WO2020166083A1 - 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム - Google Patents

衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム Download PDF

Info

Publication number
WO2020166083A1
WO2020166083A1 PCT/JP2019/005688 JP2019005688W WO2020166083A1 WO 2020166083 A1 WO2020166083 A1 WO 2020166083A1 JP 2019005688 W JP2019005688 W JP 2019005688W WO 2020166083 A1 WO2020166083 A1 WO 2020166083A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
risk
risk value
collision
index information
Prior art date
Application number
PCT/JP2019/005688
Other languages
English (en)
French (fr)
Inventor
渡部 勇
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2020572057A priority Critical patent/JP7318667B2/ja
Priority to EP19915094.7A priority patent/EP3926604A4/en
Priority to PCT/JP2019/005688 priority patent/WO2020166083A1/ja
Publication of WO2020166083A1 publication Critical patent/WO2020166083A1/ja
Priority to US17/391,366 priority patent/US20210358309A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems

Definitions

  • the present invention relates to a collision risk calculation method and the like.
  • a first technique for calculating the collision risk from the time until the collision is disclosed (for example, see Patent Document 1).
  • the collision risk calculation device is configured such that, based on the positions of the first ship and the second ship, and the progress information of the past sailed ship, one or both of the future of the first ship and the second ship is predicted. Calculate the track width. Then, the collision risk calculation device calculates the collision risk between the first ship and the second ship based on the future traveling direction width (time until the collision).
  • a second technique in which collision risks calculated using an existing risk evaluation model are weighted to calculate an average collision risk (for example, refer to Patent Documents 2 and 3). ..
  • the collision risk calculation device calculates an area in which the first ship and the second ship may collide in the future from the progress information of each of the first ship and the second ship, and determines this area.
  • a first risk value is calculated based on the marine vessel maneuvering volume that the first ship or the second ship takes to avoid.
  • the collision risk calculation device calculates a second risk value that numerically indicates a possibility of a future collision between the first ship and the second ship, and weights the first risk value and the second risk value.
  • the first risk value here is, for example, a numerical risk value indicated in a numerical format such as DCPA (Distance to Closest Point of Approach) or TCPA (Time to Closest Point of Approach), which indicates the distance at the time of the closest approach.
  • the second risk value is, for example, an area-type risk value shown in a geometric format such as OZT (Obstacle Zone by Target) or CDL (Collision Danger Line).
  • a technology for calculating the collision risk from the distance between ships has been proposed. Further, a technique has been proposed in which the collision risk is calculated by checking the intersection of extension vectors of the course of a ship.
  • the conventional technology for calculating the collision risk sufficiently reflects the risk level felt by the vessel maneuvering side and the navigation control side of the ship, and calculates the collision risk that does not necessarily match the on-site feeling. There is a problem that it ends up.
  • the collision risk is calculated based on the time until the collision.
  • the collision risk can be understood to be the risk of collision, the captain of the ship or the controller feels the collision risk. Often not.
  • the collision risk calculated by using the existing risk evaluation model is weighted to calculate the average collision risk.
  • this collision risk also has the risk of collision.
  • it cannot be said that the collision risk is consistent with the degree of danger felt by the captain or controller of the ship.
  • FIGS. 17A and 17B are diagrams illustrating a case where the collision risk does not match the sense of the scene.
  • the arrow in the circle represents a ship.
  • FIG. 17A shows an example in which the ship represented by the code a3 (ship a3) interrupts between the ship represented by the code a1 (ship a1) and the ship represented by the code a2 (ship a2) to overtake.
  • the ship a1 that can overtake the ship a3 escapes in the upper right direction
  • the ship a3 escapes in the lower right direction.
  • the value of the collision risk calculated by the conventional method is large.
  • the conventional technique for calculating the collision risk calculates the collision risk that is not always in agreement with the sense of the scene.
  • FIG. 17B shows an example in which the course of a ship represented by reference numeral b1 (ship b1) and the course of a ship represented by reference numeral b2 (ship b2) intersect.
  • the ship b1 performs evasion steering to the lower left before the intersection.
  • the ship b1 and the ship b2 intersect each other, the distance to the intersection is short, and the value of the collision risk calculated by the conventional technique is large.
  • the conventional technique for calculating the collision risk calculates the collision risk that is not always in agreement with the sense of the scene.
  • the present invention in one aspect, aims to calculate a collision risk that matches the sense of the scene.
  • the computer uses the track data of each of the first ship and the second ship to determine the first ship and the second ship at each time point by a predetermined method.
  • the risk value related to the collision of the vehicle, the time range before the maximum risk value is specified from the risk value, and the first ship and the second ship in the time range are specified from the track data.
  • One or both behavior patterns are extracted, and based on the behavior patterns, the degree of the behavior patterns of one or both of the first vessel and the second vessel is calculated, and the degree of the behavior patterns and the behavior.
  • a process of correcting the risk value based on the weight set for each pattern is executed.
  • FIG. 1 is a functional block diagram showing the configuration of the collision risk calculating device according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a data configuration of AIS accumulated data according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a data configuration of supplemented AIS data according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of the data configuration of the base risk information according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a data configuration of the maximum time point information according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of the data complementing process according to the embodiment.
  • FIG. 7 is a diagram illustrating a maximum time point calculation process according to the embodiment.
  • FIG. 1 is a functional block diagram showing the configuration of the collision risk calculating device according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a data configuration of AIS accumulated data according to the embodiment.
  • FIG. 3 is a diagram illustrating an example
  • FIG. 8 is a diagram illustrating an example of a data configuration of integrated risk calculation result information according to the embodiment.
  • FIG. 9A is a diagram illustrating an index calculation process according to the embodiment.
  • FIG. 9B is a diagram illustrating the index calculation process according to the embodiment.
  • FIG. 9C is a diagram illustrating an index calculation process according to the embodiment.
  • FIG. 9D is a diagram illustrating index calculation processing according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of a display by the output process according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of a flowchart of the maximum time point calculation processing according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a flowchart of index information calculation processing according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a flowchart of integrated risk calculation processing according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of a flowchart of processing using the integrated risk value according to the embodiment.
  • FIG. 15A is a diagram illustrating a case where the integrated risk matches the field feeling.
  • FIG. 15B is a diagram illustrating a case where the integrated risk matches the sense of the field.
  • FIG. 16 is a diagram illustrating an example of a computer that executes the collision risk calculation program.
  • FIG. 17A is a diagram illustrating a case where the collision risk does not match the sense of the scene.
  • FIG. 17B is a diagram illustrating a case where the collision risk does not match the sense of the scene.
  • FIG. 1 is a functional block diagram showing the configuration of the collision risk calculating device according to the embodiment.
  • the collision risk calculation device 10 is a device that supports navigation of a ship.
  • the collision risk calculation device 10 quantifies the degree of vessel maneuvering (avoidance vessel maneuvering) and the timing of avoiding vessel maneuvering to avoid collision of vessels, and combines it with the risk value for collision of the existing method to reflect the integrated risk value reflecting the risk level felt at the site.
  • the site here means, for example, a captain on the side of maneuvering or a controller on the side of navigation control. That is, the collision risk calculation device 10 estimates the risk level (psychological state) felt by the captain or the controller from the action actually taken (avoidance maneuvering), and calculates the integrated risk value.
  • the collision risk calculation device 10 is implemented, for example, on a computer such as a server arranged on a land facility or a computer arranged on a ship.
  • the term "shore facility” as used herein refers to a marine transportation center or a port traffic control room that plays a role of monitoring and providing information on a marine vessel.
  • the collision risk calculation device 10 includes an external I/F (interface) unit 11, an input unit 12, a display unit 13, a storage unit 14, and a control unit 15.
  • the external I/F unit 11 is, for example, an interface that transmits and receives various information to and from other devices.
  • the external I/F unit 11 wirelessly communicates with each ship via a wireless communication device 20 such as an antenna provided in a land facility, and transmits and receives various information to and from each ship.
  • the external I/F unit 11 receives AIS information from each ship via the wireless communication device 20.
  • the input unit 12 inputs various information.
  • the input unit 12 may be, for example, a device such as a mouse or a keyboard that receives an operation input.
  • the input unit 12 receives an operation for instructing the start of various processes, and inputs operation information indicating the received operation content to the control unit 15.
  • the display unit 13 displays various information. Examples of the display unit 13 include devices such as LCD (Liquid Crystal Display) and CRT (Cathode Ray Tube). For example, the display unit 13 displays various screens such as an operation screen.
  • LCD Liquid Crystal Display
  • CRT Cathode Ray Tube
  • the storage unit 14 is an external storage device such as an HDD (Hard Disk Drive), SSD (Solid State Drive), optical or magneto-optical disk.
  • the storage unit 14 may be a semiconductor memory device such as a RAM (Random Access Memory), a flash memory (Flash Memory), or an NVSRAM (Non Volatile Static Random Access Memory).
  • the storage unit 14 has AIS accumulated data 141, supplemented AIS data 142, base risk information 143, maximum time point information 144, index information 145, and integrated risk calculation result information 146.
  • Each of the AIS accumulated data 141, the supplemented AIS data 142, the base risk information 143, the maximum time point information 144, and the integrated risk calculation result information 146 is a table data format as an example.
  • each of the AIS accumulated data 141, the supplemented AIS data 142, the base risk information 143, the maximum point in time information 144, and the integrated risk calculation result information 146 may be in other formats such as CSV (Comma Separated Values) format. It may be a data format.
  • the AIS accumulated data 141 is data accumulating AIS information received from each ship.
  • the supplemented AIS data 142 is data obtained by supplementing the AIS information in the AIS accumulated data 141 at predetermined time intervals.
  • the predetermined period interval is, for example, 1 second interval, but may be a second interval larger than 1 second in order to suppress the data amount. In the embodiment, the predetermined period interval will be described as an interval of 10 seconds.
  • the complemented AIS data 142 is generated by the data complementing unit 152 described later.
  • FIG. 2 is a diagram showing an example of the data structure of AIS accumulated data according to the embodiment.
  • the AIS accumulated data 141 is information in which longitude, latitude, speed, and course are associated with a date and time and a ship ID (IDentifier).
  • the ship ID is an identifier that uniquely identifies the ship.
  • the course is an angle with a predetermined direction as a reference (0 degree). For example, the course is a clockwise angle with reference to the north direction.
  • FIG. 3 is a diagram showing an example of a data structure of supplemented AIS data according to the embodiment.
  • the supplemented AIS data 142 has the same data structure as the AIS accumulated data 141.
  • the complemented AIS data 142 is complemented at intervals of 10 seconds.
  • the base risk information 143 is risk value information calculated in a numerical format, which is calculated by a predetermined method and represents the collision risk of a pair of two vessels at each point in time.
  • the risk value calculated by the predetermined method is hereinafter referred to as "base risk value".
  • the predetermined method may be, for example, the method disclosed in Japanese Patent Laid-Open No. 2017-182730, which calculates the collision risk from the time until the collision.
  • the predetermined method may be, for example, the method disclosed by International Publication No. 2018/193595, which calculates the collision risk by weighting and averaging the collision risks calculated using the existing risk evaluation model. ..
  • the predetermined technique may be any technique as long as it is an existing technique for calculating the collision risk of a ship.
  • the base risk information 143 is generated by the base risk calculation unit 153 described later.
  • FIG. 4 is a diagram illustrating an example of the data configuration of the base risk information according to the embodiment.
  • the base risk information 143 is information in which date and time, ship ID#1, ship ID#2, and base risk value are associated with each other.
  • the ship ID#1 is an identifier that uniquely identifies one ship that is a pair.
  • the ship ID#2 is an identifier that uniquely identifies the other ship in the set.
  • the date and time is the date and time when the vessel is operated.
  • the base risk value is a risk value of a ship that is a combination of the ship ID#1 and the ship ID#2 at the time and date, and is a risk value calculated by a predetermined method.
  • the maximum time point information 144 is information indicating the time point when the base risk value becomes maximum for each group of vessels.
  • the time at which the base risk value reaches its maximum is estimated to be the time at which a candidate in the near miss state, in which either or both ships in the target set evacuated.
  • the maximum time point information 144 is generated by the maximum time point calculation unit 154 described later.
  • FIG. 5 is a diagram illustrating an example of a data configuration of the maximum time point information according to the embodiment.
  • the maximum time point information 144 is information in which the date and time, the ship ID#1, the ship ID#2, and the base risk value at the maximum time point are associated with each other. Since the date and time, the vessel ID #1 and the vessel ID #2 are the same as the date and time, the vessel ID #1 and the vessel ID #2 of the base risk information 143, the description thereof will be omitted.
  • the base risk value at the maximum time point indicates the base risk value at the maximum date and time among the base risk values for each date and time of the ship that constitutes the group.
  • the index information 145 is information indicating various indicators indicating the degree of evasion steering and various indicators indicating the timing of evasion steering.
  • the index information 145 is shown for each set of vessels.
  • the index indicating the degree of avoidance maneuvering is determined by, for example, the degree of change in the direction of the ship (direction toward the ground) when maneuvering maneuvering, deceleration during maneuvering maneuvering, the number of maneuvering maneuvers, and the COLREG Convention. Whether or not it deviates from the rules for collision prevention at sea, and the timing of evasion maneuvering is delayed.
  • the index information 145 is calculated by the index information calculation unit 155 described later.
  • index information A the degree of change in the direction of the ship (heading toward the ground) at the time of avoidance maneuvering.
  • index information A the degree of change in the direction of the ship (heading toward the ground) at the time of avoidance maneuvering.
  • the extreme course changes such as one turn of the vessel or a change in the direction of 180 degrees are in a state where there is no room for evasive maneuvering and the danger level is high even at the site. Therefore, the degree of change in the direction of the vessel (the course toward the ground) at the time of evasion steering of each of the two vessels in the set is calculated as index information.
  • index information B deceleration (index information B) at the time of avoidance maneuvering can be mentioned. It is general to change course without changing speed as much as possible when evacuating. On the other hand, it is presumed that the sudden deceleration due to the reverse rotation of the propeller screw, etc. is a situation where there is no room for evasion steering and the danger level is high even at the site. Therefore, the deceleration of each of the two ships in the group at the time of evasion steering is calculated as index information.
  • index information C the number of vessels that carry out evasion steering.
  • index information C the number of vessels that carry out evasion steering.
  • one is usually a holding vessel that does not perform evasion and the other is a evacuating vessel that is evading, and only one of the vessels performs evasion maneuvering.
  • the number of vessels that perform avoidance maneuvering out of the two vessels in the set is calculated as index information.
  • index information D One index information is whether or not it deviates from the rule for collision prevention at sea defined by the COLREG treaty (index information D).
  • COLREG has been established as a rule for preventing collisions at sea. It is conceivable that the avoidance vessel maneuvering that does not comply with COLREG may be carried out when COLREG cannot be complied with due to the imminent danger. In addition, it may be possible to fall into a dangerous state by not complying with COLREG. In either case, it is estimated that the danger is imminent as compared with the case where the rules are observed. Therefore, it is calculated as index information whether or not it deviates from the rule for preventing collision at sea, which is defined by the COLREG convention.
  • index information E is the delay in the start timing of evasion maneuvering. It is presumed that the danger is imminent if the start timing of the avoidance vessel is delayed. Therefore, the delay in the start timing of the avoidance maneuver is calculated as the index information.
  • the integrated risk calculation result information 146 is information indicating a result of calculating an integrated risk value by combining the base risk value and various index information.
  • the integrated risk calculation result information 146 is shown for each group of vessels.
  • the integrated risk calculation result information 146 is calculated by the integrated risk calculating unit 156.
  • the control unit 15 corresponds to an electronic circuit such as a CPU (Central Processing Unit).
  • the control unit 15 has an internal memory for storing programs and control data that define various processing procedures, and executes various processing by these.
  • the control unit 15 includes a data acquisition unit 151, a data complementation unit 152, a base risk calculation unit 153, a maximum time point calculation unit 154, an index information calculation unit 155, an integrated risk calculation unit 156, and an output unit 157.
  • the base risk calculation unit 153 is an example of a first calculation unit.
  • the index information calculation unit 155 is an example of a specification unit, an extraction unit, and a second calculation unit.
  • the integrated risk calculation unit 156 is an example of a correction unit.
  • the data acquisition unit 151 acquires various data. For example, the data acquisition unit 151 acquires AIS information from each ship via the wireless communication device 20. The data acquisition unit 151 stores the acquired AIS information in the AIS accumulated data 141. Although it has been described that the data acquisition unit 151 acquires the AIS information from each ship, the data acquisition unit 151 is not limited to this.
  • the AIS information may be stored in an external storage device such as a storage device or a cloud. In such a case, the data acquisition unit 151 may acquire the AIS information of each ship from the external storage device.
  • the data complementing unit 152 complements the AIS information in the AIS accumulated data 141 at predetermined time intervals.
  • the data complementing unit 152 complements the AIS information in the AIS accumulated data 141 for each ship at one second intervals, for example.
  • the reason why the AIS information in the AIS accumulated data 141 is complemented at predetermined time intervals is as follows. The AIS information is transmitted from each ship, but the AIS information is sent in different cycles in each ship, or the AIS information is sent asynchronously even for the same ship. This is to match.
  • the one second interval may be complemented by linearly interpolating between the AIS information already existing in the AIS accumulated data 141 and the AIS information.
  • the data complementing unit 152 thins out the AIS accumulated data 141 ′ after the complementing, for each ship, for example, every 10 seconds, and stores the thinned remaining AIS information in the complemented AIS data 142. To do.
  • the reason for thinning out the AIS information is to suppress an increase in the amount of data.
  • FIG. 6 is a diagram illustrating an example of the data complementing process according to the embodiment. It should be noted that FIG. 6 illustrates a case where the AIS information in the AIS accumulated data 141 shown in FIG. 2 is complemented at 10-second intervals. The highlighted information in the table shown in the upper part of FIG. 6 is the AIS information already existing in the AIS accumulated data 141.
  • the data complementing unit 152 complements the AIS information in the AIS accumulated data 141 at 1 second intervals. AIS accumulated data 141' after the complement is generated.
  • the data complementing unit 152 interpolates and complements between the AIS information of “2015/7/9 14:00:00” and the AIS information of “2015/7/9 14:00:18”. Further, the data complementing unit 152 interpolates and complements between the AIS information of “2015/7/9 14:00:19” and the AIS information of “2015/7/9 14:00:27”.
  • the data complementing unit 152 thins out the AIS accumulated data 141′ after the complementing so that the AIS information becomes every 10 seconds for each ship.
  • the remaining thinned AIS information is stored in the supplemented AIS data 142.
  • the data complementing unit 152 thins out the AIS information from “2015/7/9 14:00:00” every 10 seconds to generate the complemented AIS data 142 shown in the lower diagram of FIG. 6.
  • the base risk calculation unit 153 calculates the base risk value at all points of time for all ship groups. For example, when the base risk calculation unit 153 receives an instruction of the period and the sea area for calculating the base risk from the user, the base risk calculation unit 153 refers to the supplemented AIS data 142, and performs all navigation in the instructed sea area during the instructed period. Extract a set of vessels. The base risk calculation unit 153 calculates the base risk value at all points in the instructed period for all the extracted sets of vessels. Each base risk value may be calculated by the above-described predetermined method. Then, the base risk calculation unit 153 stores each calculated base risk value in the base risk information 143.
  • the maximum time point calculation unit 154 calculates the maximum time point of the base risk value calculated at each time point for each set of vessels. For example, the maximum point calculation unit 154 sequentially selects a set of vessels. The maximum time point calculation unit 154 extracts the base risk value at each time point in the set of vessels selected from the base risk information 143. The maximum time point calculation unit 154 extracts a section that exceeds a predetermined threshold value from all the sections of the base risk value at each time point.
  • the threshold value here means a base risk value at the boundary between the case where the near-miss state is predicted and the case where the near-miss state is not predicted. The threshold value is set in advance by the user, but can be appropriately modified.
  • the maximum time point calculation unit 154 calculates the time point when the base risk value becomes maximum in the extracted section. Such a maximum time point is a time point of the near miss state candidate of the two ships of the selected set. Then, the maximum time point calculation unit 154 stores the time point when the base risk value becomes maximum and the base risk value in the maximum time point information 144 together with the set of ships.
  • FIG. 7 is a diagram illustrating a maximum time point calculation process according to the embodiment.
  • a graph showing the transition of the base risk value in a set of ships is shown. That is, the X-axis of the graph represents time, and the Y-axis of the graph represents the base risk value.
  • the maximum time point calculation unit 154 extracts a section exceeding a predetermined threshold value from all sections of the base risk value at each time point.
  • the section indicated by the code c0 is extracted.
  • the maximum time point calculation unit 154 calculates the time point when the base risk value becomes maximum in the extracted section.
  • the time at the maximum point indicated by the reference sign c1 is calculated as the time at which the maximum point is reached.
  • Such a maximum time point is a time point of the near miss state candidate of the two ships of the selected set.
  • the index information calculation unit 155 uses the AIS information in the time range before or before the time when the base risk value becomes maximum, and uses the AIS information of the degree of avoidance maneuvering in the two ships corresponding to the base risk value.
  • the index information that quantifies the timing is calculated.
  • the index information calculation unit 155 calculates, as the index information (A), the degree of change in the direction of the vessel (heading toward the ground) at the time of avoidance maneuvering. For example, the index information calculation unit 155 identifies a certain period before the time point when the base risk value calculated by the maximum time point calculation unit 154 becomes maximum. The index information calculation unit 155 refers to the supplemented AIS data 142 and extracts the amount of change in the direction of the ship as an action pattern within the specified fixed period for the target ship corresponding to the base risk value. Then, the index information calculation unit 155 calculates the absolute value of the amount of change in the direction of the ship, and calculates the moving average of the absolute value of the amount of change in the direction of the ship as the degree of the action pattern within a fixed period.
  • the index information calculation unit 155 quantifies, as index information (A), the degree of change in the direction of the ship at the time of evasion maneuvering at each time for a certain period before the time when the base risk value becomes maximum.
  • the index information calculation unit 155 calculates the degree of change in the direction of the vessel during evasion maneuvering, using a certain period before the time point when the base risk value calculated by the maximum time point calculation unit 154 reaches the maximum.
  • the degree of change in the direction of the vessel during an escape maneuver is also used for a certain period including before and after the time when the base risk value reaches its maximum. May be calculated.
  • the index information calculation unit 155 calculates deceleration at the time of evasion steering as index information (B). For example, the index information calculation unit 155 identifies a certain period before the time point when the base risk value calculated by the maximum time point calculation unit 154 becomes maximum. The index information calculation unit 155 refers to the complemented AIS data 142 and extracts the amount of change in the speed of the ship (deceleration) as an action pattern for the target ship corresponding to the base risk value within the specified fixed period. To do. The index information calculation unit 155 calculates the absolute value of the amount of change in the speed of the ship (deceleration), and calculates the moving average of the absolute values of the deceleration of the ship as the degree of the action pattern within a certain period of time.
  • the index information calculation unit 155 quantifies, as index information (B), the deceleration of the ship at the time of evasion maneuvering at each time for a certain period before the time when the base risk value becomes maximum.
  • the index information calculation unit 155 calculates, as the index information (C), the number of vessels that perform evasion steering. For example, the index information calculation unit 155 calculates the degree of each action pattern for two ships that are close to each other. The degree of the action pattern refers to one or both of the index information (A) and the index information (B). The index information calculation unit 155 determines whether or not the degree of each behavior pattern at the time when the base risk value corresponding to two ships in the vicinity becomes maximum exceeds a threshold value.
  • the threshold value here is a value for determining whether or not the ship is a avoidance ship to avoid collision.
  • the index information calculation unit 155 estimates that a ship whose behavior pattern degree at the time when the base risk value becomes maximum exceeds a threshold value is a ship that is an escape maneuvering ship that avoids collision. Then, as a result of the estimation, the index information calculation unit 155 calculates the number of evacuating vessels as the index information (C).
  • the index information calculation unit 155 calculates, as the index information (D), whether or not the rule for collision prevention at sea defined by the COLREG treaty is deviated. For example, the index information calculation unit 155 calculates “1” as the index information (D) when the rule is deviated from the rule. The index information calculation unit 155 calculates “0” as the index information (D) when the rule is not deviated from. Whether or not the rule is deviated may be determined by any method.
  • the index information calculation unit 155 calculates a delay in the start timing of evasive maneuvering as index information (E). For example, the index information calculation unit 155 acquires in advance a threshold value of the base risk value calculated by the existing method, which is estimated to have started the evasion vessel with a margin. The index information calculation unit 155 calculates the degree of each behavior pattern of the two ships corresponding to the base risk value. The degree of the action pattern refers to one or both of the index information (A) and the index information (B). The index information calculation unit 155 estimates the start timing of the avoidance maneuver for avoiding a collision by using the degree of the action pattern for each ship.
  • the moving average of the absolute value of the change in the course of the ship toward the ground that is, the time when the degree of change in the direction of the ship exceeds the specified threshold is the start timing of the avoidance maneuver. Presumed.
  • the index information (B) it is estimated that the moving average of the absolute value of deceleration, that is, the time when the degree of deceleration of the ship exceeds the specified threshold, is the start timing of the avoidance maneuvering.
  • the index information calculation unit 155 uses the base risk value of the estimated start timing and the threshold value of the risk value estimated to have started the avoidance maneuver for each vessel, and determines whether the estimated start timing is delayed. To judge.
  • the index information calculation unit 155 determines whether or not the start timing of the avoidance maneuvering is delayed, it calculates the delay period of the start timing of the avoidance maneuvering as the index information (E).
  • the delay period of the start timing of the escape maneuver may be calculated using the start timing of the escape maneuver and the start timing of the escape maneuver which has a margin obtained from the base risk value and the threshold value.
  • the index information calculation unit 155 may set “0” as the index information (E) when it is determined that the start timing of the avoidance ship operation is not delayed.
  • the integrated risk calculation unit 156 based on the index information calculated by the index information calculation unit 155 and the weight set for each index information, at each time point within a certain period before the time point when the base risk value becomes maximum. Calculate the integrated risk value. That is, the integrated risk calculation unit 156 corrects the base risk value based on the degree of the action pattern and the weight set for each action pattern.
  • the integrated risk calculating unit 156 calculates the closest approach distance for a target ship corresponding to the base risk value in a certain period before and after the base risk value becomes maximum, with reference to the complemented AIS data 142. To do. Then, the integrated risk calculating unit 156 sets “1” as the closest approach flag when the closest approach distance is equal to or less than the threshold value of the distance at which the possibility of collision is high. The integrated risk calculating unit 156 sets “0” as the closest distance flag when the closest distance is larger than the distance.
  • the integrated risk calculating unit 156 calculates the integrated risk value by weighting the closest approach flag and the various index information A to E for the target ship corresponding to the base risk value.
  • the integrated risk calculating unit 156 calculates the integrated risk value R by the following equation (1) for the target ship corresponding to the base risk value.
  • Integrated Risk value R base risk value + closest distance flag ⁇ weight W F + index information A ⁇ weight W A + index information B ⁇ weight W B + index information C ⁇ weight W C + index information D ⁇ weight W D + Index information E ⁇ weight W E ...
  • each weight is predetermined by the user, but can be modified as appropriate.
  • the integrated risk calculation unit 156 can calculate the collision risk that matches the sense of the site by incorporating the degree of evasion steering and the timing of evasion steering. Further, the integrated risk calculating unit 156 can determine whether the near-miss state candidate corresponding to the maximum base risk value is the near-miss state or not the near-miss state based on the sense of the site based on the integrated risk value.
  • the output unit 157 outputs the integrated risk value.
  • the output unit 157 stores, in the integrated risk calculation result information 146, the date and time, the ship ID #1, the ship ID #2, the base risk value, and the integrated risk value in association with each other for each set of ships.
  • Various index information may be added.
  • the output unit 157 displays the track information of the ship in the specific area on the display unit 13. Then, the output unit 157 selects two ships from the track information of the ships. The output unit 157 then refers to the integrated risk calculation result information 146 to display the temporal change in the integrated risk value of the two selected ships.
  • the two vessels may be selected by the user, for example.
  • FIG. 8 is a diagram illustrating an example of a data configuration of integrated risk calculation result information according to the embodiment.
  • the integrated risk calculation result information 146 is information in which date and time, ship ID#1, ship ID#2, base risk value, and integrated risk value are associated with each other.
  • the base risk value matches the base risk value of the base risk information 143 corresponding to the date and time, the ship ID#1 and the ship ID#2.
  • the integrated risk value is a risk value obtained by correcting the base risk values corresponding to the ship ID#1 and the ship ID#2 at a certain date and time.
  • FIGS. 9A to 9D are diagrams for explaining the index calculation process according to the embodiment.
  • FIG. 9A a case will be described in which the index information calculation unit 155 calculates, as the index information (A), the degree of change in the direction of the ship (route to the ground) at the time of evasion steering.
  • the index information calculation unit 155 calculates, as the index information (A), the degree of change in the direction of the ship (route to the ground) at the time of evasion steering.
  • the left diagram of FIG. 9A the movement trajectories of the ship X and the ship Y are shown.
  • the point at which the base risk value between the ship X and the ship Y reaches a maximum is represented by a circle.
  • the time point at which the base risk value reaches a maximum is calculated by the maximum time point calculation unit 154.
  • FIG. 9A describes a case where the index information (A) is calculated using a certain period before and after the base risk value reaches its maximum.
  • the direction of the ship X (the course toward the ground) over time is shown in a graph.
  • the time point indicated by the dotted line is the time point t0 when the base risk value between the ship X and the ship Y becomes maximum.
  • the index information calculation unit 155 identifies a certain period before and after the time point t0 when the base risk value becomes maximum.
  • the index information calculation unit 155 refers to the supplemented AIS data 142 and, regarding the target ship X corresponding to the base risk value, the direction of the ship (ground to ground) within the specified fixed period. The amount of change in the course) is extracted as an action pattern. That is, the index information calculation unit 155 calculates the time difference of the ground course.
  • the graph shows the change in the course of the ship X with respect to the ground.
  • the index information calculation unit 155 calculates the absolute value of the amount of change in the direction of the vessel (route to the ground), and operates the moving average of the absolute values within a certain period width (constant window width). It is calculated as the degree of the pattern. That is, the index information calculation unit 155 quantifies the degree of change in the direction of the ship (route to the ground) at the time of avoidance maneuvering as the index information (A).
  • the code A0 is a moving average of absolute values of changes in the direction of the vessel X (route to ground) at the time t0 when the base risk value becomes maximum.
  • index information (B) In the case of index information (B)
  • the index information calculation unit 155 calculates deceleration at the time of evasion steering as index information (B).
  • the movement trajectories of the ship X and the ship Y are shown.
  • the difference in length of the arrows represents the difference in velocity.
  • the time when the base risk value between the ship X and the ship Y becomes maximum is represented by a circle.
  • the time point at which the base risk value reaches a maximum is calculated by the maximum time point calculation unit 154.
  • the ground speed of the ship X over time is shown in the graph under these circumstances.
  • the time point indicated by the dotted line is the time point t0 when the base risk value between the ship X and the ship Y becomes maximum.
  • the index information calculation unit 155 identifies a certain period before the time point t0 when the base risk value becomes maximum.
  • the index information calculation unit 155 refers to the complemented AIS data 142 and, regarding the target ship corresponding to the base risk value, displays the ground speed of the ship X within the specified fixed period.
  • the amount of change (deceleration) is extracted as an action pattern. That is, the index information calculation unit 155 calculates the time difference of the ground speed.
  • the graph shows the change in the ground speed of the ship X.
  • the index information calculation unit 155 calculates the absolute value of the amount of change (deceleration) in the speed of the ship, and the index information calculation unit 155 determines the width of a fixed period (fixed window width).
  • the moving average of the absolute value of the deceleration of the ship X is calculated as the degree of the action pattern. That is, the index information calculation unit 155 quantifies the deceleration of the ship at the time of avoidance maneuvering as the index information (B).
  • the code B0 indicates the ground of the ship X at the time t0 when the base risk value becomes maximum. It is a moving average of absolute speed values.
  • index information (C) In the case of index information (C)
  • the index information calculation unit 155 calculates the number of vessels performing evasion steering as index information (C).
  • the left diagram of FIG. 9C the movement trajectories of the ship X and the ship Y are shown.
  • the point at which the base risk value between the ship X and the ship Y reaches a maximum is represented by a circle.
  • the width indicated by the double-headed arrow is a threshold value of the distance as to whether the ships are close to each other.
  • the ship X and the ship Y are close to each other before and after such a maximum point.
  • the index information calculation unit 155 calculates the degree of each behavior pattern of the two ships X and Y that are close to each other.
  • index information (A) indicating a moving average of absolute values of changes in the course (direction) of the ship to the ground is used as the degree of the action pattern.
  • FIG. 9C a graph of a moving average of absolute values of changes in the course (direction) of the ship X with respect to the ground over time is shown.
  • a graph of a moving average of absolute values of changes in the course (direction) of the ship Y with respect to the ground over time is shown.
  • the index information calculation unit 155 determines whether or not the degree of the action pattern of the ship X at the time t0 when the base risk values corresponding to the two ships X and Y that are close to each other are maximum exceeds the threshold L0.
  • the threshold value L0 is a value for determining whether or not the marine vessel is a avoidance marine vessel that avoids collision.
  • the threshold L0 is a threshold for determining whether or not the degree of avoidance due to the course change is large.
  • the degree C0 X of the behavior pattern of the ship X at the time point t0 when the base risk value becomes maximum exceeds the threshold L0.
  • the index information calculation unit 155 determines whether or not the degree of the action pattern of the ship Y at time t0 when the base risk values corresponding to the two ships X and Y that are close to each other are maximum exceeds the threshold L0.
  • the degree C0 Y of the action pattern of the ship Y at the time point t0 when the base risk value becomes maximum exceeds the threshold L0.
  • the index information calculation unit 155 estimates that the ship whose degree of the behavior pattern at the time t0 when the base risk value becomes the maximum exceeds the threshold value L is the avoidance ship to avoid collision.
  • the degree of the behavior pattern of both the ships X and Y exceeds the threshold value L, it is estimated that both the ships X and Y are vessels for escaping.
  • the index information calculation unit 155 calculates the number “2” of the evacuating vessels as the index information (C).
  • FIG. 9D a case will be described in which the index information calculation unit 155 calculates a delay in the start timing of evasion steering as index information (E).
  • the left diagram of FIG. 9D is an example of the case where there is a margin in the start timing of the avoidance vessel, and the right diagram of FIG.
  • the index information calculation unit 155 calculates the degree of the behavior pattern of the ship corresponding to the base risk value.
  • index information (A) indicating the moving average of absolute values of changes in the course of the ship toward the ground (degree of change in the direction of the ship) is used as the degree of the action pattern.
  • the index information calculation unit 155 determines that the moving average of the absolute values of changes in the course of the ship toward the ground, that is, the degree of change in the direction of the ship, exceeds the specified threshold value in a certain period immediately before the time t0 when the base risk value becomes maximum. Extract the time points.
  • the time point t1 at which the moving average of the absolute values of the changes in the course of the vessel to the ground exceeds the specified threshold value L2 is extracted. Therefore, the time t1 is estimated to be the start timing of the avoidance ship maneuvering.
  • the index information calculation unit 155 sets the base risk value E0 corresponding to the estimated start timing t1 and the threshold value (threshold value of the base risk value at the time of starting the evacuating maneuver with margin) L1 estimated to start the evacuating maneuver. Is used to determine whether the estimated start timing is delayed.
  • the threshold value L1 threshold value of the base risk value at the time of starting the evacuating maneuver with margin
  • the index information calculation unit 155 sets “0” as the index information (E).
  • the index information calculation unit 155 determines whether or not the estimated start timing is delayed by using the base risk value E1 at the estimated start timing t3 and the threshold L1.
  • the index information calculation unit 155 calculates the delay period of the start timing of the avoidance boat as the index information (E). For the delay period of the start timing of the avoidance maneuver, the start timing t2 of the avoidance maneuver may be subtracted from the start timing t3 of the avoidance maneuver, which has a margin obtained from the base risk value and the threshold value L1.
  • FIG. 10 is a diagram illustrating an example of a display by the output process according to the embodiment. Note that the upper part of FIG. 10 shows the movement trajectory of the ship displayed in the display unit 13 in a specific region and in a specific period. The arrow is a ship.
  • the output unit 157 refers to the integrated risk calculation result information 146 and displays the time change of the integrated risk value at each time point in the specific period corresponding to the selected two ships d1 and d2 on the display unit 13.
  • the graph g1 is a graph of the temporal change of the integrated risk value corresponding to the two selected ships d1 and d2.
  • FIG. 11 is a diagram illustrating an example of a flowchart of the maximum time point calculation processing according to the embodiment. It is assumed that the AIS accumulated data 141 is stored in the storage unit 14.
  • the data complementing unit 152 complements information on the position (longitude, latitude), speed, direction (course) of the AIS accumulated data 141 (step S11). For example, the data complementation unit 152 complements the AIS accumulated data 141 by, for example, the AIS information in the AIS accumulated data 141 for each ship at one second intervals, for example. Then, the data complementing unit 152 thins out the AIS accumulated data 141 ′ after the complementing, for each ship, for example, every 10 seconds, and stores the thinned remaining AIS information in the complemented AIS data 142. To do.
  • the base risk calculation unit 153 calculates the base risk value of all pairs of ships at all times (step S12).
  • the base risk calculation unit 153 refers to the complemented AIS data 142 and extracts all the ship pairs.
  • the base risk calculation unit 153 calculates the base risk value at all times for all the extracted pairs of vessels.
  • the base risk calculation unit 153 stores each calculated base risk value in the base risk information 143.
  • the base risk calculating unit 153 may calculate the base risk value at the time of calculating the base risk value and at all the time points of all pairs of ships in the sea area.
  • the maximum time point calculation unit 154 extracts a section in which the base risk value exceeds the threshold value for all the base risk values of each pair of vessels, and calculates the time point at which the base risk value becomes maximum (step S13). For example, the maximum point calculation unit 154 sequentially selects pairs of vessels. The maximum time point calculation unit 154 extracts the base risk value at each time point in the pair of vessels selected from the base risk information 143. The maximum time point calculation unit 154 extracts a section that exceeds a predetermined threshold value from all the sections of the base risk value at each time point. The maximum time point calculation unit 154 calculates the time point when the base risk value becomes maximum in the extracted section. Then, the maximum time point calculation unit 154 stores the time point when the base risk value becomes maximum and the base risk value together with the pair of ships in the maximum time point information 144. Then, the maximum time point calculation unit 154 ends the maximum time point calculation processing.
  • FIG. 12 is a diagram illustrating an example of a flowchart of index information calculation processing according to the embodiment. The index information calculation process for one ship pair will be described with reference to the flowchart of FIG.
  • the index information calculation unit 155 calculates the degree of change (A) in the direction of the vessel during a certain period before and after the maximum time point (a step S21). For example, the index information calculation unit 155 identifies a certain period before and after the time when the base risk value becomes maximum.
  • the index information calculation unit 155 refers to the complemented AIS data 142 and extracts the amount of change in the direction of the vessel as an action pattern for the pair of vessels corresponding to the base risk value within the specified fixed period.
  • the index information calculation unit 155 calculates the absolute value of the amount of change in the direction of the ship, and calculates the moving average of the absolute value of the amount of change in the direction of the ship as the degree of the action pattern within a fixed period width. That is, the index information calculation unit 155 quantifies the degree of change in the direction of the ship at the time of avoidance maneuvering as the index information (A).
  • the index information calculation unit 155 calculates the deceleration (B) of the ship for a certain period immediately before the maximum point (step S22). For example, the index information calculation unit 155 identifies a certain period before the time when the base risk value becomes maximum.
  • the index information calculation unit 155 refers to the supplemented AIS data 142 and extracts the change amount (deceleration) of the speed of the ship as an action pattern within a specified fixed period for the ship of the pair corresponding to the base risk value. To do.
  • the index information calculation unit 155 calculates the absolute value of the amount of change (deceleration) in the speed of the ship, and calculates the moving average of the absolute values of the deceleration of the ship as the degree of the action pattern within a fixed period width. That is, the index information calculation unit 155 quantifies the deceleration of the ship at the time of evasion steering as the index information (B).
  • the index information calculation unit 155 calculates the number (C) of vessels that are evading vessels (a large change in direction or a large deceleration) among a plurality of adjacent vessels within a certain period before and after the maximum time. To do. For example, the index information calculation unit 155 calculates the degree of each action pattern for two ships that are close to each other. The degree of the action pattern is index information (A) or index information (B). The index information calculation unit 155 determines whether or not the degree of each behavior pattern at the time when the base risk value corresponding to the pair of ships in the vicinity becomes maximum exceeds a threshold value.
  • the index information calculation unit 155 estimates that the ship in which the degree of the action pattern at the time when the base risk value becomes the maximum exceeds the threshold value is the evasion-handling ship. Then, the index information calculation unit 155 calculates the number of evacuating vessels as the index information (C).
  • the index information calculation unit 155 determines, in a certain period before and after the maximum time point, a rule that is determined according to the relationship between the vessels in the case where the avoidance operation (the change in the direction is large or the deceleration is large) is detected. (D) is determined (step S24). For example, the index information calculation unit 155 calculates “1” as the index information (D) when it deviates from the rule for preventing collision at sea determined by the COLREG treaty. The index information calculation unit 155 calculates “0” as the index information (D) when the rule is not deviated from.
  • the index information calculation unit 155 determines whether or not the base risk value at the time when the direction and the deceleration of the ship greatly change in a certain period immediately before the maximum time exceeds the standard threshold for avoiding flight (E). Yes (step S25). For example, the index information calculation unit 155 calculates the degree of each action pattern for a pair of ships corresponding to the base risk value.
  • the degree of the action pattern is index information (A) or index information (B).
  • the index information calculation unit 155 uses the degree of each behavior pattern to estimate the start timing of the avoidance marine vessel avoiding collision.
  • the index information calculation unit 155 determines, for each ship, whether or not the estimated start timing is delayed by using the base risk value corresponding to the estimated start timing and the standard threshold value for the avoidance start. Then, when determining that the start timing is delayed, the index information calculation unit 155 calculates the delay period as index information (E).
  • the index information calculation unit 155 ends the index information calculation process.
  • FIG. 13 is a diagram illustrating an example of a flowchart of integrated risk calculation processing according to the embodiment. In the flowchart of FIG. 13, the integrated risk calculation process for one ship pair will be described.
  • the integrated risk calculation unit 156 calculates the closest distance in a certain period before and after the maximum time (step S31). For example, the integrated risk calculating unit 156 calculates the closest approach distance for a target ship corresponding to the base risk value in a certain period before and after the base risk value becomes maximum, with reference to the complemented AIS data 142. To do. Then, the integrated risk calculating unit 156 sets “1” as the closest approach flag when the closest approach distance is equal to or less than the threshold value of the distance at which the possibility of collision is high. The integrated risk calculating unit 156 sets “0” as the closest distance flag when the closest distance is larger than the distance.
  • the integrated risk calculation unit 156 calculates an integrated risk value by weighting the base risk value with the index information (A to E) related to the closest approach distance and the avoidance vessel (step S32). For example, the integrated risk calculating unit 156 calculates the integrated risk value in which the base risk value is corrected by using the formula (1). Then, the output unit 157 associates the date/time, the ship ID#1, the ship ID#2, the base risk value, and the integrated risk value with respect to the pair of ships corresponding to the base risk value, and then combines the integrated risk calculation result information 146. To store.
  • the integrated risk calculating unit 156 ends the integrated risk calculating process.
  • the integrated risk calculation unit 156 can calculate the collision risk that matches the sense of the site by correcting the base risk value to the integrated risk value that incorporates the degree and timing of evasion maneuvering.
  • FIG. 14 is a diagram illustrating an example of a flowchart of processing using the integrated risk value according to the embodiment.
  • the control unit 15 refers to the integrated risk calculation result information 146 and extracts an integrated risk value equal to or larger than a predetermined value (step S41).
  • the control unit 15 analyzes the factor of the collision risk by using the extracted integrated risk value and various information (step S42).
  • Various types of information include, for example, integrated risk calculation result information 146, map information, weather/sea state history information, shift information, and the like. Then, the control unit 15 outputs the result of the factor analysis (step S43).
  • FIGS. 15A and 15B are diagrams showing a case where the integrated risk matches the sense of the scene.
  • the arrow in the circle represents a ship.
  • FIG. 15A shows an example using a combination of index information A and index information C.
  • the ship represented by the symbol i1 makes one turn to avoid the sea, and the degree of change in the direction of the ship in the index information A has a large value.
  • the vessel represented by the symbol i1 and the vessel represented by the symbol i2 are simultaneously evacuating, the number of vessels performing the evasion maneuver of the index information C is “2”. Therefore, the value related to the index information A and the value related to the index information C added to the base risk value become large, and it is determined from the integrated risk value that it is in the near miss state. This is an example in which the integrated risk matches the on-site feeling because it is determined that the collision risk is large even with the on-site feeling.
  • FIG. 15B shows an example of index information B. It is assumed that the ship represented by reference numeral j2 is decelerating rapidly in order to avoid the ship represented by reference numeral j1.
  • the ship represented by the reference numeral j1 and the ship represented by the reference numeral j2 have the shortest approach distances, but they are patterns of avoidance maneuvering that are not standard in the sense of the field.
  • the value related to the index information B added to the base risk value becomes large, and it is determined from the integrated risk value that it is in the near miss state. This is an example in which the integrated risk matches the on-site feeling because it is determined that the collision risk is large even with the on-site feeling.
  • the collision risk calculation device 10 uses the track data of each of the first ship and the second ship to determine the first ship and the second ship at each time point by a predetermined method. Calculate the risk value for the collision of.
  • the collision risk calculation device 10 specifies a time range before the maximum risk value from the calculated risk values.
  • the collision risk calculation device 10 extracts an action pattern of one or both of the first ship and the second ship in the time range from the track data.
  • the collision risk calculation device 10 calculates the degree of the behavior pattern of one or both of the first ship and the second ship based on the behavior pattern.
  • the collision risk calculation device 10 corrects the risk value based on the degree of the action pattern and the weight set for each action pattern.
  • the collision risk calculation device 10 can calculate the risk value that matches the sense of the scene by correcting the risk value related to the collision using the degree of the behavior pattern of the ship.
  • the collision risk calculation device 10 extracts, as the action pattern, the amount of change in the direction of the vessel for one or both of the first vessel and the second vessel.
  • the collision risk calculation device 10 calculates the sum of absolute values of the amount of change in the direction of the ship in the time range before the maximum risk value as the degree of the action pattern. According to such a configuration, the collision risk calculation device 10 can quantify the degree of evasion steering from the change in the direction of the ship.
  • the collision risk calculation device 10 extracts the amount of change in the speed of the ship as the action pattern for one or both of the first ship and the second ship.
  • the collision risk calculation device 10 calculates the average of the absolute values of the amount of change in the speed of the ship in the time range before the maximum risk value as the degree of the action pattern. According to this configuration, the collision risk calculation device 10 can quantify the degree of avoidance maneuvering from the change in the speed of the ship.
  • the collision risk calculation device 10 estimates the vessels indicating that the collision avoidance is performed using the degree of the action pattern for each of the first vessel and the second vessel.
  • the collision risk calculation device 10 further corrects the risk value by including the estimated number of ships. According to such a configuration, the collision risk calculation device 10 can correct the risk value with higher accuracy by using the number of vessels that are evading vessels.
  • the collision risk calculation device 10 estimates the start timing of the navigation for avoiding the collision using the degree of the action pattern for each of the first ship and the second ship.
  • the collision risk calculation device 10 calculates the delay of the estimated start timing by using the estimated start timing and the navigation start timing that avoids the collision obtained from the risk value. Then, the collision risk calculation device 10 further corrects the risk value including the calculated delay of the start timing. According to such a configuration, the collision risk calculation device 10 can correct the risk value with higher accuracy by using the delay in the timing of the avoidance ship operation.
  • the components of the illustrated collision risk calculation device 10 do not necessarily have to be physically configured as illustrated. That is, the specific mode of dispersion/integration of the collision risk calculation device 10 is not limited to that shown in the figure, and all or part of the functional unit may be functionally or physically united in arbitrary units according to various loads and usage conditions. Can be distributed and integrated into For example, the data complementing unit 152 and the base risk calculating unit 153 may be integrated as one unit. Further, the index information calculation unit 155 may be separated into calculation units that respectively calculate various index information. Further, the storage unit 14 may be connected as an external device of the collision risk calculation device 10 via a network.
  • FIG. 16 is a diagram illustrating an example of a computer that executes the collision risk calculation program.
  • the computer 200 includes a CPU 203 that executes various arithmetic processes, an input device 215 that receives data input from a user, and a display control unit 207 that controls the display device 209.
  • the computer 200 also includes a drive device 213 that reads a program and the like from a storage medium, and a communication control unit 217 that exchanges data with another computer via a network.
  • the computer 200 also has a memory 201 for temporarily storing various information and an HDD (Hard Disk Drive) 205.
  • the memory 201, the CPU 203, the HDD 205, the display control unit 207, the drive device 213, the input device 215, and the communication control unit 217 are connected by the bus 219.
  • the drive device 213 is, for example, a device for the removable disk 210.
  • the HDD 205 stores a collision risk calculation program 205a and collision risk calculation related information 205b.
  • the CPU 203 reads the collision risk calculation program 205a, expands it in the memory 201, and executes it as a process. Such a process corresponds to each functional unit of the collision risk calculation device 10.
  • the collision risk calculation related information 205b corresponds to the AIS accumulated data 141, the supplemented AIS data 142, the base risk information 143, the maximum time point information 144, the index information 145, and the integrated risk calculation result information 146.
  • the removable disk 210 stores each information such as the collision risk calculation program 205a.
  • the collision risk calculation program 205a does not necessarily have to be stored in the HDD 205 from the beginning.
  • a "portable physical medium such as a flexible disk (FD), a CD-ROM (Compact Disk Read Only Memory), a DVD (Digital Versatile Disk), a magneto-optical disk, an IC (Integrated Circuit) card, etc., which is inserted into the computer 200.
  • the program is stored in ". Then, the computer 200 may read the collision risk calculation program 205a from these and execute it.

Abstract

衝突リスク算出装置(1)は、第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の第1の船舶と第2の船舶との衝突に関するベースリスク値を算出し、ベースリスク値から、最大になるベースリスク値より前の時間範囲を特定し、航跡データの中から、時間範囲における第1の船舶および第2の船舶の一方または両方の行動パターンを抽出し、行動パターンに基づき、第1の船舶および第2の船舶の一方または両方の行動パターンの度合いを算出し、行動パターンの度合いと、行動パターンごとに設定される重みとに基づいて、ベースリスク値を補正することで、現場感覚と合致する衝突リスクを算出することが可能となる。

Description

衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
 本発明は、衝突リスク算出方法などに関する。
 船舶の航行に関し、衝突リスクを算出する方法が開示されている。
 1つの例では、衝突に至るまでの時間から衝突リスクを算出する第1の技術が開示されている(例えば、特許文献1参照)。かかる技術では、衝突リスク算出装置が、第1の船舶および第2の船舶それぞれの位置、および過去の航行した船舶の進行情報に基づき、第1の船舶および第2の船舶の一方または両方の将来進路方向幅を算出する。そして、衝突リスク算出装置は、将来進行方向幅(衝突に至るまでの時間)に基づき、第1の船舶と第2の船舶との衝突リスクを算出する。
 また、別の例では、既存のリスク評価モデルを用いて算出された衝突リスクを重み付けして平均した衝突リスクを算出する第2の技術が開示されている(例えば、特許文献2、3参照)。かかる技術では、衝突リスク算出装置が、第1の船舶および第2の船舶それぞれの進行情報から、第1の船舶および第2の船舶が将来衝突する可能性がある領域を算出し、この領域を回避するために第1の船舶または第2の船舶が取る操船量に基づく第1のリスク値を算出する。そして、衝突リスク算出装置は、第1の船舶および第2の船舶が将来衝突する可能性を数値的に示す第2のリスク値を算出し、第1のリスク値および第2のリスク値を重み付けして第1の船舶および第2の船舶が将来衝突する可能性を示す第3のリスク値を算出する。ここでいう第1のリスク値は、例えば、最接近時の距離を示すDCPA(Distance to Closest Point of Approach)やTCPA(Time to Closest Point of Approach)などの数値形式で示す数値型リスク値のことをいう。第2のリスク値は、例えば、OZT(Obstacle Zone by Target)やCDL(Collision Danger Line)などの幾何学的な形式で示す領域型リスク値のことをいう。
 また、他の例では、船舶間の距離から衝突リスクを算出する技術が提案されている。また、船舶の針路の延長ベクトルの交差をチェックすることで衝突リスクを算出する技術が提案されている。
特開2017-182730号公報 国際公開第2018/193595号 国際公開第2018/193596号
 しかしながら、従来の衝突リスクを算出する技術では、船舶の操船側や航行管制側が感じるリスクレベルが十分に反映されているとはいえず、必ずしも現場感覚と合致するとはいえない衝突リスクを算出してしまうという問題がある。
 例えば、第1の技術では、衝突リスクを衝突に至るまでの時間に基づき算出するが、この衝突リスクは、衝突のリスクがあることを把握できても、船舶の船長や管制官が感じる衝突リスクではないことが多い。また、第2の技術では、既存のリスク評価モデルを用いて算出された衝突リスクを重み付けして平均した衝突リスクを算出するが、この衝突リスクも、衝突のリスクがあることを把握できても、必ずしも、船舶の船長や管制官が感じる危険度と合致した衝突リスクとはいえない。
 ここで、衝突リスクが現場感覚と合致しない事例を、図17Aおよび図17Bを参照して説明する。図17Aおよび図17Bは、衝突リスクが現場感覚と合致しない事例を示す図である。なお、丸の中の矢印は、船舶を表す。
 図17Aでは、符号a3で表わす船舶(船舶a3)が符号a1で表わす船舶(船舶a1)と符号a2で表わす船舶(船舶a2)との間に割り込んで追い越しをかける事例である。ここでは、船舶a3に追い越しをかけられる船舶a1が右上の方角に逃げ、船舶a3が右下の方角に逃げる。かかる事例では、船舶同士が、比較的接近しているため、例えば、船舶間の距離が短く、従来手法により算出される衝突リスクの値が大きくなる。ところが、かかる事例の現場感覚では、ニアミス状態ではなく余裕をもって航行している安全な状態と判断される。これは、船舶a1,a2,a3が、極端な避航操船でなく、整然と航行しているからである。すなわち、従来の衝突リスクを算出する技術では、必ずしも現場感覚と合致するとはいえない衝突リスクを算出してしまう。
 図17Bでは、符号b1で表わす船舶(船舶b1)および符号b2で表わす船舶(船舶b2)の針路が交差する事例である。ここでは、船舶b1が交差の前で左下に避航操船を行う。かかる事例では、船舶b1と船舶b2とが交差し、交差までの距離が短く、従来技術により算出される衝突リスクの値が大きくなる。ところが、かかる事例の現場感覚では、ニアミス状態ではなく余裕をもって航行している安全な状態と判断される。これは、船舶b1が時間的・距離的に十分な余裕をもって避航操船しているからである。すなわち、従来の衝突リスクを算出する技術では、必ずしも現場感覚と合致するとはいえない衝突リスクを算出してしまう。
 本発明は、1つの側面では、現場感覚と合致する衝突リスクを算出することを目的とする。
 1つの態様では、衝突リスク算出方法では、コンピュータが、第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の前記第1の船舶と前記第2の船舶との衝突に関するリスク値を算出し、前記リスク値から、最大になるリスク値より前の時間範囲を特定し、前記航跡データの中から、前記時間範囲における前記第1の船舶および前記第2の船舶の一方または両方の行動パターンを抽出し、前記行動パターンに基づき、前記第1の船舶および前記第2の船舶の一方または両方の行動パターンの度合いを算出し、前記行動パターンの度合いと、前記行動パターンごとに設定される重みとに基づいて、前記リスク値を補正する、処理を実行する。
 1実施態様によれば、現場感覚と合致する衝突リスクを算出することが可能となる。
図1は、実施例に係る衝突リスク算出装置の構成を示す機能ブロック図である。 図2は、実施例に係るAIS蓄積データのデータ構成の一例を示す図である。 図3は、実施例に係る補充済みAISデータのデータ構成の一例を示す図である。 図4は、実施例に係るベースリスク情報のデータ構成の一例を示す図である。 図5は、実施例に係る極大時点情報のデータ構成の一例を示す図である。 図6は、実施例に係るデータ補完処理の一例を示す図である。 図7は、実施例に係る極大時点算出処理を説明する図である。 図8は、実施例に係る統合リスク算出結果情報のデータ構成の一例を示す図である。 図9Aは、実施例に係る指標算出処理を説明する図である。 図9Bは、実施例に係る指標算出処理を説明する図である。 図9Cは、実施例に係る指標算出処理を説明する図である。 図9Dは、実施例に係る指標算出処理を説明する図である。 図10は、実施例に係る出力処理による表示の一例を示す図である。 図11は、実施例に係る極大時点算出処理のフローチャートの一例を示す図である。 図12は、実施例に係る指標情報算出処理のフローチャートの一例を示す図である。 図13は、実施例に係る統合リスク算出処理のフローチャートの一例を示す図である。 図14は、実施例に係る統合リスク値を利用した処理のフローチャートの一例を示す図である。 図15Aは、統合リスクが現場感覚と合致する事例を示す図である。 図15Bは、統合リスクが現場感覚と合致する事例を示す図である。 図16は、衝突リスク算出プログラムを実行するコンピュータの一例を示す図である。 図17Aは、衝突リスクが現場感覚と合致しない事例を示す図である。 図17Bは、衝突リスクが現場感覚と合致しない事例を示す図である。
 以下に、本願の開示する衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラムの実施例を図面に基づいて詳細に説明する。なお、本発明は、実施例により限定されるものではない。
[衝突リスク算出装置の構成]
 図1は、実施例に係る衝突リスク算出装置の構成を示す機能ブロック図である。図1に示すように、衝突リスク算出装置10は、船舶の航行を支援する装置である。衝突リスク算出装置10は、船舶の衝突を避ける操船(避航操船)の程度や避航操船のタイミングを定量化し、既存手法の衝突に関するリスク値と組み合わせて、現場が感じる危険レベルを反映した統合リスク値を算出する。ここでいう現場とは、例えば、操船側の船長や航行管制側の管制官のことをいう。すなわち、衝突リスク算出装置10は、船長や管制官が感じる危険レベル(心理状態)を実際に取った行動(避航操船)から推定し、統合リスク値を算出する。
 衝突リスク算出装置10は、例えば、陸上施設に配置されたサーバなどのコンピュータや船舶上に配置されたコンピュータに実装される。ここでいう陸上施設とは、海上の船舶について監視および情報提供する役割を担う海上交通センタや港内交通管制室のことをいう。衝突リスク算出装置10は、外部I/F(インタフェース)部11、入力部12、表示部13、記憶部14および制御部15を有する。
 外部I/F部11は、例えば、他の装置と各種の情報を送受信するインタフェースである。外部I/F部11は、陸上施設に設けられたアンテナなどの無線通信装置20を介して、各船舶と無線通信し、各船舶と各種の情報を送受信する。例えば、外部I/F部11は、無線通信装置20を介して、各船舶からAIS情報を受信する。
 入力部12は、各種の情報を入力する。入力部12には、一例として、マウスやキーボードなどの操作の入力を受け付けるデバイスが挙げられる。例えば、入力部12は、各種の処理の開始を指示する操作を受け付け、受け付けた操作内容を示す操作情報を制御部15に入力する。
 表示部13は、各種情報を表示する。表示部13には、一例として、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)などのデバイスが挙げられる。例えば、表示部13は、操作画面など各種の画面を表示する。
 記憶部14は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、光もしくは光磁気ディスクなどの外部記憶装置である。なお、記憶部14は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)、NVSRAM(Non Volatile Static Random Access Memory)などの半導体メモリ素子であっても良い。
 記憶部14は、AIS蓄積データ141、補完済みAISデータ142、ベースリスク情報143、極大時点情報144、指標情報145および統合リスク算出結果情報146を有する。AIS蓄積データ141、補完済みAISデータ142、ベースリスク情報143、極大時点情報144および統合リスク算出結果情報146のそれぞれは、一例としてテーブルのデータ形式である。しかし、これに限定されず、AIS蓄積データ141、補完済みAISデータ142、ベースリスク情報143、極大時点情報144および統合リスク算出結果情報146のそれぞれは、CSV(Comma Separated Values)形式など、その他のデータ形式であっても良い。
 AIS蓄積データ141は、各船舶から受信されたAIS情報を蓄積したデータである。補完済みAISデータ142は、AIS蓄積データ141内のAIS情報を所定期間間隔で補完したデータである。所定期間間隔は、一例として1秒間隔であるが、データ量を抑制するために1秒より大きい秒間隔としても良い。実施例では、所定期間間隔は、10秒間隔であるとして説明する。補完済みAISデータ142は、後述するデータ補完部152によって生成される。
 ここで、AIS蓄積データ141および補完済みAISデータ142のデータ構成の一例を、図2および図3を参照して説明する。
 図2は、実施例に係るAIS蓄積データのデータ構成の一例を示す図である。図2に示すように、AIS蓄積データ141は、経度、緯度、速度および針路を日時および船舶ID(IDentifier)に対応付けた情報である。船舶IDは、船舶を一意に識別する識別子である。また、針路は、所定の方向を基準(0度)とした角度とする。例えば、針路は、北の方向を基準として右回りの角度とする。
 一例として、日時が「2015/7/9 14:00:09」および船舶IDが「A」である場合に、経度として「139.7303」、緯度として「35.3023」、速度として「10.2」、針路として「144.7」を記憶している。
 図3は、実施例に係る補充済みAISデータのデータ構成の一例を示す図である。図3に示すように、補完済みAISデータ142は、AIS蓄積データ141と同様のデータ構成である。ここでは、補完済みAISデータ142は、10秒間隔で補完されている。
 一例として、日時が「2015/7/9 14:00:09」および船舶IDが「A」である場合に、経度として「139.7300」、緯度として「35.3026」、速度として「10.2」、針路として「144.9」を記憶している。また、日時が「2015/7/9 14:00:10」および船舶IDが「A」である場合に、経度として「139.7303」、緯度として「35.3022」、速度として「10.2」、針路として「144.7」を記憶している。
 図1に戻って、ベースリスク情報143は、所定の手法により算出された、2個の船舶を組とした各時点の船舶の衝突リスクを数値形式で表わしたリスク値の情報である。所定の手法により算出されたリスク値は、以降、「ベースリスク値」というものとする。なお、所定の手法は、例えば、衝突に至るまでの時間から衝突リスクを算出する特開2017-182730号公報によって開示された手法であっても良い。また、所定の手法は、例えば、既存のリスク評価モデルを用いて算出された衝突リスクを重み付けして平均した衝突リスクを算出する国際公開第2018/193595号によって開示された手法であっても良い。また、所定の手法は、船舶の衝突リスクを算出する既存の技術であれば、いかなる手法であっても良い。なお、ベースリスク情報143は、後述するベースリスク算出部153によって生成される。
 ここで、ベースリスク情報143のデータ構成の一例を、図4を参照して説明する。図4は、実施例に係るベースリスク情報のデータ構成の一例を示す図である。図4に示すように、ベースリスク情報143は、日時、船舶ID#1、船舶ID#2およびベースリスク値を対応付けた情報である。船舶ID#1は、組となる一方の船舶を一意に識別する識別子である。船舶ID#2は、組となる他方の船舶を一意に識別する識別子である。日時は、船舶の操船日時である。ベースリスク値は、日時の時点の、船舶ID#1および船舶ID#2を組とした船舶のリスク値であり、所定の手法により算出されたリスク値である。
 一例として、日時が「2015/7/9 14:00:00」である場合に、船舶ID#1として「A」、船舶ID#2として「B」およびベースリスク値として「0.1」を記憶している。また、日時が「2015/7/9 14:00:00」である場合に、船舶ID#1として「A」、船舶ID#2として「C」およびベースリスク値として「0.0」を記憶している。
 図1に戻って、極大時点情報144は、船舶の組ごとに、ベースリスク値が極大となる時点を示す情報である。ベースリスク値が極大となる時点は、対象の組のどちらか一方または両方の船舶が避航操船をした、ニアミス状態の候補の時点と推測される。なお、極大時点情報144は、後述する極大時点算出部154によって生成される。
 ここで、極大時点情報144のデータ構成の一例を、図5を参照して説明する。図5は、実施例に係る極大時点情報のデータ構成の一例を示す図である。図5に示すように、極大時点情報144は、日時、船舶ID#1、船舶ID#2および極大時点でのベースリスク値を対応付けた情報である。日時、船舶ID#1および船舶ID#2は、ベースリスク情報143の日時、船舶ID#1および船舶ID#2と同様であるので、その説明を省略する。極大時点でのベースリスク値は、組となる船舶の日時ごとのベースリスク値の中で極大となる日時のベースリスク値を示す。
 一例として、日時が「2015/7/9 14:15:10」である場合に、船舶ID#1として「A」、船舶ID#2として「B」およびベースリスク値として「0.7」を記憶している。また、日時が「2015/7/9 14:16:20」である場合に、船舶ID#1として「B」、船舶ID#2として「D」およびベースリスク値として「0.8」を記憶している。
 図1に戻って、指標情報145は、避航操船の程度を示す各種指標、避航操船のタイミングを示す各種指標を示す情報である。指標情報145は、船舶の組ごとに示される。避航操船の程度を示す指標には、例えば、避航操船の際の船舶の向き(対地針路)の変化の度合い、避航操船の際の減速度、避航操船を行う船の数、COLREG条約によって定められた海上における衝突防止のためのルールから逸脱しているか否か、避航操船のタイミングの遅れが挙げられる。なお、指標情報145は、後述する指標情報算出部155によって算出される。
 ここで、指標情報について説明する。
 1つの指標情報として避航操船の際の船舶の向き(対地針路)の変化の度合い(指標情報A)が挙げられる。余裕がある避航操船の場合には、船舶の向きの変化は、最小限に抑えられる。一方、船舶の向きが1回転したり、180度向きを変えたりといった極端な針路の変化は、現場でも、避航操船に余裕がない状態、危険レベルが高い状態であると推定される。そこで、組である2つの船舶それぞれの、避航操船の際の船舶の向き(対地針路)の変化の度合いが指標情報として算出される。
 1つの指標情報として避航操船の際の減速度(指標情報B)が挙げられる。避航操船の際には、速度は極力変更せずに、コースを変更することが一般的である。一方、プロペラスクリューが逆転することなどによる急減速は、現場でも、避航操船に余裕が無い状態、危険レベルが高い状態であると推定される。そこで、組である2つの船舶それぞれの、避航操船の際の減速度が指標情報として算出される。
 1つの指標情報として避航操船を行う船舶の数(指標情報C)が挙げられる。2つの船舶間で衝突を避ける場合には、通常、一方が避航を行わない保持船、他方が避航を行う避航船となり、どちらか一方の船舶のみが避航操船を行う。2つの船舶が同時に避航を行う場合は、一方の避航操船だけでは不十分な程、危険が差し迫っているものと推定される。そこで、組である2つの船舶のうち避航操船を行う船舶の数が指標情報として算出される。
 1つの指標情報としてCOLREG条約によって定められた海上における衝突防止のためのルールから逸脱しているか否か(指標情報D)が挙げられる。海上における衝突防止のためのルールとしてCOLREGが定められている。COLREGに従わない避航操船が行われるのは、危険が差し迫っているためにCOLREGを遵守できなかった場合が考えられる。また、COLREGに従わないことにより危険な状態に陥る場合も考えられる。いずれの場合においても、ルールが遵守されている場合と比べて、危険が差し迫っているものと推定される。そこで、COLREG条約によって定められた海上における衝突防止のためのルールから逸脱しているか否かが指標情報として算出される。
 1つの指標情報として避航操船の開始タイミングの遅れ(指標情報E)が挙げられる。避航操船の開始タイミングが遅れると、危険が差し迫っているものと推定される。そこで、避航操船の開始タイミングの遅れが指標情報として算出される。
 統合リスク算出結果情報146は、ベースリスク値と各種指標情報とを組み合わせて統合的なリスク値を算出した結果を示す情報である。統合リスク算出結果情報146は、船舶の組ごとに示される。なお、統合リスク算出結果情報146は、統合リスク算出部156によって算出される。
 制御部15は、CPU(Central Processing Unit)などの電子回路に対応する。そして、制御部15は、各種の処理手順を規定したプログラムや制御データを格納するための内部メモリを有し、これらによって種々の処理を実行する。制御部15は、データ取得部151、データ補完部152、ベースリスク算出部153、極大時点算出部154、指標情報算出部155、統合リスク算出部156および出力部157を有する。なお、ベースリスク算出部153は、第1の算出部の一例である。指標情報算出部155は、特定部、抽出部および第2の算出部の一例である。統合リスク算出部156は、補正部の一例である。
 データ取得部151は、各種のデータを取得する。例えば、データ取得部151は、無線通信装置20を介して各船舶からAIS情報を取得する。データ取得部151は、取得したAIS情報をAIS蓄積データ141に格納する。なお、データ取得部151は、各船舶からAIS情報を取得すると説明したが、これに限定されない。AIS情報は、ストレージ装置やクラウドなど外部の記憶装置に記憶されていても良い。かかる場合には、データ取得部151は、外部の記憶装置から、各船舶のAIS情報を取得しても良い。
 データ補完部152は、AIS蓄積データ141内のAIS情報を所定期間間隔に補完する。例えば、データ補完部152は、AIS蓄積データ141内のAIS情報を、船舶ごとに、一例として1秒間隔で補完する。AIS蓄積データ141内のAIS情報を所定期間間隔で補完するのは、以下の理由による。各船舶からAIS情報が送信されるが、各船舶でAIS情報が送信される周期が異なったり、同一船舶であってもAIS情報が非同期で送信されたりするので、各船舶でAIS情報の日時を合わせるためである。1秒間隔の補完は、AIS蓄積データ141に既に存在するAIS情報とAIS情報との間を線形となるように内挿補完すれば良い。そして、データ補完部152は、補完後のAIS蓄積データ141´を、船舶ごとに、一例として10秒ごととなるようにAIS情報を間引き、間引いた残りのAIS情報を補完済みAISデータ142に格納する。AIS情報を間引くのは、データ量が多くなるのを抑制するためである。
 ここで、データ補完部152が行うデータ補完処理の一例を、図6を参照して説明する。図6は、実施例に係るデータ補完処理の一例を示す図である。なお、図6では、図2で示すAIS蓄積データ141内のAIS情報を10秒間隔で補完する場合について説明する。図6上図に示すテーブルの強調した情報は、AIS蓄積データ141に既に存在するAIS情報である。
 このような状況の下で、データ補完部152は、AIS蓄積データ141内のAIS情報を1秒間隔で補完する。補完後のAIS蓄積データ141´が生成される。ここでは、データ補完部152は、「2015/7/9 14:00:00」のAIS情報と「2015/7/9 14:00:18」のAIS情報との間を内挿補完する。また、データ補完部152は、「2015/7/9 14:00:19」のAIS情報と「2015/7/9 14:00:27」のAIS情報との間を内挿補完する。
 そして、データ補完部152は、補完後のAIS蓄積データ141´を、船舶ごとに、10秒ごととなるようにAIS情報を間引く。間引いた残りのAIS情報が、補完済みAISデータ142に格納される。ここでは、データ補完部152は、「2015/7/9 14:00:00」から10秒ごととなるようにAIS情報を間引き、図6下図に示す補完済みAISデータ142を生成する。
 図1に戻って、ベースリスク算出部153は、全ての船舶の組の全ての時点でのベースリスク値を算出する。例えば、ベースリスク算出部153は、ユーザからベースリスクを算出する期間および海域の指示を受け取ると、補完済みAISデータ142を参照し、指示された期間に指示された海域で航行していた全ての船舶の組を抽出する。ベースリスク算出部153は、抽出した全ての船舶の組について、指示された期間の全ての時点でのベースリスク値を算出する。それぞれのベースリスク値は、前述した所定の手法で算出されれば良い。そして、ベースリスク算出部153は、算出したそれぞれのベースリスク値をベースリスク情報143に格納する。
 極大時点算出部154は、船舶の組ごとに、各時点で算出されたベースリスク値の極大時点を算出する。例えば、極大時点算出部154は、船舶の組を順次選択する。極大時点算出部154は、ベースリスク情報143から選択した船舶の組における各時点のベースリスク値を抽出する。極大時点算出部154は、各時点のベースリスク値の全区間から予め定められた閾値を超える区間を抽出する。ここでいう閾値とは、ニアミス状態と予測される場合とニアミス状態でない状態と予測される場合との境界のベースリスク値のことをいう。閾値は、予めユーザによって定められるが、適宜修正可能である。極大時点算出部154は、抽出した区間でベースリスク値が極大となる時点を算出する。かかる極大となる時点が、選択した組の2つの船舶のニアミス状態候補の時点である。そして、極大時点算出部154は、ベースリスク値が極大となる時点およびベースリスク値を船舶の組とともに極大時点情報144に格納する。
 ここで、極大時点算出部154が行う極大時点算出処理を、図7を参照して説明する。図7は、実施例に係る極大時点算出処理を説明する図である。図7では、ある船舶の組におけるベースリスク値の変遷を示すグラフが表されている。すなわち、グラフのX軸には、時間が表わされ、グラフのY軸には、ベースリスク値が表わされている。
 極大時点算出部154は、各時点のベースリスク値の全区間から予め定められた閾値を超える区間を抽出する。ここでは、符号c0で示される区間が抽出される。そして、極大時点算出部154は、抽出した区間でベースリスク値が極大となる時点を算出する。ここでは、符号c1で示される極大点の時刻が極大となる時点として算出される。かかる極大となる時点が、選択した組の2つの船舶のニアミス状態候補の時点である。
 図1に戻って、指標情報算出部155は、ベースリスク値が極大となる時点の前または前後の時間範囲のAIS情報を用いて、ベースリスク値に対応する2つの船舶における避航操船の程度やタイミングを定量化した指標情報を算出する。
 1つの例として、指標情報算出部155は、避航操船の際の船舶の向き(対地針路)の変化の度合いを指標情報(A)として算出する。例えば、指標情報算出部155は、極大時点算出部154によって算出されたベースリスク値が極大となる時点の前の一定期間を特定する。指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶について、特定した一定期間の中で船舶の向きの変化量を行動パターンとして抽出する。そして、指標情報算出部155は、船舶の向きの変化量の絶対値を算出し、一定期間の幅で船舶の向きの変化量の絶対値の移動平均を行動パターンの度合いとして算出する。
 すなわち、指標情報算出部155は、ベースリスク値が極大となる時点以前の一定期間について、各時点における、避航操船の際の船舶の向きの変化の度合いを指標情報(A)として定量化する。なお、指標情報算出部155は、極大時点算出部154によって算出されたベースリスク値が極大となる時点の前の一定期間を用いて、避航操船の際の船舶の向きの変化の度合いを算出したが、これに限定されない。船舶が避航操船をした場合には、避航後に元のコースに復帰するため、ベースリスク値が極大となる時点の前後を含む一定期間も用いて、避航操船の際の船舶の向きの変化の度合いを算出しても良い。
 別の例として、指標情報算出部155は、避航操船の際の減速度を指標情報(B)として算出する。例えば、指標情報算出部155は、極大時点算出部154によって算出されたベースリスク値が極大となる時点の前の一定期間を特定する。指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶について、特定した一定期間の中で船舶の速度の変化量(減速度)を行動パターンとして抽出する。指標情報算出部155は、船舶の速度の変化量(減速度)の絶対値を算出し、一定期間の幅で船舶の減速度の絶対値の移動平均を行動パターンの度合いとして算出する。
 すなわち、指標情報算出部155は、ベースリスク値が極大となる時点以前の一定期間について、各時点における、避航操船の際の船舶の減速度を指標情報(B)として定量化する。
 別の例として、指標情報算出部155は、避航操船を行う船舶の数を指標情報(C)として算出する。例えば、指標情報算出部155は、近接する2つの船舶について、それぞれの行動パターンの度合いを算出する。行動パターンの度合いは、指標情報(A)や指標情報(B)のどちらか一方または双方のことをいう。指標情報算出部155は、近接する2つの船舶に対応するベースリスク値が極大となる時点のそれぞれの行動パターンの度合いが閾値を超えているか否かを判定する。ここでいう閾値とは、衝突を避ける避航操船であるかどうかを判断する値である。そして、指標情報算出部155は、ベースリスク値が極大となる時点の行動パターンの度合いが閾値を超えている船舶を、衝突を避ける避航操船の船舶であると推定する。そして、指標情報算出部155は、推定の結果、避航操船の船舶の数を指標情報(C)として算出する。
 別の例として、指標情報算出部155は、COLREG条約によって定められた海上における衝突防止のためのルールから逸脱しているか否かを指標情報(D)として算出する。例えば、指標情報算出部155は、当該ルールから逸脱している場合には、「1」を指標情報(D)として算出する。指標情報算出部155は、当該ルールから逸脱していない場合には、「0」を指標情報(D)として算出する。ルールから逸脱しているか否かは、いかなる方法によって定められても良い。
 別の例として、指標情報算出部155は、避航操船の開始タイミングの遅れを指標情報(E)として算出する。例えば、指標情報算出部155は、既存手法により算出されたベースリスク値の、余裕がある避航操船を開始したと推測される閾値を予め取得する。指標情報算出部155は、ベースリスク値に対応する2つの船舶について、それぞれの行動パターンの度合いを算出する。行動パターンの度合いは、指標情報(A)や指標情報(B)のどちらか一方または双方のことをいう。指標情報算出部155は、船舶ごとに、行動パターンの度合いを用いて、衝突を避ける避航操船の開始タイミングを推定する。一例として、指標情報(A)である場合には、船舶の対地針路の変化の絶対値の移動平均、すなわち船舶の向きの変化の度合いが指定した閾値を超えた時点が避航操船の開始タイミングと推定される。指標情報(B)である場合には、減速度の絶対値の移動平均、すなわち船舶の減速の度合いが指定した閾値を超えた時点が避航操船の開始タイミングと推定される。そして、指標情報算出部155は、船舶ごとに、推定した開始タイミングのベースリスク値と、避航操船を開始したと推測されるリスク値の閾値とを用いて、推定した開始タイミングが遅れたか否かを判定する。すなわち、推定した開始タイミングのベースリスク値が閾値を超えていれば、避航操船の開始タイミングが遅れたと判定される。推定した開始タイミングのベースリスク値が閾値を超えていなければ、避航操船の開始タイミングが遅れていないと判定される。そして、指標情報算出部155は、避航操船の開始タイミングが遅れたか否かを判定したとき、避航操船の開始タイミングの遅延期間を指標情報(E)として算出する。避航操船の開始タイミングの遅延期間は、避航操船の開始タイミングと、ベースリスク値と閾値とから得られる余裕がある避航操船の開始タイミングとを用いて算出されれば良い。なお、指標情報算出部155は、避航操船の開始タイミングが遅れていないと判定したとき、「0」を指標情報(E)とすれば良い。
 統合リスク算出部156は、指標情報算出部155によって算出された指標情報と、指標情報ごとに設定される重みとに基づいて、ベースリスク値が極大となる時点以前の一定期間内の各時点の統合リスク値を算出する。すなわち、統合リスク算出部156は、行動パターンの度合いと、行動パターンごとに設定される重みとに基づいて、ベースリスク値を補正する。
 例えば、統合リスク算出部156は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶について、ベースリスク値が極大となる時点の前後の一定期間での最接近距離を算出する。そして、統合リスク算出部156は、最接近距離が衝突の可能性が高いと推定される距離の閾値以下の場合には、「1」を最接近距離フラグとして設定する。統合リスク算出部156は、最接近距離が距離より大きい場合には、「0」を最接近距離フラグとして設定する。
 そして、統合リスク算出部156は、ベースリスク値に対応する対象の船舶について、最接近距離フラグおよび各種指標情報A~Eを重み付けすることにより、統合リスク値を算出する。一例として、統合リスク算出部156は、ベースリスク値に対応する対象の船舶について、以下の式(1)により、統合リスク値Rを算出する。
統合リスク値R=ベースリスク値+最接近距離フラグ×重みW+指標情報A×重みW+指標情報B×重みW+指標情報C×重みW+指標情報D×重みW+指標情報E×重みW・・・式(1)
 なお、各重みは、予めユーザによって定められるが、適宜修正可能である。
 これにより、統合リスク算出部156は、避航操船の程度や避航操船のタイミングを組み込むことで、現場感覚と合致する衝突リスクを算出することが可能となる。また、統合リスク算出部156は、統合リスク値により、極大のベースリスク値に対応するニアミス状態候補が現場感覚でニアミス状態であるか、ニアミス状態でないかを判定することが可能となる。
 出力部157は、統合リスク値を出力する。
 例えば、出力部157は、船舶の組ごとに、日時と、船舶ID#1、船舶ID#2、ベースリスク値と、統合リスク値とを対応付けて統合リスク算出結果情報146に格納する。なお、各種指標情報が付加されても良い。
 また、出力部157は、特定エリアでの船舶の航跡情報を表示部13に表示する。そして、出力部157は、船舶の航跡情報から2つの船舶を選択する。そして、出力部157は、統合リスク算出結果情報146を参照して、選択された2つの船舶の統合リスク値の時間変化を表示する。なお、2つの船舶は、例えば、ユーザによって選択されれば良い。
[統合リスク算出結果情報のデータ構成の一例]
 ここで、統合リスク算出結果情報146のデータ構成の一例を、図8を参照して説明する。図8は、実施例に係る統合リスク算出結果情報のデータ構成の一例を示す図である。図8に示すように、統合リスク算出結果情報146は、日時、船舶ID#1、船舶ID#2、ベースリスク値および統合リスク値を対応付けた情報である。ベースリスク値は、ベースリスク情報143の、日時、船舶ID#1および船舶ID#2に対応するベースリスク値と一致する。統合リスク値は、ある日時の船舶ID#1および船舶ID#2に対応するベースリスク値を補正したリスク値である。
 一例として、日時が「2015/7/9 14:14:50」である場合に、船舶ID#1として「A」、船舶ID#2として「B」、ベースリスク値として「0.55」および統合リスク値として「4.5」を記憶している。日時が「2015/7/9 14:15:10」である場合に、船舶ID#1として「A」、船舶ID#2として「B」、ベースリスク値として「0.7」および統合リスク値として「5.5」を記憶している。
[指標算出処理の一例]
 ここで、実施例に係る指標算出処理を、図9A~図9Dを参照して説明する。図9A~図9Dは、実施例に係る指標算出処理を説明する図である。
[指標情報(A)の場合]
 図9Aでは、指標情報算出部155が、避航操船の際の船舶の向き(対地針路)の変化の度合いを指標情報(A)として算出する場合を説明する。図9A左図には、船舶Xおよび船舶Yのそれぞれの移動軌跡が表わされている。船舶Xと船舶Yとの間のベースリスク値が極大となる時点が丸で表わされている。ベースリスク値が極大となる時点は、極大時点算出部154によって算出される。なお、図9Aでは、ベースリスク値が極大となる時点の前後の一定期間を用いて指標情報(A)が算出される場合を説明する。
 図9A右上図に示すように、このような状況の下、船舶Xの時間ごとの船舶の向き(対地針路)がグラフに表わされている。点線で示される時点が、船舶Xと船舶Yとの間のベースリスク値が極大となる時点t0である。指標情報算出部155は、ベースリスク値が極大となる時点t0の前後の一定期間を特定する。
 図9A中図に示すように、指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶Xについて、特定した一定期間の中で船舶の向き(対地針路)の変化量を行動パターンとして抽出する。すなわち、指標情報算出部155は、対地針路の時間階差を計算する。ここでは、船舶Xの対地針路の変化がグラフに示されている。
 図9A下図に示すように、指標情報算出部155は、船舶の向き(対地針路)の変化量の絶対値を算出し、一定期間の幅(一定のウィンドウ幅)で絶対値の移動平均を行動パターンの度合いとして算出する。すなわち、指標情報算出部155は、避航操船の際の船舶の向き(対地針路)の変化の度合いを指標情報(A)として定量化する。ここでは、符号A0が、ベースリスク値が極大となる時点t0における船舶Xの向き(対地針路)の変化の絶対値の移動平均となる。
[指標情報(B)の場合]
 図9Bでは、指標情報算出部155が、避航操船の際の減速度を指標情報(B)として算出する場合を説明する。図9B左図には、船舶Xおよび船舶Yのそれぞれの移動軌跡が表わされている。矢印の長さの差異は、速度の差異を表わす。矢印の長さが短ければ短い程、速度が遅いことを表す。ここでは、船舶Xが減速している場合である。また、船舶Xと船舶Yとの間のベースリスク値が極大となる時点が丸で表わされている。ベースリスク値が極大となる時点は、極大時点算出部154によって算出される。
 図9B右上図に示すように、このような状況の下、船舶Xの時間ごとの対地速度がグラフに表わされている。点線で示される時点が、船舶Xと船舶Yとの間のベースリスク値が極大となる時点t0である。指標情報算出部155は、ベースリスク値が極大となる時点t0の前の一定期間を特定する。
 図9B中図に示すように、指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶について、特定した一定期間の中で船舶Xの対地速度の変化量(減速度)を行動パターンとして抽出する。すなわち、指標情報算出部155は、対地速度の時間階差を計算する。ここでは、船舶Xの対地速度の変化がグラフに示されている。
 図9B下図に示すように、指標情報算出部155は、指標情報算出部155は、船舶の速度の変化量(減速度)の絶対値を算出し、一定期間の幅(一定のウィンドウ幅)で船舶Xの減速度の絶対値の移動平均を行動パターンの度合いとして算出する。すなわち、指標情報算出部155は、避航操船の際の船舶の減速度を指標情報(B)として定量化する、ここでは、符号B0が、ベースリスク値が極大となる時点t0における船舶Xの対地速度の絶対値の移動平均となる。
[指標情報(C)の場合]
 図9Cでは、指標情報算出部155が、避航操船を行う船舶の数を指標情報(C)として算出する場合を説明する。図9C左図には、船舶Xおよび船舶Yのそれぞれの移動軌跡が表わされている。船舶Xと船舶Yとの間のベースリスク値が極大となる時点が丸で表わされている。両矢印で示す幅は、船舶同士が近接しているかどうかの距離の閾値である。ここでは、かかる極大となる時点前後で船舶Xおよび船舶Yが近接している。
 このような状況の下、指標情報算出部155は、近接する2つの船舶X,Yについて、それぞれの行動パターンの度合いを算出する。ここでは、行動パターンの度合いとして、船舶の対地針路(向き)の変化の絶対値の移動平均を示す指標情報(A)が用いられるとする。図9C右上図には、船舶Xの時間ごとの対地針路(向き)における変化の絶対値の移動平均のグラフが表わされている。図9C右下図には、船舶Yの時間ごとの対地針路(向き)における変化の絶対値の移動平均のグラフが表わされている。
 指標情報算出部155は、近接する2つの船舶X,Yに対応するベースリスク値が極大となる時点t0の船舶Xの行動パターンの度合いが閾値L0を超えているか否かを判定する。閾値L0は、衝突を避ける避航操船であるかどうかを判断する値である。言い換えれば、閾値L0は、針路変更による避航の度合いが大きいかどうかを判断するための閾値である。ここでは、図9C右上図に示すように、ベースリスク値が極大となる時点t0の船舶Xの行動パターンの度合いC0は、閾値L0を超えている。
 また、指標情報算出部155は、近接する2つの船舶X,Yに対応するベースリスク値が極大となる時点t0の船舶Yの行動パターンの度合いが閾値L0を超えているか否かを判定する。ここでは、図9C右下図に示すように、ベースリスク値が極大となる時点t0の船舶Yの行動パターンの度合いC0は、閾値L0を超えている。
 そして、指標情報算出部155は、ベースリスク値が極大となる時点t0の行動パターンの度合いが閾値Lを超えている船舶を、衝突を避ける避航操船の船舶であると推定する。ここでは、船舶X、Yの両船について、行動パターンの度合いが閾値Lを超えているので、両船舶X,Yが避航操船の船舶であると推定される。そして、指標情報算出部155は、避航操船の船舶の数「2」を指標情報(C)として算出する。
[指標情報(D)の場合]
 図9Dでは、指標情報算出部155が、避航操船の開始タイミングの遅れを指標情報(E)として算出する場合を説明する。図9D左図は、避航操船の開始タイミングに余裕がある場合の一例であり、図9D右図は、避航操船の開始タイミングに余裕がない場合の一例である。
 図9D左図に示すように、指標情報算出部155は、ベースリスク値に対応する船舶について、行動パターンの度合いを算出する。ここでは、行動パターンの度合いとして、船舶の対地針路の変化の絶対値の移動平均(船舶の向きの変化の度合い)を示す指標情報(A)が用いられるとする。
 指標情報算出部155は、ベースリスク値が極大となる時点t0の直前一定期間で、船舶の対地針路の変化の絶対値の移動平均、すなわち船の向きの変化の度合いが指定した閾値を超えた時点を抽出する。ここでは、船舶の対地針路の変化の絶対値の移動平均が、指定した閾値L2を超える時点t1を抽出する。したがって、かかる時点t1が避航操船の開始タイミングと推定される。指標情報算出部155は、推定した開始タイミングt1に対応するベースリスク値E0と、避航操船を開始したと推測される閾値(余裕がある避航操船を開始する際のベースリスク値の閾値)L1とを用いて、推定した開始タイミングが遅れたか否かを判定する。ここでは、推定した開始タイミングt1のベースリスク値E0が閾値L1を超えていないので、推定した開始タイミングが遅れていない、すなわち、避航操船の開始タイミングに余裕があると判定される。そこで、指標情報算出部155は、「0」を指標情報(E)として設定する。
 これに対して、図9D右図に示すように、指標情報算出部155は、ベースリスク値が極大となる時点t0の直前一定期間で、船舶の対地針路の変化の絶対値の移動平均、すなわち船の向きの変化の度合いが指定した閾値を超えた時点を抽出する。ここでは、船舶の対地針路の変化の絶対値の移動平均が、指定した閾値L2を超える時点t3を抽出する。したがって、かかる時点t3が避航操船の開始タイミングと推定される。指標情報算出部155は、推定した開始タイミングt3のベースリスク値E1と、閾値L1とを用いて、推定した開始タイミングが遅れたか否かを判定する。ここでは、推定した開始タイミングt3に対応するベースリスク値E1が閾値L1を超えているので、推定した開始タイミングが遅れている、すなわち、避航操船の開始タイミングに余裕がないと判定される。そこで、指標情報算出部155は、避航操船の開始タイミングの遅延期間を指標情報(E)として算出する。避航操船の開始タイミングの遅延期間は、避航操船の開始タイミングt3から、ベースリスク値と閾値L1とから得られる余裕がある避航操船の開始タイミングt2を減算すれば良い。
[出力処理による表示の一例]
 図10は、実施例に係る出力処理による表示の一例を示す図である。なお、図10上図には、表示部13に表示された、特定の領域且つ特定の期間の船舶の移動軌跡が表わされている。矢印が船舶である。
 ここで、ユーザが符号d1の船舶と符号d2の船舶とを選択するとする。すると、出力部157は、統合リスク算出結果情報146を参照して、選択された2つの船舶d1,d2に対応する、特定の期間における各時点の統合リスク値の時間変化を表示部13に表示する。図10下図に示すように、例えば、グラフg1が、選択された2つの船舶d1,d2に対応する統合リスク値の時間変化のグラフとなる。
[極大時点算出処理のフローチャート]
 図11は、実施例に係る極大時点算出処理のフローチャートの一例を示す図である。なお、AIS蓄積データ141が記憶部14に記憶されているとする。
 データ補完部152は、AIS蓄積データ141の位置(経度、緯度)、速度、向き(針路)の情報を補完する(ステップS11)。例えば、データ補完部152は、AIS蓄積データ141は、一例として、AIS蓄積データ141内のAIS情報を、船舶ごとに、一例として1秒間隔で補完する。そして、データ補完部152は、補完後のAIS蓄積データ141´を、船舶ごとに、一例として10秒ごととなるようにAIS情報を間引き、間引いた残りのAIS情報を補完済みAISデータ142に格納する。
 そして、ベースリスク算出部153は、全ての船舶のペアの全ての時点でのベースリスク値を算出する(ステップS12)。例えば、ベースリスク算出部153は、補完済みAISデータ142を参照し、全ての船舶のペアを抽出する。ベースリスク算出部153は、抽出した全ての船舶のペアについて、全ての時点でのベースリスク値を算出する。そして、ベースリスク算出部153は、算出したそれぞれのベースリスク値をベースリスク情報143に格納する。なお、ベースリスク算出部153は、ベースリスク値を算出する期間および海域の全ての船舶のペアの全ての時点でのベースリスク値を算出しても良い。
 そして、極大時点算出部154は、それぞれの船舶のペアの全ての時点でのベースリスク値について、閾値を超える区間を抽出し、ベースリスク値が極大となる時点を算出する(ステップS13)。例えば、極大時点算出部154は、船舶のペアを順次選択する。極大時点算出部154は、ベースリスク情報143から選択した船舶のペアにおける各時点のベースリスク値を抽出する。極大時点算出部154は、各時点のベースリスク値の全区間から予め定められた閾値を超える区間を抽出する。極大時点算出部154は、抽出した区間でベースリスク値が極大となる時点を算出する。そして、極大時点算出部154は、ベースリスク値が極大となる時点およびベースリスク値を船舶のペアとともに極大時点情報144に格納する。そして、極大時点算出部154は、極大時点算出処理を終了する。
[指標情報算出処理のフローチャート]
 図12は、実施例に係る指標情報算出処理のフローチャートの一例を示す図である。なお、図12のフローチャートでは、1つの船舶のペアに対する指標情報算出処理について説明する。
 図12に示すように、指標情報算出部155は、極大時点の前後一定期間前後一定期間の船舶の向きの変化の度合い(A)を算出する(ステップS21)。例えば、指標情報算出部155は、ベースリスク値が極大となる時点の前後の一定期間を特定する。指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応するペアの船舶について、特定した一定期間の中で船舶の向きの変化量を行動パターンとして抽出する。指標情報算出部155は、船舶の向きの変化量の絶対値を算出し、一定期間幅で船舶の向きの変化量の絶対値の移動平均を行動パターンの度合いとして算出する。すなわち、指標情報算出部155は、避航操船の際の船舶の向きの変化の度合いを指標情報(A)として定量化する。
 そして、指標情報算出部155は、極大時点の直前一定期間の船舶の減速度(B)を算出する(ステップS22)。例えば、指標情報算出部155は、ベースリスク値が極大となる時点の前の一定期間を特定する。指標情報算出部155は、補完済みAISデータ142を参照して、ベースリスク値に対応するペアの船舶について、特定した一定期間の中で船舶の速度の変化量(減速度)を行動パターンとして抽出する。指標情報算出部155は、船舶の速度の変化量(減速度)の絶対値を算出し、一定期間幅で船舶の減速度の絶対値の移動平均を行動パターンの度合いとして算出する。すなわち、指標情報算出部155は、避航操船の際の船舶の減速度を指標情報(B)として定量化する。
 そして、指標情報算出部155は、極大時点の前後一定期間の中で、近接する複数の船舶のうち避航操船(向きの変化が大きい、または減速度が大きい)の船舶の数(C)を算出する。例えば、指標情報算出部155は、近接する2つの船舶について、それぞれの行動パターンの度合いを算出する。行動パターンの度合いは、指標情報(A)や指標情報(B)のことである。指標情報算出部155は、近接するペアの船舶に対応するベースリスク値が極大となる時点のそれぞれの行動パターンの度合いが閾値を超えているか否かを判定する。そして、指標情報算出部155は、ベースリスク値が極大となる時点の行動パターンの度合いが閾値を超えている船舶を、避航操船の船舶であると推定する。そして、指標情報算出部155は、避航操船の船舶の数を指標情報(C)として算出する。
 そして、指標情報算出部155は、極大時点の前後一定期間の中で、避航操船(向きの変化が大きい、または減速度が大きい)が検出されているケースについて、船舶の関係に応じて定まるルールに適合しているかどうか(D)を判定する(ステップS24)。例えば、指標情報算出部155は、COLREG条約によって定められた海上における衝突防止のためのルールから逸脱している場合には、「1」を指標情報(D)として算出する。指標情報算出部155は、当該ルールから逸脱していない場合には、「0」を指標情報(D)として算出する。
 そして、指標情報算出部155は、極大時点の直前一定期間において、船舶の向きや減速度が大きく変化する時点におけるベースリスク値が、標準の避航開始の閾値を超えているかどうか(E)を判定する(ステップS25)。例えば、指標情報算出部155は、ベースリスク値に対応するペアの船舶について、それぞれの行動パターンの度合いを算出する。行動パターンの度合いは、指標情報(A)や指標情報(B)のことである。指標情報算出部155は、それぞれの行動パターンの度合いを用いて、衝突を避ける避航操船の開始タイミングを推定する。そして、指標情報算出部155は、船舶ごとに、推定した開始タイミングに対応するベースリスク値と、標準の避航開始の閾値とを用いて、推定した開始タイミングが遅れているかどうかを判定する。そして、指標情報算出部155は、開始タイミングが遅れていると判定する場合には、遅延期間を指標情報(E)として算出する。
 そして、指標情報算出部155は、指標情報算出処理を終了する。
[統合リスク算出処理のフローチャート]
 図13は、実施例に係る統合リスク算出処理のフローチャートの一例を示す図である。なお、図13のフローチャートでは、1つの船舶のペアに対する統合リスク算出処理について説明する。
 図13に示すように、統合リスク算出部156は、極大時点の前後一定期間での最接近距離を算出する(ステップS31)。例えば、統合リスク算出部156は、補完済みAISデータ142を参照して、ベースリスク値に対応する対象の船舶について、ベースリスク値が極大となる時点の前後の一定期間での最接近距離を算出する。そして、統合リスク算出部156は、最接近距離が衝突の可能性が高いと推定される距離の閾値以下の場合には、「1」を最接近距離フラグとして設定する。統合リスク算出部156は、最接近距離が距離より大きい場合には、「0」を最接近距離フラグとして設定する。
 そして、統合リスク算出部156は、ベースリスク値に、最接近距離および避航操船に関わる指標情報(A~E)を重み付け加算した統合リスク値を算出する(ステップS32)。例えば、統合リスク算出部156は、式(1)を用いて、ベースリスク値を補正した統合リスク値を算出する。そして、出力部157は、ベースリスク値に対応する船舶のペアについて、日時と、船舶ID#1、船舶ID#2、ベースリスク値と、統合リスク値とを対応付けて統合リスク算出結果情報146に格納する。
 そして、統合リスク算出部156は、統合リスク算出処理を終了する。
 これにより、統合リスク算出部156は、ベースリスク値を、避航操船の程度やタイミングを組み込んだ統合リスク値に補正することで、現場感覚に合致する衝突リスクを算出することが可能となる。
 なお、統合リスク値を利用して各種処理が行われても良い。例えば、1つの処理として、統合リスク値を利用して過去の不安全航行の要因分析を行う場合が挙げられる。また、別の処理として、統合リスク値が高い船舶の組の航路を再現して船長や管制官の訓練に用いる場合が挙げられる。ここでは、統合リスク値を利用して過去の不安全航行の要因分析を行う場合のフローチャートを、図14を参照して説明する。
[統合リスク値を利用した処理のフローチャート]
 図14は、実施例に係る統合リスク値を利用した処理のフローチャートの一例を示す図である。図14に示すように、制御部15は、統合リスク算出結果情報146を参照して、所定値以上の統合リスク値を抽出する(ステップS41)。制御部15は、抽出した統合リスク値および各種の情報を用いて、衝突リスクの要因分析を行う(ステップS42)。各種の情報には、例えば、統合リスク算出結果情報146、地図情報、気象・海象の履歴情報や当直の情報などが挙げられる。そして、制御部15は、要因分析した結果を出力する(ステップS43)。
 ここで、実施例に係る統合リスク値を用いることで、現場感覚に合致する事例を、図15Aおよび図15Bを参照して説明する。図15Aおよび図15Bは、統合リスクが現場感覚と合致する事例を示す図である。なお、丸の中の矢印は、船舶を表す。
 図15Aでは、指標情報Aおよび指標情報Cの組合せを用いた事例である。符号i1で表す船舶が1回転して避航しており、指標情報Aの船舶の向きの変化の度合いが大きい値となっている。また、符号i1で表す船舶と符号i2で表す船舶とが同時に避航を行っている場合であるので、指標情報Cの避航操船を行う船の数が「2」となる。したがって、ベースリスク値に加算される指標情報Aに関わる値および指標情報Cに関わる値が大きくなり、統合リスク値からニアミス状態であると判断される。これは、現場感覚でも、衝突リスクが大きいと判断されるので、統合リスクが現場感覚と合致する事例である。
 図15Bでは、指標情報Bの事例である。符号j1で表す船舶を避けるために符号j2で表す船舶が急減速をしているとする。符号j1で表す船舶と符号j2で表す船舶とは、最接近距離が短くないが、現場感覚では、標準的でない避航操船のパターンである。ここでは、ベースリスク値に加算される指標情報Bに関わる値が大きくなり、統合リスク値からニアミス状態であると判断される。これは、現場感覚でも、衝突リスクが大きいと判断されるので、統合リスクが現場感覚と合致する事例である。
[実施例の効果]
 上記実施例によれば、衝突リスク算出装置10は、第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の前記第1の船舶と前記第2の船舶との衝突に関するリスク値を算出する。衝突リスク算出装置10は、算出したリスク値から、最大になるリスク値より前の時間範囲を特定する。衝突リスク算出装置10は、航跡データの中から、時間範囲における第1の船舶および第2の船舶の一方または両方の行動パターンを抽出する。衝突リスク算出装置10は、行動パターンに基づき、第1の船舶および第2の船舶の一方または両方の行動パターンの度合いを算出する。衝突リスク算出装置10は、行動パターンの度合いと、行動パターンごとに設定される重みとに基づいて、リスク値を補正する。かかる構成によれば、衝突リスク算出装置10は、船舶の行動パターンの度合いを用いて衝突に関するリスク値を補正することで、現場感覚と合致するリスク値を算出することが可能になる。
 また、上記実施例によれば、衝突リスク算出装置10は、第1の船舶および前記第2の船舶の一方または両方について、船舶の向きの変化量を前記行動パターンとして抽出する。衝突リスク算出装置10は、最大になるリスク値より前の時間範囲の船舶の向きの変化量の絶対値の総和を行動パターンの度合いとして算出する。かかる構成によれば、衝突リスク算出装置10は、船舶の向きの変化から避航操船の程度を定量化できる。
 また、上記実施例によれば、衝突リスク算出装置10は、第1の船舶および第2の船舶の一方または両方について、船舶の速度の変化量を前記行動パターンとして抽出する。衝突リスク算出装置10は、最大になるリスク値より前の時間範囲の船舶の速度の変化量の絶対値の平均を前記行動パターンの度合いとして算出する。かかる構成によれば、衝突リスク算出装置10は、船舶の速度の変化から避航操船の程度を定量化できる。
 また、上記実施例によれば、衝突リスク算出装置10は、第1の船舶および第2の船舶それぞれについて、行動パターンの度合いを用いて、衝突を避ける航行であることを示す船舶を推定する。衝突リスク算出装置10は、さらに、該推定した船舶の数を含んで、リスク値を補正する。かかる構成によれば、衝突リスク算出装置10は、避航操船の船舶の数を用いることで、さらに精度良くリスク値を補正できる。
 また、上記実施例によれば、衝突リスク算出装置10は、第1の船舶および第2の船舶それぞれについて、行動パターンの度合いを用いて、衝突を避ける航行の開始タイミングを推定する。衝突リスク算出装置10は、推定した開始タイミングと、リスク値から得られる衝突を避ける航行の開始タイミングとを用いて、推定した開始タイミングの遅れを算出する。そして、衝突リスク算出装置10は、さらに、該算出した開始タイミングの遅れを含んで、リスク値を補正する。かかる構成によれば、衝突リスク算出装置10は、避航操船のタイミングの遅れを用いることで、さらに精度良くリスク値を補正できる。
[その他]
 なお、図示した衝突リスク算出装置10の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、衝突リスク算出装置10の分散・統合の具体的態様は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、データ補完部152と、ベースリスク算出部153とを1つの部として統合しても良い。また、指標情報算出部155を、各種指標情報をそれぞれ算出する算出部に分離しても良い。また、記憶部14を衝突リスク算出装置10の外部装置としてネットワーク経由で接続するようにしても良い。
 また、上記実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図1に示した衝突リスク算出装置10と同様の機能を実現する衝突リスク算出プログラムを実行するコンピュータの一例を説明する。図16は、衝突リスク算出プログラムを実行するコンピュータの一例を示す図である。
 図16に示すように、コンピュータ200は、各種演算処理を実行するCPU203と、ユーザからのデータの入力を受け付ける入力装置215と、表示装置209を制御する表示制御部207とを有する。また、コンピュータ200は、記憶媒体からプログラムなどを読取るドライブ装置213と、ネットワークを介して他のコンピュータとの間でデータの授受を行う通信制御部217とを有する。また、コンピュータ200は、各種情報を一時記憶するメモリ201と、HDD(Hard Disk Drive)205を有する。そして、メモリ201、CPU203、HDD205、表示制御部207、ドライブ装置213、入力装置215、通信制御部217は、バス219で接続されている。
 ドライブ装置213は、例えばリムーバブルディスク210用の装置である。HDD205は、衝突リスク算出プログラム205aおよび衝突リスク算出関連情報205bを記憶する。
 CPU203は、衝突リスク算出プログラム205aを読み出して、メモリ201に展開し、プロセスとして実行する。かかるプロセスは、衝突リスク算出装置10の各機能部に対応する。衝突リスク算出関連情報205bは、AIS蓄積データ141、補完済みAISデータ142、ベースリスク情報143、極大時点情報144、指標情報145および統合リスク算出結果情報146に対応する。そして、例えばリムーバブルディスク210が、衝突リスク算出プログラム205aなどの各情報を記憶する。
 なお、衝突リスク算出プログラム205aについては、必ずしも最初からHDD205に記憶させておかなくても良い。例えば、コンピュータ200に挿入されるフレキシブルディスク(FD)、CD-ROM(Compact Disk Read Only Memory)、DVD(Digital Versatile Disk)、光磁気ディスク、IC(Integrated Circuit)カードなどの「可搬用の物理媒体」に当該プログラムを記憶させておく。そして、コンピュータ200がこれらから衝突リスク算出プログラム205aを読み出して実行するようにしても良い。
 10 衝突リスク算出装置
 11 外部I/F部
 12 入力部
 13 表示部
 14 記憶部
 141 AIS蓄積データ
 142 補完済みAISデータ
 143 ベースリスク情報
 144 極大時点情報
 145 指標情報
 146 統合リスク算出結果情報
 15 制御部
 151 データ取得部
 152 データ補完部
 153 ベースリスク算出部
 154 極大時点算出部
 155 指標情報算出部
 156 統合リスク算出部
 157 出力部
 20 無線通信装置

Claims (7)

  1.  第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の前記第1の船舶と前記第2の船舶との衝突に関するリスク値を算出し、
     前記リスク値から、最大になるリスク値より前の時間範囲を特定し、
     前記航跡データの中から、前記時間範囲における前記第1の船舶および前記第2の船舶の一方または両方の行動パターンを抽出し、
     前記行動パターンに基づき、前記第1の船舶および前記第2の船舶の一方または両方の行動パターンの度合いを算出し、
     前記行動パターンの度合いと、前記行動パターンごとに設定される重みとに基づいて、前記リスク値を補正する
     処理をコンピュータが実行することを特徴とする衝突リスク算出方法。
  2.  前記抽出する処理は、前記第1の船舶および前記第2の船舶の一方または両方について、船舶の向きの変化量を前記行動パターンとして抽出し、
     前記算出する処理は、前記時間範囲の船舶の向きの変化量の絶対値の総和を前記行動パターンの度合いとして算出する
     ことを特徴とする請求項1に記載の衝突リスク算出方法。
  3.  前記抽出する処理は、前記第1の船舶および前記第2の船舶の一方または両方について、船舶の速度の変化量を前記行動パターンとして抽出し、
     前記算出する処理は、該特定する時間範囲の船舶の速度の変化量の絶対値の平均を前記行動パターンの度合いとして算出する
     ことを特徴とする請求項1に記載の衝突リスク算出方法。
  4.  前記第1の船舶および前記第2の船舶それぞれについて、前記行動パターンの度合いを用いて、衝突を避ける航行であることを示す船舶を推定し、
     該補正する処理は、さらに、該推定した船舶の数を含んで、前記リスク値を補正する
     ことを特徴とする請求項1に記載の衝突リスク算出方法。
  5.  前記第1の船舶および前記第2の船舶それぞれについて、前記行動パターンの度合いを用いて、衝突を避ける航行の開始タイミングを推定し、
     前記推定した開始タイミングと、前記リスク値から得られる衝突を避ける航行の開始タイミングとを用いて、前記推定した開始タイミングの遅れを算出する
     該補正する処理は、さらに、該算出した開始タイミングの遅れを含んで、前記リスク値を補正する
     ことを特徴とする請求項4に記載の衝突リスク算出方法。
  6.  第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の前記第1の船舶と前記第2の船舶との衝突に関するリスク値を算出し、
     前記リスク値から、最大になるリスク値より前の時間範囲を特定し、
     前記航跡データの中から、前記時間範囲における前記第1の船舶および前記第2の船舶の一方または両方の行動パターンを抽出し、
     前記行動パターンに基づき、前記第1の船舶および前記第2の船舶の一方または両方の行動パターンの度合いを算出し、
     前記行動パターンの度合いと、前記行動パターンごとに設定される重みとに基づいて、前記リスク値を補正する
     処理をコンピュータに実行させることを特徴とする衝突リスク算出プログラム。
  7.  第1の船舶および第2の船舶それぞれの航跡データを用いて、所定の手法により各時点の前記第1の船舶と前記第2の船舶との衝突に関するリスク値を算出する第1の算出部と、
     前記リスク値から、最大になるリスク値より前の時間範囲を特定する特定部と、
     前記航跡データの中から、前記時間範囲における前記第1の船舶および前記第2の船舶の一方または両方の行動パターンを抽出する抽出部と、
     前記行動パターンに基づき、前記第1の船舶および前記第2の船舶の一方または両方の行動パターンの度合いを算出する第2の算出部と、
     前記行動パターンの度合いと、前記行動パターンごとに設定される重みとに基づいて、前記リスク値を補正する補正部と、
     を有することを特徴とする衝突リスク算出装置。
PCT/JP2019/005688 2019-02-15 2019-02-15 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム WO2020166083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020572057A JP7318667B2 (ja) 2019-02-15 2019-02-15 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
EP19915094.7A EP3926604A4 (en) 2019-02-15 2019-02-15 COLLISION RISK CALCULATION METHOD, COLLISION RISK CALCULATION DEVICE AND COLLISION RISK CALCULATION PROGRAM
PCT/JP2019/005688 WO2020166083A1 (ja) 2019-02-15 2019-02-15 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
US17/391,366 US20210358309A1 (en) 2019-02-15 2021-08-02 Collision risk calculation method, storage medium, and collision risk calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005688 WO2020166083A1 (ja) 2019-02-15 2019-02-15 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/391,366 Continuation US20210358309A1 (en) 2019-02-15 2021-08-02 Collision risk calculation method, storage medium, and collision risk calculation device

Publications (1)

Publication Number Publication Date
WO2020166083A1 true WO2020166083A1 (ja) 2020-08-20

Family

ID=72044461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005688 WO2020166083A1 (ja) 2019-02-15 2019-02-15 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム

Country Status (4)

Country Link
US (1) US20210358309A1 (ja)
EP (1) EP3926604A4 (ja)
JP (1) JP7318667B2 (ja)
WO (1) WO2020166083A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050214A (zh) * 2022-06-07 2022-09-13 兰州大学 一种基于ais数据的船舶碰撞风险预测方法
WO2023233868A1 (ja) * 2022-06-02 2023-12-07 古野電気株式会社 船舶情報共有装置、船舶情報共有方法、及び船舶情報共有システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838313B (zh) * 2021-11-29 2022-02-18 中国民用航空总局第二研究所 一种航向信标航道余隙抖动的障碍物识别方法
CN116029554B (zh) * 2023-02-28 2023-12-15 武汉理工大学 基于受限水域船舶风险评估模型参数校正的风险评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922500A (ja) * 1995-07-07 1997-01-21 Tokimec Inc 避航支援装置
JPH11272999A (ja) * 1998-03-24 1999-10-08 Tokimec Inc 船舶衝突予防援助装置及び船舶衝突予防援助方法
JP2017182730A (ja) 2016-03-31 2017-10-05 富士通株式会社 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
WO2018193595A1 (ja) 2017-04-20 2018-10-25 富士通株式会社 評価プログラム、評価方法および評価装置
WO2018193596A1 (ja) 2017-04-20 2018-10-25 富士通株式会社 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095313B1 (en) * 2008-06-23 2012-01-10 The United States Of America As Represented By The Secretary Of The Navy Method for determining collision risk for collision avoidance systems
EP2386828B1 (en) * 2010-05-12 2013-12-11 Technische Universität Graz Method and system for detection of a zero velocity state of an object
KR101187182B1 (ko) * 2010-12-28 2012-09-28 한국해양연구원 변동행동공간탐색법을 이용한 선박충돌회피 지원 시스템
US10019006B2 (en) * 2015-04-08 2018-07-10 University Of Maryland, College Park Surface vehicle trajectory planning systems, devices, and methods
JP6953108B2 (ja) * 2015-09-08 2021-10-27 古野電気株式会社 情報表示装置及び情報表示方法
EP3729407B1 (en) * 2017-12-22 2022-07-20 Rolls-Royce plc A collision avoidance method and system for marine vessels
JP7052709B2 (ja) * 2018-12-25 2022-04-12 トヨタ自動車株式会社 車両制御装置及び車両制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922500A (ja) * 1995-07-07 1997-01-21 Tokimec Inc 避航支援装置
JPH11272999A (ja) * 1998-03-24 1999-10-08 Tokimec Inc 船舶衝突予防援助装置及び船舶衝突予防援助方法
JP2017182730A (ja) 2016-03-31 2017-10-05 富士通株式会社 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
WO2018193595A1 (ja) 2017-04-20 2018-10-25 富士通株式会社 評価プログラム、評価方法および評価装置
WO2018193596A1 (ja) 2017-04-20 2018-10-25 富士通株式会社 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926604A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233868A1 (ja) * 2022-06-02 2023-12-07 古野電気株式会社 船舶情報共有装置、船舶情報共有方法、及び船舶情報共有システム
CN115050214A (zh) * 2022-06-07 2022-09-13 兰州大学 一种基于ais数据的船舶碰撞风险预测方法
CN115050214B (zh) * 2022-06-07 2023-08-29 兰州大学 一种基于ais数据的船舶碰撞风险预测方法

Also Published As

Publication number Publication date
US20210358309A1 (en) 2021-11-18
JP7318667B2 (ja) 2023-08-01
EP3926604A1 (en) 2021-12-22
EP3926604A4 (en) 2022-02-23
JPWO2020166083A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020166083A1 (ja) 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
KR101647743B1 (ko) 시계열 그래픽 표시를 이용한 선박 충돌회피 안내시스템
JP6646219B2 (ja) 回避行動判定プログラム、回避行動判定方法および回避行動判定装置
CN111971726B (zh) 船舶航行支援装置
JP7250462B2 (ja) 船舶用航行支援装置
JP6627615B2 (ja) 評価プログラム、評価方法および評価装置
JP2012021947A (ja) 航行援助装置
JPH0922499A (ja) 避航支援装置
JP6882243B2 (ja) 避航支援装置
KR101275277B1 (ko) 사각단위항로 생성기법을 이용한 가항항로내 선박 피항 항로 탐색 지원 시스템
KR101658133B1 (ko) 선박의 충돌위험도 산출 시스템
JPH11272999A (ja) 船舶衝突予防援助装置及び船舶衝突予防援助方法
JP2020027344A (ja) 避航支援装置
JP2009014596A (ja) 目標追尾装置及び目標追尾方法
US11862025B2 (en) Method for calculating dangerous spot and time, storage medium, and device for calculating dangerous spot
CN115407785B (zh) 一种船舶避碰控制方法、装置、设备及存储介质
CN116312063A (zh) 一种船舶避让决策方法、装置、设备及介质
JPH07304495A (ja) 避航支援装置
WO2019188530A1 (ja) 捜索支援装置、捜索支援方法、及びコンピュータ読み取り可能な記録媒体
JP6333437B1 (ja) 物体認識処理装置、物体認識処理方法および車両制御システム
CN116215517A (zh) 碰撞检测方法、装置、设备、存储介质和自动驾驶车辆
KR101170094B1 (ko) 다중 선박 충돌회피 제어 시스템
CN115096328B (zh) 车辆的定位方法、装置、电子设备以及存储介质
WO2022091677A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
CN117912303A (zh) 一种船舶智能避碰控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019915094

Country of ref document: EP

Effective date: 20210915