WO2022160695A1 - 一种风电机组塔筒寿命预测方法、系统、设备及存储介质 - Google Patents

一种风电机组塔筒寿命预测方法、系统、设备及存储介质 Download PDF

Info

Publication number
WO2022160695A1
WO2022160695A1 PCT/CN2021/114651 CN2021114651W WO2022160695A1 WO 2022160695 A1 WO2022160695 A1 WO 2022160695A1 CN 2021114651 W CN2021114651 W CN 2021114651W WO 2022160695 A1 WO2022160695 A1 WO 2022160695A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
tower
meld
bolt
displacement
Prior art date
Application number
PCT/CN2021/114651
Other languages
English (en)
French (fr)
Inventor
蔡安民
杨博宇
焦冲
张林伟
蔺雪峰
许扬
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022160695A1 publication Critical patent/WO2022160695A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the application belongs to the technical field of wind turbine monitoring, and relates to a method, system, equipment and storage medium for predicting the life of a wind turbine tower.
  • Wind turbines are power generation equipment that requires long-term operation. In recent years, the explosive growth of wind power generation has brought great challenges to the long-term safe and stable operation of wind turbines.
  • the wind turbine is a device that drives the wind motor to rotate by the impeller turning against the wind, converts wind energy into mechanical energy, and then converts it into electrical energy. It consists of an impeller, a nacelle, a tower and a foundation. Support and maintain the nacelle and impeller rotation.
  • the tower should bear the overall load of the wind turbine and transfer the load to the foundation of the unit. Under the influence of load shock, the state of the tower will decline, that is, the parameters of the tower during operation will not meet the design standards.
  • the main methods of tower life evaluation of wind turbines include type test of tower load, load prediction evaluation, and condition monitoring of wind turbines.
  • the existing technical solutions have the following problems:
  • the current wind turbine condition monitoring systems on the market mainly include data acquisition and monitoring control systems or online condition monitoring systems.
  • the data acquisition and monitoring control system signals, rotational speed signals or vibration signals are used as evaluation indicators for the status of wind turbines.
  • a single evaluation method does not necessarily fully reflect the operating status of the wind turbine tower, and cannot fully understand the hidden faults of the wind turbine tower in a timely manner and accurately and effectively evaluate the life of the wind turbine tower.
  • the purpose of the present application is to overcome the shortcomings of the above-mentioned prior art, which cannot accurately and effectively predict and evaluate the tower load and life, and provide a wind turbine tower life prediction method, system, equipment and storage medium.
  • a method for predicting the life of a tower of a wind turbine A number of connectors are installed on the tower of the wind turbine to be tested, a displacement sensor is installed at the connection between the connector and the tower, and the connector is a flange.
  • a welding seam is arranged at the connection with the tower body, a cylinder ring segment is arranged on the tower body, and bolts are sleeved on the flange, including the following steps:
  • S3 Calculate the stress data of each layer of flanges and related welds, and the ring section of the tower body through the calculation of the flange working load of S2;
  • S4 Calculate the life of each component in the tower using the stress data of each layer of flanges and related welds in S3 and the ring section of the tower, and predict the life of the wind turbine tower.
  • the displacement sensor is a split displacement sensor.
  • the calculation process of the flange working load described in S2 includes the following steps:
  • Step 21) For the j-th layer of flange, there are bolts on the flange, and the initial pre-tightening force of each bolt on the flange is set as F 0 , and the pre-tightening force F 0 is applied to all the bolts on the flange and there is no working load
  • the distance between the two measuring points on the displacement sensor is L 1
  • the total thickness of the gasket and the connecting piece is L 2
  • the stiffness of the bolt is C 1
  • the overall stiffness of the gasket and the connecting piece at the bolt connection is C 2 ;
  • A represents the cross-sectional area at the minimum diameter of the bolt
  • ⁇ F 1 represents the increase in bolt tension
  • ⁇ F 2 represents the decrease in the compression force between the gasket and the connector as a whole
  • k 1 represents the proportional coefficient between the change in bolt length and (L 2 /L 1 ) ⁇ L when the relative axial displacement of the flange measured by the two measuring points of the displacement sensor increases by ⁇ L;
  • k 2 represents the proportional coefficient of the increase in the length of the bolt and the increase in the distance between the outer edge of the upper gasket and the lower gasket;
  • k 3 represents the proportional coefficient formed by the change of bolt length and (L 2 /L 1 ) ⁇ L when the relative axial displacement of the flange measured by the two measuring points of the displacement sensor decreases by ⁇ L;
  • Step 22 Set the measurement accuracy of the displacement sensor as ⁇ L_1, and convert the measured displacement ⁇ L of the displacement sensor into a representation based on the measurement accuracy:
  • the maximum axial displacement of the flange is ⁇ L_+N max ; in the possible compression direction of the main wind direction, the maximum axial displacement of the flange is ⁇ L_-M max , where - M max ⁇ i ⁇ +N max ;
  • Step 23 Repeat steps 21) to 22) to obtain the working loads of each layer of flanges under different measured displacements.
  • the stress data of each layer of flanges and related welds, and the ring section of the tower cylinder body described in step S3 specifically includes the following stress data:
  • n 1 represents the total number of flange layers
  • n j represents the total number of ring segments of the tower between the j-th layer and the j+1-th layer of flanges .
  • step S4 the specific process of the life calculation described in step S4 is:
  • the fatigue cumulative damage function is obtained based on the stress data of the relevant parts of the flanges of each layer.
  • the fatigue damage function includes the fatigue cumulative damage function of each layer of flanges, and the fatigue cumulative damage function of the flanges connected to each layer and located at the lower part of the flange. , the fatigue cumulative damage function of each tower ring segment, the fatigue cumulative damage function of the lower girth weld of each tower ring segment, and the fatigue cumulative damage function of each tower ring segment longitudinal weld, respectively for different
  • the fatigue cumulative damage function sets the fatigue cumulative damage threshold;
  • the fatigue cumulative damage threshold of different parts is compared with the corresponding real-time fatigue damage value of each part, so as to realize the prediction of the life of the wind turbine tower.
  • the specific calculation process of the fatigue cumulative damage function is:
  • Step 41 According to the properties of the flange, establish the fatigue cumulative damage function with the measured displacement of the j-th layer flange in the main wind direction as ⁇ L_i:
  • k _time_flange_i_j represents the influence factor of the action time of the working load of the j-th layer of flange W _flange_i_j
  • k _direction_flange_i_j represents the effect of the direction of the working load of the j-th layer of flange W _flange_i_j factor
  • N _flange_i_j represents the fatigue damage of the j-th layer of flange
  • Step 42) According to the properties of the weld, establish a fatigue cumulative damage function with a displacement of ⁇ L_i measured in the main wind direction of the weld that is connected to the j-th layer flange and located at the lower part of the flange:
  • k _time_flange_meld_i_j represents the action time influence coefficient of the weld working load W _flange_meld_i_j
  • k _direction_flange_meld_i_j represents the action direction influence factor of the weld working load W _flange_meld_i_j
  • N _flange_meld_i_j represents the cyclic working load W _flange_meld_i_j of the weld working load W _flange_meld_i_j
  • n _flange_meld_i_j represents the number of cycles of the weld working load W _flange_meld_i_j ;
  • Step 43) According to the properties of the tower body ring segment, establish the fatigue cumulative damage function of the p-th tower body ring segment located at the lower part of the j-th layer flange and the measured displacement in the main wind direction is ⁇ L_i:
  • k _time_tower_i_j_p represents the influence factor of the action time of the working load W _tower_i_j_p of the ring section of the tower tube
  • k _direction_tower_i_j_p represents the influence factor of the direction of the working load W _tower_i_j_p of the ring section of the tower tube
  • N _tower_i_j_p represents the ring section of the tower tube
  • Step 44 According to the properties of the weld, establish the fatigue cumulative damage function of the girth weld at the lower part of the p-th tower body ring segment at the lower part of the j-th layer flange in the main wind direction with the measured displacement of ⁇ L_i:
  • k _meld_ring_i_j_p represents the action time influence factor of the working load W _meld_ring_i_j_p of the girth weld at the lower part of the ring section of the tower casing
  • k _direction_meld_ring_i_j_p means the girth weld at the lower part of the ring section of the tower casing
  • the influence coefficient of the working direction of the working load W _meld_ring_i_j_p N _meld_ring_i_j_p represents the number of cycles of the working load W _meld_ring_i_j_p when fatigue damage occurs in the lower girth weld of the ring section of the tower
  • n _meld_ring_i_j_p represents the working load of the girth weld at the lower part of the ring section of the tower body W _meld_ring_i_j_p has been cycled for the number of times;
  • Step 45 According to the properties of the weld, establish the fatigue cumulative damage function of the longitudinal weld of the p-th tower body ring segment located at the lower part of the j-th layer flange in the main wind direction with the measured displacement of ⁇ L_i:
  • k _meld_longitudinal_i_j_p represents the action time influence factor of the working load W _meld_longitudinal_i_j_p of the longitudinal welding seam of the ring section of the tower shell
  • k _direction_meld_longitudinal_i_j_p represents the longitudinal welding seam work of the ring section of the tower shell
  • the influence coefficient of the action direction of the load W _meld_longitudinal_i_j_p N _meld_longitudinal_i_j_p represents the cycle times of the working load W _meld_longitudinal_i_j_p when fatigue damage occurs in the longitudinal weld of the ring section of the tower
  • n _meld_ Longitudinal_i_j_p represents the working load W _meld_longitudinal_i_j_p of the longitudinal welding seam of the ring section of the tower cylinder has been cycled;
  • Step 46 According to the properties of the bolts, establish the fatigue cumulative damage function of a bolt with the j-th layer flange located in the main wind direction measuring the displacement in the main wind direction as ⁇ L_i:
  • k _time_bolt_i_j represents the influence factor of the action time of the bolt tension F 1_i_j
  • k _direction_bolt_i_j represents the influence factor of the action direction of the bolt tension F 1_i_j
  • N _bolt_i_j represents the cyclic action times of the bolt tension when the bolt is fatigue damaged
  • n _bolt_i_j represents the bolt tension F 1_i_j has been cycled the number of times
  • a wind turbine tower life prediction system comprising:
  • the displacement data acquisition module is electrically connected with the displacement sensor and receives the displacement data transmitted by the displacement sensor;
  • the data processing module interacts with the displacement data acquisition module, receives the displacement data in the displacement data acquisition module, and processes the displacement data, including a working load calculation unit and a stress data calculation unit.
  • the working load calculation unit is based on the displacement data calculation method
  • the stress data calculation unit calculates the stress data of the relevant parts of the flange based on the working load on the flange;
  • the evaluation module interacts with the data processing module, calculates the life of each component in the tower based on the stress data of the relevant parts of the flange, and predicts the life of the wind turbine tower.
  • a mobile terminal device comprising a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program to realize the life prediction of the wind turbine tower steps of the method.
  • a computer-readable storage medium storing a computer program, when the computer program is executed by a processor, realizes the steps of the method for predicting the life of a wind turbine tower.
  • the present application discloses a method for predicting the life of a tower of a wind turbine.
  • the axial relative displacement of the flange is monitored by a displacement sensor, so that the stress of the main components of the tower and the value of the exhausted fatigue life can be analyzed, counted, and pre-warned, and fully automated processing can be realized.
  • high calculation efficiency real-time online monitoring of the fatigue life of each main part of the tower, to avoid equipment damage caused by excessive tower fatigue damage.
  • the change of the relative axial displacement of the flange is effectively collected by the displacement sensor, and then the flange bolt stress, bolt tension and flange working load can be calculated.
  • Statistical analysis is performed on the stress, and the fatigue cumulative damage function is established for each main part of the tower, and the consumed fatigue life value of each main part of the tower can be calculated. When the consumed fatigue life value of each main part of the tower reaches the set threshold Alarm information will be sent out at any time to provide monitoring basis for the implementation of tower safety control strategy.
  • influence coefficient in each fatigue cumulative damage function can be obtained through theoretical calculation, CAE analysis or experimental test.
  • the application also discloses a wind turbine tower life prediction system, which includes a displacement data acquisition module, which is electrically connected to the displacement sensor and receives the displacement data transmitted by the displacement sensor; and a data processing module, which interacts with the displacement data acquisition module and receives the displacement data to acquire The displacement data in the module, and the displacement data is processed, including the working load calculation unit and the stress data calculation unit.
  • the working load calculation unit is based on the displacement data to calculate the working load on the flange; the stress data calculation unit is based on the flange. Calculate the stress data of the flange and related welds, and the ring section of the tower body based on the working load on the The stress data calculates the life of each component in the tower and predicts the life of the wind turbine tower.
  • 1 is a schematic diagram of the distribution state of displacement sensors in the application for wind turbine tower life prediction method
  • Fig. 2 is the side view of the installation state of the displacement sensor in the application for wind turbine tower life prediction method
  • FIG. 3 is a schematic diagram of the overall structure of the split displacement sensor in Embodiment 4 of the application;
  • Fig. 4 is the arrangement diagram of the displacement sensor in the life prediction method of the wind turbine tower of the application.
  • FIG. 5 is a schematic diagram of a flange connection structure in the method for predicting the life of a wind turbine tower of the application
  • FIG. 6 is a schematic structural diagram of a wind turbine tower in the method for predicting the life of a wind turbine tower of the application;
  • Fig. 7 is the flow chart of the life prediction method of the wind turbine tower of the application.
  • FIG. 8 is a schematic diagram of a wind turbine tower life prediction system of the application.
  • FIG. 9 is a structural diagram of an electronic terminal device according to an exemplary embodiment of the present application.
  • a method for predicting the life of a wind turbine tower as shown in Figures 1 and 4, several connectors are installed on the tower body of the wind turbine, and the tower body is provided with a tube ring segment, and the connector is connected to the tower body.
  • a displacement sensor 10 is installed at the connection of the cylinder body.
  • the connecting piece includes an upper flange 11 and a lower flange 12.
  • the upper flange 11 and the lower flange 12 are provided with bolts 13, and the upper flange 11
  • An upper gasket 14 is arranged between the bolt 13 and the lower flange 12 and a lower gasket 15 is arranged between the lower flange 12 and the bolt 13 .
  • the implementation of the method includes the following steps:
  • S3 Calculate the stress data of each layer of flanges and related welds, and the ring section of the tower body through the calculation of the flange working load of S2;
  • S4 Calculate the life of each component in the tower using the stress data of each layer of flanges and related welds in S3 and the ring section of the tower, and predict the life of the wind turbine tower.
  • the displacement sensor 10 is a split type displacement sensor.
  • the displacement sensor 10 includes a limit block 2 and a displacement sensor body.
  • the limit block 2 and the displacement sensor body are respectively fixed on two interconnected connecting pieces.
  • the displacement sensor 10 is evenly installed on the inner circumference or outer circumference of the flange connection, and the mutually separated limiting blocks 2 and the sensor body in the displacement sensor 10 are respectively fixed on the two mutually connected flanges.
  • a method for predicting the life of a wind turbine tower includes the following steps:
  • the relative axial displacement of the upper flange 11 and the lower flange 12 changes, and the displacement occurs between the limit block 2 installed on the pair of flanges and the sensor body (shell 1).
  • the magnet 6 on the high-precision displacement sensor 10 slides on the surface of the electromagnetic induction chip, the magnetic field around the high-precision electromagnetic induction chip changes linearly, the high-precision electromagnetic induction chip captures the change of the magnetic field, and transmits the electromagnetic induction signal to the single-chip microcomputer ;
  • the temperature sensor chip collects ambient temperature data and transmits the ambient temperature data to the single-chip microcomputer; at the same time, the vibration sensor chip samples the external vibration signal, and then internally converts it into a level signal and transmits it to the single-chip microcomputer.
  • the single-chip microcomputer converts the received electromagnetic induction signal data into displacement data, converts the received level signal data into vibration data, and corrects the displacement data based on the ambient temperature data and vibration data to obtain the corrected displacement. data.
  • Step 41) For the j-th layer flange, set the initial pre-tightening force of each bolt on the flange to be F 0 , and apply the pre-tightening force F 0 to all the bolts on the flange and the two high-precision displacement sensors are under the condition of no working load.
  • the distance between the measuring points is L 1
  • the total thickness of the gasket and the connecting piece is L 2
  • the stiffness of the bolt is C 1
  • the overall stiffness of the gasket and the connecting piece at the bolt connection is C 2
  • the connecting piece includes the upper flange and the lower flange;
  • Step 42 Under the action of the pre-tightening force F 0 , the overall compression amount of the gasket and the connector at the bolt connection is F 0 /C 2 , and the bolt stress S _bolt , the bolt tension F 1 and the bolt connection at the bolt connection are calculated according to the following conditions.
  • External load F2 External load F2 :
  • A represents the cross-sectional area at the minimum diameter of the bolt
  • ⁇ F 1 represents the increase in bolt tension
  • ⁇ F 2 represents the decrease in the compression force of the gasket at the joint and the entire connector
  • k 1 represents the proportional coefficient between the bolt length and (L 2 /L 1 ) ⁇ L when the relative axial displacement of the flange measured by the two measuring points of the high-precision displacement sensor increases by ⁇ L;
  • k 2 represents the proportional coefficient of the increase in the length of the bolt and the increase in the distance between the outer edge of the upper gasket and the lower gasket;
  • k 3 represents the proportional coefficient between the bolt length and (L 2 /L 1 ) ⁇ L when the relative axial displacement of the flange measured by the two measuring points of the high-precision displacement sensor decreases by ⁇ L;
  • Step 43) Set the measurement accuracy of the high-precision displacement sensor as ⁇ L_1, and convert the measured displacement ⁇ L of the high-precision displacement sensor into a representation based on the measurement accuracy:
  • the maximum axial displacement of the flange in the tensile direction that may occur in the main wind direction is ⁇ L_+N max
  • the maximum axial displacement of the flange in the compression direction that may occur in the main wind direction is ⁇ L_-M max , -M max ⁇ i ⁇ + N max ;
  • Step 44 Repeat steps 41) to 43) to obtain the working loads of each layer of flanges under different measured displacements.
  • the stress data of the relevant parts of the flanges of each layer are obtained by calculating the working load of the flange, including the following stress data of the flanges and related welds, and the ring section of the tower body:
  • the stress S _meld_ring_i_j_p of the lower girth weld 20 of the p-th tower body ring section located at the lower part of the j-th floor flange is measured in the main wind direction when the displacement is ⁇ L_i .
  • the lower ring of the tower body ring section is Weld working load is recorded as W_meld_ring_i_j_p ;
  • 1 ⁇ j ⁇ n 1 , 1 ⁇ p ⁇ n j , n 1 represents the total number of flange layers, and n j represents the total number of ring segments of the tower between the j-th layer and the j+1-th flange.
  • Step 61 according to the properties of the flange (material, structure, working environment and other indicators), establish the fatigue cumulative damage function of the j-th layer of flange in the main wind direction with the measured displacement of ⁇ L_i:
  • k _time_flange_i_j represents the influence factor of the action time of the j-th layer flange working load W _flange_i_j .
  • the action time of W _flange_i_j is different, the influence on the fatigue life of the flange will be different.
  • the coefficient k _time_flange_i_j is introduced, k _time_flange_i_j should comprehensively consider the product material parameters and the action time data of each working load W _flange_i_j , which can be obtained through experiments;
  • k _direction_flange_i_j represents the influence coefficient of the working direction of the j-th layer flange working load W _flange_i_j .
  • the introduction coefficients k _directio_nflang_ei_j and k _direction_flange_i_j should comprehensively consider the product material parameters and the direction data of each working load W _flang_ei_j , which can be obtained through experiments;
  • N _flange_i_j represents the number of cyclic actions of the flange working load W _flange_i_j when the j-th layer of flanges is fatigued
  • n _flange_i_j represents the number of cycles of the j-th layer of flanges to apply the flange working load W _flange_i_j ;
  • Step 62 similar to step 61), according to the properties of the weld (the material, structure, working environment and other indicators of the weld), establish the weld that is connected to the j-th layer flange and is located at the lower part of the flange and is measured in the main wind direction.
  • Fatigue cumulative damage function with displacement ⁇ L_i the material, structure, working environment and other indicators of the weld
  • k _time_flange_meld_i_j represents the action time influence coefficient of the weld working load W _flange_meld_i_j
  • k _direction_flange_meld_i_j represents the action direction influence factor of the weld working load W _flange_meld_i_j
  • N _flange_meld_i_j represents the cyclic working load W _flange_meld_i_j of the weld working load W _flange_meld_i_j
  • n _flange_meld_i_j represents the number of cycles of the weld working load W _flange_meld_i_j ;
  • Step 63 similar to step 61), according to the properties of the ring segment of the tower barrel (the material, structure, working environment and other indicators of the tower barrel) to establish the p-th tower barrel located at the lower part of the flange of the j-th layer.
  • the fatigue cumulative damage function of the measured displacement of the ring segment in the main wind direction is ⁇ L_i:
  • k _time_tower_i_j_p represents the influence factor of the action time of the working load W _tower_i_j_p of the ring section of the tower tube
  • k _direction_tower_i_j_p represents the influence factor of the direction of the working load W _tower_i_j_p of the ring section of the tower tube
  • N _tower_i_j_p represents the ring section of the tower tube
  • Step 64 similar to step 61), according to the properties of the weld (the material, structure, working environment and other indicators of the weld), establish the girth weld at the lower part of the p-th tower cylinder ring section at the lower part of the j-th layer flange.
  • k _meld_ring_i_j_p represents the action time influence factor of the working load W _meld_ring_i_j_p of the girth weld at the lower part of the ring section of the tower casing
  • k _direction_meld_ring_i_j_p means the girth weld at the lower part of the ring section of the tower casing
  • the influence coefficient of the working direction of the working load W _meld_ring_i_j_p N _meld_ring_i_j_p represents the number of cycles of the working load W _meld_ring_i_j_p when fatigue damage occurs in the lower girth weld of the ring section of the tower
  • n _meld_ring_i_j_p represents the working load of the girth weld at the lower part of the ring section of the tower body W _meld_ring_i_j_p has been cycled for the number of times;
  • Step 65 similar to step 61), according to the properties of the weld (material, structure, working environment of the weld), establish the longitudinal weld of the p-th tower cylinder ring segment located at the lower part of the j-th flange flange in the main wind direction.
  • k _meld_longitudinal_i_j_p represents the action time influence factor of the working load W _meld_longitudinal_i_j_p of the longitudinal welding seam of the ring section of the tower shell
  • k _direction_meld_longitudinal_i_j_p represents the longitudinal welding seam work of the ring section of the tower shell
  • the influence coefficient of the action direction of the load W _meld_longitudinal_i_j_p N _meld_longitudinal_i_j_p represents the cycle times of the working load W _meld_longitudinal_i_j_p when fatigue damage occurs in the longitudinal weld of the ring section of the tower
  • n _meld_ Longitudinal_i_j_p represents the working load W _meld_longitudinal_i_j_p of the longitudinal welding seam of the ring section of the tower cylinder has been cycled;
  • Step 66 similar to step 61), according to the properties of the bolt (indicators such as bolt material, structure, working environment, etc.), establish a bolt 16 with the j-th layer flange located in the main wind direction, and measure the fatigue displacement of ⁇ L_i in the main wind direction.
  • Cumulative damage function :
  • k _time_bolt_i_j represents the influence factor of the action time of the bolt tension F 1_i_j
  • k _direction_bolt_i_j represents the influence factor of the action direction of the bolt tension F 1_i_j
  • N _bolt_i_j represents the cyclic action times of the bolt tension when the bolt is fatigue damaged
  • n _bolt_i_j represents the bolt tension F 1_i_j has been cycled the number of times
  • Step 67) the fatigue cumulative damage function of the above-mentioned flanges of each layer, the fatigue cumulative damage function connected to the flanges of each layer and located at the welding seam at the lower part of the flange, the fatigue cumulative damage function of each tower cylinder ring segment,
  • the fatigue cumulative damage function of the lower girth weld of each tower ring segment and the fatigue cumulative damage function of the longitudinal weld of each tower ring segment are respectively set with thresholds.
  • the high-precision displacement sensor used in Example 3 is the displacement sensor in the Chinese utility model patent with the publication number CN211503995U and the name "a high-precision gap detection sensor”.
  • the structure is shown in Figure 3. It includes a shell 1 and a limit block 2 that are separated from each other.
  • a circuit board 3 and a guide rod 4 are installed in the shell 1.
  • the guide rod 4 is sleeved with a sliding base 5, and the inner end of the sliding base 5 is provided with a slider.
  • the slider is sleeved on the guide rod 4 and can slide along the guide rod 4.
  • the outer end of the sliding base body 5 protrudes out of the housing 1.
  • the outer end of the sliding base body 5 is provided with a magnet 7, and one end of the magnet 7 is fixed to the limit by magnetic adsorption.
  • a magnet 6 is fixed on the sliding base 5, and the circuit board 3 is in contact with the lower surface of the magnet 6.
  • the circuit board 3 is provided with a single-chip electromagnetic induction chip, a temperature sensing chip and a vibration sensing chip. They are respectively electrically connected with the electromagnetic induction chip, the temperature sensing chip and the vibration sensing chip.
  • Both ends of the guide rod 4 are respectively sleeved with limit springs 8 that limit the movement of the slider. Limiting springs 8 are located on the left and right sides of the slider, and restrict the slider to be in the middle position on the guide rod 4 in a free state.
  • the top of the housing 1 is open, and a cover plate 9 is provided at the top opening.
  • the magnetic field strength around the high-precision magnet is stable and constant.
  • the high-precision magnet moves synchronously with respect to the high-precision electromagnetic induction chip, and the magnetic field around the high-precision electromagnetic induction chip will change linearly, thereby outputting the corresponding magnetic field.
  • the electrical signal with varying intensity is sent to the single-chip microcomputer, and the electrical signal is converted into a displacement signal through the operation of the single-chip computer, and the corresponding displacement signal is output to the upper computer to realize the displacement measurement. relative displacement.
  • the circuit board used in the above embodiment is a PCB board, the magnet is a high-precision magnet, and the electromagnetic induction chip is a high-precision electromagnetic induction chip.
  • a wind turbine tower life prediction system includes:
  • the displacement data acquisition module is electrically connected to the displacement sensor 10 and receives the displacement data transmitted by the displacement sensor 10;
  • the data processing module interacts with the displacement data acquisition module, receives the displacement data in the displacement data acquisition module, and processes the displacement data, including a working load calculation unit and a stress data calculation unit.
  • the working load calculation unit is based on the displacement data calculation method
  • the stress data calculation unit calculates the stress data of the relevant parts of the flange based on the working load on the flange;
  • the evaluation module interacts with the data processing module, calculates the life of each component in the tower based on the stress data of the relevant parts of the flange, and predicts the life of the wind turbine tower.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the at least one piece of program .
  • the code set or the instruction set implements the above-mentioned method for predicting the life of a wind turbine tower when it is executed by the processor. If the method of the present application is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing the relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • Computer-readable storage media includes both persistent and non-permanent, removable and non-removable media, and storage of information can be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
  • the computer storage medium can be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NANDFLASH), solid-state disk (SSD)), and the like.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NANDFL
  • an electronic terminal device 25 is also provided, as shown in FIG. 9 , comprising a memory 21 , a processor 22 and a computer program stored in the memory 21 and executable on the processor 22 , the processor 22 implements the steps of the method of the present application when executing the computer program.
  • the processor may be a Central Processing Unit (CPU), or other general-purpose processors, Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), off-the-shelf programmable Gate Array (Field-Programmable GateArray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the communication component 24 is used for wired or wireless communication between the electronic terminal device 25 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC for short), 2G, 3G, 4G or 5G, or one or a combination of them, so the corresponding communication component 24 may include : Wi-Fi module, Bluetooth module, NFC module.
  • the present application provides a method for predicting the life of a wind turbine tower.
  • the fatigue cumulative damage function of each main part of the tower is established by the axial displacement value of the flange in the main wind direction, and the relative axial displacement of the flange is monitored by a displacement sensor. , analyzes, counts, and warns the fatigue life of the main parts of the tower, so as to realize fully automatic processing, high calculation efficiency, real-time online monitoring of the fatigue life of the main parts of the tower, and avoid excessive fatigue damage to the tower. cause equipment damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

一种风电机组塔筒寿命预测方法、系统、设备及存储介质,属于风电机组监测技术领域。通过位移传感器监测法兰轴向相对位移,对塔筒主要部位应力和已消耗疲劳寿命值进行分析、统计、预警,当塔筒各主要部位已消耗的疲劳寿命值达到设定阈值时发出报警信息,为实施塔筒安全控制策略提供监测依据。可实现全自动化处理,计算效率高,实时在线监测塔筒各主要部位疲劳寿命,避免因塔筒疲劳损伤过大而造成设备损伤。

Description

一种风电机组塔筒寿命预测方法、系统、设备及存储介质 技术领域
本申请属于风电机组监测技术领域,涉及一种风电机组塔筒寿命预测方法、系统、设备及存储介质。
背景技术
风电机组是需要长期运行的发电设备,近年来风力发电爆发式的增长对风电机组的长期安全稳定运行带来了巨大的挑战。风力发电机组是由叶轮迎风转动带动风电机转动,将风能转换为机械能,再转换为电能的设备,由叶轮、机舱、塔筒及基础组成,其中塔筒与基础固定连接在大地上,用于支撑和维持机舱及叶轮转动。塔筒要承受风电机组整体载荷并将载荷传递到机组基础上。在载荷冲击的影响下,塔筒的状态将发生衰退,即塔筒运行时的参数达不到设计标准。若塔筒的状态严重衰退,可能导致风电机组发生严重故障,甚至造成风电机组倒塌。因此,为了保证塔筒处于正常运行状态,需要对风电机组塔使用筒寿命进行准确有效评估,以保证风电机组的安全。
目前对风电机组塔筒寿命评估主要的方法有塔筒载荷的型式试验、载荷预测评估、风电机组状态监测等,现有技术方案存在如下问题:
(1)因为载荷测试的投入大,大规模需要的费用很高,因此风电机组往往只是在定型阶段对样机进行载荷的型式试验,并未对服役期间的风电机组进行载荷监控。
(2)少数开展的风电机组载荷预测评估中,叶片由于载荷来源单一、受载情况相对简单,因此叶片载荷取得了较好的预测效果。然而,由于塔筒受载十分复杂,对塔筒载荷的预测评估与实测载荷误差较大,并不能满足实际应用的精度要求。
(3)目前市场上的风电机组状态监测系统主要有数据采集与监视控制系统或在线状态监测系统,以数据采集与监视控制系统信号、转速信号或振动信号作为风电机组状态的评价指标,但这种单一评价方式并不一定能全面反映风电机组塔筒的运行状态,无法及时全面了解风电机组塔筒存在的故障隐患和对风电机组塔筒寿命情况进行准确有效评估。
综上所述,现有技术虽然对塔筒寿命评估有一定的贡献,但仍存在较多的不足之处,无法满足众多实际工程中的应用需求。
发明内容
本申请的目的在于克服上述现有技术中,无法对塔筒载荷和寿命进行准确有效预测评估的缺点,提供一种风电机组塔筒寿命预测方法、系统、设备及存储介质。
为了达到上述目的,本申请采用以下技术方案予以实现:
一种风电机组塔筒寿命预测方法,待测风电机组的塔筒筒体上安装有若干个连接件,连接件与塔筒筒体的连接处安装有位移传感器,连接件为法兰,法兰与塔筒筒体的连接处设有焊缝,塔筒筒体上设有筒体环段,法兰上套设有螺栓,包括如下步骤:
S1:通过位移传感器测量位移数据,并将位移数据传输至上位机中进行处理;
S2:基于上位机处理后的数据计算每一层法兰盘上的工作载荷;
S3:通过S2的法兰盘工作载荷计算得到各层法兰盘及相关焊缝、塔筒筒体环段部位的应力数据;
S4:利用S3的各层法兰及相关焊缝、塔筒筒体环段部位的应力数据对塔筒内各部件进行寿命计算,预测风电机组塔筒的寿命。
优选地,所述位移传感器为分体式位移传感器。
优选地,S2所述法兰盘工作载荷的计算过程包括以下步骤:
步骤21)对于第j层法兰,法兰上设有螺栓,设该法兰上各个螺栓预警初始的预紧力为F 0,对法兰上 所有螺栓施加预紧力F 0且无工作载荷作用状态下位移传感器上两个测量点的间距为L 1,垫片及连接件总厚度为L 2,螺栓刚度为C 1,螺栓连接处垫片与连接件整体的刚度为C 2
然后在预紧力F 0作用下,螺栓连接处垫片与连接件整体被压缩量为F 0/C 2,通过公式(1)至公式(3)分别计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2
S _bolt=F 1/A                       (1)
F 1=F 0+ΔF 1                       (2)
F 2=ΔF 1+ΔF 2                      (3)
式中,A表示螺栓最小直径处的截面积,ΔF 1表示螺栓拉力增加值,ΔF 2表连接处垫片与连接件整体的压紧力减小值;
情况(a),当位移传感器的两个测量点所测的法兰盘轴向相对位移为向法兰盘外侧增加ΔL,该螺栓连接处受到拉伸性外载荷作用,且ΔL≤(L 1/L 2)×F 0/C 2时,ΔF 1和ΔF 2分别通过公式(4)和公式(5)计算:
ΔF 1=k 1×(L 2/L 1)×ΔL×C 1                 (4)
ΔF 2=k 1×(L 2/L 1)×ΔL×C 2                 (5)
式中,k 1表示位移传感器的两个测量点所测的法兰轴向相对位移增加△L时,螺栓长度变化量与(L 2/L 1)×ΔL之间的比例系数;
情况(b),当位移传感器的两个测量点所测法兰轴向相对位移为向法兰外侧增加ΔL,该螺栓连接处受到拉伸性外载荷作用,且ΔL>(L 1/L 2)×F 0/C 2时,ΔF 2=F 0,螺栓拉力增加值ΔF 1通过以下公式计算:
ΔF 1=k 2×(L 2/L 1)×ΔL×C 1                   (6)
式中,k 2表示螺栓长度增加值与上垫片与下垫片外缘间距增加值的比例系数;
情况(c),当位移传感器的两测量点所测法兰轴向相对位移为向法兰内侧减少ΔL时,垫片与连接件整体受到压紧性外载荷作用,
ΔF 1=k 3×(L 2/L 1)×(-ΔL)×C 1                 (7)
ΔF 2=k 3×(L 2/L 1)×(-ΔL)×C 2                (8)
式中,k 3表示位移传感器的两测量点所测法兰轴向相对位移减小△L时,螺栓长度变化量与(L 2/L 1)×ΔL所成的比例系数;
步骤22)设位移传感器的测量精度为ΔL_1,将位移传感器的测量位移量ΔL转换为以测量精度为基准的表示形式:
Figure PCTCN2021114651-appb-000001
在主风向可能出现的拉伸方向上,法兰轴向位移最大值为ΔL_+N max;在主风向可能出现的压缩方向上,法兰轴向位移最大值为ΔL_-M max,其中,-M max≤i≤+N max
用F 2_i_j_r表示第j层法兰的第r个螺栓连接处在主风向测量位移量为ΔL_i时所受的外部载荷,将各个螺栓连接处的外部载荷对过法兰中心、且与螺栓中心距离螺栓所在圆半径的轴线上取力矩,将各力矩按照矢量相加,得到在测量位移量为ΔL_i时作用在第j层法兰上的外部弯矩载荷T _flange_i_j,结合该法兰所受的重力载荷G _flange_j,得到该法兰的工作载荷W _flange_i_j
步骤23)重复步骤21)至步骤22),得到各层法兰在不同测量位移下的工作载荷。
优选地,步骤S3所述各层法兰及相关焊缝、塔筒筒体环段部位的应力数据,具体包括以下应力数据:
1)第j层法兰在主风向测量位移量为ΔL_i时的应力S _flange_i_j,此时该法兰工作载荷记为W _flange_i_j
2)与第j层法兰相连且位于该法兰下部的焊缝在主风向测量位移量为ΔL_i时的应力S _flange_meld_i_j,此时该焊缝工作载荷记为W _flange_meld_i_j
3)位于第j层法兰下部的第p个塔筒筒体环段在主风向测量位移量为ΔL_i时的应力S _tower_i_j_p,此时该塔筒筒体环段工作载荷记为W _tower_i_j_p
4)位于第j层法兰下部的第p个塔筒筒体环段下部环焊缝在主风向测量位移量为ΔL_i时的应力S _meld_环_i_j_p,此时该塔筒筒体环段下部环焊缝工作载荷记为W _meld_环_i_j_p
5)位于第j层法兰下部的第p个塔筒筒体环段纵向焊缝在主风向测量位移量为ΔL_i时的应力S _meld_纵_i_j_p,此时该塔筒筒体环段纵向焊缝工作载荷记为W _meld_纵_i_j_p
其中1≤j≤n 1,1≤p≤n j,n 1表示法兰的总层数,n j表示第j层与第j+1层法兰盘之间的塔筒筒体环段总数。
优选地,步骤S4所述的寿命计算具体过程为:
首先基于各层法兰盘相关部位的应力数据获取疲劳累积损伤函数,疲劳损伤函数包括各层法兰的疲劳累积损伤函数、与各层法兰相连且位于法兰下部焊缝的疲劳累积损伤函数、各塔筒筒体环段的疲劳累积损伤函数、各塔筒筒体环段下部环焊缝的疲劳累积损伤函数和各塔筒筒体环段纵向焊缝的疲劳累积损伤函数,分别对不同的疲劳累积损伤函数设置疲劳累积损伤阈值;
然后对各个部位的疲劳累积损伤函数进行实时监测,得到实时疲劳损伤值;
最后将不同部位的疲劳累积损伤阈值与各个部位对应的实时疲劳损伤值对比,实现对风电机组塔筒寿命的预测。
优选地,所述的疲劳累积损伤函数的具体计算过程为:
步骤41)根据法兰的性状建立第j层法兰在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000002
式中,k _time_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用时间影响系数,k _direction_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用方向影响系数,N _flange_i_j表示第j层法兰出现疲劳损坏时第j层法兰工作载荷W _flange_i_j的循环作用次数,n _flange_i_j表示第j层法兰工作载荷W _flange_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000003
表示第j层法兰在不同工作载荷W _flange_i_j和相应循环次数n _flange_i_j作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000004
时表示第j层法兰已达到疲劳寿命终值;
步骤42)根据焊缝的性状建立与第j层法兰相连且位于该法兰下部的焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000005
其中,k _time_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用时间影响系数,k _direction_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用方向影响系数,N _flange_meld_i_j表示该焊缝出现疲劳损坏时焊缝工作载荷W _flange_meld_i_j的循环作用次数,n _flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000006
表示该焊缝在不同焊缝工作载荷W _flange_meld_i_j和相应循环次数n _flange_meld_i_j作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000007
时表示该焊缝已达到疲劳寿命终值;
步骤43)根据塔筒筒体环段的性状建立位于第j层法兰下部第p个塔筒筒体环段在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000008
其中,k _time_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用时间影响系数,k _direction_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用方向影响系数,N _tower_i_j_p表示该塔筒筒体环段出现疲劳损坏时塔筒筒体环段工作载荷W _tower_i_j_p的循环作用次数,n _tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000009
表示塔筒筒体环段在不同塔筒筒体环段工作载荷W _tower_i_j_p和相应循环次数n _tower_i_j_p作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000010
时表示该塔筒筒体环段已达到疲劳寿命终值;
步骤44)根据焊缝的性状建立位于第j层法兰下部第p个塔筒筒体环段下部环焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000011
其中,k _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用时间影响系数,k _direction_meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用方向影响系数,N _meld_环_i_j_p表示该塔筒筒体环段下部环焊缝出现疲劳损坏时工作载荷W _meld_环_i_j_p的循环作用次数,n _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000012
表示塔筒筒体环段下部环焊缝在不同塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p和相应循环次数n _meld_环_i_j_p作用后已消耗的疲劳寿命,
Figure PCTCN2021114651-appb-000013
时表示该塔筒筒体环段下部环焊缝已达到疲劳寿命终值;
步骤45)根据焊缝的性状建立位于第j层法兰下部第p个塔筒筒体环段纵向焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000014
其中,k _meld_纵_i_j_p表示该塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p的作用时间影响系数,k _direction_meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p的作用方向影响系数,N _meld_纵_i_j_p表示该塔筒筒体环段纵向焊缝出现疲劳损坏时工作载荷W _meld_纵_i_j_p的循环作用次数,n _meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000015
表示塔筒筒体环段纵向焊缝在不同塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p和相应循纵向次数n _meld_纵_i_j_p作用后已消耗的疲劳寿命,
Figure PCTCN2021114651-appb-000016
时表示该塔筒筒体环段纵向焊缝已达到疲劳寿命终值;
步骤46)根据螺栓的性状建立第j层法兰位于主风向的一个螺栓在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000017
其中,k _time_bolt_i_j表示螺栓拉力F 1_i_j的作用时间影响系数,k _direction_bolt_i_j表示螺栓拉力F 1_i_j的作用方向影响系数,N _bolt_i_j表示该螺栓出现疲劳损坏时螺栓拉力的循环作用次数,n _bolt_i_j表示螺栓拉力F 1_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000018
表示该螺栓在不同螺栓拉力F 1_i_j和螺栓拉力相应循环次数n _b o_il_jt作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000019
时表示该螺栓已达到疲劳寿命终值。
一种风电机组塔筒寿命预测系统,包括:
位移数据获取模块,与位移传感器电连接,接收位移传感器传输的位移数据;
数据处理模块,与位移数据获取模块相交互,接收位移数据获取模块中的位移数据,并对位移数据进行处理,包括工作载荷计算单元和应力数据计算单元,工作载荷计算单元是基于位移数据计算法兰盘上的工作载荷;应力数据计算单元是基于法兰盘上的工作载荷计算法兰盘相关部位的应力数据;
评估模块,与数据处理模块相交互,基于法兰相关部位的应力数据对塔筒内各部件的寿命进行计算, 并预计风电机组塔筒的寿命。
一种移动终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述风电机组塔筒寿命预测方法的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现所述风电机组塔筒寿命预测方法的步骤。
与现有技术相比,本申请具有以下有益效果:
本申请公开了一种风电机组塔筒寿命预测方法,通过位移传感器监测法兰轴向相对位移,从而对塔筒主要部件应力和已消耗疲劳寿命值进行分析、统计、预警,可实现全自动化处理,计算效率高,实时在线监测塔筒各主要部位疲劳寿命,避免因塔筒疲劳损伤过大而造成设备损伤。
进一步地,通过位移传感器有效采集到法兰轴向相对位移的变化,进而计算得到法兰螺栓应力、螺栓拉力、法兰工作载荷,根据法兰工作载荷可计算出各层法兰、与各层法兰相连且位于法兰下部的焊缝、各塔筒筒体环段、各塔筒筒体环段下部环焊缝、各塔筒筒体环段纵向焊缝的应力,分别对上述各部位所受应力进行统计分析,对塔筒各主要部位建立疲劳累积损伤函数,可计算出塔筒各主要部位已消耗的疲劳寿命值,当塔筒各主要部位已消耗的疲劳寿命值达到设定阈值时发出报警信息,为实施塔筒安全控制策略提供监测依据。
进一步地,各疲劳累积损伤函数中的影响系数可通过理论计算、CAE分析或试验测试得到。
本申请还公开一种风电机组塔筒寿命预测系统,包括位移数据获取模块,与位移传感器电连接,接收位移传感器传输的位移数据;数据处理模块,与位移数据获取模块相交互,接收位移数据获取模块中的位移数据,并对位移数据进行处理,包括工作载荷计算单元和应力数据计算单元,工作载荷计算单元是基于位移数据计算法兰盘上的工作载荷;应力数据计算单元是基于法兰盘上的工作载荷计算法兰盘及相关焊缝、塔筒筒体环段部位的应力数据;评估模块,与数据处理模块相交互,基于法兰及相关焊缝、塔筒筒体环段部位的应力数据对塔筒内各部件的寿命进行计算,并预计风电机组塔筒的寿命。
附图说明
图1为本申请风电机组塔筒寿命预测方法中位移传感器的分布状态示意图;
图2为本申请风电机组塔筒寿命预测方法中位移传感器的安装状态侧视图;
图3为本申请的实施例4中分体式位移传感器的整体结构示意图;
图4为本申请风电机组塔筒寿命预测方法中位移传感器的布置图;
图5为本申请风电机组塔筒寿命预测方法中法兰连接结构示意图;
图6为本申请风电机组塔筒寿命预测方法中的风电机组塔筒结构示意图;
图7为本申请风电机组塔筒寿命预测方法的流程图;
图8为本申请风电机组塔筒寿命预测系统的示意图;
图9为本申请一示例性实施例示出的一种电子终端设备的结构图。
其中:1-壳体,2-限位块,3-电路板,4-导杆,5-滑动基体,6-磁铁,7-磁体,8-限位弹簧,9-盖板,10-高精度位移传感器,11-上法兰,12-下法兰,13-螺栓,14-上垫片,15-下垫片,16-第j层法兰位于主风向的一个螺栓,17-第j层法兰,18-与第j层法兰相连且位于该法兰下部的焊缝,19-位于第j层法兰下部第p个塔筒筒体环段纵向焊缝,20-位于第j层法兰下部第p个塔筒筒体环段下部环焊缝,21-存储器,22-处理器,23-接口,24-通信组件,25-电子终端设备。
具体实施方式
下面结合附图对本申请做进一步详细描述:
实施例1
一种风电机组塔筒寿命预测方法,如图1和图4所示,风电机组的塔筒筒体上安装有若干个连接件,塔筒筒体上设有筒体环段,连接件与塔筒筒体的连接处安装有位移传感器10,如图5所示,连接件包括上 法兰11和下法兰12,上法兰11和下法兰12上设有螺栓13,上法兰11和螺栓13之间设有上垫片14,下法兰12和螺栓13之间设有下垫片15。
方法的实施,如图7所示,包括以下步骤:
S1:通过位移传感器10测量位移数据,并将位移数据传输至上位机中进行处理;
S2:基于上位机处理后的数据计算每一层法兰盘上的工作载荷;
S3:通过S2的法兰盘工作载荷计算得到各层法兰盘及相关焊缝、塔筒筒体环段部位的应力数据;
S4:利用S3的各层法兰及相关焊缝、塔筒筒体环段部位的应力数据对塔筒内各部件进行寿命计算,预测风电机组塔筒的寿命。
实施例2
除以下内容外,其余内容均与实施例1相同。
位移传感器10为分体式位移传感器,位移传感器10包括限位块2和位移传感器本体,限位块2和位移传感器本体分别固定在两个相互连接的连接件上。将位移传感器10均匀安装在法兰连接处的内圆周或外圆周上,且将位移传感器10中相互分离的限位块2和传感器本体分别固定于两个相互连接的法兰上。
实施例3
一种风电机组塔筒寿命预测方法,如图2和图3所示,包括以下步骤:
S1、将高精度位移传感器10均匀安装在法兰连接处的内圆周或外圆周上,且将高精度位移传感器10中相互分离的限位块2和传感器本体分别固定于两个相互连接的法兰上;
S2、当塔筒受到外部载荷作用时,上法兰11和下法兰12轴向相对位移发生变化,安装于一对法兰上的限位块2和传感器本体(壳体1)之间发生相对位移,高精度位移传感器10上的磁铁6在电磁感应芯片表面上发生滑动,高精度电磁感应芯片周围的磁场发生线性变化,高精度电磁感应芯片捕捉磁场的变化,将电磁感应信号传输至单片机;温度传感芯片采集环境温度数据,并将环境温度数据传输至单片机;同时振动传感芯片采样外界的振动讯号,然后内部转化为电平信号传输至单片机。
S3、单片机将接收到的电磁感应信号进行数据转换为位移数据,将接收到的电平信号进行数据转换为振动数据,基于环境温度数据和振动数据对位移数据进行修正处理,获得修正后的位移数据。
S4、利用修正后的位移数据计算每一层法兰工作载荷,具体包括以下过程:
步骤41)对于第j层法兰,设该法兰上各个螺栓预警初始预紧力为F 0,对法兰上所有螺栓施加预紧力F 0且无工作载荷作用状态下高精度位移传感器两测量点间距为L 1,垫片及连接件总厚度为L 2,螺栓刚度为C 1,螺栓连接处垫片与连接件整体的刚度为C 2,连接件包括上法兰和下法兰;
步骤42)在预紧力F 0作用下,螺栓连接处垫片与连接件整体被压缩量为F 0/C 2,根据以下情况分别计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2:
(a)当高精度位移传感器的两测量点所测法兰轴向相对位移为向法兰外侧增加ΔL时,该螺栓连接处受到拉伸性外载荷作用,且ΔL≤(L 1/L 2)×F 0/C 2,通过以下公式计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2
S _bolt=F 1/A                          (1)
F 1=F 0+ΔF 1                          (2)
F 2=ΔF 1+ΔF 2                          (3)
式中,A表示螺栓最小直径处的截面积,ΔF 1表示螺栓拉力增加值,ΔF 2表示连接处垫片与连接件整体的压紧力减小值,分别通过以下公式计算:
ΔF 1=k 1×(L 2/L 1)×ΔL×C 1                   (4)
ΔF 2=k 1×(L 2/L 1)×ΔL×C 2                   (5)
式中,k 1表示高精度位移传感器的两测量点所测法兰轴向相对位移增加△L时,螺栓长度与 (L 2/L 1)×ΔL所成的比例系数;
(b)当高精度位移传感器的两测量点所测法兰轴向相对位移为向法兰外侧增加ΔL时,该螺栓连接处受到拉伸性外载荷作用,且ΔL>(L 1/L 2)×F 0/C 2,通过以下公式计算计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2
S _bolt=F 1/A                        (1)
F 1=F 0+ΔF 1                        (2)
F 2=ΔF 1+ΔF 2                       (3)
式中,ΔF 2=F 0,螺栓拉力增加值ΔF 1通过以下公式计算:
ΔF 1=k 2×(L 2/L 1)×ΔL×C 1                 (6)
式中,k 2表示螺栓长度增加值与上垫片与下垫片外缘间距增加值的比例系数;
(c)当高精度位移传感器的两测量点所测法兰轴向相对位移为向法兰内侧减少ΔL时,垫片与连接件整体受到压紧性外载荷作用,通过以下公式计算计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2
S _bolt=F 1/A                        (1)
F 1=F 0+ΔF 1                        (2)
F 2=ΔF 1+ΔF 2                        (3)
ΔF 1=k 3×(L 2/L 1)×(-ΔL)×C 1                   (7)
ΔF 2=k 3×(L 2/L 1)×(-ΔL)×C 2                   (8)
式中,k 3表示高精度位移传感器的两测量点所测法兰轴向相对位移减小△L时,螺栓长度与(L 2/L 1)×ΔL所成的比例系数;
步骤43)设高精度位移传感器的测量精度为ΔL_1,将高精度位移传感器的测量位移量ΔL转换为以测量精度为基准的表示形式:
Figure PCTCN2021114651-appb-000020
在主风向可能出现的拉伸方向法兰轴向位移最大值为ΔL_+N max,在主风向可能出现的压缩方向法兰轴向位移最大值为ΔL_-M max,-M max≤i≤+N max
用F 2_i_j_r表示第j层法兰的第r个螺栓连接处在主风向测量位移量为ΔL_i时所受的外部载荷,将各个螺栓连接处的外部载荷对过法兰中心、且与螺栓中心距离螺栓所在圆半径的轴线取力矩,将各力矩按矢量相加,得到在测量位移量为ΔL_i时作用在第j层法兰上的外部弯矩载荷T _flange_i_j,再结合该法兰所受的重力载荷G _flange_j,得到该法兰的工作载荷W _flange_i_j
步骤44)重复步骤41)至步骤43),得到各层法兰在不同测量位移下的工作载荷。
S5、通过法兰工作载荷计算得到各层法兰相关部位的应力数据,具体包括以下法兰及相关焊缝、塔筒筒体环段的应力数据:
如图6所示,第j层法兰17在主风向测量位移量为ΔL_i时的应力S _flange_i_j,此时该法兰工作载荷记为W _flange_i_j
与第j层法兰相连且位于该法兰下部的焊缝18在主风向测量位移量为ΔL_i时的应力S _flange_meld_i_j,此时该焊缝工作载荷记为W _flange_meld_i_j
位于第j层法兰下部第p个塔筒筒体环段在主风向测量位移量为ΔL_i时的应力S _tower_i_j_p,此时该塔筒筒体环段工作载荷记为W _tower_i_j_p
位于第j层法兰下部第p个塔筒筒体环段下部环焊缝20在主风向测量位移量为ΔL_i时的应力S _meld_环_i_j_p,此时该塔筒筒体环段下部环焊缝工作载荷记为W _meld_环_i_j_p
位于第j层法兰下部第p个塔筒筒体环段纵向焊缝19在主风向测量位移量为ΔL_i时的应力S _meld_纵_i_j_p,此时该塔筒筒体环段纵向焊缝工作载荷记为W _meld_纵_i_j_p
其中1≤j≤n 1,1≤p≤n j,n 1表示法兰总层数,n j表示第j层与第j+1层法兰间塔筒筒体环段总数。
S6、利用各层法兰相关部位的应力数据对塔筒各部件进行寿命计算,具体包括以下过程:
步骤61)、根据法兰的性状(材质、结构、工作环境等指标)建立第j层法兰在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000021
其中,k _time_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用时间影响系数,当W _flange_i_j作用时间不同时,对法兰疲劳寿命的影响会存在差异,考虑到该影响因素,引入系数k _time_flange_i_j,k _time_flange_i_j应综合考虑产品材质参数和各次工作载荷W _flange_i_j作用时间数据,可通过试验得到;
k _direction_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用方向影响系数,当风向与主风向不同时,虽然得到的工作载荷大小与W _flange_i_j相同,但方向不同,对法兰疲劳寿命的影响会存在差异,考虑到该影响因素,引入系数k _directio_nflang_ei_j,k _direction_flange_i_j应综合考虑产品材质参数和各次工作载荷W _flang_ei_j作用方向数据,可通过试验得到;
N _flange_i_j表示第j层法兰出现疲劳时法兰工作载荷W _flange_i_j的循环作用次数,n _flange_i_j表示第j层法兰施加法兰工作载荷W _flange_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000022
表示第j层法兰在不同工作载荷W _flange_i_j和相应循环次数n _flange_i_j作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000023
时表示第j层法兰已达到疲劳寿命终值,可能会发生疲劳损坏;
步骤62)、与步骤61)类似地,根据焊缝的性状(焊缝的材质、结构、工作环境等指标)建立与第j层法兰相连且位于该法兰下部的焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000024
其中,k _time_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用时间影响系数,k _direction_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用方向影响系数,N _flange_meld_i_j表示该焊缝出现疲劳损坏时焊缝工作载荷W _flange_meld_i_j的循环作用次数,n _flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000025
表示该焊缝在不同焊缝工作载荷W _flange_meld_i_j和相应循环次数n _flange_meld_i_j作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000026
时表示该焊缝已达到疲劳寿命终值,可能会发生疲劳损坏;
步骤63)、与步骤61)类似地,根据塔筒筒体环段的性状(塔筒筒体的材质、结构、工作环境等指标)建立位于第j层法兰下部第p个塔筒筒体环段在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000027
其中,k _time_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用时间影响系数,k _direction_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用方向影响系数,N _tower_i_j_p表示该塔筒筒体环段出现疲劳损坏时塔筒筒体环段工作载荷W _tower_i_j_p的循环作用次数,n _tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000028
表示塔筒筒体环段在不同塔筒筒体环段工作载荷W _tower_i_j_p和相应循环次数n _tower_i_j_p作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000029
时表示该塔筒筒体环段已达到疲劳寿命终值,可能会发生疲劳损坏;
步骤64)、与步骤61)类似地,根据焊缝的性状(焊缝的材质、结构、工作环境等指标)建立位于第j层法兰下部第p个塔筒筒体环段下部环焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000030
其中,k _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用时间影响系数,k _direction_meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用方向影响系数,N _meld_环_i_j_p表示该塔筒筒体环段下部环焊缝出现疲劳损坏时工作载荷W _meld_环_i_j_p的循环作用次数,n _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000031
表示塔筒筒体环段下部环焊缝在不同塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p和相应循环次数n _meld_环_i_j_p作用后已消耗的疲劳寿命,
Figure PCTCN2021114651-appb-000032
时表示该塔筒筒体环段下部环焊缝已达到疲劳寿命终值,可能会发生疲劳损坏;
步骤65)、与步骤61)类似地,根据焊缝的性状(焊缝的材质、结构、工作环境)建立位于第j层法兰下部第p个塔筒筒体环段纵向焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000033
其中,k _meld_纵_i_j_p表示该塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p的作用时间影响系数,k _direction_meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p的作用方向影响系数,N _meld_纵_i_j_p表示该塔筒筒体环段纵向焊缝出现疲劳损坏时工作载荷W _meld_纵_i_j_p的循环作用次数,n _meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000034
表示塔筒筒体环段纵向焊缝在不同塔筒筒体环段纵向焊缝工作载荷W _mel_d纵_i_j_p和相应循环次数 n _meld_纵_i_j_p作用后已消耗的疲劳寿命,
Figure PCTCN2021114651-appb-000035
时表示该塔筒筒体环段纵向焊缝已达到疲劳寿命终值,可能会发生疲劳损坏;
步骤66)、与步骤61)类似地,根据螺栓的性状(螺栓的材质、结构、工作环境等指标)建立第j层法兰位于主风向的一个螺栓16在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
Figure PCTCN2021114651-appb-000036
其中,k _time_bolt_i_j表示螺栓拉力F 1_i_j的作用时间影响系数,k _direction_bolt_i_j表示螺栓拉力F 1_i_j的作用方向影响系数,N _bolt_i_j表示该螺栓出现疲劳损坏时螺栓拉力的循环作用次数,n _bolt_i_j表示螺栓拉力F 1_i_j已循环作用次数;
对于-M max≤i≤+N max
Figure PCTCN2021114651-appb-000037
表示该螺栓在不同螺栓拉力F 1_i_j和螺栓拉力相应循环次数n _b o_il_jt作用后已消耗的疲劳寿命,当
Figure PCTCN2021114651-appb-000038
时表示该螺栓已达到疲劳寿命终值,可能发生疲劳损坏;
以上各疲劳累积损伤函数中的影响系数可通过理论计算、CAE分析或试验测试得到;
步骤67)、对以上所述各层法兰的疲劳累积损伤函数、与各层法兰相连且位于法兰下部焊缝的疲劳累积损伤函数、各塔筒筒体环段的疲劳累积损伤函数、各塔筒筒体环段下部环焊缝的疲劳累积损伤函数、各塔筒筒体环段纵向焊缝的疲劳累积损伤函数分别设置阈值,通过对各个部位的疲劳累积损伤函数进行实时监测,实现塔筒主要部位寿命预测。
需要说明的是,实施例3中使用的高精度位移传感器是是公开号为CN211503995U、名称为“一种高精度间隙检测传感器”的中国实用新型专利中的位移传感器,结构如图3所示,包括相互分离的壳体1和限位块2,壳体1内安装有电路板3和导杆4,导杆4上套设有能够滑动基体5,滑动基体5的内端设有滑块,滑块套接在导杆4上并能够沿导杆4滑动,滑动基体5的外端伸出壳体1,滑动基体5的外端设有磁体7,磁体7的一端通过磁力吸附固定在限位块2上,滑动基体5上固定有磁铁6,电路板3抵接在磁铁6的下表面,所述电路板3内设有单片机电磁感应芯片、温度传感芯片和振动传感芯片,单片机分别与电磁感应芯片、温度传感芯片和振动传感芯片电连接。导杆4的两端分别套设有限制滑块移动的限位弹簧8。限位弹簧8位于滑块的左右两侧,并限制滑块在自由状态下处于导杆4上的中间位置。壳体1的顶部开口,顶部开口处设有盖板9。高精密磁铁周围的磁场强度是稳定不变的,当间隙发生相对移动时,高精密磁铁相对高精度电磁感应芯片同步移动,高精密电磁感应芯片周围的磁场就会发生线性变化,从而输出对应磁场强度变化的电信号到单片机内,经过单片机运算将电信号转换为位移信号,并输出对应的位移信号到上位机,以实现位移的测量,精度可达0.5μm,可保持微米级精度持续监测产品的相对位移。上述实施例中使用的电路板为PCB板,磁铁为高精密磁铁,电磁感应芯片为高精度电磁感应芯片。
实施例4
一种风电机组塔筒寿命预测系统,如图8所示,包括:
位移数据获取模块,与位移传感器10电连接,接收位移传感器10传输的位移数据;
数据处理模块,与位移数据获取模块相交互,接收位移数据获取模块中的位移数据,并对位移数据进行处理,包括工作载荷计算单元和应力数据计算单元,工作载荷计算单元是基于位移数据计算法兰盘上的工作载荷;应力数据计算单元是基于法兰盘上的工作载荷计算法兰盘相关部位的应力数据;
评估模块,与数据处理模块相交互,基于法兰相关部位的应力数据对塔筒内各部件的寿命进行计算,并预计风电机组塔筒的寿命。
实施例5
在示例性实施例中,还提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集在被处理器执行时实现上述风电机组塔筒寿命预测方法。本申请方法如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。其中,所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NANDFLASH)、固态硬盘(SSD))等。
实施例6
在示例性实施例中,还提供一种电子终端设备25,如图9所示,包括存储器21、处理器22以及存储在所述存储器21中并可在所述处理器22上运行的计算机程序,所述处理器22执行所述计算机程序时实现本申请方法的步骤。处理器可能是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通信组件24用于该电子终端设备25与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near FieldCommunication,简称NFC),2G、3G、4G或5G,或它们中的一种或几种的组合,因此相应的该通信组件24可以包括:Wi-Fi模块,蓝牙模块,NFC模块。
综上所述,本申请提供的一种风电机组塔筒寿命预测方法,通过主风向法兰轴向位移值来建立塔筒各主要部位疲劳累积损伤函数,通过位移传感器监测法兰轴向相对位移,对塔筒主要部位应力和已消的耗疲劳寿命进行分析、统计、预警,从而实现全自动化处理,计算效率高,实时在线监测塔筒各主要部位疲劳寿命,避免因塔筒疲劳损伤过大而造成设备损伤。
以上内容仅为说明本申请的技术思想,不能以此限定本申请的保护范围,凡是按照本申请提出的技术思想,在技术方案基础上所做的任何改动,均落入本申请权利要求书的保护范围之内。

Claims (9)

  1. 一种风电机组塔筒寿命预测方法,待测风电机组的塔筒筒体上安装有若干个连接件,连接件与塔筒筒体的连接处安装有位移传感器(10),连接件为法兰,法兰与塔筒筒体的连接处设有焊缝,塔筒筒体上设有筒体环段,法兰上设有螺栓,其特征在于,包括如下步骤:
    S1:通过位移传感器(10)测量法兰的位移数据,并将位移数据传输至上位机中进行处理;
    S2:基于上位机处理后的数据计算每一层法兰上的工作载荷;
    S3:通过S2的法兰盘工作载荷计算得到各层法兰及相关焊缝、塔筒筒体环段部位的应力数据;
    S4:利用S3的各层法兰及相关焊缝、塔筒筒体环段部位的应力数据对塔筒内各部件进行寿命计算,预测风电机组塔筒的寿命。
  2. 根据权利要求1所述的风电机组塔筒寿命预测方法,其特征在于,所述位移传感器(10)为分体式位移传感器。
  3. 根据权利要求1所述的风电机组塔筒寿命预测方法,其特征在于,S2所述法兰盘工作载荷的计算过程包括以下步骤:
    步骤21)对于第j层法兰,法兰上设有螺栓,螺栓一端设有垫片,设该法兰上各个螺栓预警初始的预紧力为F 0,对法兰上所有螺栓施加预紧力F 0且无工作载荷作用状态下位移传感器(10)上两个测量点的间距为L 1,垫片及连接件总厚度为L 2,螺栓刚度为C 1,螺栓连接处垫片与连接件整体的刚度为C 2
    然后在预紧力F 0作用下,螺栓连接处垫片与连接件整体被压缩量为F 0/C 2,通过公式(1)至公式(3)分别计算螺栓应力S _bolt、螺栓拉力F 1和螺栓连接处的外部载荷F 2
    S _bolt=F 1/A  (1)
    F 1=F 0+ΔF 1  (2)
    F 2=ΔF 1+ΔF 2  (3)
    式中,A表示螺栓最小直径处的截面积,ΔF 1表示螺栓拉力增加值,ΔF 2表连接处垫片与连接件整体的压紧力减小值;
    情况(a),当位移传感器(10)的两个测量点所测的法兰盘轴向相对位移为向法兰盘外侧增加ΔL,该螺栓连接处受到拉伸性外载荷作用,且ΔL≤(L 1/L 2)×F 0/C 2时,ΔF 1和ΔF 2分别通过公式(4)和公式(5)计算:
    ΔF 1=k 1×(L 2/L 1)×ΔL×C 1  (4)
    ΔF 2=k 1×(L 2/L 1)×ΔL×C 2  (5)
    式中,k 1表示位移传感器(10)的两个测量点所测的法兰轴向相对位移增加△L时,螺栓长度变化量与(L 2/L 1)×ΔL之间的比例系数;
    情况(b),当位移传感器(10)的两个测量点所测法兰轴向相对位移为向法兰外侧增加ΔL,该螺栓连接处受到拉伸性外载荷作用,且ΔL>(L 1/L 2)×F 0/C 2时,ΔF 2=F 0,螺栓拉力增加值ΔF 1通过以下公式计算:
    ΔF 1=k 2×(L 2/L 1)×ΔL×C 1  (6)
    式中,k 2表示螺栓长度增加值与上垫片与下垫片外缘间距增加值的比例系数;
    情况(c),当位移传感器(10)的两测量点所测法兰轴向相对位移为向法兰内侧减少ΔL时,垫片与连接件整体受到压紧性外载荷作用,
    ΔF 1=k 3×(L 2/L 1)×(-ΔL)×C 1  (7)
    ΔF 2=k 3×(L 2/L 1)×(-ΔL)×C 2  (8)
    式中,k 3表示位移传感器(10)的两测量点所测法兰轴向相对位移减小△L时,螺栓长度变化量与(L 2/L 1)×ΔL所成的比例系数;
    步骤22)设位移传感器(10)的测量精度为ΔL_1,将位移传感器(10)的测量位移量ΔL转换为以测量精度为基准的表示形式:
    Figure PCTCN2021114651-appb-100001
    在主风向可能出现的拉伸方向上,法兰轴向位移最大值为ΔL_+N max;在主风向可能出现的压缩方向上,法兰轴向位移最大值为ΔL_-M max,其中,-M max≤i≤+N max
    用F 2_i_j_r表示第j层法兰的第r个螺栓连接处在主风向测量位移量为ΔL_i时所受的外部载荷,将各个螺栓连接处的外部载荷对过法兰中心、且与螺栓中心距离螺栓所在圆半径的轴线上取力矩,将各力矩按照矢量相加,得到在测量位移量为ΔL_i时作用在第j层法兰上的外部弯矩载荷T _flange_i_j,结合该法兰所受的重力载荷G _flange_j,得到该法兰的工作载荷W _flange_i_j
    步骤23)重复步骤21)至步骤22),得到各层法兰在不同测量位移下的工作载荷。
  4. 根据权利要求1所述的风电机组塔筒寿命预测方法,其特征在于,步骤S3所述各层法兰及相关焊缝、塔筒筒体环段部位的应力数据,具体包括以下应力数据:
    1)第j层法兰在主风向测量位移量为ΔL_i时的应力S _flange_i_j,此时该法兰工作载荷记为W _flange_i_j
    2)与第j层法兰相连且位于该法兰下部的焊缝在主风向测量位移量为ΔL_i时的应力S _flange_meld_i_j,此时该焊缝工作载荷记为W _flange_meld_i_j
    3)位于第j层法兰下部的第p个塔筒筒体环段在主风向测量位移量为ΔL_i时的应力S _tower_i_j_p,此时该塔筒筒体环段工作载荷记为W _tower_i_j_p
    4)位于第j层法兰下部的第p个塔筒筒体环段下部环焊缝在主风向测量位移量为ΔL_i时的应力S _meld_环_i_j_p,此时该塔筒筒体环段下部环焊缝工作载荷记为W _meld_环_i_j_p
    5)位于第j层法兰下部的第p个塔筒筒体环段纵向焊缝在主风向测量位移量为ΔL_i时的应力S _meld_纵_i_j_p,此时该塔筒筒体环段纵向焊缝工作载荷记为W _meld_纵_i_j_p
    其中1≤j≤n 1,1≤p≤n j,n 1表示法兰的总层数,n j表示第j层与第j+1层法兰盘之间的塔筒筒体环段总数。
  5. 根据权利要求1所述的风电机组塔筒寿命预测方法,其特征在于,步骤S4所述的寿命计算具体过程为:
    首先基于各层法兰盘相关部位的应力数据获取疲劳累积损伤函数,疲劳损伤函数包括各层法兰的疲劳累积损伤函数、与各层法兰相连且位于法兰下部焊缝的疲劳累积损伤函数、各塔筒筒体环段的疲劳累积损伤函数、各塔筒筒体环段下部环焊缝的疲劳累积损伤函数和各塔筒筒体环段纵向焊缝的疲劳累积损伤函数,分别对不同的疲劳累积损伤函数设置疲劳累积损伤阈值;
    然后对各个部位的疲劳累积损伤函数进行实时监测,得到实时疲劳损伤值;
    最后将不同部位的疲劳累积损伤阈值与相应部位的实时疲劳损伤值对比,实现对风电机组塔筒寿命的预测。
  6. 根据权利要求1所述的风电机组塔筒寿命预测方法,其特征在于,所述的疲劳累积损伤函数的具体计算过程为:
    步骤41)根据法兰的性状建立第j层法兰在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100002
    式中,k _time_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用时间影响系数,k _direction_flange_i_j表示第j层法兰工作载荷W _flange_i_j的作用方向影响系数,N _flange_i_j表示第j层法兰出现疲劳损坏时第j层法兰工作载荷W _flange_i_j的循环作用次数,n _flange_i_j表示第j层法兰工作载荷W _flange_i_j已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100003
    表示第j层法兰在不同工作载荷W _flange_i_j和相应循环次数n _flange_i_j作用后已消耗的疲劳寿命,当
    Figure PCTCN2021114651-appb-100004
    时表示第j层法兰已达到疲劳寿命终值;
    步骤42)根据焊缝的性状建立与第j层法兰相连且位于该法兰下部的焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100005
    其中,k _time_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用时间影响系数,k _direction_flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j的作用方向影响系数,N _flange_meld_i_j表示该焊缝出现疲劳损坏时焊缝工作载荷W _flange_meld_i_j的循环作用次数,n _flange_meld_i_j表示焊缝工作载荷W _flange_meld_i_j已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100006
    表示该焊缝在不同焊缝工作载荷W _flange_meld_i_j和相应循环次数n _flange_meld_i_j作用后已消耗的疲劳寿命,当
    Figure PCTCN2021114651-appb-100007
    时表示该焊缝已达到疲劳寿命终值;
    步骤43)根据塔筒筒体环段的性状建立位于第j层法兰下部第p个塔筒筒体环段在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100008
    其中,k _time_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用时间影响系数,k _direction_tower_i_j_p表示塔筒筒体环段工作载荷W _tower_i_j_p的作用方向影响系数,N _tower_i_j_p表示该塔筒筒体环段出现疲劳损坏时塔筒筒体环段工作载荷W _tower_i_j_p的循环作用次数,n _tower_i_j_p表示塔筒筒体环段工作载荷 W _tower_i_j_p已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100009
    表示塔筒筒体环段在不同塔筒筒体环段工作载荷W _tower_i_j_p和相应循环次数n _tower_i_j_p作用后已消耗的疲劳寿命,当
    Figure PCTCN2021114651-appb-100010
    时表示该塔筒筒体环段已达到疲劳寿命终值;
    步骤44)根据焊缝的性状建立位于第j层法兰下部第p个塔筒筒体环段下部环焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100011
    其中,k _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用时间影响系数,k _direction_meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p的作用方向影响系数,N _meld_环_i_j_p表示该塔筒筒体环段下部环焊缝出现疲劳损坏时工作载荷W _meld_环_i_j_p的循环作用次数,n _meld_环_i_j_p表示塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100012
    表示塔筒筒体环段下部环焊缝在不同塔筒筒体环段下部环焊缝工作载荷W _meld_环_i_j_p和相应循环次数n _meld_环_i_j_p作用后已消耗的疲劳寿命,当
    Figure PCTCN2021114651-appb-100013
    时表示该塔筒筒体环段下部环焊缝已达到疲劳寿命终值;
    步骤45)根据焊缝的性状建立位于第j层法兰下部第p个塔筒筒体环段纵向焊缝在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100014
    其中,k _meld_纵_i_j_p表示该塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p的作用时间影响系数,k _direction_meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _mel_d纵_i_j_p的作用方向影响系数,N _mel_d纵_i_j_p表示该塔筒筒体环段纵向焊缝出现疲劳损坏时工作载荷W _meld_纵_i_j_p的循环作用次数,n _meld_纵_i_j_p表示塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100015
    表示塔筒筒 体环段纵向焊缝在不同塔筒筒体环段纵向焊缝工作载荷W _meld_纵_i_j_p和相应循纵向次数n _meld_纵_i_j_p作用后已消耗的疲劳寿命,当
    Figure PCTCN2021114651-appb-100016
    时表示该塔筒筒体环段纵向焊缝已达到疲劳寿命终值;
    步骤46)根据螺栓的性状建立第j层法兰位于主风向的一个螺栓在主风向测量位移量为ΔL_i的疲劳累积损伤函数:
    Figure PCTCN2021114651-appb-100017
    其中,k _time_bolt_i_j表示螺栓拉力F 1_i_j的作用时间影响系数,k _direction_bolt_i_j表示螺栓拉力F 1_i_j的作用方向影响系数,N _bolt_i_j表示该螺栓出现疲劳损坏时螺栓拉力的循环作用次数,n _bolt_i_j表示螺栓拉力F 1_i_j已循环作用次数;
    对于-M max≤i≤+N max
    Figure PCTCN2021114651-appb-100018
    表示该螺栓在不同螺栓拉力F 1_i_j和螺栓拉力相应循环次数n _bolt_i_j作用后已消耗的疲劳寿命,
    Figure PCTCN2021114651-appb-100019
    时表示该螺栓已达到疲劳寿命终值。
  7. 一种风电机组塔筒寿命预测系统,其特征在于,包括:
    位移数据获取模块,与位移传感器(10)电连接,接收位移传感器(10)传输的位移数据;
    数据处理模块,与位移数据获取模块相交互,接收位移数据获取模块中的位移数据,并对位移数据进行处理,包括工作载荷计算单元和应力数据计算单元,工作载荷计算单元是基于位移数据计算法兰盘上的工作载荷;应力数据计算单元是基于法兰盘上的工作载荷计算法兰盘相关部位的应力数据;
    评估模块,与数据处理模块相交互,基于法兰相关部位的应力数据对塔筒内各部件的寿命进行计算,并预计风电机组塔筒的寿命。
  8. 一种电子终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述风电机组塔筒寿命预测方法的步骤。
  9. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述风电机组塔筒寿命预测方法的步骤。
PCT/CN2021/114651 2021-02-01 2021-08-26 一种风电机组塔筒寿命预测方法、系统、设备及存储介质 WO2022160695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110138443.7 2021-02-01
CN202110138443.7A CN112796953B (zh) 2021-02-01 2021-02-01 一种风电机组塔筒寿命预测方法、系统、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022160695A1 true WO2022160695A1 (zh) 2022-08-04

Family

ID=75813492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114651 WO2022160695A1 (zh) 2021-02-01 2021-08-26 一种风电机组塔筒寿命预测方法、系统、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112796953B (zh)
WO (1) WO2022160695A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115659652A (zh) * 2022-10-28 2023-01-31 上海电力大学 一种台风作用下输电杆塔的生存率分析方法与系统
CN116882021A (zh) * 2023-07-21 2023-10-13 北京云庐科技有限公司 疲劳损伤评估方法、装置、设备及存储介质
CN117113784A (zh) * 2023-10-18 2023-11-24 中国铁塔股份有限公司 一种获取单管塔的承载状态信息的方法与设备
CN117131748A (zh) * 2023-10-26 2023-11-28 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统
CN117470963A (zh) * 2023-12-27 2024-01-30 江苏博丝泰钢纤维有限公司 一种风电预制塔筒无损探伤检测装置
CN118049349A (zh) * 2024-04-16 2024-05-17 山东科技大学 一种海上风机塔筒结构健康状态的判定方法、系统及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796953B (zh) * 2021-02-01 2022-03-22 中国华能集团清洁能源技术研究院有限公司 一种风电机组塔筒寿命预测方法、系统、设备及存储介质
CN113464381B (zh) * 2021-08-11 2023-03-21 华能乌拉特中旗新能源发电有限公司 风电机组塔筒法兰内侧轴向位移与螺栓伸长量比例关系测定方法和系统
CN113719431B (zh) * 2021-11-03 2022-02-08 浙江中自庆安新能源技术有限公司 一种风机塔筒剩余寿命测量方法及系统
CN114033630B (zh) * 2021-11-04 2024-06-04 西安热工研究院有限公司 一种基于边缘计算的风电机寿命组智能检测系统
CN114486047B (zh) * 2021-12-27 2024-01-02 陕西中科启航科技有限公司 基于三向位移的法兰螺栓拉力和工作载荷在线监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993344A1 (en) * 2014-09-02 2016-03-09 Mitsubishi Heavy Industries, Ltd. Fatigue evaluation system for wind turbine power generating facility
CN111488678A (zh) * 2020-04-01 2020-08-04 浙江运达风电股份有限公司 一种风电机组塔架累积疲劳损伤评估系统及方法
CN111594392A (zh) * 2020-03-31 2020-08-28 华电电力科学研究院有限公司 一种风力发电塔筒螺栓在线监测方法
CN111852791A (zh) * 2020-07-30 2020-10-30 国电龙源江永风力发电有限公司 一种风力发电机组法兰连接螺栓断裂定位预警方法
CN112161731A (zh) * 2020-10-29 2021-01-01 陕西中科启航科技有限公司 一种法兰螺栓拉力和工作载荷在线监测方法
CN112796953A (zh) * 2021-02-01 2021-05-14 中国华能集团清洁能源技术研究院有限公司 一种风电机组塔筒寿命预测方法、系统、设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551519B1 (en) * 2011-07-27 2015-08-26 Siemens Aktiengesellschaft Optimisation of a wind turbine
CN106644448B (zh) * 2016-12-31 2018-11-02 北京金风科创风电设备有限公司 塔筒螺栓疲劳预测方法及预测系统
CN110895621B (zh) * 2018-08-23 2023-07-25 江苏金风软件技术有限公司 确定风电机组的塔架环焊缝的疲劳损伤的方法和装置
CN110390146B (zh) * 2019-07-04 2023-04-18 山东中车风电有限公司 基于扇区载荷的风电机组塔筒焊缝疲劳损伤计算方法及产品
CN211979670U (zh) * 2020-04-01 2020-11-20 浙江运达风电股份有限公司 一种风电机组塔架累积疲劳损伤评估系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993344A1 (en) * 2014-09-02 2016-03-09 Mitsubishi Heavy Industries, Ltd. Fatigue evaluation system for wind turbine power generating facility
CN111594392A (zh) * 2020-03-31 2020-08-28 华电电力科学研究院有限公司 一种风力发电塔筒螺栓在线监测方法
CN111488678A (zh) * 2020-04-01 2020-08-04 浙江运达风电股份有限公司 一种风电机组塔架累积疲劳损伤评估系统及方法
CN111852791A (zh) * 2020-07-30 2020-10-30 国电龙源江永风力发电有限公司 一种风力发电机组法兰连接螺栓断裂定位预警方法
CN112161731A (zh) * 2020-10-29 2021-01-01 陕西中科启航科技有限公司 一种法兰螺栓拉力和工作载荷在线监测方法
CN112796953A (zh) * 2021-02-01 2021-05-14 中国华能集团清洁能源技术研究院有限公司 一种风电机组塔筒寿命预测方法、系统、设备及存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115659652A (zh) * 2022-10-28 2023-01-31 上海电力大学 一种台风作用下输电杆塔的生存率分析方法与系统
CN115659652B (zh) * 2022-10-28 2023-05-12 上海电力大学 一种台风作用下输电杆塔的生存率分析方法与系统
CN116882021A (zh) * 2023-07-21 2023-10-13 北京云庐科技有限公司 疲劳损伤评估方法、装置、设备及存储介质
CN117113784A (zh) * 2023-10-18 2023-11-24 中国铁塔股份有限公司 一种获取单管塔的承载状态信息的方法与设备
CN117113784B (zh) * 2023-10-18 2024-01-30 中国铁塔股份有限公司 一种获取单管塔的承载状态信息的方法与设备
CN117131748A (zh) * 2023-10-26 2023-11-28 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统
CN117131748B (zh) * 2023-10-26 2024-01-30 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统
CN117470963A (zh) * 2023-12-27 2024-01-30 江苏博丝泰钢纤维有限公司 一种风电预制塔筒无损探伤检测装置
CN117470963B (zh) * 2023-12-27 2024-03-12 江苏博丝泰钢纤维有限公司 一种风电预制塔筒无损探伤检测装置
CN118049349A (zh) * 2024-04-16 2024-05-17 山东科技大学 一种海上风机塔筒结构健康状态的判定方法、系统及介质

Also Published As

Publication number Publication date
CN112796953B (zh) 2022-03-22
CN112796953A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022160695A1 (zh) 一种风电机组塔筒寿命预测方法、系统、设备及存储介质
CN102607831B (zh) 一种水平轴风力机叶片疲劳损伤与寿命测试方法
Liu et al. Status and problems of wind turbine structural health monitoring techniques in China
CN111488678B (zh) 一种风电机组塔架累积疲劳损伤评估系统及方法
CN107448362B (zh) 回转支承轴承的状态监测方法、装置及风力发电机组
Rolfes et al. Integral SHM-system for offshore wind turbines using smart wireless sensors
EP2525206B1 (en) Testing methods for wind turbine blades
CN106128528A (zh) 一种监控核电站反应堆压力容器辐照损伤的方法和装置
CN101818724A (zh) 一种风力发电机智能叶片
CN103278306A (zh) 复合绝缘子抗风能力检测方法、装置及复合绝缘子制作方法
CN105424333A (zh) 一种风力机叶片现场损伤监测与识别方法
CN111721969A (zh) 基于固定式检测与移动式检测的塔筒健康状态监测方法
CN111521316B (zh) 一种多档位振弦式螺栓状态监测装置及其使用与识别方法
Loraux Long-term monitoring of existing wind turbine towers and fatigue performance of UHPFRC under compressive stresses
CN113109587B (zh) 一种输电线路风速测量方法、系统、装置和存储介质
CN113323816A (zh) 一种基于叶片载荷分析的叶片检测方法
CN204831675U (zh) 海上浮式风机系泊系统断裂失效预报系统
CN114034277A (zh) 一种油气管道轴向应变智能化监测装置与方法
CN114235141A (zh) 基于mems传感器的振动监测方法及装置
CN102914360A (zh) 冗余型风电机组振动监测装置及监测方法
CN102831665A (zh) 输电铁塔强度及振动离线智能巡检系统及其预警方法
CN209179947U (zh) 低风速风电机组轴向力动态监测装置及其机组
BR102016016197B1 (pt) Sistema sinalizador de falhas de isoladores em estruturas de média e alta tensão utilizando ultrassom
CN112683324A (zh) 基于智能螺栓的电力铁塔物联网实时监测系统
Huang et al. Failure mechanisms and acoustic responses of cylindrical lithium-ion batteries under compression loadings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922290

Country of ref document: EP

Kind code of ref document: A1