WO2021213481A1 - 用于体验质量测量结果发送的通信方法及装置 - Google Patents

用于体验质量测量结果发送的通信方法及装置 Download PDF

Info

Publication number
WO2021213481A1
WO2021213481A1 PCT/CN2021/089095 CN2021089095W WO2021213481A1 WO 2021213481 A1 WO2021213481 A1 WO 2021213481A1 CN 2021089095 W CN2021089095 W CN 2021089095W WO 2021213481 A1 WO2021213481 A1 WO 2021213481A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
network device
qoe measurement
measurement result
radio bearer
Prior art date
Application number
PCT/CN2021/089095
Other languages
English (en)
French (fr)
Inventor
胡星星
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21792771.4A priority Critical patent/EP4132081A4/en
Publication of WO2021213481A1 publication Critical patent/WO2021213481A1/zh
Priority to US18/048,533 priority patent/US20230115085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5061Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the interaction between service providers and their network customers, e.g. customer relationship management
    • H04L41/5067Customer-centric QoS measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device for sending experience quality measurement results.
  • a terminal device may communicate with multiple base stations, that is, dual-connectivity (DC) or multi-connectivity (MC).
  • dual connectivity is also called Multi-radio Dual Connectivity (MR-DC).
  • MR-DC Multi-radio Dual Connectivity
  • the network side can use the resources of multiple base stations to provide communication services for the terminal device, thereby providing high-rate transmission for the terminal device.
  • the base station in the DC that has control plane signaling interaction with the core network is called the master node (Master Node, MN), and other base stations are called the secondary node (Secondary Node, SN).
  • Data Radio Bearer (DRB) in DC is divided into primary cell group bearer (Master Cell group Bearer, MCG Bearer), secondary cell group bearer (SCG Bearer), and split bearer (Split Bearer).
  • MCG Bearer means that the DRB’s Radio Link Control (RLC) or Medium Access Control (Medium Access Control, MAC) entity is only on the primary base station
  • SCG bearer means that the DRB’s RLC/MAC entity is only on the secondary base station.
  • Split bearer means that the RLC/MAC entity of the DRB is available on both the primary base station and the secondary base station (that is, the DRB has an RLC/MAC entity on both the primary base station and the secondary base station).
  • the MN terminated bearer For the bearer that the Packet Data Convergence Protocol (PDCP) terminates on the MN, it is called the MN terminated bearer, that is, the downlink (DL) data arrives directly from the core network to the MN, and passes through the service data adaptation layer of the MN ( Service Data Adaptation Protocol, SDAP)/PDCP is processed and then sent to the terminal device through RLC/MAC (Note: At present, the SDAP layer is only available when the terminal device is connected to the 5G core network that adopts the quality of service flow architecture), upstream ( Uplink (UL) data is processed by the MN's SDAP/PDCP and then sent to the core network.
  • SDAP Service Data Adaptation Protocol
  • UL Uplink
  • the PDCP-terminated bearer on the SN is called the SN terminated bearer, that is, the DL data directly arrives at the SN from the core network, and is processed by the SN's SDAP/PDCP and then sent to the terminal device through the RLC/MAC.
  • the UL data is sent from the SN.
  • the SDAP/PDCP is processed, it is sent to the core network.
  • both MN and SN have radio resource control (Radio Resource Control, RRC) entities, and both can generate RRC messages.
  • the SN can directly send the RRC message generated by the secondary base station to the terminal device, or can notify the MN of the RRC message generated by the SN, and the MN sends the RRC message to the terminal device.
  • RRC Radio Resource Control
  • MDT Minimization of Drive-Tests
  • the embodiments of the present application provide a communication method and device for sending experience quality measurement results to solve the problem of terminal equipment sending experience quality measurement results in a dual-connection scenario.
  • a communication method is provided.
  • the method can be implemented by a terminal device or a component (such as a chip or a circuit) configurable in the terminal device.
  • the method can include:
  • the QoE measurement result includes the QoE measurement result of the corresponding secondary base station secondary access network device
  • the QoE measurement result is sent through a first radio bearer, where the first radio bearer is a radio bearer configured by a primary access network device of a primary base station or a secondary access network device of a secondary base station for the terminal device.
  • the first radio bearer is a radio bearer configured by a primary access network device of a primary base station or a secondary access network device of a secondary base station for the terminal device.
  • the primary access network device is used to configure the first radio bearer for the terminal device, or the primary access network device configures the first logical channel in the radio bearer for the terminal to send the QoE measurement result, so that the In the dual-connection or multi-connection scenario, the terminal can send the QoE measurement results through the radio bearer or logical channel configured by the main access network device to enhance the QoE measurement process of the main access network device to the auxiliary access network device in the dual-connection or multi-connection scenario Real-time information exchange; or the first logical channel in the radio bearer can also be configured by the auxiliary access network device for the terminal to send QoE measurement results, which can improve the independence of the auxiliary access network device's QoE measurement process.
  • the first radio bearer is a radio bearer configured by the primary access network device for the terminal device includes:
  • the first radio bearer is a radio bearer configured by the main access network device for the terminal device to send the QoE measurement result.
  • the primary access network device is used to configure a radio bearer for the terminal device to send the QoE measurement result, which can reduce the possible impact on other signaling or data transmission during the process of sending the QoE measurement result.
  • the primary access network device can set different logical channel priorities for different radio bearers, so that when the terminal device is authorized for uplink transmission, it can preferentially transmit information in different radio bearers according to the priority set by different radio bearers. Order or data.
  • the first radio bearer includes multiple logical channels
  • the sending the QoE measurement result through the first radio bearer includes:
  • the first logical channel may be divided in the radio bearer configured by the primary access network device or the secondary access network device for the terminal device in order to send the QoE measurement result of the corresponding secondary access network device
  • the channel can also be a channel divided by the radio bearer newly configured by the primary access network device for the terminal device to send the QoE measurement result of the corresponding secondary access network device.
  • the management efficiency of multiple logical channels can be improved and the radio bearer resources can be fully utilized.
  • the QoE measurement result of the corresponding auxiliary access network device includes: the measurement result corresponding to the QoE measurement configuration configured by the auxiliary access network device for the terminal device; or the auxiliary access network device Trigger the measurement result corresponding to the QoE measurement configuration configured by the primary access network device.
  • the method further includes:
  • the method before the sending the QoE measurement result through the first radio bearer, the method further includes:
  • the first radio bearer is a radio bearer configured by the main access network device for the terminal device, receiving indication information from the main access network device, or the first radio bearer is a radio bearer configured by the auxiliary access network device. Receiving indication information from the secondary access network device when the radio bearer is configured by the terminal device;
  • the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement result.
  • the primary access network device sends instruction information to the terminal device, or the secondary access network device sends instruction information to the terminal device to indicate the first radio bearer or the first logic in the first radio bearer.
  • the information is used to send QoE measurement results, which can avoid when the same primary access network device or secondary access network device configures multiple radio bearers for a terminal device to send different objects, such as different network sides or different service types.
  • the QoE measurement results may cause channel confusion problems.
  • the terminal device knows which radio bearer or logical channel should be used to send the QoE measurement result.
  • the QoE measurement result of the corresponding secondary access network device is a measurement result corresponding to a target service type, and the target service type is determined by the primary access network device.
  • the primary access network device determines the target service type that the secondary access network device can perform QoE measurement, so that the primary access network device and the secondary access network device can negotiate the configuration of QoE measurement, instead of It will cause repeated configuration of the same type of service, improve the configuration efficiency, and avoid the QoE measurement configuration configured by the main access network device or the auxiliary access network device from overriding the QoE measurement configuration configured by the auxiliary access network device or the main access network device Configuration.
  • a communication method is provided.
  • the method can be implemented by an access network device or a component (such as a chip or a circuit) configurable in the access network device.
  • the method can include:
  • the access network device is configured to receive the first radio bearer of the QoE measurement result of the quality of experience, wherein the access network device includes a primary access network device or a secondary access network device, and the QoE measurement result includes the corresponding secondary access network device.
  • the access network device receives the QoE measurement result from the terminal device through the first radio bearer.
  • the first radio bearer includes multiple logical channels
  • the receiving the QoE measurement result sent by the terminal device through the first radio bearer includes:
  • the QoE measurement result corresponding to the secondary access network device includes: the measurement result corresponding to the QoE measurement configuration configured by the secondary access network device for the terminal device; or the secondary access The network device triggers the measurement result corresponding to the QoE measurement configuration configured by the primary access network device.
  • the primary access network device configures the first radio bearer used to receive the QoE measurement result, and the method further includes:
  • the primary access network device sends the QoE measurement configuration configured by the secondary access network device for the terminal device to the terminal device.
  • the secondary access network device configures the first radio bearer used to receive the QoE measurement result, and the method further includes:
  • the secondary access network device sends the QoE measurement configuration configured by the secondary access network device for the terminal device to the terminal device; or the secondary access network device sends the QoE measurement configuration to the primary access network device The QoE measurement configuration configured by the secondary access network device for the UE.
  • the method before the access network device receives the QoE measurement result through the first radio bearer, the method further includes:
  • the access network device sends instruction information to the terminal device, where the instruction information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement result.
  • the QoE measurement result of the corresponding secondary access network device is a measurement result corresponding to a target service type, and the target service type is determined by the primary access network device.
  • a method for determining a target service type is provided.
  • the method can be implemented by an access network device or a component (for example, a chip or a circuit) configurable in the access network device.
  • the access network equipment can be the main access network equipment or the auxiliary access network equipment;
  • the method includes:
  • third information is used to indicate the target service type of QoE measurement that can be configured or triggered by the corresponding secondary access network device;
  • the method includes:
  • the primary access network device and the secondary access network device negotiate the target service type of the QoE measurement that can be configured or triggered by the secondary access network device, which can reduce the two access network devices’ access to the same type of service.
  • the probability of repeating the QoE measurement configuration can also improve the efficiency of the auxiliary access network device to obtain the QoE measurement result of the target service type.
  • a communication device may be a terminal device or a component configurable in the terminal device.
  • the device may include:
  • a processing module configured to obtain a corresponding QoE measurement result according to the quality of experience QoE measurement configuration, where the QoE measurement result includes the QoE measurement result of the corresponding auxiliary access network device;
  • the sending module is configured to send the QoE measurement result through a first radio bearer, where the first radio bearer is a radio bearer configured by the primary access network device or the secondary access network device for the terminal device.
  • the terminal device further includes a receiving module for:
  • the receiving module is also used to:
  • the first radio bearer is a radio bearer configured by the main access network device for the terminal device, receiving indication information from the main access network device, or the first radio bearer is a radio bearer configured by the auxiliary access network device. Receiving indication information from the secondary access network device when the radio bearer is configured by the terminal device;
  • the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement result.
  • a communication device may be a main access network device or a component configurable in the main access network device.
  • the device may include:
  • a processing module configured to configure a first radio bearer for receiving quality of experience QoE measurement results, where the QoE measurement results include QoE measurement results corresponding to the secondary access network device;
  • the receiving module is configured to receive the QoE measurement result sent by the terminal device through the first radio bearer.
  • the first radio bearer includes multiple logical channels
  • the receiving module is specifically configured to receive the QoE measurement result sent by the terminal device through a first logical channel among a plurality of logical channels in the first radio bearer.
  • the receiving module is further configured to: receive, from the auxiliary access network device, the QoE measurement configuration configured by the auxiliary access network device for the terminal device;
  • the main access network device also includes a sending module, which is used to:
  • the sending module is further configured to send indication information to the terminal device, where the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement result.
  • a communication device may be a secondary access network device or a component configurable in the secondary access network device.
  • the device may include:
  • a processing module configured to configure a first radio bearer for receiving quality of experience QoE measurement results, where the QoE measurement results include QoE measurement results corresponding to the secondary access network device;
  • the receiving module is configured to receive the QoE measurement result sent by the terminal device through the first radio bearer.
  • the first radio bearer includes multiple logical channels; the receiving module is specifically configured to: receive all the logical channels sent by the UE through the first logical channel among the multiple logical channels in the first radio bearer.
  • the QoE measurement results are described.
  • the auxiliary access network device further includes a sending module, configured to:
  • the sending module is further configured to send indication information to the terminal device, where the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement results.
  • a communication device may be an access network device or a component that can be configured in an access network device.
  • the access network device may be a primary access network device or an auxiliary access network device. ;
  • the device may include:
  • a processing module configured to generate third information, where the third information is used to indicate a target service type of QoE measurement that can be configured or triggered by a corresponding secondary access network device;
  • the sending module is configured to send the third information to the secondary access network device.
  • the device may include:
  • the receiving module is used to obtain the third information from the main access network device.
  • a communication device includes at least one processor, and the at least one processor is coupled with at least one memory:
  • the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, so that the apparatus executes the method according to the first aspect or any one of the first aspects; or causes the apparatus to execute The method corresponding to the primary access network device described in the second aspect or any one of the second aspect; or causes the apparatus to execute the method corresponding to the secondary access network device described in the second aspect or any one of the second aspects; or The device executes the method described in the third aspect.
  • the device may be a terminal or a chip included in the terminal.
  • the functions of the above-mentioned communication equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may be an access network device or a chip included in the access network device.
  • the functions of the above-mentioned communication equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to execute the first aspect or the method in any one of the possible implementations of the first aspect. , Or execute the method corresponding to the primary access network device in the second aspect or any of the possible implementations of the second aspect, or execute the auxiliary access in the second aspect or any of the possible implementations of the second aspect.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute computer program instructions stored in the memory, so that the device executes the method in the first aspect or any one of the possible implementations of the first aspect, or executes the second aspect or the first aspect.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface can be a transceiver or an input/output interface; when the device is a chip included in the access network device, the communication interface can be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled to a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements the method in any possible implementation manner of the first aspect or the first aspect, or executes the main access network device in any possible implementation manner of the second aspect or the second aspect.
  • the corresponding method either executes the method corresponding to the secondary access network device in the foregoing second aspect or any one of the possible implementation manners of the second aspect, or executes the method of the foregoing third aspect.
  • the chip system further includes an interface circuit, which is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect or any one of the first aspect.
  • the method in one possible implementation manner, or the method corresponding to the primary access network device in the second aspect or any one of the possible implementation manners of the second aspect, or any one of the second aspect or the second aspect described above.
  • an embodiment of the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first aspect or any one of the possible implementations of the first aspect.
  • an embodiment of the present application provides a communication system that includes a terminal device and an access network device, the terminal device includes the communication device described in the third aspect, and the access network device includes The communication device according to the fourth aspect; or the access network device includes the communication device according to the fifth aspect; or the access network device includes the communication device according to the seventh aspect.
  • FIG. 1A is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 1B is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 1C is a schematic diagram of a DC connection provided by an embodiment of the application.
  • FIG. 1D is a schematic diagram of an MDT measurement process provided by an embodiment of this application.
  • 2A is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 2B is a schematic diagram of a designated radio bearer process according to an embodiment of this application.
  • FIG. 3 is a flowchart of another communication method provided by an embodiment of this application.
  • FIG. 4 is a flowchart of a method for determining a target service type according to an embodiment of the application
  • FIG. 5 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 7A is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 7B is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • Multiple means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • FIG. 1A As an example to introduce the terms involved in the embodiments of the present application.
  • FIG. 1A is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • network elements mainly include terminal devices, core networks, and access network devices.
  • the terminal device 120 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is to provide users with voice and/or data connectivity equipment.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Some examples of terminals are: mobile phones, tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • Augmented Reality, AR equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids
  • the access network device 110 refers to a radio access network (Radio Access Network, RAN) node (or device) that connects a terminal to a wireless network, and may also be called a base station.
  • RAN nodes are: continuously evolving Node B (gNB), Transmission Reception Point (TRP), Evolved Node B (eNB), Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), home base station (for example, Home Evolved NodeB, or Home Node B, HNB) , Base Band Unit (BBU), or Wireless Fidelity (Wifi) Access Point (AP), etc.
  • gNB Node B
  • TRP Transmission Reception Point
  • eNB Evolved Node B
  • RNC Radio Network Controller
  • Node B Node B, NB
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home Evolved NodeB, or Home
  • the access network device may include a centralized module (CU) node, or a distributed module (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node splits the protocol layer of the RAN equipment. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • CU and DU are the division of access network equipment from the perspective of logical functions. CU and DU can be physically separated or deployed together. CU and DU can be divided according to the protocol layer of the wireless network.
  • CU is used to perform the functions of the radio resource control RRC layer, the service data adaptation protocol SDAP layer, and the packet data convergence layer protocol PDCP layer.
  • the DU is used to perform functions such as the radio link control RLC layer, the media access control MAC layer, and the physical layer.
  • the above division is only an example, and the CU and DU may also be divided in other ways.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions of the protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to service types or other system requirements. For example, it is divided by time delay, and the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the CU may also have one or more functions of the core network. One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely.
  • the functions of the CU and DU can be set as required in specific implementations, which are not limited in the embodiment of the present application.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the function of the CU can be further divided into a control plane (CP) function and a user plane (UP) function, that is, the CU can be divided into CU-UP and CU-CP.
  • CP control plane
  • UP user plane
  • CU-CP and CU-UP can be implemented by different functional entities, and can be implemented by the same functional entity.
  • CU-CP and CU-UP can be coupled with DU to jointly complete the function of access network equipment.
  • CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network equipment and mapping the data flow to the bearer.
  • PDCP-U is mainly responsible for data encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • Another possible implementation is that PDCP-C is also in CU-UP. Please refer to FIG. 1B.
  • FIG. 1B is a schematic diagram of a communication system provided by an embodiment of this application, which can be applied to the communication method provided by an embodiment of this application.
  • the system includes core network equipment, CU, and DU.
  • CU can be divided into CU-UP and CU-CP.
  • the core network device and the CU (such as CU-UP and/or CU-CP) can communicate with each other.
  • the CU-CP can represent the access network device connected to the core network device through the Ng interface.
  • CU-UP and CU-CP can communicate between, for example, can communicate through E1 interface.
  • CU-UP and CU-CP can communicate with DU.
  • CU-CP can be connected to DU through F1-C (control plane), and CU-UP can be connected to DU through F1-U (user plane).
  • Multiple DUs can share one CU, and one DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • the core network device 100 refers to a device in the core network (Core Network, CN) that provides service support for the terminal.
  • core network equipment are: Access and Mobility Management Function (AMF) entities, Session Management Function (SMF) entities, User Plane Function (UPF) Entities, etc., are not listed here.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the AMF entity may be responsible for terminal access management and mobility management
  • the SMF entity may be responsible for session management, such as user session establishment, etc.
  • the UPF entity may be a functional entity of the user plane, mainly responsible for connecting to external The internet.
  • the entity in this application can also be referred to as a network element or a functional entity.
  • an AMF entity can also be referred to as an AMF network element or an AMF functional entity.
  • SMF entity can also be referred to as an SMF network element or an SMF function. Entities, etc.
  • Figure 1C is a schematic diagram of a DC connection provided by an embodiment of the application. Connect with the core network through the NG-C control panel interface. Both MN and SN have RRC entities, and both can generate RRC messages. The RRC status of the UE is based on the MN. For the downlink, the SN can directly send the RRC message generated by the SN to the UE.
  • MR-DC includes various DCs, such as EN-DC, NGEN-DC, NE-DC, and NR-DC.
  • the primary access network equipment is an LTE base station eNB connected to the 4G core network EPC, and the secondary access network equipment is an NR base station;
  • the primary access network equipment is an LTE base station ng-eNB connected to the 5G core network 5GC, and the secondary access network equipment is an NR base station;
  • the primary access network equipment is an NR base station connected to the 5G core network 5GC, and the secondary access network equipment is an LTE base station;
  • the primary access network equipment is the NR base station connected to the 5G core network 5GC, and the secondary access network equipment is the NR base station;
  • the user plane of the secondary access network device may be connected to the core network to which the primary access network device is connected (that is, the core network can directly send data to the UE through the secondary access network device).
  • dual connection in the embodiments of the present application may also be referred to as dual link, and multi-connection may also be referred to as multi-link.
  • MDT Drive-Tests
  • the UE measures the signal level of the wireless signal and sends the measurement result to the base station or base station controller;
  • Qos measurement is usually performed by the base station (for example: service flow, service throughput, service delay, etc.), and it can also be measured by UE, such as uplink processing delay. It can be joint processing by the base station and the UE, such as air interface delay measurement (the time from when a data packet passes through the SDAP/PDCP layer of the base station to when the data packet reaches the SDAP/PDCP layer of the UE);
  • the UE records the information about the failure of radio resource control (Radio Resource Control, RRC) connection establishment and sends it to the base station or base station controller.
  • RRC Radio Resource Control
  • MDT includes logged MDT (logged MDT) (or called log MDT) and immediate MDT (immediate MDT).
  • Immediate MDT is mainly for the measurement collection performed by UEs in the RRC connected state (RRC_CONNECTED), while logged MDT is mainly for the measurement collection performed by UEs in the idle state (RRC_IDLE) or RRC inactive state (RRC_INACTIVE) (e.g., idle state).
  • the UE or the inactive UE measures the cell of the frequency corresponding to the cell currently camped on and the neighboring cell of the inter-frequency/different system corresponding to the cell reselection broadcast in the cell currently camped on, and the UE records and sends these The measurement results are given to the base station).
  • Immediate MDT is generally used to measure the UE's data volume, IP throughput rate, packet transmission delay, packet loss rate, processing delay, etc.
  • the logged MDT generally refers to the UE's measurement of the received signal strength.
  • Some layer 2 measurements are also defined in wireless to use the network side to count some network performance, so as to perform functions such as wireless link management, wireless resource management, and network maintenance. Some of the layer 2 measurements are statistics for a UE, such as service throughput, service flow, UE processing delay, UE air interface delay, and so on.
  • the access network device will initiate the MDT measurement collection task.
  • One is to initiate signaling-based MDT (signalling based MDT), and the other is to initiate management-based MDT (management based MDT).
  • the signaling-based MDT refers to the MDT for a specific UE, and the access network device receives a message for performing MDT on a UE from the core network (CN).
  • the management-based MDT is not an MDT for a specific UE.
  • the access network equipment receives a message for performing MDT from an operation and maintenance management (Operation Administration and Maintenance, OAM) or element management (element manager, EM).
  • OAM Opera and maintenance management
  • EM element management
  • the access network device selects UEs from UEs under the access network device to perform MDT measurement collection based on a certain strategy.
  • the CN will not initiate a signaling MDT for the UE unless the user has agreed to perform MDT.
  • management-based MDT when an access network device selects a UE, it can consider whether the UE agrees to perform MDT. For example, only those UEs that have agreed to perform MDT are selected for MDT measurement collection.
  • the signal quality alone cannot reflect the user’s use of these services.
  • the operator wants to know how the user experience is, so as to better optimize the network to improve the user experience.
  • This type of measurement collection is called Quality of Experience (QoE) measurement collection, and can also be referred to as application layer measurement collection.
  • QoE Quality of Experience
  • This type of measurement collection is also initiated using signaling-based MDT and/or management-based MDT.
  • the access network equipment receives these measured configuration information from CN, OAM or EM (for example, the configuration information is sent to the access network equipment in a transparent container), and then, please refer to Figure 1D, which is based on Figure 1D.
  • the application embodiment provides a schematic diagram of the MDT measurement process.
  • the access network device sends these configurations to the UE (for example, through an RRC message).
  • the UE receives the measurement results of the application layer (for example, the RRC layer of the UE receives the measurement results of the application layer from the upper layer of the UE (including the application layer, or the intermediate layer between the RRC layer and the application layer, etc.))
  • the measurement results Send to the access network device (for example, these measurement results are sent to the access network device in a transparent container encapsulated form).
  • the information received by the access network equipment from the CN or OAM may also include other information of QoE measurement (such as the area range of QoE measurement, the service type of QoE measurement) and so on.
  • the method for the access network equipment to select the UE for QoE measurement is basically the same as that of ordinary MDT measurement.
  • SRB radio bearer
  • RB Radio Bearers
  • SRB3 Synchronization Channel
  • SRB4 SRB0 corresponds to the Common Control Channel (CCCH) and is used to transmit RRC messages
  • SRB1 corresponds to the Dedicated Control Channel (DCCH) and is used for transmission RRC message (RRC message may carry NAS message)
  • SRB2 corresponds to DCCH and is used to transmit NAS message.
  • SRB2 The transmission priority of SRB2 is lower than that of SRB1; in (NG)EN-DC or NR-DC, SRB3 corresponds to DCCH and can transmit specific RRC messages through SRB3; SRB3 is used to assist access network equipment and UE RRC messages are directly transmitted between. SRB4 corresponds to DCCH and is used to transmit RRC messages including measurement results of the application layer (ie, QoE measurement results).
  • the terminal device After the terminal device obtains the QoE measurement result, it sends the QoE measurement result to the access network device through the SRB4. However, it does not involve how the auxiliary access network device triggers or configures the QoE measurement for the terminal device in the MR-DC scenario, and how the terminal device sends the corresponding measurement result.
  • FIG. 2A is a flowchart of a communication method provided by an embodiment of this application. As shown in FIG. 2A, the method includes the following steps:
  • the terminal device obtains a corresponding QoE measurement result according to the quality of experience QoE measurement configuration, where the QoE measurement result includes the QoE measurement result of the corresponding auxiliary access network device;
  • the primary access network device configures the first radio bearer used to receive the QoE measurement result.
  • the terminal device sends the QoE measurement result through the first radio bearer.
  • the primary access network equipment, secondary access network equipment, and terminal equipment are instantiated as MN, SN, and UE for description.
  • QoE refers to the user's experience of network and service QoS.
  • QoS focuses on the improvement of network layer parameters such as delay, jitter, and packet loss rate, but the improvement of these indicators has certain differences for user experience. For example, when there is a mosaic phenomenon in the video, there is no significant response in the QoS index, but it has a greater perceptual experience for the user. Therefore, QoE measurement in the network is very important. It can be based on QoS. On the other hand, for different services, such as delay-sensitive services and packet loss rate-sensitive services, different QoE measurements will also be configured.
  • the specific content of the QoE measurement configuration can have various forms, which are not limited in this application.
  • the QoE measurement configuration can include at least one of the following: the access point that sends the QoE measurement results, the format for sending the QoE measurement results, the interval for sending the QoE measurement results, etc., for example, you can refer to the third-generation partnership Project (3 rd Generation Partnership Project, 3GPP) agreement 26.247 section 10.5 description.
  • QoE measurement configuration can be configured through Extensible Markup Language (XML) format.
  • the QoE measurement result includes the measurement result of the application layer.
  • the specific content of the QoE measurement result can have various forms, which are not limited by this application.
  • the QoE measurement results can include at least one of the following: playback switching event, average throughput, initial playback delay, buffer level, playlist, media description information, media startup delay, device information
  • the QoE measurement result can include at least one of the following: the length of time the quality has deteriorated, the number of consecutive loss of Real-time Transport Protocol (RTP) packets, the frame rate, For the jitter duration, out-of-synchronization duration, return time, average encoding rate, codec information, etc., for example, refer to the description in section 16.2 of the protocol 26.114.
  • RTP Real-time Transport Protocol
  • the QoE measurement result can be expressed in various forms, for example, it can be expressed in an XML format.
  • the QoE measurement result corresponding to the SN means: the measurement result corresponding to the QoE measurement configuration configured by the SN for the UE; or the measurement result corresponding to the QoE measurement configuration configured by the MN for the UE is triggered by the SN.
  • the QoE measurement configuration configured by the SN for the UE or the QoE measurement configuration configured by the MN triggered by the SN may be referred to as the first QoE measurement configuration.
  • the first QoE measurement configuration can be directly sent by the SN to the UE; the MN can also obtain the first QoE measurement configuration from the SN, and then sent by the MN to the UE; or the SN can send a request to the MN to obtain the QoE measurement result or
  • the QoE measurement is requested, and the MN is triggered to configure the QoE measurement configuration for the UE, and then the MN configures the first QoE measurement configuration for the UE and the MN sends the first QoE measurement configuration to the UE.
  • the configured QoE measurement configuration can be understood as the generated or generated QoE measurement configuration.
  • the UE when it obtains the first QoE measurement configuration, it may also obtain identification information, which is used to identify that the first QoE measurement configuration is configured by the SN for the UE, or the SN triggers the MN to configure the UE for the UE.
  • the identification information may be included in the first QoE measurement configuration, or may be sent to the UE by the MN through other information elements or signaling.
  • the MN will correspond to the received QoE measurement configuration
  • the measurement result is forwarded to SN.
  • the QoE measurement result corresponding to the SN may also indicate the QoE measurement result received by the SN.
  • the MN configures the QoE measurement configuration for the UE, but after the UE obtains the QoE measurement result according to the QoE measurement configuration, the UE performs the QoE measurement result according to the receiving object (SN) designated by the MN
  • the information specifying the recipient can be sent by the MN to the UE in advance, or it can be sent to the UE together through the QoE measurement configuration.
  • the signaling-based QoE measurement or the management-based QoE measurement can trigger the SN to select the UE for QoE measurement.
  • the core network issues a QoE measurement configuration to the MN, it can indicate whether the measurement configuration is the QoE measurement configuration corresponding to the MN or the QoE measurement configuration corresponding to the SN. It can also carry two sets of configurations at the same time, one is the QoE configuration corresponding to MN, and the other is the QoE configuration corresponding to SN.
  • the MN will forward the QoE configuration corresponding to the SN to the SN. After that, the MN and SN respectively generate QoE measurement configurations to be sent to the UE.
  • the core network issues a QoE measurement configuration to an access network device, it will carry one or two sets of QoE measurement configuration and indicate whether the QoE measurement configuration corresponds to the QoE measurement configuration of E-UTRA or the QoE measurement configuration corresponding to NR (such as this).
  • the positions of the two QoE measurement configurations are different or the information element names are different, or there is an explicit indication whether the corresponding QoE measurement configuration is the QoE measurement configuration of E-UTRA or the QoE measurement configuration of NR).
  • the OAM or EM of the MN and SN will respectively issue the corresponding QoE configuration to the MN and SN. After that, the MN and SN respectively select the corresponding UE for QoE measurement configuration.
  • the terminal device Before the terminal device obtains the corresponding QoE measurement result according to the QoE measurement configuration, it may also include a process in which the UE obtains the QoE measurement configuration (that is, the above-mentioned first QoE measurement configuration).
  • the process for the UE to obtain the QoE measurement configuration According to the above description, the method of the embodiment of the present application may also be as shown in FIG. 2A, including step 104.
  • the UE obtains the QoE measurement configuration configured by the SN for the UE from the SN.
  • it may also include step 105.
  • the SN sends a first message to the MN, so as to trigger the MN to configure the first radio bearer for the UE.
  • the form of the first message may have various forms.
  • the first message may indicate that the SN configures QoE measurement for the UE or will configure QoE measurement later, or the SN requests the MN to configure the first radio bearer for the UE.
  • This application is not restricted.
  • the embodiment of the present application does not limit the sequence relationship between steps 104 and 105.
  • the process for the UE to obtain the QoE measurement configuration may also be: the MN obtains the QoE measurement configuration configured by the SN for the UE from the SN, and then the MN sends the QoE measurement configuration configured by the SN for the UE to the UE.
  • the MN obtains the QoE measurement configuration configured by the SN for the UE from the SN, for example, it may include the following two methods:
  • the SN sends the generated QoE measurement configuration to the MN
  • the MN sends the QoE measurement configuration generated by the SN to the UE.
  • the message sent by the SN to the MN carries the RRC message generated by the SN
  • the RRC message carries the QoE measurement configuration of the SN to the UE.
  • the MN then carries the RRC message generated by the SN in the RRC reconfiguration message to the UE.
  • the QoE measurement configuration configured by the SN for the UE is transparent to the MN.
  • the second is: the SN sends second information to the MN, where the second information carries the QoE measurement configuration configured by the SN for the UE.
  • the second information is not carried by the RRC message generated by the SN, but the SN explicitly informs the MN.
  • the MN generates an RRC message according to the second information, and the RRC message includes the QoE measurement configuration configured by the SN for the UE.
  • the MN sends the RRC message to the UE. In this process, the MN can learn the QoE measurement configuration configured by the SN for the UE.
  • the process for the UE to obtain the QoE measurement configuration may also be: the SN sends the first request information to the MN, requesting the MN to configure the QoE measurement configuration for the UE (that is, the SN triggers the MN to configure the QoE measurement configuration for the UE).
  • the MN configures QoE measurement for the UE (that is, generates a QoE measurement configuration and sends it to the UE), and the generated QoE measurement configuration includes the QoE measurement configuration for obtaining the QoE measurement result of the corresponding SN.
  • the first request information further includes the SN requesting the MN to configure the service type corresponding to the QoE measurement for the UE.
  • the UE After receiving the QoE measurement configuration, the UE performs corresponding measurement collection, obtains the QoE measurement result, and sends the QoE measurement result to the network side.
  • the first radio bearer used by the UE to send the QoE measurement result is a radio bearer configured by the MN for the UE.
  • the radio bearer configured by the MN for the UE in the embodiment of the present application is a radio bearer between the MN and the UE.
  • the MN can configure a new radio bearer for the UE as the first radio bearer in addition to the radio bearers that the MN has configured for the UE, such as adding or modifying the list of radio bearers (such as drb -ToAddModList) adds a radio bearer for the UE as the first radio bearer.
  • the MN may select a radio bearer from among the radio bearers that the MN has configured for the UE as the first radio bearer. Then the radio bearer is used by the UE to send the QoE measurement result of the corresponding SN.
  • the first radio bearer may be a radio bearer dedicated to sending QoE measurement results of the corresponding SN, or may be a radio bearer corresponding to sending QoE measurement results of the corresponding SN.
  • a new logical channel can be added to the UE through the cell RLC bearer addition or modification list (such as rlc-BearerToAddModList) in the RRC reconfiguration message. Transmit the QoE measurement results of the corresponding SN.
  • the first logical channel may be a logical channel dedicated to sending QoE measurement results of the corresponding SN, or may be a logical channel corresponding to sending QoE measurement results of the corresponding SN.
  • the primary access network device is used to configure the radio bearer for the terminal device to send the quality of experience measurement result, which can reduce the possible impact on other signaling or data transmission during the process of sending the quality of experience measurement result.
  • the primary access network device can set different logical channel priorities for different radio bearers, so that when the terminal device is authorized for uplink transmission, it can preferentially transmit information in different radio bearers according to the priority set by different radio bearers. Order or data.
  • the first radio bearer may also be an existing radio bearer that the MN has configured for the UE, and then the RLC bearer addition or modification list (such as rlc-BearerToAddModList) is added to the UE through the information element in the RRC reconfiguration message.
  • a logical channel (the first logical channel) is used to transmit the QoE measurement result corresponding to the SN.
  • the first logical channel may be used exclusively for the UE to send the QoE measurement results of the corresponding SN, and other logical channels may be used to transmit other information. For example, other logical channels may be used to transmit other information.
  • Send the QoE measurement results of the corresponding MN (including the measurement results corresponding to the QoE measurement configuration configured by the MN for the UE, instead of the measurement results corresponding to the QoE measurement configuration configured by the MN to trigger the MN for the UE), the logic corresponding to the two measurement results
  • the channel ID is different.
  • the first logical channel can be used to send the QoE measurement result of the corresponding SN, and can also be used to send other information. Assuming that the first logical channel can be used to send the QoE measurement result of the corresponding SN and the QoE measurement result of the corresponding MN, the logical channel identifiers corresponding to the two measurement results are the same.
  • the terminal device transmits the QoE measurement result of the corresponding SN through the first logical channel in the first radio bearer.
  • the terminal device transmits the QoE measurement result of the corresponding SN through the first logical channel in the first radio bearer.
  • step 101 and step 102 is not limited in the embodiment of the present application, that is, the terminal device can obtain the QoE measurement result before or after the primary access network device configures the first radio bearer for it.
  • the first radio bearer may be SRB or DRB.
  • the first radio bearer when the first radio bearer is SRB, it can be SRB4, and SRB4 can be used to transmit QoE measurement results in non-MR-DC scenarios. In this embodiment of the application, it can also be used to transmit QoE corresponding to SN in MR-DC scenarios. Measurement results.
  • the first radio bearer may be SRB5, SRB6, or any other newly added radio bearers that have not been used for signaling transmission. SRB5 and SRB6 may also have other names, indicating that they are SRBs different from SRB1-SRB4.
  • the DRB may not be configured with an SDAP layer.
  • the time when the MN configures the first radio bearer or the first logical channel is not limited in the embodiment of the present invention.
  • it can include:
  • the time to configure the first radio bearer or the first logical channel can be After the MN receives the first message (or the first information) sent by the SN, the first message (or the first information) is used to trigger the MN to configure the first radio bearer for the UE.
  • the embodiment of the present application does not limit the sequence between the SN sending the QoE measurement configuration generated by the SN to the MN and the SN sending the first message to the MN.
  • the explicit first message may not be necessary, and the QoE measurement configuration configured by the SN for the UE may also be carried in the message from the SN to the MN to implicitly trigger the MN to configure the first radio bearer for the UE.
  • the time to configure the first radio bearer or the first logical channel may be after the MN receives the second information.
  • the time for configuring the first radio bearer may be after the MN receives the first request information.
  • the MN reconfigures the first radio bearer or the first logical channel.
  • the time to configure the first radio bearer or the first logical channel may be that the SN sends the first message to the MN to trigger the MN to configure the first radio Bearer or first logical channel. Or, after the UE requests to send the QoE measurement result, the MN automatically configures the first radio bearer or the first logical channel.
  • the MN configures the first radio bearer for the UE, and the QoE measurement configuration corresponding to the SN sent by the MN to the UE can be through the same message or through different messages.
  • the radio bearer transmitting the QoE measurement result of the corresponding SN and the radio bearer transmitting the QoE measurement result of the corresponding MN are two different radio bearers, and the CU of the MN requests the MN’s
  • the DU establishes an SRB or DRB, it will indicate whether the SRB or DRB corresponds to the QoE measurement result of the SN or the QoE measurement result of the MN.
  • the CU of the MN requests the DU of the MN to establish or modify the SRB or DRB CU will request the DU to request the establishment of a logical channel, indicating that the logical channel is used to transmit the QoE measurement result of the corresponding SN or the QoE measurement result of the corresponding MN.
  • the RRC layer of the UE treats The QoE measurement result of the corresponding SN is sent to the PDCP entity corresponding to the first radio bearer, and the QoE measurement result of the corresponding MN is sent to the PDCP entity corresponding to the corresponding radio bearer.
  • the MN knows whether it is the QoE measurement result corresponding to the MN or the QoE measurement result corresponding to the SN according to which radio bearer the measurement result was received through.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN is the same radio bearer that transmits the QoE measurement result of the corresponding MN and uses the same logical channel identifier .
  • the QoE measurement result of the corresponding SN is put in the RRC message corresponding to the SN, and the RRC message is encapsulated in the RRC message to the MN.
  • an RRC message MeasReportAppLayer from the UE to the SN is encapsulated in the RRC message MeasReportAppLayer from the UE to the MN.
  • the MeasReportAppLayer is used to send the QoE measurement result.
  • the UE when the UE sends the measurement result, it will carry an indication information indicating whether the measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN (for example, the UE carries an indication information in the RRC message MeasReportAppLayer to the MN, Indicate which node the measurement result corresponds to).
  • the MN after receiving the measurement result, the MN knows whether it is the QoE measurement result of the corresponding SN or the QoE measurement result of the corresponding MN according to whether the measurement result is encapsulated in the RRC message of the MN, or according to the indication information.
  • the RRC layer of the UE when the first radio bearer is SRB, if the radio bearer that transmits the QoE measurement result of the corresponding SN and the radio bearer that transmits the QoE measurement result of the corresponding MN are the same radio bearer and use different logical channel identifiers, The RRC layer of the UE generates an RRC message, which carries the QoE measurement result of the corresponding SN or the QoE measurement result of the corresponding MN.
  • the RRC layer of the UE sends the RRC message to the PDCP entity of the first radio bearer, it may notify the QoE measurement result of which node the RRC message corresponds to, or notify the logical channel through which the RRC message should be transmitted.
  • the MN after receiving the measurement result, the MN knows whether the measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN according to which logical channel the measurement result was received through.
  • the RRC layer of the UE or the UE The upper layer of the RRC sends the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer, and the RRC layer of the UE or the upper layer of the RRC of the UE sends the QoE measurement result of the corresponding MN to the PDCP entity corresponding to the corresponding radio bearer.
  • the MN knows whether the measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN according to which radio bearer the measurement result was received through.
  • the RRC of the UE when the upper layer of the RRC layer or the UE sends the QoE measurement result of the corresponding MN or the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer, it will notify which node the QoE measurement result or the measurement result corresponds to.
  • the business type corresponding to the result when the first radio bearer is DRB, if the QoE measurement result of the corresponding SN is transmitted, and the radio bearer transmitting the QoE measurement result of the corresponding MN is the same radio bearer and uses the same logical channel identifier, the RRC of the UE When the upper layer of the RRC layer or the UE sends the QoE measurement result of the corresponding MN or the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer, it will notify which node the QoE measurement result or the measurement result corresponds to. The business type corresponding to the result.
  • the PDCP entity When the PDCP entity generates the PDCP PDU, it will carry indication information in the PDCP PDU header to indicate the measurement result corresponding to the measurement configuration of which node or the corresponding service type. Correspondingly, after receiving the measurement result, the MN knows whether the measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN according to the indication information.
  • the UE when the first radio bearer is DRB, if the radio bearer that transmits the QoE measurement result of the corresponding SN and the radio bearer that transmits the QoE measurement result of the corresponding MN are the same radio bearer and use different logical channel identifiers, the UE When the RRC layer of the UE or the upper layer of the RRC of the UE sends the QoE measurement result of the corresponding SN or the QoE measurement result of the corresponding MN to the PDCP entity corresponding to the first radio bearer, it will notify which node the measurement result corresponds to or the notification Which logical channel the measurement result should be transmitted through. Correspondingly, after receiving the measurement result, the MN knows whether the measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN according to which logical channel the measurement result was received through.
  • the method may further include:
  • the MN sends the QoE measurement result to the SN or other entities.
  • the MN can learn whether the currently received measurement result is the QoE measurement result corresponding to the SN or the QoE measurement result corresponding to the MN through the method in step 104 or step 105 described above. If it is the QoE measurement result corresponding to the SN, the MN sends the QoE measurement result to the SN or other entities (such as the Trace Collection Entity (TCE)), and the other entities perform further analysis on the QoE measurement result.
  • the SN will send some information corresponding to the QoE measurement configuration configured by the SN to the MN. This information can include at least one of the following: tracking identifier, TCE IP address, TCE ID, and the mapping relationship between TCE IP address and TCE ID and sent to MN .
  • the MN can send the QoE measurement result configured by the SN to the TCE based on this information.
  • the MN can send the QoE measurement result to other entities, such as TCE.
  • Figure 2B is a schematic diagram of a designated radio bearer process provided by an embodiment of this application.
  • the MN has multiple radio bearers for the UE to send QoE measurement results, such as SRB4 It is used by the UE to send the QoE measurement results of the corresponding MN.
  • the MN establishes the first radio bearer for the UE to transmit the QoE measurement results of the corresponding SN.
  • the first radio bearer is called SRB5, and SRB5 corresponds to DCCH. It is used for transmission and includes the corresponding SN.
  • the RRC message of the QoE measurement result is used for transmission and includes the corresponding SN.
  • the indication information can indicate that the QoE measurement configuration issued by the MN is configured by the MN or SN (for example, the MN carries the indication information in the QoE measurement configuration message issued by the MN) , It can also indicate that the currently established radio bearer is used to transmit the QoE measurement result of the corresponding MN, or used to transmit the QoE measurement result of the corresponding SN (for example, the MN carries the indication information in the message that the MN sends to establish the radio bearer), and then the UE according to The indication information determines whether the QoE measurement result that currently needs to be sent is sent from the first radio bearer or other radio bearers.
  • the MN uses the same radio bearer for the UE to send all QoE measurement results, and uses different logical channels to transmit the QoE measurement results of the corresponding MN and the QoE measurement results of the corresponding SN (for example, through two different logical channels in SRB4) . Then, before the UE sends the QoE measurement result, it needs to receive indication information from the MN.
  • the indication information can indicate that the QoE measurement configuration issued by the MN is configured by the MN or SN (for example, the MN carries the indication information in the QoE measurement configuration message issued by the MN), It can also indicate that the currently established logical channel is used to transmit the QoE measurement result of the corresponding MN, or to transmit the QoE measurement result of the corresponding SN (for example, the MN carries this indication when the logical channel is added to the message for establishing, modifying or establishing a radio bearer. Information), and then the UE determines according to the indication information which logical channel of the first radio bearer it needs to send the QoE measurement result that needs to be sent currently.
  • the MN after the MN receives the QoE measurement result, it can determine whether to forward the QoE measurement result to the SN according to the radio bearer or logical channel corresponding to the received QoE measurement result, without other additional judgments, which improves the data transmission efficiency.
  • the MN in the above embodiment can be the MN that configures the first radio bearer or the first logical channel for the UE in the non-handover scenario, or it can be the MN after the mobility change (the MN after the mobility change can be called As the target MN, the MN before the mobility change can be called the source MN.
  • the target MN obtains the first radio bearer or first logical channel configured by the source MN for the UE from the source MN, and the target MN will notify the UE to inherit the first configuration of the source MN.
  • the radio bearer or the first logical channel or the target MN reconfigures a new first radio bearer or the first logical channel for the UE to transmit the QoE measurement result, so that the UE can send the QoE measurement result to the target MN).
  • the target MN notifies the UE to inherit the first radio bearer or first logical channel configured by the source MN or the target MN reconfigures a new first radio bearer or first logical channel for the UE to transmit the QoE measurement result. It can also be understood as A way for the MN to configure the first radio bearer for receiving the QoE measurement result.
  • the MN sends indication information to the UE to indicate that the first radio bearer or the first logical information in the first radio bearer is used to send the QoE measurement result, which can avoid when the same MN configures a UE
  • multiple radio bearers are used to send different objects, such as different network sides, or QoE measurement results corresponding to different service types, channel confusion problems may occur.
  • FIG. 3 is a flowchart of another communication method provided by an embodiment of this application. As shown in FIG. 3, the method includes the following steps:
  • the terminal device obtains a corresponding QoE measurement result according to the quality of experience QoE measurement configuration, where the QoE measurement result includes the QoE measurement result of the corresponding secondary base station SN;
  • the secondary access network device configures the first radio bearer used to receive the QoE measurement result.
  • the terminal device sends the QoE measurement result through the first radio bearer.
  • the primary access network equipment, secondary access network equipment, and terminal equipment are instantiated as MN, SN, and UE for description.
  • the first radio bearer used by the UE to send the QoE measurement result may be a radio bearer configured by the SN for the UE.
  • the QoE measurement result corresponding to the SN represents the measurement result corresponding to the QoE measurement configuration configured by the SN for the UE.
  • the SN can configure a new radio bearer for the UE as the first radio bearer in addition to the radio bearer configured for the UE by the current SN, for example, in the radio bearer addition or modification list (such as drb-ToAddModList) through the information element in the RRC reconfiguration message Add a new radio bearer for the UE as the first radio bearer.
  • the first radio bearer can be SRB4.
  • SRB4 can be used to transmit QoE measurement results in a non-MR-DC scenario. In the embodiment of this application, it can also be used to transmit MR- The QoE measurement result of the corresponding SN in the DC scenario.
  • the first radio bearer may be SRB5, SRB6, or any other newly added radio bearers that have not been used for signaling transmission.
  • the SRB5 corresponds to the DCCH and is used to transmit the RRC message including the QoE measurement result of the corresponding SN.
  • the SN may select a radio bearer from the radio bearers that the current SN has configured for the UE as the first radio bearer.
  • the information element RLC bearer addition or modification list (such as rlc-BearerToAddModList) in the RRC reconfiguration message is used to add a logical channel (first logical channel) for the UE to transmit the QoE measurement result of the corresponding SN.
  • the first radio bearer configured by the secondary access network device for the terminal device in the embodiment of the present application refers to the radio bearer between the secondary access network device and the terminal device.
  • the first radio bearer includes multiple logical channels, where the first logical channel is used to transmit the QoE measurement result of the corresponding SN.
  • the first logical channel may also transmit other information, for example, the measurement result corresponding to the mobility measurement configuration configured by the SN for the UE or the RRC reconfiguration complete message sent by the UE to the SN.
  • the logical channel identifier is the same.
  • the first logical channel is only used to transmit the measurement result corresponding to the QoE, and other information is transmitted on other logical channels, and the logical channel identifiers corresponding to the first logical channel and other logical channels are different.
  • the secondary base station configures the first radio bearer for the terminal device, which is used for the terminal device to send the quality of experience measurement result of the corresponding secondary base station, so that in the dual connectivity scenario, the secondary base station can establish the radio bearer by itself It is used to receive the measurement result sent by the terminal equipment, effectively solving the problem of sending the measurement result.
  • the timeliness and reliability of the QoE measurement results sent by the terminal device corresponding to the SN in the dual-connection scenario are guaranteed.
  • the logical channel used to send the QoE measurement result of the corresponding SN can be the first logical channel in the first radio bearer. This way, on the one hand, it can reduce the possible impact of the QoE measurement result and other signaling or data when sending the QoE measurement result. On the one hand, by adding logical channels to realize the multiplexing of radio bearers, the management efficiency of multiple radio bearers can be improved and the available radio bearer resources can be fully utilized.
  • the time when the SN configures the first radio bearer or the first logical channel is not limited in the embodiment of the present invention. For example, it can be before the SN sends the QoE measurement configuration configured by the SN to the UE, including after the SN receives the notification message that the QoE measurement configuration needs to be configured for the UE; or when the SN sends the QoE measurement configuration configured by the SN to the UE. Later. It may also be after the UE requests to send the QoE measurement result.
  • the message for the SN to configure the first radio bearer for the UE may be the same message as the QoE measurement configuration for the SN configuration sent to the UE, or it may be a different message.
  • step 201 and step 202 is not limited in the embodiment of the present application, that is, the terminal device can obtain the QoE measurement result before or after the secondary access network device configures the first radio bearer for it.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN does not transmit other information (such as other RRC information) (that is, the radio bearer is specifically used to transmit the QoE measurement of the corresponding SN) Result)
  • the QoE measurement result of the corresponding SN is placed in the RRC message corresponding to the SN, and the RRC layer of the UE directly sends the RRC message to the PDCP entity of the first radio bearer.
  • the RRC message MeasReportAppLayer sent by the UE to the SN carries the QoE measurement result of the corresponding SN.
  • the SN knows whether the RRC message is the RRC message corresponding to the QoE measurement result or the RRC message corresponding to other information according to the RRC message name or radio bearer identifier.
  • the QoE measurement result of the corresponding SN is Put it in the RRC message corresponding to the SN.
  • the RRC message MeasReportAppLayer sent by the UE to the SN carries the QoE measurement result of the corresponding SN.
  • the SN knows according to the name of the RRC message whether the RRC message is the RRC message corresponding to the QoE measurement result or the RRC message corresponding to other information.
  • the RRC layer of the UE when the first radio bearer is SRB, if the radio bearer that transmits the QoE measurement result of the corresponding SN also transmits other information (such as other RRC information) but uses a different logical channel identifier for transmission, the RRC layer of the UE generates RRC message, the message carries the QoE measurement result of the corresponding SN.
  • the RRC message MeasReportAppLayer sent by the UE to the SN carries the QoE measurement result of the corresponding SN.
  • the RRC layer of the UE sends the RRC message to the PDCP entity of the first radio bearer, it can notify that the RRC message corresponds to the QoE measurement result, or notify which logical channel the RRC message should be transmitted through.
  • the SN after receiving the RRC message, the SN knows whether the RRC message is the RRC message corresponding to the QoE measurement result or the RRC message corresponding to other information according to which logical channel the RRC message was received through, or according to the name of the RRC message.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN does not transmit other information (such as other service information) (that is, the radio bearer is exclusively used to transmit the QoE measurement result)
  • the RRC layer of the UE or the upper layer of the RRC of the UE sends the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer.
  • the SN After receiving the information through the DRB, the SN knows whether the information is the QoE measurement result or other service information according to the radio bearer identifier.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN also transmits other information (such as other data service information) and uses the same logical channel identifier, the RRC layer of the UE or the UE
  • the RRC layer of the UE When the upper layer of the RRC sends the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer, it will notify that the data is the QoE measurement result.
  • the PDCP entity When the PDCP entity generates the PDCP PDU, it will carry indication information in the PDCP PDU header, indicating that the PDCP PDU carries the QoE measurement result.
  • the SN after receiving the PDCP PDU, the SN knows according to the indication information whether the PDCP PDU corresponds to the QoE measurement result or other data service information.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN also transmits other information (such as other data service information) and uses different logical channel identifiers, the RRC layer of the UE or the UE
  • the RRC layer of the UE When the upper layer of the RRC sends the QoE measurement result of the corresponding SN to the PDCP entity corresponding to the first radio bearer, it will notify that the data is the QoE measurement result or indicate which logical channel the data is transmitted through.
  • the PDCP entity then sends the corresponding PDCP PDU to the RLC entity corresponding to the determined logical channel.
  • the SN knows whether the PDCP PDU corresponds to the QoE measurement result or other data service information according to which logical channel the PDCP PDU is received through.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN does not transmit other information
  • the CU of the SN requests the DU of the SN to establish an SRB or DRB, it will indicate that the SRB or DRB is for transmitting the corresponding The QoE measurement result of SN, or other information.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN also transmits other information, but uses a different logical channel
  • the CU of the SN requests the DU of the SN to establish or modify the SRB or DRB
  • the CU can request the DU to request the establishment of a logical channel, and Indicates that the logical channel is used to transmit the QoE measurement result or other information of the corresponding SN.
  • the radio bearer that transmits the QoE measurement result of the corresponding SN may receive indication information from the SN to indicate the first radio
  • the bearer is used to transmit the QoE measurement result of the corresponding SN (for example, the SN carries the indication information in the message issued to establish the radio bearer).
  • the UE can receive indication information from the SN before the UE sends the QoE measurement result of the corresponding SN, It is used to indicate whether the currently established logical channel is used to transmit the QoE measurement result of the corresponding SN or other information (for example, the SN carries the indication information when the logical channel is added to the message for establishing and modifying or establishing the radio bearer), and then the UE According to the indication information, it is determined from which logical channel of the first radio bearer the QoE measurement result currently to be sent needs to be sent. In this way, after the SN receives the QoE measurement result, it can determine whether the information carried in it is the QoE measurement result according to the corresponding radio bearer or logical channel, without other additional judgments, which improves the data transmission efficiency.
  • other information such as other data service information
  • the SN in the embodiment shown in FIG. 3 may be the SN configured with the first radio bearer or the first logical channel for the UE in a non-handover scenario, or may be the SN after the mobility is changed.
  • the SN after the mobility change can be referred to as the target SN, and the SN before the mobility change can be referred to as the source SN.
  • the target SN obtains the first radio bearer or first logical channel configured by the source SN for the UE from the source SN, and the target SN will notify the UE to inherit the first radio bearer or first logical channel configured by the source SN or the target SN reconfigures a new one for the UE
  • the first radio bearer or the first logical channel transmits the QoE measurement result, so that the UE can send the QoE measurement result to the target SN). It is understandable that the target SN notifies the UE to inherit the first radio bearer or first logical channel configured by the source SN or the target SN reconfigures a new first radio bearer or first logical channel for the UE to transmit the QoE measurement result. It can also be understood as The SN configures a way for the first radio bearer to receive the QoE measurement result.
  • step 204 Obtain the QoE measurement configuration configured by the SN for the UE; step 205, the MN sends the QoE measurement configuration configured by the SN for the UE to the UE.
  • the UE may directly obtain the QoE measurement configuration configured by the SN for the UE from the SN.
  • the MN obtains the QoE measurement configuration configured by the SN for the UE from the SN, which may specifically include the following methods: the QoE measurement configuration generated by the SN is sent to the MN, and the MN then sends the QoE measurement generated by the SN to the UE.
  • the message sent by the SN to the MN carries the RRC message generated by the SN
  • the RRC message carries the QoE measurement configuration of the SN to the UE.
  • the MN then carries the RRC message generated by the SN in the RRC reconfiguration message to the UE.
  • the QoE measurement configuration configured by the SN for the UE is transparent to the MN.
  • the SN can configure QoE measurement or the SN can trigger the MN to configure QoE measurement for the UE. If both the MN and SN configure the UE for QoE measurement of the same service type, the previous QoE measurement configuration will be covered by the latter QoE measurement configuration, resulting in the UE not knowing which access network the QoE measurement of this service type is used for.
  • the device is configured, or causes the QoE measurement of this service type to restart, so that the application layer quality corresponding to the part of the communication that has been started cannot be measured for this service type.
  • FIG. 4 is a flowchart of a method for determining a target service type provided by an embodiment of the application. The method includes the following steps:
  • the primary access network device generates third information, where the third information is used to indicate the target service type of the QoE measurement that can be configured or triggered by the corresponding secondary access network device.
  • the secondary access network device obtains the third information from the primary access network device.
  • the primary access network equipment, secondary access network equipment, and terminal equipment are instantiated as MN, SN, and UE for description.
  • both MN and SN can configure QoE measurement for the UE.
  • MN and SN can perform QoE measurement configurations for all types of services respectively.
  • the MN and the SN may negotiate, and the MN determines the target service type of the QoE measurement configuration corresponding to the SN, for example, through step 301 for negotiation.
  • the target service type of QoE measurement that can be configured by the corresponding SN refers to the target service type corresponding to the QoE measurement configuration that the SN can configure for the UE; the target service type of the QoE measurement that can be triggered by the corresponding SN refers to the SN that can trigger the QoE configured by the MN for the UE The target service type corresponding to the measurement configuration.
  • the SN obtaining the third information from the MN may include: the MN actively sends the third information to the SN (for example, the MN generates and sends the third information to the SN after determining the target service type that the SN can configure) to indicate the corresponding SN can configure or trigger the target service type of QoE measurement.
  • the third information may be carried in the SN addition request, SN modification request SN modification request message, and the SN determines the service type or service type list that can be configured for QoE measurement according to the received third information.
  • the SN obtaining the third information from the MN may include: the SN sends the second request information to the MN.
  • the request information may be the service type or service type list of the QoE measurement requested by the SN; accordingly, the MN receives the second request from the SN Information, generate third information based on the second request information, and send the third information to the SN to indicate the service type or service type list for QoE measurement that the SN can configure or trigger, or to indicate the service type or service type or service types that accept the QoE measurement requested by the SN List of business types.
  • the MN can reject the SN's request.
  • the second request information may also be the SN requesting QoE measurement, and the MN generates and sends third information to the SN according to the second request information, indicating the service type or service type list of the QoE measurement that the SN can configure or trigger.
  • the second request information sent by the SN may be carried in the SN Modification required
  • the third information sent by the MN may be carried in the SN modification confirm message.
  • the third information sent by the MN to the SN may be a QoE measurement service type or service type list that the SN can configure or trigger, or may be a QoE measurement service type or service type list that the MN has configured. Therefore, the SN can know the QoE measurement service types that the SN can configure or trigger according to the QoE measurement service type or service type list that the MN has configured.
  • the SN judges whether the QoE measurement configuration can be delivered to the UE according to the acquired third information, and whether the QoE measurement configuration of the corresponding service type can be delivered.
  • the SN can send the QoE measurement configuration configured by the SN to the UE through SRB3.
  • the SN sends the generated QoE measurement configuration to the MN, and the MN sends the QoE measurement generated by the SN to the UE.
  • the message sent by the SN to the MN carries the RRC message generated by the SN, and the RRC message carries the QoE measurement configuration of the SN to the UE.
  • the MN then carries the RRC message generated by the SN in the RRC reconfiguration message to the UE.
  • the QoE measurement configuration configured by the SN for the UE is transparent to the MN.
  • the MN determines the target service type corresponding to the QoE measurement configuration of the corresponding SN, so that the MN and the SN negotiate the target service type for QoE measurement without causing repeated configuration of the same type of service, which improves Configuration efficiency.
  • the secondary access device determines the target service type of the QoE measurement configuration corresponding to the secondary access network device according to the received third information, the following steps may be included: 303.
  • the primary access network device or the secondary access network device reports to the terminal device Configure the QoE measurement configuration of the target service type.
  • the QoE measurement configuration corresponding to the secondary access network device may be the QoE measurement configuration configured by the secondary access network device, or the secondary access network device may trigger the primary access network device to configure the QoE measurement configuration. Therefore, it may be the primary access network device.
  • the device configures the terminal device with the QoE measurement configuration of the target service type, or the auxiliary access network device configures the terminal device with the QoE measurement configuration of the target service type.
  • the MN determines according to the third information the service type corresponding to the QoE measurement configuration that the MN can actively configure for the UE (that is, in addition to the service type corresponding to the QoE measurement that can be configured by the SN or the SN can trigger the QoE configured by the MN Measure business types other than the corresponding business types).
  • the method may further include the following steps:
  • the terminal device obtains the QoE measurement result of the corresponding secondary access network device according to the QoE measurement configuration, where the QoE measurement result is a measurement result corresponding to the target service type.
  • the QoE measurement result corresponding to the SN includes: the measurement result corresponding to the QoE measurement configuration configured by the SN for the UE; or the measurement result corresponding to the QoE measurement configuration configured by the MN triggered by the SN; or the QoE measurement result received by the SN, so it corresponds to the SN
  • the target service type corresponding to the QoE measurement result includes: the target service type that the SN can generate QoE measurement configuration for the UE; or the target service type that the SN can trigger the MN to generate the QoE measurement configuration for the UE; or the QoE measurement result that the SN can receive corresponds to Target business type.
  • the terminal device sends the QoE measurement result of the corresponding secondary access network device.
  • the embodiment of this application can be combined with the embodiment corresponding to FIG. 2A to FIG. 2B, that is, when the terminal device sends the QoE measurement result corresponding to the secondary access network device, the first radio bearer configured by the primary access network device is used Or the first logical channel for transmission.
  • the terminal device sends the QoE measurement result corresponding to the secondary access network device
  • the first radio bearer configured by the primary access network device
  • the first logical channel for transmission For specific description, please refer to the description of the entity instance corresponding to FIG. 2A to FIG. 2B.
  • the UE after the UE obtains the QoE measurement result of the corresponding SN, it sends it to the MN.
  • the UE may carry a service type corresponding to the QoE measurement result in the sent QoE measurement result, because the MN and SN have negotiated The corresponding service type of the QoE measurement result is determined, so that the MN can know according to the service type that the measurement result corresponds to the QoE measurement configured by which node.
  • the MN knows whether it is the QoE measurement result of the corresponding MN or the QoE measurement result of the corresponding SN according to the service type, and the MN can forward the QoE measurement result of the corresponding SN to the SN or to other entities. Improve the sending efficiency of QoE measurement results.
  • the embodiment of the present application can be combined with the embodiment corresponding to FIG. 3.
  • the SN negotiates with the MN, and the MN determines the target service type for which the SN can perform the QoE measurement configuration.
  • the terminal sends the QoE measurement result corresponding to the secondary access network device, it uses the first radio bearer or the first logical channel configured by the secondary access network device to send.
  • the UE can carry a QoE measurement result in the sent QoE measurement result.
  • the SN can determine whether it is its own corresponding QoE measurement result according to the service type corresponding to the received QoE measurement result, which improves the accuracy of receiving the QoE measurement result.
  • the embodiment of the present application may also be a separate embodiment. That is, in other dual-connection or multi-connection scenarios, the target service type corresponding to the QoE measurement result of the SN is also determined by the MN.
  • the radio bearer through which the UE transmits the QoE measurement result of the corresponding SN is the existing radio bearer and logical channel between the SN and the UE.
  • the SN can also determine whether or not according to the service type corresponding to the received QoE measurement result For its own corresponding QoE measurement results, the accuracy of receiving QoE measurement results is improved.
  • the steps or operations implemented by the terminal device may also be implemented by components configurable in the terminal device, the steps implemented by the access network device (for example, MN or SN), or The operation can also be implemented by components that can be configured in the access network device.
  • FIG. 5 is a communication device 400 provided by an embodiment of the application, which can be used to execute the communication method of the communication device in FIG. 2A to FIG. 2B or FIG.
  • the communication device may be a terminal device or may be a component (such as a chip or a circuit) configured in the terminal device.
  • the communication device 400 includes a sending module 401 and a processing module 402.
  • the processing module 402 is configured to obtain a corresponding QoE measurement result according to the quality of experience QoE measurement configuration, where the QoE measurement result includes the QoE measurement result of the corresponding auxiliary access network device;
  • the sending module 401 is configured to send the QoE measurement result through a first radio bearer, where the first radio bearer is a radio bearer configured by the primary access network device or the secondary access network device for the terminal device.
  • the terminal device further includes a receiving module 403, configured to:
  • the receiving module 403 is further configured to:
  • the first radio bearer is a radio bearer configured by the main access network device for the terminal device, receiving indication information from the main access network device, or the first radio bearer is a radio bearer configured by the auxiliary access network device. Receiving indication information from the secondary access network device when the radio bearer is configured by the terminal device;
  • the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send the QoE measurement result.
  • the foregoing receiving module 403 and sending module 401 may be interface circuits or transceivers.
  • the receiving module 403 and the sending module 401 can be independent modules, or can be integrated as a transceiver module (not shown), and the transceiver module can realize the functions of the receiving module 403 and the sending module 401 described above.
  • the aforementioned processing module 402 may be a processor, a chip, an encoder, an encoding circuit, or other integrated circuits that can implement the method of the present application.
  • the communication device 400 is used to execute the communication method corresponding to the terminal device, and reference may be made to the description of the relevant part of the corresponding embodiment, which will not be repeated here.
  • the communication device 400 may further include a storage module (not shown in the figure).
  • the storage module may be used to store data and/or signaling.
  • the storage module may be coupled to the processing module 402, or may be coupled to the receiving module 403 or The sending module 401 is coupled.
  • the processing module 402 may be used to read data and/or signaling in the storage module, so that the communication method in the foregoing method embodiment is executed.
  • the storage module may be a memory.
  • FIG. 6 is a communication device 500 provided by an embodiment of the application, which can be used to perform the communication method of the communication device in FIGS. 2A to 2B and the corresponding operations or steps corresponding to the primary access network equipment in the specific embodiments.
  • the communication device may be a main access network device or a component (such as a chip or a circuit) configured in the main access network device.
  • the communication device 500 includes a receiving module 501 and a processing module 502.
  • the processing module 502 is configured to configure a first radio bearer for receiving a QoE measurement result of the quality of experience, where the QoE measurement result includes the QoE measurement result corresponding to the secondary access network device;
  • the receiving module 501 is configured to receive the QoE measurement result sent by the terminal device through the first radio bearer.
  • the first radio bearer includes multiple logical channels; the receiving module 501 is specifically configured to: receive the data sent by the UE through the first logical channel among the multiple logical channels in the first radio bearer. The QoE measurement result.
  • the receiving module 501 is further configured to: receive, from the secondary access network device, the QoE measurement configuration configured by the secondary access network device for the terminal device;
  • the communication device 500 further includes a sending module 503 for:
  • the sending module 503 is further configured to send indication information to the terminal device, where the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send The QoE measurement results are described.
  • the communication device 500 provided in FIG. 6 may be used to perform the communication method of the communication device in FIG. 3 and the corresponding operations or steps corresponding to the auxiliary access network equipment in the specific embodiment, and the communication device may be the auxiliary access network.
  • a device or a component (such as a chip or circuit) configured in an auxiliary access network device.
  • the processing module 502 is configured to configure a first radio bearer for receiving a QoE measurement result of the quality of experience, where the QoE measurement result includes the QoE measurement result corresponding to the secondary access network device;
  • the receiving module 501 is configured to receive the QoE measurement result sent by the terminal device through the first radio bearer.
  • the first radio bearer includes a plurality of logical channels; the receiving module 501 is specifically configured to: receive the terminal device's transmission through the first logical channel of the plurality of logical channels in the first radio bearer The results of the QoE measurement.
  • the sending module 503 is used to:
  • the sending module 503 is further configured to send indication information to the terminal device, where the indication information is used to indicate that the first radio bearer or the first logical channel in the first radio bearer is used to send The QoE measurement results are described.
  • the foregoing receiving module 501 and sending module 503 may be interface circuits or transceivers.
  • the receiving module 501 and the sending module 503 may be independent modules, or may be integrated as a transceiver module (not shown in the figure), and the transceiver module can implement the functions of the receiving module 501 and the sending module 503 described above.
  • the aforementioned processing module 503 may be a processor, a chip, an encoder, an encoding circuit, or other integrated circuits that can implement the method of the present application.
  • the communication device 500 is used to execute the communication method corresponding to the access network device, and reference may be made to the description of the relevant part of the corresponding embodiment, which will not be repeated here.
  • the communication device 500 may further include a storage module (not shown in the figure).
  • the storage module may be used to store data and/or signaling.
  • the storage module may be coupled to the processing module 502, or may be coupled to the receiving module 501,
  • the sending module 503 or the sending module 503 is coupled.
  • the processing module 502 may be used to read data and/or signaling in the storage module, so that the communication method in the foregoing method embodiment is executed.
  • FIG. 7A is a communication device 600 provided by an embodiment of the application, which can be used to perform the communication method of the communication device in FIG. 4 and the corresponding operations or steps corresponding to the main access network equipment in the specific embodiment. It is the main access network device or a component (such as a chip or circuit) configured on the main access network device.
  • the communication device 600 includes:
  • the processing module 601 is configured to generate third information, where the third information is used to indicate the target service type of the QoE measurement that can be configured or triggered by the corresponding secondary access network device;
  • the sending module 602 is configured to send the third information to the secondary access network device.
  • FIG. 7B is a communication device 700 provided by an embodiment of the application, which can be used to perform the communication method of the communication device in FIG. 4 and the corresponding operations or steps corresponding to the auxiliary access network equipment in the specific embodiment. It is a secondary access network device or a component (such as a chip or circuit) configured on the secondary access network device.
  • the communication device 700 includes:
  • the receiving module 701 is configured to receive third information, where the third information is used to indicate the target service type of the QoE measurement that can be configured or triggered by the corresponding secondary access network device.
  • the foregoing communication device 600 may further include a receiving module 603; or, the foregoing communication device 700 may further include a sending module 702.
  • the receiving module and the sending module (including the receiving module 603 and the sending module 602, or the receiving module 701 and the sending module 702) may be interface circuits or transceivers.
  • the receiving module and the sending module can be independent modules, or can be integrated as a transceiver module (not shown in the figure), and the transceiver module can realize the functions of the above-mentioned receiving module and sending module.
  • the communication device 700 may further include a processing module 703.
  • the above-mentioned processing module (including the processing module 601 or the processing module 703) may be a processor, a chip, an encoder, an encoding circuit, or other integrated circuits that can implement the method of the present application.
  • the communication device 600 is used to execute the communication method corresponding to the terminal device, and reference may be made to the description of the relevant part of the corresponding embodiment, which will not be repeated here.
  • the communication device 600 or the communication device 700 may further include a storage module (not shown in the figure).
  • the storage module may be used to store data and/or signaling.
  • the storage module may be coupled to the processing module or may be coupled to the receiving module.
  • the module or sending module 401 is coupled.
  • the processing module may be used to read data and/or signaling in the storage module, so that the communication method in the foregoing method embodiment is executed.
  • the storage module may be a memory.
  • FIG. 8 shows a schematic structural diagram of a communication device in an embodiment of the present application.
  • the communication device 800 includes: a processor 111 and a transceiver 112, and the processor 111 and the transceiver 112 are electrically coupled;
  • the processor 111 is configured to execute part or all of the computer program instructions, and when the part or all of the computer program instructions are executed, the device executes the method described in any of the foregoing embodiments.
  • the transceiver 112 is used to communicate with other devices; for example, sending or receiving QoE measurement results of corresponding auxiliary access network devices.
  • the memory 113 for storing the computer program instructions.
  • the memory 113 (Memory#1) is located in the device, and the memory 113 (Memory#2) and the processor 111 Integrate together, or the memory 113 (Memory#3) is located outside the device.
  • the communication device 800 shown in FIG. 8 may be a chip or a circuit.
  • a chip or circuit may be provided in a terminal device or a communication device.
  • the aforementioned transceiver 112 may also be a communication interface.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 800 may also include a bus system.
  • the processor 111, the memory 113, and the transceiver 112 are connected by a bus system.
  • the processor 111 is used to execute instructions stored in the memory 113 to control the transceiver to receive and send signals, and complete the first implementation method involved in this application.
  • the memory 113 may be integrated in the processor 111, or may be provided separately from the processor 111.
  • the function of the transceiver 112 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for executing the corresponding method for accessing network equipment in the foregoing embodiment.
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for executing the corresponding terminal device in the foregoing embodiment.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method corresponding to the access network device in the foregoing embodiment.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method corresponding to the terminal device in the foregoing embodiment.
  • the embodiment of the present application provides a communication system, including a terminal device and a main access network device.
  • a main access network device may also include auxiliary access network equipment.
  • the auxiliary access network equipment includes the communication device corresponding to FIG. 6.
  • the communication device is used to perform the communication method of the communication device in FIG. 3 and the corresponding operations or steps corresponding to the auxiliary access network equipment in the specific embodiment.
  • the embodiment of the present application also provides a communication system, including a terminal device and an auxiliary access network device.
  • a communication system including a terminal device and an auxiliary access network device.
  • it may also include the main access network device.
  • the main access network equipment includes the communication device corresponding to FIG. 6.
  • the communication device is used to perform the communication method of the communication device in FIGS. 2A to 2B and the corresponding operations or steps corresponding to the main access network equipment in the specific embodiments.
  • the embodiment of the present application also provides a communication system, including a primary access device and a secondary access network device.
  • a communication system including a primary access device and a secondary access network device.
  • it may also include terminal equipment.
  • the terminal equipment includes a communication device corresponding to FIG. 5.
  • the communication device is used to execute the communication method of the communication device in FIGS. 2A to 2B or FIG. 3 and corresponding operations or steps corresponding to the terminal equipment in the specific embodiments.
  • the embodiment of the present application also provides a communication system, including terminal equipment, a main access network device, and an auxiliary access network device.
  • the main access network device includes the communication device corresponding to FIG. 7A
  • the auxiliary access network device Including the communication device corresponding to FIG. 7B.
  • the communication device corresponding to FIG. 7A is used to execute the communication method of the communication device of FIG. 4 and the corresponding operations or steps corresponding to the main access network equipment in the specific embodiment
  • the communication device corresponding to FIG. 7B is used to execute the communication method of FIG.
  • the communication method of the communication device and the corresponding operations or steps in the specific embodiments correspond to the auxiliary access network equipment.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or an access network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于体验质量测量结果发送的通信方法及装置,其中方法包括:终端设备根据体验质量QoE测量配置获取对应的QoE测量结果,QoE测量结果包括对应辅接入网设备的QoE测量结果;通过第一无线承载发送QoE测量结果,第一无线承载是主接入网设备或辅接入网设备为终端设备配置的无线承载。本申请实施例公开了对应辅接入网设备的QoE测量结果通过第一无线承载发送,而第一无线承载可以由主接入网设备或辅接入网设备配置,有效解决了对应辅接入网设备的QoE测量结果发送的问题。

Description

用于体验质量测量结果发送的通信方法及装置
本申请要求于2020年04月23日提交中国知识产权局、申请号为202010327139.2、申请名称为“用于体验质量测量结果发送的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于体验质量测量结果发送的通信方法及装置。
背景技术
在无线网络中,一个终端设备可能和多个基站通信,即双连接(Dual-connectivity,DC),或多连接(Multi-connectivity,MC)。在新协议中,双连接也称为多无线双连接(Multi-radio Dual Connectivity,MR-DC)。网络侧可以利用多个基站的资源为该终端设备提供通信服务,从而为终端设备提供高速率传输。DC中与核心网有控制面信令交互的基站称为主节点(Master Node,MN),其他基站称为辅节点(Secondary Node,SN)。DC中数据无线承载(Data Radio Bearer,DRB)分为主小区组承载(Master Cell group Bearer,MCG Bearer)、辅小区组承载(Secondary Cell group,SCG Bearer)、分裂承载(Split Bearer)。其中MCG Bearer是该DRB的无线链路控制(Radio Link Control,RLC)或介质访问控制(Medium Access Control,MAC)实体只在主基站上,SCG bearer是指该DRB的RLC/MAC实体只在辅基站上,Split bearer是指该DRB的RLC/MAC实体在主基站和辅基站上都有(即该DRB在主基站和辅基站都具有RLC/MAC实体)。对于包数据汇聚协议(Packet Data Convergence Protocol,PDCP)终结在MN上的承载,称为MN terminated承载,即下行(Downlink,DL)数据从核心网直接到达MN,经由MN的服务数据适配层(Service Data Adaptation Protocol,SDAP)/PDCP处理后再经过RLC/MAC发送给终端设备(注:目前只有当终端设备连接到采用服务质量流架构的5G核心网时,才会有SDAP层),上行(Uplink,UL)数据从MN的SDAP/PDCP处理后发送给核心网。类似的,对于PDCP终结在SN上的承载,称为SN terminated承载,即DL数据从核心网直接到达SN,经由SN的SDAP/PDCP处理后再经过RLC/MAC发送给终端设备,UL数据从SN的SDAP/PDCP处理后发送给核心网。另外,双连接中,MN和SN都具有无线资源控制(Radio Resource Control,RRC)实体,都可以产生RRC消息。并且SN可以直接把辅基站产生的RRC消息发给终端设备,也可以把SN产生的RRC消息通知MN,MN再发送给终端设备。
最小化路测技术(Minimization of Drive-Tests,MDT)基本思想是运营商通过签约用户的商用终端进行测量发送来部分替代传统的路测工作,实现自动收集终端测量数据,以检测和优化无线网络中的问题和故障。对于一些业务而言,比如流媒体服务(streaming service),IP多媒体系统的多媒体电话(Multimedia Telephony Service for IMS,MTSI)服务,运营商想知道用户的体验是如何,从而更好的优化网络以提高用户的体验。因此提出了体验质量(Quality of Experience,QoE)测量收集,也可称为应用层测量收集。在现有技术中缺乏对MR-DC场景下网络侧如何为终端设备配置QoE测量,以及终端设备如何发送QoE测量结 果的相关研究。
发明内容
本申请实施例提供了一种用于体验质量测量结果发送的通信方法及装置,以解决在双连接场景下终端设备发送体验质量测量结果的问题。
第一方面,提供了一种通信方法,该方法可以由终端设备实现,也可以由可配置于终端设备的部件(例如芯片或者电路)。该方法可以包括:
根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅基站辅接入网设备的QoE测量结果;
通过第一无线承载发送所述QoE测量结果,所述第一无线承载是主基站主接入网设备或所述辅基站辅接入网设备为所述终端设备配置的无线承载。
在本申请实施例中,通过主接入网设备为终端设备配置第一无线承载,或者通过主接入网设备配置无线承载中的第一逻辑信道,用于终端发送QoE测量结果,这样使得在双连接或多连接场景中,终端可以通过主接入网设备配置的无线承载或逻辑信道发送QoE测量结果,增强双连接或多连接场景中主接入网设备对辅接入网设备QoE测量过程的信息交互的实时性;或者也可以通过辅接入网设备配置无线承载中的第一逻辑信道用于终端发送QoE测量结果,可以提升辅接入网设备QoE测量过程的独立性。
在一种可能的设计中,所述第一无线承载是所述主接入网设备为所述终端设备配置的无线承载包括:
所述第一无线承载是所述主接入网设备配置的用于所述终端设备发送所述QoE测量结果的无线承载。
在本申请实施例中,通过主接入网设备为终端设备配置无线承载用于发送QoE测量结果,可以减少通过发送QoE测量结果过程中,对其他信令或数据传输可能造成的影响。另外,主接入网设备可以为不同的无线承载设置不同的逻辑信道优先级,从而终端设备在获得上行传输的授权时,可以根据不同无线承载设置的优先级来优先传输不同无线承载中的信令或数据。
在一种可能的设计中,所述第一无线承载中包括多个逻辑信道;
所述通过第一无线承载发送QoE测量结果包括:
通过所述第一无线承载中多个逻辑信道中的第一逻辑信道发送所述QoE测量结果。
在本申请实施例中,第一逻辑信道可以是在主接入网设备或辅接入网设备为终端设备已配置的无线承载中,为了发送对应辅接入网设备的QoE测量结果而划分的信道,也可以是主接入网设备为终端设备新配置的无线承载中用于发送对应辅接入网设备的QoE测量结果而划分的信道,这样一方面可以减少QoE测量结果发送时与其他信令或数据可能产生的影响,另一方面,通过划分逻辑信道对无线承载复用,可以提升对多个逻辑信道的管理效率以及充分利用无线承载资源。
在一种可能的设计中,所述对应辅接入网设备的QoE测量结果包括:所述辅接入网设备为终端设备配置的QoE测量配置对应的测量结果;或所述辅接入网设备触发所述主接入网设备配置的QoE测量配置对应的测量结果。
在一种可能的设计中,所述方法还包括:
从所述主接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置,或
从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置。
在一种可能的设计中,在所述通过第一无线承载发送所述QoE测量结果之前,所述方法还包括:
所述第一无线承载是主接入网设备为所述终端设备配置的无线承载时,从所述主接入网设备接收指示信息,或所述第一无线承载是辅接入网设备为所述终端设备配置的无线承载时,从所述辅接入网设备接收指示信息;
所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
在本申请实施例中,通过主接入网设备向终端设备发送指示信息,或者通过辅接入网设备向终端设备发送指示信息,以指示第一无线承载或第一无线承载中的第一逻辑信息用于发送QoE测量结果,可以避免当同一个主接入网设备或辅接入网设备为一个终端设备配置了多个无线承载用于发送不同对象,例如不同网络侧,或者不同业务类型对应的QoE测量结果时,可能产生的信道混淆问题。通过向终端设备发送指示信息,从而终端设备知道应该在哪一个无线承载或逻辑信道中发送QoE测量结果。
在一种可能的设计中,所述对应辅接入网设备的QoE测量结果为目标业务类型对应的测量结果,所述目标业务类型为所述主接入网设备确定。
在本申请实施例中,通过主接入网设备确定辅接入网设备能够进行QoE测量的目标业务类型,可以使得主接入网设备和辅接入网设备协商进行QoE测量的配置,而不会造成重复对同类型业务进行配置,提升了配置效率,同时避免了主接入网设备或辅接入网设备配置的QoE测量配置覆盖辅接入网设备或主接入网设备配置的QoE测量配置。
第二方面,提供了一种通信方法,该方法可以由接入网设备实现,也可以由可配置于接入网设备的部件(例如芯片或者电路)。该方法可以包括:
接入网设备配置用于接收体验质量QoE测量结果的第一无线承载,其中,所述接入网设备包括主接入网设备或辅接入网设备,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
所述接入网设备通过所述第一无线承载从终端设备接收所述QoE测量结果。
在一种可能的设计中,所述第一无线承载中包括多个逻辑信道;
所述通过第一无线承载接收终端设备发送的QoE测量结果包括:
通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述终端设备发送的所述QoE测量结果。
在一种可能的设计中,所述对应所述辅接入网设备的QoE测量结果包括:所述辅接入网设备为终端设备配置的QoE测量配置对应的测量结果;或所述辅接入网设备触发所述主接入网设备配置的QoE测量配置对应的测量结果。
在一种可能的设计中,所述主接入网设备配置用于接收所述QoE测量结果的第一无线承载,所述方法还包括:
所述主接入网设备从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的 QoE测量配置;
所述主接入网设备向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
在一种可能的设计中,所述辅接入网设备配置用于接收所述QoE测量结果的第一无线承载,所述方法还包括:
所述辅接入网设备向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置;或所述辅接入网设备向所述主接入网设备发送所述辅接入网设备为所述UE配置的QoE测量配置。
在一种可能的设计中,在所述接入网设备通过所述第一无线承载接收所述QoE测量结果之前,所述方法还包括:
所述接入网设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
在一种可能的设计中,所述对应辅接入网设备的QoE测量结果为目标业务类型对应的测量结果,所述目标业务类型由所述主接入网设备确定。
第三方面,提供一种目标业务类型确定方法,该方法可以由接入网设备实现,也可以由可配置于接入网设备的部件(例如芯片或者电路)。接入网设备可以为主接入网设备或辅接入网设备;
当接入网设备为主接入网设备时,该方法包括:
生成第三信息,所述第三信息用于指示对应辅接入网设备能配置或触发的QoE测量的目标业务类型;
向辅接入网设备发送所述第三信息;
当所述接入网设备为辅接入网设备时,该方法包括:
从所述主接入网设备获取所述第三信息。
在本申请实施例中,通过主接入网设备和辅接入网设备协商对应辅接入网设备能配置或触发的QoE测量的目标业务类型,能够降低两种接入网设备对同类型业务重复进行QoE测量配置的概率,另外,还可以提升辅接入网设备获取目标业务类型的QoE测量结果的效率。
第四方面,提供一种通信装置,该通信装置可以是终端设备,也可以是可配置于终端设备的部件。该装置可以包括:
处理模块,用于根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅接入网设备的QoE测量结果;
发送模块,用于通过第一无线承载发送所述QoE测量结果,所述第一无线承载是主接入网设备或所述辅接入网设备为所述终端设备配置的无线承载。
在一种可能的设计中,所述终端设备还包括接收模块,用于:
从所述主接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置,或
从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置。
在一种可能的设计中,所述接收模块还用于:
所述第一无线承载是主接入网设备为所述终端设备配置的无线承载时,从所述主接入 网设备接收指示信息,或所述第一无线承载是辅接入网设备为所述终端设备配置的无线承载时,从所述辅接入网设备接收指示信息;
所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
第五方面,提供一种通信装置,该通信装置可以是主接入网设备,也可以是可配置于主接入网设备的部件。该装置可以包括:
处理模块,用于配置用于接收体验质量QoE测量结果的第一无线承载,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
接收模块,用于通过所述第一无线承载接收终端设备发送的所述QoE测量结果。
在一种可能的设计中,所述第一无线承载中包括多个逻辑信道;
所述接收模块具体用于:通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述终端设备发送的所述QoE测量结果。
在一种可能的设计中,所述接收模块还用于:从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置;
所述主接入网设备还包括发送模块,用于:
向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
所述发送模块还用于:向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
第六方面,提供一种通信装置,该通信装置可以是辅接入网设备,也可以是可配置于辅接入网设备的部件。该装置可以包括:
处理模块,用于配置用于接收体验质量QoE测量结果的第一无线承载,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
接收模块,用于通过所述第一无线承载接收终端设备发送的所述QoE测量结果。
可选的,所述第一无线承载中包括多个逻辑信道;所述接收模块具体用于:通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述UE发送的所述QoE测量结果。
在一种可能的设计中,所述辅接入网设备还包括发送模块,用于:
向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置;或
向所述主接入网设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
可选的,所述发送模块还用于:向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
第七方面,提供一种通信装置,该通信装置可以是接入网设备,也可以是可配置于接入网设备的部件,接入网设备可以是主接入网设备或辅接入网设备;
当接入网设备为主接入网设备时,该装置可以包括:
处理模块,用于生成第三信息,所述第三信息用于指示对应辅接入网设备能配置或触发的QoE测量的目标业务类型;
发送模块,用于向辅接入网设备发送所述第三信息。
当接入网设备为辅接入网设备时,该装置可以包括:
接收模块,用于从主接入网设备获取所述第三信息。
第八方面,提供一种通信装置,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行第一方面或第一方面任一项所述的方法;或者使得所述装置执行第二方面或第二方面任一项所述主接入网设备对应的方法;或者使得所述装置执行第二方面或第二方面任一项所述辅接入网设备对应的方法;或者使得所述装置执行第三方面所述的方法。
该装置可以为终端,也可以为终端中包括的芯片。上述通信装备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该装置可以为接入网设备,也可以为接入网设备中包含的芯片。上述通信装备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中主接入网设备对应的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中辅接入网设备对应的方法,或者执行上述第三方面的方法。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面、或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中主接入网设备对应的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中辅接入网设备对应的方法,或者执行上述第三方面的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为接入网设备时,该通信接口可以是收发器或输入/输出接口;当该装置为接入网设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第九方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中主接入网设备对应的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中辅接入网设备对应的方法,或者执行上述第三方面的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处 理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第十方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中主接入网设备对应的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中辅接入网设备对应的方法,或者执行上述第三方面的方法。
第十一方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式中的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中主接入网设备对应的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式中辅接入网设备对应的方法,或者执行上述第三方面的方法。
第十二方面,本申请实施例提供一种通信系统,该通信系统包括终端设备和接入网设备,所述终端设备包括第三方面所述的通信装置,所述接入网设备包括如第四方面所述的通信装置;或者所述接入网设备包括如第五方面所述的通信装置;或者所述接入网设备包括如第七方面所述的通信装置。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1A为本申请实施例提供的一种网络架构示意图;
图1B为本申请实施例提供的一种通信系统的示意图;
图1C为本申请实施例提供的一种DC连接示意图;
图1D为本申请实施例提供的一种MDT测量过程示意图;
图2A为本申请实施例提供的一种通信方法流程图;
图2B为本申请实施例提供的一种指定无线承载过程示意图;
图3为本申请实施例提供的另一种通信方法流程图;
图4为本申请实施例提供的一种目标业务类型确定方法流程图;
图5为本申请实施例提供的一种通信装置示意图;
图6为本申请实施例提供的一种通信装置示意图;
图7A为本申请实施例提供的一种通信装置示意图;
图7B为本申请实施例提供的一种通信装置示意图;
图8为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系 统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以下将以图1A为例介绍本申请实施例所涉及的术语。
图1A是本申请实施例提供的一种网络架构示意图,在该架构中,主要涉及网元包括终端设备、核心网、接入网设备。
1)终端设备120,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)接入网设备110,是指将终端接入到无线网络的无线接入网(Radio Access Network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(Hransmission Reception Point,TRP)、演进型节点B(Evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home Evolved NodeB,或Home Node B,HNB)、基带模块(Base Band Unit,BBU),或无线保真(Wireless Fidelity,Wifi)接入点(Access Point,AP)等。另外,在一种网络结构中,接入网设备可以包括集中模块(Centralized Unit,CU)节点、或分布模块(Distributed Unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将RAN设备的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。CU和DU是对接入网设备从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。CU和DU可以根据无线网络的协议层划分,例如其中一种可能的划分方式是:CU用于执行无线资源控制RRC层、业务数据适配协议SDAP层以及分组数据汇聚层协议PDCP层的功能,而DU用于执行无线链路控制RLC层、媒体接入控制MAC层以及物理层等的功能。可以理解,上述划分仅仅是一种举例,CU和DU也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议 层的部分处理功能。在一种可能的实现方式中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种可能的实现方式中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在又一种可能的实现方式中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。应理解,CU和DU的功能可以在具体实现中可以根据需要设置,本申请实施例对此不作任何限定。CU的功能可以由一个实体来实现也可以由不同的实体实现。在一种方式中,CU的功能可以进一步切分为控制面(Control Plane,CP)功能和用户面(User Plane,UP)功能,即,CU可以分为CU-UP和CU-CP。CU-CP和CU-UP可以由不同的功能实体来实现,可以由同一功能实体来实现。CU-CP和CU-UP可以与DU相耦合,共同完成接入网设备的功能。一种可能的方式中,CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密、完整性保护以及数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网设备的数据进行处理并将数据流(flow)映射到承载。PDCP-U主要负责数据面的加解密、完整性保护、头压缩、序列号维护以及数据传输等。还有一种可能的实现是PDCP-C也在CU-UP。请参阅图1B,图1B为本申请实施例提供的一种通信系统的示意图,可应用于本申请实施例提供的通信方法,如图1B所示,该系统包括核心网设备、CU和DU,CU可以分为CU-UP和CU-CP。核心网设备和CU(如CU-UP和/或CU-CP)之间可以进行通信,例如,CU-CP可以代表接入网设备通过Ng接口和核心网设备连接。CU-UP和CU-CP之间可以进行通信,例如,可以通过E1接口通信。CU-UP和CU-CP与DU之间可以进行通信,例如,CU-CP可以通过F1-C(控制面)和DU连接,CU-UP通过F1-U(用户面)和DU连接。多个DU可以共用一个CU,一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。
3)核心网设备100,是指为终端提供业务支持的核心网(Core Network,CN)中的设备。目前,一些核心网设备的举例为:接入和移动性管理功能(Access and Mobility Management Function,AMF)实体、会话管理功能(Session Management Function,SMF)实体、用户面功能(User Plane Function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
在终端设备(本申请实施例中通过UE来描述)与多个RAN进行通信,即双连接或多无线双连接时,主接入网设备与核心网有控制面信令交互,本申请实施例通过主节点MN描述,其他辅接入网设备通过辅节点SN描述。请参阅图1C,图1C为本申请实施例提供的一种DC连接示意图,如图1C所示,MN和SN通过控制面板接口Xn-C连接,MN和SN与UE都通过Uu接口连接,MN与核心网通过NG-C控制面板接口连接。MN和SN都具有RRC实体,都可以产生RRC消息,UE的RRC状态是以MN的为主。对于下行,SN 可以直接把SN产生的RRC消息发给UE。也可以把SN产生的RRC消息通知MN,MN再发送给UE(MN在给UE的MN的RRC消息中封装SN产生的RRC消息)。对于上行,UE也可以直接把需要发送给SN的RRC消息直接发送给UE,UE也可以把给SN的RRC消息通过MN转给SN,即UE把这些RRC消息发给MN(在给MN的RRC消息中封装给SN的RRC消息),MN再把SN的RRC消息转给SN。MR-DC包括各种DC,比如EN-DC,NGEN-DC,NE-DC,NR-DC。
EN-DC中主接入网设备为连接到4G核心网EPC的LTE基站eNB,辅接入网设备为NR基站;
NGEN-DC中主接入网设备为连接到5G核心网5GC的LTE基站ng-eNB,辅接入网设备为NR基站;
NE-DC中主接入网设备为连接到5G核心网5GC的NR基站,辅接入网设备为LTE基站;
NR-DC中主接入网设备为连接到5G核心网5GC的NR基站,辅接入网设备为NR基站;
对于一个MR-DC的UE而言,辅接入网设备的用户面可能和主接入网设备连接的核心网有连接(即核心网可以直接通过辅接入网设备给UE发送数据)。
可以理解的是,本申请实施例中的双连接也可以称为双链接,多连接也可以称为多链接。
最小化路测技术(Minimization of Drive-Tests,MDT)的基本思想是运营商通过签约用户的商用终端进行测量并上报测量结果来部分替代传统的路测工作,实现自动收集终端测量数据,以检测和优化无线网络中的问题和故障。该技术的应用场景:运营商一般每一个月都要做例行的网络覆盖路测,针对用户投诉也会做一些针对特定区域的进行呼叫质量路测,这些场景的路测都可以用MDT代替。现有的MDT技术收集的测量类型可分为以下几种:
1、信号水平测量:由UE测量无线信号的信号水平,将测量结果发送给基站或基站控制器;
2、服务质量(Quality of Service,Qos)测量:通常由基站执行Qos测量(比如:业务的流量、业务的吞吐量,业务时延等),也可以由UE测量,比如上行处理时延,也可以是基站和UE联合处理,比如空口时延测量(测量数据包经过基站的SDAP/PDCP层到该数据包达到UE的SDAP/PDCP层的时间);
3、可接入性测量:由UE记录无线资源控制(Radio Resource Control,RRC)连接建立失败的信息,并发送给基站或基站控制器。
MDT包括记录MDT(logged MDT)(或称为日志MDT)和立即MDT(immediate MDT)。Immediate MDT主要针对处于RRC连接态(RRC_CONNECTED)的UE进行的测量收集,而logged MDT主要针对处于空闲态(RRC_IDLE)的UE或RRC非激活态(RRC_INACTIVE)的UE进行的测量收集(比如:空闲态的UE或非激活态的UE对当前驻留的小区对应的频点的小区及当前驻留的小区中广播的小区重选对应的异频/异系统相邻小区进行测量,UE记录并发送这些测量结果给基站)。Immediate MDT一般用于测量UE的数据量、IP吞吐率、 包传输时延、丢包率、处理时延等。而logged MDT一般指UE对接收信号强度的测量。
无线中还定义了一些层2测量用于网络侧统计一些网络性能,以便进行无线链路管理、无线资源管理、网络维护等功能。其中一些层2测量是针对一个UE进行统计的,比如业务的吞吐量、业务的流量、UE的处理时延、UE的空口时延等。
在两种场景下,接入网设备会发起MDT测量收集任务。一种是发起基于信令的MDT(signalling based MDT),一种是发起基于管理的MDT(management based MDT)。基于信令的MDT是指针对某特定UE的MDT,接入网设备从核心网(core network,CN)收到对某个UE进行MDT的消息。基于管理的MDT并不是针对特定UE的MDT,接入网设备是从操作维护管理(Operation Administration and Maintenance,OAM)或元素管理(element manager,EM)收到进行MDT的消息。对于基于管理的MDT而言,接入网设备基于一定策略从该接入网设备下的UE中选择UE进行MDT测量收集。对于基于信令的MDT而言,除非用户已经同意进行MDT,否则CN并不会发起针对该UE的信令MDT。对于基于管理的MDT而言,接入网设备在选择UE时,可以考虑UE是否同意进行MDT,比如只选择那些已经同意进行MDT的UE进行MDT测量收集。
对于一些流类业务或者语音业务而言,比如流媒体服务(streaming service),IP多媒体系统的多媒体电话(Multimedia Telephony Service for IMS,MTSI)服务,单纯的信号质量并不能体现用户在使用这些业务时的用户体验,运营商想知道用户的体验是如何,从而更好的优化网络以提高用户的体验。这类测量收集称为体验质量(Quality of Experience,QoE)测量收集,也可称为应用层测量收集。这类测量收集也利用基于信令的MDT和/或基于管理的MDT进行发起。接入网设备从CN、OAM或EM收到这些测量的配置信息(比如这些配置信息是以一种透明的容器的方式发给接入网设备),然后,请参阅图1D,图1D为本申请实施例提供的一种MDT测量过程示意图,如图1D所示,接入网设备把这些配置发送给UE(例如通过RRC消息)。UE收到应用层的测量结果之后(例如UE的RRC层从UE的上层(包括应用层,或者RRC层与应用层之间的中间层等)收到应用层的测量结果),把这些测量结果发送给接入网设备(比如这些测量结果是以一种透明容器的封装形式给接入网设备)。接入网设备从CN或OAM接收的信息除了以上的测量的配置信息之后,还可能包括QoE测量的其他信息(比如QoE测量的区域范围,QoE测量的业务类型)等。接入网设备选择UE进行QoE测量的方法基本同普通的MDT测量。
另外,在无线网络通信系统中,存在一种特殊的无线承载(Radio Bearers,RB)——信令无线承载(Signalling Radio Bearers,SRB),用来传输RRC和非接入层(Non-Access Stratum,NAS)消息。SRB包括SRB0,SRB1,SRB2、SRB3和SRB4,其中SRB0对应于公共控制信道(Common Control Channel,CCCH),用于传输RRC消息;SRB1对应于专用控制信道(Dedicated Control Channel,DCCH),用于传输RRC消息(RRC消息中可能携带NAS消息);SRB2对应于DCCH,用于传输NAS消息。SRB2的传输优先级比SRB1的传输优先级更低;在(NG)EN-DC或NR-DC中,SRB3对应DCCH,可通过SRB3传输特定的RRC消息;SRB3用于辅接入网设备与UE之间直接传输RRC消息。SRB4对应DCCH,用于传输包括应用层的测量结果(即QoE测量结果)的RRC消息。
现有技术中,终端设备获取到QoE测量结果后,通过SRB4把QoE测量结果发送给接 入网设备。但是并没有涉及在MR-DC场景中,辅接入网设备如何为终端设备触发或配置QoE测量,以及终端设备如何发送对应的测量结果。
本申请实施例提出了解决上述问题的方法。请参阅图2A,图2A为本申请实施例提供的一种通信方法流程图,如图2A所示,该方法包括如下步骤:
101、终端设备根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅接入网设备的QoE测量结果;
102、主接入网设备配置用于接收QoE测量结果的第一无线承载;
103、终端设备通过第一无线承载发送所述QoE测量结果。
在本申请实施例中,将主接入网设备、辅接入网设备和终端设备实例化为MN、SN和UE进行描述。
QoE是指用户对网络和业务的QoS的体验。QoS侧重于对时延、抖动、丢包率这些网络层参数的改善,但是这些指标的改善对于用户体验来说,是有一定差异性的。例如,当视频出现马赛克现象,在QoS指标上并没有显著反应,但是对于用户来说具有较大的感知体验。因此,网络中的QoE测量是十分重要的,它可以以QoS为基础,另一方面,对于不同的业务,例如时延敏感业务,丢包率敏感业务,也会配置不同的QoE测量。QoE测量配置具体的内容可以具有各种形式,本申请并不限定。比如对于流媒体业务而言,QoE测量配置中可以包括如下至少一项:发送QoE测量结果的接入点、QoE测量结果发送的格式、QoE测量结果发送的间隔等,例如可以参考第三代合伙项目(3 rd Generation Partnership Project,3GPP)协议26.247中10.5章节的描述。QoE测量配置可以通过可扩展标记语言(Extensible Markup Language,XML)格式进行配置。QoE测量结果包括应用层的测量结果。QoE测量结果具体的内容可以具有各种形式,本申请并不限定。比如对于流媒体业务而言,QoE测量结果中可以包括如下至少一项:播放切换事件、平均吞吐量、初始播放时延、缓冲级别、播放列表、媒体描述信息、媒体启动播放时延、设备信息等,例如可以参考3GPP协议26.247中10.2章节的描述。比如对于IP多媒体系统的多媒体电话而言,QoE测量结果中可以包括如下至少一项:质量恶化的时间长度、实时传输协议(Real-time Transport Protocol,RTP)包的连续丢包数目、帧率、抖动持续时间、失步持续时间、来返时间、平均编码率、编解码器信息等,例如可以参考协议26.114中16.2章节的描述。可以理解的是,QoE测量结果的表示形式可以是多样的,例如可以通过XML格式进行表示。
可选的,对应SN的QoE测量结果表示:SN为UE配置的QoE测量配置对应的测量结果;或者由SN触发MN为UE配置的QoE测量配置对应的测量结果。可以将SN为UE配置的QoE测量配置,或者由SN触发MN为UE配置的QoE测量配置称为第一QoE测量配置。该第一QoE测量配置可以直接由SN发送给UE;也可以由MN从SN获取该第一QoE测量配置,然后由MN发送给UE;也可以由SN向MN发送请求,以获取QoE测量结果或请求QoE测量,触发MN为UE配置QoE测量配置,然后由MN为UE配置第一QoE测量配置并由MN发送给UE。
其中,配置的QoE测量配置可以理解为生成或产生的QoE测量配置。
可选的,UE获取第一QoE测量配置的同时,还可以获取标识信息,该标识信息用于标识第一QoE测量配置是由SN为UE配置的,或者由SN触发MN为UE配置的。该标识 信息可以包含在第一QoE测量配置中,也可能由MN通过其他的信元或者信令发送给UE。
可选的,如果UE没有获知第一QoE测量配置是由MN还是SN配置的,而只有MN和SN互相获知该第一QoE测量配置是为SN配置的,MN将接收到的QoE测量配置对应的测量结果发转发给SN。
可选的,对应SN的QoE测量结果还可以表示由SN接收的QoE测量结果。例如针对特定类型的业务或特定时间段的业务等,由MN为UE配置QoE测量配置,但是在UE根据QoE测量配置获得QoE测量结果之后,UE根据MN指定的接收对象(SN)对QoE测量结果进行发送,指定接收对象的信息可以由MN提前发送给UE,也可以通过QoE测量配置一起发送给UE。
基于信令的QoE测量或者基于管理的QoE测量,都可以触发SN选择UE进行QoE测量。
对于基于信令的QoE测量而言,核心网给MN下发QoE测量配置时,可以指示该测量配置是MN对应的QoE测量配置,还是SN对应的QoE测量配置。也可以同时携带两套配置,一套是MN对应的QoE配置,一套是SN对应的QoE配置。MN会把SN对应的QoE配置转发给SN。之后MN和SN再分别产生下发给UE的QoE测量配置。比如核心网给接入网设备下发QoE测量配置时,会携带一套或两套QoE测量配置,并指示该QoE测量配置对应E-UTRA的QoE测量配置还是对应NR的QoE测量配置(比如这两个QoE测量配置放在的位置不同或信息元素名称不同或者有一个显式的指示对应的QoE测量配置是E-UTRA的QoE测量配置还是NR的QoE测量配置)。
对于基于管理的QoE而言,MN和SN的OAM或EM会分别给MN和SN下发对应的QoE配置。之后MN和SN再分别选择对应的UE进行QoE测量配置。
在终端设备根据QoE测量配置获取对应的QoE测量结果之前,还可以包括UE获取QoE测量配置(即上述第一QoE测量配置)的过程。可选的,UE获取QoE测量配置的过程,根据上述描述,本申请实施例的方法还可以如图2A中所示,包括步骤104、UE从SN获取由SN为UE配置的QoE测量配置。可选的,还可以包括步骤105、SN向MN发送第一消息,以便触发MN为UE配置第一无线承载。可选的,第一消息的形式可以有各种形式,比如,第一消息可能是指示SN为UE配置了QoE测量或后续会配置QoE测量,或者是SN请求MN为UE配置第一无线承载,本申请不作限制。可选的,本申请实施例并不限定步骤104和105之间的先后关系。
可选的,UE获取QoE测量配置的过程也可以为:MN从SN获取SN为UE配置的QoE测量配置,再由MN将SN为UE配置的QoE测量配置下发给UE。
MN从SN获取SN为UE配置的QoE测量配置,例如可以包括以下两种方式:
其一为:SN将产生的QoE测量配置发送给MN,MN再把SN产生的QoE测量配置发送给UE。比如SN给MN发送的消息中携带SN产生的RRC消息,RRC消息中携带SN给UE的QoE测量配置。MN再在给UE的RRC重配消息中携带SN产生的RRC消息。这个过程中,SN为UE配置的QoE测量配置对于MN来说是透明的。
其二为:SN向MN发送第二信息,其中第二信息中携带SN为UE配置的QoE测量配置。第二信息不是以SN产生的RRC消息携带,而是SN显式地通知MN。MN根据第二 信息生成RRC消息,该RRC消息包括SN为UE配置的QoE测量配置。MN发送该RRC消息给UE。这个过程中,MN可获知SN为UE配置的QoE测量配置。
可选的,UE获取QoE测量配置的过程也可以为:SN向MN发送第一请求信息,请求MN为UE配置QoE测量配置(即由SN触发MN为UE配置的QoE测量配置)。MN收到第一请求信息之后,MN为UE配置QoE测量(即生成QoE测量配置并下发给UE),该生成的QoE测量配置包括为获取对应SN的QoE测量结果的QoE测量配置。可选的,该第一请求信息中还包括SN请求MN为UE配置QoE测量对应的业务类型。
UE接收到QoE测量配置后,进行对应的测量收集,获得QoE测量结果,并将QoE测量结果发送给网络侧。
一种可能的实现方式中,UE进行QoE测量结果发送的第一无线承载是由MN为UE配置的无线承载。
可以理解的是,本申请实施例中由MN为UE配置的无线承载是MN与UE之间的无线承载。
可选的,MN可以在当前MN已为UE配置的无线承载之外为UE新配置一个无线承载作为第一无线承载,比如通过RRC重配消息中的信元无线承载增加或修改列表(比如drb-ToAddModList)中为UE新增一个无线承载作为第一无线承载。或者,MN可以在当前MN已为UE配置的无线承载中选择一个无线承载作为第一无线承载。然后将该无线承载用于UE发送对应SN的QoE测量结果。一些可能的实现方式中,该第一无线承载可以是专门用于发送对应SN的QoE测量结果的无线承载,也可以是与发送对应SN的QoE测量结果的相对应的无线承载。
或者,也可以在该新增的第一无线承载中通过RRC重配消息中的信元RLC承载增加或修改列表(比如rlc-BearerToAddModList)中为UE新增一个逻辑信道(第一逻辑信道)来传输对应SN的QoE测量结果。一些可能的实现方式中,该第一逻辑信道可以是专门用于发送对应SN的QoE测量结果的逻辑信道,也可以是与发送对应SN的QoE测量结果的相对应的逻辑信道。
在本申请实施例中,通过主接入网设备为终端设备配置无线承载用于发送体验质量测量结果,可以减少通过发送体验质量测量结果过程中,对其他信令或数据传输可能造成的影响。另外,主接入网设备可以为不同的无线承载设置不同的逻辑信道优先级,从而终端设备在获得上行传输的授权时,可以根据不同无线承载设置的优先级来优先传输不同无线承载中的信令或数据。
可选的,第一无线承载也可以是MN已经为UE配置了的现有无线承载,然后通过RRC重配消息中的信息元素RLC承载增加或修改列表(比如rlc-BearerToAddModList)中为UE新增一个逻辑信道(第一逻辑信道)来传输对应SN的QoE测量结果。
可以理解的是,第一无线承载中可能具有多个逻辑信道,第一逻辑信道可以专门用于UE发送对应SN的QoE测量结果,其他逻辑信道用于传输其他信息,例如其他逻辑信道可以用于发送对应MN的QoE测量结果(包括由MN主动为UE配置的QoE测量配置对应的测量结果,而不是SN触发MN为UE配置的QoE测量配置对应的测量结果),这两个测量结果对应的逻辑信道标识不同。或者,第一逻辑信道可以用于发送对应SN的QoE测量 结果,也可以用于发送其他信息。假设第一逻辑信道能够用于发送对应SN的QoE测量结果和发送对应MN的QoE测量结果,这两个测量结果对应的逻辑信道标识相同。
在本申请实施例中,终端设备通过第一无线承载中的第一逻辑信道发送对应SN的QoE测量结果,这样一方面可以减少QoE测量结果发送时与其他信令或数据可能产生的影响,另一方面,当用于传输对应SN的QoE测量结果的逻辑信道和传输其他信令或数据的逻辑信道对应同一个无线承载时,通过划分逻辑信道对无线承载复用,可以提升对多个逻辑信道的管理效率以及充分利用无线承载资源。
可以理解的是,在本申请实施例中不限定步骤101和步骤102的顺序,即终端设备获取QoE测量结果可以在主接入网设备为其配置第一无线承载之前,也可以在之后。
第一无线承载可能是SRB,也可能是DRB。例如,当第一无线承载是SRB,可以是SRB4,SRB4可以用于传输非MR-DC场景下的QoE测量结果,在本申请实施例中,同样可以用传输MR-DC场景下对应SN的QoE测量结果。或者,第一无线承载可以是SRB5,SRB6,或其他任何还未用于传输信令的新增无线承载,其中SRB5和SRB6也可以有其他的名称,表示是不同于SRB1-SRB4的SRB。当第一无线承载是DRB时,该DRB可以不配置SDAP层。
MN配置第一无线承载或第一逻辑信道的时机,本发明实施例并不限定。例如可以包括:
(1),如果由MN向UE下发SN配置的QoE测量配置,且SN通过RRC消息将SN配置的QoE测量配置发送给MN,那么配置第一无线承载或第一逻辑信道的时机可以是在MN接收到SN发送的第一消息(或者第一信息)之后,第一消息(或者第一信息)用以触发MN为UE配置第一无线承载。可选的,本申请实施例并不限定SN把SN产生的QoE测量配置发送给MN和SN把第一消息发送给MN之间的先后关系。可以理解的是,显式的第一消息可以不是必需的,也可以通过SN给MN的消息中携带SN为UE配置的QoE测量配置来隐式的触发MN为UE配置第一无线承载。
如果SN通过发送给MN的第二信息携带SN为UE配置的QoE测量配置,那么配置第一无线承载或第一逻辑信道的时机可以是在MN接收到第二信息之后。
如果SN向MN发送第一请求信息,请求MN为UE配置QoE测量配置,那么配置第一无线承载的时机可以是MN接收到第一请求信息之后。
或者,也可以是在UE请求发送QoE测量结果的之后,MN再配置第一无线承载或第一逻辑信道。
(2),如果由SN向UE下发SN配置的QoE测量配置,那么配置第一无线承载或第一逻辑信道的时机可以是由SN向MN发送第一消息,用于触发MN配置第一无线承载或第一逻辑信道。或者,也可以是在UE请求发送QoE测量结果之后,MN自动配置第一无线承载或第一逻辑信道。
MN给UE配置第一无线承载,与MN向UE发送SN对应的QoE测量配置,可以通过同一个消息,也可以通过不同的消息。
可选的,在CU/DU场景下,当传输对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载,是两个不同的无线承载,且MN的CU请求MN的 DU建立SRB或DRB时,会指示该SRB或DRB是为了对应SN的QoE测量结果,还是对应MN的QoE测量结果。当传输对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载,是相同的无线承载但采用不同的逻辑信道,MN的CU请求MN的DU建立或修改SRB或DRB时,CU会请求DU请求建立一个逻辑信道,指示该逻辑信道用于传输对应SN的QoE测量结果或对应MN的QoE测量结果。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载是两个不同的无线承载时,UE的RRC层把对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体,把对应MN的QoE测量结果发送给对应的无线承载对应的PDCP实体。相应的,MN收到测量结果之后,根据该测量结果是通过哪一个无线承载接收的,就知道是对应MN的QoE测量结果还是对应SN的QoE测量结果。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载是相同的无线承载,且采用相同的逻辑信道标识时,对应SN的QoE测量结果放在SN对应的RRC消息中,该RRC消息封装在给MN的RRC消息中。比如在UE给MN的RRC消息MeasReportAppLayer中封装一个UE给SN的RRC消息MeasReportAppLayer.MeasReportAppLayer用于发送QoE测量结果。或者UE在发送测量结果的时候,会携带一个指示信息,指示该测量结果是对应SN的QoE测量结果,还是对应MN的QoE测量结果(比如UE在给MN的RRC消息MeasReportAppLayer中携带一个指示信息,指示该测量结果是对应哪一个节点的测量结果)。相应的,MN收到测量结果之后,根据该测量结果是否是封装在MN的RRC消息中,或者根据指示信息就知道是对应SN的QoE测量结果还是对应MN的QoE测量结果。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载是相同的无线承载且采用不同的逻辑信道标识时,UE的RRC层生成RRC消息,消息中携带了对应SN的QoE测量结果或对应MN的QoE测量结果。UE的RRC层把RRC消息发送给第一无线承载的PDCP实体时,可以通知该RRC消息是对应哪一个节点的QoE测量结果,或者通知该RRC消息应该通过哪一个逻辑信道来传输。相应的,MN收到测量结果之后,根据该测量结果是通过哪一个逻辑信道接收的,就知道该测量结果是对应SN的QoE测量结果还是对应MN的QoE测量结果。
可选的,当第一无线承载为DRB时,如果对应SN的QoE测量结果的无线承载,和传输对应MN的QoE测量结果的无线承载,是两个不同的无线承载,UE的RRC层或UE的RRC的上层把对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体,UE的RRC层或UE的RRC的上层把对应MN的QoE测量结果发送给对应的无线承载对应的PDCP实体。相应的,MN收到测量结果之后,根据该测量结果是通过哪一个无线承载接收的,就知道该测量结果是对应SN的QoE测量结果还是对应MN的QoE测量结果。
可选的,当第一无线承载为DRB时,如果传输对应SN的QoE测量结果,和传输对应MN的QoE测量结果的无线承载,是相同的无线承载且采用相同的逻辑信道标识,UE的RRC层或UE的RRC的上层把对应MN的QoE测量结果或对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体时,会通知该测量结果是对应哪一个节点的QoE测量结 果或该测量结果对应的业务类型。PDCP实体在生成PDCP PDU时,会在PDCP PDU报头中携带指示信息,指示对应哪一个节点的测量配置对应的测量结果或指示对应的业务类型。相应的,MN收到测量结果之后,根据该指示信息就知道该测量结果是对应SN的QoE测量结果还是对应MN的QoE测量结果。
可选的,当第一无线承载为DRB时,如果传输对应SN的QoE测量结果的无线承载和传输对应MN的QoE测量结果的无线承载是相同的无线承载且采用不同的逻辑信道标识时,UE的RRC层或UE的RRC的上层把对应SN的QoE测量结果或对应MN的QoE测量结果发送给第一无线承载对应的PDCP实体时,会通知该测量结果是对应哪一个节点的测量结果或通知该测量结果应该通过哪一个逻辑信道传输。相应的,MN收到测量结果之后,根据该测量结果是通过哪一个逻辑信道接收的,就知道该测量结果是对应SN的QoE测量结果还是对应MN的QoE测量结果。
另外,因为UE发送的QoE测量结果包括SN为UE配置的QoE测量配置对应的测量结果,因此该方法还可以包括:
106、MN将QoE测量结果发送给SN或者其他实体。
可选的,MN可以通过上述步骤104或步骤105中的方法获知当前接收的测量结果是对应SN的QoE测量结果还是对应MN的QoE测量结果。如果是对应SN的QoE测量结果,MN将QoE测量结果发送给SN或者其他实体(比如跟踪收集实体(Trace Collection Entity,TCE)),由其他实体对QoE测量结果进行进一步分析。比如之前SN会把SN配置的QoE测量配置对应的一些信息发送给MN,这些信息可以包括以下至少一项:跟踪标识、TCE IP地址、TCE ID、TCE IP地址与TCE ID的映射关系发送给MN。则MN可以根据这些信息把SN配置的QoE测量结果发送给TCE。可选的,如果MN把QoE测量结果发送给SN,SN可以把QoE测量结果发送给其他实体,比如TCE。
在一些情况下,请参阅图2B,图2B为本申请实施例提供的一种指定无线承载过程示意图,如图2B所示,如果MN有多个无线承载用于UE发送QoE测量结果,例如SRB4是用于UE发送对应MN的QoE测量结果,MN为UE建立第一无线承载用于传输对应SN的QoE测量结果,比如第一无线承载称为SRB5,SRB5对应DCCH,用于传输包括携带对应SN的QoE测量结果的RRC消息。那么在UE发送QoE测量结果之前,可以从MN接收指示信息,该指示信息可以指示MN下发的QoE测量配置是由MN或SN配置的(比如MN在下发QoE测量配置消息中携带该指示信息),也可以指示当前建立的无线承载是用于传输对应MN的QoE测量结果,或者用于传输对应SN的QoE测量结果(比如MN在下发建立无线承载的消息中携带该指示信息),然后UE根据该指示信息确定从第一无线承载还是其他无线承载发送当前需要发送的QoE测量结果。如果MN用同一个无线承载用于UE发送所有QoE测量结果,且采用不同的逻辑信道传输对应MN的QoE测量结果和对应SN的QoE测量结果(比如通过SRB4中两个不同的逻辑信道来传输)。那么在UE发送QoE测量结果之前,需要从MN接收指示信息,该指示信息可以指示MN下发的QoE测量配置是由MN或SN配置(比如MN在下发QoE测量配置消息中携带该指示信息),也可以指示当前建立的逻辑信道是用于传输对应MN的QoE测量结果,或者用于传输对应SN的QoE测量结果(比如MN在下发建立修改或建立无线承载的消息中增加逻辑信道时携带该指示 信息),然后UE根据该指示信息确定需要从第一无线承载的哪个逻辑信道发送当前需要发送的QoE测量结果。这样在MN接收到QoE测量结果后,可以根据接收到QoE测量结果对应的无线承载或逻辑信道确定是否将该QoE测量结果转发给SN,而不需要其他额外的判定,提升了数据传输效率。
需要说明的是,上述实施例中的MN可以是非切换场景下为UE配置第一无线承载或第一逻辑信道的MN,也可以是由于移动性改变之后的MN(移动性改变之后的MN可以称为目标MN,移动性改变之前的MN可以称为源MN。目标MN从源MN获取源MN为UE配置的第一无线承载或第一逻辑信道,目标MN会通知UE继承源MN配置的第一无线承载或第一逻辑信道或目标MN为UE重新配置新的第一无线承载或第一逻辑信道来传输QoE测量结果,从而UE可以把QoE测量结果发送给目标MN)。可以理解的是,目标MN通知UE继承源MN配置的第一无线承载或第一逻辑信道或目标MN为UE重新配置新的第一无线承载或第一逻辑信道来传输QoE测量结果也可以理解为MN配置用于接收QoE测量结果的第一无线承载的一种方式。
在本申请实施例中,通过MN向UE发送指示信息,以指示第一无线承载或第一无线承载中的第一逻辑信息用于发送QoE测量结果,可以避免当同一个MN为一个UE配置了多个无线承载用于发送不同对象,例如不同网络侧,或者不同业务类型对应的QoE测量结果时,可能产生的信道混淆问题。
另外,请参阅图3,图3为本申请实施例提供的另一种通信方法流程图,如图3所示,该方法包括如下步骤:
201、终端设备根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅基站SN的QoE测量结果;
202、辅接入网设备配置用于接收QoE测量结果的第一无线承载;
203、终端设备通过第一无线承载发送所述QoE测量结果。
同样的,在本申请实施例中,将主接入网设备、辅接入网设备和终端设备实例化为MN、SN和UE进行描述。
本申请实施例中UE进行QoE测量结果发送的第一无线承载可以是由SN为UE配置的无线承载。对应SN的QoE测量结果表示SN为UE配置的QoE测量配置对应的测量结果。
SN可以在当前SN已为UE配置的无线承载之外为UE新配置一个无线承载作为第一无线承载,比如通过RRC重配消息中的信息元素无线承载增加或修改列表(比如drb-ToAddModList)中为UE新增一个无线承载作为第一无线承载,第一无线承载可以为SRB4,SRB4可以用于传输非MR-DC场景下的QoE测量结果,在本申请实施例中,同样可以用传输MR-DC场景下对应SN的QoE测量结果。或者,第一无线承载可以是SRB5,SRB6,或其他任何还未用于传输信令的新增无线承载。SRB5对应DCCH,用于传输包括携带对应SN的QoE测量结果的RRC消息。或者,SN可以在当前SN已为UE配置的无线承载中选择一个无线承载作为第一无线承载。比如通过RRC重配消息中的信息元素RLC承载增加或修改列表(比如rlc-BearerToAddModList)中为UE新增一个逻辑信道(第一逻 辑信道)来传输对应SN的QoE测量结果。
可以理解的是,本申请实施例中辅接入网设备为终端设备配置的第一无线承载,是指辅接入网设备与终端设备之间的无线承载。
可选的,第一无线承载中包括多个逻辑信道,其中第一逻辑信道用来传输对应SN的QoE测量结果。第一逻辑信道还可以传输其他信息,例如SN为UE配置的移动性测量配置对应的测量结果或UE发送给SN的RRC重配完成消息。这些其他信息和QoE对应的测量结果在同一个逻辑信道中传输时,逻辑信道标识相同。或者,第一逻辑信道只用来传输QoE对应的测量结果,其他信息在其他的逻辑信道传输,时,第一逻辑信道和其他的逻辑信道对应的逻辑信道标识不同。
在本申请实施例中,通过辅基站为终端设备配置第一无线承载,用于终端设备发送对应辅基站的体验质量测量结果,这样使得在双连接场景中,辅基站既可以通过自身建立无线承载用以接收终端设备发送的测量结果,有效解决了测量结果发送的问题。同时保证了双连接场景中终端设备发送对应SN的QoE测量结果的及时性与可靠性。
另外,用于发送对应SN的QoE测量结果的逻辑信道可以是第一无线承载中的第一逻辑信道,这样一方面可以减少QoE测量结果发送时与其他信令或数据可能产生的影响,另一方面,通过新增逻辑信道实现对无线承载的复用,可以提升对多个无线承载的管理效率以及充分利用可用的无线承载资源。
SN配置第一无线承载或第一逻辑信道的时机,本发明实施例并不限定。例如,可以是在SN向UE发送SN配置的QoE测量配置之前,包括SN接收到需要为UE配置QoE测量配置的通知消息之后;也可以是在SN向UE发送SN配置的QoE测量配置的同时或之后。也可以是在UE请求发送QoE测量结果之后。SN给UE配置第一无线承载的消息,可以和给UE发送SN配置的QoE测量配置是同一个消息,也可以是不同的消息。
可以理解的是,在本申请实施例中不限定步骤201和步骤202的顺序,即终端设备获取QoE测量结果可以在辅接入网设备为其配置第一无线承载之前,也可以在之后。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载不传输其他信息(比如其他RRC信息)时(即该无线承载是专门用于传输对应SN的QoE测量结果),对应SN的QoE测量结果是放在SN对应的RRC消息中,UE的RRC层直接把RRC消息发送给第一无线承载的PDCP实体。比如在UE给SN的RRC消息MeasReportAppLayer中携带对应SN的QoE测量结果。相应的,SN收到RRC消息之后,根据该RRC消息名称或无线承载标识就知道该RRC消息是QoE测量结果对应的RRC消息,还是其他信息对应的RRC消息。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载也传输其他信息(比如其他RRC信息)且采用相同的逻辑信道标识时,对应SN的QoE测量结果是放在SN对应的RRC消息中。比如在UE给SN的RRC消息MeasReportAppLayer中携带对应SN的QoE测量结果。相应的,SN收到RRC消息之后,根据该RRC消息名称就知道该RRC消息是QoE测量结果对应的RRC消息,还是其他信息对应的RRC消息。
可选的,当第一无线承载为SRB时,如果传输对应SN的QoE测量结果的无线承载也传输其他信息(比如其他RRC信息)但采用不同的逻辑信道标识来传输时,UE的RRC层 生成RRC消息,消息中携带了对应SN的QoE测量结果。比如在UE给SN的RRC消息MeasReportAppLayer中携带对应SN的QoE测量结果。UE的RRC层把RRC消息发送给第一无线承载的PDCP实体时,可以通知该RRC消息是对应QoE测量结果,或者通知该RRC消息应该通过哪一个逻辑信道传输。相应的,SN收到RRC消息之后,根据该RRC消息是通过哪一个逻辑信道接收的,或者根据该RRC消息名称就知道该RRC消息是QoE测量结果对应的RRC消息还是其他信息对应的RRC消息。
可选的,当第一无线承载为DRB时,如果传输对应SN的QoE测量结果的无线承载不传输其他信息(比如其他业务信息)时(即该无线承载是专门用于传输QoE测量结果),UE的RRC层或UE的RRC的上层把对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体。相应的,SN通过DRB收到信息之后,根据无线承载标识就知道该信息是QoE测量结果还是其他业务信息。
可选的,当第一无线承载为DRB时,如果传输对应SN的QoE测量结果的无线承载也传输其他信息(比如其他数据业务信息)且采用相同的逻辑信道标识时,UE的RRC层或UE的RRC的上层把对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体时,会通知该数据是QoE测量结果。PDCP实体在生成PDCP PDU时,会在PDCP PDU报头中携带指示信息,指示该PDCP PDU携带QoE测量结果。相应的,SN收到PDCP PDU之后,根据该指示信息就知道该PDCP PDU是对应QoE测量结果还是其他数据业务信息。
可选的,当第一无线承载为DRB时,如果传输对应SN的QoE测量结果的无线承载也传输其他信息(比如其他数据业务信息)且采用不同的逻辑信道标识时,UE的RRC层或UE的RRC的上层把对应SN的QoE测量结果发送给第一无线承载对应的PDCP实体时,会通知该数据是QoE测量结果或者指示该数据通过哪一个逻辑信道传输。PDCP实体再把对应的PDCP PDU发送给确定的逻辑信道对应的RLC实体。相应的,SN收到PDCP PDU之后,根据PDCP PDU是通过哪一个逻辑信道接收的,就知道该PDCP PDU是对应QoE测量结果还是其他数据业务信息。
可选的,在CU/DU场景下,如果传输对应SN的QoE测量结果的无线承载不传输其他信息,SN的CU请求SN的DU建立SRB或DRB时,会指示该SRB或DRB是为了传输对应SN的QoE测量结果,还是其他信息。当传输对应SN的QoE测量结果的无线承载也传输其他信息,但采用不同的逻辑信道时,SN的CU请求SN的DU建立或修改SRB或DRB时,CU可以请求DU请求建立一个逻辑信道,并指示该逻辑信道用于传输对应SN的QoE测量结果或者其他信息。
在一些情况下,如果传输对应SN的QoE测量结果的无线承载不传输其他信息(比如其他数据业务信息)时,在UE发送QoE测量结果之前,可以从SN接收指示信息,用于指示第一无线承载是用于传输对应SN的QoE测量结果(比如SN在下发建立无线承载的消息中携带该指示信息)。如果传输对应SN的QoE测量结果的无线承载也传输其他信息(比如其他数据业务信息)且采用不同的逻辑信道来传输时,在UE发送对应SN的QoE测量结果之前,可以从SN接收指示信息,用于指示当前建立的逻辑信道是用于传输对应SN的QoE测量结果还是用于传输其他信息(比如SN在下发建立修改或建立无线承载的消息中增加逻辑信道时携带该指示信息),然后UE根据该指示信息确定需要从第一无线承载的哪 个逻辑信道发送当前需要发送的QoE测量结果。这样在SN接收到QoE测量结果后,可以根据对应的无线承载或逻辑信道确定其中携带的信息是否为QoE测量结果,而不需要其他额外的判定,提升了数据传输效率。
需要说明的是,图3所示实施例中的SN可以是非切换场景下为UE配置第一无线承载或第一逻辑信道的SN,也可以是由于移动性改变之后的SN。移动性改变之后的SN可以称为目标SN,移动性改变之前的SN可以称为源SN。目标SN从源SN获取源SN为UE配置的第一无线承载或第一逻辑信道,目标SN会通知UE继承源SN配置的第一无线承载或第一逻辑信道或目标SN为UE重新配置新的第一无线承载或第一逻辑信道来传输QoE测量结果,从而UE可以把QoE测量结果发送给目标SN)。可以理解的是,目标SN通知UE继承源SN配置的第一无线承载或第一逻辑信道或目标SN为UE重新配置新的第一无线承载或第一逻辑信道来传输QoE测量结果也可以理解为SN配置用于接收QoE测量结果的第一无线承载的一种方式。
与图2A对应的实施例描述内容相同的是,在UE根据QoE测量配置获取对应的QoE测量结果,也可以包括UE接收QoE测量配置的过程,如图3所示,步骤204、由MN从SN获取SN为UE配置的QoE测量配置;步骤205、由MN将SN为UE配置的QoE测量配置发送给UE。或者,也可以是UE直接从SN获取由SN为UE配置的QoE测量配置。
MN从SN获取SN为UE配置的QoE测量配置,具体可以包括以下方式:SN产生的QoE测量配置发送给MN,MN再把SN产生的QoE测量发送给UE。比如SN给MN发送的消息中携带SN产生的RRC消息,RRC消息中携带SN给UE的QoE测量配置。MN再在给UE的RRC重配消息中携带SN产生的RRC消息。这个过程中,SN为UE配置的QoE测量配置对于MN来说是透明的。
在一些情况下,如前面实施例描述,SN可以配置QoE测量或SN可以触发MN为UE配置QoE测量。如果MN和SN都为UE配置了同一个业务类型的QoE测量,则前一个QoE测量配置会被后一个QoE测量配置覆盖,从而导致UE不知道该业务类型的QoE测量是由哪一个接入网设备配置的,或者导致这业务类型的QoE测量重新开始从而无法测量该业务类型已经开始的部分通信对应的应用层质量。本实施例提供了一种MN和SN之间进行QoE测量的业务类型协商方法来确定SN能配置的QoE测量的目标业务类型或者SN能触发MN为UE配置的QoE测量的目标业务类型,目标业务类型为MN确定。具体地,请参阅图4,图4为本申请实施例提供的一种目标业务类型确定方法流程图,该方法包括如下步骤:
301、主接入网设备生成第三信息,所述第三信息用于指示对应辅接入网设备能配置或触发的QoE测量的目标业务类型。
302、辅接入网设备从主接入网设备获取所述第三信息。
同样的,在本申请实施例中,将主接入网设备、辅接入网设备和终端设备实例化为MN、SN和UE进行描述。
业务类型包括流媒体服务,IP多媒体系统的多媒体电话服务,虚拟现实(virtual reality,VR),增强现实(augmented reality,AR),超高可靠性超低时延通信(ultra-reliable  low-latency communication,URLLC)业务等,在MR-DC场景中,MN和SN都能够为UE配置QoE测量,一些情况下,MN和SN分别可以进行所有业务类型的QoE测量配置。另一些情况下,MN和SN可以进行协商,由MN确定对应SN的QoE测量配置的目标业务类型,例如通过步骤301进行协商。对应SN能配置的QoE测量的目标业务类型是指SN能够为UE配置的QoE测量配置对应的目标业务类型;对应SN能触发的QoE测量的目标业务类型是指SN能够触发MN为UE配置的QoE测量配置对应的目标业务类型。
可选的,SN从MN获取第三信息可以包括:由MN主动向SN发送第三信息(比如MN在决定SN可以配置的目标业务类型之后,生成并发送第三信息给SN),以指示对应SN能配置或触发的QoE测量的目标业务类型。可选的,第三信息可能是携带在SN增加请求SN addition request,SN修改请求SN modification request消息中,SN根据接收到的第三信息确定可进行QoE测量配置的业务类型或业务类型列表。
或者,SN从MN获取第三信息可以包括:SN向MN发送第二请求信息,比如该请求信息可能是SN请求的QoE测量的业务类型或业务类型列表;相应地,MN从SN接收第二请求信息,根据第二请求信息生成第三信息,并向SN发送第三信息,以指示SN可以配置或触发的QoE测量的业务类型或业务类型列表,或者指示接纳SN请求的QoE测量的业务类型或业务类型列表。可选的,如果MN不接纳SN的请求,MN可以拒绝SN的请求。或者该第二请求信息也可能是SN请求QoE测量,MN根据该第二请求信息生成并向SN发送第三信息,指示SN可以配置或触发的QoE测量的业务类型或业务类型列表。可选的,SN发送的第二请求信息可能携带在SN Modification required中,MN发送的第三信息可能是携带在SN修改确认SN modification confirm消息中。
可选的,MN给SN发送的第三信息可以是SN可以配置或触发的QoE测量的业务类型或业务类型列表,也可以是MN已经配置的QoE测量的业务类型或业务类型列表。从而SN能根据MN已经配置的QoE测量的业务类型或业务类型列表能知道SN能配置或触发的QoE测量的业务类型。
可选的,SN根据获取到的第三信息判断是否能给UE下发QoE测量配置,以及是否能下发对应业务类型的QoE测量配置。SN可以通过SRB3把SN配置的QoE测量配置发送给UE。或者SN将产生的QoE测量配置发送给MN,MN再把SN产生的QoE测量发送给UE。比如SN给MN发送的消息中携带SN产生的RRC消息,RRC消息中携带SN给UE的QoE测量配置。MN再在给UE的RRC重配消息中携带SN产生的RRC消息。这个过程中,SN为UE配置的QoE测量配置对于MN来说是透明的。
在本申请实施例中,通过MN确定对应SN的QoE测量配置对应的目标业务类型,可以使得MN和SN协商进行QoE测量的目标业务类型,而不会造成重复对同类型业务进行配置,提升了配置效率。
在辅接入设备根据接收到的第三信息确定对应辅接入网设备的QoE测量配置的目标业务类型之后,可以包括如下步骤:303、主接入网设备或辅接入网设备向终端设备配置目标业务类型的QoE测量配置。对应辅接入网设备的QoE测量配置可能是辅接入网设备配置的QoE测量配置,也可能是辅接入网设备触发主接入网设备配置QoE测量配置,因此,可能是主接入网设备向终端设备配置目标业务类型的QoE测量配置,也可能是辅接入网设备向 终端设备配置目标业务类型的QoE测量配置。可选的,对于MN而言,MN根据第三信息决定MN可以主动为UE配置的QoE测量配置对应的业务类型(即除了SN可以配置的QoE测量对应的业务类型或SN可以触发MN配置的QoE测量对应的业务类型之外的业务类型)。
并且,该方法还可以进一步包括如下步骤:
304、终端设备根据QoE测量配置获取对应辅接入网设备的QoE测量结果,所述QoE测量结果为目标业务类型对应的测量结果;
对应SN的QoE测量结果包括:SN为UE配置的QoE测量配置对应的测量结果;或者由SN触发MN为UE配置的QoE测量配置对应的测量结果;或者由SN接收的QoE测量结果,因此对应SN的QoE测量结果对应的目标业务类型包括:SN能够为UE生成QoE测量配置的目标业务类型;或者SN能够触发MN为UE生成QoE测量配置的目标业务类型;或者SN能够接收的QoE测量结果对应的目标业务类型。
305、终端设备发送所述对应辅接入网设备的QoE测量结果。
可选的,本申请实施例可以与图2A~图2B对应的实施例进行结合,即终端设备发送对应辅接入网设备的QoE测量结果时,采用主接入网设备配置的第一无线承载或第一逻辑信道进行发送。具体描述可以参见图2A~图2B对应的实体例的描述。可选的,在UE获取到对应SN的QoE测量结果之后,将其发送给MN,UE可以在发送的QoE测量结果中携带一个该QoE测量结果对应的业务类型,由于MN和SN之间已经协商了各自能对应的QoE测量结果的业务类型,从而MN根据业务类型就能知道该测量结果是对应哪一个节点配置的QoE测量。相应的,MN收到测量结果之后,根据业务类型就知道是对应MN的QoE测量结果还是对应SN的QoE测量结果,MN可以将对应SN的QoE测量结果转发给SN,也可以转发给其他实体。提升了QoE测量结果的发送效率。
可选的,本申请实施例可以与图3对应的实施例进行结合,SN配置QoE测量配置之前,与MN进行协商,并由MN确定SN能够进行QoE测量配置的目标业务类型。那么终端发送对应辅接入网设备的QoE测量结果时,采用辅接入网设备配置的第一无线承载或第一逻辑信道进行发送,同样的,UE可以在发送的QoE测量结果中携带一个该QoE测量结果对应的业务类型,那么SN可以根据接收到的QoE测量结果对应的业务类型确定是否为自身对应的QoE测量结果,提升了接收QoE测量结果的准确性。
可选的,本申请实施例也可以为单独的实施例。即其他双连接或多连接场景下,对应SN的QoE测量结果的目标业务类型也由MN确定。例如UE传送对应SN的QoE测量结果的无线承载,是SN与UE之间的现有无线承载和逻辑信道,在这种情况下,SN同样可以根据接收到的QoE测量结果对应的业务类型确定是否为自身对应的QoE测量结果,提升了接收QoE测量结果的准确性。
需要说明的是,上述各个实施例的通信方法中,由终端设备实现的步骤或者操作,也可以由可配置于终端设备的部件实现,由接入网设备(例如MN或者SN)实现的步骤或者操作,也可以由可配置于接入网设备的部件实现。
图5为本申请实施例提供的一种通信装置400,其可以用于执行上述图2A~图2B或图3的通信装置的通信方法和具体实施例中对应于终端设备的相应操作或者步骤,该通信装 置可以是终端设备或者可以是配置于终端设备的部件(例如芯片或者电路)。在一种可能的实现方式中,如图5所示,该通信装置400包括发送模块401,处理模块402。
处理模块402,用于根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅接入网设备的QoE测量结果;
发送模块401,用于通过第一无线承载发送所述QoE测量结果,所述第一无线承载是主接入网设备或所述辅接入网设备为所述终端设备配置的无线承载。
可选的,所述终端设备还包括接收模块403,用于:
从所述主接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置,或
从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置。
可选的,所述接收模块403还用于:
所述第一无线承载是主接入网设备为所述终端设备配置的无线承载时,从所述主接入网设备接收指示信息,或所述第一无线承载是辅接入网设备为所述终端设备配置的无线承载时,从所述辅接入网设备接收指示信息;
所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
可选的,上述接收模块403和发送模块401可以为接口电路或者收发器。接收模块403和发送模块401可以为独立的模块,也可以集成为收发模块(图未示),收发模块可以实现上述接收模块403和发送模块401的功能。
上述处理模块402可以是处理器、芯片、编码器、编码电路或其他可以实现本申请方法的集成电路。
由于具体的方法和实施例在前面已经介绍过,该通信装置400是用于执行对应于终端设备的通信方法,可以参考对应实施例相关部分的描述,此处不再赘述。
可选的,通信装置400还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理模块402耦合,也可以和接收模块403或发送模块401耦合。例如,处理模块402可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的通信方法被执行。该存储模块可以是存储器。
图6为本申请实施例提供的一种通信装置500,其可以用于执行上述图2A~图2B的通信装置的通信方法和具体实施例中对应于主接入网设备的相应操作或者步骤,该通信装置可以是主接入网设备或者配置于主接入网设备的部件(例如芯片或者电路)。在一种可能的实现方式中,如图6所示,该通信装置500包括接收模块501和处理模块502。
处理模块502,用于配置用于接收体验质量QoE测量结果的第一无线承载,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
接收模块501,用于通过所述第一无线承载接收终端设备发送的所述QoE测量结果。
可选的,所述第一无线承载中包括多个逻辑信道;所述接收模块501具体用于:通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述UE发送的所述QoE测量结果。
可选的,所述接收模块501还用于:从所述辅接入网设备接收所述辅接入网设备为所 述终端设备配置的QoE测量配置;
通信装置500还包括发送模块503,用于:
向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
可选的,所述发送模块503还用于:向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
或者,图6提供的通信装置500,可以用于执行上述图3的通信装置的通信方法和具体实施例中对应于辅接入网设备的相应操作或者步骤,该通信装置可以是辅接入网设备或者配置于辅接入网设备的部件(例如芯片或者电路)。在一种可能的实现方式中,
处理模块502,用于配置用于接收体验质量QoE测量结果的第一无线承载,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
接收模块501,用于通过所述第一无线承载接收终端设备发送的所述QoE测量结果。
可选的,所述第一无线承载中包括多个逻辑信道;所述接收模块501具体用于:通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述终端设备发送的所述QoE测量结果。
可选的,发送模块503用于:
向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置;或
向所述主接入网设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
可选的,所述发送模块503还用于:向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
可选的,上述接收模块501和发送模块503可以为接口电路或者收发器。接收模块501和发送模块503可以为独立的模块,也可以集成为收发模块(图未示),收发模块可以实现上述接收模块501和发送模块503的功能。
可选的,上述处理模块503可以是处理器、芯片、编码器、编码电路或其他可以实现本申请方法的集成电路。
由于具体的方法和实施例在前面已经介绍过,该通信装置500是用于执行对应于接入网设备的通信方法,可以参考对应实施例相关部分的描述,此处不再赘述。
可选的,通信装置500还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理模块502耦合,也可以和接收模块501、发送模块503或发送模块503耦合。例如,处理模块502可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的通信方法被执行。
图7A为本申请实施例提供的一种通信装置600,可以用于执行上述图4的通信装置的通信方法和具体实施例中对应于主接入网设备的相应操作或者步骤,该通信装置可以是主接入网设备或者配置于主接入网设备的部件(例如芯片或者电路)。在一种可能的实现方式中,如图7A所示,该通信装置600包括:
处理模块601,用于生成第三信息,所述第三信息用于指示对应辅接入网设备能配置或触发的QoE测量的目标业务类型;
发送模块602,用于向辅接入网设备发送所述第三信息。
图7B为本申请实施例提供的一种通信装置700,可以用于执行上述图4的通信装置的通信方法和具体实施例中对应于辅接入网设备的相应操作或者步骤,该通信装置可以是辅接入网设备或者配置于辅接入网设备的部件(例如芯片或者电路)。在一种可能的实现方式中,如图7B所示,该通信装置700包括:
接收模块701,用于接收第三信息,所述第三信息用于指示对应辅接入网设备能配置或触发的QoE测量的目标业务类型。
可选的,上述通信装置600还可以包括接收模块603;或者,上述通信装置700还可以包括发送模块702。接收模块和发送模块(包括接收模块603和发送模块602,或者接收模块701和发送模块702)可以为接口电路或者收发器。接收模块和发送模块可以为独立的模块,也可以集成为收发模块(图未示),收发模块可以实现上述接收模块和发送模块的功能。
可选的,通信装置700还可以包括处理模块703,上述处理模块(包括处理模块601或处理模块703)可以是处理器、芯片、编码器、编码电路或其他可以实现本申请方法的集成电路。
由于具体的方法和实施例在前面已经介绍过,该通信装置600是用于执行对应于终端设备的通信方法,可以参考对应实施例相关部分的描述,此处不再赘述。
可选的,通信装置600或通信装置700还可以包括存储模块(图中未示出),该存储模块可以用于存储数据和/或信令,存储模块可以和处理模块耦合,也可以和接收模块或发送模块401耦合。例如,处理模块可以用于读取存储模块中的数据和/或信令,使得前述方法实施例中的通信方法被执行。该存储模块可以是存储器。
如图8所示,图8示出了本申请实施例中的一种通信装置的结构示意图。终端设备或者接入网设备的结构可以参考图8所示的结构。通信装置800包括:处理器111和收发器112,所述处理器111和所述收发器112之间电偶合;
所述处理器111,用于执行部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
所述收发器112,用于和其他设备进行通信;例如发送或接收对应辅接入网设备的QoE测量结果。
可选的,还包括存储器113,用于存储所述计算机程序指令,可选的,所述存储器113(Memory#1)位于所述装置内,所述存储器113(Memory#2)与处理器111集成在一起,或者所述存储器113(Memory#3)位于所述装置之外。
应理解,图8所示的通信装置800可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置800还可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中第一设备或者第二设备的步骤。所述存储器113可以集成在所述处理器111中,也可 以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于接入网设备的方法。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例中对应用于终端设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于接入网设备的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中对应用于终端设备的方法。
本申请实施例提供了一种通信系统,包括终端设备和主接入网设备。可选的,还可以包括辅接入网设备。其中所述辅接入网设备包括图6对应的通信装置。该通信装置用于执行上述图3的通信装置的通信方法和具体实施例中对应于辅接入网设备的相应操作或者步骤。
本申请实施例还提供了一种通信系统,包括终端设备和辅接入网设备。可选的,还可以包括主接入网设备。其中,所述主接入网设备包括图6对应的通信装置。该通信装置用于执行上述图2A~图2B的通信装置的通信方法和具体实施例中对应于主接入网设备的相 应操作或者步骤。
本申请实施例还提供了一种通信系统,包括主接入设备和辅接入网设备。可选的,还可以包括终端设备。其中,所述终端设备包括图5对应的通信装置。该通信装置用于执行上述图2A~图2B或图3的通信装置的通信方法和具体实施例中对应于终端设备的相应操作或者步骤。
本申请实施例还提供了一种通信系统,包括终端设备、主接入网设备和辅接入网设备,可选的,主接入网设备包括图7A对应的通信装置,辅接入网设备包括图7B对应的通信装置。其中图7A对应的通信装置用于执行上述图4的通信装置的通信方法和具体实施例中对应于主接入网设备的相应操作或步骤,图7B对应的通信装置用于执行上述图4的通信装置的通信方法和具体实施例中对应于辅接入网设备的相应操作或步骤。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和实现方式约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码 的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种通信方法,其特征在于,所述方法包括:
    根据体验质量QoE测量配置获取对应的QoE测量结果,所述QoE测量结果包括对应辅接入网设备的QoE测量结果;
    通过第一无线承载发送所述QoE测量结果,所述第一无线承载是主接入网设备或所述辅接入网设备为终端设备配置的无线承载。
  2. 根据权利要求1所述的方法,其特征在于,所述第一无线承载是所述主接入网设备为所述终端设备配置的无线承载包括:
    所述第一无线承载是所述主接入网设备配置的用于发送所述QoE测量结果的无线承载。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一无线承载中包括多个逻辑信道;
    所述通过第一无线承载发送QoE测量结果包括:
    通过所述第一无线承载中多个逻辑信道中的第一逻辑信道发送所述QoE测量结果,其中,所述第一逻辑信道是与发送所述QoE测量结果对应的逻辑信道。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述对应辅接入网设备的QoE测量结果包括:所述辅接入网设备为终端设备配置的QoE测量配置对应的测量结果;或
    所述辅接入网设备触发所述主接入网设备配置的QoE测量配置对应的测量结果。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从所述主接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置,或
    从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在所述通过第一无线承载发送所述QoE测量结果之前,所述方法还包括:
    所述第一无线承载是主接入网设备为所述终端设备配置的无线承载时,从所述主接入网设备接收指示信息,或所述第一无线承载是辅接入网设备为所述终端设备配置的无线承载时,从所述辅接入网设备接收指示信息;
    所述指示信息指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述对应辅接入网设备的QoE测量结果为目标业务类型对应的测量结果,所述目标业务类型由所述主接入网设备确定。
  8. 一种通信方法,其特征在于,所述方法包括:
    接入网设备配置用于接收体验质量QoE测量结果的第一无线承载,其中,所述接入网设备包括主接入网设备或辅接入网设备,所述QoE测量结果包括对应所述辅接入网设备的QoE测量结果;
    所述接入网设备通过所述第一无线承载从终端设备接收所述QoE测量结果。
  9. 根据权利要求8所述的方法,其特征在于,所述第一无线承载中包括多个逻辑信道;
    所述通过第一无线承载接收终端设备发送的QoE测量结果包括:
    通过所述第一无线承载中多个逻辑信道中的第一逻辑信道接收所述终端设备发送的所述QoE测量结果。
  10. 根据权利要求8或9所述的方法,其特征在于,所述对应所述辅接入网设备的QoE测量结果包括:所述辅接入网设备为终端设备配置的QoE测量配置对应的测量结果;或
    所述辅接入网设备触发所述主接入网设备配置的QoE测量配置对应的测量结果。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述接入网设备为主接入网设备,所述方法还包括:
    所述主接入网设备从所述辅接入网设备接收所述辅接入网设备为所述终端设备配置的QoE测量配置;
    所述主接入网设备向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置。
  12. 根据权利要求8-10任一项所述的方法,其特征在于,所述接入网设备为辅接入网设备,所述方法还包括:
    所述辅接入网设备向所述终端设备发送所述辅接入网设备为所述终端设备配置的QoE测量配置;或
    所述辅接入网设备向所述主接入网设备发送所述辅接入网设备为所述UE配置的QoE测量配置。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,在所述接入网设备通过所述第一无线承载接收所述QoE测量结果之前,所述方法还包括:
    所述接入网设备向所述终端设备发送指示信息,所述指示信息用于指示所述第一无线承载或第一无线承载中的第一逻辑信道用于发送所述QoE测量结果。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述对应辅接入网设备的QoE测量结果为目标业务类型对应的测量结果,所述目标业务类型由所述主接入网设备确定。
  15. 一种通信装置,其特征在于,包括用于实现如权利要求1-7任一项所述的通信方法的至少一个模块。
  16. 一种通信装置,应用于主接入网设备,其特征在于,包括用于实现如权利要求8-11以及13-14任一项所述的通信方法的至少一个模块。
  17. 一种通信装置,应用于辅接入网设备,其特征在于,包括用于实现如权利要求8-10,以及12-14任一项所述的通信方法的至少一个模块。
  18. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1-7中任一项所述的方法被实现,或者使如权利要求8-14中任一项所述的方法被实现。
  19. 一种通信系统,其特征在于,所述系统包括终端设备和接入网设备,所述终端设备包括如权利要求15所述的通信装置,所述接入网设备包括如权利要求16所述的通信装置,或者所述接入网设备包括如权利要求17所述的通信装置。
  20. 一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1-7或8-14中任一项所述的方法。
PCT/CN2021/089095 2020-04-23 2021-04-22 用于体验质量测量结果发送的通信方法及装置 WO2021213481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21792771.4A EP4132081A4 (en) 2020-04-23 2021-04-22 COMMUNICATION METHOD AND APPARATUS FOR TRANSMITTING A QUALITY OF EXPERIMENT MEASUREMENT RESULT
US18/048,533 US20230115085A1 (en) 2020-04-23 2022-10-21 Communication Method and Apparatus for Sending Quality of Experience Measurement Result

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010327139.2A CN113556776A (zh) 2020-04-23 2020-04-23 用于体验质量测量结果发送的通信方法及装置
CN202010327139.2 2020-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/048,533 Continuation US20230115085A1 (en) 2020-04-23 2022-10-21 Communication Method and Apparatus for Sending Quality of Experience Measurement Result

Publications (1)

Publication Number Publication Date
WO2021213481A1 true WO2021213481A1 (zh) 2021-10-28

Family

ID=78101084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089095 WO2021213481A1 (zh) 2020-04-23 2021-04-22 用于体验质量测量结果发送的通信方法及装置

Country Status (4)

Country Link
US (1) US20230115085A1 (zh)
EP (1) EP4132081A4 (zh)
CN (1) CN113556776A (zh)
WO (1) WO2021213481A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4262266A1 (en) * 2022-04-15 2023-10-18 Comcast Cable Communications LLC Configuration and reporting of quality of experience measurements
WO2024006455A1 (en) * 2022-06-29 2024-01-04 Ofinno, Llc Quality of experience measurement
WO2024020917A1 (en) * 2022-07-28 2024-02-01 Apple Inc. Methods and systems for application layer measurement reporting by a user equipment operating in a dual connectivity mode
WO2024027567A1 (zh) * 2022-08-01 2024-02-08 大唐移动通信设备有限公司 QoE配置方法、终端及节点
WO2024030652A3 (en) * 2022-08-04 2024-03-14 Ofinno, Llc Quality of experience measurement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071560B (zh) * 2021-11-05 2023-06-16 中国联合网络通信集团有限公司 网络优化方法、装置及存储介质
CN114071547B (zh) * 2021-11-09 2023-07-14 中国联合网络通信集团有限公司 QoE测量配置方法、装置及存储介质
CN114095956B (zh) * 2021-11-09 2023-08-01 中国联合网络通信集团有限公司 网络优化方法、装置及存储介质
CN116405970A (zh) * 2021-12-25 2023-07-07 华为技术有限公司 应用层测量收集方法和通信装置
WO2023212912A1 (en) * 2022-05-06 2023-11-09 Lenovo (Beijing) Limited METHOD AND APPARATUS OF SUPPORTING QUALITY OF EXPERIENCE (QoE) MEASUREMENT COLLECTION
WO2023240469A1 (en) * 2022-06-14 2023-12-21 Zte Corporation Systems and methods for logged quality of experience measurement
CN117354860A (zh) * 2022-06-27 2024-01-05 华为技术有限公司 通信方法以及通信装置
WO2024020770A1 (en) * 2022-07-26 2024-02-01 Apple Inc. Uplink hybrid automatic repeat request (harq) mode restriction for a radio bearer of application layer measurement reporting
CN117528618A (zh) * 2022-07-28 2024-02-06 大唐移动通信设备有限公司 一种体验质量报告的传输方法、装置、终端、sn及mn
CN117545003A (zh) * 2022-08-01 2024-02-09 大唐移动通信设备有限公司 QoE测量配置方法、主节点及辅节点
WO2024027805A1 (zh) * 2022-08-05 2024-02-08 中国联合网络通信集团有限公司 QoE测量方法、通信装置及存储介质
WO2024065754A1 (en) * 2022-09-30 2024-04-04 Nokia Shanghai Bell Co., Ltd. Quality of experience measurement reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016187449A1 (en) * 2015-05-19 2016-11-24 Empirix Inc. Method and apparatus to determine network quality
CN107659955A (zh) * 2016-07-26 2018-02-02 财团法人工业技术研究院 基于用户设备反馈控制体验品质的基站、用户设备及方法
WO2019008559A1 (en) * 2017-07-07 2019-01-10 Telefonaktiebolaget Lm Ericsson (Publ) TRANSFER OF MEASUREMENT CONFIGURATION INFORMATION IN WIRELESS COMMUNICATION NETWORKS
CN110326328A (zh) * 2017-02-14 2019-10-11 瑞典爱立信有限公司 在重定位或切换期间管理QoE测量采集的方法和网络节点
US20200092762A1 (en) * 2017-02-16 2020-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and Network Nodes to Manage QoE Measurement Collection During Relocation or Handover

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211401A1 (en) * 2016-06-08 2017-12-14 Huawei Technologies Co., Ltd. Gateway, master access node and methods thereof
CN109891798B (zh) * 2016-10-18 2022-02-15 瑞典爱立信有限公司 用于处理通信网络中的双连接的确定模块以及方法
WO2018142345A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Measurement collection in wireless communication networks
EP3649802B1 (en) * 2017-07-07 2022-09-14 Telefonaktiebolaget LM Ericsson (publ) Transfer of measurement configuration information in wireless communication networks
US10512006B2 (en) * 2017-08-11 2019-12-17 Htc Corporation Device and method of handling a bearer change in dual connectivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016187449A1 (en) * 2015-05-19 2016-11-24 Empirix Inc. Method and apparatus to determine network quality
CN107659955A (zh) * 2016-07-26 2018-02-02 财团法人工业技术研究院 基于用户设备反馈控制体验品质的基站、用户设备及方法
CN110326328A (zh) * 2017-02-14 2019-10-11 瑞典爱立信有限公司 在重定位或切换期间管理QoE测量采集的方法和网络节点
US20200092762A1 (en) * 2017-02-16 2020-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and Network Nodes to Manage QoE Measurement Collection During Relocation or Handover
WO2019008559A1 (en) * 2017-07-07 2019-01-10 Telefonaktiebolaget Lm Ericsson (Publ) TRANSFER OF MEASUREMENT CONFIGURATION INFORMATION IN WIRELESS COMMUNICATION NETWORKS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4262266A1 (en) * 2022-04-15 2023-10-18 Comcast Cable Communications LLC Configuration and reporting of quality of experience measurements
WO2024006455A1 (en) * 2022-06-29 2024-01-04 Ofinno, Llc Quality of experience measurement
WO2024020917A1 (en) * 2022-07-28 2024-02-01 Apple Inc. Methods and systems for application layer measurement reporting by a user equipment operating in a dual connectivity mode
WO2024027567A1 (zh) * 2022-08-01 2024-02-08 大唐移动通信设备有限公司 QoE配置方法、终端及节点
WO2024030652A3 (en) * 2022-08-04 2024-03-14 Ofinno, Llc Quality of experience measurement

Also Published As

Publication number Publication date
US20230115085A1 (en) 2023-04-13
EP4132081A4 (en) 2023-09-06
CN113556776A (zh) 2021-10-26
EP4132081A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021213481A1 (zh) 用于体验质量测量结果发送的通信方法及装置
US20220210031A1 (en) Method for Quality of Experience Measurement and Communication Apparatus
WO2020164365A1 (zh) 信息传输的方法及装置
WO2021128746A1 (zh) 通信方法及装置
CN113676930A (zh) 通信方法和通信装置
WO2021228095A1 (zh) 通信方法和通信装置
WO2022082610A1 (zh) 一种信息处理方法及装置
WO2018127018A1 (zh) 多链接通信方法、设备和终端
US11924657B2 (en) Method, device, and system for determining minimization of drive tests (MDT)
WO2019192458A1 (zh) 通信方法和装置
JP2017147746A (ja) データ分流のための方法およびデバイス
WO2022083558A1 (zh) 通信方法,装置,可读存储介质和系统
US20240172084A1 (en) Data transmission method and apparatus
WO2023155575A1 (zh) 测量方法和测量装置
US20240163719A1 (en) Network optimization method and communication apparatus
WO2016115868A1 (zh) 接入技术网络间的网络资源调整方法及终端
US20230030697A1 (en) Information Transmission Method and Related Device
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2020077745A1 (zh) 一种连接配置方法、设备及存储介质
WO2022170582A1 (zh) 体验质量测量的方法和通信装置
US20240129786A1 (en) Session management method and apparatus
WO2024001717A1 (zh) 通信方法以及通信装置
CN117596690A (zh) 通信的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021792771

Country of ref document: EP

Effective date: 20221028

NENP Non-entry into the national phase

Ref country code: DE