diagonal line is drawn.
- the measured value can be obtained according to the value of the known component in the bridge arm
- the parameter of the component (such as resistance, resistance, capacitance, inductance).
- the present application provides a diaphragm compressor oil pressure and air pressure monitoring device, including a cylinder and a strain gauge circuit;
- the cylinder includes a cylinder head 1 and an exhaust valve hole 2, and the exhaust valve hole 2 is provided on the cylinder head 1;
- the strain gauge circuit includes a strain gauge assembly and a bridge circuit that are connected to each other, the strain gauge assembly includes a first strain gauge group and a second strain gauge group, and the first strain gauge group is arranged outside the cylinder head 1.
- the second strain gauge group is arranged on the bottom plane of the exhaust valve hole 2, the first strain gauge group is connected to the bridge circuit, and the second strain gauge group is connected to the bridge circuit Phase connection.
- the cylinder head 1 here is an air side cylinder head or an oil side cylinder head, and the strain gauge assembly is pasted on the air side cylinder head or the oil side cylinder head through an adhesive.
- the component with the strain gauge assembly is always in a certain temperature field. If the linear expansion coefficient of the strain gauge sensitive grid is not equal to the linear expansion coefficient of the construction material, when the temperature changes, due to the elongation of the sensitive grid and the component The amount of (or compression) varies, causing the sensitive grid to receive additional tension (or compression), and the resistance of the sensitive grid will change, resulting in inaccurate measurement. This phenomenon is a temperature effect.
- Strain gauge assembly is a sensor whose resistance changes with stress. Almost all strain gauge components 2 have relatively low sensitivity. Using a bridge circuit can double their sensitivity and make the input and output have a linear relationship. The use of a bridge circuit to detect changes in strain gauge components also has the advantages of extremely low current passing through and low self-heating of the strain gauge. Therefore, bridge circuits are often used in strain gauge sensor applications.
- the bridge circuit includes a quarter bridge connection mode, a half bridge connection mode and a full bridge connection mode.
- the lead wire of the strain gauge is a 25mm silver-coated copper wire (0.12mm ⁇ 0.16mm in diameter). The diameter of the piston rod of different units is different, and the selected strain gauge model can also be different. In other words, you can select the corresponding variants according to actual needs.
- the first strain gauge group attached to the air side pressure cylinder head 1 monitors the oil pressure in the cylinder.
- the air pressure in the cylinder is monitored through the second strain gauge group attached to the bottom plane of the exhaust valve hole 2, that is, the working piece group.
- the position of the strain gauge on the air side cylinder head is: the front side of the air side cylinder head, along the extension line connecting the center of the suction valve hole and the exhaust valve hole, paste it in the half surface area without the suction valve hole;
- the strain gauge on the air side cylinder head or the oil side cylinder head measures oil pressure
- the strain gauge on the exhaust valve hole measures air pressure
- the first strain gauge group includes a first strain gauge 3 and a second strain gauge 4, and the first strain gauge 3 and the second strain gauge 4 are arranged perpendicular to each other;
- the second strain gauge group includes a third strain gauge 5 and a fourth strain gauge 6, and the third strain gauge 5 and the fourth strain gauge 6 are arranged perpendicular to each other.
- Two mutually perpendicular working pieces are used to connect these working pieces to the half-bridge circuit, and the working pieces are all connected to a bridge arm of the half-bridge circuit.
- strain gauge assembly further includes a third strain gauge group and a fourth strain gauge group
- the third strain gauge group is arranged on a flange, the flange is arranged on the exhaust pipe, and the fourth strain gauge group is arranged on the flange.
- the first strain gauge is pasted radially along the outer surface of the air side cylinder head
- the second strain gauge is pasted along the circumferential direction of the outer surface of the air side cylinder head
- the third strain gauge is pasted radially along the bottom plane of the exhaust valve hole 2
- the fourth strain gauge Paste along the circumferential direction of the bottom plane of the exhaust valve hole 2;
- two working pieces are arranged vertically on the outer surface of the air side cylinder head 1
- two working pieces are arranged vertically on the bottom plane of the exhaust valve hole 2
- four compensation pieces are arranged on the flange of the exhaust pipe.
- the five strain gauge group and the sixth strain gauge group are pasted to eliminate the influence of the temperature of the wire on the measurement results.
- the compensation plate can also be set in other parts that can ensure that the temperature at the compensation plate is close to the cylinder head temperature and is not stressed. local.
- Paste two strain gauges at two positions are the outer surface of the cylinder head 1 and the bottom surface of the exhaust valve hole 2). These four are working gauges, which are used to measure the circumferential and radial strain of the pasting position (because it is a circular flat plate). , So there are strains in the circumferential and radial directions), the oil pressure and air pressure can be calculated based on the radial and circumferential strains.
- the work piece is pasted on the cylinder. When the bottom surface of the cylinder head 1 and the exhaust valve hole 2 is deformed, the strain gauge attached here will also be stretched. Therefore, the resistance of the work piece will change, and the resistance change will cause the bridge The output voltage of the circuit changes.
- strain gauge assembly is connected with the half-bridge circuit.
- the half-bridge method is used to construct the bridge circuit to increase the output of the strain gauge and eliminate the temperature influence of the wire. As shown in the half-bridge method in Figure 3, the working piece and the temperature compensation piece are connected to two adjacent bridge arms, and the other two bridge arms are connected to fixed resistors.
- strain gauge assembly is connected with a full bridge circuit.
- strain gauges There are three methods for attaching strain gauges: quarter bridge, half bridge and full bridge, all of which are reasonable. Only 2 strain gauges are connected to the quarter bridge and half bridge connection, and 4 strain gauges are connected to the full bridge.
- the photoelectric sensor unit includes a flywheel 8, the flywheel 8 and the photoelectric sensor 9 are arranged correspondingly, and the data acquisition unit 7 is connected to the strain gauge assembly , The data collection unit 7 is connected to the photoelectric sensor 9; the data collection unit 7 is connected to the data processing unit 10.
- Hall type and photoelectric sensors are commonly used in compressor technology.
- the transmitter of the sensor is generally arranged on the flywheel 8, and the photoelectric sensor 9 is generally reflective.
- the probe installation position of the photoelectric sensor 9 Accurate positioning is required, that is, rotating the flywheel 8 to make the pistons are at the inner and outer dead points respectively, and then aim the probe at the sending point (magnetic steel, iron block or reflective strip).
- the flywheel 8 rotates around the vertical axis of the axis, and the crank finds the position where the piston moves to the top dead center as a reference for the phase. At this time, make a mark at any position of the flywheel 8 and install a light spot sensor on the frame to make it Alignment marks. Under normal circumstances, the photoelectric sensor 9 collects a stable signal, and when the mark is turned to the photoelectric sensor 9, an impact signal appears as the cycle start position, and there is a cycle between every two consecutive impact signals.
- the photoelectric sensor unit is to obtain the periodic signal to judge a complete period.
- a photoelectric sensor 9 is installed at the flywheel 8, and the initial value of the compressor crank angle ⁇ is determined by the obtained outer dead center signal; the analog signal output by the photoelectric sensor 9 is converted into the final required digital signal by the data acquisition unit 7 and stored for subsequent follow-up Analysis and processing.
- strain acquisition cards NI9237, NI9205 and acquisition chassis cDAQ-9185 from National Instruments (NI) Co., Ltd. are used for data acquisition. Data acquisition is performed by writing LabVIEW programs.
- the data processing unit is an intelligent terminal.
- the smart terminal here refers to a device that can calculate and analyze data, such as a computer.
- the computer In addition to storing data, the computer also runs a data collection program to control the sampling and display of signals, such as setting sampling frequency and sample storage length and other parameters.
- the data acquisition system implements a series of functions of signal filtering, amplification, conditioning and A/D conversion.
- the computer displays the collected photoelectric sensor 9 dead-point signal and the output voltage signal of the strain gauge circuit. The display can be monitored in real time.
- the data acquisition unit 7 includes an acquisition card and a signal conditioning module. Set the data sampling frequency and the corresponding acquisition channel.
- the data acquisition unit 7 implements a series of functions of signal filtering, amplification, conditioning and A/D conversion.
- the present application also provides a method for monitoring the oil pressure and air pressure of a diaphragm compressor.
- the method includes the following steps:
- Step 1 Construct the strain measurement system: select the strain gauge model according to the cylinder head size, paste the selected strain gauge and connect it to the bridge, then install the photoelectric sensor at the flywheel, and configure the data acquisition unit;
- Step 2 Collect the signal: Collect the first voltage signal and the second voltage signal output by the strain gauge circuit synchronously through the data collection unit, and at the same time convert the collected first voltage signal into a first digital signal for storage, and store the collected first voltage signal.
- the second voltage signal is converted into a second digital signal for storage;
- Step 3 Determine the start and end time of a complete cycle according to the first digital signal
- Step 4 According to the start and end time of the one complete cycle, process the second digital signal to obtain the oil pressure value and the air pressure value.
- processing of the second digital signal in the step 4 includes:
- ⁇ represents the crank angle (0 ⁇ 360°)
- ⁇ ( ⁇ ) is the strain
- e( ⁇ ) is the collected voltage signal
- ⁇ is the Poisson’s ratio
- E is the elastic modulus
- K s is the strain gauge sensitivity coefficient
- the radial stress and circumferential stress of the bottom plane of the exhaust valve hole are calculated, and then the air pressure value is calculated.
- the first voltage signal is filtered, amplified, adjusted, and A/D converted, and then converted into a first digital signal to be transmitted to the smart terminal for processing
- the second voltage signal is filtered and amplified , Conditioning and A/D conversion, converted into a second digital signal and transmitted to the smart terminal for processing.
- the analog signal output by the strain gauge and photoelectric sensor is converted into the final digital signal needed by the data acquisition system and stored in the computer hard disk for subsequent analysis and processing.
- strain gauges are used to monitor the strain on the surface of the diaphragm compressor cylinder head 1 and the bottom surface of the exhaust valve hole 2, including eight strain gauges, four working pieces, and four compensation plates.
- the working strain gauges Rw1 and Rw2 are pasted, where Rw1 is pasted in the radial direction and Rw2 is pasted in the circumferential direction.
- the working strain gauges Rw3 and Rw4 are pasted, where Rw3 is pasted in the radial direction and Rw4 is pasted in the circumferential direction.
- the half-bridge method is used to construct the bridge circuit to increase the output of the strain gauge and eliminate the temperature influence of the wire.
- the diaphragm compressor oil pressure monitoring device connects the strain gauge assembly with the bridge circuit by arranging the strain gauge assembly on the air side cylinder head to improve the sensitivity of the strain gauge assembly and make the input and output have a linear relationship . Because the strain gauge is attached to the gas side cylinder head of the diaphragm compressor non-invasively, the strain gauge assembly is set to measure the strain of the gas side cylinder head, so that the oil pressure and air pressure can be measured indirectly, and the oil pressure and pressure of the diaphragm compressor can be measured without damage. Air pressure.
- the method is safe and reliable, does not damage the diaphragm compressor, and can realize accurate monitoring of the oil side pressure and the gas side pressure, especially under high-pressure working conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
一种隔膜压缩机油压和气压监测装置及方法,监测装置包括气缸和应变片电路,气缸包括缸头(1),应变片电路包括相互连接的应变片组件和桥式电路,应变片组件设置于缸头(1)上。
Description
本申请属于压缩机技术领域,特别是涉及一种隔膜压缩机油压和气压监测装置及方法。
隔膜式压缩机是一种压缩腔不存在泄露的气体压缩专用设备。由于其所能提供的密封性能好、压力范围广、压缩比较大,因此被广泛应用于加氢站、石油化工领域中压缩输送各种高纯气体、贵重稀有气体、有毒有害气体和腐蚀性气体。在隔膜压缩机中,通过活塞推动气缸油腔中的工作油液,进而推动膜片在膜腔中做往复运动,以改变气腔的工作容积,在吸、排气阀的配合下实现无泄漏的周期性工作过程。在隔膜压缩机的液压油循环系统中,通过补偿回路补偿经过液压活塞环泄漏的油液,并通过在油侧缸头上安装溢油阀以调节补油量。
隔膜压缩机的油压和气压变化是压缩机工作性能和运行状态的综合反映,通过隔膜压缩机工作过程的油压和气压变化曲线可以反映出活塞位置、吸气过程时间、吸气阀开启和关闭的动作、排气阀开启和关闭的动作、排气过程时间、溢油阀动作和补油过程,因此油压、气压变化曲线是诊断隔膜压缩机压缩机故障最有效的工具,对隔膜压缩机油压进行动态监测是提高设备运行的可靠性、安全性的有效方法,保障设备的运行状态监测也是隔膜压缩机设计者和使用者的强烈需求。
由于隔膜压缩机可运行的压比高、压力范围广,排气压力最高可达300MPa,如果采用在缸体上加工测压孔的方法,对隔膜压缩机油侧缸头内的液压和气侧缸头内的气压进行监测,不仅影响气缸强度,还可能造成泄漏,带来安全隐患。。
发明内容
1.要解决的技术问题
基于由于隔膜压缩机可运行的压比高、压力范围广,排气压力最高可达300MPa,如果采用在缸体上加工测压孔的方法,对隔膜压缩机油侧缸头内的液压和气侧缸头内的气压进行监测,不仅影响气缸强度,还可能造成泄漏,带来安全隐患的问题。本申请提供了一种隔膜压缩机油压和气压监测装置及方法。
2.技术方案
为了达到上述的目的,本申请提供了一种隔膜压缩机油压和气压监测装置,包括气缸和应变片电路;
所述气缸包括缸头和排气阀孔,所述排气阀孔设置于所述缸头上;
所述应变片电路包括相互连接的应变片组件和桥式电路,所述应变片组件包括第一应变片组和第二应变片组,所述第一应变片组设置于所述缸头外表面,所述第二应变片组设置于所述排气阀孔底平面,所述第一应变片组与所述桥式电路相连接,所述第二应变片组与所述桥式电路相连接。
可选地,所述第一应变片组包括第一应变片和第二应变片,所述第一应变片与所述第二应变片相互垂直设置;
所述第二应变片组包括第三应变片和第四应变片,所述第三应变片与所述第四应变片相互垂直设置。
可选地,所述应变片组件还包括第三应变片组和第四应变片组;
所述第三应变片组设置于法兰上,所述法兰设置于排气管路上,所述第四应变片组设置于所述法兰上。
可选地,所述应变片组件与半桥电路相连接。
可选地,所述应变片组件与全桥电路相连接。
可选地,还包括光电传感单元和数据采集单元,所述光电传感单元包括飞轮,所述飞轮与光电传感器相应设置,所述数据采集单元与所述应变片组件相连接,所述数据采集单元与所述光电传感器相连接;所述数据采集单元与数据处理单元相连接。
本申请还提供一种隔膜压缩机油压和气压监测方法,所述方法包括如下步骤:
步骤1、构建应变测量系统:根据气缸盖尺寸选择应变片型号,将选好的应变片进行粘贴后连接电桥,然后在飞轮处安装光电传感器后,配置数据采集单元;
步骤2、采集信号:通过所述数据采集单元同步采集第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;
步骤3、根据第一数字信号判断一个完整周期的起止时间;
步骤4、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压值和气压值。
可选地,所述步骤4中对所述第二数字信号进行处理包括:
(1)根据测得的电压数据,分别计算出工作应变片的应变:
其中,θ代表曲柄转角,ε(θ)为应变,e(θ)为采集到的电压信号,μ为泊松比,E为弹性模量,K
s为应变片灵敏度系数;
(2)计算油压:
将缸头简化为圆平板模型,根据测到的应变计算出缸头外表面应变片的径向应力和周向应力,然后根据隔膜压缩机结构,带入均布载荷的周边固支平板的边界条件进行计算得出油压值;
(3)计算气压:
根据测到的应变计算出排气阀孔底平面的径向应力和周向应力,然后计算得出气压值。
可选地,所述步骤2中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
3.有益效果
与现有技术相比,本申请提供的隔膜压缩机油压和气压监测装置及方法的有益效果在于:
本申请提供的隔膜压缩机油压和气压监测装置,通过将应变片组件设置于气侧缸头,将应变片组件与桥式电路相连接,提高应变片组件的灵敏度,并使输入和输出呈线性关系。由于在隔膜压缩机的气侧缸头非入侵式的粘贴应变片,设置应变片组件测量气侧缸头应变,使得油压和气压可以间接的被测量,可以无损安全测量隔膜压缩机油压。对隔膜压缩机无损伤、安全可靠尤其在高压的工况下可实现油压和气侧压力的准确监测。
图1是本申请的隔膜压缩机油压和气压监测装置第一结构示意图;
图2是本申请的应变片布置示意图;
图3是本申请的应变片半桥连接方式示意图;
图4是本申请的隔膜压缩机油压和气压监测装置原理示意图;
图5是传感器测得油压和气侧缸头应变片测得油压数据对比示意图;
图6是传感器测得气压和气侧缸头应变片测得气压数据对比示意图;
图中:1-气侧缸头、2-排气阀孔、3-第一应变片、4-第二应变片、5-第三应变片、6-第四应变片、7-信号采集单元、8-飞轮、9-光电传感器、10-数据处理单元。
在下文中,将参考附图对本申请的具体实施例进行详细地描述,依照这些详细的描述,所属领域技术人员能够清楚地理解本申请,并能够实施本申请。在不违背本申请原理的情况下,各个不同的实施例中的特征可以进行组合以获得新的实施方式,或者替代某些实施例中的某些特征,获得其它优选的实施方式。
应变片是由敏感栅等构成用于测量应变的元件。电阻应变片的工作原理是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。
由电阻、电容、电感等元件组成的四边形测量桥式电路叫电桥,电桥四条边为桥臂。作为测量电路,在四边形的一条对角线两端接上直流电源,引出另一条对角线两端的电压,利用电桥平衡方程,即可根据桥臂中的已知元件的数值求得被测元件的参量(如电阻、电阻、电容、电感)。
参见图1~6,本申请提供一种隔膜压缩机油压和气压监测装置,包括气缸和应变片电路;
所述气缸包括缸头1和排气阀孔2,所述排气阀孔2设置于所述缸头1上;
所述应变片电路包括相互连接的应变片组件和桥式电路,所述应变片组件包括第一应变片组和第二应变片组,所述第一应变片组设置于所述缸头1外表面,所述第二应变片组设置于所述排气阀孔2底平面,所述第一应变片组与所述桥式电路相连接,所述第二应变片组与所述桥式电路相连接。
这里的缸头1为气侧缸头或者油侧缸头,应变片组件通过粘合剂粘贴在气侧缸头或者油侧缸头上。贴有应变片组件的构件总是处于某一温度场中,若应变片敏感栅的线性膨胀系数与构建材料的线型膨胀系数不相等,则温度发生变化时,由于敏感栅和构件的伸长(或压缩)量不等,从而引起敏感栅收到附加拉伸(或压缩),敏感栅的电阻会发生变化,造成测量不准确,这种现象是温度效应。
应变片组件是一种本身电阻随应力变化而改变的传感器。几乎所有的应变片组件2,其灵敏度都比较低,利用桥式电路可以成倍提高其灵敏度,并使输入和输出呈线性关系。利用桥式电路检测应变片组件的变化,还具有通过的电流极低,应变片自身发热低的优点。所以,应变片传感器应用中,经常采用桥式电路。桥式电路包括四分之一桥连接方式、半桥连接方式和全桥连接方式。应变片的导线为带25mm包银铜线(直径为0.12mm~0.16mm),不同的机组活塞杆的直径不同,选择的应变片型号也可以不同。也就是说,根据实际需要对应变片进行选择即可。
在缸头1外表面设置第一应变片组即在气侧缸头外表面粘贴工作片组,由于当膜片在不接触气侧缸头时,油压气压存在伴随关系,几乎一致,故此时由于气压引起的缸头1应变与由于油压引起的缸头1应变一致,当膜片接触气侧缸头时,油测的压力会通过膜片直接施加在气侧缸头上,故可通过气侧压缸头1处粘贴的第一应变片组监测缸内油压。
通过排气阀孔2底平面处粘贴的第二应变片组即工作片组监测缸内气压。
气侧缸头上贴应变片的位置是:气侧缸头的正面,沿着吸气阀孔和排气阀孔圆心连线的延长线,在无吸气阀孔的半面区域内粘贴;
气侧缸头或者油侧缸头上的应变片测的是油压,排气阀孔的应变片测的是气压。
进一步地,所述第一应变片组包括第一应变片3和第二应变片4,所述第一应变片3与所述第二应变片4相互垂直设置;
所述第二应变片组包括第三应变片5和第四应变片6,所述第三应变片5与所述第四应变片6相互垂直设置。
采用两片相互垂直的工作片,将这些工作片接入半桥电路,工作片均与半桥电路的一个桥臂相连接。
进一步地,所述应变片组件还包括第三应变片组和第四应变片组;
所述第三应变片组设置于法兰上,所述法兰设置于排气管路上,所述第四应变片组设置于所述法兰上。
第一应变片沿气侧缸头外表面径向粘贴,第二应变片沿气侧缸头外表面周向粘贴;第三应变片沿排气阀孔2底平面径向粘贴,第四应变片沿排气阀孔2底平面周向粘贴;
此方案中,在气侧缸头1外表面垂直设置两片工作片,在排气阀孔2底平面垂直设置两片工作片,在排气管路的法兰上设置4片补偿片即第五应变片组和第六应变片组,通过粘贴补偿片消除导线的温度对测量结果的影响,这里补偿片也可以设置在其他可保证补偿片处的温度与缸盖温度接近且不受应力的地方。
在两个位置(缸头1外表面和排气阀孔2底面)分别粘贴两个应变片,这四个均为工作片,用来测量粘贴位置周向和径向的应变(因为是圆平板,所以有周向和径向2个方向的应变),根据径向和周向的应变可计算出油压和气压。工作片粘贴在缸体上,缸头1和排气阀孔2底面发生形变时,贴在此处的应变片也会随之为拉伸,因此工作片的电阻会发生变化,电阻变化引起桥式电路的输出电压发生改变。
进一步地,所述应变片组件与半桥电路相连接。选用半桥法构建电桥电路,实现加大应变片的输出和消除导线的温度影响。如图3中的半桥法,将工作片和温度补偿片分别接入两个相邻桥臂,另外两个桥臂接固定电阻。
进一步地,所述应变片组件与全桥电路相连接。
应变片的粘贴方法有四分之一桥,半桥和全桥3种,均合理。四分之一桥,半桥连接只接入2个应变片,全桥接入4个应变片。
进一步地,还包括光电传感单元和数据采集单元7,所述光电传感单元包括飞轮8,所述 飞轮8与光电传感器9相应设置,所述数据采集单元7与所述应变片组件相连接,所述数据采集单元7与所述光电传感器9相连接;所述数据采集单元7与数据处理单元10相连接。
活塞止点信号的检测方法较多,压缩机技术中常用霍尔式和光电式传感器,传感器的发信端一般布置在飞轮8上,光电传感器9一般采用反射式,光电传感器9的探头安装位置需要精确定位,即转动飞轮8使活塞分别处于内外止点,然后将探头对准发信点(磁钢、铁块或者反光条)。
飞轮8绕轴线垂直轴转动,盘车找到活塞运动到上止点的位置,作为相位参考的基准,此时在飞轮8的任意位置做一个标记,在机架上安装一个光点传感器,使其对准标记。正常情况下,光电传感器9采集到稳定的信号,待标记转到光电传感器9时,则出现冲击信号,作为周期起始位置,每两个连续的冲击信号之间为一个周期。
光电传感单元是为了得到周期信号,以判断一个完整的周期。在飞轮8处安装光电传感器9,通过得到的外止点信号,确定压缩机曲柄转角θ初始值0;光电传感器9输出的模拟信号经过数据采集单元7转换成最终所需要的数字信号存储供后续分析和处理。
数据采集这里用到的是美国国家仪器(NI)有限公司的应变采集卡NI9237、NI9205和采集机箱cDAQ-9185,数据采集通过编写LabVIEW程序进行。
数据处理单元为智能终端。这里的智能终端指可以对数据进行计算分析的设备,例如计算机,计算机除了存储数据外,还要运行数据采集程序,控制信号的采样及显示,如设置采样频率和样本保存长度等参数。数据采集系统实现信号滤波、放大,调理及A/D转换这一系列功能。计算机显示采集到的光电传感器9止点信号和应变片电路输出电压信号。显示可以实时监测。
数据采集单元7包括采集卡和信号调理模块。设置数据采样频率,以及对应的采集通道。
数据采集单元7实现信号滤波、放大,调理及A/D转换这一系列功能。
本申请还提供一种隔膜压缩机油压和气压监测方法,所述方法包括如下步骤:
步骤1、构建应变测量系统:根据气缸盖尺寸选择应变片型号,将选好的应变片进行粘贴后连接电桥,然后在飞轮处安装光电传感器后,配置数据采集单元;
步骤2、采集信号:通过所述数据采集单元同步采集第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;
步骤3、根据第一数字信号判断一个完整周期的起止时间;
步骤4、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压 值和气压值。
进一步地,所述步骤4中对所述第二数字信号进行处理包括:
(1)根据测得的电压数据,分别计算出工作应变片的应变:
其中,θ代表曲柄转角(0~360°),ε(θ)为应变,e(θ)为采集到的电压信号,μ为泊松比,E为弹性模量,K
s为应变片灵敏度系数;这里先计算出4篇工作片的应变;
(2)计算油压:
将缸头简化为圆平板模型,根据测到的应变计算出缸头外表面应变片的径向应力和周向应力,然后根据隔膜压缩机结构,带入均布载荷的周边固支平板的边界条件进行计算得出油压值;
(3)计算气压:
根据测到的应变计算出排气阀孔底平面的径向应力和周向应力,然后计算得出气压值。
进一步地,所述步骤1中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
数据采集具体流程,应变片和光电传感器输出的模拟信号经过数据采集系统转换成最终所需要的数字信号存储到计算机硬盘中供后续分析和处理。
计算时用计算机按照公式计算,实现方式可以是用软件编程,也可以是excel。
根据采集到的数据,利用公式计算即可,此处用到的就是计算机,编写LabVIEW程序进行做计算。
本申请中使用应变片对隔膜压缩机气侧缸头1表面和排气阀孔2底面平台处的应变进行监测,包括八片应变片,四片工作片,四片补偿片。在气侧缸头1外表面,粘贴工作应变片Rw1和Rw2,其中Rw1沿径向粘贴,Rw2沿周向粘贴。在气侧缸头排气阀孔2的底端平台处,粘贴工作应变片Rw3和Rw4,其中Rw3沿径向粘贴,Rw4沿周向粘贴。对于补偿片:通过粘贴补偿片消除温度对测量结果的影响,将补偿片粘贴在排气管路的法兰上(或者其他可保证补偿片处的温度与缸盖温度接近且不受应力的地方)。选用半桥法构建电桥电路,实现加大应变片的输出和消除导线的温度影响。
本申请提供的隔膜压缩机油压监测装置,通过将应变片组件设置于气侧缸头,将应变片组件与桥式电路相连接,提高应变片组件的灵敏度,并使输入和输出呈线性关系。由于在隔膜压缩机的气侧缸头非入侵式的粘贴应变片,设置应变片组件测量气侧缸头应变,使得油压 和气压可以间接的被测量,可以无损安全测量隔膜压缩机油压和气压。该方法安全可靠,对隔膜压缩机无损伤,尤其在高压的工况下可实现油侧压力和气侧压力的准确监测。
本申请中的“第一、第二......”只是为了对应变片进行区分,其结构均相同。
尽管在上文中参考特定的实施例对本申请进行了描述,但是所属领域技术人员应当理解,在本申请公开的原理和范围内,可以针对本申请公开的配置和细节做出许多修改。本申请的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。
Claims (9)
- 一种隔膜压缩机油压和气压监测装置,其特征在于:包括气缸和应变片电路;所述气缸包括缸头(1)和排气阀孔(2),所述排气阀孔(2)设置于所述缸头(1)上;所述应变片电路包括相互连接的应变片组件和桥式电路,所述应变片组件包括第一应变片组和第二应变片组,所述第一应变片组设置于所述缸头(1)外表面,所述第二应变片组设置于所述排气阀孔(2)底平面,所述第一应变片组与所述桥式电路相连接,所述第二应变片组与所述桥式电路相连接。
- 如权利要求1所述的隔膜压缩机油压和气压监测装置,其特征在于:所述第一应变片组包括第一应变片(3)和第二应变片(4),所述第一应变片(3)与所述第二应变片(4)相互垂直设置;所述第二应变片组包括第三应变片(5)和第四应变片(6),所述第三应变片(5)与所述第四应变片(6)相互垂直设置。
- 如权利要求1所述的隔膜压缩机油压和气压监测装置,其特征在于:所述应变片组件还包括第三应变片组和第四应变片组;所述第三应变片组设置于法兰上,所述法兰设置于排气管路上,所述第四应变片组设置于所述法兰上。
- 如权利要求1所述的隔膜压缩机油压和气压监测装置,其特征在于:所述应变片组件与半桥电路相连接。
- 如权利要求1所述的隔膜压缩机油压和气压监测装置,其特征在于:所述应变片组件与全桥电路相连接。
- 如权利要求1~5中任一项所述的隔膜压缩机油压和气压监测装置,其特征在于:还包括光电传感单元和数据采集单元(7),所述光电传感单元包括飞轮(8),所述飞轮(8)与光电传感器(9)相应设置,所述数据采集单元(7)与所述应变片组件相连接,所述数据采集单元(7)与所述光电传感器(9)相连接;所述数据采集单元(7)与数据处理单元(10)相连接。
- 一种隔膜压缩机油压和气压监测方法,其特征在于:所述方法包括如下步骤:步骤1、构建应变测量系统:根据气缸盖尺寸选择应变片型号,将选好的应变片进行粘贴后连接电桥,然后在飞轮处安装光电传感器后,配置数据采集单元;步骤2、采集信号:通过所述数据采集单元同步采集第一电压信号和应变片电路输出的第二电压信号,同时将采集的第一电压信号转换为第一数字信号进行存储,将采集的第二电压信号转换为第二数字信号进行存储;步骤3、根据第一数字信号判断一个完整周期的起止时间;步骤4、根据所述一个完整周期的起止时间,对所述第二数字信号进行处理,得出油压值和气压值。
- 如权利要求7所述的隔膜压缩机油压和气压监测方法,其特征在于:所述步骤2中所述第一电压信号经过滤波、放大、调理及A/D转换,转换成第一数字信号传输到智能终端中进行处理,所述第二电压信号经过滤波、放大、调理及A/D转换,转换成第二数字信号传输到智能终端中进行处理。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/095259 WO2021003669A1 (zh) | 2019-07-09 | 2019-07-09 | 一种隔膜压缩机油压和气压监测装置及方法 |
US17/312,012 US20220056902A1 (en) | 2019-07-09 | 2019-07-09 | Device and method for monitoring oil pressure and gas pressure of diaphragm compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/095259 WO2021003669A1 (zh) | 2019-07-09 | 2019-07-09 | 一种隔膜压缩机油压和气压监测装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021003669A1 true WO2021003669A1 (zh) | 2021-01-14 |
Family
ID=74114483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/095259 WO2021003669A1 (zh) | 2019-07-09 | 2019-07-09 | 一种隔膜压缩机油压和气压监测装置及方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220056902A1 (zh) |
WO (1) | WO2021003669A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114739569B (zh) * | 2022-04-08 | 2024-09-10 | 中船重工(上海)新能源有限公司 | 油压气压复合指示计和阀体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050025631A1 (en) * | 2003-07-30 | 2005-02-03 | Equistar Chemicals L.P. | System and method for monitoring the mechanical condition of a reciprocating compressor |
CN102818663A (zh) * | 2012-08-31 | 2012-12-12 | 苏州托克斯冲压设备有限公司 | 电子压力机的压力间接测量装置 |
CN109973354A (zh) * | 2019-02-21 | 2019-07-05 | 西安交通大学 | 一种往复压缩机非侵入式气缸内气压监测装置及方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2452526A (en) * | 1946-02-14 | 1948-10-26 | Hooker Electrochemical Co | Apparatus for compressing highly reactive gases |
US4133100A (en) * | 1976-12-27 | 1979-01-09 | Myhre Kjell E | Method of making diaphragm of optimized stress and strain distribution |
US4376929A (en) * | 1976-12-27 | 1983-03-15 | Myhre Kjell E | Optimized stress and strain distribution diaphragms |
US4566858A (en) * | 1981-10-08 | 1986-01-28 | Nikkiso Co., Ltd. | Pulsation-free volumetric pump |
US4820129A (en) * | 1982-06-08 | 1989-04-11 | Altex Scientific, Inc. | Pressure measurement in fluid pump systems |
DE10138674B4 (de) * | 2001-08-07 | 2011-08-11 | Kleibrink, Horst, 45473 | Verfahren zur Vermeidung von Havariefällen von Membrankompressoren |
RU2306537C2 (ru) * | 2003-10-31 | 2007-09-20 | Закрытое акционерное общество "Наука и серийный выпуск" | Тензометрический датчик давления |
-
2019
- 2019-07-09 WO PCT/CN2019/095259 patent/WO2021003669A1/zh active Application Filing
- 2019-07-09 US US17/312,012 patent/US20220056902A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050025631A1 (en) * | 2003-07-30 | 2005-02-03 | Equistar Chemicals L.P. | System and method for monitoring the mechanical condition of a reciprocating compressor |
CN102818663A (zh) * | 2012-08-31 | 2012-12-12 | 苏州托克斯冲压设备有限公司 | 电子压力机的压力间接测量装置 |
CN109973354A (zh) * | 2019-02-21 | 2019-07-05 | 西安交通大学 | 一种往复压缩机非侵入式气缸内气压监测装置及方法 |
Non-Patent Citations (1)
Title |
---|
LI, MENGJIE ET AL.: "Simulation Study on the Relationship between Cylinder Head Stress and Cylinder Pressure", MODELING AND SIMULATION, vol. 7, no. 2,, 30 May 2018 (2018-05-30), DOI: 20200302165304Y * |
Also Published As
Publication number | Publication date |
---|---|
US20220056902A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020168512A1 (zh) | 一种隔膜压缩机油缸内油压监测装置及方法 | |
CN110374857B (zh) | 一种隔膜压缩机油压和气压监测装置及方法 | |
CN109973354B (zh) | 一种往复压缩机非侵入式气缸内气压监测装置及方法 | |
CN111351423B (zh) | 一种法兰连接螺栓松动监测方法 | |
WO2022160695A1 (zh) | 一种风电机组塔筒寿命预测方法、系统、设备及存储介质 | |
CN108757425A (zh) | 一种压裂泵健康状态监视系统及方法 | |
CN111927749B (zh) | 一种隔膜压缩机气压无损监测系统及方法 | |
CN109781330A (zh) | 基于周向阵列的套装梁压容感知六维力传感器 | |
CN111927752B (zh) | 一种隔膜压缩机故障诊断仪 | |
WO2021003669A1 (zh) | 一种隔膜压缩机油压和气压监测装置及方法 | |
CN111927751B (zh) | 一种隔膜压缩机膜片位移无损监测系统及方法 | |
CN114320827B (zh) | 一种液驱活塞压缩机示功图无损监测装置及方法 | |
CN203396529U (zh) | 双向轴向力测量装置 | |
CN205545151U (zh) | 一种平面变形测量的光伏组件表面载荷试验装置 | |
CN100460883C (zh) | 避雷器阻性电流测试的检测方法 | |
US11131591B2 (en) | FBG sensor-based bolt fastening joint surface pressure detection method | |
CN206655691U (zh) | 一种不停抽卡光杆式无线功图传感器 | |
CN116591949B (zh) | 一种高压隔膜压缩机非侵入式气压监测装置及监测方法 | |
CN209485598U (zh) | 一种大头抗震压力表 | |
CN208805328U (zh) | 一种船用机械密封试压装置 | |
CN207366353U (zh) | 一种声发射引伸计 | |
CN112556891A (zh) | 基于膜式传感器的混凝土全生命期内部受力状态监测装置 | |
CN112727747B (zh) | 一种超低温往复压缩机的在线监测系统及其示功方法 | |
CN109903942B (zh) | 一种波纹结构的金属氧化锌避雷器用防爆板 | |
CN216050389U (zh) | 一种单轴力传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19937076 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19937076 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19937076 Country of ref document: EP Kind code of ref document: A1 |