WO2020164536A1 - 数据包承载路径确定、信息发送方法和设备 - Google Patents

数据包承载路径确定、信息发送方法和设备 Download PDF

Info

Publication number
WO2020164536A1
WO2020164536A1 PCT/CN2020/075027 CN2020075027W WO2020164536A1 WO 2020164536 A1 WO2020164536 A1 WO 2020164536A1 CN 2020075027 W CN2020075027 W CN 2020075027W WO 2020164536 A1 WO2020164536 A1 WO 2020164536A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
paths
bearer
information
target
Prior art date
Application number
PCT/CN2020/075027
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020164536A1 publication Critical patent/WO2020164536A1/zh
Priority to US17/395,445 priority Critical patent/US20210368580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections

Definitions

  • the present disclosure relates to the field of communication technology, and more specifically to a method and device for determining and transmitting information of a data packet carrying path.
  • the terminal equipment (User Equipment, UE) side introduces the Radio Bearer (RB) packet data convergence protocol (Packet Data). Convergence Protocol, PDCP) data copy function.
  • the PDCP data replication function refers to the technology that copies the data of the PDCP entity and sends the copied data through multiple (two or more) different paths. For example, the copied data is sent through multiple Radio Link Control (RLC) entities perform transmission, where different RLC entities correspond to different logical channels.
  • RLC Radio Link Control
  • the PDCP data copy function can be configured on the network side.
  • the network side can first configure this function for the RB on the UE side through a radio resource control (Radio Resource Control, RRC) message, and then instruct the activation (open) through the medium access control layer control signaling (Medium Access Control Element, MACCE) Or deactivate (stop) the function of the RB; or, the network side can configure the function through the RRC message to the RB on the UE side while configuring whether the function is activated immediately after configuration through the RRC message, that is, it is not required This function is additionally activated through MAC CE signaling.
  • RRC Radio Resource Control
  • MACCE Medium Access Control Element
  • the data transmitted from the UE side to the network side includes non-replicated data packets (such as PDCP Control Protocol Data Unit (PDU)) and replicated data packets (such as PDCP data PDU).
  • Non-replicated data packets will not be copied and sent through the main path, where the main path is one of the multiple different paths mentioned above.
  • the main path is always active and does not need to be activated through MAC CE signaling;
  • the data packet is copied into multiple copies when the PDCP data copy function of the corresponding RB is activated, and the multiple copies of the data obtained by the copy are respectively sent through the multiple different paths mentioned above.
  • the network side deactivates the path used for the transmission of non-replicated data packets, it is not clear which path the UE uses to send the non-replicated data packets; or, due to data replication Packets can only be sent through a designated path specified by the network side (for example, the network side specifies that data packet 1 is sent through path 1, and data packet 2 is sent through path 2), which makes the determination of the sending path of the copied data packet not flexible enough.
  • Some embodiments of the present disclosure provide a method and device for determining a data packet carrying path and sending information, so as to determine a carrying path for sending non-replicated data packets, or to improve the flexibility of a carrying path for sending duplicate data packets.
  • a method for determining a data packet carrying path which is applied to a terminal device, and the method includes:
  • the packet convergence protocol PDCP non-replicated data packet bearer path corresponding to the target RB is determined, and the target RB is RB equipped with PDCP data replication function.
  • a method for determining a data packet carrying path which is applied to a terminal device, and the method includes:
  • the target radio bearer RB determines at least one bearer path of the PDCP replication data packet corresponding to the target RB, and the target RB is configured with the PDCP data replication function RB.
  • an information sending method which is applied to a network device, and the method includes:
  • the first target information is used to determine a first bearer path
  • the first bearer path is used to bear a packet convergence protocol PDCP non-replicated data packet corresponding to the target radio bearer RB of the terminal device
  • the first bearer path Is the active path among the multiple configuration paths of the target RB.
  • an information sending method which is applied to a network device, and the method includes:
  • the second target information is used to configure a preset threshold value corresponding to a preset channel quality parameter
  • the preset threshold value is used to determine at least one second bearer path
  • the second bearer path is used for bearer
  • the packet convergence protocol PDCP replication data packet corresponding to the target radio bearer RB of the terminal device, the second bearer path is the active path among the multiple configuration paths of the target RB, and the preset channel quality of the second bearer path
  • the parameter is higher or lower than the preset threshold.
  • a terminal device in a fifth aspect, includes:
  • the first determining module is configured to determine the bearer of the packet convergence protocol PDCP non-replication data packet corresponding to the target RB among the multiple configuration paths of the target radio bearer RB or the multiple activation paths among the multiple configuration paths Path, the target RB is an RB configured with a PDCP data replication function.
  • a terminal device in a sixth aspect, includes:
  • the second determining module is configured to determine at least one bearer path of the PDCP replication data packet corresponding to the packet convergence protocol of the target RB among the multiple activation paths of the multiple configuration paths of the target radio bearer RB, where the target RB is RB equipped with PDCP data replication function.
  • a network device in a seventh aspect, includes:
  • the first sending module is used to send first target information
  • the first target information is used to determine a first bearer path
  • the first bearer path is used to bear a packet convergence protocol PDCP non-replicated data packet corresponding to the target radio bearer RB of the terminal device
  • the first bearer path Is the active path among the multiple configuration paths of the target RB.
  • a network device in an eighth aspect, includes:
  • the second sending module is used to send second target information
  • the second target information is used to configure a preset threshold value corresponding to a preset channel quality parameter
  • the preset threshold value is used to determine at least one second bearer path
  • the second bearer path is used for bearer
  • the packet convergence protocol PDCP replication data packet corresponding to the target radio bearer RB of the terminal device, the second bearer path is the active path among the multiple configuration paths of the target RB, and the preset channel quality of the second bearer path
  • the parameter is higher or lower than the preset threshold.
  • a terminal device in a ninth aspect, includes a memory, a processor, and a wireless communication program that is stored on the memory and can run on the processor. When executed, the steps of the method described in the first aspect or the second aspect are realized.
  • a network device in a tenth aspect, includes a memory, a processor, and a wireless communication program that is stored on the memory and can run on the processor, and the wireless communication program is executed by the processor. When executed, the steps of the method described in the third aspect or the fourth aspect are realized.
  • a computer-readable medium is provided, and a wireless communication program is stored on the computer-readable medium.
  • the wireless communication program is executed by a processor, the implementation is as described in any one of the first to fourth aspects. The steps of the method described.
  • the terminal device can determine the status of the PDCP non-replicated data packet corresponding to the target RB in multiple configuration paths of the target RB or multiple activation paths in the multiple configuration paths
  • the bearer path the target RB is an RB configured with a PDCP data replication function, so that the bearer path for sending the non-replicated data packet of the target RB is clear.
  • the terminal device may determine at least one bearer path of the PDCP replicated data packet corresponding to the target RB from among the multiple activation paths of the multiple configuration paths of the target RB, instead of just being designated by the network side. Improve the flexibility of the bearer path for sending duplicate data packets.
  • FIG. 1 is a schematic flowchart of a method for determining a data packet carrying path provided by some embodiments of the present disclosure.
  • FIG. 2 is a schematic flowchart of another method for determining a data packet carrying path provided by some embodiments of the present disclosure.
  • FIG. 3A is one of the schematic diagrams of the bearer type of the PDCP data copy function provided by some embodiments of the present disclosure.
  • FIG. 3B is the second schematic diagram of the bearer type of the PDCP data replication function provided by some embodiments of the present disclosure.
  • Figure 4A is one of the schematic diagrams of multi-path PDCP data replication provided by some embodiments of the present disclosure.
  • FIG. 4B is a second schematic diagram of multi-path PDCP data replication provided by some embodiments of the present disclosure.
  • Fig. 5 is a schematic flowchart of an information sending method provided by some embodiments of the present disclosure.
  • FIG. 6 is a schematic flowchart of another information sending method provided by some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device 700 provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device 800 provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device 900 provided by some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network device 1000 provided by some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device 1100 provided by some embodiments of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device 1200 provided by some embodiments of the present disclosure.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Terminal equipment which can also be referred to as mobile terminal (Mobile Terminal), mobile terminal equipment, etc.
  • UE can communicate with at least one core network via a radio access network (for example, Radio Access Network, RAN).
  • the device can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device. Connect to the network to exchange language and/or data.
  • a network device is a device deployed in a wireless access network device to send information.
  • the network device may be a base station, and the base station may be a base station (BTS) in GSM or CDMA, or it may be
  • BTS base station
  • NodeB base station
  • WCDMA can also be the evolutional Node B (eNB or e-NodeB) and 5G base station (gNB) in LTE, as well as the network side equipment in the subsequent evolution communication system. It does not constitute a limitation to the protection scope of the present disclosure.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiments of the present disclosure.
  • the process constitutes any limitation.
  • a method for determining a data packet carrying path is applied to a terminal device, and the method may include:
  • Step 101 Determine the bearer path of the packet convergence protocol PDCP non-replicated data packet corresponding to the target RB among the multiple configuration paths of the target radio bearer RB or the multiple activation paths of the multiple configuration paths.
  • the target RB is the RB configured with the PDCP data replication function.
  • the multiple configuration paths are multiple paths configured by the network device for the target radio bearer (RB) for data packet transmission.
  • the multiple activation paths are multiple paths of the multiple configuration paths that are further activated by the network device while configuring multiple configuration paths or after configuring multiple configuration paths.
  • step 101 may be performed when the main path used to carry the PDCP non-replicated data packet corresponding to the target RB is deactivated.
  • the main path is a path pre-configured on the network side for carrying the packet data convergence protocol (Packet Data Convergence Protocol, PDCP) non-data packet corresponding to the target RB.
  • the main path may be one of the multiple configured paths, and When the method for determining a data packet carrying path provided by some embodiments of the present disclosure is implemented, the main path is in a deactivated state.
  • the target RB may be a specific RB, for example, a data radio bearer (DRB) numbered 1, such as DRB1; or a specific signaling radio bearer (SRB), such as SRB1.
  • DRB data radio bearer
  • SRB specific signaling radio bearer
  • the SRB is used as a radio bearer for the transmission of radio resource control (Radio Resource Control, RRC) messages and non-access stratum (NonAccess, NAS) messages.
  • RRC Radio Resource Control
  • NonAccess, NAS non-access stratum
  • SRB includes SRB0, SRB1 and SRB2.
  • the method shown in FIG. 1 may further include: receiving first information, where the first information is used for Configure the PDCP data replication function for the target RB; configure the PDCP data replication function for the target RB based on the first information.
  • the first information can be carried in a radio resource control (Radio Resource Control, RRC) message, that is, the terminal device can receive the first information by receiving the RRC message, or in other words, the network device can configure the target RB of the terminal device through the RRC message PDCP data copy function.
  • RRC Radio Resource Control
  • the method shown in FIG. 1 may further include: activating the PDCP data copy function of the target RB based on a preset activation manner.
  • the network device can first configure the PDCP data replication function for the target RB through an RRC message, and then use Medium Access Control Element (MAC CE) to instruct to activate (open) or deactivate (stop) the target RB.
  • MAC CE Medium Access Control Element
  • the network side can configure the function for the target RB through the RRC message, and configure whether the function is activated immediately after configuration through the RRC message, that is, there is no need to activate the function through MAC CE signaling .
  • the method shown in FIG. 1 may further include: receiving second information, the second information being used Configuring the multiple configuration paths for the target RB; determining the multiple configuration paths based on the second information.
  • the second information may also be carried in the RRC message.
  • the RRC message carrying the first information and the second information may be the same RRC message.
  • the network device may configure the PDCP data replication function for the target RB of the terminal device through the RRC message, and configure the data replication function through the RRC message. Multiple configuration paths (such as configuration path (leg) 1, path 2, and path 3) are described.
  • the second information may be carried in the MAC CE, that is, the terminal device may receive the second information by receiving the MAC CE, or in other words, the network device may configure the multiple configuration paths for the target RB of the terminal device through the MAC CE.
  • the method shown in FIG. 1 may further include: receiving third information, the third information being used for To indicate the multiple activation paths; determine the multiple activation paths based on the third information.
  • the third information may also be carried in the RRC message, or the third information may be carried in the MAC CE.
  • the RRC message carrying the first information, the second information, and the third information may be the same RRC message.
  • the network device may configure the PDCP data replication function for the target RB of the terminal device through an RRC message, and at the same time configure the multiple configuration paths (such as configuration path (leg) 1, path 2, and path 3) through the RRC message.
  • the multiple activation paths (such as configuring activation path 1 and path 2).
  • the network device may configure the PDCP data replication function for the target RB of the terminal device through an RRC message, and at the same time configure the multiple configuration paths (such as configuration path (leg) 1, path 2, and path 3) through the RRC message , And then configure the multiple activation paths (such as configuring activation path 1 and path 2) for the terminal device through the MAC CE.
  • the multiple configuration paths such as configuration path (leg) 1, path 2, and path 3
  • the multiple activation paths such as configuring activation path 1 and path 2 for the terminal device through the MAC CE.
  • the path configuration can be completed through the identification information of the configuration paths.
  • the following takes the configuration of the multiple activation paths as an example to describe the completion of the path configuration based on the identification information of the path.
  • the foregoing third information is used to indicate identification information of the multiple activation paths, and the determining the multiple activation paths based on the third information includes: The identification information of the multiple activation paths indicated in the third information determines the multiple activation paths.
  • the identification information includes RB identification (such as DRB1 or SRB1), logical channel identification (such as logical channel 1), cell group identification (such as master cell group (MCG) or secondary cell group (MCG) , SCG)) and data flow identification (e.g., QoS flow 1).
  • the following describes how to determine the bearer path of the PDCP non-replicated data packet of the target RB in step 101 with detailed examples.
  • some embodiments of the present disclosure either determine the bearer path of the PDCP non-replicated data packet of the target RB in the multiple configuration paths, or determine the PDCP non-replicated data of the target RB in the multiple activation paths The carrying path of the package.
  • the terminal device determines the bearer path of the PDCP non-replicated data packet of the target RB in the multiple activation paths.
  • the bearer may be determined in the multiple activation paths based on the first preset manner.
  • the path, that is, the bearing path is determined based on the first preset determination method.
  • the first preset determination manner may include, but is not limited to, any one of the following first manner, second manner, third manner, and fourth manner.
  • the first method includes: determining the bearer path among the multiple activation paths based on the indication information of the network device. That is, the network device may designate one path among the multiple activation paths as the bearer path through the indication information.
  • the indication information may be carried in RRC message or MAC CE.
  • the indication information may be carried in the above RRC message used to carry the first information, the second information, and the third information.
  • the network device can configure the PDCP data replication function for the target RB through the RRC message, and configure the multiple configuration paths (such as configuration path (leg) 1, path 2, and path 3) and the multiple configuration paths through the RRC message.
  • Two activation paths (such as configuring activation path 1 and path 2), and instructing a specific path (such as path 1) of the multiple activation paths through the RRC message to carry PDCP non-replicated data packets.
  • the indication information may be carried in the MAC CE used to carry the second information and/or the third information.
  • the network device may configure the multiple activation paths (such as configuring activation path 1 and path 2) through the MAC CE, and at the same time instruct the specific path (such as path 1) of the multiple activation paths to use the MAC CE.
  • the specific path such as path 1 of the multiple activation paths to use the MAC CE.
  • the second method includes: determining the bearing path among the multiple activation paths based on a first preset rule.
  • the first preset rule is agreed by the agreement, that is, an activation path for carrying PDCP non-replicated data packets is agreed by the agreement; or, the first preset rule may include: choosing one of the multiple activation paths A path is used as the bearer path. For example, if the multiple activation paths include path 1 and path 2, then one path may be randomly selected from path 1 and path 2 as the bearer path or according to any rule.
  • the first preset rule may include but is not limited to any one of the following three rules.
  • the first rule is to determine the bearer path among the paths corresponding to the logical channel (Logical Channel, LCH) of the MCG of the primary cell group among the multiple activation paths.
  • LCH Logical Channel
  • the terminal device may use any activation path corresponding to the logical channel in the MCG as the bearer path, that is, the bearer path may be any activation path corresponding to the logical channel in the MCG .
  • the terminal device may use the active path whose logical channel number in the MCG meets the second preset condition as the bearer path, that is, the bearer path may be that the logical channel number in the MCG meets the first 2.
  • the activation path of preset conditions may include one or more of the conditions such as the largest logical channel number, the smallest logical channel number, the logical channel number being an even number, or the logical channel number being an odd number.
  • the second preset condition is that the logical channel number is the largest, and the MCG includes two active paths, path 1 and path 2, and the logical channel numbers of the MCGs corresponding to the two active paths are LCH1 and LCH2, then
  • the activation path (path 2) corresponding to LCH2 is used as the bearer path.
  • the activation path corresponding to the logical channel of the MCG refers to the activation path in the MCG; similarly, the activation path corresponding to the logical channel of the SCG in the following refers to The activation path in SCG.
  • the second rule is to determine the bearer path among the paths corresponding to the logical channels of the secondary cell group SCG among the multiple activation paths.
  • the terminal device may use any activation path corresponding to the logical channel in the SCG as the bearer path, that is, the bearer path may be any activation path corresponding to the logical channel in the SCG ;
  • the terminal device may use the active path whose logical channel number in the SCG meets the third preset condition as the bearer path, that is, the bearer path may be the logical channel number in the SCG that meets the first Three activation paths with preset conditions.
  • the third preset condition may include one or more of the following conditions: the logical channel number is the largest, the logical channel number is the smallest, the logical channel number is an even number, or the logical channel number is an odd number.
  • the third preset condition is that the logical channel number is the smallest, and the SCG includes two active paths, path 1 and path 2, and the logical channel numbers of the SCGs corresponding to the two active paths are LCH1 and LCH2, then
  • the activation path (path 2) corresponding to LCH1 is used as the bearer path.
  • the terminal device may directly determine the path whose logical channel number meets the first preset condition among the multiple activation paths as the bearer path. That is, the active path in the MCG or the SCG is not distinguished, and the bearer path is determined directly based on whether the logical channel number meets the first preset condition.
  • the first preset condition may include one or more of the conditions such as the largest logical channel number, the smallest logical channel number, the logical channel number being an even number, or the logical channel number being an odd number.
  • the first preset condition is that the logical channel number is the smallest, and the multiple activation paths include path 1 and path 2, and the corresponding logical channel numbers are LCH1 and LCH2, respectively, the activation path corresponding to LCH1 (path 1 ) As the bearing path.
  • the third way includes: determining the bearer path among the multiple activation paths based on the mode of the radio link control (Radio Link Control, RLC) entity associated with the activation path.
  • RLC Radio Link Control
  • the bearer path is a path in which the mode of the RLC entity associated among the multiple activation paths is AM.
  • the multiple activation paths include path 1 and path 2, where the mode of the RLC entity associated with path 1 is AM and the mode of the RLC entity associated with path 2 is UM, then path 1 may be determined as the bearer path.
  • the bearer path is determined among the multiple activation paths based on the above third method, the mode of the RLC entity associated with the multiple activation paths is considered, and the mode of the associated RLC entity
  • the active path for AM is determined as the bearer path, so the PDCP non-duplicated data packets of the target RB can be sent on the path with good channel quality, thereby improving the transmission reliability of the PDCP non-duplicating data packets and/or reducing the PDCP non-replicating data packets.
  • the transmission delay of the copied data packet is determined among the multiple activation paths based on the above third method.
  • the fourth method includes: determining the bearer path among the multiple activation paths based on the channel quality measurement result of the activation path.
  • the terminal device may use the path with the best channel quality among the multiple activation paths as the bearer path, that is, the bearer path may be the path with the best channel quality among the multiple activation paths.
  • the quality of the channel can be characterized by preset channel quality parameters.
  • the preset channel quality parameter is Reference Signal Receiving Power (RSRP), and the RSRP of path 1 is greater than the RSRP of path 2, indicating that the path of path 1
  • RSRP Reference Signal Receiving Power
  • path 1 can be used as the bearer path for PDCP duplicated data packets.
  • the terminal device may use a path with a preset channel quality parameter higher or lower than a preset threshold among the multiple activation paths as the bearer path, that is, the bearer path may be the multiple activation paths The path where the preset channel quality parameter is higher or lower than the preset threshold.
  • the preset channel quality parameter is RSRP
  • the RSRP of path 1 is higher than the preset threshold
  • the RSRP of path 2 is lower than the preset threshold, indicating that the channel quality of path 1 is better, and path 1 can be used as a carrying path for PDCP replicated data packets.
  • the preset threshold value can be configured by the network device or agreed upon by the protocol.
  • the preset channel quality parameters can also be Reference Signal Received Quality (RSRQ), Reference Signal Time Difference (RSTD), Received Signal Strength Indicator (RSSI), Block Error Rate (BLER), Channel Occupancy Ratio (CR), Channel Busy Ratio (CBR), and Signal-to-Noise and Interference Ratio (SINR) At least one of.
  • RSSQ Reference Signal Received Quality
  • RSTD Reference Signal Time Difference
  • RSSI Received Signal Strength Indicator
  • BLER Block Error Rate
  • CR Channel Occupancy Ratio
  • CBR Channel Busy Ratio
  • SINR Signal-to-Noise and Interference Ratio
  • the path with the preset channel quality parameter higher or lower than the preset threshold among the multiple activation paths is used as the bearer path, so as to select the path with the better channel quality among the multiple activation paths.
  • the carrying path As the carrying path.
  • the path with better channel quality is determined based on preset channel quality parameters
  • the matching relationship between different channel quality parameters and the preset threshold is different.
  • the path with better channel quality is determined based on RSRP
  • the path with RSRP higher than the preset threshold is determined as the path with better channel quality
  • the path with better channel quality is determined based on BLER
  • the path with BLER lower than the preset threshold is determined It is a path with better channel quality.
  • the channel quality of the multiple activation paths is considered, and the channel quality is the best or better.
  • the optimal activation path is determined as the bearer path, so that the PDCP non-replicated data packet of the target RB can be sent on the path with good channel quality, thereby improving the transmission reliability of the PDCP non-replicating data packet and/or reducing the PDCP non-replicating The transmission delay of the data packet.
  • the terminal device may determine the bearer path of the PDCP non-replicated data packet of the target RB in the configured activation path, and specifically may determine the bearer among the multiple activation paths based on a second preset rule Path, that is, the bearer path is determined among the multiple activation paths based on a second preset rule.
  • the second preset rule may include: choosing any one of the multiple configuration paths as the bearer path. For example, if the multiple configuration paths include path 1, path 2, path 3, and path 4, and the multiple activation paths include path 1 and path 2 in the multiple configuration paths, the terminal device may be in path 1, Any one of path 2, path 3, and path 4 is used as the bearer path of the PDCP non-replicated data packet. Optionally, the terminal device may use path 1 and path 2 as the bearer path of the PDCP replicated data packet.
  • a terminal device can determine the multiple configuration paths of the target RB or multiple activation paths of the multiple configuration paths.
  • the bearer path of the PDCP non-replicated data packet, and the target RB is an RB configured with the PDCP data replication function. Therefore, the bearer path of the non-replicated data packet of the target RB can be clear.
  • the method shown in FIG. 1 may further include: selecting one bearer path as the target bearer path among the multiple determined bearer paths; And send the PDCP non-replicated data packet through the target bearer path.
  • the method shown in FIG. 1 may further include: taking the determined bearer path as a target bearer path, and sending the PDCP non-replicated path through the target bearer path data pack.
  • the method shown in FIG. 1 may further include: reporting the data volume of the PDCP non-replicated data packet sent through the target bearer path to the MAC layer of the terminal device to improve communication effectiveness.
  • the PDCP non-replicated data packet of the target RB may include but not limited to PDCP status packet (PDCP Status PDU), Robust Header Compression (ROHC) control packet, At least one of an uplink data compression (Uplink Data Compression, UDC) control packet and an Ethernet header compression control packet.
  • PDCP Status PDU PDCP Status PDU
  • ROHC Robust Header Compression
  • UDC Uplink Data Compression
  • the ROHC control packet may be, for example, an interspersed ROHC feedback packet (interspersed ROHC feedback packet).
  • the UDC control packet for example, may be a UDC feedback packet (UDC feedback packet).
  • the Ethernet header compression control packet for example, may be an Ethernet header compression feedback packet, etc., which are not listed in this article.
  • the foregoing description corresponds to a method for determining a data packet carrying path for a terminal device, and the following will describe another method for determining a data packet carrying path corresponding to a terminal device using FIG. 2. It should be noted that the methods for determining the data packet carrying path provided in some embodiments of the present disclosure can be implemented in combination or separately, that is, the methods shown in FIG. 1 and FIG. 2 can be implemented individually or in combination.
  • Another method for determining a data packet bearer path provided by some embodiments of the present disclosure is applied to a terminal device.
  • the method may include:
  • Step 201 Determine at least one bearer path of the PDCP replication data packet corresponding to the packet convergence protocol PDCP among the multiple activation paths of the multiple configuration paths of the target radio bearer RB, and the target RB is configured with PDCP data Copy function RB.
  • the multiple configuration paths are multiple paths configured by the network device for the target radio bearer (RB) for data packet transmission.
  • the multiple activation paths are multiple paths of the multiple configuration paths that are further activated by the network device while configuring multiple configuration paths or after configuring multiple configuration paths.
  • the multiple configuration paths may be multiple radio link control (Radio Link Control, RLC) entities.
  • the target RB may be a specific RB, for example, DRB1 or SRB1.
  • the method shown in FIG. 2 may further include: receiving first information, which uses Configuring the PDCP data replication function for the target RB; and configuring the PDCP data replication function for the target RB based on the first information.
  • the first information may be carried in the RRC message, that is, the terminal device may receive the first information by receiving the RRC message, or in other words, the network device may configure the PDCP data replication function for the target RB of the terminal device through the RRC message.
  • the method shown in FIG. 2 may further include: activating the PDCP data copy function of the target RB based on a preset activation manner.
  • the network device can first configure the PDCP data replication function for the target RB through the RRC message, and then use the MAC CE instruction to activate (enable) or deactivate (stop) the function of the target RB; or, the network side can send the target RB through the RRC message.
  • the RRC message is used to configure whether the function is activated immediately after configuration, that is, there is no need to additionally activate the function through MAC CE signaling.
  • the method shown in FIG. 2 may further include: receiving second information, the second information Used to configure the multiple configuration paths for the target RB; determine the multiple configuration paths based on the second information.
  • the second information may also be carried in the RRC message, or the second information may be carried in the MAC CE.
  • the RRC message carrying the first information and the second information may be the same RRC message.
  • the method shown in FIG. 2 may further include: receiving third information. Used to indicate the multiple activation paths; determine the multiple activation paths based on the third information.
  • the third information can be carried in the RRC message, or the third information can be carried in the MAC CE.
  • the RRC messages that carry the first information, the second information, and the third information may be the same RRC;
  • the first information is carried in the RRC In the message, when the second information and the third information are carried in the MAC CE, the MAC CE that carries the second information and the third information may be the same MAC CE.
  • the path configuration can be completed through the identification information of the configuration paths.
  • the following takes the configuration of the multiple activation paths as an example to describe the completion of the path configuration based on the identification information of the path.
  • the foregoing third information may be used to indicate the identification information of the multiple activation paths.
  • the determination of the multiple activation paths based on the third information may include: Determine the multiple activation paths based on the identification information of the multiple activation paths indicated in the third information.
  • the identification information includes at least one of RB identification (such as DRB1 or SRB1), logical channel identification (such as logical channel 1), cell group identification (such as MCG or SCG), and data flow identification (such as QoS flow 1) One kind.
  • the method shown in FIG. 2 may further include: receiving fourth information. Used to configure the number of copies of the PDCP copied data packet; and determine the number of copies based on the fourth information.
  • the fourth information may also be carried in the RRC message, or the fourth information may be carried in the MAC CE.
  • the first information can be carried in an RRC message
  • the second information, the third information, and the fourth information can be carried in the RRC message or the MAC CE.
  • three detailed examples are used to describe the carrying situation of the first information, the second information, the third information, and the fourth information.
  • the network device may configure the PDCP data replication function for the target RB of the terminal device through an RRC message, and at the same time configure the multiple configuration paths through the RRC message (such as configuring path 1, path 2, path 3, and path 4 for DRB1). ) And configure multiple paths to activate (such as configuring activation path 1 and path 2), and configure the number of copies of the PDCP copy data packet to 3 through the RRC message.
  • the network device can configure the PDCP data replication function for the target RB of the terminal device through an RRC message, and at the same time configure the multiple configuration paths through the RRC message (such as configuring path 1, path 2, path 3, and path for DRB1 4)
  • the number of copies of the PDCP copy data packet is configured to 3 through the RRC message; then the terminal device is configured with the multiple activation paths (such as configuring activation path 1 and path 2) through MAC CE.
  • the network device can configure the PDCP data replication function for the target RB of the terminal device through the RRC message, and at the same time configure the multiple configuration paths through the RRC message (such as configuring path 1, path 2, path 3, and path for DRB1 4). Then configure the multiple activation paths (such as configuring activation path 1 and path 2) for the terminal device through the MAC CE, and configure the number of copies of the PDCP replication data packet to 3 through the MAC CE.
  • the multiple configuration paths through the RRC message such as configuring path 1, path 2, path 3, and path for DRB1 4
  • the multiple activation paths such as configuring activation path 1 and path 2
  • the following describes how to determine at least one bearer path of the PDCP replicated data packet of the target RB in step 201 with reference to a detailed example.
  • step 201 may specifically include: determining the at least one bearer path among the multiple activation paths based on a second preset determination manner.
  • the second preset determination method may include, but is not limited to, any of the following first, second, and third methods.
  • the first method includes: determining the at least one bearer path among the multiple activation paths based on the channel quality measurement result of the activation path.
  • the path with the best channel quality among the multiple activation paths may be determined as the at least one bearer path, that is, the at least one bearer path is among the multiple activation paths
  • the path with the best channel quality may be characterized by preset channel quality parameters.
  • the preset channel quality parameter is Reference Signal Receiving Power (RSRP), and the RSRP of path 1 is greater than the RSRP of path 2, indicating the path
  • RSRP Reference Signal Receiving Power
  • path 1 can be used as the bearer path for PDCP duplicated data packets.
  • a path with a preset channel quality parameter higher or lower than a preset threshold among the multiple activation paths may be determined as the at least one bearer path, that is, the at least one
  • the bearer path is a path with a preset channel quality parameter higher or lower than a preset threshold among the multiple activation paths.
  • the preset threshold value can be configured by the network device or agreed upon by the protocol.
  • the preset channel quality parameter is RSRP
  • the RSRP of path 1 is higher than the preset threshold
  • the RSRP of path 2 is lower than the preset threshold, indicating that the channel quality of path 1 is better, and path 1 can be used as a bearer path for PDCP replicated data packets.
  • the second method includes: determining the at least one bearer path among the multiple activation paths based on the mode of the RLC entity associated with the activation path.
  • the modes of the RLC entities associated with the multiple activation paths are all in the unconfirmed mode UM, it may be further determined based on the channel quality measurement results of the multiple activation paths that the at least One bearer path, that is, the at least one bearer path is determined based on the channel quality measurement results of the multiple active paths.
  • the path with the best channel quality among the multiple activation paths may be determined as the at least one bearer path, that is, the at least one bearer path is the path with the best channel quality among the multiple activation paths; or
  • a path with a preset channel quality parameter higher or lower than a preset threshold may be determined as the at least one bearer path, that is, the at least one bearer path is the multiple activation paths.
  • the preset channel quality parameter is higher or lower than the preset threshold.
  • the preset threshold value can be configured by the network device or agreed upon by the protocol.
  • the preset channel quality parameters may include reference signal received power RSRP, reference signal received quality RSRQ, reference signal time deviation RSTD, received signal strength indicator RSSI, and block error rate At least one of parameters such as BLER, channel occupancy rate CR, channel busy rate CBR, and signal to interference noise ratio SINR.
  • the active path with the best channel quality among the multiple activation paths, or the path with the preset channel quality parameter higher or lower than the preset threshold among the multiple activation paths is used as the at least one
  • the bearer path aims to use a path with better channel quality among the multiple activation paths as the at least one bearer path. It should be noted that when the path with better channel quality is determined based on preset channel quality parameters, the matching relationship between different channel quality parameters and the preset threshold is different.
  • the path with better channel quality is determined based on RSRP
  • the path with RSRP higher than the preset threshold is determined as the path with better channel quality
  • the path with better channel quality is determined based on BLER
  • the path with BLER lower than the preset threshold is determined It is a path with better channel quality.
  • the at least one bearer path may be determined based on the number of copies of the PDCP copy data packet configured by the network device , That is, the at least one bearing path is determined based on the number of copies.
  • the method shown in FIG. 2 may further include: copying the PDCP data packets of the number of copies , Respectively sent through the at least one bearer path, wherein the bearer paths corresponding to different PDCP copied data packets obtained by the copy are different. That is, the copied data packets to multiple copies are sent through different paths of the at least one bearer path.
  • the multiple activation paths of the target RB include path 1 and path 2
  • the modes of the RLC entities associated with path 1 and path 2 are both AM
  • the number of copies of the PDCP copied data is 2
  • the mode of the RLC entity associated with the multiple activation paths, the channel quality of the multiple activation paths, and the number of copies of the PDCP copy data packet are considered. At least one of the factors, therefore, the transmission reliability of the PDCP copy data packet can be improved and/or the transmission delay of the PDCP copy data packet can be reduced.
  • the third method includes: determining the at least one bearer path among the multiple activation paths based on a third preset rule.
  • the third preset rule may include: selecting one or more paths among the multiple configuration paths as the at least one bearing path. For example, if the multiple configuration paths include path 1, path 2, path 3, and path 4, and the multiple activation paths include path 1 and path 2 in the multiple configuration paths, the terminal device may be in path 1 and Any one or two paths in path 2 are used as the bearer path of the PDCP copied data packet.
  • some embodiments of the present disclosure provide a method for determining a data packet carrying path, because the terminal device can determine the PDCP replication data packet corresponding to the target RB among multiple activation paths among the multiple configuration paths of the target RB At least one bearer path is not only specified by the network side, so the flexibility of the bearer path for sending duplicate data packets can be improved.
  • the method shown in FIG. 2 may further include: sending the number of copies of the PDCP copy data packet through the at least one bearer path.
  • the method shown in FIG. 2 may further include: reporting to the MAC layer of the terminal device the data volume of the PDCP replication data packet sent through the bearer path, so as to improve communication effectiveness.
  • FIG. 3A, FIG. 3B, FIG. 4A and FIG. 4B the embodiment shown in FIG. 1 and the embodiment shown in FIG. 2 in the PDCP data replication function bearer type, and the principle of multi-path PDCP data replication is briefly described To introduce.
  • the bearer type of the PDCP data replication function may include those shown in Figure 3A and Figure 3B. The two shown.
  • the bearer type of the PDCP data duplication function shown in FIG. 3A is Duplicate bearer.
  • one PDCP entity corresponding to 1, two or more RLC entities, and one MAC entity are in In the same cell group.
  • the bearer type of the PDCP data replication function shown in FIG. 3B is a split bearer.
  • the corresponding PDCP entity is in a cell group, and there are two or more RLC entities corresponding to it, and The corresponding two or more MAC entities are in different cell groups.
  • the PDCP data replication function can be configured with more than two (e.g., 3) transmission paths (e.g., 1 PDCP entity) Corresponding to more than 3 RLC entities), as shown in FIG. 4A, multiple paths in the same cell group may be configured, or as shown in FIG. 4B, multiple paths not in the same cell group may be configured.
  • the network device may choose to deactivate one or more of the paths (for example, one path can be deactivated, but two paths are still active). Among them, the deactivated path is not used for data reception or transmission, and the PDCP data copy function can still be used through the activated path.
  • an information sending method provided by some embodiments of the present disclosure is applied to a network device, and the method may include:
  • Step 501 Send first target information; where the first target information is used to determine a first bearer path, and the first bearer path is used to bear the PDCP non-replicated data corresponding to the target radio bearer RB of the terminal device Packet, and the first bearer path is an active path among multiple configuration paths of the target RB.
  • the first target information is used to indicate the first bearer path, that is, the first target information directly indicates what the first bearer path is, for example, indicates the identification information of the first bearer path ( Please refer to the above for the specific content of the identification information, which will not be repeated here).
  • the first target information may be carried in the RRC message used to configure the PDCP copy function for the target RB of the terminal device.
  • the first target information is used to configure a preset threshold corresponding to a preset channel quality parameter
  • the preset threshold is used to determine the first bearer path
  • the first The preset channel quality parameter of the bearer path is higher or lower than the preset threshold. That is, the network device indicates to the terminal device the preset threshold value for determining the channel quality of the activation path, so that the terminal device can pass the preset threshold value after measuring the corresponding channel quality parameter of the activation path.
  • the value comparison determines whether the channel quality of the active path is good or not, so that a path with better channel quality is determined from the active path to carry the PDCP non-duplicated data packet.
  • the preset channel quality parameters include reference signal received power RSRP, reference signal received quality RSRQ, reference signal time deviation RSTD, received signal strength indicator RSSI, block error rate BLER, channel occupancy rate CR, channel busy rate CBR and signal At least one of the interference to noise ratio SINR.
  • the embodiment shown in FIG. 5 provides an information sending method. Since the network device can send to the terminal device the first target information used to determine the first bearer path of the PDCP non-replicated data packet corresponding to the target RB, it can make When the main path used to carry the PDCP non-replicated data packet corresponding to the target RB is deactivated, the terminal device can determine other paths used to carry the PDCP non-replicated data packet, thereby ensuring that PDCP non-replicating data can be sent smoothly and improving communication Effectiveness.
  • an information sending method provided by some embodiments of the present disclosure is applied to a network device, and the method may include:
  • Step 601 Send second target information; wherein the second target information is used to configure a preset threshold corresponding to a preset channel quality parameter, and the preset threshold is used to determine at least one second bearer path.
  • the second bearer path is used to bear the PDCP duplicate data packet corresponding to the target RB of the terminal device, the second bearer path is the active path among the multiple configuration paths of the target RB, and the second bearer path is The preset channel quality parameter is higher or lower than the preset threshold.
  • the network device instructs the terminal device to determine the preset threshold value for determining the channel quality of the active path of the target RB, so that the terminal device measures the corresponding channel quality parameter of the active path and then communicates with the preset threshold.
  • the threshold value is set to compare the channel quality of the active path to determine whether the channel quality of the active path is good or not, so that a path with better channel quality is determined from the active path to carry the PDCP duplicate data packet.
  • the preset channel quality parameters include reference signal received power RSRP, reference signal received quality RSRQ, reference signal time deviation RSTD, received signal strength indicator RSSI, block error rate BLER, channel occupancy rate CR, channel busy rate CBR and signal At least one of the interference to noise ratio SINR.
  • the embodiment shown in FIG. 6 provides an information sending method, because the network device can send to the terminal device the preset threshold value for determining at least one second bearer path of the PDCP replication data packet corresponding to the target RB of the terminal device Therefore, the terminal device can flexibly determine the path used to carry the PDCP replicated data packet corresponding to the target RB accordingly.
  • the determined preset channel quality parameter of the second bearer path is higher or lower than the preset threshold value, it indicates that the determined channel quality of the second bearer path is better, and therefore the PDCP replication data packet can be improved. Transmission reliability reduces the transmission delay of PDCP copy data packets.
  • the present disclosure also provides a terminal device 700, a terminal device 800, a network device 900, and a network device 1000, which will be introduced separately below.
  • FIG. 7 shows a schematic structural diagram of a terminal device 700 provided by some embodiments of the present disclosure.
  • the terminal device 700 may include: a first determining module 701.
  • the first determining module 701 is configured to determine the packet convergence protocol PDCP non-replication data packet corresponding to the target RB among the multiple configuration paths of the target radio bearer RB or the multiple activation paths among the multiple configuration paths.
  • the target RB is an RB configured with a PDCP data replication function.
  • the terminal device 700 may further include: a first receiving module, configured to receive first information, where the first information is used to configure a PDCP data replication function for the target RB, and based on the first A message configures the PDCP data replication function for the target RB.
  • a first receiving module configured to receive first information, where the first information is used to configure a PDCP data replication function for the target RB, and based on the first A message configures the PDCP data replication function for the target RB.
  • the first information may be carried in the RRC message.
  • the terminal device 700 may further include: a second receiving module, configured to receive second information, where the second information is used to configure the multiple configuration paths for the target RB, and based on The second information determines the multiple configuration paths.
  • a second receiving module configured to receive second information, where the second information is used to configure the multiple configuration paths for the target RB, and based on The second information determines the multiple configuration paths.
  • the second information may also be carried in the RRC message, or the second information may be carried in the MAC CE.
  • the RRC message carrying the first information and the second information may be the same RRC message.
  • the terminal device 700 may further include: a third receiving module, configured to receive third information, where the third information is used to indicate the multiple activation paths; and the determination is based on the third information The multiple activation paths.
  • a third receiving module configured to receive third information, where the third information is used to indicate the multiple activation paths; and the determination is based on the third information The multiple activation paths.
  • the third information may also be carried in the RRC message, or the third information may be carried in the MAC CE.
  • the RRC message carrying the first information, the second information, and the third information may be the same RRC message.
  • the foregoing third information is used to indicate identification information of the multiple activation paths
  • the third receiving module may be used to: based on the multiple information indicated in the third information
  • the identification information of the activation path determines the multiple activation paths.
  • the following describes how the first determining module 701 specifically determines the bearer path of the PDCP non-replicated data packet of the target RB with reference to a detailed example.
  • the first determining module 701 either determines the bearer path of the PDCP non-replicated data packet of the target RB in the multiple configuration paths, or determines the bearer path of the PDCP non-replicated data packet of the target RB in the multiple activation paths.
  • the first determining module 701 determines the bearer path of the PDCP non-replicated data packet of the target RB among the multiple activation paths, which may be specifically determined in the multiple activation paths based on the first preset manner
  • the bearing path that is, the bearing path is determined among the multiple activation paths based on a first preset determination manner.
  • the first preset determination manner may include, but is not limited to, any one of the following first manner, second manner, third manner, and fourth manner.
  • the first method includes: determining the bearer path among the multiple activation paths based on the indication information of the network device. That is, the network device may designate one path among the multiple activation paths as the bearer path through the indication information.
  • the indication information may be carried in RRC message or MAC CE.
  • the second method includes: determining the bearing path among the multiple activation paths based on a first preset rule.
  • the first preset rule is agreed by the agreement, that is, an activation path for carrying PDCP non-replicated data packets is agreed by the agreement; or, the first preset rule may include: choosing one of the multiple activation paths The path serves as the bearing path.
  • the first preset rule may include but is not limited to any one of the following three rules.
  • the first rule is to determine the bearer path among the paths corresponding to the logical channel (Logical Channel, LCH) of the MCG of the primary cell group among the multiple activation paths.
  • LCH Logical Channel
  • the terminal device may use any activation path corresponding to the logical channel in the MCG as the bearer path, that is, the bearer path may be any activation path corresponding to the logical channel in the MCG .
  • the terminal device may use the active path whose logical channel number in the MCG meets the second preset condition as the bearer path, that is, the bearer path may be the logical channel number in the MCG that meets the first 2.
  • the activation path of preset conditions may be used as the bearer path, that is, the bearer path may be the logical channel number in the MCG that meets the first 2.
  • the second rule is to determine the bearer path among the paths corresponding to the logical channels of the secondary cell group SCG among the multiple activation paths.
  • the terminal device may use any activation path corresponding to the logical channel in the SCG as the bearer path, that is, the bearer path may be any activation path corresponding to the logical channel in the SCG ;
  • the terminal device may use the active path whose logical channel number in the SCG meets the third preset condition as the bearer path, that is, the bearer path may be the logical channel number in the SCG that meets the first Three activation paths with preset conditions.
  • the terminal device may directly determine the path whose logical channel number meets the first preset condition among the multiple activation paths as the bearer path. That is, the active path in the MCG or the SCG is not distinguished, and the bearer path is determined directly based on whether the logical channel number meets the first preset condition.
  • the third method includes: determining the bearer path among the multiple activation paths based on the mode of the RLC entity associated with the activation path.
  • the bearer path is determined among the multiple activation paths based on the above third method, the mode of the RLC entity associated with the multiple activation paths is considered, and the mode of the associated RLC entity
  • the active path for AM is determined as the bearer path, so the PDCP non-duplicated data packets of the target RB can be sent on the path with good channel quality, thereby improving the transmission reliability of the PDCP non-duplicating data packets and/or reducing the PDCP non-replicating data packets.
  • the transmission delay of the copied data packet is determined among the multiple activation paths based on the above third method.
  • the fourth method includes: determining the bearer path among the multiple activation paths based on the channel quality measurement result of the activation path.
  • the terminal device may use the path with the best channel quality among the multiple activation paths as the bearer path, that is, the bearer path may be the path with the best channel quality among the multiple activation paths.
  • the quality of the channel can be characterized by preset channel quality parameters.
  • the terminal device may use a path with a preset channel quality parameter higher or lower than a preset threshold among the multiple activation paths as the bearer path, that is, the bearer path may be the multiple activation paths The path where the preset channel quality parameter is higher or lower than the preset threshold.
  • the channel quality of the multiple activation paths is considered, and the channel quality is the best or better.
  • the optimal activation path is determined as the bearer path, so that the PDCP non-replicated data packet of the target RB can be sent on the path with good channel quality, thereby improving the transmission reliability of the PDCP non-replicating data packet and/or reducing the PDCP non-replicating The transmission delay of the data packet.
  • the first determining module 701 may determine the bearer path of the PDCP non-replicated data packet of the target RB in the configured activation path, which may be specifically determined among the multiple activation paths based on a second preset rule
  • the bearing path that is, the bearing path is determined among the multiple activation paths based on a second preset rule.
  • the second preset rule may include: selecting one path among the multiple configuration paths as the bearing path.
  • the terminal device 700 provided by some embodiments of the present disclosure can determine the bearer of the PDCP non-replicated data packet in multiple configuration paths of the target RB or multiple activation paths in the multiple configuration paths.
  • the target RB is an RB configured with a PDCP data replication function, so the bearer path for sending non-replicated data packets of the target RB can be clear.
  • the terminal device 700 may further include: a non-duplicated data packet sending module, which is used to select one of the multiple determined bearer paths as the target if there are multiple bearer paths determined Bearer path; and send the PDCP non-replicated data packet through the target bearer path; if the determined bearer path is one, use the determined bearer path as the target bearer path, and send the PDCP through the target bearer path PDCP non-replicated packets.
  • a non-duplicated data packet sending module which is used to select one of the multiple determined bearer paths as the target if there are multiple bearer paths determined Bearer path; and send the PDCP non-replicated data packet through the target bearer path; if the determined bearer path is one, use the determined bearer path as the target bearer path, and send the PDCP through the target bearer path PDCP non-replicated packets.
  • the terminal device 700 may further include: a data volume reporting module, configured to report to the MAC layer of the terminal device the data volume of the PDCP non-replicated data packets sent through the target bearer path, so as to improve communication Effectiveness.
  • a data volume reporting module configured to report to the MAC layer of the terminal device the data volume of the PDCP non-replicated data packets sent through the target bearer path, so as to improve communication Effectiveness.
  • the terminal device 700 shown in FIG. 7 may be used to implement the various embodiments of the method for determining a data packet bearer path shown in FIG. 1. For related details, please refer to the above method embodiments.
  • FIG. 8 shows a schematic structural diagram of a terminal device 800 provided by some embodiments of the present disclosure.
  • the terminal device 800 may include: a second determining module 801.
  • the second determining module 801 is configured to determine at least one bearer path of the PDCP replication data packet corresponding to the target RB among the multiple activation paths of the multiple configuration paths of the target radio bearer RB, and the target RB It is an RB configured with PDCP data replication.
  • the terminal device 800 may further include: a first receiving module, configured to receive first information before determining at least one bearer path of the PDCP copied data packet, and the first information is used to provide the The target RB configures the PDCP data replication function, and configures the PDCP data replication function for the target RB based on the first information.
  • the first information may be carried in the RRC message.
  • the terminal device 800 may further include: a second receiving module, configured to receive second information before determining at least one bearer path of the PDCP copied data packet, and the second information is used to send The target RB configures the multiple configuration paths; and determines the multiple configuration paths based on the second information.
  • a second receiving module configured to receive second information before determining at least one bearer path of the PDCP copied data packet, and the second information is used to send The target RB configures the multiple configuration paths; and determines the multiple configuration paths based on the second information.
  • the second information may also be carried in the RRC message, or the second information may be carried in the MAC CE.
  • the RRC message carrying the first information and the second information may be the same RRC message.
  • the terminal device 800 may further include: a third receiving module, configured to receive third information before determining at least one bearer path of the PDCP copied data packet, the third information being used to indicate The multiple activation paths; and the multiple activation paths are determined based on the third information.
  • a third receiving module configured to receive third information before determining at least one bearer path of the PDCP copied data packet, the third information being used to indicate The multiple activation paths; and the multiple activation paths are determined based on the third information.
  • the third information can be carried in the RRC message, or the third information can be carried in the MAC CE.
  • the RRC messages that carry the first information, the second information, and the third information may be the same RRC;
  • the first information is carried in the RRC In the message, when the second information and the third information are carried in the MAC CE, the MAC CE that carries the second information and the third information may be the same MAC CE.
  • the foregoing third information may be used to indicate the identification information of the multiple activation paths. Accordingly, the third receiving module may be used to: based on the multiple activations indicated in the third information The identification information of the path determines the multiple activation paths.
  • the terminal device 800 may further include: a fourth receiving module, configured to receive fourth information before determining at least one bearer path of the PDCP copied data packet, where the fourth information is used to configure the The number of copies of the PDCP copy data packet; and based on the fourth information, the number of copies is determined.
  • a fourth receiving module configured to receive fourth information before determining at least one bearer path of the PDCP copied data packet, where the fourth information is used to configure the The number of copies of the PDCP copy data packet; and based on the fourth information, the number of copies is determined.
  • the fourth information may also be carried in the RRC message, or the fourth information may be carried in the MAC CE.
  • the first information can be carried in an RRC message
  • the second information, the third information, and the fourth information can be carried in the RRC message or the MAC CE.
  • three detailed examples are used to describe the carrying situation of the first information, the second information, the third information, and the fourth information.
  • the following describes how the second determining module 801 specifically determines at least one bearer path of the PDCP replicated data packet of the target RB with reference to a detailed example.
  • the second determination module 801 may be used to determine the at least one bearer path among the multiple activation paths based on a second preset determination manner.
  • the second preset determination manner may include, but is not limited to, any one of the following first manner, second manner, and third manner.
  • the first method includes: determining the at least one bearer path among the multiple activation paths based on the channel quality measurement result of the activation path.
  • the path with the best channel quality among the multiple activation paths may be determined as the at least one bearer path, or the channel quality parameters may be preset in the multiple activation paths A path higher or lower than the preset threshold is determined as the at least one bearing path.
  • the second method includes: determining the at least one bearer path among the multiple activation paths based on the mode of the RLC entity associated with the activation path.
  • the path with the best channel quality among the multiple activation paths may be determined as the at least one bearer path, that is, the at least one bearer path is the path with the best channel quality among the multiple activation paths; or
  • a path with a preset channel quality parameter higher or lower than a preset threshold may be determined as the at least one bearer path, that is, the at least one bearer path is the multiple activation paths.
  • the preset channel quality parameter is higher or lower than the preset threshold.
  • the preset threshold value can be configured by the network device or agreed upon by the protocol.
  • the at least one bearer path may be determined based on the number of copies of the PDCP copy data packet configured by the network device , That is, the at least one bearing path is determined based on the number of copies.
  • the terminal device 800 shown in FIG. 8 may further include: a first copy data packet sending module, The PDCP copy data packets of the number of copies are respectively sent through the at least one bearer path, wherein the bearer paths corresponding to different PDCP copy data packets obtained by the copy are different.
  • the mode of the RLC entity associated with the multiple activation paths, the channel quality of the multiple activation paths, and the number of copies of the PDCP copy data packet are considered. At least one of the factors, therefore, the transmission reliability of the PDCP copy data packet can be improved and/or the transmission delay of the PDCP copy data packet can be reduced.
  • the third method includes: determining the at least one bearer path among the multiple activation paths based on a third preset rule.
  • the third preset rule may include: selecting one or more paths among the multiple configuration paths as the at least one bearing path.
  • the terminal device 800 provided by some embodiments of the present disclosure can determine at least one bearer path of the PDCP replicated data packet corresponding to the target RB among multiple activation paths among the multiple configuration paths of the target RB, not just It is specified by the network side, so the flexibility of the bearer path for sending duplicate data packets can be improved.
  • the terminal device 800 may further include: a second copy data packet sending module, configured to send the number of copies of the PDCP copy data packet through the at least one bearer path.
  • a second copy data packet sending module configured to send the number of copies of the PDCP copy data packet through the at least one bearer path.
  • the terminal device 800 may further include: a data volume reporting module, configured to report to the MAC layer of the terminal device the data volume of the PDCP copied data packet sent through the bearer path, so as to improve communication effectiveness.
  • a data volume reporting module configured to report to the MAC layer of the terminal device the data volume of the PDCP copied data packet sent through the bearer path, so as to improve communication effectiveness.
  • the terminal device 800 shown in FIG. 8 may be used to implement the various embodiments of the method for determining a data packet carrying path shown in FIG. 2. For related details, please refer to the above method embodiments.
  • FIG. 9 shows a schematic structural diagram of a network device 900 provided by some embodiments of the present disclosure.
  • the network device 900 may include: a first sending module 901.
  • the first sending module 901 is configured to send first target information; wherein, the first target information is used to determine a first bearer path, and the first bearer path is used to bear the packet aggregation corresponding to the target radio bearer RB of the terminal device
  • the PDCP protocol is a non-replicated data packet, and the first bearer path is an active path among multiple configuration paths of the target RB.
  • the first target information is used to indicate the first bearer path, that is, the first target information directly indicates what the first bearer path is.
  • the first target information is used to configure a preset threshold corresponding to a preset channel quality parameter
  • the preset threshold is used to determine the first bearer path
  • the first The preset channel quality parameter of the bearer path is higher or lower than the preset threshold. That is, the network device indicates to the terminal device the preset threshold value for determining the channel quality of the activation path, so that the terminal device can pass the preset threshold value after measuring the corresponding channel quality parameter of the activation path.
  • the value comparison determines whether the channel quality of the active path is good or not, so that a path with better channel quality is determined from the active path to carry the PDCP non-duplicated data packet.
  • the network device 900 can send the terminal device the first target information used to determine the first bearer path of the PDCP non-replicated data packet corresponding to the target RB, the terminal device can be used to carry the PDCP non-replicated data packet corresponding to the target RB.
  • the main path of the data packet is deactivated, other paths used to carry the PDCP non-replicated data packet can be determined, thereby ensuring that the PDCP non-replicating data can be sent smoothly and improving the effectiveness of communication.
  • the network device 900 shown in FIG. 9 may be used to implement the various embodiments of the information sending method shown in FIG. 5. For related details, please refer to the above method embodiments.
  • FIG. 10 shows a schematic structural diagram of a network device 1000 provided by some embodiments of the present disclosure.
  • the network device 1000 may include: a second sending module 1001.
  • the second sending module 1001 is configured to send second target information; wherein the second target information is used to configure preset thresholds corresponding to preset channel quality parameters, and the preset thresholds are used to determine at least one A second bearer path, the second bearer path is used to bear the packet convergence protocol PDCP replication data packet corresponding to the target radio bearer RB of the terminal device, and the second bearer path is the activation of the multiple configuration paths of the target RB Path, and the preset channel quality parameter of the second bearer path is higher or lower than the preset threshold.
  • the network device 1000 indicates to the terminal device a preset threshold for determining the channel quality of the active path of the target RB, so that the terminal device measures the corresponding channel quality parameter of the active path, and then communicates with the The preset threshold value compares and determines whether the channel quality of the active path is good or bad, so that a path with better channel quality is determined from the active path for carrying the PDCP duplicate data packet.
  • the network device 1000 shown in FIG. 10 can send to the terminal device the preset threshold for determining at least one second bearer path of the PDCP replication data packet corresponding to the target RB of the terminal device. Therefore, the terminal device can This flexibly determines the path used to carry the PDCP replicated data packet corresponding to the target RB. In addition, since the determined preset channel quality parameter of the second bearer path is higher or lower than the preset threshold value, it indicates that the determined channel quality of the second bearer path is better, and therefore the PDCP replication data packet can be improved. Transmission reliability reduces the transmission delay of PDCP copy data packets.
  • the network device 1000 shown in FIG. 10 may be used to implement the various embodiments of the information sending method shown in FIG. 6. For related details, please refer to the foregoing method embodiments.
  • FIG. 11 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 1100 shown in FIG. 11 includes: at least one processor 1101, a memory 1102, at least one network interface 1104, and a user interface 1103.
  • the various components in the terminal device 1100 are coupled together through the bus system 1105.
  • the bus system 1105 is used to implement connection and communication between these components.
  • the bus system 1105 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 1105 in FIG. 11.
  • the user interface 1103 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 1102 in some embodiments of the present disclosure may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 1102 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 11021 and an application program 11022.
  • the operating system 11021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 11022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program for implementing methods of some embodiments of the present disclosure may be included in the application program 11022.
  • the terminal device 1100 further includes: a computer program that is stored in the memory 1102 and can run on the processor 1101.
  • a computer program that is stored in the memory 1102 and can run on the processor 1101.
  • the computer program is executed by the processor 1101, each of the methods for determining the data packet carrying path described above is implemented. Process, and can achieve the same technical effect, in order to avoid repetition, I will not repeat it here.
  • the methods disclosed in some embodiments of the present disclosure described above may be applied to the processor 1101 or implemented by the processor 1101.
  • the processor 1101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1101 or instructions in the form of software.
  • the above-mentioned processor 1101 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in some embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in some embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer readable storage medium in the field, such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 1101, the steps of the above-mentioned method for determining a data packet carrying path are implemented.
  • FIG. 12 is a structural diagram of a network device applied in some embodiments of the present disclosure, which can implement the details of the foregoing information sending method and achieve the same effect.
  • the network device 1200 includes: a processor 1201, a transceiver 1202, a memory 1203, a user interface 1204, and a bus interface, where:
  • the network device 1200 further includes: a computer program that is stored in the memory 1203 and can be run on the processor 1201.
  • the computer program is executed by the processor 1201 to implement the processes of the information sending method described above. And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, at least one processor represented by the processor 1201 and various circuits of the memory represented by the memory 1203 are linked together. The bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1202 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 1204 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1203 can store data used by the processor 1201 when performing operations.
  • processing units, modules, sub-modules, units, sub-units, etc. can be implemented in at least one application specific integrated circuit (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, In other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASIC application specific integrated circuit
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in some embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, the method for determining the data packet carrying path or the method for sending information is implemented Each process can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • Some embodiments of the present disclosure also provide a computer program product including instructions.
  • the computer runs the instructions of the computer program product, the computer executes the above-mentioned method for determining the data packet carrying path or the method for sending information.
  • the computer program product can be run on the aforementioned network device.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据包承载路径确定、信息发送方法和设备,所述数据包承载路径确定方法包括:在目标RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。

Description

数据包承载路径确定、信息发送方法和设备
相关申请的交叉引用
本申请主张在2019年2月14日在中国提交的中国专利申请号No.201910114970.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及一种数据包承载路径确定、信息发送方法和设备。
背景技术
在无线通信系统中,为了进一步地提高数据传输可靠性和/或降低数据传输时延,终端设备(User Equipment,UE)侧引入了无线承载(Radio Bearer,RB)的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)数据复制功能。PDCP数据复制功能,是指将PDCP实体的数据进行复制,并将复制的数据分别通过多个(两个或两个以上)不同的路径进行发送的技术,例如,将复制的数据分别通过多个无线链路控制(Radio Link Control,RLC)实体进行发送,其中,不同的RLC实体对应不同的逻辑信道。
PDCP数据复制功能可由网络侧配置。例如,网络侧可以先通过无线资源控制(Radio Resource Control,RRC)消息给UE侧的RB配置该功能,然后通过媒体接入控制层控制信令(Medium Access Control Element,MACCE)指示激活(开启)或去激活(停止)该RB的该功能;或者,网络侧可以在通过RRC消息给UE侧的RB配置该功能的同时,通过该RRC消息配置该功能是否在配置后立即激活,也即不需要再通过MAC CE信令额外激活该功能。
UE侧向网络侧传输的数据包括非复制数据包(如PDCP Control协议数据单元(Protocol Data Unit,PDU))和复制数据包(如PDCP data PDU)。非复制数据包不会被复制,且通过主路径发送,其中,主路径是上文中的多个不同的路径中的一个,主路径一直处于激活状态,不需要通过MAC CE信 令进行激活;复制数据包在对应的RB的PDCP数据复制功能处于激活状态时被复制成多份,并将复制得到的多份数据分别通过上文中的多个不同的路径发送。
然而,对于配置了PDCP数据复制功能的RB而言,如果网络侧将用于非复制数据包传输的路径去激活后,UE究竟采用哪个路径发送非复制数据包尚不清楚;或者,由于复制数据包只能通过网络侧规定的指定路径发送(如网络侧指定数据包1通过路径1发送,数据包2通过路径2发送),使得复制数据包的发送路径的确定不够灵活。
发明内容
本公开的一些实施例提供一种数据包承载路径确定、信息发送方法和设备,以确定发送非复制数据包的承载路径,或者提高发送复制数据包的承载路径的灵活性。
第一方面,提供了一种数据包承载路径确定方法,应用于终端设备,所述方法包括:
在目标无线承载RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
第二方面,提供了一种数据包承载路径确定方法,应用于终端设备,所述方法包括:
在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
第三方面,提供了一种信息发送方法,应用于网络设备,所述方法包括:
发送第一目标信息;
其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
第四方面,提供了一种信息发送方法,应用于网络设备,所述方法包括:
发送第二目标信息;
其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
第五方面,提供了一种终端设备,该终端设备包括:
第一确定模块,用于在目标无线承载RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
第六方面,提供了一种终端设备,该终端设备包括:
第二确定模块,用于在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
第七方面,提供了一种网络设备,该网络设备包括:
第一发送模块,用于发送第一目标信息;
其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
第八方面,提供了一种网络设备,该网络设备包括:
第二发送模块,用于发送第二目标信息;
其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
第九方面,提供了一种终端设备,该网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第十方面,提供了一种网络设备,该终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第三方面或第四方面所述的方法的步骤。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如第一方面至第四方面任一方面所述的方法的步骤。
在本公开的一些实施例中,由于终端设备可以在目标RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB,使得发送目标RB的非复制数据包的承载路径清楚明确。或者,终端设备可以在目标RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的议PDCP复制数据包的至少一个承载路径,而不仅仅是由网络侧指定,因此可以提高发送复制数据包的承载路径的灵活性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开的一些实施例提供的一种数据包承载路径确定方法的流程示意图。
图2是本公开的一些实施例提供的另一种数据包承载路径确定方法的流程示意图。
图3A是本公开的一些实施例提供的PDCP数据复制功能的承载类型的示意图之一。
图3B是本公开的一些实施例提供的PDCP数据复制功能的承载类型的示意图之二。
图4A是本公开的一些实施例提供的多路径PDCP数据复制的示意图之 一。
图4B是本公开的一些实施例提供的多路径PDCP数据复制的示意图之二。
图5是本公开的一些实施例提供的一种信息发送方法的流程示意图。
图6是本公开的一些实施例提供的另一种信息发送方法的流程示意图。
图7是本公开的一些实施例提供的终端设备700的结构示意图。
图8是本公开的一些实施例提供的终端设备800的结构示意图。
图9是本公开的一些实施例提供的网络设备900的结构示意图。
图10是本公开的一些实施例提供的网络设备1000的结构示意图。
图11是本公开的一些实施例提供的终端设备1100的一种结构示意图。
图12是本公开的一些实施例提供的网络设备1200的一种结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新空口(New Radio,NR)系统。
终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动终端设备等,可以经无线接入网(例如,Radio Access Network,RAN) 与至少一个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备是一种部署在无线接入网设中用于发送信息的装置,所述网络设备可以为基站,所述基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),以及后续演进通信系统中的网络侧设备,然而用词并不构成对本公开保护范围的限制。
需要说明的是,在描述具体实施例时,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
如图1所示,本公开的一些实施例提供的一种数据包承载路径确定方法,应用于终端设备,该方法可以包括:
步骤101、在目标无线承载RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
其中,多个配置路径是网络设备为目标无线承载(Radio Bearer,RB)配置的多个用于数据包发送的路径。多个激活路径是网络设备在配置多个配置路径的同时或配置多个配置路径之后,进一步激活的所述多个配置路径中的多个路径。
可选地,可以在用于承载目标RB对应的PDCP非复制数据包的主路径去激活的情况下,执行步骤101。主路径为网络侧预先配置的用于承载目标RB对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)非数据包的路径,主路径可以是所述多个配置路径中的一个路径,且在实施本公开的一些实施例提供的数据包承载路径确定方法时,主路径处于去激活状态。
目标RB可以是特定RB,例如,编号为1的数据无线承载(Data Radio  Bearer,DRB),具体如DRB1;或者,特定的信令无线承载(Signaling Radio Bearer,SRB),如SRB1。
SRB用于无线资源控制(Radio Resource Control,RRC)消息和非接入层(NonAccess,NAS)消息传输的无线承载。SRB包括SRB0、SRB1和SRB2。
下面先对为目标RB配置PDCP数据复制功能、多个配置路径和多个激活路径的过程进行说明。
可选地,作为一个例子,在上述步骤101之前,也即在确定PDCP非复制数据包的承载路径之前,图1所示的方法还可以包括:接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能;基于所述第一信息给所述目标RB配置PDCP数据复制功能。
第一信息可以承载在无线资源控制(Radio Resource Control,RRC)消息中,也即终端设备可以通过接收RRC消息来接收第一信息,或者说,网络设备可以通过RRC消息给终端设备的目标RB配置PDCP数据复制功能。
进一步地,在上述例子的基础上,图1所示的方法还可以包括:基于预设激活方式激活所述目标RB的PDCP数据复制功能。例如,网络设备可以先通过RRC消息给目标RB配置PDCP数据复制功能,然后通过媒体接入控制层控制信令(Medium Access Control Element,MAC CE)指示激活(开启)或去激活(停止)目标RB的该功能;或者,网络侧可以在通过RRC消息给目标RB配置该功能的同时,通过该RRC消息配置该功能是否在配置后立即激活,也即不需要再通过MAC CE信令额外激活该功能。
可选地,作为另一个例子,在上述步骤101之前,也即在确定PDCP非复制数据包的承载路径之前,图1所示的方法还可以包括:接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径;基于所述第二信息确定所述多个配置路径。
第二信息也可以承载在RRC消息中。可选地,承载第一信息和第二信息的RRC消息可以是同一RRC消息,例如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如配置路径(leg)1、路径2和路径3)。
或者,第二信息可以承载在MAC CE中,也即终端设备可以通过接收 MAC CE来接收第二信息,或者说,网络设备可以通过MAC CE给终端设备的目标RB配置所述多个配置路径。
可选地,作为又一个例子,在上述步骤101之前,也即在确定PDCP非复制数据包的承载路径之前,图1所示的方法还可以包括:接收第三信息,所述第三信息用于指示所述多个激活路径;基于所述第三信息确定所述多个激活路径。
第三信息也可以承载在RRC消息中,或者,第三信息可以承载在MAC CE中。可选地,当第一信息、第二信息和第三信息均承载在RRC消息中时,承载第一信息、第二信息和第三信息的RRC消息可以是同一RRC消息。例如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如配置路径(leg)1、路径2和路径3)和所述多个激活路径(如配置激活路径1和路径2)。
又如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如配置路径(leg)1、路径2和路径3),然后通过MAC CE给终端设备配置所述多个激活路径(如配置激活路径1和路径2)。
在上述例子中,网络设备无论是在配置所述多个配置路径还是所述多个激活路径时,都可以通过配置路径的标识信息完成路径的配置。下面以配置所述多个激活路径为例,对基于路径的标识信息完成路径的配置进行说明。
可选地,在一个更为详细的例子中,上述第三信息用于指示所述多个激活路径的标识信息,所述基于所述第三信息确定所述多个激活路径,包括:基于所述第三信息中指示的所述多个激活路径的标识信息,确定所述多个激活路径。其中,所述标识信息包括RB标识(如DRB1或SRB1)、逻辑信道标识(如逻辑信道1)、小区组标识(如,主小区组(Master Cell Group,MCG)或辅小区组(Secondary Cell Group,SCG))和数据流标识(如,QoS flow 1)中的至少一种。
下面结合详细的例子,对步骤101中具体如何确定目标RB的PDCP非复制数据包的承载路径进行说明。
通过步骤101可知,本公开的一些实施例要么在所述多个配置路径中确 定目标RB的PDCP非复制数据包的承载路径,要么在所述多个激活路径中确定目标RB的PDCP非复制数据包的承载路径。
在第一个例子中,终端设备在所述多个激活路径中确定目标RB的PDCP非复制数据包的承载路径,具体可以基于第一预设方式在所述多个激活路径中确定所述承载路径,也就是说,所述承载路径是基于第一预设确定方式确定的。
其中,第一预设确定方式可以包括但不限于如下第一种方式、第二种方式、第三种方式和第四种方式中的任一种。
第一种方式包括:基于网络设备的指示信息,在所述多个激活路径中确定所述承载路径。也即网络设备可以通过所述指示信息,在所述多个激活路径中指定一个路径作为所述承载路径。
其中,所述指示信息可承载在RRC消息或MAC CE中。
进一步地,所述指示信息可以承载在上文中用于承载第一信息、第二信息和第三信息的RRC消息中。例如,网络设备可以在通过RRC消息给目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如配置路径(leg)1、路径2和路径3)和所述多个激活路径(如配置激活路径1和路径2),并通过该RRC消息指示所述多个激活路径中的特定路径(如路径1)用于承载PDCP非复制数据包。
或者,进一步地,所述指示信息可以承载在上文中用于承载第二信息和/或第三信息的MAC CE中。例如,网络设备可以在通过MAC CE配置所述多个激活路径(如配置激活路径1和路径2)的同时,通过该MAC CE指示所述多个激活路径中的特定路径(如路径1)用于承载PDCP非复制数据包。
第二种方式包括:基于第一预设规则,在所述多个激活路径中确定所述承载路径。其中,第一预设规则由协议约定,也即由协议约定一个用于承载PDCP非复制数据包的激活路径;或者,第一预设规则可以包括:在所述多个激活路径中任选一个路径作为所述承载路径,例如,假如所述多个激活路径包括路径1和路径2,那么可以在路径1和路径2中随机或按照任意规则选择一个路径作为所述承载路径。
在第二种方式中,当所述第一预设规则由协议约定时,第一预设规则可 以包括但不限于下列三个规则中的任一种。
第一个规则,在所述多个激活路径中与主小区组MCG的逻辑信道(Logical Channel,LCH)对应的路径中,确定所述承载路径。
具体的,在第一个规则中,终端设备可以将MCG中的逻辑信道对应的任一激活路径作为所述承载路径,也即所述承载路径可以为MCG中的逻辑信道对应的任一激活路径。
或者,在第一个规则中,终端设备可以将MCG中的逻辑信道编号满足第二预设条件的激活路径作为所述承载路径,也即所述承载路径可以为MCG中的逻辑信道编号满足第二预设条件的激活路径。举例来说,第二预设条件可以包括逻辑信道编号最大、逻辑信道编号最小、逻辑信道编号为偶数或逻辑信道编号为奇数等条件中的一个或多个。例如,假如第二预设条件为逻辑信道编号最大,且所述MCG中包括路径1和路径2两个激活路径,这两个激活路径对应的MCG的逻辑信道编号分别为LCH1和LCH2,则可以将LCH2对应的激活路径(路径2)作为所述承载路径。
需要说明的是,在本公开的一些实施例中,与MCG的逻辑信道对应的激活路径,是指MCG中的激活路径;同理,下文中的与SCG的逻辑信道对应的激活路径,是指SCG中的激活路径。
第二个规则,在所述多个激活路径中与辅小区组SCG的逻辑信道对应的路径中,确定所述承载路径。
具体的,在第二个规则中,终端设备可以将SCG中的逻辑信道对应的任一激活路径作为所述承载路径,也即所述承载路径可以为SCG中的逻辑信道对应的任一激活路径;
或者,在第二个规则中,终端设备可以将SCG中的逻辑信道编号满足第三预设条件的激活路径作为所述承载路径,也即所述承载路径可以为SCG中的逻辑信道编号满足第三预设条件的激活路径。举例来说,第三预设条件可以包括逻辑信道编号最大、逻辑信道编号最小、逻辑信道编号为偶数或逻辑信道编号为奇数等条件中的一个或多个。例如,假如第三预设条件为逻辑信道编号最小,且所述SCG中包括路径1和路径2两个激活路径,这两个激活路径对应的SCG的逻辑信道编号分别为LCH1和LCH2,则可以将LCH1对 应的激活路径(路径2)作为所述承载路径。
第三个规则,终端设备可以直接将所述多个激活路径中逻辑信道编号满足第一预设条件的路径,确定为所述承载路径。也即不区分MCG中或SCG中的激活路径,直接基于逻辑信道编号是否满足第一预设条件来确定所述承载路径。举例来说,第一预设条件可以包括逻辑信道编号最大、逻辑信道编号最小、逻辑信道编号为偶数或逻辑信道编号为奇数等条件中的一个或多个。例如,假如第一预设条件为逻辑信道编号最小,且所述多个激活路径包括路径1和路径2,对应的逻辑信道编号分别为LCH1和LCH2,则可以将LCH1对应的激活路径(路径1)作为所述承载路径。
第三种方式包括:基于激活路径所关联的无线链路控制(Radio Link Control,RLC)实体的模式,在所述多个激活路径中确定所述承载路径。
举例来说,当所述多个激活路径中的至少一个路径关联的RLC实体的模式为确认模式(AM),且所述多个激活路径中的至少一个路径关联的RLC实体的模式为非确认模式(UM)时,所述承载路径为所述多个激活路径中关联的RLC实体的模式为AM的路径。例如,如果所述多个激活路径包括路径1和路径2,其中,路径1关联的RLC实体的模式为AM,路径2关联的RLC实体的模式为UM,则可以将路径1确定为所述承载路径。
可以理解,当基于上述第三种方式在所述多个激活路径中确定所述承载路径时,由于考虑了所述多个激活路径关联的RLC实体的模式,并且是将关联的RLC实体的模式为AM的激活路径确定为所述承载路径,因此可以使目标RB的PDCP非复制数据包在信道质量好的路径中发送,从而可以提高PDCP非复制数据包的传输可靠性和/或降低PDCP非复制数据包的传输时延。
第四种方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述承载路径。
具体的,终端设备可以将所述多个激活路径中信道质量最好的路径作为所述承载路径,也即所述承载路径可以为所述多个激活路径中信道质量最好的路径。其中,信道质量的好坏可以通过预设信道质量参数来表征。
例如,假如所述多个激活路径包括路径1和路径2,预设信道质量参数为参考信号接收功率(Reference Signal Receiving Power,RSRP),且路径1 的RSRP大于路径2的RSRP,说明路径1的信道质量最好,进而可以将路径1作为PDCP复制数据包的承载路径。
或者,终端设备可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径作为所述承载路径,也即所述承载路径可以为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。
例如,假如所述多个激活路径包括路径1和路径2,预设信道质量参数为RSRP,预设门限值为RSRP=-20dBm,且路径1的RSRP高于该预设门限值,而路径2的RSRP低于该预设门限值,说明路径1的信道质量较好,进而可以将路径1作为PDCP复制数据包的承载路径。
其中,预设门限值可以由网络设备配置,也可以由协议约定。
除了RSRP,预设信道质量参数还可以是参考信号接收质量(Reference Signal Received Quality,RSRQ)、参考信号时间偏差(Reference signal time difference,RSTD)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、误块率(Block Error Rate,BLER)、信道占用率(Channel occupancy ratio,CR)、信道繁忙率(Channel busy ratio,CBR)和信号干扰噪声比(Signal-to-Noise and Interference Ratio,SINR)中的至少一种。
可以理解,将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径作为所述承载路径,旨在将所述多个激活路径中信道质量较优的路径作为所述承载路径。需要说明的是,在基于预设信道质量参数确定信道质量较优的路径时,不同的信道质量参数与预设门限值的匹配关系不同,例如,在基于RSRP确定信道质量较优的路径时,具体是将RSRP高于预设门限值的路径确定为信道质量较优的路径,而在基于BLER确定信道质量较优的路径时,则是将BLER低于预设门限值的路径确定为信道质量较优的路径。
还需要说明的是,当基于上述第四种方式在所述多个激活路径中确定所述承载路径时,由于考虑了所述多个激活路径的信道质量,并且是将信道质量最好或较优的激活路径确定为所述承载路径,因此可以使目标RB的PDCP非复制数据包在信道质量好的路径中发送,从而可以提高PDCP非复制数据包的传输可靠性和/或降低PDCP非复制数据包的传输时延。
在第二个例子中,终端设备可以在所述配置激活路径中确定目标RB的 PDCP非复制数据包的承载路径,具体可以基于第二预设规则在所述多个激活路径中确定所述承载路径,也就是说,所述承载路径是基于第二预设规则在所述多个激活路径中确定的。
具体的,第二预设规则可以包括:在所述多个配置路径中任选一个路径作为所述承载路径。例如,所述多个配置路径包括路径1、路径2、路径3和路径4,所述多个激活路径包括所述多个配置路径中的路径1和路径2,则终端设备可以在路径1、路径2、路径3和路径4中任选一个路径作为PDCP非复制数据包的承载路径,可选地,终端设备可以将路径1、路径2作为PDCP复制数据包的承载路径。
总之,本公开的一些实施例提供的一种数据包承载路径确定方法,由于终端设备可以在目标RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB,因此,可以使发送目标RB的非复制数据包的承载路径清楚明确。
可选地,如果通过步骤101确定出的承载路径有多个时,图1所示的方法还可以包括:在确定出的多个所述承载路径中,任选一个承载路径作为目标承载路径;并通过所述目标承载路径发送所述PDCP非复制数据包。
相应的,如果通过步骤101确定出的承载路径为一个时,图1所示的方法还可以包括:将确定出的承载路径作为目标承载路径,并通过所述目标承载路径发送所述PDCP非复制数据包。
可选地,图1所示的方法还可以包括:向所述终端设备的MAC层,上报通过所述目标承载路径发送的所述PDCP非复制数据包的数据量,以提高通信有效性。
需要说明的是,在本公开的一些实施例中,目标RB的PDCP非复制数据包可以包括但不限于PDCP状态包(PDCP Status PDU)、鲁棒头压缩(Robust Header Compression,ROHC)控制包、上行数据压缩(Uplink Data Compression,UDC)控制包和以太网头压缩控制包中的至少一种。
其中,ROHC控制包,例如可以是散布式ROHC反馈包(interspersed ROHC feedback packet)。UDC控制包,例如可以是UDC反馈包(UDC feedback  packet)。以太网头压缩控制包,例如可以是以太网络头压缩反馈包(Ethernet header compression feedback packet),等等,本文不一一列举。
以上对应用于终端设备的一种数据包承载路径确定方法进行了说明,下面将通过图2对应用于终端设备的另一种数据包承载路径确定方法进行说明。需要说明的是,本公开的一些实施例提供的各数据包承载路径确定方法可以组合实施也可以单独实施,也即图1和图2所示的方法既可以单独实施也可以组合实施。
如图2所示,本公开的一些实施例提供的另一种数据包承载路径确定方法,应用于终端设备,该方法可以包括:
步骤201、在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
其中,多个配置路径是网络设备为目标无线承载(Radio Bearer,RB)配置的多个用于数据包发送的路径。多个激活路径是网络设备在配置多个配置路径的同时或配置多个配置路径之后,进一步激活的所述多个配置路径中的多个路径。多个配置路径可以是多个无线链路控制(Radio Link Control,RLC)实体。目标RB可以是特定RB,例如,DRB1或SRB1。
同对图1所示的实施例的说明,下面先对为目标RB配置PDCP数据复制功能、多个配置路径、多个激活路径和复制份数的过程进行说明。
可选地,作为一个例子,在上述步骤201之前,也即在确定PDCP复制数据包的至少一个承载路径之前,图2所示的方法还可以包括:接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能;并基于所述第一信息给所述目标RB配置PDCP数据复制功能。
第一信息可以承载在RRC消息中,也即终端设备可以通过接收RRC消息来接收第一信息,或者说,网络设备可以通过RRC消息给终端设备的目标RB配置PDCP数据复制功能。
进一步地,在上述例子的基础上,图2所示的方法还可以包括:基于预设激活方式激活所述目标RB的PDCP数据复制功能。例如,网络设备可以先通过RRC消息给目标RB配置PDCP数据复制功能,然后通过MAC CE 指示激活(开启)或去激活(停止)目标RB的该功能;或者,网络侧可以在通过RRC消息给目标RB配置该功能的同时,通过该RRC消息配置该功能是否在配置后立即激活,也即不需要再通过MAC CE信令额外激活该功能。
可选地,作为另一个例子,在上述步骤201之前,也即在确定PDCP复制数据包的至少一个承载路径之前,图2所示的方法还可以包括:接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径;基于所述第二信息确定所述多个配置路径。
第二信息也可以承载在RRC消息中,或者,第二信息可以承载在MAC CE中。当通过RRC消息承载第一信息和第二信息时,承载第一信息和第二信息的RRC消息可以是同一RRC消息。
可选地,作为又一个例子,在上述步骤201之前,也即在确定PDCP复制数据包的至少一个承载路径之前,图2所示的方法还可以包括:接收第三信息,所述第三信息用于指示所述多个激活路径;基于所述第三信息确定所述多个激活路径。
第三信息可以承载在RRC消息中,或者,第三信息可以承载在MAC CE中。可选地,当第一信息、第二信息和第三信息均通过RRC消息承载时,承载第一信息、第二信息和第三信息的RRC消息可以是同一RRC;当第一信息承载在RRC消息中,第二信息和第三信息承载在MAC CE中时,承载第二信息和第三信息的MAC CE可以为同一MAC CE。
在上述例子中,网络设备无论是在配置所述多个配置路径还是所述多个激活路径时,都可以通过配置路径的标识信息完成路径的配置。下面以配置所述多个激活路径为例,对基于路径的标识信息完成路径的配置进行说明。
例如,在一个更为详细的例子中,上述第三信息可用于指示所述多个激活路径的标识信息,相应的,所述基于所述第三信息确定所述多个激活路径,可以包括:基于所述第三信息中指示的所述多个激活路径的标识信息,确定所述多个激活路径。其中,所述标识信息包括RB标识(如DRB1或SRB1)、逻辑信道标识(如逻辑信道1)、小区组标识(如,MCG或SCG)和数据流标识(如,QoS flow 1)中的至少一种。
可选地,作为又一个例子,在上述步骤201之前,也即在确定PDCP复 制数据包的至少一个承载路径之前,图2所示的方法还可以包括:接收第四信息,所述第四信息用于配置所述PDCP复制数据包的复制份数;基于所述第四信息,确定所述复制份数。
其中,第四信息也可以承载在RRC消息中,或者,第四信息可以承载在MAC CE中。
总的来说,第一信息可以承载在RRC消息中,第二信息、第三信息和第四信息既可以承载在RRC消息中,也可以承载在MAC CE中。下面通过三个详细的例子,对第一信息、第二信息、第三信息和第四信息的承载情况进行说明。
例如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如给DRB1配置路径1、路径2、路径3和路径4)并配置激活其中的多个路径(如配置激活路径1和路径2),以及通过该RRC消息配置PDCP复制数据包的复制份数为3。
再如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如给DRB1配置路径1、路径2、路径3和路径4),并通过该RRC消息配置PDCP复制数据包的复制份数为3;然后通过MAC CE给终端设备配置所述多个激活路径(如配置激活路径1和路径2)。
又如,网络设备可以在通过RRC消息给终端设备的目标RB配置PDCP数据复制功能的同时,通过该RRC消息配置所述多个配置路径(如给DRB1配置路径1、路径2、路径3和路径4)。然后通过MAC CE给终端设备配置所述多个激活路径(如配置激活路径1和路径2),并通过该MAC CE配置PDCP复制数据包的复制份数为3。
下面结合详细的例子,对步骤201中具体如何确定目标RB的PDCP复制数据包的至少一个承载路径进行说明。
作为一个例子,步骤201具体可以包括:基于第二预设确定方式,在所述多个激活路径中确定所述至少一个承载路径。
其中,所述第二预设确定方式可以包括但不限于下列第一种方式、第二 种方式和第三种方式中的任一种。
第一种方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述至少一个承载路径。
具体的,在第一种方式中,可以将所述多个激活路径中信道质量最好的路径确定为所述至少一个承载路径,也即所述至少一个承载路径为所述多个激活路径中信道质量最好的路径。其中,信道质量的好坏可以通过预设信道质量参数来表征。
举例来说,假如所述多个激活路径包括路径1和路径2,预设信道质量参数为参考信号接收功率(Reference Signal Receiving Power,RSRP),且路径1的RSRP大于路径2的RSRP,说明路径1的信道质量最好,进而可以将路径1作为PDCP复制数据包的承载路径。
或者,在第一种方式中,可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径确定为所述至少一个承载路径,也即所述至少一个承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。其中,预设门限值可以由网络设备配置,也可以由协议约定。
举例来说,假如所述多个激活路径包括路径1和路径2,预设信道质量参数为RSRP,预设门限值为RSRP=-20dBm,且路径1的RSRP高于该预设门限值,而路径2的RSRP低于该预设门限值,说明路径1的信道质量较好,进而可以将路径1作为PDCP复制数据包的承载路径。
第二种方式包括:基于激活路径所关联的RLC实体的模式,在所述多个激活路径中确定所述至少一个承载路径。
具体的,在第二种方式中,当所述多个激活路径关联的RLC实体的模式均为非确认模式UM时,可以进一步地基于所述多个激活路径的信道质量测量结果确定所述至少一个承载路径,也即所述至少一个承载路径是基于所述多个激活路径的信道质量测量结果确定的。
例如,可以将所述多个激活路径中信道质量最好的路径确定为所述至少一个承载路径,也即所述至少一个承载路径为所述多个激活路径中信道质量最好的路径;或者,可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径确定为所述至少一个承载路径,也即所述至少一个承载 路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。其中,预设门限值可以由网络设备配置,也可以由协议约定。
在第一种确定方式和第二种确定方式中,所述预设信道质量参数可以包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR等参数中的至少一种。
可以理解,将所述多个激活路径中信道质量最好的激活路径,或将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径作为所述至少一个承载路径,旨在将所述多个激活路径中信道质量较优的路径作为所述至少一个承载路径。需要说明的是,在基于预设信道质量参数确定信道质量较优的路径时,不同的信道质量参数与预设门限值的匹配关系不同,例如,在基于RSRP确定信道质量较优的路径时,具体是将RSRP高于预设门限值的路径确定为信道质量较优的路径,而在基于BLER确定信道质量较优的路径时,则是将BLER低于预设门限值的路径确定为信道质量较优的路径。
或者,在第二种方式中,当所述多个激活路径关联的RLC实体的模式均为确认模式AM时,可以基于网络设备配置的PDCP复制数据包的复制份数确定所述至少一个承载路径,也即所述至少一个承载路径是基于所述复制份数确定的。
可选地,当在第二种方式中,所述至少一个承载路径是基于所述复制份数确定的时,图2所示的方法还可以包括:将所述复制份数的PDCP复制数据包,分别通过所述至少一个承载路径发送,其中,复制得到的不同PDCP复制数据包对应的承载路径不同。也即将复制的到多份复制数据包分别通过所述至少一个承载路径中的不同路径发送。
例如,假如目标RB的多个激活路径包括路径1和路径2,且路径1和路径2关联的RLC实体的模式均为AM,且PDCP复制数据的复制份数为2,则可以将复制得到的2份数据包分别通过路径1和路径2发送。
可以理解,在第一种确定方式和第二种确定方式中,由于考虑了所述多个激活路径关联的RLC实体的模式、多个激活路径的信道质量以及PDCP复制数据包的复制份数等因素中的至少一个,因此可以提高PDCP复制数据包 的传输可靠性和/或降低PDCP复制数据包的传输时延。
第三种方式包括:基于第三预设规则,在所述多个激活路径中确定所述至少一个承载路径。
具体的,第三预设规则可以包括:在所述多个配置路径中任选一个或多个路径作为所述至少一个承载路径。例如,所述多个配置路径包括路径1、路径2、路径3和路径4,所述多个激活路径包括所述多个配置路径中的路径1和路径2,则终端设备可以在路径1和路径2中任选一个或两个路径作为PDCP复制数据包的承载路径。
总之,本公开的一些实施例提供的一种数据包承载路径确定方法,由于终端设备可以在目标RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的PDCP复制数据包的至少一个承载路径,而不仅仅是由网络侧指定,因此可以提高发送复制数据包的承载路径的灵活性。
可选地,图2所示的方法还可以包括:通过所述至少一个承载路径,发送所述复制份数的PDCP复制数据包。
可选地,图2所示的方法还可以包括:向所述终端设备的MAC层,上报通过所述承载路径发送的PDCP复制数据包的数据量,以提高通信有效性。
下面通过图3A、图3B、图4A和图4B,对图1所示的实施例和图2所示的实施例中的PDCP数据复制功能的承载类型,以及多路径PDCP数据复制的原理进行简要地介绍。
作为一个例子,在5G系统中,由于采用了包括MCG和SCG两个小区组的双连接(Dual Connectivity,DC)架构,因此,PDCP数据复制功能的承载类型可以包括如图3A和如图3B所示的两种。
图3A所示的PDCP数据复制功能的承载类型为重复承载(Duplicate bearer),在该承载类型的无线承载中,对应1的1个PDCP实体、2个或多个RLC实体以及1个MAC实体在同一个小区组中。例如,对于MCG中的PDCP实体,其对应的2个或多个RLC实体以及1个MAC实体均在MCG中;对于SCG中的PDCP实体,其对应的2个或多个RLC实体以及1个MAC实体均在SCG中。
图3B所示的PDCP数据复制功能的承载类型为分离承载(Split bearer), 在该承载类型的无线承载中,对应的PDCP实体在1个小区组,对应的2个或多个RLC实体,以及对应的2个或多个MAC实体在不同的小区组中。
对于多路径PDCP数据复制(Mulitple Leg PDCP Duplication),或称多路径重复承载(Multiple leg Duplicate Bearer),PDCP数据复制功能可以配置超过两个(如,3个)发送路径(如,1个PDCP实体对应3个以上的RLC实体),如图4A所示,可以配置在同一小区组的多个路径,或者如图4B所示,可以配置不在同一小区组的多个路径。配置之后,网络设备可能会选择去激活其中1个或多个路径(如,可以去激活1个路径,但是仍然有2个路径处于激活状态)。其中,去激活的路径不用于数据的接收或发送,而该PDCP数据复制功能仍然可以继续通过激活的路径使用。
以上是对本公开的一些实施例提供的数据包发送路径确定方法的说明。下面对本公开的一些实施例提供的信息发送方法进行介绍。
如图5所示,本公开的一些实施例提供的一种信息发送方法,应用于网络设备,该方法可以包括:
步骤501、发送第一目标信息;其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
在一个例子中,所述第一目标信息用于指示第一承载路径,也即所述第一目标信息中直接指示了第一承载路径是什么,例如,指示了第一承载路径的标识信息(标识信息的具体内容请参照上文,此处不再赘述)。更为详细的,此时第一目标信息可以携带在用于给终端设备的目标RB配置PDCP复制功能的RRC消息中。
在另一个例子中,所述第一目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定所述第一承载路径,且所述第一承载路径的所述预设信道质量参数高于或低于所述预设门限值。也即,网络设备给终端设备指示了用于确定激活路径的信道质量好坏的预设门限值,以使终端设备在测量出激活路径的相应信道质量参数之后,通过与该预设门限值比较确定激活路径的信道质量的好坏,从而从激活路径中确定出信道质量较好 的路径以用于承载PDCP非复制数据包。
其中,所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
图5所示的实施例提供的一种信息发送方法,由于网络设备可以给终端设备发送用于确定目标RB对应的PDCP非复制数据包的第一承载路径的第一目标信息,因此,可以使终端设备在用于承载目标RB对应的PDCP非复制数据包的主路径去激活时,能够确定出用于承载PDCP非复制数据包的其他路径,从而保证PDCP非复制数据能够顺利发送,提高了通信有效性。
如图6所示,本公开的一些实施例提供的一种信息发送方法,应用于网络设备,该方法可以包括:
步骤601、发送第二目标信息;其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标RB对应的PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
也即,网络设备给终端设备指示了用于确定目标RB的激活路径的信道质量好坏的预设门限值,以使终端设备在测量出激活路径的相应信道质量参数之后,通过与该预设门限值比较确定激活路径的信道质量的好坏,从而从激活路径中确定出信道质量较好的路径以用于承载PDCP复制数据包。
其中,所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
图6所示的实施例提供的一种信息发送方法,由于网络设备可以给终端设备发送用于确定终端设备的目标RB对应的PDCP复制数据包的至少一个第二承载路径的预设门限值,因此,可以使终端设备据此灵活的确定出用于承载目标RB对应的PDCP复制数据包的路径。并且,由于确定出的第二承 载路径的预设信道质量参数高于或低于该预设门限值,说明确定出的第二承载路径的信道质量较好,因此可以提高PDCP复制数据包的传输可靠性,降低PDCP复制数据包的传输时延。
以上是对本文提供的方法实施例的说明,相应于上述方法实施例,本公开还提供了终端设备700、终端设备800、网络设备900和网络设备1000,下面分别进行介绍。
图7示出了本公开的一些实施例提供的终端设备700的结构示意图,如图7所示,终端设备700可以包括:第一确定模块701。
第一确定模块701,用于在目标无线承载RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
可选地,作为一个例子,终端设备700还可以包括:第一接收模块,用于接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能,并基于所述第一信息给所述目标RB配置PDCP数据复制功能。
第一信息可以承载在RRC消息中。
可选地,作为另一个例子,终端设备700还可以包括:第二接收模块,用于接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径,并基于所述第二信息确定所述多个配置路径。
第二信息也可以承载在RRC消息中,或者,第二信息可以承载在MAC CE中。可选地,承载第一信息和第二信息的RRC消息可以是同一RRC消息。
可选地,作为又一个例子,终端设备700还可以包括:第三接收模块,用于接收第三信息,所述第三信息用于指示所述多个激活路径;基于所述第三信息确定所述多个激活路径。
第三信息也可以承载在RRC消息中,或者,第三信息可以承载在MAC CE中。可选地,当第一信息、第二信息和第三信息均承载在RRC消息中时,承载第一信息、第二信息和第三信息的RRC消息可以是同一RRC消息。
可选地,在一个更为详细的例子中,上述第三信息用于指示所述多个激活路径的标识信息,第三接收模块可用于:基于所述第三信息中指示的所述 多个激活路径的标识信息,确定所述多个激活路径。
下面结合详细的例子,对第一确定模块701具体如何确定目标RB的PDCP非复制数据包的承载路径进行说明。
第一确定模块701要么在所述多个配置路径中确定目标RB的PDCP非复制数据包的承载路径,要么在所述多个激活路径中确定目标RB的PDCP非复制数据包的承载路径。
在第一个例子中,第一确定模块701在所述多个激活路径中确定目标RB的PDCP非复制数据包的承载路径,具体可以基于第一预设方式在所述多个激活路径中确定所述承载路径,也就是说,所述承载路径是基于第一预设确定方式在所述多个激活路径中确定的。
其中,第一预设确定方式可以包括但不限于如下第一种方式、第二种方式、第三种方式和第四种方式中的任一种。
第一种方式包括:基于网络设备的指示信息,在所述多个激活路径中确定所述承载路径。也即网络设备可以通过所述指示信息,在所述多个激活路径中指定一个路径作为所述承载路径。
其中,所述指示信息可承载在RRC消息或MAC CE中。
第二种方式包括:基于第一预设规则,在所述多个激活路径中确定所述承载路径。其中,第一预设规则由协议约定,也即由协议约定一个用于承载PDCP非复制数据包的激活路径;或者,第一预设规则可以包括:在所述多个激活路径中任选一个路径作为所述承载路径。
在第二种方式中,当所述第一预设规则由协议约定时,第一预设规则可以包括但不限于下列三个规则中的任一种。
第一个规则,在所述多个激活路径中与主小区组MCG的逻辑信道(Logical Channel,LCH)对应的路径中,确定所述承载路径。
具体的,在第一个规则中,终端设备可以将MCG中的逻辑信道对应的任一激活路径作为所述承载路径,也即所述承载路径可以为MCG中的逻辑信道对应的任一激活路径。
或者,在第一个规则中,终端设备可以将MCG中的逻辑信道编号满足第二预设条件的激活路径作为所述承载路径,也即所述承载路径可以为MCG 中的逻辑信道编号满足第二预设条件的激活路径。
第二个规则,在所述多个激活路径中与辅小区组SCG的逻辑信道对应的路径中,确定所述承载路径。
具体的,在第二个规则中,终端设备可以将SCG中的逻辑信道对应的任一激活路径作为所述承载路径,也即所述承载路径可以为SCG中的逻辑信道对应的任一激活路径;
或者,在第二个规则中,终端设备可以将SCG中的逻辑信道编号满足第三预设条件的激活路径作为所述承载路径,也即所述承载路径可以为SCG中的逻辑信道编号满足第三预设条件的激活路径。
第三个规则,终端设备可以直接将所述多个激活路径中逻辑信道编号满足第一预设条件的路径,确定为所述承载路径。也即不区分MCG中或SCG中的激活路径,直接基于逻辑信道编号是否满足第一预设条件来确定所述承载路径。
第三种方式包括:基于激活路径所关联的RLC实体的模式,在所述多个激活路径中确定所述承载路径。
可以理解,当基于上述第三种方式在所述多个激活路径中确定所述承载路径时,由于考虑了所述多个激活路径关联的RLC实体的模式,并且是将关联的RLC实体的模式为AM的激活路径确定为所述承载路径,因此可以使目标RB的PDCP非复制数据包在信道质量好的路径中发送,从而可以提高PDCP非复制数据包的传输可靠性和/或降低PDCP非复制数据包的传输时延。
第四种方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述承载路径。
具体的,终端设备可以将所述多个激活路径中信道质量最好的路径作为所述承载路径,也即所述承载路径可以为所述多个激活路径中信道质量最好的路径。其中,信道质量的好坏可以通过预设信道质量参数来表征。
或者,终端设备可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径作为所述承载路径,也即所述承载路径可以为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。
还需要说明的是,当基于上述第四种方式在所述多个激活路径中确定所 述承载路径时,由于考虑了所述多个激活路径的信道质量,并且是将信道质量最好或较优的激活路径确定为所述承载路径,因此可以使目标RB的PDCP非复制数据包在信道质量好的路径中发送,从而可以提高PDCP非复制数据包的传输可靠性和/或降低PDCP非复制数据包的传输时延。
在第二个例子中,第一确定模块701可以在所述配置激活路径中确定目标RB的PDCP非复制数据包的承载路径,具体可以基于第二预设规则在所述多个激活路径中确定所述承载路径,也就是说,所述承载路径是基于第二预设规则在所述多个激活路径中确定的。第二预设规则可以包括:在所述多个配置路径中任选一个路径作为所述承载路径。
本公开的一些实施例提供的终端设备700,由于可以在所述目标RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB,因此可以使发送目标RB的非复制数据包的承载路径清楚明确。
可选地,终端设备700还可以包括:非复制数据包发送模块,用于如果确定出的承载路径有多个时,在确定出的多个所述承载路径中,任选一个承载路径作为目标承载路径;并通过所述目标承载路径发送所述PDCP非复制数据包;如果确定出的承载路径为一个时,将确定出的承载路径作为目标承载路径,并通过所述目标承载路径发送所述PDCP非复制数据包。
可选地,终端设备700还可以包括:数据量上报模块,用于向所述终端设备的MAC层,上报通过所述目标承载路径发送的所述PDCP非复制数据包的数据量,以提高通信有效性。
上述图7所示的终端设备700,可以用于实现上述图1所示的数据包承载路径确定方法的各个实施例,相关之处请参考上述方法实施例。
图8示出了本公开的一些实施例提供的终端设备800的结构示意图,如图8所示,终端设备800可以包括:第二确定模块801。
第二确定模块801,用于在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
可选地,作为一个例子,终端设备800还可以包括:第一接收模块,用 于在确定PDCP复制数据包的至少一个承载路径之前,接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能,并基于所述第一信息给所述目标RB配置PDCP数据复制功能。第一信息可以承载在RRC消息中。
可选地,作为另一个例子,终端设备800还可以包括:第二接收模块,用于在确定PDCP复制数据包的至少一个承载路径之前,接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径;并基于所述第二信息确定所述多个配置路径。
第二信息也可以承载在RRC消息中,或者,第二信息可以承载在MAC CE中。当通过RRC消息承载第一信息和第二信息时,承载第一信息和第二信息的RRC消息可以是同一RRC消息。
可选地,作为另一个例子,终端设备800还可以包括:第三接收模块,用于在确定PDCP复制数据包的至少一个承载路径之前,接收第三信息,所述第三信息用于指示所述多个激活路径;并基于所述第三信息确定所述多个激活路径。
第三信息可以承载在RRC消息中,或者,第三信息可以承载在MAC CE中。可选地,当第一信息、第二信息和第三信息均通过RRC消息承载时,承载第一信息、第二信息和第三信息的RRC消息可以是同一RRC;当第一信息承载在RRC消息中,第二信息和第三信息承载在MAC CE中时,承载第二信息和第三信息的MAC CE可以为同一MAC CE。
在一个更为详细的例子中,上述第三信息可用于指示所述多个激活路径的标识信息,相应的,第三接收模块可用于:基于所述第三信息中指示的所述多个激活路径的标识信息,确定所述多个激活路径。
可选地,作为又一个例子,终端设备800还可以包括:第四接收模块,用于在确定PDCP复制数据包的至少一个承载路径之前,接收第四信息,所述第四信息用于配置所述PDCP复制数据包的复制份数;并基于所述第四信息,确定所述复制份数。
其中,第四信息也可以承载在RRC消息中,或者,第四信息可以承载在MAC CE中。
总的来说,第一信息可以承载在RRC消息中,第二信息、第三信息和第四信息既可以承载在RRC消息中,也可以承载在MAC CE中。下面通过三个详细的例子,对第一信息、第二信息、第三信息和第四信息的承载情况进行说明。
下面结合详细的例子,对第二确定模块801具体如何确定目标RB的PDCP复制数据包的至少一个承载路径进行说明。
作为一个例子,第二确定模块801可用于:基于第二预设确定方式,在所述多个激活路径中确定所述至少一个承载路径。
其中,所述第二预设确定方式可以包括但不限于下列第一种方式、第二种方式和第三种方式中的任一种。
第一种方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述至少一个承载路径。
具体的,在第一种方式中,可以将所述多个激活路径中信道质量最好的路径确定为所述至少一个承载路径,或者,可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径确定为所述至少一个承载路径。
第二种方式包括:基于激活路径所关联的RLC实体的模式,在所述多个激活路径中确定所述至少一个承载路径。
具体的,在第二种方式中,当所述多个激活路径关联的RLC实体的模式均为非确认模式UM时,可以进一步地基于所述多个激活路径的信道质量测量结果确定所述至少一个承载路径。例如,可以将所述多个激活路径中信道质量最好的路径确定为所述至少一个承载路径,也即所述至少一个承载路径为所述多个激活路径中信道质量最好的路径;或者,可以将所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径确定为所述至少一个承载路径,也即所述至少一个承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。其中,预设门限值可以由网络设备配置,也可以由协议约定。
或者,在第二种方式中,当所述多个激活路径关联的RLC实体的模式均为确认模式AM时,可以基于网络设备配置的PDCP复制数据包的复制份数确定所述至少一个承载路径,也即所述至少一个承载路径是基于所述复制份 数确定的。
可选地,当在第二种方式中,所述至少一个承载路径是基于所述复制份数确定的时,图8所示的终端设备800还可以包括:第一复制数据包发送模块,用于将所述复制份数的PDCP复制数据包,分别通过所述至少一个承载路径发送,其中,复制得到的不同PDCP复制数据包对应的承载路径不同。
可以理解,在第一种确定方式和第二种确定方式中,由于考虑了所述多个激活路径关联的RLC实体的模式、多个激活路径的信道质量以及PDCP复制数据包的复制份数等因素中的至少一个,因此可以提高PDCP复制数据包的传输可靠性和/或降低PDCP复制数据包的传输时延。
第三种方式包括:基于第三预设规则,在所述多个激活路径中确定所述至少一个承载路径。具体的,第三预设规则可以包括:在所述多个配置路径中任选一个或多个路径作为所述至少一个承载路径。
本公开的一些实施例提供的终端设备800,由于可以在目标RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的PDCP复制数据包的至少一个承载路径,而不仅仅是由网络侧指定,因此可以提高发送复制数据包的承载路径的灵活性。
可选地,终端设备800还可以包括:第二复制数据包发送模块,用于通过所述至少一个承载路径,发送所述复制份数的PDCP复制数据包。
可选地,终端设备800还可以包括:数据量上报模块,用于向所述终端设备的MAC层,上报通过所述承载路径发送的PDCP复制数据包的数据量,以提高通信有效性。
上述图8所示的终端设备800,可以用于实现上述图2所示的数据包承载路径确定方法的各个实施例,相关之处请参考上述方法实施例。
图9示出了本公开的一些实施例提供的网络设备900的结构示意图,如图9所示,网络设备900可以包括:第一发送模块901。
第一发送模块901,用于发送第一目标信息;其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
在一个例子中,所述第一目标信息用于指示第一承载路径,也即所述第一目标信息中直接指示了第一承载路径是什么。
在另一个例子中,所述第一目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定所述第一承载路径,且所述第一承载路径的所述预设信道质量参数高于或低于所述预设门限值。也即,网络设备给终端设备指示了用于确定激活路径的信道质量好坏的预设门限值,以使终端设备在测量出激活路径的相应信道质量参数之后,通过与该预设门限值比较确定激活路径的信道质量的好坏,从而从激活路径中确定出信道质量较好的路径以用于承载PDCP非复制数据包。
网络设备900,由于可以给终端设备发送用于确定目标RB对应的PDCP非复制数据包的第一承载路径的第一目标信息,因此,可以使终端设备在用于承载目标RB对应的PDCP非复制数据包的主路径去激活时,能够确定出用于承载PDCP非复制数据包的其他路径,从而保证PDCP非复制数据能够顺利发送,提高了通信有效性。
上述图9所示的网络设备900,可以用于实现上述图5所示的信息发送方法的各个实施例,相关之处请参考上述方法实施例。
图10示出了本公开的一些实施例提供的网络设备1000的结构示意图,如图10所示,网络设备1000可以包括:第二发送模块1001。
第二发送模块1001,用于发送第二目标信息;其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
也即,网络设备1000给终端设备指示了用于确定目标RB的激活路径的信道质量好坏的预设门限值,以使终端设备在测量出激活路径的相应信道质量参数之后,通过与该预设门限值比较确定激活路径的信道质量的好坏,从而从激活路径中确定出信道质量较好的路径以用于承载PDCP复制数据包。
图10所示的网络设备1000,由于可以给终端设备发送用于确定终端设 备的目标RB对应的PDCP复制数据包的至少一个第二承载路径的预设门限值,因此,可以使终端设备据此灵活的确定出用于承载目标RB对应的PDCP复制数据包的路径。并且,由于确定出的第二承载路径的预设信道质量参数高于或低于该预设门限值,说明确定出的第二承载路径的信道质量较好,因此可以提高PDCP复制数据包的传输可靠性,降低PDCP复制数据包的传输时延。
上述图10所示的网络设备1000,可以用于实现上述图6所示的信息发送方法的各个实施例,相关之处请参考上述方法实施例。
图11是本公开另一个实施例的终端设备的结构示意图。图11所示的终端设备1100包括:至少一个处理器1101、存储器1102、至少一个网络接口1104和用户接口1103。终端设备1100中的各个组件通过总线系统1105耦合在一起。可理解,总线系统1105用于实现这些组件之间的连接通信。总线系统1105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1105。
其中,用户接口1103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器1102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开 的一些实施例描述的系统和方法的存储器1102旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1102存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统11021和应用程序11022。
其中,操作系统11021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序11022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应用程序11022中。
在本公开的一些实施例中,终端设备1100还包括:存储在存储器1102上并可在处理器1101上运行的计算机程序,计算机程序被处理器1101执行时实现上述数据包承载路径确定方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开的一些实施例揭示的方法可以应用于处理器1101中,或者由处理器1101实现。处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1101可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介 质上存储有计算机程序,计算机程序被处理器1101执行时实现如上述数据包承载路径确定方法实施例的各步骤。
请参阅图12,图12是本公开的一些实施例应用的网络设备的结构图,能够实现上述信息发送方法的细节,并达到相同的效果。如图12所示,网络设备1200包括:处理器1201、收发机1202、存储器1203、用户接口1204和总线接口,其中:
在本公开的一些实施例中,网络设备1200还包括:存储在存储器上1203并可在处理器1201上运行的计算机程序,计算机程序被处理器1201、执行时实现上述信息发送方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的至少一个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端设备,用户接口1204还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1201负责管理总线架构和通常的处理,存储器1203可以存储处理器1201在执行操作时所使用的数据。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元、模块、子模块、单元、子单元等可以实现在至少一个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过 程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述数据包承载路径确定方法或信息发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本公开的一些实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述数据包承载路径确定方法或信息发送方法。具体地,该计算机程序产品可以运行于上述网络设备上。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (47)

  1. 一种数据包承载路径确定方法,应用于终端设备,包括:
    在目标无线承载RB的多个配置路径中或所述多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
  2. 根据权利要求1所述的方法,其中,在确定所述承载路径之前,所述方法还包括:
    接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能;
    基于所述第一信息给所述目标RB配置PDCP数据复制功能。
  3. 根据权利要求2所述的方法,其中,在确定所述承载路径之前,所述方法还包括:
    接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径;
    基于所述第二信息确定所述多个配置路径。
  4. 根据权利要求3所述的方法,其中,在确定所述承载路径之前,所述方法还包括:
    接收第三信息,所述第三信息用于指示所述多个激活路径;
    基于所述第三信息确定所述多个激活路径。
  5. 根据权利要求4所述的方法,其中,所述第三信息用于指示所述多个激活路径的标识信息,所述基于所述第三信息确定所述多个激活路径,包括:
    基于所述第三信息中指示的所述多个激活路径的标识信息,确定所述多个激活路径,其中,所述标识信息包括RB标识、逻辑信道标识、小区组标识和数据流标识中的至少一种。
  6. 根据权利要求1-5任一项所述的方法,其中,
    在所述多个激活路径中确定所述承载路径,且所述承载路径是基于第一预设确定方式确定的;
    其中,所述第一预设确定方式包括下列方式中的一种:
    基于网络设备的指示信息,在所述多个激活路径中确定所述承载路径;
    基于第一预设规则,在所述多个激活路径中确定所述承载路径;
    基于激活路径所关联的无线链路控制RLC实体的模式,在所述多个激活路径中确定所述承载路径;以及
    基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述承载路径。
  7. 根据权利要求6所述的方法,其中,
    所述第一预设确定方式包括:基于第一预设规则,在所述多个激活路径中确定所述承载路径;
    其中,所述第一预设规则由协议约定;或者,所述第一预设规则包括:在所述多个激活路径中任选一个路径作为所述承载路径。
  8. 根据权利要求6所述的方法,其中,
    所述第一预设规则由协议约定,且所述第一预设规则包括下列规则中的任一种:
    在所述多个激活路径中与主小区组MCG的逻辑信道对应的路径中,确定所述承载路径;
    在所述多个激活路径中与辅小区组SCG的逻辑信道对应的路径中,确定所述承载路径;以及
    将所述多个激活路径中逻辑信道编号满足第一预设条件的路径,确定为所述承载路径。
  9. 根据权利要求8所述的方法,其中,
    所述第一预设规则包括:在所述多个激活路径中与MCG的逻辑信道对应的路径中,确定所述承载路径;
    其中,所述承载路径为MCG中的逻辑信道对应的任一激活路径;或者,所述承载路径为MCG中的逻辑信道编号满足第二预设条件的激活路径。
  10. 根据权利要求8所述的方法,其中,
    所述第一预设规则包括:在所述多个激活路径中与SCG的逻辑信道对应的路径中,确定所述承载路径;
    其中,所述承载路径为SCG中的逻辑信道对应的任一激活路径;或者, 所述承载路径为SCG中的逻辑信道编号满足第三预设条件的激活路径。
  11. 根据权利要求6所述的方法,其中,
    所述第一预设确定方式包括:基于激活路径所关联的无线链路控制RLC实体的模式,在所述多个激活路径中确定所述承载路径;
    其中,当所述多个激活路径中的至少一个路径关联的RLC实体的模式为确认模式AM,且所述多个激活路径中的至少一个路径关联的RLC实体的模式为非确认模式UM时,所述承载路径为所述多个激活路径中关联的RLC实体的模式为AM的路径。
  12. 根据权利要求6所述的方法,其中,
    所述第一预设确定方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述承载路径;
    其中,所述承载路径为所述多个激活路径中信道质量最好的路径;或者,所述承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。
  13. 根据权利要求12所述的方法,其中,
    所述承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径;
    其中,所述预设门限值由网络设备配置。
  14. 根据权利要求12或13所述的方法,其中,
    所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
  15. 根据权利要求1-5任一项所述的方法,其中,
    在所述多个配置路径中确定所述承载路径,且所述承载路径是基于第二预设规则在所述多个配置路径中确定的;
    其中,所述第二预设规则包括:在所述多个配置路径中任选一个路径作为所述承载路径。
  16. 根据权利要求1-15任一项所述的方法,其中,
    当确定出的所述承载路径为多个时,所述方法还包括:
    在确定出的多个所述承载路径中,任选一个承载路径作为目标承载路径;
    通过所述目标承载路径发送所述PDCP非复制数据包。
  17. 根据权利要求1-15任一项所述的方法,其中,
    当确定出的所述承载路径为一个时,所述方法还包括:
    将所述承载路径作为目标承载路径,并通过所述目标承载路径发送所述PDCP非复制数据包。
  18. 根据权利要求16或17所述的方法,其中,所述方法还包括:
    向所述终端设备的MAC层,上报通过所述目标承载路径发送的所述PDCP非复制数据包的数据量。
  19. 根据权利要求1-18任一项所述的方法,其中,
    所述PDCP非复制数据包包括PDCP状态包、鲁棒头压缩ROHC控制包、上行数据压缩UDC控制包和以太网头压缩控制包中的至少一种。
  20. 一种数据包承载路径确定方法,应用于终端设备,包括:
    在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
  21. 根据权利要求20所述的方法,其中,在确定所述至少一个承载路径之前,所述方法还包括:
    接收第一信息,所述第一信息用于给所述目标RB配置PDCP数据复制功能;
    基于所述第一信息给所述目标RB配置PDCP数据复制功能。
  22. 根据权利要求21所述的方法,其中,在确定所述至少一个承载路径之前,所述方法还包括:
    接收第二信息,所述第二信息用于给所述目标RB配置所述多个配置路径;
    基于所述第二信息确定所述多个配置路径。
  23. 根据权利要求22所述的方法,其中,在确定所述至少一个承载路径之前,所述方法还包括:
    接收第三信息,所述第三信息用于指示所述多个激活路径;
    基于所述第三信息确定所述多个激活路径。
  24. 根据权利要求23所述的方法,其中,所述第三信息用于指示所述多个激活路径的标识信息,所述基于所述第三信息确定所述多个激活路径,包括:
    基于所述第三信息中指示的所述多个激活路径的标识信息,确定所述多个激活路径,其中,所述标识信息包括RB标识、逻辑信道标识、小区组标识和数据流标识中的至少一种。
  25. 根据权利要求23或24所述的方法,其中,在确定所述至少一个承载路径之前,所述方法还包括:
    接收第四信息,所述第四信息用于配置所述PDCP复制数据包的复制份数;
    基于所述第四信息,确定所述复制份数。
  26. 根据权利要求25所述的方法,其中,
    所述在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,包括:基于第二预设确定方式,在所述多个激活路径中确定所述至少一个承载路径;
    其中,所述第二预设确定方式包括下列方式中的任一种:
    基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述至少一个承载路径;
    基于激活路径所关联的无线链路控制RLC实体的模式,在所述多个激活路径中确定所述至少一个承载路径;
    基于第三预设规则,在所述多个激活路径中确定所述至少一个承载路径。
  27. 根据权利要求26所述的方法,其中,
    所述第二预设确定方式包括:基于激活路径的信道质量测量结果,在所述多个激活路径中确定所述至少一个承载路径;
    其中,所述至少一个承载路径为所述多个激活路径中信道质量最好的路径;或者,所述至少一个承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。
  28. 根据权利要求26所述的方法,其中,
    所述第二预设确定方式包括:基于激活路径所关联的无线链路控制RLC实体的模式,在所述多个激活路径中确定所述至少一个承载路径;
    其中,当所述多个激活路径关联的RLC实体的模式均为非确认模式UM时,所述至少一个承载路径是基于所述多个激活路径的信道质量测量结果确定的;当所述多个激活路径关联的RLC实体的模式均为确认模式AM时,所述至少一个承载路径是基于所述复制份数确定的。
  29. 根据权利要求28所述的方法,其中,
    所述至少一个承载路径是基于所述复制份数确定的,所述方法还包括:
    将所述复制份数的PDCP复制数据包,分别通过所述至少一个承载路径发送,其中,复制得到的不同PDCP复制数据包对应的承载路径不同。
  30. 根据权利要求28所述的方法,其中,
    所述至少一个承载路径是基于所述多个激活路径的信道质量测量结果确定的,且所述至少一个承载路径为所述多个激活路径中信道质量最好的路径,或者,所述至少一个承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径。
  31. 根据权利要求27或30所述的方法,其中
    所述至少一个承载路径为所述多个激活路径中预设信道质量参数高于或低于预设门限值的路径;
    其中,所述预设门限值由网络设备配置。
  32. 根据权利要求31所述的方法,其中,
    所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
  33. 根据权利要求25-28、30-32任一项所述的方法,其中,所述方法还包括:
    通过所述至少一个承载路径,发送所述复制份数的PDCP复制数据包。
  34. 根据权利要求29或33所述的方法,还包括:
    向所述终端设备的MAC层,上报通过所述承载路径发送的PDCP复制 数据包的数据量。
  35. 一种信息发送方法,应用于网络设备,包括:
    发送第一目标信息;
    其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
  36. 根据权利要求35所述的方法,其中,
    所述第一目标信息用于指示第一承载路径。
  37. 根据权利要求35所述的方法,其中,
    所述第一目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定所述第一承载路径,且所述第一承载路径的所述预设信道质量参数高于或低于所述预设门限值。
  38. 根据权利要求37所述的方法,其中,
    所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
  39. 一种信息发送方法,其中,应用于网络设备,包括:
    发送第二目标信息;
    其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
  40. 根据权利要求39所述的方法,其中,
    所述预设信道质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、参考信号时间偏差RSTD、接收信号强度指示RSSI、误块率BLER、信道占用率CR、信道繁忙率CBR和信号干扰噪声比SINR中的至少一种。
  41. 一种终端设备,包括:
    第一确定模块,用于在目标无线承载RB的多个配置路径中或所述多个 配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP非复制数据包的承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
  42. 一种终端设备,包括:
    第二确定模块,用于在目标无线承载RB的多个配置路径中的多个激活路径中,确定所述目标RB对应的分组汇聚协议PDCP复制数据包的至少一个承载路径,所述目标RB为配置了PDCP数据复制功能的RB。
  43. 一种网络设备,包括:
    第一发送模块,用于发送第一目标信息;
    其中,所述第一目标信息用于确定第一承载路径,所述第一承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP非复制数据包,且所述第一承载路径为所述目标RB的多个配置路径中的激活路径。
  44. 一种网络设备,包括:
    第二发送模块,用于发送第二目标信息;
    其中,所述第二目标信息用于配置预设信道质量参数对应的预设门限值,所述预设门限值用于确定至少一个第二承载路径,所述第二承载路径用于承载终端设备的目标无线承载RB对应的分组汇聚协议PDCP复制数据包,所述第二承载路径为所述目标RB的多个配置路径中的激活路径,且所述第二承载路径的预设信道质量参数高于或低于所述预设门限值。
  45. 一种终端设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求1-34任一项所述的方法的步骤。
  46. 一种网络设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求35-40任一项所述的方法的步骤。
  47. 一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如权利要求1-40任一项所述的方法的步骤。
PCT/CN2020/075027 2019-02-14 2020-02-13 数据包承载路径确定、信息发送方法和设备 WO2020164536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/395,445 US20210368580A1 (en) 2019-02-14 2021-08-05 Data packet bearer path determining method, information sending method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910114970.7A CN111436066A (zh) 2019-02-14 2019-02-14 数据包承载路径确定、信息发送方法和设备
CN201910114970.7 2019-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/395,445 Continuation US20210368580A1 (en) 2019-02-14 2021-08-05 Data packet bearer path determining method, information sending method and device

Publications (1)

Publication Number Publication Date
WO2020164536A1 true WO2020164536A1 (zh) 2020-08-20

Family

ID=71580998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075027 WO2020164536A1 (zh) 2019-02-14 2020-02-13 数据包承载路径确定、信息发送方法和设备

Country Status (3)

Country Link
US (1) US20210368580A1 (zh)
CN (1) CN111436066A (zh)
WO (1) WO2020164536A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098250A1 (en) * 2016-09-30 2018-04-05 Huawei Technologies Co., Ltd. Ultra reliable low latency connection support in radio access networks
US20180302918A1 (en) * 2017-04-14 2018-10-18 Sharp Laboratories Of America, Inc. Systems and methods for supporting urllc service in 5g nr
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
US20180367288A1 (en) * 2017-06-16 2018-12-20 Huawei Technologies Co., Ltd. Dynamic activation and deactivation of packet duplication
CN109150415A (zh) * 2017-06-15 2019-01-04 夏普株式会社 基站、用户设备和相关方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467894B2 (en) * 2012-11-13 2016-10-11 Telefonaktiebolaget L M Ericsson (Publ) Selective robust header compression (RoHC) for a VoIP call in a cellular communications network
US11109291B2 (en) * 2016-10-27 2021-08-31 Lg Electronics Inc. Method for performing handover in wireless communication system and device for same
CN116567716A (zh) * 2017-03-23 2023-08-08 三星电子株式会社 用于处理用于分组复制的数据的方法和设备
CN108632809B (zh) * 2017-03-24 2020-05-12 维沃软件技术有限公司 一种针对重复数据发送的激活方法及设备
CN109150388B (zh) * 2017-06-16 2022-06-21 北京三星通信技术研究有限公司 支持pdcp重复功能的系统、数据传输方法及网络设备
CN112616161B (zh) * 2017-06-15 2022-08-26 华为技术有限公司 一种通信处理方法和通信装置
EP3923499B1 (en) * 2017-06-15 2023-02-15 Samsung Electronics Co., Ltd. Packet duplication control
CN115297507A (zh) * 2017-06-16 2022-11-04 三星电子株式会社 用于在下一代移动通信系统中处理分组的方法和装置
KR102340554B1 (ko) * 2017-08-21 2021-12-16 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 데이터 전송 방법 및 장치
US10772008B2 (en) * 2018-01-11 2020-09-08 Comcast Cable Communications, Llc Cell configuration for packet duplication
CN110139389B (zh) * 2018-02-09 2021-05-11 电信科学技术研究院有限公司 一种缓冲区状态上报的方法、装置及计算机存储介质
US11258549B2 (en) * 2018-05-10 2022-02-22 Comcast Cable Communications, Llc Packet duplication control
WO2019245447A1 (en) * 2018-06-21 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Duplication of traffic of a radio bearer over multiple paths
WO2020029137A1 (zh) * 2018-08-08 2020-02-13 富士通株式会社 重复传输的配置和或激活方法、重复传输的方法及装置
US11184275B2 (en) * 2018-11-16 2021-11-23 Huawei Technologies Co., Ltd. System and method for transmission redundancy in wireless communications
US10993277B2 (en) * 2018-12-04 2021-04-27 Apple Inc. Enhanced PDCP duplication handling and RLC failure handling
EP3918738B1 (en) * 2019-02-01 2022-07-20 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods performed therein for controlling transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098250A1 (en) * 2016-09-30 2018-04-05 Huawei Technologies Co., Ltd. Ultra reliable low latency connection support in radio access networks
US20180302918A1 (en) * 2017-04-14 2018-10-18 Sharp Laboratories Of America, Inc. Systems and methods for supporting urllc service in 5g nr
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
CN109150415A (zh) * 2017-06-15 2019-01-04 夏普株式会社 基站、用户设备和相关方法
US20180367288A1 (en) * 2017-06-16 2018-12-20 Huawei Technologies Co., Ltd. Dynamic activation and deactivation of packet duplication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Link Selection upon Duplication Deactivation"", "3GPP TSG-RAN2 #99, R2-1707714", 12 August 2017 (2017-08-12), XP051317675, DOI: 20200509153512A *
SAMSUNG: ""Consideration on Required Reliability for Tx Carrier Selection"", "3GPP TSG-RAN WG2 MEETING #101, R2-1802600", 14 February 2018 (2018-02-14), XP051399265, DOI: 20200509153121X *

Also Published As

Publication number Publication date
US20210368580A1 (en) 2021-11-25
CN111436066A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
US10993277B2 (en) Enhanced PDCP duplication handling and RLC failure handling
WO2021213481A1 (zh) 用于体验质量测量结果发送的通信方法及装置
US11323996B2 (en) Data transmission method, terminal device, and network device
EP3672128B1 (en) Data transmission method, terminal device and network device
WO2020192566A1 (zh) 波束失败恢复方法和通信装置
US11729669B2 (en) Data transmission method and device
US20200015317A1 (en) Method and device for wireless communication
US11601954B2 (en) Data sending method and apparatus, storage medium, and sending end
WO2022028276A1 (zh) 业务处理方法、信息指示方法、终端和网络设备
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2020063737A1 (zh) 一种通信方法及设备
WO2020124384A1 (zh) 一种数据复制方式的指示方法、设备及存储介质
JPWO2019215894A1 (ja) 通信装置
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2020164536A1 (zh) 数据包承载路径确定、信息发送方法和设备
WO2019153209A1 (zh) 处理无线链路失败rlf的方法和终端设备
US20210250810A1 (en) Data replication transmission configuration method, apparatus, chip, and computer program
US11310103B2 (en) Method for handling radio link failure (RLF) and terminal device
WO2020221261A1 (zh) 一种通信方法及装置
KR20220047328A (ko) 정보를 전송하기 위한 방법 및 장치
WO2023197804A1 (zh) 一种通信方法、装置及设备
US11968728B2 (en) Method of configuring service data adaptation protocol entity and device
WO2022257774A1 (zh) 一种数据传输方法、装置及可读存储介质
US20240178984A1 (en) Method and apparatus for reducing latency, terminal and device
WO2020200055A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755043

Country of ref document: EP

Kind code of ref document: A1